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DESIGN AND DEVELOPMENT OF A THREE DIMENSIONAL 

AUGMENTED REALITY SYSTEM AIMING MEDICAL AND 

ENGINEERING APPLICATIONS 

 

 ABSTRACT 

 

 Three dimensional modeling and simulation software are becoming more 

widespread in medical applications. Enabling the user to view the 3D models of 

biological tissues and materials, to interact with the models with the ability to 

observe the reaction of the models to different force loading conditions in a virtual 

environment are the main properties of these kind of software. In addition to these 

properties, the graphical user interface enables the user to easily interact with the 

software and access its properties. These software specifications give an opportunity 

to understand the physical and mathematical reasons of dynamical processes in 

addition to presenting a visual learning environment to the researchers in not only in 

medicine but also in different fields of science. Considering above, the development 

of software which will immerse the user into a virtual environment providing an 

opportunity to observe and to interact with the anatomical models is aimed. 

Additionally, the software system will be able to simulate the responses of the 

models depending on different force loading conditions and material properties in 

real time. Additionally, the development of the necessary hardware platform has 

been aimed.  

 

Keywords: Real time computer graphics, virtual reality and human interaction, 3-D 

medical simulation, numerical methods for rigid and elastic object modeling, real 

time collision detection methods, force and penetration depth computations, graphics 

processing unit programming, Cg - C for Graphics, HLSL, GLSL, NVIDIA CUDA. 
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TIP VE MÜHENDĐSLĐK UYGULAMALARINI AMAÇLAYAN ÜÇ 

BOYUTLU ARTTIRILMIŞ GERÇEKLĐK SĐSTEMĐ TASARIMI VE 

GELĐŞTĐRĐLMESĐ 

 

 ÖZ 

 

 Üç boyutlu modelleme ve simülasyon yazılımlarının kullanımı, tıbbi 

uygulamalarda gün geçtikçe artmaktadır. Bu yazılımların sahip oldukları önemli 

özelliklerin başında üç boyutlu biyolojik doku ve materyal modellerinin 

incelenebilmesine, etkileşim kurulabilmesine, farklı yük bindirimleri altındaki 

davranışlarının üç boyutlu sanal bir ortam içerisinde gözlenebilmesine imkan 

tanımaları gelmektedir. Bu özelliklere ek olarak, sunulan grafiksel kullanıcı arayüzü, 

kişinin yazılım ile kolay bir şekilde iletişim kurmasina ve özelliklerine ulaşmasına 

izin vermektedir. Bu yazılım nitelikleri, sadece sağlık bilimlerinde değil farkli bilim 

alanlarinda çalışan tüm araştırmacılara görsel bir öğrenme imakanı ve dinamik 

süreçlerin fiziksel ve matematiksel nedenlerini anlama olanağı sunmaktadır. Bu 

noktadan yola çıkarak, kullanıcının sanal, üç boyutlu bir ortam içerisinde 

bulunmasını sağlayacak; istediği anatomik modeli, üç boyutlu ortam içerisinde 

gerçek zamanlı olarak incelenmesine ve onunla etkileşim kurmasına izin verecek bir 

yazılım geliştirmek amaçlanmıştır. Geliştirilecek yazılımın belirtilen amaca ek 

olarak, modellerin materyal özelliklerine bağlı olarak farklı yük durumları altındaki 

tepkilerinin üç boyutlu sanal bir ortam içerisinde benzetimini gerçek zamanlı olarak 

yapabilmesi ve ayrıca gerekli donanımsal altyapının hazırlanması amaçlanmıştır. 

 

Anahtar kelimeler: Gerçek zamanlı bilgisayar grafikleri, sanal gerçeklik ve 

kullanici etkileşimi, tıbbi benzetim, rijit ve elastik nesneler için numerik modelleme, 

eş zamanlı çarpışma belirleme yöntemleri, kuvvet ve girişim derinliği hesabı, grafik 

işlem birimi programlama, Cg - C for Graphics, HLSL, GLSL, NVIDIA CUDA. 
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CHAPTER ONE 

INTRODUCTION 

 

 Real time computer graphics rendering and physics simulation cover broad range 

of fields ranging from mathematics to software design; from hardware design of 

human-computer interfaces to arts and system dynamics modeling.  

 

 The studies (Azuma, 1997), (Grady, 2003, p. 56), (Grady, 2003, p. 116), (Grady, 

2003, p. 123) related with computer graphics and simulation engines such as 

(NVIDIA, 2008), (Coumans, 2010) and (The SOFA Team at INRIA Grenoble, 2009) 

aim the most realistic graphics in the 2D or 3D medias. At the same time, graphics 

hardware performance and architectures are vital for effective visualization systems 

when screen refresh rates and resolution are of concern. By the rapid developing 

graphics hardware technologies (Refer to chapter 2 and chapter 4), not only fast, high 

resolution and realistic images can be rendered via many display methods such as 

using the programmable graphics pipeline (Refer to chapter 4, chapter 5 and chapter 

9) of the graphics processing units but also performance demanding scientific and 

general purpose computations can be accomplished by utilizing their massively 

parallel architectures (Refer to chapter 4 and chapter 9.). 

 

The other variable which must be studied on is the realism and the 3-D perception 

of the images; because the human brain uses visual stimuli and other senses in order 

to perceive its real physical surrounding. The more realistic visual, auditory, tactile, 

olfactive stimuli, dynamically consistent and intelligent virtual environments the 

computer systems are able to generate, the more realistic and immersive perception 

of the virtual 3-D environment by the brain is accomplished. Therefore, various types 

of sensors can be used to create more realistic bio-feedback for more realistic 

perception.  

 

The Virtual Reality (VR) and the Augmented Reality (AR) systems are based on 

the computer graphics, numerical modeling of systems and hardware components for
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creating motion feedback in order to create immersive and realistic perception (Refer 

to Chapter 2.).   

 

In this study, VR and AR systems are developed for the purpose of education in 

the areas of engineering and medicine. The main idea is to create computer graphics 

(Refer to chapter 5 and chapter 9) and dynamical system simulation (Refer to chapter 

6 and chapter 9) based synthetic and semi-synthetic virtual (Refer to chapter 7 and 

chapter 9) environments, in which the user can interact with all synthetic and semi-

synthetic objects by using hardware feedback components. For this purpose, 

hardware components (Refer to chapter 8) and also the necessary software modules 

(Refer to chapter 5, chapter 6 and chapter 7) must be combined together in order to 

create the sense of reality and immersion.  The necessary graphics rendering and 

dynamical simulation or in other words physics rendering modules and hardware 

communication modules (Refer to chapter 3) were developed and applied in several 

applications in a specialized laboratory environment which has been equipped with 

VR hardware components and computer systems (Refer to chapter 8, chapter 9 and 

chapter 10).  The figure 1.2  shows the fundamental block diagram of the thesis 

study. 

  

1.1 Introduction to Real-Time Computer Graphics and Virtual Environments 

 

Computer graphics has attracted a great attention from the researchers since mid 

1970s. This attention was mostly motivated by the development in graphics hardware 

as will be mentioned in the following chapters. One of the first graphics hardware 

developed by IBM can be inspected at (Elliot, 2010). 1970s and early 1980s were 

mostly dominated by 2-D computer graphics some of which could be just rendered 

offline. Beginning from early 1980s, technological researches and investments 

pioneered by academia and industry resulted in significant technical and scientific 

leap in the field and opened new horizons for possible applications. The graphics 

hardware improvements that started at late 1980s allowed desktop computers to use 

graphics acceleration hardware that was once found just in workstations. These 

graphics accelerators enabled 3-D graphics applications run in interactive rates. 
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Therefore, algorithms concerning 2-D and 3-D graphics that were developed by 

academia and industry became executable in real-time at interactive rates not only on 

workstations, but also on desktop computers of normal users. This trend pushed the 

limits more and more in 1990s. This progress enabled graphics processing units to 

play an important role in computer graphics, scientific visualization, several 

optimization applications, entertainment and films. By the early 2000s, the 

researches of several institutions led to graphics processing hardware with massive 

power of parallel numeric computation. In this period, algorithms for generating 

more life like and interactive visualizations, games and the computation source 

demanding numerical and scientific computations began to be executed on graphics 

processing hardware, harnessing its computational power. Hence, general purpose 

central processing units are offloaded for other computational and control tasks. An 

introductory coverage of graphics processing unit architecture can be found in 

(Möller, Haines, & Hoffman, 2008).  

 

One of the common motivating problems throughout all of the above period was 

the performance demand of real-time computer graphics based interactive 

applications, which should run at least at 15 frames per second (fps). On the other 

hand, computation power and parallelism need of the scientific, numerical 

applications and physics simulations were the other concerns that the researchers 

should have handled. Such applications include medical simulations, astrophysical 

simulations, molecular dynamics simulations, flight simulations for military, 

volumetric visualizations, visualization of differential equations, aerodynamics and 

fluid dynamics simulations and 3-D graphics rendering in entertainment field. Figure 

1.1 presents relatively recent application examples from (Tatarchuk & Shopf, 2007) 

and (Tatarchuk, 2006). 
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                       (a)                                    (b) 

Figure 1.1 (a) An example of GPU based real-time medical visualization on ATI FireGL workstation 

graphics accelerator (Tatarchuk & Shopf, 2007). (b) An example of real-time rendering of a scene 

with lighting, shadows and rain (Tatarchuk, 2006). 

 

The term interactive virtual environments or its more popular name virtual reality 

(VR) can be regarded as a special case of a simulation. As indicated in (Heim, 1998), 

different research groups use different terms for the same concept such that, the 

researchers at MIT, University of North Carolina preferred the term virtual 

environments, military scientist prefer synthetic environments, researchers at Human 

Interface Technology Lab at the University of Washington at Seattle refer to virtual 

worlds and Japanese researchers prefer tele-existence. Virtual reality can be 

considered as a 3-D interactive simulation of a real world environment or of a certain 

physical process. The user is immersed into the computer generated synthetic 

environment via head mounted display where he or she can interact with the virtual 

environment via haptic device or data gloves. At this point, efficient collision 

detection gains importance. (Bergen, 2004) and (Ericson, 2005) are important 

sources on the subject. Furthermore, the user can walk around in the virtual 

environment via motion tracker device. The users can even have meetings and 

collaborations with other users in the same synthetic environment but at the same 

time at the different real world place via network connections. All of these features 

mean that the user can manipulate, deform and change the virtual environment; and 

at the same time the virtual environment reacts according to the user actions in an 

intelligent way in order to make the user’s senses perceive the virtual environment as 

real as possible. These interactions require numerical and stable solutions to linear or 

nonlinear   differential   equations  governing  the simulated  system  dynamics.  Two  
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Figure 1.2 The overview of the 3-D virtual interactive environment developed during the thesis work. 
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important sources on the subject are (Khalil, 2002), (Hutton, 2004). Several 

applications of virtual reality can be found in (Grady, 2003). A historical 

development and technical terms of virtual reality can be found in (Heim, 1998). 

Considering the properties of a virtual reality system mentioned above, the overview 

of the completed software development during the thesis work targeting the 

generation of a collaborative dynamic virtual anatomy laboratory is presented in 

figure 1.2. Figure 9.2 presents the complete software layer diagram developed. 

 

The term augmented reality (AR) can be regarded also as an interactive virtual 

environment, but with an exception. In augmented reality, the user and the virtual 

agents – intelligent or not – are in the real world. The real world surrounding the user 

is projected to the eyes via video or transparent head mounted displays. The virtual 

agents are registered with the features segmented from the video. These features may 

be natural environmental features as well as recognizable artificial features imposed 

by the humans. The accurate tracking of the recognized features in the real world and 

the accurate registration in real time are the key concerns of augmented reality 

applications. The historical development of augmented reality and technical terms 

can be found in (Azuma, 1997). A relatively recent work on a medical augmented 

reality application can be found in (Reitinger, Bornik, Beichel, & Schmalstieg, 

2006). 

 

Then what are the important components of an interactive immersive virtual 

environment that enable it to simulate the reality? 

 

Vision is one of the most important senses of human. A virtual reality system 

attempting to immerse a person in a life like virtual 3-D environment should render 

the environment by appropriate real-time rendering techniques and by benefiting 

from the computational power of graphics processors. The static and dynamic 

systems in the virtual environment should be modeled mathematically such that their 

behaviors will be consistent. The preferred display scheme in these applications is 

the usage of the 3-D stereoscopic head mounted displays (HMDs). These displays 
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have two screens on which the synthetic virtual environment or the augmented real 

environment is rendered. 

 

Human tactile sensory system should also be considered by the virtual reality 

system. The collisions of the user hand trying to touch a virtual object should be 

detected, computations should be done to calculate the contact points, the contact 

directions and the forces generated due to the collisions. Then necessary physical 

reactions should be simulated by the virtual environment. Data gloves or haptic 

devices are used for creating tactile senses in immersive systems. 

 

Human auditory system should also be in concern to simulate the real world in a 

virtual environment so that the synthetic environment behaves acoustically 

consistent. 

 

Human olfactory system has a vital role in many real world situations to perceive 

the environment. Therefore, a virtual environment in which collaborators live in 

should consider generating necessary stimuli in accordance with the environmental 

constraints and situations. 

 

Finally, the user will expect to interact with intelligent virtual agents in the virtual 

environment as in the real world. So the virtual reality system should have 

intelligence and a capability to learn in order to evolve. This evolving intelligence 

can be used by the virtual environment to work in collaboration with the user such as 

an intelligent simulator evaluating or correcting the wrong actions of its user or to 

work against the user as an opponent such as a game. 

 

All of the concepts mentioned above can be expressed and implemented in pure 

mathematics. Therefore, prior to attempting to design such a system, the researcher 

should understand how each of those components built up mathematically, 

algorithmically and then implemented programmatically. In order to be able to 

develop a simulation or immersive virtual interactive environment in which visual 

entities of the real environment and dynamics of the systems are simulated as 
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consistent as possible; the researcher should have a well established background in 

theoretical and practical aspects of computer graphics, central processing unit and 

graphics processing unit architectures and their programming, mathematics 

particularly in differential equations, topology and numerical analysis. Otherwise, the 

end product will just have empty but attractive names called virtual reality or 

augmented reality. In order to fill inside of these names theoretically and practically, 

the interested researcher should divide the whole work into its constituents that are 

mentioned above and study them carefully. 

 

 In the light of above concerns, as indicated briefly in the previous paragraphs, the 

scope of the thesis is to design and to develop a  3-D interactive virtual environment 

in which users are immersed to work collaboratively on medical anatomical 

operation scenarios.  The virtual environment is aimed to be dynamic so that, the 

users can grasp the anatomical body parts, get medical information about that part 

and apply forces to soft tissues to deform them. The user can cut the soft body tissues 

to simulate a medical operation. These interaction options are presented to the users 

with a 3-D graphical user interface shown to the user upon a collision between a 

rigged and skinned user hand (Refer to chapter 5) and the corresponding anatomical 

model (Refer to chapter 9). Instead of rigging a hand mesh and using a data glove, 

other methods such as just capturing hand features then estimating the hand and 

fingers rotation and translation matrices by inverse kinematics from a camera can be 

implemented. In addition to the software development, the establishment of a new 

computer graphics and virtual reality laboratory in Dokuz Eylül University Electrical 

and Electronics Engineering Department is included in the scope of the thesis work 

(Refer to chapter 8). The simulation logic of the software is planned to be modular so 

that it can be suitable for the engineering simulations as well (Refer to chapter 9).  

 

1.2 A Reading Guide for the Following Chapters 

 

This section serves as a guide for the researcher for branching to the appropriate 

chapter of interest. Chapter two will provide a literature survey on virtual reality, 

graphics processor programming for virtual environments and on augmented reality 
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respectively. Chapter three will give an overview of data structures and software 

design patterns used throughout the thesis work. Chapter four will be about graphics 

processor unit programming for graphics and general purpose computing. Chapter 

five and chapter six will give a mathematical review about real time rendering and 

numerical methods for physics simulation used in the thesis work respectively. 

Chapter seven will be on feature segmentation, tracking and pose estimation methods 

used for augmented reality application developed during the thesis work. The reason 

of the development of a video based real time tracking system in the scope of an 

augmented reality application is the lack of the motion tracking and data glove 

equipment for the two years of the thesis project period. Chapter eight will give 

information on the computer graphics and virtual reality laboratory establishment 

process that has been completed in Dokuz Eylül University Electrics and Electronics 

Engineering Department (DEU EEE) in the scope of the thesis work. Chapter nine 

and chapter ten will be the software development results of the thesis and conclusion 

respectively. 

 

 A reader may find chapters two, three and four too exhaustive or overwhelming. 

But a wise and dedicated researcher will know that the time and the effort put into 

the mathematical theory, algorithmic details and into the previous applications of 

other research groups in the field are going to pay when the time comes for the 

software, algorithm design and implementation. Additionally, a researcher with a 

solid working background in the field can easily trace the problems and be on the 

confident side by comparing the results with the theory and previous researches 

during the algorithm implementation phase. But beyond all these, the time invested 

in mathematical theory and well accepted applications of the research groups; 

provide a researcher a different perspective to handle the problems and an enhanced 

imagination for new solutions. 
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CHAPTER TWO  

LITERATURE SURVEY 

 

 Computer graphics with its roots originating from diverse fields of mathematics 

has been a wide research area in computer science since late 1970s. Evolving 

graphics hardware, together with the improving mathematics and graphics software 

libraries led to the field of real time computer. The related researches enabled the 

development of software that is able to generate 3-D life like virtual immersive 

interactive environments based on computer graphics. The user in this virtual 

environment can interact with its surrounding, collaborate with other users in the 

environment, simulate various dynamical systems in science and engineering  in real 

time, intelligently interact with the computer, train and even entertain.  

 

 The aim of this chapter is to provide a literature survey on the recent applications 

conducted by the industry and the academia on virtual reality, the usage of graphics 

processing units as general purpose computation units and augmented reality. The 

applications are targeted to engineering and medical applications; but the researcher 

will find other diverse application areas. Hence, the researcher can immediately 

branch to the mathematical method or application reference of interest. 

 

2.1 Researches   on  Interactive   Real - Time  Computer  Graphics  and  

Virtual Reality in Medical and Engineering Simulations 

 

Researchers both in academia and have worked on applications of computer 

graphics and virtual reality targeting medical and engineering simulations. Virtual 

reality has found wide application area in medicine. One of the hot topics is 3-D 

realistic soft tissue deformations modeling in a virtual surgery. Mass-spring models, 

linear finite element method and nonlinear finite element method are generally used 

for modeling soft tissues. Mass-spring models are easy to simulate in real-time; 

however they are unable to simulate the process physically consistent. On the other 
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                                        (a)                                                                              (b) 

  

                                        (c)                                                                              (d) 

  

                                        (e)                                                                              (f) 

  

                                        (g)                                                                              (h) 

Figure 2.1 (a) The first fully functional VR display in history named as The Virtual Interactive 

Environment Workstation (VIEW) in NASA Ames Research Center (Grady, 2003, p. 56). (b) Shutter 

glasses in combination with flat-panel screens for three dimensional displays utilized in NASA Ames 

Research Center (Grady, 2003, p. 83). (c) NASA Virtual Windtunnel utilizing VR (Grady, 2003, p. 

109). (d) NASA the Dextrous Anthropomorphic Testbed demonstrates VR-controlled robot to gather 

rock samples on distant planets (Grady, 2003, p. 116). (e) A helicopter flight simulator utilizing VR 

(Grady, 2003, p. 123). (f) Worker training with VR to fix elevators (Grady, 2003, p. 131). (g) The 

CAVE environment to design a wheel loader (Grady, 2003, p. 144). (h) VR therapy in medicine 

(Grady, 2003, p. 159). 
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hand, finite element models can capture the physical characteristics of the dynamical 

system, they are very hard to simulate in real-time especially when the number of 

elements gets higher. But the advances in graphics hardware and the 

programmability of newer graphics processing units, enabled the researchers to 

perform computation power demanding tasks in real-time on graphics processing 

units. For the remaining details about development process of virtual reality, the 

researcher should refer to (Heim, 1998) and (Grady, 2003). Prior to moving onto the 

details of medical applications, the usage of virtual reality in diverse application 

fields conducted by National Aeronautics and Space Administration (NASA), 

industry field and medical therapists will be illustrated in figure 2.1. 

 

For soft tissue modeling in a virtual environment, (Yan, Gu, Huang, Lv, Yu, & 

Kong, 2007) uses nonlinear finite element method for soft tissue modeling in real 

time. Additionally, for real time collision detection with soft tissue they use a spatial 

hashing collision detection method. They claim the superiority of their method over 

traditional mass-spring models and linear finite element models. The related work is 

shown in figure 2.2 (a). In (Wang, Becker, Jones, Glover, Benford, Greenhalg, & 

Vloeberghs, 2007), the authors propose the use of boundary element method for 

several topological operations such as prodding, pinching and cutting on soft tissues. 

In response to these operations, haptic and visual feedback is generated for the user 

in real time. In (Wang, & et al., 2007), the authors use boundary element method to 

model only the surface of the elastic objects. The related work is shown in figure 2.2 

(b). In (Hamam, Nourian, El-Far, Malric, Shen, & Georganas, 2006), collaboration in 

distributed surgery simulation is emphasized. Another research on interaction in a 

distributed and shared virtual environment is (Glencross, Otaduy, & Chalmers, 

2005).  The research emphasizes on the challenges in visualization, collision 

detection, haptic rendering, dynamic system modeling and artificial intelligence 

while building such an interactive and intelligent environment. Figure 2.3 (a) and (b) 

shows a collaborative CAD prototyping application and haptic feedback application 

mentioned in (Glencross, & et al., 2005) respectively. 
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                                        (a)                          (b) 

 Figure 2.2 (a) Linear strain deformation of human  kidney  (Yan, & et al., 2007).  (b) An  example  of   

 soft tissue cutting with haptic feedback (Wang, & et al., 2007). 

 

  

                        (a)                     (b) 

Figure 2.3 (a) An example of collaborative CAD prototyping application. (b) Real-time haptic 

rendering application. Both applications can be found in (Glencross, & et al., 2005). 

 

 The other important work on simulating surgical cuts is (Bielser, & Gross, 2002). 

In that work, tetrahedral primitives are used for volumetric modeling in addition to 

adaptive subdivision scheme dynamically in order to keep the mesh topology 

consistent. For tissue deformation modeling they apply a relaxation scheme. For 

collision detection, they utilize a two stage hierarchical collision detection scheme. 

The first stage detects the boundary an element colliding with the surgical tool, the 

second stage finds the tetrahedral that is in contact with the surgical tool. Haptic 

feedback is also provided in real-time during the simulation. The related wok is 

shown in figure 2.4 (a). 
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      (a)                      (b) 

Figure 2.4 (a) Collision detection and topology   processing of    tetrahedral     meshes   (Bielser,     &   

Gross,    2002). (b) Processing    intersections    of tetrahedral meshes and a state    machine    

approach    to    progressive    subdivision (Bielser, & et al., 2003). 

 

 The authors of (Bielser, Glardon, Teschner, & Gross, 2003) propose an algorithm 

that consistently and accurately processes intersections of tetrahedral meshes in real 

time. Progressive subdivision and its state machine control are mentioned in that 

paper. The related work is shown in figure 2.4 (b). An application of real-time 

computer graphics and virtual reality in orthopedic surgery is covered in (Qin, Pang, 

Chui, Wong, & Heng, 2008). The authors propose a novel modeling framework for 

multilayered soft tissue deformation based on layered structure of real human organs. 

Considering performance issues, they employ a 3-D mass spring system for 

modeling biomechanical properties of the tissues. In order to increase the efficiency 

and interactivity, the authors use a physics processing unit. Their research is shown 

in figure 2.5. 

 

   

                                        (a)                     (b) 
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                                      (c)                (d) 

 Figure 2.5 (a) and (c) State of 3-D mesh spring models while pulling and pushing. (b) and (d) 

Texturized models  corresponding to 3-D mesh spring models in (a) and (c) respectively (Qin, & et al., 

2008). 

 

 Contact handling is a subfield in interactive computer graphics. A good theoretical 

and implementation coverage of constrained dynamics formulation with implicit 

complementary constraints, a time stepping algorithm based on progressive 

constraint manifold refinement (CMR) for progressive refinement of the constrained 

dynamics problem ensuring non-penetration, a solver based on iterative constraint 

anticipation for mixed linear complementary problems (MLCP) are given in (Otaduy, 

Tamstorf, Steinemann, & Gross, 2009). These topics are vital for many of the contact 

handling and collision detection problems. The proposed unified contact solver can 

cope with rigid bodies, co-rotational Finite Element Models (FEM), and mass spring 

systems. Figure 2.6 represents the results of the unified contact solver proposed by 

(Otaduy, & et. el, 2009). 

  

                (a)                 (b) 
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                      (c)                 (d) 

 Figure 2.6 (a) and (b) demonstrate contact handling of rigid bodies (yellow), co-rotational FEM 

models (orange) and mass spring clothes (red) by the unified contact solver. (c) and (d) demonstrate 

the interpenetration in the mass spring model of a cloth ensuring that response to the interpenetrations 

does not add energy to the system (Otaduy, & et al., 2009). 

 

 Another application is the pathogical object removal in a hysteroscopy simulator 

as given in (Steinemann, Harders, Gross, & Szekely, 2006). The authors propose a 

hysteroscopy simulator in which cutting of soft deformable tissues is modeled by a 

tetrahedral mass spring system. A hybrid model is proposed that performs tetrahedral 

decomposition of the 3-D model, approximates the cut trajectory, new surface 

generation after the cut. Figure 2.7 represents some results from their work. 

 

  

      (a)                                                                              (b) 

Figure 2.7 (a) Tetrahedral mesh is cut along existing edges, nodes and faces. (b) After cutting with 

hybrid approach and snapping the nodes to the sweep surface (Steinemann, & et al., 2006). 

 

 A novel algorithm for efficient splitting of deformable solids along arbitrary 

piecewise linear crack surfaces in cutting and fracture simulations is proposed in 
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(Steinemann, Otaduy, & Gross, 2006). In this work, a meshless discretization of the 

deformation field and a novel visibility graph for fast update of shape functions in 

meshless discretization are proposed. Splitting operation is handled in two steps. 

Crack surfaces are synthesized as triangle meshes, these newly synthesized surfaces 

are used to update the visibility graph and thus the meshless discretization of the 

deformation field. Their results are given in figure 2.8. 

 

      

                                        (a)                                                                              (b) 

      

                                        (c)                                                                              (d) 

Figure 2.8 (a) and (b) represent surgical cuts. (c) and (d) represent spiral cuts (Steinemann, & et al., 

2006). 

 

Convex or non-convex polyhedral elements can be simulated and deformed by 

using discontinuous Galerkin finite element method (DG FEM) with simple 

polynomial basis functions in (Kaufmann, Martin, Botsch, & Gross, 2008). They 

claim the superiority of DG FEM over standard FEM for incompressible materials. 

Additionally, the authors propose techniques for volumetric mesh generation, 

adaptive mesh refinement, and robust cutting. The results are in figure 2.9. 
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         (a)                                                                              (b) 

Figure 2.9 (a) An example of non-convex element. (b) An example of topological change of convex 

element (Kaufmann, & et al., 2008). 

 

The extended finite element method (XFEM) is adopted for simulating highly 

detailed cutting and fracturing of thin shells using low resolution meshes in 

(Kaufmann, Martin, Botsch, Grinspun, & Gross, 2009). Custom basis functions are 

used in the approximation process. It is claimed that cutting discontinuities by 

proposed method is possible in higher resolutions than the underlying mesh. The 

results are shown in figure 2.10. 

