

DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES

DESIGN AND DEVELOPMENT OF A THREE

DIMENSIONAL AUGMENTED REALITY

SYSTEM AIMING MEDICAL AND

ENGINEERING APPLICATIONS

by

Ruha Uğraş ERDOĞAN

October, 2010

ĐZMĐR

DESIGN AND DEVELOPMENT OF A THREE

DIMENSIONAL AUGMENTED REALITY

SYSTEM AIMING MEDICAL AND

ENGINEERING APPLICATIONS

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Master of Science

in Electrical and Electronics Engineering, Electrical and Electronics

Engineering Program

by

Ruha Uğraş ERDOĞAN

October, 2010

ĐZMĐR

ii

M.Sc THESIS EXAMINATION RESULT FORM

We have read the thesis entitled “DESIGN AND DEVELOPMENT OF A THREE

DIMENSIONAL AUGMENTED REALITY SYSTEM AIMING MEDICAL

AND ENGINEERING APPLICATIONS” completed by RUHA UĞRAŞ

ERDOĞAN under supervision of ASST. PROF. DR. AHMET ÖZKURT and we

certify that in our opinion it is fully adequate, in scope and in quality, as a thesis for

the degree of Master of Science.

 Asst. Prof. Dr. Ahmet ÖZKURT

Prof. Dr. Mustafa SABUNCU

Director

Graduate School of Natural and Applied Sciences

iii

ACKNOWLEDGMENTS

The author would like to appreciate Asst. Prof. Dr. Ahmet ÖZKURT for his

valuable and important theoretical, technical support and suggestions for the software

development process in addition to his management of the research project period.

Without those directions and management, this thesis would be very hard to be

accomplished and it would be hard to survive from awful periods. The author would

like to appreciate Prof. Dr. Cüneyt GÜZELĐŞ for the support during the project

preparation stage and for the guidance to the graphics processing workshops

GAG’09 and GAG’10 respectively. Those workshops were definitely two of the

important sources of theoretical and practical knowledge in the field that gave

direction to the thesis work. The author would like to appreciate Prof. Dr. Murat

ÖZGÖREN, Assoc. Prof. Dr. Adile ÖNĐZ, Dr. Onur BAYAZIT and Dokuz Eylül

University Faculty of Medicine the Department of Biophysics for their patience,

sincerity and most importantly for their helps while I try to stand up again. This M.Sc

thesis was completed in the scope of the M.Sc graduate level study at the Graduate

School of Natural and Applied Sciences of Dokuz Eylül University. The author

would like to appreciate the Graduate School of Natural and Applied Sciences of

Dokuz Eylül University for their support during the M.Sc thesis period.

This project is supported in the scope of Dokuz Eylül University Scientific

Research Project with Project No. 2008.KB.FEN.027 (Dokuz Eylül Üniversitesi

Bilimsel Araştırma Projesi (BAP), Proje No. 2008.KB.FEN.027.). VESTEL

supported the establishment of the computer graphics and virtual reality laboratory

with a LCD panel.

Ruha Uğraş ERDOĞAN

iv

DESIGN AND DEVELOPMENT OF A THREE DIMENSIONAL

AUGMENTED REALITY SYSTEM AIMING MEDICAL AND

ENGINEERING APPLICATIONS

 ABSTRACT

 Three dimensional modeling and simulation software are becoming more

widespread in medical applications. Enabling the user to view the 3D models of

biological tissues and materials, to interact with the models with the ability to

observe the reaction of the models to different force loading conditions in a virtual

environment are the main properties of these kind of software. In addition to these

properties, the graphical user interface enables the user to easily interact with the

software and access its properties. These software specifications give an opportunity

to understand the physical and mathematical reasons of dynamical processes in

addition to presenting a visual learning environment to the researchers in not only in

medicine but also in different fields of science. Considering above, the development

of software which will immerse the user into a virtual environment providing an

opportunity to observe and to interact with the anatomical models is aimed.