 

      

                                  (a)                 (b) 
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            (c)                 (d) 

 

       

                                        (e)                 (f) 

Figure 2.10 (a) Represents the harmonic enrichment function for a partial cut in a single element. (b) 

Represents the corresponding quad element behavior. (c) Represents a C0 continuous enrichment 

element is used to add a crease to an element in as shown in (d). (e) Represents harmonic enrichment 

textures for multiple cuts within an element. (f) Represents the simulation of the element (Kaufmann, 

& et al., 2009). 

  

Topological changes of dropping viscoelastic balls in an Eulerian fluid simulation 

are handled in (Wojtan, Thuerey, Gross, & Turk, 2009).  

 

Collision detection is a vital concept for interactive virtual environments and 

medical simulators. Advances in deformable collision detection based on various 

approaches such as bounding volume hierarchies (BVHs), distance fields and spatial 

partitioning is discussed in (Teschner, Kimmerle, Heidelberger, Zachmann, 

Raghupathi, Fuhrmann, Cani, Faure, Thalmann, Strasser, & Volino, 2004). The 

related work is shown in figure 2.11. 
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                                        (a)                 (b) 

      

             (c)                 (d) 

Figure 2.11 (a) An example of deformable collision detection during virtual surgery. (b) An example 

use of bounding volume hierarchies for detection between rigid floor and deformable cloth. (c) Real 

time collision detection between intestine and mesentery. (d) Distance fields generated for collision 

detection between Happy Budha  and other models (Teschner, & et al., 2004). 

  

Another technique for collision detection for deformable volumetric bodies is the 

ray-traced collision detection. The detection and contact force generation using this 

technique is presented in (Hermann, Faure, & Raffin, 2008). Volumetric collision 

detection for deformable objects is covered in (Heidelberger, Teschner, & Gross, 

2003) using layered depth image (LDI) decomposition of the intersection volume. 

 

 The researches on collision detection have been conducted for a long time. 

Especially, collision detection between rigid objects is a well-studied area. The 

motivation is towards the accurate collision detection of deformable topologies. But 

to understand the new concepts, the researcher should have a well established 

theoretical background on necessary data structures, mathematics and numerical 

methods. The collision detection methodologies given in the following references 
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form a basis of collision detection scheme that is used during the thesis work. 

Therefore (Tropp, Tal, & Shimshoni, 2005), (Möller, 1997), (Gottschalk, Lin, & 

Manocha, 1996), (Devillers & Guigue, 2002), (Hoff, Zaferakis, Lin, & Manocha, 

n.d.), (Möller, 2001), (Lin & Gottschalk, 1998), (Hubbard, P. M., 1995), (Barequet, 

Chazelle, Guibas, Mitchell, & Tal, 1996), (Held, Klosowski, & Mitchell, 1995), 

(Baraff, 1989), (Larsson & Möller, 2001), (Tan, Chong, & Low, 1999), (Held, 1998), 

(Eberly, 2008), (Jiménez, Thomas, & Torras, 2001), (Karabassi, Papaioannou, & 

Theoharis, 1999), (Barber, Dobkin, & Huhdanha, 1996), (Bielser, Maiwald, & Gross, 

1999), (Teschner, Heidelberger, Müller, Pomeranets, & Gross, 2003), (Heidelberger, 

Teschner, Keiser, Müller, & Gross, 2004), (Baraff, 2001) and (Bergen, 1998) should 

definitely be studied.  

 

 The following reference papers will include researches on important numerical 

methods that are also used in the thesis work for collision detection, distance 

measurement, time of impact (TOI) calculation, penetration depth, solution of 

constraints and necessary mathematical topology. One of the fundamental algorithms 

for solving proximities between convex objects is the Gilbert-Johnson-Keerthi (GJK) 

Algorithm. Its mathematical theory and applications are studied in (Gilbert, Johnson, 

& Keerthi, 1988), (Bergen, 1999), (Vlack & Tachi, 2001), (Eberle, 2004) and 

(Kataria, n.d.). Expanding Polytope Algorithm (EPA) is important in calculating the 

penetration depth. Its theory and application are given in (Heidelberger, Teschner, 

Kaiser, Müller, & Gross, 2004), (University of North Carolina at Chapel Hill 

Department of Computer Science, 2004) and (Bergen, n.d.). For more detailed 

coverage of the concepts, the researcher should refer to (Bergen, 2004) and (Ericson, 

2005). 

 

Differential equations, their numerical solution methods and stability are the heart 

of a physically consistent simulation or virtual environment. Moreover, as the 

computational power of the hardware increases, the use of finite element method 

increases resulting in more physically consistent simulations when compared with 

the mass spring systems. In addition to the references given above, the theoretical 

and implementation aspects are studied for simulating fundamental dynamic systems 
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such as cloths and volumetric elements in (Provot, 1996), (Desbrun, Schröder, & 

Barr, 1999), (Nielsen & Cotin, 1996), (Cotin, Delingette & Ayache, 1999), (Müller, 

Stam, & James, 2008),  (Müller, James, Stam, & Thuerey, 2008), (James, 2008), 

(Nealen, Müller, Keiser, Boxermann, & Carlson, 2005), (Müller, Heidelberger, 

Hennix, & Ratcliff, 2006), (Müller, McMillan, Dorsey, & Jagnow, 2001), (Stam, 

2009) and (Thuerey, 2008). For further details, the researcher should refer to (Press, 

Teukolsky, Vetterling, & Flannery, 2007), (Sewell, 2005), (Bathe, 1996), (Cook, 

Malkus, & Plesha, 1989), (Strang, 1986), (Hutton, 2004), (Ferreira, 2009), (Eberly, 

2004), (Khalil, 2002), (Lander, 1999a), (Lander, 1999b) and (Lander, 1999c). 

 

2.2 Researches  on  the  Use  of  Graphics Processing Unit (GPU) 

Programmable Pipeline in Computer Graphics and Virtual Environments 

 

Programmable graphics pipeline has dominated the fixed function graphics 

pipeline since early 2000s. Many application developers make use of this to perform 

graphics and numerical tasks on GPUs rather than central processing units (CPUs). 

 

As seen from the researches from the previous section, most of the works depend 

heavily on numerical solutions especially on finite element method (FEM) and its 

derivatives. For computational power demanding virtual reality applications or 

simulations where high number of vertices, triangles and faces are present, GPUs are 

now alternative to CPUs for numerical computations. In (Taylor, Cheng, & Ourselin, 

2008), the authors simulate a biomechanical model in real time. In that work, 

nonlinear Lagrangian FEM is used for modeling soft tissues. Their research is shown 

in figure 2.12 (a). Another research using GPU acceleration for cardiac intervention 

is (Yu, Chiang, Chen, Zheng, Cai, Ye, Zhang, S., Zhang, Y., & Mak, 2009) and their 

result are shown in figure 2.12 (b). 
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                     (a)                                                                             (b) 

Figure 2.12 (a) Overlaid images of the undeformed (wire-frame) and deformed (surface) brain model 

with 46655 elements. Anchor nodes at the brain stem are shown as red points, displacement direction 

of the displaced nodes are shown as blue arrows (Taylor, & et al., 2008). (b) White blue catheter and 

heart wall interaction (Yu, & et al., 2009). 

  

Another surgical simulation utilizing GPU acceleration with spring mass system is 

(Mosegaard, Herborg, & Sørensen, 2005). Their research is shown in figure 2.13 (a). 

NVIDIA CUDA based system is used for surgery simulation in (Liu & De, 2008), in 

(Farias, Almeida, Teixeira, Teichrieb, & Kelner, 2008) for deformable body physics 

simulation, in (Rasmusson, Mosegaard, & Sørensen, 2008) for volumetric mass 

spring damper models. Another application of mass spring systems are 2-D 

topologies such as clothes. This topic is examined in (Georgii & Westermann, 2005) 

based on GPU. Their work is given in figure 2.13 (b). 

 

  

                                        (a)                                               (b) 

Figure 2.13 (a) Heart surgical simulation (Mosegaard, & et al., 2005). (b) Mass spring system for 

simulating 2-D topology i.e. cloth (Georgii & Westermann, 2005). 
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Similar researches that should be inspected are (Ranzuglia, Cignoni, Ganovelli, & 

Scopigno, 2006) and (Liu, Jiao, Wu, & De, 2008). Additionally, (Göddeke, Buijssen, 

Wobker, & Turek, 2009) presents an overview of GPU cluster computing for finite 

element applications. An important research from INRIA is presented in (Comas, 

Taylor, Allard, Ourselin, Cotin, & Passenger, 2008). Results from that research are 

given in figure 2.16. 

 

  

                                        (a)                                                                              (b) 

Figure 2.16 (a) A solid rendering. (b) Wireframe rendering of a real-time eye surgery using FEM in 

SOFA (Comas, & et al., 2008). 

 

An implementation of ocean surface generation, adaptive tessellation and optical 

effects generation on the GPU is presented in (Li, B., Wang, Li, Z., & Chen, 2009) 

with the shown results in figure 2.17. 

 

  

                                        (a)                                                                              (b) 

Figure 2.17 (a) A wireframe rendering. (b) A solid rendering of a real time ocean simulation with 

optical effects on GPU (Li, & et al., 2009). 
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 Programming GPUs towards important numerical computations are studied in 

(Lahabar & Narayanan, 2009), (Krüger & Westermann, 2003), (Spampinato, Elster, 

2009), (Fujimoto, 2008), (Jang, Park, & Jung, 2008), (Velamparambil, Cormier, 

Perry, Lemos, Okoniewski, & Leon, 2008), (Amorim, Haase, Liebmann, & Santos, 

2009), (Bolz, Farmer, Grinspun, & Schröder, 2003) and (Huang, Ponce, Park, Cao, & 

Quek, 2008). 

 

2.3 Researches   on   Graphics  and   Physics  Software  Libraries  Developed  

by Academia and Industry 

 

 OpenSceneGraph is a real time graphics rendering engine needed to manage 

scenes with huge number of nodes. It has been used in the thesis work for initial 

application development phase and for augmented reality application development. 

But the choice for a real time rendering engine for final application is Object 

Oriented Graphics Rendering Engine (Ogre3D). This decision was given due to its 

ease of integration with the preferred physics rendering engine Bullet, well designed 

documentation, shader handling and ease of scene management. The interested 

researcher should refer to (OpenSceneGraph, 2010) and (Martz, 2007) for 

OpenSceneGraph; to (Jacob, 2010) and (Junker, 2006) for Ogre3D. 

 

Sofa is a well designed open source physics simulation framework developed at 

Institut National De Recherche En Informatique Et En Automatique - INRIA 

Grenoble. Although many of physical processes can be simulated, it is mostly 

specialized for medical applications. Because of its specialized structure, the 

developer should have a well understanding of numerical concepts especially 

nonlinear finite element modeling, advanced collision detection techniques and 

etc…. At first sight, the software modules seem tightly connected to each other, 

therefore the developer should carefully inspect and do necessary modifications on 

the source code for using modules independently with custom software modules and 

graphics engines.  Sofa supports GPU general purpose processing with NVIDIA 

CUDA (Compute Unified Device Architecture). The developer need not to write a 

C++ code, a XML script can also be used for application development. But 
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integration with custom software modules should be concerned, if a XML script is 

used. The researcher interested in Sofa should refer to (The SOFA Team at INRIA 

Grenoble, 2009) and (The Sofa Team, 2008). Refer to section 9.6 for implementation 

results accomplished using SOFA through the thesis period. 

 

Bullet3D is an industry standard physics engine used by SONY Playstation, 

Microsoft Xbox360, Nintendo Wii, AMD, movies such as Toy Story 3 and many 

other scientific simulation purposes. As a physics engine, Bullet was the preferred 

one throughout the thesis work. The main reasons for this choice were the ease of 

integration with the preferred graphics engine Ogre3D, the well designed open 

source engine software, availability of tutorials and papers and most importantly 

Bullet is well suited for the researchers who desire to understand the fundamental 

concepts of contact detection and collision detection methodologies for several 

topological constructs, mass-spring models for deformable objects, numerical 

calculations for fluids and particles, physical constraints and the numerical ways 

used in handling them, 2-D and 3-D elements that are triangle and tetrahedral 

respectively and their construction, proximity detection, penetration depth, necessary 

software interrupt generation and all the related numerical analysis concepts. One 

more important point with Bullet is that the theoretical mathematical concepts given 

in many fundamental books such as (Ericson, 2005), (Bergen, 2004) can easily be 

followed in the source code of Bullet. But prior to integration with the custom or 

open source graphics engine, the source code of Bullet should be inspected carefully. 

The researchers interested in Bullet should refer to (Coumans, 2010), (Coumans, 

2009) and (McShaffry & et al., 2009).  

 

NVIDIA PhysX is a C++ physics engine developed by NVIDIA for its GPUs. 

Rigid and soft objects, collision models can be handled with this engine. The engine 

also supports physics rendering based on GPU. The interested researcher should refer 

to (NVIDIA, 2009b), (NVIDIA, 2008) and section 9.10 for implementation results. 

 

Computational Geometry Algorithms Library (CGAL) is a C++ computational 

geometry library developed by well known collaborative institutions. The researchers 
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interested in computational geometry should definitely search on (CGAL, 2010) and 

(CGAL, 2009). Besides, this field is a vital area of mathematics. 

 

2.4 Researches on Augmented Reality Applications 

 

The researchers interested in augmented reality may use (Azuma, 1997), (Brown, 

Julier, Baillot, & Livingston, 2003), (Barakonyi, Psik, & Schmalstieg, 2004), 

(Vallino, & Brown, 1999), (Harada, Nazir, Shiote, & Ito, 2006), (Reitinger, Zach, & 

Schmalstieg, 2007), (Reitmayr & Schmalstieg, 2007), (Reitmayr & Schmalstieg, 

2004), (Pathomaree & Charoenseang, 2005), (Piekarski & Thomas, 2003), (White, 

Feiner, & Kopylec, 2006), (Goose, Sudarsky, Zhang, & Navab, 2002), (Mizuno, 

Kato, & Nishida, 2004), (Reitmayr & Schmalstieg, 2001), (Marathe, Carey, & 

Taylor, 2007), (Fürnstahl, Reitinger, & Schmalstieg, 2006), (Reitinger, Bornik, 

Beichel, & Schmalstieg, 2006) as a starting point for current applications. In figure 

2.18, some of those researches are illustrated. 

 

 

                                        (a)                                                                              (b) 

 

                                        (c)                                                                              (d) 

Figure 2.18 (a) Playing chess in a collaborative AR environment (Reitmayr, & Schmalstieg, 2001). (b) 

Global mesh partitioning (Fürnstahl, & et al., 2006). (c) Liver surgery planning with AR (Reitinger, & 

et al., 2006). (d) Task assisting with AR (Pathomaree & Charoenseang, 2005).
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CHAPTER THREE 

DATA STRUCTURES AND SOFTWARE DESIGN PATTERNS 

  

The developments in the architecture of computation machines and the increasing 

diverse application areas of these machines from scientific simulation, embedded 

applications, and interactive 3-D applications to entertainment have become one of 

the reasons of the evolution in software design and programming paradigms. 

Therefore, programming and software design have undergone several periods 

starting from mechanical scheme, hardwired scheme of 1940s, machine language, 

assembly language to more flexible, performance oriented and portable functional 

programming schemes. Finally, object oriented programming paradigms starting 

from late 1960s have resulted in more reusable, modular, portable, manageable and 

maintainable software.  

 

Today’s modern software runs on both sequential and parallel computing 

architectures. Therefore it is essential to understand certain data structures and 

software design patterns in order to design, to manage and to maintain software as a 

solution to a specific problem at hand. Hence, this chapter is going to explain 

important data structures, their mathematical origins and software design patterns 

that are benefited from, during the software development process in the scope of this 

thesis. The chapter will end with the definition of a “software engine” and its relation 

with data structures and software design patterns.  

 

3.1 Data Structures 

 

Data structures are fundamental concepts for computer science. When a research 

is done on the data structures, it will be seen that all have a well-established 

mathematical and theoretical roots. In this part, brief mathematical aspects in 

addition to an introduction will be given on the data structures that are fundamental 

to understand for the scope of the thesis goal. For the excellent theoretical and 

applied coverage of data structures and algorithms, the researcher should refer to 
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(Cormen, Leiserson, Rivest, & Stein, 2003). Additionally, excellent information 

about applied data structures specifically for C++ can be found in (Smith, 2004). 

 

3.1.1 Maps 

 

Maps are data structures that have two fields as a primary key and a value. A map 

provides a mapping between the primary key and the memory slot where the 

corresponding value is stored. The memory slots constitute the hash table. Hence, the 

key-value relationship in a map can be considered as an associative memory as given 

in (Smith, 2004); that is, a particular value can be searched in, removed from, 

inserted to a map or can be modified by using a particular key. Although maps 

provide fast, random access and dynamic size change in runtime, their 

implementations should guarantee that all the values should have a unique key. 

Therefore, there should be a one-to-one (injective) and onto (surjective) function or 

in another words a bijective function that maps the key values in its domain to the 

corresponding memory slots in its range where the corresponding values are stored. 

This is depicted in figure 2.1.   

 

Let K be a space of used keys in the map. Considering K as the domain of 

bijective function f(k), then, 

 

   NMMKf ⊂→   ,   :                                                                                                         (3.1) 

 

    Figure 3.1 Mapping between keys and memory slot addresses of the hash table. 

 

.Key0 

.Key1 

.Key2 

... 

.KeyP 

K M 
f(k) : bijective function 

f(k) is a hash function 

.Memory Address f(Key0): Value0 

.Memory Address f(Key1): Value1 

.Memory Address f(Key2): Value2 

... 

.Memory Address f(KeyP): ValueP 
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Essentially, while designing the hash function f(k), several constraints should be 

considered. First of all, f(k) should be deterministic because the storage and the 

retrieval of the value will be performed using the same corresponding key value that 

belongs to the domain of f(k). Secondly, to minimize the latencies, f(k) should map 

the key value to the memory address f(key) as soon as possible during the value 

storage and retrieval. Thirdly, f(k) should uniformly map the key values from its 

domain to its range that is the memory space of the computing machine reserved for 

the hash table. In other words, biasing towards the same memory address should be 

avoided. Finally, keeping the third constraint in mind, while designing f(k), memory 

collision that is the mapping of the key value to an occupied memory address should 

be handled.  

 

Although there are several methods for resolving collisions and designing hash 

functions such as collision resolving by chaining, hash function generation by 

multiplication or division, universal hashing and etc…, these are out of the scope of 

the thesis. The interested researcher should refer to (Smith, 2004, chap. 5), (Cormen, 

& et al., 2003, chap. 11), (Knuth, 1973) and (Marsaglia, 1996). 

 

As an application example from the thesis work, maps are used to store pointers to 

render models and also pointers to collision models with corresponding keys. 

  

3.1.2 Graphs 

 

A graph is formed by a nonempty set of vertices V and a nonempty set of edges E. 

Typically, set E can be either empty or nonempty according to the topology of the 

graph. In literature, a graph G is typically denoted as follows;  
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 Simply speaking, a binary relation on V is a subset of all ordered pairs (vi, vj); in 

other words, a subset of the Cartesian product V x V as depicted in equation (3.3). 

 

 }:),{( VvVvvvVxVE jiji ∈∀∧∈∀=⊆                                                                        (3.3) 

 

 Edges have weights wij such that, 

 

 )():( ijij EfwEf =∋ℜ→∃                                                                                                  (3.4) 

 

 Graphs can be represented in three ways in computer memory: Sets, adjacency list 

and adjacency matrix. These representations will be exemplified using the figure 3.3.  
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                         (c)                                                          (d) 

Figure 3.3 (a) An example Graph G. (b) The adjacency list representation of G. (c) The set    

representation of G. (d) The adjacency matrix of G. 
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 Referring to the figure 3.3, the set representation uses two sets. One of the sets is 

for the vertices and the other is for edges. Each triple element in the edge set 

represent the start vertex, end vertex and connection weight respectively.  

 

 The adjacency list representation is composed of an array of lists for Vvi ∈∀ . 

Hence, every member of the list in the array depicts the edge formed by Vvi ∈  

and Vv j ∈ .  That is, 

 

 
i

ijiiji

v

vlistEvvedgevlistvVv

  toconnected vertices

oflist  a is )(     ),(   , )(, ∋∈∃∈∈∀
                                (3.5) 

 

 

 The adjacency matrix representation uses NxN adjacency matrix M where N is the 

number of vertices in the graph. Row i of M represents the start vertex, column j of M 

represents end vertex and Mij represent the connection weights. 

 

 According to their connection topologies, graphs can be divided in two main 

groups as directed graphs and undirected graphs. As opposed to directed graphs, the 

edges of the undirected graphs are composed of unordered pairs such as, 

 

 ),(),( ijji vvedgevvedge =                                                                                                      (3.6) 

 

 If a vertex of a directed graph has a cycle edge, then it is called directed cyclic 

graph else it is called directed acyclic graph. Undirected graphs do not have cycles. 

These are shown in figure 3.4. 

                           

                     (a)                                                       (b)                                                       (c) 

 Figure 3.4 (a) Directed graph. (b) Undirected graph. (c) Directed cyclic graph respectively. 
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 There are graph algorithms some of which are also used in the thesis work that 

worth mentioning. First of them is finding a path, that is querying if there exists a 

path between vertices vi and vj in other words querying whether vj is reachable from 

vi or not; or reachability can be checked in the reverse direction if the graph topology 

permits.  The simplest methods for this task are breadth-first search and depth-first 

search. Breadth-first search looks at all vertices length one away relative to the start 

vertex vi where the search is initiated from. If the target vertex vj is found the 

algorithm terminates, else all the vertices at length two away relative to vi are 

searched. The graph is traversed in this scheme till the target vertex vj is found. If vj 

is not found null is returned. At the end of the traversal, a tree containing all the 

reachable vertices from vi is built. This tree contains the shortest paths to all the 

reachable vertices from vi. On the other hand, depth-first search chooses one of the 

edges from the most recently discovered vertex vi. Then, the search progresses along 

that path until the target vertex vj reachable from vi is found or an edge that has been 

traversed is reached. Then the search backtracks the most recently traversed edge ek 

to the vertex vk where ek originates from. Then the search selects an edge originating 

from vk that has not been traversed and traverses that path. This search scheme 

continues until the reachable target vertex vj is discovered or all the reachable edges 

are traversed. 

 

 In graph theory and also in computer science, the shortest path between the vertex 

vi to a reachable vertex vj is of particular interest. Mathematically, it is the path that 

has the least connection weight sum when traversed from vi to vj. That is, 
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 The researcher should refer to (Dijkstra, 1959) for a detailed explanation of a 

fundamental algorithm to find the shortest path. 
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 The spanning tree is another interesting concept in graphs. It can be regarded as 

the subset of the edges that are connected and have no cycles making every vertex in 

the graph reachable. For algorithmic details, the researcher should refer to (Kruskal, 

1956) and (Prim, 1957).  

 

 As an application example from the thesis work, while using OpenSceneGraph 

(OSG), a directed acyclic graph is created for implementing the scene graph in order 

to store the 3-D virtual environment, the 3-D models that the environment 

constitutes, graphics rendering tasks in appropriate graph vertices. Therefore, fast 

storage and retrieval of models in vertices, search of desired vertices and performing 

all rendering tasks are done efficiently. A spanning tree can be used to represent a   

3-D virtual scene and its contents so that the scene will need less memory storage 

and still all the 3-D scene contents can be reachable via a pointer.  

 

 In mathematical perspective, graphs find use in topological processing of meshes 

composed of several vertices i.e. a mass-spring system representing an elastic model 

can be thought as a graph such that each mass is a vertex, each spring is an edge 

connecting masses and finally connection weight of the related graph edge is the 

corresponding spring constant. Furthermore, in optimization theory, a neural network 

topology can even be represented as a graph. 

 

For the sake of simplicity, the further details on graph data structures and in 

general on the graph theory will not be covered here. But the researcher should 

definitely refer to (Cormen, & et al., 2003, chap. 22, chap. 23, chap. 24, chap. 25, 

chap. 26, chap. 27, app. B), (Smith, 2004, chap. 7) for very interesting applications in 

computer science and refer to (Diestel, 2005) for theoretical details. 

 

3.1.3 Trees 

 

Trees can be thought as a special case of graphs. Graph algorithms mentioned in 

section 3.1.2 are valid with some modifications for trees. Similar to a graph, a tree is 

a set of vertices. Simply speaking, a tree or a free tree is an undirected acyclic 
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connected graph as mentioned by (Cormen, & et al., 2003, p. 1085). If the tree is 

undirected acyclic but unconnected it is called as a forest. A free tree is called a 

rooted tree if one of the vertices in the vertex set is selected as a root vertex and the 

rest of the vertices form connected subtrees. Hence, a recursive structure can be 

noticed at first glance. The depth of a vertex vi is the length of the path from the root 

vertex vr to vi. If vertex vc at depth level d is connected to vp that is on the previous 

depth level d - 1, vc is the child vertex of vp and vp is the parent vertex of vc.  

 

One of the important types of trees is the binary tree which has at most two 

children. When it has ordered vertices (any ordering relation can be chosen) in its 

structure such that the values in vertices at left relative to their parent are smaller and 

the values in vertices at right relative to their parent are greater than their parent, it is 

called as binary search tree. Binary search trees are suitable for search purposes in 

the sense of their algorithmic complexity which is O(logN) for average case analysis 

and worst case analysis. Other types of trees are red-black trees, B-Trees, random 

trees, AVL trees and etc… The figure 2.5 shows a binary search tree. The details and 

information on further tree types and related algorithms can be found in (Smith, 

2004, chap. 6). Additionally, (Cormen, & et al., chap 12, app. B) will be a good 

starting point for further theoretical details. 

5
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Depth 3

Depth 2

Depth 1

 Figure 3.5 Binary search tree. 
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 From the thesis work perspective, a tree is created to implement a scene graph 

when using Ogre3D to include the virtual world contents and several application 

specific tasks that are also mentioned in section 2.1.3. In fact, Ogre3D employs an 

octree by default which is a special type of tree data structure that will be mentioned 

in the following sections. 

 

3.1.4 Scene Graphs 

 

It should be noted a priori that the term node that will be used in this section is 

equivalent to the term vertex used in the previous sections 3.1.2 and 3.1.3. A scene 

graph is a data structure that is used in simulators and computer games to manage 

virtual models according to the logical and spatial relationships between them and 

perform several graphics and physics rendering tasks in the virtual world. Hence a 

hierarchical representation of the scene data is maintained. Technically, it can be 

implemented as a directed acyclic graph or as a tree. A scene graph consists of 

several nodes. A node can technically represent a model, an affine transformation, an 

animation, sound, a light or any kind of entity that a virtual scene includes. Each 

transform performed on a parent node affects its child node during the graph 

traversal in runtime.  

 

Dispatching the transform type, in other words, defining which operation should 

be performed on a particular node can be done in several ways as depicted in 

(Wikipedia, 2010a). The transform dispatching is done according to the type of the 

node. In object oriented programming languages such as C++, virtual functions and 

runtime type identification techniques are widely used for transform dispatching. 

These techniques are the implementations of polymorphism property of object 

oriented programming. Application of the visitor design pattern as explained in 

section 3.2.1 is another way for transform dispatching. Both ways have pros and 

cons. For technical information on C++ and object oriented programming, the 

researcher should refer to (Stroustrup, 2000) and (Stroustrup, 2008). A sample scene 

graph might be as in figure 3.6. 
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       Figure 3.6 A sample scene graph. 

 

 The scene graph in figure 3.6 represents a virtual scene with a camera, a light, an 

animation and three render models. Camera has no degrees of freedom in the scene 

hence it is static and holds camera parameters i.e. near clip plane, far clip plane, 

perspective parameters and etc…. Light is not static as camera for this particular 

scene and it holds light parameters i.e. light type, light power, attenuation constant 

and etc…. Animation Node deals with the animation related tasks i.e. querying for 

the key frame, interpolation and etc… Transform Node 1 and Transform Node 2 

apply affine transformations to Child Node 1 and Child Node 2 respectively. A 

second affine transform is applied to the Leaf Node 2 by Transform Node 3. Notice 

that Transform Node 1 effects both Leaf Node 1 and Leaf Node 2; but on the other 

hand Transform Node 3 only affects Leaf Node 2. So, Leaf Node 1, Leaf Node 2 and 

Leaf Node 3 can rotate and translate independent from each other. Additionally, 

Light undergoes the same affine transformations as with as they are connected to the 

same node which is Child Node 2. 
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 The operations are applied by traversing the scene graph forward from the root 

node up to the leaf node and then traversing backwards to the root node. When 

traversing forward to the leaf nodes, pre-render operations are performed; when 

traversing backward to the root node, post-render operations are performed. Tasks 

such as culling, depth sorting, render state manipulation, several environmental 

effects, affine transformation, event dispatching and handling, animation operations 

are accomplished at different stages of the scene graph traversal. The implementation 

is specific to the developed scene graph. More information on implementation details 

can be found in (Foster, 2010). 

 

 Some of the scene graphs that are widely used today are OpenSG, 

OpenSceneGraph, X3D, Java3D, Gizmo3D, RenderWare, NetImmerse Gamebryo, 

OpenPerformer and Ogre3D. Details on these scene graphs and particularly on the 

development history of scene graph technology can be found in (Avi, 2007). For 

implementation and technical details on OpenSceneGraph and Object Oriented 

Graphics Rendering Engine - Ogre3D both of which are used during the thesis work, 

the researcher should refer to (Martz, 2007) and (Junker, 2006) respectively. For 

additional tutorials on OpenSceneGraph and Ogre3D refer to their web sites 

(OpenSceneGraph, 2010) and (Jacob, 2010) respectively. 

 

3.2 Software Design Patterns 

 

Software engineering and especially object oriented software design rely on the 

extensive use of software design patterns. Design patterns are the tested, optimum 

design solutions of the problems that have been come across during the development 

process in software engineering for years. In this part, important design patterns that 

are used in many software as well as in scene graphs such as OpenSceneGraph, 

Object Oriented Graphics Rendering Engine (Ogre3D) and also in GUI development 

kits such as Qt are going to be introduced briefly in order to understand the 

simulation development process during the thesis work. For more detailed coverage 

of the software design patterns, the involved researcher should refer to (Gamma, 
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Helm, Johnson, & Vlissides, 1995). Additionally, a mathematical theory of software 

design patterns can be found at (Eden, Gil, Hirshfeld, & Yehudai, 1998). 

 

Design patterns can be grouped into three main classes as creational patterns, 

structural patterns and behavioral patterns.  

 

When the history of computers is inspected, it can be noticed that the tendency of 

the progression is towards the easily programmable and reconfigurable systems 

instead of hard-wired computing devices with fixed functionalities. This is one of the 

reasons why the programming languages were born. With this thought in mind, 

creational design patterns can be regarded as design methodologies that contain 

information about when, how and which primitive objects should be instantiated for 

the system to perform a specific complex task. Therefore, these types of patterns 

enable a system to reconfigure itself for more than one task easily. Some examples of 

creational patterns are abstract factory, factory method, singleton and builder design 

patterns. 

 

On the other hand, the structural design patterns deal with the composition of 

classes and objects instantiated. Compositions of interfaces of classes and also of 

primitive objects to perform different and more complex tasks are the scope of the 

structural patterns. Composite, proxy, adapter and flyweight design patterns are some 

examples for this kind of design pattern. 

 

And finally, the behavioral design patterns deal not only with the algorithms the 

objects implement but also with the flow of control between the objects 

interconnected to perform more complex tasks. Therefore, as mentioned by (Gamma, 

& et al., 1995, p. 221), the developer can focus on the way objects interconnected 

and need not have to deal with the flow of control. Observer, mediator, template 

method and interpreter design patterns are some examples for behavioral design 

patterns. 
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3.2.1 Visitor Design Pattern 

 

The visitor design pattern belongs to the class of behavioral patterns. It establishes 

an abstraction between the function that contains the defined algorithm and the 

structure composed of objects that are instantiated from same or different classes on 

which the visitor will operate. Therefore, in order to add new algorithm, there 

remains no need to alter the object classes, as indicated by (Gamma & et al., 1995).  

 

It will be better to give an example to motivate the concept. Consider a 3-D 

simulation software utilizing a scene graph data structure for functional and spatial 

grouping of several node objects instantiated from different classes, for adding new 

node objects to the graph and also for performing several rendering operations such 

as culling, level of detail (LOD) modification, vertex processing, texture processing 

and altering the transformation matrices of several node objects forming the scene 

graph. If all these operations are implemented as member functions in each different 

class, then there will exist unnecessary code overhead that may cause conflicts. As 

indicated in (Gamma, & et al., 1995), each new operation could be added separately, 

and also the node hierarchy should be independent of the functions that will operate 

on them. This will also lead to node objects of different classes that will consume 

less memory. So, the solution is to develop a class that will contain the necessary 

operations and then to instantiate an object from that class named as a visitor. The 

visitor class and the scene graph structure will be independent. When a new 

functionality is demanded, it will simply be a member of a child visitor derived from 

the abstract parent visitor. Additionally, no modification will be done to the graph 

node classes. Therefore, a minimal code development effort will be needed. 

 

The visitor pattern works simply as follows. It contains two hierarchies of classes. 

The different types of objects forming the data structure are instantiated from the first 

class hierarchy which is the object hierarchy. The visitors that embody the necessary 

functionalities and operate on the data structure’s objects from different classes are 

instantiated from the second class hierarchy which is the visitor hierarchy. The 

function that will be called when the visitor is accepted by the object of the data 



41 

 

structure – in the above example, the nodes of the scene graph- is selected using the 

concept of double dispatch. This means that, the visit function call of the visitor 

object is done considering the function signature, the runtime type of both the visitor 

and the visited object.  

 

For the general implementation case, the object class hierarchy and visitor class 

hierarchy implementation details can be followed from figure 3.7 which is taken 

from (Gamma, & et al., 1995). In this figure, the visit functions are declared in 

Visitor class. The implementations of the declared functions are done in 

ConcreteVisitor1 and ConcreteVisitor2 classes which inherit from Visitor class. 

These functions are called according to the double dispatch concept defined above. 

Element class declares the accept function. The implementation of that function is 

done in ConcreteElementA and ConcreteElementB classes. ObjectStructure hold 

Element objects together.  

 

ObjectStructure

Client

Visitor

VisitConcreteElementA(ConcreteElementA)

VisitConcreteElementB(ConcreteElementB)

ConcreteVisitor2

VisitConcreteElementA(ConcreteElementA)
VisitConcreteElementB(ConcreteElementB)

ConcreteVisitor1

VisitConcreteElementA(ConcreteElementA)
VisitConcreteElementB(ConcreteElementB)

ConcreteElementA

Accept(Visitor v)
OperationA()

ConcreteElementB

Accept(Visitor v)
OperationB()

v VisitConcreteElementA(this) v VisitConcreteElementB(this) 

Element

Accept(Visitor)

 

 Figure 3.7 Visitor design pattern class diagram (Gamma, & et al., 1995, p.334). 
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 For the specific 3-D simulation software example given in the preceding 

paragraphs, Visitor corresponds to the parent class of visitor classes specialized for 

culling, coordinate transformation computing, texture processing and so on. These 

specialized visitor classes in the example correspond to ConcreteVisitor1 and 

ConcreteVisitor2 classes in figure 3.7. ObjectStructure corresponds to the scene 

graph, Element corresponds to the nodes, ConcreteElementA and ConcreteElementB 

correspond to nodes derived from a parent class and Client corresponds to the 

application. 

 

3.2.2 Observer Design Pattern 

 

The observer design pattern belongs to the class of behavioral patterns. This 

pattern is composed of at least two objects instantiated from subject and observer 

classes respectively. Subject and its observers are decoupled. Additionally, the 

objects instantiated from observer classes are independent of each other. This 

structure leads to an increased reusability. The observer objects are registered with 

the subject object. The goal of the pattern is to define a relationship between the 

subject object and its observer objects so that when the subject object changes its 

state, the observer objects that depend on the subject object are notified and their 

states are updated automatically. 

 

The subject object encapsulates the data. On the other hand, the observer objects 

encapsulate their own member functions that operate on the data encapsulated by the 

subject object. As mentioned by (Gamma, & et al., 1995), this pattern can be used 

when there are two abstractions one dependent on the other so that encapsulating 

these abstractions in separate objects increases reusability and the independent 

modification of the object classes. The pattern is also suitable for cases when a 

change in one object requires a change in the dependent objects without the 

knowledge of the number of dependent objects and without the knowledge of who 

those objects are. 
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The class diagram of the observer pattern is summarized in figure 3.8 which is 

taken from (Gamma, & et al., 1995). In the figure, Subject class provides a 

registration interface for any number of observers; on the other hand Observer class 

provides an updating interface for the subject state change notifications. 

ConcreteSubject and ConcreteObserver classes are child classes of Subject and 

Observer classes respectively. ConcreteSubject stores the state in which 

ConcreteObserver objects are interested; and it notifies them when that state 

changes. ConcreteObserver stores the state it is interested in and implements 

observer update interface to synchronize that state with ConcreteSubject. 

 

 Figure 3.8 Observer design pattern class diagram (Gamma, & et al., 1995, p. 294). 

 

Two of the application examples where this pattern is used in the scope of this 

thesis are as follows. The first of them is the graphical user interface development by 

using Qt Toolkit. The signal / slot model of Qt Toolkit implements the observer 

design model. In Qt, the controls can send signals to other controls for notifications. 

The signals contain the event information and the slots contain the functions for state 

update as depicted by (Blanchette & Summerfield, 2008). The second section where 

the observer pattern used is the Ogre3D rendering engine. Several observers are 

registered to the corresponding subjects within the engine in order to receive 

notifications upon state changes during the simulation and then act accordingly. For 
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instance, (Junker, 2006, p. 38) depicts that FrameListener is a way to notify the 

application about the frame-started and frame-ended events during the simulation in 

Ogre3D rendering engine. 

 

3.2.3 Singleton Design Pattern 

 

The singleton design pattern belongs to the class of creational patterns. It can be 

thought as the implementation of mathematical concept of singleton in which a 

singleton means a set with only one element. This is depicted at (Wikipedia, 2010b). 

The term singleton has also correspondences in set-theoretic construction of natural 

numbers, in axiomatic set theory and in topological constructions in mathematics as 

mentioned by (Wikipedia, 2010c). 

 

This pattern finds use when there is a need for only one instance of a certain class 

and only one access to that instance. One might think that declaring a global variable 

can satisfy this need, but as depicted by (Gamma, & et al., 1995, p. 127), although 

object that is accessible is instantiated, declaring a global variable does not guarantee 

preventing multiple object instantiations. 

 

The class diagram of the pattern is given in figure 3.9 which can be found in 

(Gamma, & et al., 1995, p. 127). In the figure, Singleton class defines Instance 

operation and lets its clients to access its data. 

 

 

                          Figure 3.9 Singleton design pattern class diagram (Gamma, & 

                          et al., 1995, p. 127). 
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As an example, the rendering system of Ogre3D used throughout the thesis work 

can be considered. The engine implements the rendering system using the singleton 

design pattern, because there should be only one instance of the render system and 

only one access point for the clients of that system. 

 

3.2.4 Factory Method Design Pattern 

 

The factory method design pattern belongs to the creational patterns class. It 

defines an interface in a parent class for instantiating an object without defining its 

class. The subclasses can override the creating function which is named as factory 

method to define the class of object that will be instantiated. Therefore, not only a 

common interface is established between different classes from which objects are 

instantiated, but also flexibility is gained in application by delegating the subclasses 

to take the responsibility of knowledge of object instantiation and freeing the parent 

class from estimating which classes might be needed in the application for the future. 

As a result, each new application developed using the participant classes of the 

factory method design pattern can derive a class with different functionality when a 

need occurs without breaking the common interface persistent in the application or in 

the framework. 

 

The class diagram of the factory method design pattern is given in figure 3.10 

which is taken from (Gamma, & et al., 1995, p. 108). In the figure, Creator class 

declares the factory method to instantiate an object from Product class. Product 

declares the interface for objects instantiated by the factory method. ConcreteCreator 

is the subclass of Creator class. It is responsible for the implementation of the 

factory method to instantiate ConcreteProduct object. 
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ConcreteProduct

Product

Creator

FactoryMethod()

AnOperation()

ConcreteCreator

FactoryMethod() return new ConcreteProduct

...
product=FactoryMethod()
...

 

 Figure 3.10 The factory method design pattern class diagram (Gamma, & et al., 1995, p. 108). 

 

 Many software frameworks are examples where the factory method design pattern 

is used extensively. Ogre3D rendering engine widely uses this pattern to create 

instances of abstract interfaces as depicted by (Junker, 2006, p. 38). For example, 

Scene manager API of the engine acts as a factory for instantiating different objects 

such as cameras and lights which is also mentioned by (Junker, 2006, p. 57). 

 

3.2.5 Iterator Design Pattern 

 

Iterator design pattern is one of the behavioral patterns. The pattern aims to access 

the elements of an aggregate object without the need for the knowledge of the inner 

structure of that object. An aggregate object is an object instantiated from a class 

with no user constructor, no private or protected non-static data members, no parent 

class and with no virtual functions. Two examples are lists and vectors. Detailed 

explanation with an example can be found at (Wikipedia, 2010d).  

 

 In addition to accessing the elements of an aggregate object, in many cases, there 

will be a need for traversing the elements in different directions or a need for 

multiple traversals on the aggregate object. These tasks can be accomplished trivially 
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by encapsulating each different traversing algorithm in each of the aggregate classes. 

The end result will be unwanted increase in the code size, difficulty in development 

and maintenance of the software. Instead, the traversing algorithm can be decoupled 

from the aggregate class and it can be put into an iterator. By this way, a need to 

modify the aggregate class won’t exist any more and all different traversing 

algorithms can be put into the iterator class as mentioned in (Gamma, & et al., 1995, 

p. 258).  

 

 Polymorphic iteration is the key concept in this pattern that decouples the 

aggregate object and the iterator. Therefore, the iterator does not have to know the 

particular type of the aggregate object it is traversing. Hence a uniform and 

transparent interface for traversing aggregate objects instantiated from different 

classes is maintained. Therefore, the iterator class does not need to be modified when 

a change occurs in the class of the aggregate object being traversed. 

 

 The class diagram of the iterator design pattern is given in figure 3.11 which is 

taken from (Gamma, & et al., 1995, p. 258). In the figure, Iterator class declares an 

interface for traversing elements. ConcreteIterator class not only implements the 

interface that Iterator class declared but also knows the position in the current 

traversal of the elements of aggregate object. Aggregate class declares an interface 

for creating Iterator object. ConcreteAggregate class implements that interface in 

order to create suitable ConcreteIterator object. One point should be considered here. 

As seen in figure 3.11, the factory method pattern is used in the Aggregate class 

hierarchy in order to create the appropriate ConcreteIterator object; Aggregate class 

has no knowledge which ConcreteIterator object to create at compile time. That task 

is passed to ConcreteAggregate class. ConcreteAggregate classes create suitable 

ConcreteIterator objects at runtime. 
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Iterator

First()

Next()

IsDone()

CurrentItem()

Aggregate

CreateIterator()

ConcreteAggregate

CreateIterator()

return new ConcreteIterator(this)

ConcreteIterator

Client

 

   Figure 3.11 Iterator design pattern class diagram (Gamma, & et al., 1995, p. 258). 

 

 As an example, C++ Standard Template Library (STL) uses this pattern to access 

and traverse the elements of objects instantiated from template classes such as vector, 

map and list. C++ STL is widely used to keep track of the render objects and their 

corresponding collision shapes in appropriate data structures like maps. The elements 

of maps and other data structures implemented in C++ STL can easily be accessed 

and traversed by appropriate iterators. Similarly, in Ogre3D engine, the elements of 

the scene graph are manipulated and traversed using the appropriate iterators. 

 

3.2.6 The Façade Design Pattern 

 

This pattern belongs to the class of structural design patterns. For the researches 

interested in the word façade; the word is from the French Language in which it is 

used to mean the exterior of building. This explanation will certainly make things 

clear for understanding the pattern. The detailed explanation of the literal meaning 

can be found at (Wikipedia, 2010e).  The aim of the pattern is to provide a simple 

interface enabling the client objects to access the subsystems of a complex system 

thereby, abstracting the clients from the complexity of the subclasses. What a client 
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sees is just one simple interface that has the ability to get the full potential of the 

subsystems. On the other hand, the subclasses in the system are unaware of the 

façade object they are communicating with. Although this pattern simplifies the 

development process, it may limit benefiting from the full potential of the subclasses; 

because providing one simple interface to all subsystems may limit customizability 

of the subsystems. Therefore, the pattern should have a second access point to the 

subsystems for the clients wanting to customize and more functionalities to the 

subsystems. 

 

The class diagram of the façade pattern is given in figure 3.12 which is taken from 

(Gamma, & et al., 1995, p. 187). In the figure, Façade class is responsible of 

transmitting requests of the clients to the appropriate subsystem classes. Upon 

receiving the request from the object instantiated from Façade class, the subsystem 

objects perform the related tasks. 

 

The façade design pattern is used in Ogre3D rendering engine to implement Root 

class. The client object can access the required functionality of the root object 

instantiated from Root class. Therefore, a simple interface for the client is established 

to use the various functions of the rendering engine. The detailed explanation of the 

concept can be found at (Junker, 2006, p. 46). 

 

subsystem classes

Façade

 

   Figure 3.12 Façade design pattern class diagram (Gamma, & et al., 1995, p. 187). 
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3.3 What is a Software Engine? 

 

The visual rendering and physics rendering tasks of the virtual environments in 

many simulation software are accomplished via independent set of functions in two 

independent software assemblies aimed for a common task. These software 

assemblies are named as graphics engine and physics engine respectively.  

 

Considering the explanations in the previous sections of this chapter, the concept 

of engine can be explained as follows. Engine in software is a collection of modules 

that implement required data structures and algorithms and designed by benefiting 

from the related software design patterns where necessary to accomplish a common 

task. These tasks can be graphics rendering, physics rendering as well as video 

processing and audio processing.  

 

Figure 3.13 depicts the first real time graphics engine coded by means of getting 

reference from (Seddon, 2005) for creating a 3-D virtual environment. This practical 

study helped in understanding the composition of the software modules, 

communication between the software modules and working principles of a simple 

graphics engine.  

 

 

  Figure 3.13 A 3-D scene from the first real time graphics engine coded for in-depth study. 
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CHAPTER FOUR 

GRAPHICS PROCESSING UNIT PROGRAMMING FOR GRAPHICS AND 

GENERAL PURPOSE COMPUTING 

 

 Graphics processing units (GPUs) have undergone a rapid evolution period since 

late 90s up to now. Today, GPUs are far beyond a simple hardwired 2-D rendering 

control units. They evolved into programmable massively parallel computational 

processors with their flexible architecture specialized for matrix and vector 

calculations and with their own programming languages. This chapter serves as a 

survey to understand the fundamentals in computation and to leverage the power of 

modern GPUs. The development history of “the computation” and of GPUs, the 

hardware architecture of modern GPUs, the benefits of parallelism, the use of GPUs 

for graphics and general purpose computing, the need for high level programming 

languages for GPUs and the related programming languages are briefly covered in 

this chapter. 

 

4.1 Short History of Computing Machines – From Antikythera Mechanism to 

Today’s Massively Parallel GPUs 

 

 Accurate and fast computing has always been a need for humans since ancient 

ages. The oldest computing machine discovered so far and named as the Antikythera 

Mechanism belongs to Ancient Greek. It is thought to have been built at about 150 – 

100 BC with the intent to calculate the cycles of the Solar System and astronomical 

positions. With its complex mechanical gear structure, it is accepted as the first 

known analog computer. Figure 4.1 depicts the main fragment and the 3-D rendering 

of the machine. No sign of such technically complex computing machine was found 

until the 14th century when mechanical astronomical clocks appeared in Europe. An 

astronomical clock invented by Al-Jazari in 1206 is considered to be the first 

programmable computer as depicted by (Wikipedia, 2010f). For further details, the 

researcher should refer to (Freeth, Jones, Steel, & Bitsakis, 2008), (Wikipedia, 

2010g) and (Edmunds, 2010).
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                                       (a)                 (b) 

Figure 4.1 (a) The main fragment of the Antikythera Mechanism (Wikipedia, 2010g). (b) The 3-D 

rendering of the complete computing machine (Edmunds, 2010). 

 

 For the investigation of the roots of today’s powerful processors and 

programming languages, a long jump is needed from the mid ages to the time of 

Charles Babbage (26.12.1791 – 18.10.1871). Babbage was an English 

mathematician, philosopher, inventor and mechanical engineer who originated the 

concept of programmable computer (Wikipedia, 2010h).  

 

The inspiration for his inventions was mostly due to the high error rate of 

calculations performed by humans at that time. His intent was to mechanically 

calculate mathematical tables to prevent the human errors. Towards this aim, he 

began building a special purpose mechanical machine which he named as the 

Difference Machine in 1822. The difference machine can automatically calculate 

polynomial functions. As polynomial functions can also be used to approximate 

trigonometric and logarithmic functions, the machine would find a very wide usage 

area. The operation principle of the difference machine was based on Newton’s 

divided differences. If the initial value of a polynomial (and of its finite differences) 

is calculated by some means for some value of X , the difference engine can 

calculate any number of nearby values using the method of finite differences 

(Wikipedia, 2010i). Therefore there was no need for multiplication and division 

during the computations. In addition to this technically complex machine, Babbage 

also designed a printer for his difference engine that is highly complicated for the 

19th century. The reconstruction of the difference engine is seen in figure 4.2 (a). 
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                (a)                 (b) 

Figure 4.2 (a) The fully operational Difference Engine at Computer History Museum in Mountain 

View, CA. (Wikipedia, 2010i). (b) A trial model of a part of the Analytical Engine at the Science 

Museum, London (Wikipedia, 2010j). 

 

 In 1837, Babbage designed the first version of his second computing machine 

named as the Analytical Engine. A trial model of a part of the Analytical Engine is 

seen in figure 4.2 (b). This machine is the first mechanical general purpose computer. 

The important point when compared to the Difference Engine which was a special 

purpose machine was that the Analytical Engine was programmable via punched 

cards. Ada Lovelace was the first mathematician and the first computer programmer 

who first wrote a program to compute a sequence of Bernoulli Numbers for the 

Analytical Engine. The Analytical Engine had several features such as sequential 

control, conditional branching and looping in addition to mechanical units to 

implement today’s memory units, arithmetical logical units (ALUs) for arithmetic 

operations and comparisons and optionally for square roots calculations. The 

complex instructions that the user’s program includes are computed by the ALU of 

the machine which was a mill relying on its own internal procedures. The punched 

cards on which the user’s program was written were of three different types aimed 

for arithmetical operations, numerical constants and read write operations. These 

punched cards were being inserted into their own readers on the machine. For more 

information, the researcher should refer to (Wikipedia, 2010j). The language used by 

the machine can be regarded as the origin of the today’s assembly language. As the 

machine has support for conditional branching and memory read write operations, 

the machine can be called as Turing complete in the context of Computability 

Theory. More on this can be found at (Wikipedia, 2010k).  
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 Analog computers were being used in the 20th century for the computations 

regarding scientific problems. Those machines used mechanical or electrical model 

of the scientific problem for computation. But important point was that, they were 

not programmable and not accurate. Hence they can be considered as specific 

purpose computing machines. One of the first steps in 1937 towards today’s digital 

computing machines was a relay based calculator named Model K whose designer 

was George Stibitz. It was the first model that used binary circuits to perform 

arithmetic operations. The other important step was the programmability. The first 

programmable, fully automatic computing machine was the electomechanical device 

Zuse Z3 designed by Konrad Zuse. It performed binary arithmetic and floating point 

arithmetic. It was a program controlled device that used punched cards. The picture 

(a) of figure 4.3 shows Zuse Z3 replica. Following Zuse Z3, the non-programmable 

Atanasoff Berry computer designed in 1941 was important for its vacuum tube based 

computation, binary numbers and its regenerative capacitor memory that allowed a 

feed back mechanism to be established for feeding back the stored elements into 

computation. The period of World War II witnessed many technical improvements in 

programmability and hardware of computing machines. For breaking German secret 

ciphers, the British Colossus computers were developed in 1943. The picture (b) of 

figure 4.3 shows a Colossus rebuild. It had limited programmability capabilities, but 

thousands of vacuum tubes in its architecture were reliable and electronically 

reprogrammable. The Harvard Mark I computing machine developed in 1944 was 

another important electromechanical device with limited programming capabilities. 

ENIAC that was designed in 1946 at the U.S Army’s Ballistic Research Laboratory 

was the first general purpose computer that would highlight the future designs. The 

handicap of the device was its inflexible architecture and the need to change the 

wiring to reprogram the device. The picture (a) of figure 4.4 shows the vacuum tubes 

of ENIAC. 
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            (a)                      (b) 

Figure 4.3 (a) Zuse Z3 replica at Deutsches Museum in Munich (Wikipedia, 2010l). (b) A rebuilt 

version of the Colossus (Wikipedia, 2010m).  

 

  

            (a)                      (b) 

Figure 4.4 (a) The vacuum tubes of ENIAC (Wikipedia, 2010n). (b) A die of Intel 80486DX2 

microprocessor (Wikipedia, 2010f). 

 

 Up to now, it is seen that two important concepts in computing was 

programmability and hardware architecture (application of electromechanics, 

vacuum tubes, etc…) of the devices.  

 

 At this point the mathematical theories and ideas of two mathematicians gain 

importance. Those mathematicians namely John Von Neumann and Alan Turing 

were considered to be the fathers of computer science. The theoretical works of 

Neumann and Turing should be definitely studied by anyone scientifically interested 

in computer science and mathematics. Those details will not be covered here as they 

are out of the scope of the thesis research. 
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 The inflexible architecture and the need for rewiring for programming were 

potential problems of ENIAC. The solution was John Von Neumann architecture 

which was a model for stored program architecture. Stored program architecture 

refers to a computing machine that has built-in instruction set and to a memory to 

write and read the program and the data for the computations. The theory and 

technical details of this architecture can be found in (Neumann, 1945). Although the 

semiconductor technology that is the base of computers has advanced from 1940s up 

to now, the architecture of most computers used today is exactly the von Neumann 

architecture or modified version of the von Neumann architecture. A die of Intel 

80486DX2 which can be considered as an advanced semiconducter technology for 

1990s is seen in the picture (b) of figure 4.4. In von Neumann architecture, the 

instructions and data are stored in the same memory unit that can be read and written. 

This is in contrast to Harvard architecture where the instructions and data are stored 

in seperate memory units. In fact, Alan Turing had previously described the stored 

program concept. At this point, his paper (Turing, 1936) is an important resource for 

the researcher. In that paper, he describes a hypothetical machine with an infinite 

memory in which both instructions and data are stored. In the literature, this 

hypothetical machine is called as Universal Turing Machine. In 1946, both Alan 

Turing’s Automatic Computing Machine (ACE) and the other computing machine 

EDVAC in which John Von Neumann participated in its development process, used 

the stored program concept in their designs. 

 

 In addition to flexible programmability, error free programming is an important 

concept for computing machines. In the early days, the programs were being written 

directly in machine code in which each instruction was  represented with an unique 

number namely with its opcode. Although this technique was used in early 

computing machines, it had high error probability especially as the complexity of the 

programs evolved. The next programming technique was to write the program in the 

computing machine’s assembly language in which each instruction was given a short 

name identifying its function. For complex programs, assembly language was also 

error prone. Together with the machine language, assembly language were low level 
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programming languages targeted for a specific machine. What if someone wanted to 

port a program developed for a specific machine to another one?  

 

 At that point, high level languages and specific design patterns gained importance 

as a solution. High level languages like C, Fortran, C++ or Java abstract the 

programmer from the hardware details of the computing machine, hence the 

programmer could focus on the main problem to be solved. Additionally, the 

developments in high level languages were more error free and portable across 

different computing platforms. The history, technical details and related links of the 

preceeding paragraphs can be found in (Turing, 1936), (Neumann, 1945), 

(Wikipedia, 2010h), (Wikipedia, 2010f) and (Wikipedia, 2010k). 

 

 A reader might think that the preceeding paragraphs might be long for a scientific 

history of computing machines. But when inspected, beginning from 1970s until 

today it can be seen that the evolution of graphics processing units (GPUs) has 

correspondances more or less with the evolution of modern computing machines that 

are central processing units with appropriate peripheral units.  

 

 The evolution of special purpose processors for graphics began with ANTIC and 

CTIA chips produced for hardware control of mixed graphics and text modes on 

Atari 8-bit computers in 1970s. In 1984, IBM released its first 2-D/3-D graphics 

accelerator namely IBM Professional Graphics Controller (PGC) as seen in figure 

3.5 which is taken from (Elliot, 2010). Technical details of PGC can be found in 

(Wikipedia, 2010o). IBM 8514 video card was one of the pioneers that implement   

2-D primitives in hardware. At this time, Commodore Amiga has its own full 

graphics accelerator and graphics coprocessor with its own primitive set that offloads 

all video generation functions to hardware. Prior to this, those tasks were being 

handled by central processing unit (CPU). 
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     Figure 4.5 Three layers of IBM’s first 2-D/3-D accelerator PGC released in 1984 (Elliot, 2010). 

 

 Beginning from 1990s, OpenGL and Microsoft DirectX became the horsepower 

of hardware development. OpenGL had both software and hardware 

implementations. The detailed development history can be found at (Wikipedia, 

2010s) and (Fernando & Kilgard, 2003, chap. 1). Up to late 1990s, the GPUs in this 

period were capable of rasterizing pre-transformed triangles and one of two textures. 

GPUs were performing pixel updates instead of central processing units (CPUs). But 

on the other hand, they lack of adequate set of math operations for computing 

rasterized pixel color. Additionally, CPUs were still performing vertex 

transformations. 

 

 At the end of 1990s, both vertex transformations and lighting has begun to be 

done by GPUs instead of CPUs. OpenGL and Microsoft DirectX supported hardware 

vertex transformation. The hardware in this period were configurable rather than 

programmable. As in the mid 1990s, although the set of mathematical operations that 

the GPUs support in hardware improved, they were not adequate for complex texture 

and pixel color operations.  
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 By the early 2000s, GPUs began to support vertex programmability. This was an 

important step, because rather than using only the predefined OpenGL or Microsoft 

DirectX transformation and lighting techniques, from there on, the developers would 

be able to define a program for transforming the vertices according to their needs. On 

the other hand, pixel programmability was still impossible. Only OpenGL and 

Microsoft DirectX were supporting their pre-defined pixel level configurability. 

 

 Towards the mid 2000s, GPUs were supporting not only vertex programmability 

but also pixel programmability. Therefore, CPUs completely released vertex 

transformation and pixel shading operations to GPUs. In addition to this, both 

OpenGL and Microsoft DirectX began to support vertex-level and pixel-level 

programmability.  

 

4.2 Shaders 

 

At this point an important technical term gains importance that is “shader”. 

Shaders are set of instructions that is used to program the programmable pipeline of 

the GPU. Technical details can be found in (Möller, & et al., 2008, chap. 2, chap. 3), 

and (Wikipedia, 2010p). There are three types of shader.  

 

Vertex shaders are run for each vertex that is transferred to the GPU. The 

developer can code a vertex shader for transforming the vertices according to the 

needs. No topology change that is addition or removal of a vertex can be done in this 

stage. The output of the vertex shader is either transferred to the rasterizer or if exists 

to the geometry shader along the graphics pipeline of the GPU. Geometry shaders 

can perform a topology change. Geometry shaders are set of instructions that are 

used to generate geometry or add volumetric details to the existing geometry that will 

be too costly if done on the CPU. The output of a geometry shader is transferred to 

the rasterizer along the graphics pipeline. Finally, fragment shaders (pixel shaders 

can be used interchangebaly although not appropriate) are set of instructions that are 

used to calculate the color of each pixel. The input to the fragment shaders are from 

the rasterizer. The rasterization stage uses the vector graphics that are polygons to 
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generate a raster image that are composed of pixels to be displayed on a display. 

Fragment shaders are used for lighting, several graphics effects like bump mapping 

and for other application specific transformations for pixel color. As it is seen 

developer can develop necessary programs for appropriate shaders for each pixel that 

will be seen on the screen. 

 

4.3 Fixed Function Graphics Pipeline and Programmable Graphics Pipeline 

Architecture in Detail 

 

 Geometry shaders will be shown partly connected in the figures of this section as 

geometry shaders were not used in the shader models prior to Shader Model 4.0 as 

depicted in (Möller, & et al., 2008 p. 41). The fixed function graphics pipeline is 

seen in figure 4.6.  

 

 In figure 4.6, the 3-D application layer can be a simulation, a game or etc… using 

OpenGL API or Microsoft Direct3D API high level instructions to process the scene. 

These APIs decompose complex meshes into triangle primitives and then send 

necessary low level instructions along with the data stream to the GPU via the 

communication bus between CPU and GPU. In the GPU front end, the vertices are 

transformed into a common coordinate system for further transformations and 

lighting. Only affine transformation is performed in this stage in order not to twist 

triangles into curled shapes. At the vertex transformation stage, other necessary 

geometric transformations are done and the vertices are transformed into the screen 

coordinate space for the rasterizer. Texture coordinates and vertex lighting are also 

completed in this stage for texturing and vertex color calculation respectively. The 

output of the vertex transformation stage is input to the primitive assembly stage 

along with the vertex indices for generating triangles, lines or points. These 

primitives are input to the rasterization stage.  

 

In the rasterizer, the primitives are either clipped to the view frustrum or 

application defined clipping volume. This process is called as clipping. View 

frustrum is a pyramid that is cut beneath its apex by a near clip plane and a far clip 
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plane forming its base. View frustrum represents the 3-D scene that the camera in 

other words the viewer observes at a particular time. It can be configured by field of 

view angles. Additionally, the rasterizer may discard primitives according to their 

face orientation that is either front face, back face or none of the faces are discarded. 

This called culling. Clipping and culling is important for reducing the number of 

primitives that will be transferred to the later stages in the pipeline in order to 

decrease the work load of the following stages. 

 

  Figure 4.6 Fixed function graphics pipeline. 

 

The rasterization stage calculates the pixels in the screen that is covered by the 

primitive and the fragments needed to update the pixel locations. Fragments 
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generated in this stage are used for pixel update decision. Consider that the pixel ip  

is in the rasterizer output set W  and the rasterizer input set is V  in which a 

geometric primitive vertices are contained. Then; 
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  The fragment texturing and final colour calculation task is performed in the 

fragment colouring and texturing stage. A depth value may be defined, the fragment 

value may conditionally be discarded or not. The output of this stage is one or zero 

coloured fragments for each of the input fragment. These output fragments are 

processed by raster operations that are shown in figure 4.7. These operations are 

common both in Microsoft Direct3D and OpenGL APIs.   

 

  Figure 4.7 Raster operations in detail. 
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 Raster operations stage is the last stage prior to updating the pixel value in the 

frame buffer. As depicted in (Luebke & Humphreys, 2007), many rasterization 

algorithms have been developed for this stage. All of these algorithms utilize one 

common observation that is each pixel can be processed independently from the 

others in parallel. This observation has resulted in development of massively parallel 

pipeline architectures in GPUs. Pixel ownership identifies whether the pixel is 

obscured by an overlapping window. Scissor test clips the fragments defined by the 

application. Alpha test discards the fragment based on its alpha value. Stencil test 

discards the fragment based on the comparison between the value in the stencil 

buffer and the reference value. Stencil buffer is composed of non-displayable bit 

planes that provides stencil value for every pixel. Stencil test provides extra 

rendering control by logical operations. Depth test discards the fragment by 

comparing its depth value with the corresponding depth value in the depth buffer. 

The depth buffer stores floating point depth values for every pixel that will be 

rendered. Stencil test together with depth test is used in many fundemental computer 

graphics techniques such as shadowing and reflections. For details in stenciling refer 

to (Kilgard, 1999). Blending combines the final colour of the fragment with 

corresponding pixel value.  

 

Dithering is the means of noise addition to the signal to reduce the quantization 

errors that occurs due to the analog digital conversion of continuous data, as the 

resultant digitized data is just the representation with limited bits of the analog data. 

Similarly in computer graphics, dithering is a technique to create an effect of color 

depth more than actual limited colors due to the colors represented with limited 

number of bits i.e. 2 bits, 4 bits. The detailed examples can be found at (Wikipedia, 

2010r).  

 

At the end of the rasterizer stage, application defined logical operations are 

performend, and according to the cumulative result of the rasterizer stage, a write to 

the frame buffer is performed.  
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In years, GPUs evolved from fixed function graphics pipeline into fully 

programmable computational units. Figure 4.8 shows the programmable graphics 

pipeline. 

 

 Figure 4.8 Programmable graphics pipeline. 

 

 In the programmable graphics pipeline, vertex processor, geometry processor and 

fragment processor are fully programmable by the application developer. The first 

task in the vertex processor is to load vertex specific data such as position, texture 

coordinates, color, and etc... to the vertex processor. Then, the next instruction in the 

vertex shader is fetched continuously until the vertex shader terminates. There are 

three types of registers that the vertex processor uses. The vertex attribute registers 
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contain position, normal and colour vector values which are read only and defined by 

the application. The temporary registers are for intermediate computation and they 

can be read from or written to. The write only output registers are used for output 

results for the transformed vertices and written by the vertex processor. This data is 

either sent to the geometry processor or to the rasterizer along the pipeline. The 

fragment processor perform texturing tasks in addition to the ability of performing 

the math operations that the vertex processor has. The fragment processor can access 

to a texture image by using texture coordinates and return a filtered sample of a 

texture image. The fragment shader has instructions to fetch textures. The key point 

for performance at this point is to use the lowest machine precision that is adequate 

for the application, because fragment shaders are executed until the shaders terminate 

for each fragment received. The read only input registers of the fragment processors 

contain the interpolated per fragment parameters derived from the per vertex 

parameters of the fragments primitive as depicted in (Fernando & Kilgard, 2003, p. 

20). The temporary registers can be read from and written to for intermadiate 

computations. The resultant color and depth value for each fragment are written to 

the write only output registers of the fragment processor.  

 

For further details, the researcher  may  refer  to  (Fernando & Kilgard, 2003, 

chap. 1),  (Möller, & et al., 2008, chap. 2, chap. 3)  and  (Kirk & Hwu, 2010, chap. 1, 

chap. 2). 

 

4.4 Unified Shader Architecture 

 

The evolution of GPUs from a fixed pipeline to a programmable pipeline is an 

important technical process on its own. But another important technical development 

is “the unified shader model”. This model is also known as “Shader Model 4.0”. The 

first hardware examples for this architecture were ATI Xenos chip for Xbox 360 and 

NVIDIA 8800 chip for PCs. The unified shader architecture of NVIDIA 8800 is 

shown in figure 4.9.  
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   Figure 4.9 One of the first unified shader architectures belonging to NVIDIA 8800  (Inspired  from      

   Luebke & Humphreys, 2007, p. 4). 

 

Geometry shader was not part of the hardware accelerated graphics pipeline prior 

to Shader Model 4.0 as depicted by (Möller, & et al., 2008, p. 41). Instead of seperate 

custom processors for vertex, geometry and pixel shaders, a unified shader 

architecture provides one large grid of data-parallel floating point processors general 

enough to run all these shader workloads (Luebke & Humphreys, 2007). This model 

uses almost the same instruction set for developing vertex, geometry or fragment 

shaders. During the task processing vertices, triangles and pixels pass through a set 

of programmable processors. The architecture that uses unified shader model is 

named as “the unified shader architecture”. This architecture is more flexible than the 

previous ones, because during the runtime of the application, the need for different 

types of shader processors continuously varies. For example, at one time the 

application may need vertex processors’ computation power more than that of 

geometry or fragment processors for generating a detailed scene with millions of 

vertices. In that case, geometry processors and fragment processors can be used as 

vertex processors. Otherwise, they would wait idle for the vertex processors to 

complete the task resulting in delayed task completition. Reversely, the application 
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may need a topology processing or pixel processing power for lighting or image 

processing more than others. Again for that case, the idle shader processors can be 

used for the geometry or fragment shaders respectively. As a result, in this 

architecture a necessary amount of processors in the processor pool can be assigned 

to the appropriate shader to balance the load. For further details, the researcher may 

refer to (Kirk & Hwu, 2010, chap. 2).  

 

4.5 The Need for High Level Programming Languages for Computer 

Graphics–Cg HLSL and GLSL 

 

 As a result of evolution in the programmability of GPU hardware, developers felt 

a need for a programming language that will increase efficiency in development. As 

in the case of history of CPU development, the assembly language was the initial 

choice. Although assembly language enabled the programmers to use the GPU and 

its registers as they wanted, the code development process became error prone 

especially for long codes. The assembly code was not portable across different GPU 

platforms and the learning curve of the several GPU assembly languages slowed 

down the code development process severely.  

 

The next step in developing codes for programmable graphics pipelines was the 

high level languages that were portable, easy to learn and less error prone. 

Additionally, these languages enabled the developer to focus on the problem at hand 

not on the hardware layer. Today three high level programming languages for 

programming the graphics pipeline for graphics dominated the world. These are Cg – 

C for Graphics - a cross platform language which can be executed with Microsoft 

Direct3D or OpenGL, HLSL – High Level Shading Language - from Microsoft 

which needs Microsoft DirectX and hence Microsoft Windows to execute and GLSL 

– OpenGL Shading Language - from OpenGL which needs OpenGL to execute. All 

of them are C like language with some restrictions and some semantic differences 

that allow the developer to program the vertex processors and fragment processors in 

the programmable graphics pipeline of the GPU. Cg and HLSL are nearly similar in 

programming perspectives as NVIDIA and Microsoft worked together during the 
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language development phase for common standards. For programming details in Cg, 

HLSL and GLSL the researcher should refer to (Fernando & Kilgard, 2003) for Cg, 

(Engel, 2004a), (Engel, 2004b) for HLSL and (Rost & Kane, 2010) for GLSL 

respectively. The researcher interested in development in assembly language for 

GPUs should refer to (Leiterman, 2004). 

 

In the implementation case, Cg code cannot be used directly by a GPU. The code 

should be converted to the target machine code. The Cg compiler compiles the code 

that can be accepted by either Microsoft Direct3D or OpenGL API based on the 

choice of the developer. The API translation of the code is passed to the GPU via 

Microsoft Direct3D or OpenGL commands. Finally, Microsoft Direct3D or OpenGL 

driver produces the machine code that is accepted by the target GPU. These 

procedures are handled by the real time graphics engine Ogre3D that is used 

throughout the thesis work. 

 

 During the thesis work, Cg was mainly used for programming vertex and 

fragment processors for bump mapping with parallax offset. This texturing method 

and its modified schemes were used to texture wireframe models in the virtual 

environment. HLSL was used for a special lighting effect namely for light shafts 

implementation. Implementation of these graphics processing tasks in GPU released 

CPU for handling simulation logic, physical rendering and collision detection tasks.  

 

Prior to implementation in the actual simulation, theoretical and practical study 

period for understanding general programming aspects of Cg and HLSL had been 

evaluated. The results are given in figures 9.23 – 9.25.  

 

4.6 NVIDIA Compute Unified Device Architecture - CUDA and General 

Purpose Computing 

 

 As the evolution of GPUs continued towards unified processor architectures, they 

became more like parallel computation units. Therefore, researchers wanted to 

exploit the usage of these systems in performance sensitive scientific and engineering 
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applications. Initially, the graphics APIs were just capable of executing graphics 

related calls. The problem at hand should be cast in terms of these calls within a pixel 

shader. The input data for the computation was being stored as a texture and sent to 

the GPU by submitting triangles. Furthermore, the restrictive memory interface of 

the GPUs and limited read and write abilities made the storage of the computation 

results in the frame buffer much more difficult.  The attempts for overcoming these 

technical difficulties resulted in General-purpose computing on graphics processing 

units (GPGPU). For details, the researcher should refer to (GPGPU.org, 2010). In 

spite of its technical problems, the researchers in several institutions developed 

successful applications. Stanford University’s folding@home project relies on GPU 

based computations to study protein folding by using the spare cycles of the 

computers of the users that donate to the project. The researchers at University of 

North Carolina and Microsoft won a competition on sorting a database. 

 

 By the time, NVIDIA was designing a floating point and integer processor that 

could run tasks in parallel for Microsoft DirectX 10. The shader processors became 

fully programmable with increased instruction memory, cache and sequencing logic 

where each shader processor share its instruction cache and sequencing logic with 

others. In addition to this hardware, memory load and store instructions were added 

with the support of random byte addressing for compiled C programs. As a result, for 

non graphics applications, this GPU architecture was a generic programming model 

with a hierarchy of parallel thread, barrier synchronization and atomic operations to 

dispatch and manage parallel work load. At this point the development of CUDA C 

compiler (a support for C++ exist in newer versions of CUDA API for object 

oriented programming), libraries and runtime enabled the program developers to use 

this new hardware architecture. The main point was that, the application developers 

were no longer needed to use graphics API such as Microsoft Direct3D or OpenGL 

to access the GPU hardware for general purpose programming.  

 

Similarly, ATI developed ATI Stream for general purpose computation on its 

GPUs. An open source API named as OpenCL exists for the same general computing 

purposes on both NVIDIA and ATI GPUs. But OpenCL is still under development. 
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 CUDA enables the GPU to be accessed like a general purposes CPU. The 

application developer can access the virtual instruction set and memory units of 

parallel computation elements in the architecture. In a typical heterogeneous 

computing environment where CPU and GPU exists simultaneously; CPU is 

typically called as a host and GPU is called as a device. The function that will be 

executed in parallel is called kernel. The threads are contained in thread blocks 

which can be one, two or three dimensional. In a same way, thread blocks form a 

grid. This hierarchy is shown in figure 4.10 and figure 4.11 inspired from (NVIDIA, 

2009a, p. 10, p. 11). The host executes the sequential code; on the other hand, the 

device executes the parallel portion of the computation. The device code is compiled 

by NVIDIA C Compiler nvcc which can be integrated into several development 

environments such as Microsoft Visual Studio 2005, therefore both the host code 

(Microsoft Visual C++ compiler for this particular case) and the device code can be 

compiled in a batch. The researcher who isn’t convenient with multithreading and 

multiprocessing concepts should refer to (Deitel, H., Deitel, P., & Choffnes, 2004). 

 

Block (1, 1)

Thread (1, 0)Thread (0, 0)

Thread (1, 1)Thread (0, 1)

Block (1, 1)

 

                         Figure 4.10 Threads inside of a thread block. 
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 Figure 4.11 Memory hierarchy of NVIDIA CUDA. 

 

The following characteristics are valid for the time this thesis was being written. 

Any frame memory area can be read from or written to. Threads can share a fast 

shared memory region and high bandwidth communication is possible. Reads and 

writes by GPU is faster. Integer and bitwise operations, integer texture looks up are 

faster. The language for the device code is in fact ANSI C with no  recursion  and  no  
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          (a)                  (b) 

  

         (c)              (d) 

  

              (e)              (f) 

 Figure 4.12 Applications using  NVIDIA CUDA. (a) Simulation  of approaching  two galaxies   with   

 260k   particles   for   an   initial   interaction.   (b)  Calculation of  beam  dynamics of a cyclotron. (c)    

 Numerical  solution  of  stochastic differential  equation   for  modeling  the noisy dynamics of  phase   

 in  Josephson  junction.  (d) Simulating   brain  vision   and   olfactory   circuit. (e)  Simulation of NaI  

 solution molecular dynamics. (f) Level set segmentation with MRI. 

 

function pointers but with addition of special keywords. The support for C++ is 

available in Fermi GPUs. Thousands of threads can run simultaneously in total but 

they should be in groups of at least 32 for optimized performance. Texture rendering 

is not supported. Double precision data is supported for NVIDIA GTX 260 and 

Injection line

ESD

Dee

Magnet sectors

Inflector

Injection line

ESD

Dee

Magnet sectors

Injection line

ESD

Dee

Magnet sectors

Inflector



73 

 

newer GPUs. The bandwidth and latency between GPU and CPU is a disadvantage. 

CUDA is available only for NVIDIA GPUs such as NVIDIA GeForce 8 and up, 

Quadro and Tesla; on the other hand OpenCL can be used by many GPUs from 

different vendors. 

 

A simple example of matrix multiplication will give an insight of usefulness of 

GPUs. Consider two matrices MxNA  and NxPB . In a sequential matrix multiplication 

code executed on a CPU, the complexity of the algorithm will be )(MNPO , whereas 

if that multiplication is executed parallel on a GPU, each row-column multiplications 

will be completed at once in parallel. There are many more uses of computing based 

on GPUs in science and engineering. In figure 4.12, some examples from several 

research communities and academia are given. For the practices done regarding 

NVIDIA CUDA during the thesis period, refer to figure 9.26. 

 

 Considering figure 4.12, the top left research is from (Groen, Harfst, & Zwart, 

2009); top right research is from (Perepelkin, Smirnov, & Vorozhtsov, 2009) and 

represents the calculation of beam dynamics of a cyclotron on two different 

platforms. With 1000000 particles, the computations take 2 days 4 hours and 25 

minutes on a 2.5GHz CPU and the same computations take just 34 minutes and 29 

seconds on NVIDIA Tesla C1060 GPU. The middle left research represents a 

numerical calculation of stochastic differential equation and a 675 times faster 

calculation with NVIDIA TESLA 1060C than a CPU is indicated in (Januszewski, 

Kostur, 2009). The middle right research represents brain circuitry, vision and 

olfactory sensory computing with GPU in which the computations are executed with 

130 times faster than CPU taken form (Kirk, n.d.). The bottom left research is a 

molecular dynamics research with NaI solution from (Davis, Ozsoy, Patel, & Taufer, 

2009) indicating 7 times speed up with GPU computing over CPU computing. The 

bottom right research from (Roberts, Packer, Sousa, & Mitchell, 2010) represents the 

level set segmentation of 2563 MRI data with GPU. GPU provides 14 times speed up 

with GPU computing over CPU computing. 
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 This evolution of GPUs will continue in the future, perhaps faster than the 

evolution of CPUs. GPUs have many more transistors than CPUs dedicated for 

computations, more streaming bandwidth for data transfer and many more processing 

units than CPUs. Figure 4.13 taken from (Kirk & Hwu, 2010, chap. 1, p. 3) depicts a 

comparison of floating point operations per second between CPUs and GPUs from 

year 2001 to 2009. 

 

       Figure 4.13 Floating   point   operations    per   second   for   INTEL   CPU,   NVIDIA   GPU 

       and ATI GPU. (Kirk & Hwu, 2010, p.3). 

 

Although a 64 bit INTEL Core i7 980X has a memory bandwidth of 25.6 GB/sec 

(INTEL, 2010), NVIDIA GTX 295 has 223.8 GB/sec (NVIDIA, 2010) with 896 bit 

memory interface width. Although today’s modern CPUs such as INTEL Q9550 and 

Core i7 CPUs have 4 to 6 computation cores respectively, modern GPUs such as 

NVIDIA GeForce GTX 295 have 480 computation cores in their architecture. This is 

because, over the history of their development CPUs have evolved to decrease the 

latency between the memory unit and the CPU (the researcher should notice the 

connection with the von Neumann architecture mentioned previously) and for 

executing sequential programs faster, but on the other hand GPUs have evolved for 

massive vector and matrix operations done in parallel by thousands of threads which 

is impossible even for the most high end CPU today. This parallelism and data 

processing capacity make them very suitable not only for computation power 
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demanding visualization applications but also for scientific and general purpose 

computation. 

 

The researcher should refer to (Möller, Haines, & Hoffman, 2008), (Fernando & 

Kilgard, 2003), (Rost, Kane, Ginsburg, Kessenich, Lichtenbelt, Malan, & Weiblen, 

2010), (Kirk & Hwu, 2010), (Fernando, 2004), (Pharr & Fernando, 2005), (Nguyen, 

2007) and (NVIDIA, 2009a) for further details in real time computer graphics, 

GPUs, available programming languages, general purpose programming and 

scientific computation on GPUs and NVIDIA CUDA. 
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CHAPTER FIVE 

ESSENTIALS OF REAL TIME GRAPHICS RENDERING 

 

 One of the two important modules of 3-D immersive virtual environment is the 

graphics engine. Several visual rendering tasks such as lighting, shadowing, fogging, 

texturing of visual synthetic objects, image based effects such as billboarding, 

skyboxes, volume rendering, non-photo realistic rendering, etc… and affine 

transformations of visuals are accomplished via graphics engine. Additionally, 

graphics engines handle curve and surface rendering and processing tasks in 2-D and 

3-D. Each graphics rendering engine uses a tree data structure to keep visuals and 

rendering functions in a logically and spatially consistent hierarchy. This is already 

mentioned in chapter three. 

 

 In this chapter, the fundamental rendering techniques implemented, and other 

graphics rendering techniques that are implemented targeting the graphics processing 

unit (NVIDIA GTX 295 GPU) with programmable graphics pipeline will be given.  

One of these techniques regarding lighting is named as “Light Shafts”. The vertex 

shaders and fragment shaders for this technique is implemented in Microsoft HLSL 

shading language. The other technique regarding the texturing of 3-D objects is 

named as “Bump Mapping with Parallax Offset”. The vertex shaders and fragment 

shaders for this texturing technique are implemented in NVIDIA Cg shading 

language. Several experimental code studies for lighting, transformations, animation, 

etc… with NVIDIA Cg can be found in figures 9.23 – 9.25. Therefore the usage of 

vertex processors and fragment processors of the programmable graphics pipeline of 

the GPU offloaded CPU from these computationally demanding tasks. As it will be 

seen in chapter six, CPU mainly deals with the physics simulation tasks throughout 

the thesis work. This chapter will present brief information on a well known “Gimbal 

Lock Problem”. Finally, a hand rigging and skinning accomplished in the thesis work 

for the interaction of the user with the visual object will be presented. 
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5.1 Transformations, Lines, Surfaces and Rendering Techniques in Computer 

Graphics 

 

Transformations, lines and surfaces are the basic building blocks of computer 

graphics. The mathematical details of the subjects are partly given in chapter five. 

For more mathematical coverage regarding graphics can be found at (Möller, & et 

al., 2008). In the context of the thesis work, during the absence of the necessary 

laboratory equipment, a stand alone application was developed targeting the creation 

of several line and surface types such as Coons surface, BSpline surface, etc… and 

performing transformations on these primitives without any use of graphics library. 

The aim was to understand and implement the mathematics underneath. Furthermore, 

it is known that the implemented surfaces in this application have a well known 

usage in modeling soft tissues and objects. The researcher should refer to figure 9.16 

for the implementation results.  

 

Prior to developing the software, it would be wise to practice on fundamental 

graphics rendering techniques regarding lighting, texturing, environment mapping 

and occlusions. Maintaining a solid working background on these topics would save 

time when problems occur in the actual software. Besides we would have a chance to 

observe which techniques would be usable for us in the actual software development 

process. For practicing rendering techniques, OpenGL is used. A well coverage of 

topics can be found in (Möller, & et al., 2008) and (Wright, Lipchak, & Haemel, 

2007). The researcher should refer to figure 9.17 for the implementation results. 

  

5.2 Gimbal Lock Problem – Rotation via Euler Angles and Quaternions 

 

In computer graphics, engineering and mathematics, rotations can be represented 

by three forms. Briefly these representations are matrix representation, Euler angles 

and quaternions. Each representation has its own advantages and disadvantages. The 

researcher can refer to (Möller, & et al., 2008), (Bergen, 2004) and (Dunn & 

Parberry, 2002) for detailed coverage. What we want to mention in this section is the 

well known gimbal lock problem that occur with rotations via Euler Angles. 
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The problem occurred in the software development period when a 3-D virtual 

object was tried to be oriented in the virtual world coordinate system by using the 

Euler angles acquired from the motion tracking device. The technical details of the 

motion tracking device can be found in chapter eight. Although a calibration 

procedure of the motion tracking device had been done, the rapid rotations and 

movements of the virtual object could not be avoided at certain orientations. The 

technical and mathematical description of the gimbal lock problem that occurred can 

be given as follows referencing from (Wikipedia, 2010t). 

 

Gimbals are a ring like structures that are constrained to rotate only about one 

axis. They are places one in another to define rotations about multiple axes. For 

example, inertial navigation systems are common devices where gimbals are used. In 

these systems, while the inner gimbal is constrained to be fixed, the outer gimbal 

rotates about an axis. A set of three gimbals defining the orientation of the arrow is 

given in figure 5.1 (a) with no gimbal lock problem.  For some coordinate systems, it 

seems suitable to assume that there exist gimbals coincident with the coordinate axes. 

Therefore using the Euler angles seems feasible both mathematically and 

programmatically. This assumption is valid if and only if the Euler angles are 

constrained to an interval. 

X
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Yaw

Roll

          

X
Y

Z

PitchYaw

Roll

 

         (a)                  (b) 

Figure 5.1 (a) Three independent gimbal  set  with   no  gimbal   lock   problem.  (b) When the arrow 

pitched up 90 degrees, one degree of  freedom is lost, yaw  axis  cannot  be  controlled. Yaw and roll 

axes are dependent resulting in a gimbal lock problem. 
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Mathematically, the reason is that there exists no covering map from Euler angles 

to rotations (topologically mapping from a torus to a 3 dimensional real projective 

space). Therefore, at some points the rank of the system decreases from 3 to 2. 

Hence, Euler angles cannot provide a unique representation at those points. The only 

possible solution is to use quaternion representation (topologically mapping from a 

sphere to 3 dimensional real projective space). Gimbal lock is exemplified in 

configuration of figure 5.2 (b). 

 

Quaternions are 4-D vectors ( )zyxw ,,,  that can be used to represent rotations if 

12222 =+++ zyxw . ),,( zyx is a 3-D complex vector and represents an arbitrary 

axis of rotation. w  is a real number that represents the angle of rotation. Therefore, 

in contrast to Euler angles which are made of three successive rotations, a quaternion 

represents a single rotation around an arbitrary axis. Hence a rotation θ  around a 

normalized axis ( )000 ,, zyx  is represented as follows in quaternion notation. 
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sin,

2
sin,

2
sin,

2
cos 000

θθθθ
zyx              (5.1) 

 

 Besides their use in rotations, quaternions are used for the interpolation between 

two orientations instead of Euler angles. During the thesis work, quaternions are used 

both for rotations and interpolations between two orientations. 

 

5.3 Lighting and Implementation of Light Shafts 

 

Lighting is an important factor in creating natural 3-D virtual environments. Point 

lights, directional lights and spotlights are the three important lighting types that can 

be used depending on the needs. But none of these simulate how the light scatters 

according to the environment it passes through. On the other hand, in a real 

environment, light scatters and forms shafts while passing through an environment 

with some particles. This effect in real world is shown in figure 5.2 which is taken 

from (Smith, 2004). 
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Figure 5.2 Light shafts in a real scene resulting from sun rays partly occluded with clouds (Smith, 

2004). 

 

 In our 3-D virtual environment, the light rays from medical operation light were 

modeled as if the rays were forming shafts because of the scattering. This light shaft 

implementation was also used to highlight the anatomical parts that were touched by 

the user hand in order to focus attention. Our mathematical, algorithmic reference for 

the implementation was (Mitchell, 2004). The implementation results can be seen in 

figures 9.4(c) – (d), 9.8 (a), 9.9 (a) and 9.11 (a)-(b). 

 

5.4 Texturing and Implementation of Bump Mapping with Parallax Offset 

 

Bump mapping is another lighting technique that combines per-fragment lighting 

with surface normal perturbations supplied by a texture to simulate lighting 

interactions on bumpy surface without excessive tessellation as indicated by 

(Fernando & Kilgard, 2003). In 3-D real-time rendering applications, parallax offset 

provides a depth feel hence more realism, i.e. walls or floors seem as if there were 

gaps between the bricks. Simply speaking, the complexity of the scene is increased 

without adding new polygons. 
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In order to implement this technique, the texture coordinate of a point on the 

polygon should be displaced as a function of the view angle relative to the surface 

normal and of the height map value at that point of the polygon. The algorithmic 

details and generation of the height map can be found at (Fernando, & Kilgard, 2003) 

and a forum topic can be found at (Guest, 2010). 

 

The implementation results of the technique are given at figure 9.4 and 9.5 (a). 

 

5.5 Hand Rigging and Skinning 

 

Hand is an important part of a body for manipulating objects, touching, 

mimicking, performing everyday tasks and etc … In the developed application; a 3-D 

hand was used as an object manipulator of the user in the virtual environment. The 

global translation and rotation of the 3-D hand was being performed by the second 

sensor of the motion tracker device that was attached to the data glove. The first 

sensor of the motion tracker device mounted on the HMD was being used for 

tracking the user head translation and rotation for walking in the virtual environment. 

In order to increase the realism and make the user feel as if he / she were using his / 

her own hand, local finger movements of the virtual hand were also modeled 

regarding the anatomical constraints of the user hand that is given in (Rhee, 

Neumann, & Lewis, 2006). The rigging and skinning of the hand was done using 

3DS MAX 2008. Then the completed hand model was exported to our software for 

controlling the bones in order to perform various hand gestures.  

 

In the rigging process, the hand was assumed to have 14 degrees of freedom i.e. 

total number of joints. Two joints were connected to each other by bones. The bone 

structure was setup so that it was coincident with the 3-D hand mesh. In the skinning 

process, each bone was assigned a cylindrical like volumetric region in which it 

would be able to control the vertices that were in the volumetric region. The 

controllability of the vertex was defined by a coefficient value between [0,1]. The 

vertices in the cylindrical like volumetric region had the coefficient of 1; and towards 

the boundaries of the region the coefficient value decreases towards zero. This means 
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that, the bone would be able to affect less to the vertices on the boundary of its 

control region.  The results of rigging and skinning are given in figure 5.3.  

  

(a) (b) 

 
       (c)               (d) 

Figure 5.3 (a)   The anatomical names of the hand joints, A. DIP joint, B. PIP joint, C. MCP joint, D. 

IP joint. Each bone is connected to joints at its ends. (b) Five bend sensor data being acquired from 

left hand for fist gesture. Right hand is captured for bone mapping in a similar way. (c) - (d)  Each   

bone   has   an   effective cylindrical like volumetric region in which it can control the corresponding 

vertices. The control coefficient of each bone in its region varies between 0 and 1. 1 corresponds to 

full control as indicated by red vertices. Towards the boundaries of the volumes the control coefficient 

decreases towards 0. Hence the vertices at the boundaries of the volumetric region are effected less by 

the rotation of the bones. Those boundary vertices are shown in white. The vertices having 

intermediate coefficient values have colors of yellow, green, etc… (Deformed in figure 9.4). 

D 

C 

A 

B 

C 
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 The following hand joint heuristics are used regarding (Cerveri, Momi, Lopomo, 

Baud-Bovy, Barros, & Ferrigno, 2007), where MCPθ , PIPθ  , IPθ  and DIPθ  are the 

MCP, PIP, IP and DIP joint angles respectively as shown in figure 5.3 (a). 
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                     (5.2) 

 
 For each finger, the only data acquired was from the bend sensor for each finger 

found in the data glove. The incoming data for each finger was real valued between 

[0, 1] where 0 corresponds to no bending and 1 corresponds to full bending of the 

corresponding finger. This value can be thought as a linear combination of the angles 

of the joints such that the nth sample value ][nx  received from the bend sensor can be 

expressed as,  

 

 

3

2
      ;      ][][

][
3

2
][][

][][][][

22441

221

321

cccnxcnxc

nxcnxcnxc

nxcnxcnxcnx

PIPMCP

PIPPIPMCP

DIPPIPMCP

+=+=

++=

++=

               (5.3) 

 Assuming heuristically,  

 ( )][2][ 41 nxcnxc PIPMCP =                      (5.4) 

 

 Using (5.4) with (5.3), ][1 nxc MCP  was found. By assumption 321 ,, ccc  are all equal 

to 1.0. ][1 nxc MCP  was linearly mapped to the interval [0, 90] degrees where 

°=→=°=→= 00.0][,900.1][ MCPMCPMCPMCP nxnx θθ . Similarly the other angles 

are found using (5.4), (5.3) and (5.2). Observe that the calculations are valid up to a 

constant. The implementation results are given in figures 9.4 (c) – (d). 

 
 
 
 



 

84 

CHAPTER SIX 

ESSENTIALS OF REAL TIME PHYSICS RENDERING AND SIMULATION 

OF DYNAMICAL SYSTEMS 

 

Real time physics rendering can be divided into three main topics as linear 

algebra, numerical analysis and topology. Hence, at this point, the fundamental 

mathematical terms such as vector space, linear combination, span, linear 

transformations and etc… from linear system theory course are assumed to be 

understood. This chapter will introduce common topological definitions necessary 

for background. Then the chapter will go on with collision models, collision 

detection methods, mass-spring systems and constraint solutions. In a typical 

application, these concepts are implemented as software modules of a physics engine 

as shown in figure 6.1. For the detailed explanations related to topology and collision 

detection given in this chapter, the researcher should refer to (Bergen, 2004), 

(Ericson, 2005) and (Möller, & et al., 2008). For an additional mathematical 

resource, the researcher should refer to (Strang, 1986), (Rugh, 1996) and (Rogers & 

Adams, 1990). 

 

  Figure 6.1 Components of an interactive real-time physics engine. 



85 

 

6.1 Topological Definitions  

 

6.1.1 Affine Spaces 

 

 An affine space is defined by a set of points, an associated vector space and two 

operations as the addition of a point and a vector, and the subtraction of two points. 

The addition of a point and a vector results a point according to the following rules: 

(a) The addition of a point and a null vector 0 , (b) The addition of a point p  and 

vectors v  and w  using commutativity respectively as given below; 

 

 
)()(

0

wvpwvp

pp

++=++

=+
                     (6.1) 

 

 Subtraction of two points yields a vector according to the following rule, where p  

and q are points. 

 

qpqp =−+ )(                         (6.2) 

 A point x can be written as the affine combination of points npp ,...,0 can be 

defined as, 
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Eliminating 0α  from the equation and arranging the equation above yields a point 

p  as seen below. 
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 The set of affine combinations of points A  is called as the affine hull and denoted 

as )(Aaff . That is, 

 






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=∈= ∑∑
==

1,)(
00

n

i

ii

n

i

ii αAppAaff α                  (6.5) 

 

 A set of points that is closed under affine transformations is called as an affine set. 

Points, lines and planes are examples of affine sets. A set of points { }npp ,...,0  is 

called affinely independent if the set { }001 ,..., pppp n −−  is linearly independent. 

The dimension of the affine space is that of associated vector space. The important 

result is, the number of points in an affinely independent set is the dimension of its 

affine hull plus one. This can be generalized to N  dimensional spaces. A coordinate 

system is a tuple of a point and a basis. Consider the point c  as origin and basis 

{ }nbb ,...,1 , then the point p can be expressed uniquely by vector V  that is 

 

{ } pV i

n

n point  of scoordinate are   where,    ,...,1 ααα ℜ∈=  

and  

i

n

i

ii b and basis of originombinatione affine cthat is thbcp   ,  
0
∑

=

+= α       (6.6) 

 

 Therefore, the coordinate system defines an affine space in which each point is 

defined uniquely by a vector of coordinates. 

 

 In many cases while developing a 3-D application, multiple coordinate frames are 

used. The same point can be defined relative to different coordinate frames, or the 

coordinate system can be defined relative to a parent coordinate system. The affine 

transformations are used for transforming coordinates from one coordinate frame to 

another. The affine transformation T  that maps coordinates to coordinates can be 

stated as follows, 

 

1  scalars, are ,  ,   )()()( =++=+ βαβαqTpTqpT βαβα           (6.7) 
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 In a same way, an affine transformation is determined by the images of the basis 

and the origin of the given coordinate system. Considering B  as the image of the 

basis, and c be the image of the origin, the corresponding affine transformation T is, 

 

 cBxxT +=)(                          (6.8) 

b2

b1

pc

e2

e1o

 
                                                Figure 6.2 Affine   transformation   in  

2ℜ  
                                                (Bergen, 2004, p. 16).  

 

Considering figure 6.2, coordinates of point p  is relative to the system 

{ }( )21,, bbc . Its coordinates relative to { }( )21,, eeo  is cBp +  where basis vectors are 

{ }21,bbB = . B  and c are defined relative to { }( )21,, eeo .  The primal ancestor of all 

coordinate systems is named as the world coordinate system. In figure 6.2, the world 

coordinate system has origin o and basis vectors { }21,eeE = . The descendent 

coordinate systems are named as the local coordinate system.  

 

The function composition operator for the set of affine transformations from nℜ to 

nℜ can be defined as follows. 

 

21212211212 )()( ccBxBBccxBBxTT ++=++=o               (6.9) 
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The inverse transformation can be defined as follows. 

 

)()( 11 cxBxT −= −−
                     (6.10) 

 

 The identity transformation is defined as I . The composition of affine 

transformations has many practical consequences. For example, in the virtual 

environment created during the thesis work, a camera translate node was defined 

relative to the world coordinate system. The yaw node was relative to the translate 

node, the pitch node was relative to yaw node, the roll node was relative to the pitch 

node and finally the pitch node held the camera from which the user viewed the 

virtual environment. The connections in the graph are presented in chapter 9. These 

relative definitions were established to overcome the gimbal lock problem due the 

Euler Angels acquired from the motion tracker. Each coordinate system was 

constrained to have only 1 degree of freedom. The other solution for gimbal lock 

problem was to use quaternions. In the node connection configuration described, 1T  

may represent roll node coordinate system relative to pitch node coordinate system. 

2T  may represent pitch node coordinate system relative yaw node coordinate system,  

3T  may represent yaw node coordinate system relative to translate node coordinate 

system and 4T  may represent translate node coordinate system relative to the world 

coordinate system. Thus, 1234 TTTT ooo  represents roll node coordinate frame 

relative to the world coordinate frame. 

 

6.1.2 Euclidean Spaces 

 

 Euclidean space is an affine space with length and distance. At this point, it is 

assumed that the researcher is familiar with terms length, distance, orthogonality, 

orthonormality and normalization. For definitions of the terms, the researcher may 

refer to (Bergen, 2004, chap. 2), (Möller, & et al., 2008, chap. 4) and (Rugh, 1996). 

The definitions of terms normal and orientation for a hyperplane will be given. These 

terms have importance in many spatial transformations, lighting, shadowing 

calculations, culling and several numerical applications. 
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 For { } ℜ∈∧ℜ∈ δ0\mn , the hyperplane ),( δnH  is a set of points defined by 

 

{ }
origin fromoffset   theis                                                      

  normal,  theis     ,   0.),(

δ

δδ nxnxnH m =+ℜ∈=
        (6.11) 

 

 The normal of the hyperplane is normalized prior to transformations. For example 

a distance of a point p to the hyperplane is δ+pn.  if the norm of the normal is 1. 

Additionally, having normalized normal in lighting calculations prevents undesired 

distortions.  

 

 The orientation of a hyperplane is defined by the direction of the normal. The 

simplest application of orientation is the face culling that is to render or not to render 

the face viewed by the camera depending on whether back face or front face is 

selected for culling. That means, although ),( δnH  and ),( δ−−nH  refer to the same 

point set, they are considered as different planes by the render system. 

 

 Simple intersection tests can be performed whether a point is on the positive, 

negative closed half space of a hyperplane or on the hyperplane. The positive and 

negative closed half spaces are defined as follows respectively. 
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                 (6.12) 

 

 Referring to (Bergen, 2004, p. 21), the following definitions are valid only for 3-D 

Euclidean space. A coordinate system is right handed if the matrix B made up of 

basis vectors has the following property, 
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 The cross product definition is important for finding a surface normal n  from 

three affinely independent (definition is given in section 6.1.3) points 321 ,, ppp  such 

that, 

( ) ( )1312 ppppn −×−=   is a normal to the plane through { }3,2,1=ipi .              (6.14) 

 

The cross product of two vectors v , w  is a vector wv× with the following 

properties, 

 (a) wwvvwv ⊥×⊥×    ,    

 (b) Positively oriented: 
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 (c) ( ) wvwvwv  and between  angle  theis   ,sin θθ=×  

 (d) For vectors relative to an orthonormal basis, the cross product is:  

















−

−

−

=

















×

















1221

3113

2332

3

2

1

3

2

1

βαβα

βαβα

βαβα

β

β

β

α

α

α

 where anticommutativity, bilinearity hold. 

 

6.1.3 Affine Transformations 

  

 For all the definitions in this part, figure 6.3 will be used. 

 

Figure 6.3 The group of affine transformations. The dashed ellipses are basic operations. Each group 

of transformations denoted by a solid ellipse is composed of operations inside that ellipse (Bergen, 

2004, p.20). 
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 As seen in figure 6.3, rigid motions group is composed of two subgroups: 

Translations and rotations. Translations have the following form, 

 

 cxxT +=)(                       (.15) 

 

 The rotations which are in fact linear transformations have the form, 

 

1)det(   where,  )( 1 =∧== − BBBBxxR T
              (6.16) 

 

As TBB =−1 , this matrix is orthogonal. The important point is that, an 

orthonormal basis is transformed to an orthonormal basis if and only if the 

transformation matrix is orthogonal. The proof is as follows using the definition of 

dot product and orthogonality; 
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 The length preserving transformation group is formed from rigid motion 

transformations and reflection transformation. A transformation in length preserving 

group is expressed as,  

 

yxyxyTxTnsnsformatioerving traength presGroup of lT ,,)()((.) ∀−=−↔∈

 

 And for the affine transformations group to be length preserving, the following 

criterion should hold, 

 

gonalB is orthocBxs T(x)sformationffine tranGroup of aT ↔+=∈(.)  

 

 This can be proved as follows using the axiom distribution of multiplication over 

addition, the definitions of orthogonality and dot product. 
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A reflection   transformation  through  a plane through origin is defined as 

follows, 

 

1det)( -(B) and orthogonalBx,  B is xT ==                                                                 (6.17) 

 

 The group of uniform scaling about the origin is defined as follows, 

 

 0 a is)( ≠=  αscalar andx  ,  α  xT α                                                                               (6.18) 

 

 Notice in figure 6.3 that, the group of angle preserving transformations is the 

composition of length preserving transformations and uniform scaling. Therefore 

generalizing the property of the length preserving groups is possible as follows, 
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 Finally, the group of nonuniform scaling about the origin has the following form, 
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 Referencing to (Bergen, 2004, p. 21), any affine transformation T  can be 

constructed from three fundamental transformations as translation, rotation and 

nonuniform scaling.  
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One of the important points in computer graphics is the calculation of the lighting 

on a plane being transformed by an affine transformation. Two parameters, the 

normal of the plane and its distance from the origin of the reference system should be 

recalculated. This can be done as follows, 

 

Let 'P  be an image of P  under affine transformation cBxxT +=)( . The 

definition of 'P  is the set of m
Rx ∈  such that, 

 

{ }
nstem origiference syce from reisδ is the d

mal, is the nornxnRxP m

tan

 ' ,  0''.' =+∈= δ
                 (6.20) 

 

 Then, by expressing 'P  in terms of 1−T ,  

)()( 11 cxBxT −= −−
 

system reference  theoforigin   theto

 distance  theis  normal is ),(  ,   0)(.,' 1  δn f Pequation ocxBnPx =+−∈∀ − δ
(6.21) 

 

 By definition of orthogonality and dot product, 
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6.2 Important Geometric Primitives for Computer Graphics and Definitions of 

Convex Combination and Convex Hull 

 

 A convex hull of a point set A , denoted by )(Aconv  is the smallest object 

containing A . The convex hull of a finite point set { }naaA ,...,1=  can be expressed 
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as convex combinations of A  (Bergen, 2004, p. 23). A convex combination of A  is 

any point x  defined by 

 

 0  and  , 1     ,
n

1
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1

≥=∋= ∑∑
==

i
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n
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iiax ααα                                                                            (6.23) 

 

6.2.1 Polytopes 

 

 The convex hull of a finite point set A  is defined as a convex polytope P , that is, 

  

 )(AconvP =                             (6.24) 

 

 As stated in (Bergen, 2004, p. 24), the vertices )(Pvert  of a polytope P  is the 

smallest set AX ⊆  such that )(XconvP = . 

 

 A simplex is the convex hull of an affinely independent set of points. As depicted 

in (Bergen, 2004, p. 24), simplices of one, two, three and four vertices are points, 

line segments, triangles, and tetrahedra respectively; the dimension of a polytope is 

the dimension of its affine hull; finally the set of two and three dimensional 

polytopes are the set of convex polygons and the set of convex polyhedra 

respectively. For detailed relations, figure 6.4 should be inspected. 

 

 As stated in (Bergen, 2004, p. 28), polytopes may be represented by a 

combination of half spaces instead of vertex representation. One example for this 

case is the discrete-orientation polytopes (DOP) used as bounding volume 

representation. A discrete-orientation polytope is the intersection of fixed number of 

slabs. A slab is a region of space bounded by a pair of parallel planes. A k-DOP is 

the intersection of k slabs.  
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6.2.2 Polygons 

 

 A closed chain of line segments that bound a region of a plane forms a polygon. 

The coplanar points forming the polygon are called the vertices of the polygon. A 

polygon is called simple if no two edges intersect other than the edges that share a 

vertex. For more information refer to (Bergen, 2004, p. 29). 

 

6.2.3 Quadrics 

 

 A quadric is an object that has quadratic surface elements. The interior part of the 

object is part of a quadric. Therefore they are called as solids rather than surfaces. 

For more information refer to (Bergen, 2004, p. 32). 

 

Figure 6.4 Important primitives for computer graphics (Bergen, 2004, p.24). 

 

6.3 Minkowski Sum and Its Relation with an Intersection Test 

 

 The Minkowski sum of two objects A  and B  ( A  and B  can be any primitive 

object such as a polygon, a polytope, quadrics and etc…) is defined as follows 

(Bergen, 2004, p. 33); 
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{ }ByAxyxBA ∈∈+=+ ,                                                                                                 (6.25) 

 

The definition should not be misunderstood, because it does not mean the addition 

of two points ByAx ∈∈ , . Considering the definition of affine space given in the 

previous section, addition of two points is not defined. Hence, according to those 

definitions, a point is a vector from the origin of the coordinate system to that point. 

The sum of two such vectors is a point that is obtained by adding the sum vector to 

the origin of the coordinate frame. Then the new object BA +  is the set of points that 

is covered by sweeping B ’s origin over all points of A  as shown in figure 6.5. 

 

Figure 6.5 The resultant swept volume (sphere-swept volume in this case) formed by the Minkowski 

sum of a box and a sphere (Bergen, 2004, p. 33). 

 

 The Minkowski sum of two convex objects is convex. The Minkowski sum of two 

polytopes is a polytope. The proofs can be found in (Bergen, 2004, p. 34, p. 35). 

 

 Several queries on a pair of objects can be performed in terms of their 

configuration space obstacle (CSO)  by using the Minkowski sum. For this purpose, 

the negation operation on an object is defined as follows, 

 

 { }ByyB ∈−=−                                (6.26) 

 

 Then the CSO of objects A  and B  is the object ( )BA −+  that is BA − . BA −  is 

the set of all vectors from a point of B  to a point of A  in the same coordinate 

system. The intersection query on a pair of objects can be expressed in terms of the 

CSO of the two objects such that a pair of objects intersects if and only if their CSO 
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contains the origin. That is, if the objects intersect, they will have a common point, 

that is the vector from this point to itself which is the zero vector in the CSO of these 

objects. This property can be presented as follows, 

 BABA −∈↔≠∩ 0φ                                                    (6.27) 

 

 The distance ),( BAd  between two objects A  and B is as follows, 

 

 { }ByAxyxBAd ∈∈−= ,min),(                 (6.28) 

 The same distance definition can be done in terms of the CSO of the objects A  

and B as follows, 

 

 { }BAxxBAd −∈= min),(                   (6.29) 

 

 The following property holds for two convex objects A  and B , 

 

( ) { }
.0origin  closest to  theis ),( isthat 

min),(!  objects,convex  ofpair   ,

BAd

xBAdBAxBA =∋−∈∃∀
                        (6.30) 

 

 Referencing to (Bergen, 2004, p.23, p. 36), this can be proved by a contradiction. 

Assume that, 
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On the other hand, using the convexity of BA −  due to the fact that the 

Minkowski sum of two convex objects is a convex object as stated above,  
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{ }

∴
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    minB)d(A,   and    33 tion. contradicwhich is axBAx
   

 The researcher should be aware that the uniqueness of the point of BA −  closest 

to the origin does not imply that the distance between two convex objects is realized 

by a unique pair of points. There may exist multiple ByAx ∈∈ ,  ),( BAdyx =−∋ . 

But, all the closest pairs map to the same point ),( BACSOyx ∈− . 

  

 The penetration depth of two intersecting objects can be expressed in terms of 

their CSO (Bergen, 2004, p. 36). The penetration depth of a pair of intersecting 

objects is the length of the shortest vector over which one of the objects needs to be 

translated in order to bring the pair tangent to each other. The penetration depth 

),( BAp  can be expressed as, 

 

 { }BAxxBAp −∉= inf),(                  (6.31) 

 

 It should be noticed that infimum (the greatest lower bound) is used instead of 

minimum, because BA −  is a closed set meaning that it also includes its limit point. 

Considering figure 6.6, for a pair of penetrating objects, the penetration depth is 

realized by a point on the boundary of BA −  that is closest to the origin. As 

mentioned before, more than one ByAx ∈∈ ,  pair in the object space may map to 

the origin BA −∈0 , hence that point on the boundary of BA −  is not unique. 

 

 

(a) 
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(b) 

A

B

A-B

+O

 

(c) 

 

(d) 

Figure 6.6 A pair of convex objects on the left and corresponding CSO on the right. (a) 

Nonintersecting, the origin is outside the CSO. The arrow denotes the distance. (b) Intersecting, the 

origin is inside the CSO. The arrow denotes the penetration depth. (c) After a translation of B  over 

the penetration depth vector, the objects are in contact. The origin lies on the boundary of the CSO. 

(d) After a rotation of B , the shape of the CSO changes. (Bergen, 2004, p.38) 

 

6.4 Separating Axis Test  

 

 Separating axis test (SAT) is an important method that is the result of the 

separating hyperplane theorem originating from convex analysis as stated in 

(Ericson, 2005, p. 156).  The theorem states that, given convex objects A and B 

whether they intersect or there exists a separating plane P where A and B exist in the 

opposite half spaces. If such a separating plane exists, the normal L of that plane is 

called as the separating axis. Figure 6.7 depicts the theorem in 2-D. The detailed 

proofs can be found in (Bergen, 2004, p. 78), (Bergen, 2004, p.110).  
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The theorem is not valid for concave objects and in order to prove that two 

concave objects do not intersect, a curved surface separating those objects should be 

found. But the method of convex decomposition can be applied to both concave 

objects and SAT can be applied to the convex partitions created. 

 

In the context of collision detection, SAT has an important role in determining 

whether intersection occurs or not between any convex objects such as lines, boxes, 

spheres or any simple polytope. Furthermore, together with the CSO of the objects 

defined in the previous section; time of collision, penetration depth, contact point and 

contact normal can also be computed by this method for both static and moving 

objects. 

 

    Figure 6.7 One of the separating axis tests  between   objects  A  and  B.   P   is   the   separating  

    plane for A and B; L is the normal of the plane. Inspired from (Ericson, 2005, p. 158). 

 

 Considering figure 6.7 and assuming all is valid for 3R
 let, 
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               (6.32)

   

 Considering equations (6.32), the objects do not intersect if pBpAp drr <+ for all 

possible separating axis tests. 

 

The complexity of the objects to be tested is important for the efficiency of SAT. 

Assuming object A has f1 faces and e1; object B has f2 faces and e2 edges, total of       

f1 + f2 + e1 e2 SATs should be performed. These tests are for the axes parallel to the 

face normals of object A, the axes parallel to the face normals of object B and axes 

parallel to the vectors formed by the cross products of all edges of object A and all 

edges of object B. As soon as a separating axis is found, the algorithm can terminate 

with no intersection. If no separating axis is found as a result of all the tests, it means 

that the objects are intersecting. 

 

As stated in the following sections, SAT is used between appropriate convex 

bounding volumes throughout the thesis work. 

 

6.5 Primitive Bounding Volumes for Collision Detection Used in the       

Software 

 

 In a typical interactive 3-D application, simple bounding volumes that can capture 

the actual geometry of the objects are used instead of the whole render geometry. 

Bounding volumes can be of several types such as axis aligned bounding boxes 

(AABBs), spheres, oriented bounding boxes (OBBs), convex hulls, discrete 

orientation polytopes (k-DOPs), and etc… In this section, the AABBs, OBBs and 

sphere bounding volumes will only be considered, because OBBs and sphere 

bounding volumes are the only bounding volume primitives used for fast collision 

tests in the narrow phase of the collision pipeline (see figure 6.9) apart from the more 

precise collision tests in the scope of the thesis work. Additionally, AABBs are used 

in the construction of the bounding volume hierarchy tree for the broad phase of the 

collision pipeline (see section 6.6). The calculation of collision parameters such as 
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time of impact (TOI), penetration depth, contact points in local and world coordinate 

frames and contact normal are performed in the narrow phase of the collision 

pipeline. Therefore the detailed overview of these parameters can be found in the 

following sections.  

 

For detailed treatment of bounding volumes, the researcher should refer to 

(Ericson, 2005) and (Bergen 2004). In figure 6.8 several types of bounding volumes 

are shown for the same render geometry. 

 

Render geometry

Render geometry

Render geometry

Render geometry

Render geometry

Faster collision test, less memory requirement, easy to 
compute

Better bounding volume

F
aster collision test, less m

em
ory requirem

ent, 
easy to com

pute

B
etter bounding volum

e

(a) (b) (c)

(d) (e)  

Figure 6.8 Several bounding volumes for the same  render  geometry. The outer  thick  solid  lines  are 

the bounding volumes.  (a) Sphere   bounding   volume,   (b) AABB, (c) OBB, (d) 6-DOP, (e) Convex 

hull. Inspired from (Ericson, 2005, p. 77). 

 

6.5.1 Axis Aligned Bounding Boxes 

 

 Axis aligned bounding box is one of the simplest bounding volumes. It is formed 

from six sides that have normals always parallel to the corresponding coordinate 

system.  In the thesis work, the AABBs are represented using minimum and 

maximum coordinate values along each axis of the render geometry local coordinate 

system. The bounding volume is the space between two opposing corners with 
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minimum and maximum coordinates respectively. With this representation, an 

AABB can be formed by defining minimum vertex coordinate pmin and maximum 

vertex coordinate pmax as the endpoints of one of the diagonals of the rectangular 

prism volume in the local coordinate system of the render geometry such that, 
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 The center c of the AABB is defined as the algebraic mean of pmin and pmax. 

Considering the above representation, two axis aligned bounding boxes 1AABB  and 

2AABB  with minimum and maximum vertex coordinates p1,min, p2,min, p1,max, p2,max 

respectively, intersect if and only if they intersect on all of the coordinate axes such 

that, 
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 The intersection test described above should be done in the same coordinate 

system; that is, the AABBs should be either in the local coordinate system of 

1AABB  or in the local coordinate system of 2AABB  or in the world coordinate 

system. Throughout the thesis work, the local frame of 1AABB  is used as the 

reference coordinate system; the computation and the update of the AABB are 

performed dynamically by finding the minimum and maximum coordinates of the 

local frame relative to the local origin. 
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6.5.2 Sphere Bounding Volumes 

 

 A sphere bounding volume S is represented by its center coordinates c and its 

radius r such that, 

 

 { }RrRcprcppS ∈∈≤−∀= ;,; 322
                                                                  (6.35) 

 

 Considering this representation, two sphere bounding volumes 1S , 2S  with 

centers 1c , 2c respectively and radii 1r , 2r  respectively intersect if and only if the 

distance between their centers is less than the sum of their radii such that, 
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 During the thesis work, the construction of the sphere bounding volume is 

performed by first computing the AABB of the render geometry. Then the center of 

the computed AABB is selected as the sphere center; the maximum extent among the 

three axes is selected as the sphere radius. The calculations are all relative to the 

local coordinate frame of the render geometry. During the collision test between two 

bounding spheres, the reference coordinate frame is selected as the coordinate system 

of the first sphere bounding volume. The update of the bounding sphere involves 

only translation along with the actual render geometry, because the sphere is rotation 

invariant. For the preceding computations more precise but at the same time more 

computationally demanding techniques such as gradient descent based methods or 

principal component analysis can be utilized. 

 

6.5.3 Oriented Bounding Boxes 

 

 Oriented bounding boxes are similar to AABBs except that they may have 

arbitrary alignment. Although representation methods based on principal component 

analysis exist in literature; throughout the thesis work, an OBB is defined by its 
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center c, orientation matrix M representing local axis and positive half width extents 

vector e=(ex ,ey, ez) such that, 
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 In order to detect intersection and to compute the collision parameters between 

two OBBs, the separating axis test (SAT) is used. For the details of SAT, refer to 

section 6.4. The collision test between two OBBs is performed relative to the local 

coordinate system of the first OBB under consideration throughout the thesis work.  

 

 The interested researcher may refer to figures 9.18 and 9.19 for implementations 

of and comparison between various collision detection primitives done during the 

thesis work. 

 

6.6 Collision Detection Pipeline Used in the Software 

 

 In an interactive simulation, collisions between objects are handled in several 

consecutive stages forming a collision pipeline. The aim of this pipeline is to 

decrease the computational load and memory requirements of collision detection 

while favoring the accuracy of collision tests, contact and penetration depth 

computations between the geometries of the 3-D objects. The overview of the 

collision detection pipeline is given in figure 6.9. 

 

 

(a) 
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(b) 

  Figure 6.9 (a) An overview  of  how the collision data and dynamics data are stored in the developed  

  software using Bullet. (b) The physics  pipeline implemented in the developed software using Bullet.  

  The red blocks represent how the collisions are handled in three stages. 

 

 This section will briefly explain the three important stages of the pipeline as 

implemented in the scope of the thesis; collision masking, broad phase and narrow 

phase respectively. 

 

6.6.1  Collision Masking 

 

 Collision masking is a brute force collision filtering technique to define the 

geometries that will be considered in the collision detection process. It is the first 

stage of the collision detection pipeline. In the initialization stage of the simulation, 

each geometry is given a group and mask identity number to be used in the masking 

test. So, the geometries with no matching identity number will not collide to or 

receive collisions from other geometries. Therefore, only the geometries with 
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matching identity numbers will be considered in the further stages of the collision 

detection pipeline. 

 

6.6.2 Broad Phase 

 

 Broad phase stage implemented in the software throughout the thesis work 

consists of a model partitioning scheme called as dynamic bounding volume 

hierarchy based on axis aligned bounding boxes (AABB). A bounding volume 

hierarchy is composed of a tree structure. Each leaf of the tree contains the bounding 

volume of the actual geometry. Nodes in the deeper levels of the tree are enclosed in 

a larger bounding volume and grouped in nodes towards the root node recursively 

such that each node of the tree maintains a bounding volume for a subset of the 

geometric primitives. The bounding volume hierarchy tree structure and the 

corresponding scene are seen in figure 6.10. 

 

Node 1

Node 2

AABB of 
Geometry 1

AABB of 
Geometry 2

AABB of 
Geometry 3

 

(a) 
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(b) 

 Figure 6.10 (a) A   bounding   volume hierarchy. (b) The geometries and collision models represented     

 by the tree. In  (b),  the   thin   continuous  lines  represent  the  nodes,  the  dashed  lines  indicate  the   

 AABBs, and the outer thick line is the 2-D scene border. 

 

The overall aim of this stage is to reduce the computational costs of the collision 

detection as in the collision masking stage. The arrangement of the bounding 

volumes of the geometries in a tree structure reduces the time complexity of the 

computations logarithmically in the number of tests performed whereas that time 

complexity is reduced by a constant factor with bounding volumes not arranged in a 

tree. As indicated in (Ericson, 2005, p. 235), for the latter case, although the collision 

detection tests are simplified by the bounding volumes, the number of collision tests 

to be performed remains the same so the asymptotic time complexity remains the 

same.  

 

The bounding volume tree hierarchy is implemented as a preprocessing step in the 

developed software to increase the runtime performance. The tree structure is 

dynamic meaning that according to the topology changes in the meshes belonging to 

the scene, new nodes representing the bounding volumes of the newly created 

meshes can be added to or old nodes representing the unnecessary bounding volumes 

can be removed from the tree. For example when a soft cloth mesh is cut into many 

pieces, new nodes are inserted to the tree representing the bounding volumes of the 

mesh pieces. To increase the performance, two bounding volume tree hierarchy is 

used; one for the static objects and the other is for the moving objects. In the thesis 
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work, the objects with zero mass are defined as static. During runtime, nodes 

belonging to one tree can be detached and attached to the other dynamically or vice 

versa. The software implementation details used for bounding volume tree hierarchy 

construction, partitioning, node insertion and removal strategies can be found in 

(Ericson, 2005, chap. 6). 

 

According to (Ericson, 2005, p. 236), the issues to be considered in order to 

balance the performance and the accuracy of this stage are as follows: 

 

• The nodes in a subtree should be near to each other to favor spatial 

coherence 

• A minimal bounding volume that will capture the topology of the objects 

should be used for each node to prevent false overlaps and therefore false 

collision test results. This also results in a minimal total bounding volume. 

• Removing a node close to the root node, eliminates more bounding 

volumes from collision detection tests than removing a node at the deeper 

levels of the tree. 

• The bounding volume tree should be balanced in its node structure and 

content so that whenever a branch is not traversed, it can be pruned to 

increase the performance. 

• The bounding volume tree should have the minimal memory requirements. 

 

The bounding volumes reported as colliding are directed to the narrow phase stage 

found further in the collision detection pipeline. The object pairs reported as 

colliding may be actually overlapping or not, depending on the actual geometries of 

the objects and their bounding volumes. Considering the figure 6.10 (b), the 

geometry 1 and the geometry 2 are not actually overlapping; but they will be 

reported as colliding due to the collision of their AABBs. On the other hand, the 

AABB of the geometry 3 does not overlap with the other AABBs. So it is impossible 

for the actual topology of the geometry 3 to collide with the topologies of the other 

objects in the scene; therefore no collision pairs including the geometry 3 will be 

reported in this stage. 
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Dynamic bounding volume hierarchies based on spheres, k-DOPs and oriented 

bounding boxes (OBB) also exist. Additionally, another broad phase technique 

namely “sweep and prune” can also be implemented in this stage. Spatial partitioning 

methods based on octree, k-d tree and binary space partitioning tree can also be 

considered for implementation in this stage according to the simulation needs. Only 

the dynamic bounding volume hierarchy based on AABB is implemented in the 

current software. For the other types of bounding volume hierarchies, for the “sweep 

and prune” scheme and for the spatial partitioning methods the researcher should 

refer to (Ericson, 2005) and (Bergen, 2004). 

 

6.6.3 Narrow Phase 

 

Narrow phase is the final part of the collision detection pipeline. Only the 

collision tests that pass the collision masking and broad phase are handled by this 

phase. In this phase, if the candidate objects for collision pass the tests performed 

here, it is understood that they are actually colliding. Then the collision parameters 

such as contact points in local coordinate frames and in world coordinate frames, 

contact normal and penetration depth are computed in this phase. In this phase, the 

collision models used for visual models can be convex hulls or the triangular element 

mesh of the visual object itself. It is seen that, the tests done in the narrow phase are 

much more costly than the previous sections. On the other hand these tests are much 

more precise. Triangle-triangle collision detection is performed in this phase to 

perform the collision check over all the triangular elements forming visual mesh of 

the candidate objects. For the results of implementation practices on collision 

detection regarding the comparison of triangle-triangle collision detection and 

sphere-sphere collision detection refer to figures 9.18 and 9.19. Other collision 

detection schemes such as sphere-triangle, OBB-triangle, ray-triangle tests are also 

performed in this section. In the narrow phase, the collision with the soft-soft bodies 

and rigid-soft bodies are performed by assuming the existence of AABBs bounding 

each vertex of the soft object. Therefore the previously mentioned for rigid bodies 

also apply for the soft body collision detection.  
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 For collision detection between the moving objects, the Minkowski summation is 

used. The CSO of the moving objects are computed assuming, one of the objects 

static and the other moving relative to the static one. Then the intersection test 

mentioned in section 6.3 is applied. It is impossible to give all the mathematics 

beneath these tests here, therefore the interested researcher should refer to (Ericson, 

2005), (Bergen, 2004) and (Möller, 1997) for mathematical theory of the 

implemented collision tests. Two important methods for collision detection, 

penetration of two convex objects; and for solving constraints between the collision 

object primitives are briefly mentioned below. 

 

6.6.3.1 Gilbert-Johnson-Keerthi Algorithm (GJK) for Collision Detection    

between Convex Objects and Expanding Polytope Algorithm (EPA) for 

Penetration Depth Calculation 

 

GJK is an iterative method for solving collision between convex objects. It can be 

generalized for any type of collision methods mentioned before, for application to 

polytopes, quadrics, Minkowski sums of convex objects and images of convex 

objects under affine transformations. GJK is an iterative method for approximating 

the point closest to the origin of A-B, the CSO of A and B convex objects (see figure 

6.6). This point is approximated as follows. At each iteration, a simplex (see section 

6.2.1) is constructed that is contained in A-B and lies nearer to the origin than the 

simplex constructed in the previous iteration. A simplex is constructed support 

mapping of A-B. A support mapping of a convex object A is a function sA that maps a 

vector v to a point of A as follows, 

 

{ }AxxvvsvAvs AA ∈=∋∈ :.max)(.)(                (6.38) 

 

 The result of (6.38) is a support point. Each new support point is added to the 

simplex, the closest point to the origin is calculated and the farthest point is discarded 

at each iteration. The iteration stops, when a change in distance between newly found 

points decreases below a threshold. For detailed explanation refer to (Bergen, 2004, 

chap. 4). 
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 As GJK algorithm was used for computing collisions, contact points and contact 

normals between the convex objects during the thesis work; Expanding Polytope 

Algorithm (EPA) was used for the penetration depth calculation between two 

colliding convex objects. Like GJK, EPA is an iterative algorithm depending on the 

CSO of two convex objects. For detailed coverage refer to (Bergen 2004, p. 147). 

The researcher may refer to figure 9.4 for the computed collision parameters 

displayed in the green overlaid box on the bottom left of the screen. 

 

6.6.3.2 Solving the Constraints at Mechanical Joints – Linear   Complementary 

Problem (LCP) 

 

The virtual environment developed during the thesis work has a 3-D user interface 

for transforming several objects, getting information about them and etc… This user 

interface becomes visible when a collision between the user hand and an anatomical 

model is detected (see figures 9.4 (d), 9.8 (a)-(b), 9.9 (a), 9.10 (a)-(b), 9.11 (a)-(b)).  

As seen from the figures, the user interface contains buttons, a slider and an 

information box. Each of these is attached to the base of the user interface with 

appropriate constraints so that buttons have no degrees of freedom and the slider has 

only one degree of freedom. The new position of the buttons and the slider when a 

user collides is computed considering the applied force, contact direction and the 

constraints at each time step. In the context, this is formularized as a linear 

complementary problem (LCP).  The solution is accomplished by Gauss-Siedel 

method. The mathematical details can be studied from (Ericson, 2005, chap. 9), 

(Baraff, 1989), (Bridson, 2003) and (Lacoursiére, n.d.). The end result is that, the 

buttons remain at their original positions when the contact ends; the slider remains at 

the place where the user last touches. 

 

6.7 Mass-Spring Systems and Numerical Solutions for Governing Differential 

Equations 

 

 This section involves various mass spring topologies used to model the dynamical 

objects in the 3-D environment throughout the thesis work. Additionally, the 



113 

 

numerical solution techniques for the differential equations governing the dynamics 

of the mass spring topologies are given. 

 

6.7.1 1-D 2-D and 3-D Mass Spring Systems and Governing Differential 

Equations 

 

 Mass-spring systems are preferred for modeling solid elastic 1-D, 2-D and 3-D 

dynamic systems in real time. 1-D, 2-D and 3-D mass-spring systems with dampers 

are presented in figure 6.11. Masses are placed at the vertices of the 3-D model in 

this particular case. The edges connecting vertices are represented by springs.  

 

(a) 

     

           (b)                                                                                      (c) 

Figure 6.11 Examples of mass-spring systems. (a) 1-D mass-spring-damper system, (b) 2-D 

(triangular) mass-spring-damper system and (c) 3-D (tetrahedra) mass-spring-damper system. 

 

Although simple and not computationally demanding these systems have 

drawbacks as stated in (Müller, Stam, & James, 2008a, p.10). The mass-spring 

network setup defines the behavior of the object. The spring constants are hard to be 

tuned for the desired behavior. Mass-spring systems cannot capture volumetric 



114 

 

properties directly. Because of these limitations, better models such as FEM are 

preferred in spite of their computational demand.  

 

1-D mass-spring systems are used for modeling 1-D elastic objects such as hair or 

rope. 2-D mass-spring systems arranged as triangular elements are used to model 2-D 

elastic objects such as a skin, a cloth or a paper. 3-D mass-spring systems arranges as 

tetrahedral elements are used to model 3-D volumetric elastic objects such as human 

organs. 

 

 The physical formulation of the mass-spring system can be stated as follows. For 

a mass spring system composed of a set of N  particles with masses im , positions ix  

and velocities iv  where Ni ,...,1∈ , the masses are connected with the connection set 

S  of springs ),,,,( 0 ds kklji . ji,  are indices of the adjacent masses, 0l  is the rest 

length, sk is the spring stiffness and dk  is the damping coefficient as stated in 

(Müller, & et al., 2008a, p.11). ji xx ,  are the positions and ji vv ,  are the velocities of 

the masses respectively. Then the spring forces on the adjacent particles of a spring 

are, 
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 The forces are proportional to the elongation of the spring 0lxx ij −−  from its 

equilibrium state.  

 

The damping forces are proportional to the velocity difference projected onto the 

spring. That is, 
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Notice that the conservation of momentum holds, therefore 0=+ ji ff . The 

combination of the forces is,  
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Then, considering the second law of Newton, xmF &&= , this ordinary differential 

equation should be solved for the acceleration x&&  of particles that is the 2nd derivative 

of the position with respect to time. That is, 
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A th
N order ordinary differential equation can be written in terms of N  coupled 

1st order ordinary differential equations. So,  xmF &&=  can be written as two coupled 

ordinary differential equations as follows, 
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The analytical solutions of these equations are respectively, 
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 and the initial conditions are 0000 )(    ,   )( xtxvtv ==        (6.45) 

 

As it is seen from the above analytic solutions, simulation is in fact time 

integration. In the following sections the numerical integration methods to solve the 

initial value problem with the initial value  )( 0tx  will be given. Therefore the 

problem at hand is to find a function satisfying the relation described by the ordinary 

differential equation ),( txfx =&  where f is a known function, x  is the state of the 

system and x& is the derivative of x  with respect to time. Theoretical background can 

be found at (Khalil, 2002), (Müller, & et al., 2008a) and (Witkin & Baraff, 2001). 
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6.7.2 Explicit Euler Integration 

 

 Assume that x  is continuously differentiable function. Then, consider the Taylor 

Series Expansion of x at point 0t  with a small perturbation t∆  from 0t  as follows, 
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 Linearizing the function at 0t yields, 
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 Eliminating 2nd order error term )( 2tO ∆ results in the linearized x as follows, 
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 The discreet step size is t∆ ,  x&  defines the norm of the step along the t∆  

direction. That is, it is used to calculate the change x∆ in x  corresponding to t∆ . 

Consider that for N  dimensional case, t∆  is a N  dimensional vector specifying the 

step directions.  

 

For this linearization case, x  should at least be 1
C continuous. Then the integral 

equations in (6.45) can be solved numerically by linearizing )(tv  and )(tx  about 

0t and then iterating the following equalities by neglecting the 2nd order error terms 

respectively. 

 

 tvvtOtvvv ttt ∆+≅∆+∆+=+
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1                                                        (6.49) 

 txxtOtxxx ttt ∆+≅∆+∆+=+
&& )( 2

1                                                                                  (6.50) 

 Notice that, t  is the frame number and t∆  is the time interval between two 

consecutive frames for the case of real time graphics rendering. Plugging equalities 

in (6.44) into (6.49) and (6.50) yields respectively, 
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tvxx ttt ∆+=+1                       (6.52) 

 

 Calculation of (6.51) and (6.52) are Explicit Euler Integration Method, that is the 

values of 1+tv  and 1+tx  are calculated using the values  tv  and tx  of the current time 

step by explicit formulas as also stated in (Müller, & et al., 2008a).  The following 

three pseudocodes of algorithms can be found at (Müller, & et al., 2008a) and (Press, 

& et al., 2007). 

            

                             (a)                                                                                 (b) 

Figure 6.12 (a) Pseudocode for Explicit Euler Integration. 
gf  is the gravity force, 

collf  is the forces 

due to the collisions. (b)The phase space representation of differential equation for the mass-spring 

system. The actual solution for differential equations form a concentric circles, but due to the 

linearization in Explicit Euler Integration, the particle velocity and position overshoots. Smaller time 

steps only makes this process occur in longer time but is not a complete solution. 

   

//Initialize 

 
forall particles i 

initialize ix , iv , im  

endfor 

//Simulation loop 

 

loop 
 forall particles i 
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    endfor 
    forall particles i 
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    endfor 
    display the system every nth frame 
endloop 
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 Although Explicit Euler Integration is a simple method, it is unstable for large 

time steps. The phase space representation is shown in figure 6.12 (b). Therefore, 

during simulation, several time steps should be performed per each frame and 

damping is necessary otherwise the velocity will overshoot.  

 

6.7.3 Second and Fourth Order Runge Kutta Integration 

 

 Considering the Taylor Series Expansion in (6.46), if the second order term is 

retained, the expansion of the function will have error terms starting with )( 3tO ∆  

hence the result will be 2nd order accurate. That is, 
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 Considering )),(( ttxfx =& , assume that f implicitly depends on time t  that is 

))(( txfx =& . Using chain rule, 
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 Approximate f& in terms of f  by using Taylor Expansion of f  as follows, 
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              (a)                    (b) 

  Figure 6.13 (a) Pseudocode for 2nd order Runge Kutta Integration. (b) The phase space representation     

  of  the  differential equation. First, an Euler step is performed and then at the half of the step size, the   

  second derivative is evaluated to update x  at each frame. 
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      endfor 
    display the system every nth frame 
endloop 
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(b) 

                                               Figure 6.14(a) Pseudocode for 4th order  

                                               Runge  Kutta  Method. (b) Phase space  

       representation. 

 

Multiply both sides of (6.56) by t∆ , 

( ) ( )  )()(
2

)()(
2

3
0

2

000 tOtx
t

xftxf
t

xft ∆+
∆

+∆=






 ∆
+∆ &&                                        (6.57) 

 

 Use (6.57) in (6.53) considering ( ))(txfx =& , 
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 Equation (6.58) indicates that, an Explicit Euler scheme is performed up to the 

half of the step size, then a second derivative is evaluated at the half of the step size 

to update x  at each frame. Therefore this method is 2nd order accurate and more 

precise than the Explicit Euler scheme. The two Euler step evaluation brings a 

computational cost. Additionally the 2nd order Runge Kutta still lacks instability 

problems. 2nd order Runge Kutta is also an explicit numerical integration method. 

The pseudocode is given in figure 6.13 (a) and the phase space representation is 

given in figure 6.13 (b). 
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4th order Runge Kutta integration is similar, but it is 4th order accurate as opposed 

to 2nd order accuracy. This costs four times the computational load that of the 

Explicit Euler Integration. The pseudocode is given in figure 6.14 (a) and the phase 

space representation is given in 6.14 (b). 

 

6.7.4 Verlet Integration 

 

 This method uses the values evaluated at the past steps to increase the stability 

and accuracy of the prediction at the current step. The method is accurate up to the 

4th order. Consider the forward and backward Taylor Expansion of x as follows 

respectively, 
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 Sum the expansions in (5.58) as follows, 
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 Then by letting [ ] tttxtxtv ∆∆−−= /)()()( , the followings are obtained, 
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v

xo

 

  Figure 6.13  Phase  space  representation for  

 Verlet Method. The energy remains constant  

  with sufficiently small steps. 

 

All the above methods were explicit integration methods. Those methods are 

stable for a limited range of time steps which depends on the stiffness of the springs; 

hence they are conditionally stable as stated in (Müller, & et al., 2008a). Smaller 

time steps should be used to maintain the stability of the simulation as the springs get 

stiffer. The real time simulation applications require unconditional stability for any 

value of time steps. This requirement can be satisfied by using implicit integration 

methods. An implicit integration uses the new of values of x  and v  for computing 

the followings, 
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Equation (6.62) cannot be evaluated explicitly. Instead, the system can be solved 

for velocities by linearizing this nonlinear system at each time step using Newton-

Raphson method. Then the linearized system can be solved using iterative methods 

such as Conjugate Gradients. As stated in (Müller, & et al. 2008a), although this 

integration scheme is unconditionally stable, it is slow so large time steps should be 
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performed, and additionally temporal details disappear due to the numerical 

damping.  

 

6.8 Mesh Topology Processing and Mesh Refinement – An Example to Mesh 

Cutting 

 

 The method used in the developed software to process the topology of the meshes 

is referenced from (Coumans, 2009). The method works as follows: A ray is casted 

from the camera along the forward direction of the user hand towards the soft object. 

Then an intersection query is performed whether the raycasting is resulted in an 

intersection with an efficient closure to any of the constraints (lines) connecting the 

AABBs of the vertices of the geometric topology of the soft object (see section 

6.6.3). If this is the case, create a sphere s with unit radius of 1 centered at the 

collision coordinates of the ray and the constraint. Then the distance of the collision 

point to the supporting vertices along the constraint are calculated numerically. The 

new vertices with appropriate velocity, position and mass are added to topology of 

the soft object and the connections between the cut part of the topology and the rest 

of the topology is broken. The position, velocity and the mass of the new vertex are 

calculated as the linear interpolation of the positions, velocities and the masses of 

two supporting vertices of the constraint (line) on which a new vertex is placed. 

Considering the vertices a, b and the sphere s given above, the problem is 

formularized as follows: 

 

     )min(
ε<v

t                          (6.63) 

 

ε is the user controlled value controlling the minimum distance from sphere s that 

can be considered as the surface of the sphere. v  is the distance to the collision 

point that is the center of sphere s. *tt =  is the value at which the iteration goes into 

the ε - neighborhood of the surface of the sphere s. If no such t  is found in a given 

step number than 1−=t  is returned resulting in no topology process, else *tt =  is 
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returned. The position cx  and the velocity cv  of the new vertex c are computed as 

follows: 
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 The mass cm  of the new vertex c is computed as follows: 
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 If one of the supporting vertices is static that is it has zero mass. The mass of the 

supporting vertex with the positive mass is assigned to the new vertex, and the mass 

of that supporting vertex is doubled. If both supporting vertices have zero mass, the 

newly created vertex is assigned a zero mass. The process is repeated for all the      

(a, b) vertex pairs in the v  neighborhood of the collision point v.  The geometric 

representation of the process is given in figure 6.14. 

||v||

a

b

c

n

 

Figure 6.14 The  geometric  representation  of the cutting  

topological operation. v  is  the  collision  point of the ray  

with  the  constraint n; a and b are the existing supporting  

vertices  of  the  constraint n; c is  the newly added vertex.  

This  process  is  done  for all the (a, b) vertex pairs in the  

||v|| neighborhood of the collision point v. 
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Finally, the node hierarchy data structure representing the soft object is updated 

accordingly. The topology processes were all done just for the surface models, no 

volumetric model was evaluated. 

 

 The research may refer to figures 9.12, 9.13 and 9.28 for the implementations 

done during the thesis period. Figure 9.27 is a stand-alone application compiled with 

NVIDIA PhysX for test purposes. 

 

6.9 Haptic Rendering with Rigid and Deformable Models 

 

 Haptic senses provide important cues for getting information about the geometry 

and the structure of the object. Therefore, in order to provide a haptic feedback to the 

user in the virtual environment, haptic device was used. The technical details of the 

device are given in section 8.3.  

 

Haptic rendering module of the software was at its development stage at the time 

this thesis was written. The main task of the module was to model the anatomical 

parts to create a haptic perception for the user when a tissue or organ was touched. 

Additionally, when the user applied a force over a threshold, a topology of the mesh 

would be altered, for example a fracturing of a rigid bone or cutting of a deformable 

organ would be performed. Initial haptic rendering module developed, was tested 

using the same dynamic modeling principles – namely mass spring model – and 

collision detection techniques mentioned in the previous sections. OpenHaptics API 

was used for the implementation. The instability of typical numerical integration 

method namely Explicit Euler Method used in this module was also observed for 

large time steps and also for the high forces loading that makes the mesh system 

diverge from its equilibrium point in these tests. The haptic rendering module initial 

results can be seen in figures 9.29.  
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CHAPTER SEVEN  

FEATURE SEGMENTATION TRACKING AND POSE ESTIMATION 

METHODS USED FOR AUGMENTED REALITY APPLICATION 

DEVELOPMENT DURING THE THESIS WORK 

 

 This chapter presents a basic application created to fulfill the need of tracking a 

human hand and head motions without any motion tracking device precisely. The 

tracking results was planned to be used for controlling a 3-D virtual object and to 

perform pan movements for the user head in a synthetic environment. These were 

necessary to be immersed in a 3-D virtual environment because it was not possible to 

get the motion tracking device till the end of the second year of the thesis work. 

 

 The preferred way for tracking a user hand holding a known marker was tracking 

from real time video frames taken from a calibrated stationary single camera. The 

reference for this method was (Kato & Billinghurst, 2006). For in depth 

understanding, the researcher should refer to (Tekalp, 1995) and (Forsyth & Ponce, 

2003). This method was in fact a registration meaning to estimate the rotation and 

translation parameters of the tracked features over the video frames taken from a 

calibrated camera. Therefore it was also used for registering a  3-D virtual object 

with the tracked object in real time. This type of application is called as an 

augmented reality application in the literature. In a same way, the user head was 

tracked using facial features such as the structures of eyes, nose and mouth. This 

method was referenced from (Viola & Jones, 2004) and (Bradsky & Kaehler, 2008). 

The explanations relating to this chapter will be kept relatively brief, because the 

focus of the thesis work was the real time computer graphics and physics simulation. 

 

7.1 Feature Segmentation 

 

 Considering the human hand tracking, a known, rectangular planar marker is used. 

The assumption that all the features lie on the same plane decreases the number of 

unknowns in the rotation and translation matrix. The features segmented were the
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corners of the black rectangle. The researcher can refer to (Bradsky & Kaehler, 2008) 

for corner extraction in sub pixel accuracies.  

 

 For the 2-D face tracking task, the Haar features of the face are used. A threshold 

is applied to the sums and differences of rectangular image regions. An integral 

image technique is used for rapid computation of the value of rectangular regions or 

45 degree rotated versions. Then a statistical boosting technique is used to create face 

and non-face classification nodes characterized by high detection and weak 

detection. Then the algorithm organizes the weak classifier nodes of a rejection 

cascade. Meaning that, the first group of classifiers is selected that best detects image 

regions containing a face while allowing mistaken detections; the next classifier 

group is the second-best at detection with weak rejection, etc… In test mode, a face 

is detected if and only if it makes through the entire cascade. The details are given in 

(Bradsky & Kaehler, 2008, p. 508). 

  

7.2 Feature Tracking and Pose Estimation 

 

 Considering the case of hand tracking, in every video frame, the corners of the 

rectangle is segmented and their coordinates are tracked. The rotation matrix and 

translation vector for the tracked rectangle were computed using homography matrix 

computation. Hence from there on, the tracked features in the consecutive frames are 

related. The computed rotation and translation parameters of the rectangle in 3-D 

space were then used to control the orientation and translation of a 3-D virtual user 

interface tablet in the synthetic environment. 

 

 Considering the case of the head tracking, the center coordinate of the rectangular 

area including the detected human face was tracked. As the tracking was performed 

in 2-D space, only the pan movements of the head corresponding to the pan 

movements of the camera of the synthetic scene were possible in the virtual 

environment. The algorithm flows of the tracking schemes are given in figures 7.1 

and 7.2 respectively. The implementation results can be seen in figures 9.1 (a)-(f). 
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Figure 7.1 Tracking algorithm for a planar object held by the user hand. This algorithm was both used 

for controlling a virtual user interface tablet in the synthetic environment and also for registering a    

3-D virtual object with a feature in real-time (Kato & Billinghurst, 2006). 
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(a) 

 

(b) 

Figure 7.2 (a)   Training   phase   of   Haar   Classifier   for   face  

detection. (b) Test phase of the classifier.
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CHAPTER EIGHT 

ESTABLISHMENT AND CURRENT SETUP OF COMPUTER GRAPHICS 

AND VIRTUAL REALITY LABORATORY 

 

This chapter will explain the establishment process of the computer graphics and 

virtual reality laboratory in Dokuz Eylül University.  

 

A new research laboratory has been established in the scope of this thesis work. 

The laboratory is located in Dokuz Eylül University Electrical and Electronics 

Engineering Department (DEU EEE Department). The aim of the laboratory is to 

provide necessary equipment and development environment for undergraduate and 

graduate level researches on computer graphics, scientific simulation and 

visualization, computer vision, virtual environments and augmented reality. 

Laboratory establishment period and current setup of the laboratory will be explained 

in this chapter. Then the technical details of fundamental laboratory equipments that 

a researcher should know will be given briefly. 

 

 The thesis project and the laboratory establishment are supported in the scope of 

Dokuz Eylül University Scientific Research Project (BAP) with the support code of 

2008.KB.FEN.027. VESTEL Electronics supported the establishment process with a 

LCD panel. The establishment process of the laboratory and the important technical 

details of several equipments are as follows. 

  

 Table 8.1 lists the equipments that the computer graphics and virtual reality 

laboratory in DEU EEE Department has. The establishment progress of the computer 

graphics and virtual reality laboratory in DEU EEE Department can be followed in 

date order can be followed from figures 8.1 to 8.3. 
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Table 8.1 DEU EEE Department Computer Graphics and Virtual Reality Lab. Equipment List. 

Equipment No. Equipment Name
1 VESTEL 102" Full HD LCD
2 Polhemus Fastrak 6 DOF motion tracker
3 Sensable Phantom Omni haptic device
4 5DT Data Glove 5 Ultra USB (left and right pairs)
5 5DT HMD 800-26 3-D head mounted display

6
Logitech QuickCam Pro 9000 webcams (2 pieces for augmented reality and 
computer vision applications)

7 Intel Quad Core and Core i7 based computers using Microsoft Windows XP
8 ATI X1550 based graphics card
9 NVIDIA GeForce GTX 295 based graphics card
10 Sanyo data projector  

 

  

                                        (a)                                                                              (b)  

Figures 8.1 (a) and (b) are two views from the laboratory by the end of October 2008. 

 

  
                                        (c)                 (d) 

Figures 8.2 (a) and (b) are two views from the laboratory by the end of December 2009. 

 



133 

 

 

            (e)                      (f) 

Figures 8.3 (a) and (b) are two views from the laboratory by the end of August 2010. 

 

8.1 VESTEL LCD Panel 

 

 VESTEL Electronics supported the laboratory establishment with a LCD panel. It 

is a 102” Full-HD 1080p model with composite, PC, YPbPr, HDMI inputs. The LCD 

is used as a primary or secondary display device together with the HMD. 

 

8.2 Polhemus Fastrak Motion Tracking System 

 

 Polhemus Fastrak motion tracker is a six degrees of freedom (6 DOF) motion 

tracking system. It is capable of tracking both position and orientation using 

electromagnetic fields. The near field, low frequency magnetic field vectors are 

generated via three concentric, stationary antennas in the transmitter. The generated 

magnetic field vectors are detected by three concentric, stationary antennas in the 

receiver. The position and the orientation of the receiver relative to the transmitter is 

calculated by using the sensed signals as the input arguments of a mathematical 

formulation. Figures 8.4 and 8.5 show the main components of Polhemus Fastrak 

motion tracking system. The details of technical specifications of the tracking system 

and the software development kit can be found in (Polhemus, 2009). 
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Figure 8.4 Polhemus Fastrak motion tracking system front side connections. 

 

 

Figure 8.5 Polhemus Fastrak motion tracking system rear side connections. 

 

 The tracking system includes a system electronics unit, a power adapter, a 

transmitter and up to four receivers. The sampling frequency of the receivers is 

dependent on the number of receivers physically connected to the system electronics 

unit. Therefore, a single receiver is sampled at 120 Hz which is the maximum 

sampling rate. Two receivers are sampled at 60 Hz each. Three receivers and four 
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receivers configurations operate at 40 Hz and 30 Hz sampling frequency for each of 

the receivers respectively. The interface with the host computer can either be          

RS – 232 interface or USB interface.  

 

 The tracking system is designed to provide the optimum accuracy when the 

standard receivers are within the 76 cm of the standard transmitter.  The receivers are 

all – attitude. The static accuracy of the system is 0.08 cm RMS for X, Y or Z 

receiver position, and 0.15° RMS for receiver orientation. The positional and angular 

resolutions are 0.0005 cms/cm of range, and 0.025° respectively. The latency of the 

system from the center of receiver measurement period to beginning of transfer from 

output port is 4.0 ms.  

  

 By default, the output position data is X , Y , Z  position (cm or inch) in 

Cartesian Coordinate System considering the reference point on the transmitter as the 

origin of the system. By default, the output orientation data is azimuth, elevation and 

roll in Euler Angles considering the reference point on the transmitter as the origin of 

the system. If needed, the application developer can select direction cosines or 

quaternion as an output data. The metric unit can be selected as inch or metric units. 

The type of output data can be ASCII or binary. 

 

 Prior to using Polhemus Fastrak, it should be calibrated for all the connected 

receivers. In order to understand the calibration procedure, the developer should 

know where the origins and reference frames on the transmitter and on the receivers 

are located respectively. The related origins and reference frames are given in figure 

7.6. Additionally, working knowledge on boresighting, reference frame alignment, 

hemisphere tracking should be gathered. 

 

8.2.1 Reference Frame Alignment 

 

 Reference frame alignment is needed as the first part of the calibration procedure 

prior to each use.  
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   Figure 8.6 The coordinate systems of the transmitter and the receiver.   

    

 The alignment creates a reference frame where the position and orientation data 

gathered from the receiver are referenced to. The receiver is placed on the desired 

location within the limits of the transmitter and the origin ),,( OzOyOxO  of the 

transmitter – receiver pair is defined. That location will be the origin for only that 

particular transmitter – receiver pair. Then, two more spatial points ),,( XzXyXx  and 

),,( YzYyYx  are defined in the positive 'X  and 'Y  directions respectively so that rays 

'OX  and 'OY  are orthogonal. The norms of these rays are defined by the user. By 

default they are defined as 200cm. Finally, using three pointsO , 'X  and 'Y , a 2-D 

space that is a plane can be defined. The normal of the plane is calculated by the 

cross product of the rays 'OX  and 'OY . Hence a Cartesian Reference Frame is built. 

 

8.2.2 Boresighting 

 

 Boresighting is not mandatory in the calibration procedure. Boresighting aligns 

the orientation of the receiver with the user coordinate system. This means that, when 
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boresighting is applied, the azimuth, elevation and roll at that moment will be 

referenced as zero values. Then the further orientation measurements will be 

performed relative to this reference orientation. 

 

8.2.3 Hemisphere Tracking 

 

 The magnetic fields generated by the transmitter are symmetric. Therefore there 

are two mathematical solutions to each set of receiver data as depicted by (Polhemus, 

2009, p. 48). To provide a unique solution to the equations, only one hemisphere 

named as the current hemisphere is used during the tracking. Outside the current 

hemisphere, mathematical ambiguities i.e. sign flips occur. These ambiguities will 

result in positioning and orienting the 3-D virtual model (for the application in the 

scope of the thesis) inappropriately. Therefore the tracking system provides a 

hemisphere tracking feature to track the current hemisphere that the receiver in. But 

to enable this option, the hemisphere tracking should be enabled when the receiver is 

in a known initial condition. This means that, the receiver should be in the X+  

direction relative to the transmitter initially, prior to turning on the tracking system 

and enabling this feature. 

 

8.2.4 Output Data 

 

 The needed output data can be acquired from the motion tracking system by 

software configuration prior to the operation. For most of the time X , Y  and Z  

Cartesian coordinates of position, azimuth, elevation and roll Euler orientation angles 

and orientation quaternion will be adequate. Additionally, configuring the output 

data format as binary instead of ASCII will reduce the data packet size. 

 

 

8.2.5 Angular Operational Envelope 

 

 If needed, the azimuth, elevation and roll angles can be constraint to intervals. If 

the receiver is outside these intervals, the user is notified. 
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8.2.6 Position Operational Envelope 

 

 If needed, the positions along X± , Y± , Z±  directions can be constraint to 

intervals. If the receiver is outside these intervals, the user is notified.   

 

 In most of the operation purposes, configuring the parameters mentioned in 

section 8.2.1 to 8.2.6 will be adequate for tracking. 

 

8.3 Sensable Phantom Omni Haptic Device 

 

 When a human touches an object in real world, a tactile stimulus is generated due 

to the forces that are generated between the object and the point of contact. The 

stimulus signal is transmitted to the brain via the nervous system. Then the 

transmitted signal is interpreted appropriately by the brain. This leads to the haptic 

perception. Then necessary reaction signals are generated accordingly by the brain 

and transmitted to the motor system. The reaction signals are transformed into an 

action by the motor system of the human.  

 

Similarly, haptic devices aim to simulate the tactile stimulus generated when a 

contact occurs between the human body and an object in virtual or real teleoperated 

environment. The ultimate goal of the device is to make the human user perceive as 

if he or she is really touching an object in the virtual or teleoperated environment 

although the object is in fact virtual or far away. A haptic device performs this 

simulation by applying appropriate forces along the appropriate linear or radial axes. 

Thus a physical resistance is applied to the human holding the end-effector of the 

haptic device. The strength and direction of the resistance depend on the material 

composition of the object being touched. A good coverage of haptics can be found in 

(Srinivasan, n.d.).  

 

Sensable Phantom Omni has recently arrived at the laboratory by the time this 

thesis was written. It has 6 degrees of freedom positional sensing with IEEE 1394a 

interface for host computer connection. For further technical details the researcher 
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may refer to (SensAble Technologies, Inc., 2008). Figure 8.7 shows Sensable 

Phantom Omni haptic device in the laboratory. 

 

 

Figure 8.7 The haptic device, the data glove pair with the receiver 2 and the webcam pair. 

 

8.4 5DT Data Glove 5 Ultra USB Left and Right Pairs 

 

 5DT Data Glove 5 Ultra USB is a device for hand motion data capture. The 

laboratory has both left and right data glove pairs. The data gloves have a USB 

interface for host computer connection. Each data glove has five bend sensors to 

measure the flexure of each finger. The flexure is measured as an average of first 

joint and second joint on each finger. Each bend sensor analog output is digitized 

with 12 bit analog digital converter. All the bend sensors are sampled at least at      

60 Hz. The figure 8.7 shows each pair of data gloves that the laboratory has. 

 

 The data gloves can be integrated to a development environment via its bundled 

software development kit. The data acquired from the sensors can either be raw or 

IEEE1394a 
connection of 
haptic device 

Power connection 
of haptic device 

Polhemus Fastrak 
receiver 2 

USB connections of 
data gloves 

Sensable Phantom Omni 
haptic device 

5DT Data Glove 5 
Ultra USB pair 

Logitech QuickCam 
Pro 9000 pair 
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scaled data. A total of 16 simple gestures can be defined for a single hand via the 

software development kit. A calibration procedure is necessary. Auto-calibration 

procedure is the simplest way to go.  Technically, in auto-calibration mode, the raw 

value x  acquired from the bend sensor is compared to the current boundary values 

minx and maxx . If the read raw value is outside this inclusive interval, the boundary 

values are updated. The corresponding sensor data observed from the application is 

calculated as follows; 

user. by theset  is   ,   
minmax

min MaxValMaxVal
xx

xx
xout

−

−
=  

 For further information, the researcher should refer to (Fifth Dimension 

Technologies [5DT], 2004a). 

 

8.5 5DT HMD 800 – 26 3-D Head Mounted Display 

 

 5DT HMD 800 – 26 3-D head mounted display is a stereoscopic SVGA device 

that has 26° viewing angle and 44 inch virtual image size at 2 meters. Each LCD 

panel of the device can generate 800x600 image plane for each red, green an blue 

colors resulting in 1.44 million pixels. The device in the laboratory is shown in figure 

8.8. For further technical details the researcher may refer to (5DT, 2004b). 

 

 

Figure 8.8 5DT HMD 800 – 26 3D head mounted display, mounted tracking system receiver and 

transmitter. 

Polhemus 
Fastrak 
transmitter 

Polhemus Fastrak 
receiver 1 

5DT HMD 800 – 26 3D head mounted display 
Fixation plane for 
tracker calibration 
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8.6 Logitech QuickCam Pro 9000 Webcams 

 

 The laboratory has two Logitech QuickCam Pro 9000 webcams for augmented 

reality and video processing applications. The webcams have Carl Zeiss optics with 

2-MP HD sensor that can produce high definition video up to (1600 x 1200). The 

devices in the laboratory are shown in the figure 8.7. 

 

8.7 ATI X1550 and NVIDIA GeForce GTX295 

 

 ATI X1550 is an ATI RV515 core based graphics card with 105 million 

transistors on 90nm fabrication process. It has 4 fragment (pixel) shaders, 2 vertex 

shaders, 4 raster operation pipelines (ROPs) and 4 texture units. A support for 

DirectX 9.0c, OpenGL 2.0, multiple render target and render to vertex buffer is 

provided. It supports Shader Model 3.0 programmable vertex and fragment shaders 

in hardware and up to 128 simultaneous pixel thread. The card has PCIe x16 bus 

interface for host computer communication. For more technical details, the 

researcher should refer to (Advanced Micro Devices, Inc. [AMD], 2010) and 

(Wikipedia, 2010s). 

  

 NVIDIA GeForce GTX 295 is a 2nd generation NVIDIA® Unified Architecture 

and 10th generation NVIDIA GeForce series. It has two graphics processing unit. 

Each graphics processing unit has 1.4 billion transistors on 55 nm fabrication 

process. It supports NVIDIA® CUDATM technology for general purpose computing. 

Each graphics processing unit has 240 CUDA cores resulting in total of 480 CUDA 

cores. It supports programmable graphics pipeline and hence programmable vertex, 

geometry and fragment processors in hardware. The card supports NVIDIA® 

PhysXTM for graphics processing unit based physics tasks for complex rigid body, 

soft body, particle system, character control, ray-cast and articulated vehicle 

dynamics, volumetric fluid simulation, cloths and volumetric force fields. NVIDIA® 

PhysXTM is also multithreaded, multi platform and physics processing unit enabled. 

Additionally a support for NVIDIA 3D Vision is provided for stereoscopic 3-D 

applications. The card has NVIDIA Quad SLI® support for multi-graphics card 
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utilization, SLI multi monitor support and GigaThreadTM technology that is a 

massively multi threaded architecture for running thousands of independent threads 

simultaneously. A support for Direct3D 10.0, OpenGL 3.3 and Shader Model 4.0 

programmable vertex and fragment shaders in hardware is provided. The card uses 

PCIe x16 2.0 for communication with the host computer. For more technical 

information, the researcher should refer to (NVIDIA, 2010) and (Wikipedia, 2010t). 
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CHAPTER NINE  

SOFTWARE DEVELOPMENT AND HARDWARE INTEGRATION 

RESULTS 

 

 In this chapter, all the software implementation results from the beginning of the 

thesis to the end will be presented.  

 
9.1 Software Development Tools Used During the Thesis Work 

 

 Microsoft Visual C++ 2005 Development Environment was used throughout the 

thesis work. Mathworks MATLAB 2008a was used for numerical verification of the 

methods implemented. The configuration graphical user interface (GUI) of the 

software was developed using Qt GUI Development Kit which is platform 

independent. Qt has its own meta object compiler and thus cannot be compiled 

directly with Microsoft Visual C++ or other compilers. For technical details, 

software design patterns and implementation considerations regarding Qt, the 

researcher should refer to (Blanchette & Summerfield, 2008). Ogre3D was used as a 

real time graphics rendering engine. For the technical and implementation 

considerations, the researcher should refer to (Junker, 2006). Prior to Ogre3D, 

OpenSceneGraph was the choice as a graphics rendering engine. It is used during the 

augmented reality (AR) application development together with osgART. osgART is 

the ARToolkit plug-in for OpenSceneGraph. INTEL OpenCV was also used for the 

development of AR application. For more information about INTEL OpenCV, the 

researcher should refer to (Bradsky & Kaehler, 2008). Ogre3D was the choice over 

OpenSceneGraph during the virtual reality (VR) application development because of 

its flexibility, ease of integration, support of shaders and most importantly the 

availability of learning resources. The researcher interested in OpenSceneGraph 

should refer to (Martz, 2007). Bullet was used as a physics engine during the thesis 

work. A good learning resource for Bullet is (Coumans, 2009). For code 

development tests accomplished using NVIDIA CUDA were compiled using 

NVIDIA C Compiler that can be executed under Microsoft Visual C++ 2005. CUDA 
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API 2.2 was used during these tests. Microsoft DirectX 9.0c and Cg 2.0 were used 

during the development. Apart from the actual software development, in order to 

practice GPU based physics rendering and to test whether NVIDIA PhysX could be 

useful for the development target or not, NVIDIA PhysX SDK 2.8.1 was studied 

theoretically and practically. For details of NVIDIA PhysX, the researcher should 

refer to (NVIDIA, 2008). 

 

9.2 Implementations Completed during Augmented Reality (AR) Application 

Research 

 

 In the beginning of the thesis work period, the necessary tracking and data glove 

equipment could not be purchased. That meant a slow down for the laboratory 

establishment process and also for the application development during that period. 

Because, the user would not be able to interact with the virtual environment without 

the tracker and the data gloves. Then for the period, the main target was defined to be 

a development of a virtual environment in which the user can pan in the environment 

with the head movements and control a virtual graphical user interface tablet for 

several actions. At the result of this period, a virtual environment in which an user 

can control a virtual graphical user interface tablet via real time video tracking was 

developed. The user head could successfully tracked for movements that are not very 

fast so that linearity conditions satisfy. The Z distance that is the distance of the user 

from the camera could not be calculated at that moment. To calculate the Z distance, 

either a stereo rig should have been setup, or the affine relations of feature points 

between two consecutive frames should be tracked. The real time tracking study was 

not carried so far as the main goal of the thesis work was not computer vision. The 

necessary theoretical background was given in the previous chapters. The 

implementation results will be given in figure 9.1. For necessary camera calibration, 

ARToolkit was used. For 2-D head tracking was performed using INTEL OpenCV 

Library. For development of the virtual environment OpenSceneGraph was used. 

Finally, the integration of OpenSceneGraph with ARToolkit was established via 

osgART plug-in. 
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                                        (b)                                                                             (c) 

Registered 3D virtual cube 
in real time 

Registered 3D virtual cube 
real time 

Calibration result 
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(d) 

 

 

 

 

 
(e) 

 

Registered 3D anatomy 
models under affine 
transformation in real time 

Virtual GUI tablet is being 
controlled by the user via 
real time video data. 

Corners of the square are 
used as features for tracking 
and pose estimation 
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(f) 

Figure 9.1 (a) Camera calibration. (b), (c) Initial implementations for registering 3-D models with the 

video in real time. (d)  Application of affine transformations to 3-D model in real time by tracking the 

corner features of the square on the planar paper in the video data. (e) User interaction with the virtual 

environment and the control of a graphical user interface tablet via tracking the same features in (d); 

white wireframe overlays indicate the model part selection. (f) Face tracking for pan movements in the 

virtual environment. 

 

 The face tracking implementation remained as a separate module, because at that 

time the necessary equipments arrived.  

 

9.3 Development Result of the Immersive Interactive Virtual Environment for 

Collaborative Anatomy Inspections in Medical Education 

 

 The final development results are presented in this part. The software layers and 

scene graph hierarchy are developed as given in figures 9.2 and 9.3 respectively. 

Then the views from the real time interactive environment will be presented. 

Following this part, the preliminary implementation experiences and study results 

leading to the final software development will be presented.  

2-D face tracking for pan 
movements in virtual 
environment 
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Figure 9.2 Functional layers of the developed software. 
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Figure 9.3 Directed acyclic graph representing a part of the virtual environment developed. Only a 

representative portion of the whole graph is given because of the page size constraint. Black dots 

represent remaining node connections in the graph. 
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(a) 

 

 

(b) 
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(c) 

 

 

(d) 
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(e) 

Figure 9.4 (a) and (b) represent two views from the virtual environment in which two users are 

present.  The uses are indicated by blue pyramids together with local coordinate axis. Each user has a 

local coordinate axis in the bottom left of the view to see his or her orientation in the virtual 

environment (See section 5.2 for gimbal lock problem). Object manipulations are done by hand. The 

frame rate is 18 fps at average. The texturing and lightning are performed using programmable 

graphics pipeline by using Cg language (See section 5.4). (c) and (d) represent the rigged and skinned 

hand deforming in accordance with the user’s hand gestures (See section 5.5). A light shaft is rendered 

at the position of the medical light aimed towards the human body (See section 5.3). (e) Represents 

the deformable cloths and tissues. The green info overlay at the lower left corner of the screen informs 

the user about the penetration depth, collision contact point and contact normal and the applied 

impulse when collision occurs between the user’s hand and between any virtual object (See chapter 6 

and sections 6.6.3.1, 6.6.3.2). White wireframes represent the collision models used for related render 

models. 
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(a) 

 

 

(b) 

Figure 9.5 (a) A close look at bump mapping with parallax offset technique used for texturing the 

environment. The model-view matrix and light parameters are continuously passed to the GPU as the 

vertex code input arguments to update the lighting effects such as reflection power and its direction. 

This technique is applied by using programmable graphics pipeline with the help of vertex processor 

and fragment processor codes written in Cg (See section 5.4). (b) A 2-D dynamic mass-spring 

topology namely – the cloth simulation - on which two logos present.  This dynamic topology is used 
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to study the tradeoffs of numerical integration methods between their stability and accuracy in 

conditions where time steps are changed and to implement integration methods such as explicit Euler 

integration, second order Runge-Kutta integration, fourth order Runge-Kutta integration and Verlet 

integration are considered. The other particular importance of that scene is that, one of the first 

collision detections are implement by using the white sphere standing in front of the 2-D mass-spring 

topology. The collision between the sphere and the 2-D mass-spring topology is solved by 

implementing fitting a sphere around the mesh of the white sphere and detecting collisions between 

this sphere and the vertices of the 2-D mass-spring topology to which masses are bound. The 

governing differential equation of the 2-D mass spring topology, applied forces and collision scheme 

are independent from the physics properties of rest of the virtual environment (See chapter 6). 

 

 

(a) 
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(b) 

Figure 9.6 Interaction is possible with the 3-D models in the virtual environment. (a) One of the users 

has taken the light standing on the bed by touching and holding with his or her hand. (b) The other 

user is looking at the user holding the light. The light can be notices on the hand of the user (See 

chapter 6). 

 

 

(a) 
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(b) 

Figure 9.7 (a) One of the users is looking at the other user who has left the light to the ground. (b) The 

view of the user who has left the light near the wall. Leaving the 3-D model can be done by colliding 

it with the bed or according to the bending data of the fingers of the user retrieved from the data glove 

(See chapter 5 and chapter 6). 

 

 

(a) 
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(b) 

Figure 9.8 A user interface with several controls is displayed when a user wants to manipulate the 

parts of the anatomy model. (a) and (b) presents the views of two users. Lights are dimmed if wanted, 

during inspection (See section 5.3 for light shafts rendering). 

 

 

(a) 
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(b) 

Figure 9.9 (a) One of the users looks at the user interface. Notice that  information can be displayed on 

the user interface. (b) A user in the same scene holding the part of an anatomy model. A light shaft is 

located over the model part of interest (See section 5.3 for light shafts rendering). 

 

 

(a) 
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(b) 

Figure 9.10 Several properties of the 3-D models can be controlled via the user interface. Constraints 

defined for the controls of the user interface define their behaviour. When a user touches or grabs the 

user control, the color of the related control goes to green. When the user leaves the user control its 

color returns to the original color (See chapter 6 for the collision detection and constraint solution 

methods). These are presented in (a) and (b). Anatomic parts can be attached, detached and 

manipulated freely by the user via the virtual hand. 

 

 

(a) 
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(b) 

 

 

(c) 

Figure 9.11 One of the users decides the inspect one of the parts. Any affine transform can be applied 

for this purpse. A light shaft is seen over the model of interest. These are presented in (a) and (b) from 

the views of two users. In (c), a user inspects inside of the anatomy models and if wants interacts with 

the anatomy model parts. 
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(a) 

 

(b) 

Figure 9.12 Initial tests for using 2-D mass spring systems with volumetric 3-D models. The 

implementation should be tuned by appropriate spring constants and volume preservation constraints. 

But the correct approach is to use tetrahedral mass-spring ssystem and solve those models numerically 

for modeling states of dynamic 3-D topologies i.e deformation, due to the applied force, because using 

2-D mass-spring system can capture the surface of the 3-D model with lack of information relating 

volume of the 3-D model (the hand in this particular case). (a) and (b) presents two states of a 

deformable volumetric hand tried to be modeled by 2-D mass-spring system. Notice that the applied 

force is due to the gravity and due to the collisions from the ground. Due to the lack of necessary 

constraints on the 2-D mass-spring system, hand behaves in an inconsistent manner (See chapter 6). 
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(a) 

 

 

(b) 

Figure 9.13 (a) 2-D mesh-spring system for modeling 2-D dynamics and collision. (b) 3-D tetrahedral 

mesh-spring system for modeling 3-D volumetric dynamics and collision (See chapter 6). 
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(a) 

 

 

(b) 

Figure 9.14 (a) and (b) presents initial views from the environment prior to programming vertex 

processors and fragment processors with Cg. White wireframes represent the collision models used for 

related render models. 
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Figure 9.15 A person using the system for testing. 

 

9.4 Implementations Completed during Mathematical Elements of Computer 

Graphics and Real Time Graphics Rendering Research 

 

The time period in which no tracker and data glove exist was also used to get 

theoretical and practical background on curves and surfaces in 3-D spaces such as 

Bezier surface, Spline curves and surfaces and their variants, Coons Bicubic surface, 

etc… and real time graphics rendering. The interested researcher should refer to 

(Rogers & Adams, 1990) for the theory of mathematical elements of computer 

graphics.  Figure 9.16 presents custom software developed using Visual C++ and 

without using any graphics API such as Microsoft Direct3D or OpenGL during this 

period for visualizing and affine transforming several different types of surfaces and 

curves mentioned above. For theoretical and implementation studies in real time 

graphics rendering, (Möller & et al., 2008) and (Wright, & et al., 2007) are preferred. 

Figure 9.17 presents several implementations completed. 
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Figure 9.16 A custom software developed for visualizing and transforming several primitives and 

functions such as Bspline surface, conics, etc … for modeling topology changes in later stages. Using 

splines instead of linear models for interpolations i.e. in FEM produces more physically consistent 

results (See section 5.1).  

 

 

(a) 
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(b) 

 

 

(c) 
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(d) 

Figure 9.17 Several implementations completed for practicing real time graphics rendering referring 

to (Wright, & et al., 2007). (a) Texture mapping with lights and shadows. (b) Environment mapping. 

(c) Reflection. (d) 3-D object selection. Some of these techniques were used in the actual virtual 

environment (See section 5.1). 

 

9.5 Implementations Completed during Collision Detection Research 

 

 As seen from the previous chapters, collision detection is an important subject not 

only in computer graphics but also in path finding problems and robotics. As seen 

from the papers referenced in the previous chapters, it would be suitable to use the 

appropriate collision detection method for appropriate situations. For example, an 

interactive application simulating deformable objects might require a fine            

triangle-triangle collision detection that needs a high computational power; but on 

the other hand an oriented bounding box that needs a low computational power might 

be sufficient for a game. Therefore prior to implementation, the needs should be 

analyzed well and the tradeoff between the performance of the application and the 

error between the collision models that will approximate the actual 3-D render model 

and the actual render topology should be considered. During this phase of the 

research period, to get insight into collision detection techniques, well known simple 

methods such bounding sphere and bounding box are implemented in addition to 
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more accurate triangle-triangle collision detection. The mathematical theory and 

implementation details can be found at (Morefield & Malloy, 2007), (Möller, 1997). 

For more in depth study in collision detection, the researcher should refer to the 

papers mentioned in chapter 1. The results are shown in figures 9.18 and 9.19. 

 

 

(a) 

 

 

No collision detected 
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 (b) 

Figure 9.18 Implementing collision detection in 3-D space using bounding sphere referencing 

(Morefield & Malloy, 2007). (a) No collision detection. (b) Incorrect collision detection due to the 

high error rate between the 3-D render topology and the collision model chosen to approximate that 

topology. Due to its simplicity and several topological properties given in chapter 6, this technique is 

used where coarse collision detection is adequate (See section 6.5). 

 

 

(a) 

No collision detected 

Incorrect collision detected 
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(b) 

Figure 9.19 Implementing collision detection in 3-D space using triangle-triangle collision test 

referencing (Morefield & Malloy, 2007), (Möller, 1997). (a) No collision detected. (b) Correctly 

detected collision because of the minimization of the error between the collision model chosen and the 

3-D render topology. This technique is used only for anatomical models where fine collision detection 

is needed i.e. for cutting due its high computation power demand (See section 6.6.3). 

 

9.6 Experiences with SOFA – Simulation Open Framework Architecture 

 

 As mentioned before, SOFA is an important simulation framework developed by 

INRIA. It supports NVIDIA CUDA. Although not tested yet, it is claimed that it also 

supports several haptic devices. It consists of a rich numerical algorithm package 

including finite element model solvers, conjugate gradient solver, mass-spring 

system solver and etc…, collision detection package, collision model and render 

model mapping package including barycentric mapping, etc… and several space 

partitioning methods.  During the thesis work, source code of SOFA was inspected 

for integration with the thesis development. But, due to the complexity of the 

relations between the software modules of the source code and our limited 

knowledge on some of the numerical methods used in SOFA at that time, this aim 

could not be accomplished. But this study on the source code of SOFA provided a 

Collision detected 
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well established knowledge about the design of such simulation framework for 

future. Figures 9.20 and 9.21 present some results from this period. 

 

 

 (a) 

 

 

 (b) 
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 (c) 

 

 

(d) 

Figure 9.20 A simulation example with SOFA using NVIDIA CUDA (See section 2.3). (a) and (b) 

represent two different deformation states of a liver where FEM is used for numerical calculations. (c) 

Barycentric mapping is used to control the deformation of the render models meaning that a 

mechanical model of the liver is used in the FEM and each node of this model is the center of collision 

spheres indicated in orange color. The position of the nodes hence the center of collision spheres are 

defined as linear combination of suitable triangular render elements indicated in red color (d) Sphere 

collision models are used for collision detection with the liver to save computation sources. 
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(a) 

 

 

(b) 

Figure 9.21 Practicing fluid dynamics in SOFA (See section 2.3). (a) and (b) represent two different 

states of a stable fluid. This simulation technique can be used to model some of the body fluids and 

their interaction with i.e. vessels in further studies. 
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9.7 Development Stages of the Graphics User Interface using Qt Development 

Kit 

 

 

 (a) 

 

 

 (b) 
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 (c) 

 

 

(d) 

Figure 9.22 The setup and calibration GUI developed for the application with Qt Kit. The GUI is used 

for (a) entering to the virtual environment, (b) the tracker calibration, (c) video settings and (d) data 

glove calibration. 

 

9.8 Experiences with Cg and GPU Programming for Graphics 

 

 Prior to the implementation of the GPU programming for graphics for the actual 

software, several stand-alone practices had been completed. This was necessary to 

learn implementation of rendering codes for vertex processors and fragment 
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processors, how they were executed on the processor and their differences. The 

following figures are some results from this period. 

 

(a)  

 

 

 (b)  
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(c)  

Figure 9.23 Practical implementations on lighting using vertex processors and fragment processors in 

the programmable graphics pipeline of the GPU. (a) and (b) present vertex lighting and fragment 

lighting respectively. Notice the smoothness in the specular lights in (b) because lighting code is 

implemented in the fragment processor. In this case this code is executed for every pixel in the scene. 

On the other hand, in (a) the lighting code is implemented in vertex processor. In this case this code is 

executed for every vertex in the scene. The lighting for remaining pixels where no vertex exists, the 

lighting is interpolated as a linear combination of corresponding vertices, which is in fact Gouraud 

lighting. In (c) two spotlights are implemented using vertex processors (See section 5.1 and chapter 4 

for GPU programming). 

 

 

(a) 
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 (b) 

 

 

(c) 
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(d) 

Figure 9.24 The pictures above represent snapshots from the real time rendering of dispersion, 

reflection, refraction calculated on GPU using Cg. The environmental mapping method is used to 

perceive a car in an real environment (See section 5.1 and chapter 4). 

 

 

(a)  

 



180 

 

 

 (b) 

Figure 9.25 In (a) practicing affine transformation using vertex and fragment processors; and in (b) 

practicing particle simulation using vertex and fragment processors in the programmable graphics 

pipeline using Cg (See section 4.5). 

 

9.9 Experiences with NVIDIA CUDA and Performance Comparisons for 

Further Projects and Possible Implementations 

 

 Integration of CUDA to the current developed software will enable using more 

computationally demanding but on the other more physically consistent numerical 

methods such as finite element models (FEM) via GPU implementation. Although, 

the aim was to use FEM to model elastic objects, time was not adequate. But several 

code implementations were investigated for getting insight to using CUDA. The 

following pictures present some results. 
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(a) 

 

 

 

 (b) 

 

Rendering at 16269.0 fps with GPU 
implementation, 0.7 fps with CPU 
implementation 
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(c) 

Figure 9.26 Practicing NVIDIA CUDA for several simulations. (a) presents the hardware 

configuration on which the implementations are done. (b) presents an simulation of Mandelbrot fractal 

for different depth levels. The pixels with black color are in the Mandelbrot set and the other colors 

represent the rate of divergence of the recursive generating sequence to infinity. The Mandelbrot set is 

generated in real-time on GPU. (c) presents a fluid dynamics simulation for a stable fluid with defined 

boundary conditions. Navier-Stokes Equations are numerically solved on GPU. These are all 

simulated in real time. The necessary solvers and example source codes are found in NVIDIA CUDA 

SDK. They should be compiled a priori (See chapter 4 for programming GPUs for general purpose 

computations). 
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9.10 Experiences with NVIDIA PhysX and Performance Comparisons for  

Further Projects and Possible Implementations 

 

 

 (a) 

 

 (b) 

Figure 9.27 Practicing NVIDIA PhysX for several simulations for taking advantage of physics 

rendering with GPU. (a) presents a texturize cloth made up of 2-D mass-spring system. Vertices at the 

top part of the cloth are constrained to a rigid body at the ceiling, hence they are not moveable. The 

state of the remaining vertices is controlled by the governing differential equation d2x/dt2=Fnet driven 

by the gravitational force. If desired, a force can be applied to a vertex by selecting and pulling or 

pushing it to appropriate direction. From there on, that applied force will also be used for calculating 

the net force to drive the governing differential equation of the system (b) presents a cutting operation 

which can be executed by canceling links of the selected vertices to adjacent vertices. The necessary 

solvers and example source codes are found in NVIDIA PhysX SDK. They should be compiled a 

priori. 
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9.11 Construction of Mesh Spring Structures and Implementation of Topology 

Processing and Refinement for Mesh Cutting Operation Using Bullet Engine 

 

 

(a) 

 

 

 (b) 
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(c) 

 

 

(d) 

Figure 9.28 (a) and (b) present a construction of 2-D mass-spring system with AABBs at vertices 

indicated in white color and model partitioning indicated with violet color for collision detection. (c) 

and (d) present topology processing for the actual 2-D mass-spring system for simulating a cutting 

operation. For each cut surface, necessary extra vertices, masses, velocities, related AABBs and faces 

are generated both on the remaining mass-spring system and on the cut piece (See chapter 6). 
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9.12 Haptic Rendering Implementation Results 

 

(a) 

 

 

 (b) 
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(c) 

 

 

(d) 

Figure 9.29 Initial haptic rendering module developed during the thesis period. The integration 

method used in the module is an Explicit Euler Method. (a), (b) show that for small time steps and low 

force loading condition, the mesh topology of the body can be deformed via the haptic device. The 

norm of the applied force, the application direction is overlaid on the screen. (c), (d) show that in high 

force loading conditions, the mesh system diverges from its equilibrium point (See section 6.9).
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CHAPTER TEN  

CONCLUSIONS 

 

 Prior to going on with the conclusions of the thesis work, the author’s viewpoint 

of a scientific research should be indicated. Computer technology has led to the 

development of many applications targeted to scientific researches; but the more 

important concept than an application is the mathematical theory of computation and 

complexity that forms a basis for all of the today’s programming languages, 

algorithms and computing machines. Therefore the application should not be the 

only target of the research in engineering, but a tool for understanding the origins of 

the established theories, thinking styles of the pioneers in the computation field, the 

“why” and “how” questions these pioneers asked and their solutions. The researches 

of important pioneers such as Charles Babbage, John Von Neumann and Alan Turing 

should be well analyzed to maintain a complete and connected background for 

synthesizing new theories and designs in the field. While doing these, gaining a 

working knowledge in applied sciences such as physics, chemistry and biology will 

definitely change the way a researcher handles a problem and understands the nature. 

 

 At the end of thesis work and at the end of the software development stage, the 

following goals were achieved:  

 

• A well equipped and operational computer graphics and virtual reality 

laboratory was established with the setup seen in chapter eight. The 

laboratory is the first one in Dokuz Eylül University that specifically target 

the researches in mathematical theory and applications of computer graphics, 

scientific simulation and visualization, the architecture and programming of 

graphics processing units for not only graphics processing but also for general 

purpose computing and scientific computations.  

• A functional interactive virtual environment in which the user can interact 

with the surrounding rigid and deformable objects and with the other 

collaborators was constructed.
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• Necessary software modules were developed for interfacing the motion 

tracker device and the data gloves. The software module for interfacing the 

haptic device was also developed but it was in the early stages. 

• Necessary software modules were developed for physics and graphics 

rendering. Then the communication connections between these modules were 

established. 

• A user interface was developed with Qt to enter the virtual environment, 

perform tracker calibration, data glove calibration and video settings for the 

user. Hence, the user’s position in real world is transformed properly to 

coordinates in the virtual world. The user could see a virtual hand deforming 

according to bending amounts of his/her fingers. This was necessary to 

generate hand gestures in the virtual environment or to trigger certain events. 

• A 3-D hand mesh was rigged and skinned so that when the user in the real 

world moved his/her fingers, the same movements were also done by the 

rigged hand mesh using the bending values acquired from the data glove 

sensors. This gave the user a more immersive and natural feeling in the 

virtual environment. 

• The lighting and texture rendering were accomplished by programming the 

programmable pipeline of the graphics processing unit. NVIDIA Cg and 

Microsoft HLSL shader languages were used for this purpose. Accomplishing 

the rendering tasks on the GPU side, released the CPU for other tasks such as 

computing the simulation parameters and acquiring data from external 

hardware such as the motion tracker device and the data gloves. 

• Inside the virtual environment, the user could manipulate the virtual objects 

with an additional 3-D graphical user interface that is shown when the virtual 

object is being touched. 

• Collisions between rigid and deformable objects were detected and 

parameters such as contact points, normals in local and world space and 

penetration depths were calculated. 

• The user could also cut or deform the soft models. 
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• NVIDIA CUDA API was evaluated for the research accomplished on 

programming GPUs for scientific and general purpose computing during the 

thesis period. 

• Several other engines other than Ogre3D and Bullet were tested for their 

capabilities and usability for future development projects. Those engines 

were SOFA, ODE – Open Dynamics Engine, NVIDIA PhysX, OpenTissue, 

SPRING Simulator Framework, OpenInventor, OpenProducer and Havoc. 

• A simple augmented reality application was developed for registering the 3-D 

virtual objects with the video and for tracking the user hand to control a 3-D 

virtual user interface in real time. The segmented features for registration 

were artificial and hence imposed by humans.  

• Haptics rendering with soft anatomical and tissue models was accomplished 

by using the methods in chapter 6 via OpenHaptics API.  

• Preliminary studies and researches for finite element modeling were 

accomplished for more precise mathematical representation of the system 

dynamics being simulated. 

 

 The following criterions should be considered to enhance the current application: 

 

• Further improvements for topology processing should be done in order to 

capture the dynamics of the soft models. The numerical stability of the 

differential equation solver was not appropriate for scientific usages. 

• The opinions of several users should be obtained for user interface 

development. 

• Physics rendering and dynamic system modeling were done using CPU. 

Moving these calculations onto GPU will free the CPU for other tasks and 

increasing the frame rate. 

• Instead of using a mass-spring system, better numerical methods such as 

finite element modeling will produce more physically consistent results. 

• Instead of rigging and skinning a hand, a stationary calibrated camera system 

can be used to segment hand features and then inverse kinematics methods 

can used for estimating the rotation and translation matrices of a hand and 
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fingers for user interaction and capturing the state of the hand to the virtual 

environment.  

• The augmented reality application may use natural environment features. 

Hence, it will be more usable and practical to be used in outside 

environments for information visualization. 

• The 3-D anatomical models used in the thesis work should be replaced with 

3-D models reconstructed from MRI, CT data acquired from Dokuz Eylül 

University Faculty of Medicine. For initial researches, the medical data at 

(United States National Library of Medicine National Institutes of Health 

[NLM], 2010) can be used. 

 

 According to our observations during the thesis period, it can be concluded that 

VR has the ability to change the interaction styles not only between the human and 

the computers but also between the humans. The interactive and immersive nature of 

VR can shorten time needed to understand the fundamental of the dynamics of a 

scientific processes, because a well-designed VR system can not only simulate the 

dynamics of a scientific process in real time but also takes the user to the place of 

occurrence of that process. The interaction ability provided to the user for affecting 

the current dynamics of the simulated process is a key for providing a learning 

opportunity of the different behaviors of the simulated system. Additionally, by 

increasing the intelligence of the agents in the VR systems will increase the 

interaction capabilities of the system with humans and alter its behavior accordingly. 

 

 AR is rather a new way of visualization of the data at hand and also a new way of 

human computer interaction. As in VR, its development mostly depends on 

expensive and powerful computation units, but on the other hand, its utilization as a 

way of human-computer interaction and visualization is expected to increase in the 

future. At the time this thesis was written, many entertainment companies such as 

Microsoft and Sony were developing user interfaces for many games and 

applications using AR technology for XBox360 and PlayStation 3 respectively. 

Apart from the games, AR changes the real world a person lives in into a mixture of 

reality and unreality which is limited by the user imagination and the intelligence of 
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the computing system. The AR software developed during the thesis work is in very 

preliminary stages and needs improvements. It needs markers in order to track the 

user and control the virtual user interface. Markerless tracking of the user, more 

intelligent software that can understand the emotions of the user and respond 

according to user’s movements will definitely make the interaction more natural and 

will improve its usability. 

 

 On the other hand, as seen from the experimentations on graphics processor 

programming accomplished during the thesis period, programming graphics 

processing units for scientific calculations and for general purpose computing is an 

important and promising research area for both hardware and software perspectives. 

The performance gains of x10 and x100 over the central processing units (CPUs) had 

been observed during the thesis work. The benchmarking was done using the 

programmable graphics pipeline for implementing several graphics processing 

techniques by Cg and NVIDIA CUDA for numerical computing research purposes 

on graphics processing unit (GPU). The CPU used was Intel Q9550 and graphics 

processor was NVIDIA GTX 295. The survey completed in the thesis work showed 

an increasing usage of GPUs in scientific computing. This is not only because of the 

increasing amount of data to be analyzed by the researchers, but also because of the 

existence of algorithms and numerical analysis methods that are parallel in their 

nature and the ability of GPUs in performing matrix vector operations very quickly 

as these operations are why GPUs were designed and optimized for. The key concept 

is the parallelism that these GPUs present with their many core hardware architecture 

and their high bandwidths for data transmission compared to the general purpose 

CPUs. Additionally, availability of appropriate compilers, high level programming 

environments for use in heterogeneous computing systems where both CPU and 

GPU exist simultaneously and the increasing number of GPU general purpose 

programming APIs such as NVIDIA CUDA, ATI Stream and OpenCL enable the 

researchers in diverse fields benefit from the computational power that GPUs have. 

More in depth research on GPUs should be carried on in the future projects. Current 

stages completed in the thesis work may be ported to GPU code where appropriate. 
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The collision detection and numerical solutions of differential equations 

accomplished on GPU will definitely increase the performance of the software. 

 

The planned research areas of the laboratory for undergraduate and graduate 

levels are as follows:  

 

• Mathematical theory and applications of collision detection in 3-D virtual 

environments. 

• Haptic rendering and applications in human computer interaction, 

collaborative virtual reality and augmented reality applications in 

engineering, medicine and applied sciences. 

• Numerical computing, development of graphics processing unit based 

numerical solution packages. 

• Graphics processing unit programming for real time computer vision. 

• Parallel processing software design patterns. 

• Computational geometry and mathematical topology. 

• Mathematical theory and applications of scientific simulation and 

visualization of rigid and elastic bodies, fluid mechanics for gas, liquid and 

blood flows that will be useful in engineering, applied sciences and medicine. 

• Methods for machine intelligence and for more interactive and intelligent 

communication with computers. 
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APPENDICES 

 

The followings are submitted in the DVD in the pocket attached to the backcover 

of this thesis. The detailed information regarding the directory structure can be found 

in “README_Directory_Structure.txt”  in the DVD. 

 

1. All the C, VC++, Cg, HLSL codes developed using Microsoft Visual Studio 

2005 in the scope of this M.Sc thesis. These are 3-D interactive and 

immersive virtual reality application for medical simulations; the haptic 

rendering application and the augmented reality application respectively. 

2. Bullet physics library with the necessary code modifications for the M.Sc 

thesis.  

3. Ogre3D real time graphics engine with the necessary code modifications for 

the M.Sc thesis. 

4. Qt Toolkit used for the user interface development in the M.Sc thesis period. 

5. Microsoft DirectX 9.0c was used during the software development. It should 

be downloaded from its web site. NVIDIA CUDA Library and NVIDIA 

PhysX Library can be downloaded from NVIDIA Web Site. 

6. 3-D model meshes used in the developed software during this M.Sc thesis. 

7. NVIDIA Cg used for GPU programming for graphics during this M.Sc thesis. 

8. NVIDIA Texture Tools and Photoshop plug-ins. 

9. SOFA Library used for research and practice oriented purposes. 

10. OpenCV library used in the augmented reality application developed during 

the M.Sc thesis period. 

11. ARToolkit library used in the augmented reality application developed during 

the M.Sc thesis period 

12. OpenSceneGraph library used in the augmented reality application developed 

during the M.Sc thesis period. 