Additionally, the software system will be able to simulate the responses of the

models depending on different force loading conditions and material properties in

real time. Additionally, the development of the necessary hardware platform has

been aimed.

Keywords: Real time computer graphics, virtual reality and human interaction, 3-D

medical simulation, numerical methods for rigid and elastic object modeling, real

time collision detection methods, force and penetration depth computations, graphics

processing unit programming, Cg - C for Graphics, HLSL, GLSL, NVIDIA CUDA.

v

TIP VE MÜHENDĐSLĐK UYGULAMALARINI AMAÇLAYAN ÜÇ

BOYUTLU ARTTIRILMIŞ GERÇEKLĐK SĐSTEMĐ TASARIMI VE

GELĐŞTĐRĐLMESĐ

 ÖZ

 Üç boyutlu modelleme ve simülasyon yazılımlarının kullanımı, tıbbi

uygulamalarda gün geçtikçe artmaktadır. Bu yazılımların sahip oldukları önemli

özelliklerin başında üç boyutlu biyolojik doku ve materyal modellerinin

incelenebilmesine, etkileşim kurulabilmesine, farklı yük bindirimleri altındaki

davranışlarının üç boyutlu sanal bir ortam içerisinde gözlenebilmesine imkan

tanımaları gelmektedir. Bu özelliklere ek olarak, sunulan grafiksel kullanıcı arayüzü,

kişinin yazılım ile kolay bir şekilde iletişim kurmasina ve özelliklerine ulaşmasına

izin vermektedir. Bu yazılım nitelikleri, sadece sağlık bilimlerinde değil farkli bilim

alanlarinda çalışan tüm araştırmacılara görsel bir öğrenme imakanı ve dinamik

süreçlerin fiziksel ve matematiksel nedenlerini anlama olanağı sunmaktadır. Bu

noktadan yola çıkarak, kullanıcının sanal, üç boyutlu bir ortam içerisinde

bulunmasını sağlayacak; istediği anatomik modeli, üç boyutlu ortam içerisinde

gerçek zamanlı olarak incelenmesine ve onunla etkileşim kurmasına izin verecek bir

yazılım geliştirmek amaçlanmıştır. Geliştirilecek yazılımın belirtilen amaca ek

olarak, modellerin materyal özelliklerine bağlı olarak farklı yük durumları altındaki

tepkilerinin üç boyutlu sanal bir ortam içerisinde benzetimini gerçek zamanlı olarak

yapabilmesi ve ayrıca gerekli donanımsal altyapının hazırlanması amaçlanmıştır.

Anahtar kelimeler: Gerçek zamanlı bilgisayar grafikleri, sanal gerçeklik ve

kullanici etkileşimi, tıbbi benzetim, rijit ve elastik nesneler için numerik modelleme,

eş zamanlı çarpışma belirleme yöntemleri, kuvvet ve girişim derinliği hesabı, grafik

işlem birimi programlama, Cg - C for Graphics, HLSL, GLSL, NVIDIA CUDA.

vi

CONTENTS

Page

M.Sc THESIS EXAMINATION RESULT FORM... ii

ACKNOWLEDGEMENTS .. iii

ABSTRACT.. iv

ÖZ .. v

CHAPTER ONE - INTRODUCTION ... 1

1.1 Introduction to Real-Time Computer Graphics and Virtual Environments 2

1.2 A Reading Guide for the Following Chapters... 8

CHAPTER TWO - LITERATURE SURVEY .. 10

2.1 Researches on Interactive Real-Time Computer Graphics and Virtual Reality

in Medical and Engineering Simulations .. 10

2.2 Researches on the Use of Graphics Processing Unit (GPU) Programmable

Pipeline in Computer Graphics and Virtual Environments................................... 22

2.3 Researches on Graphics and Physics Software Libraries Developed by

Academia and Industry.. 25

2.4 Researches on Augmented Reality Applications .. 27

CHAPTER THREE - DATA STRUCTURES AND SOFTWARE DESIGN

PATTERNS .. 28

3.1 Data Structures .. 28

3.1.1 Maps .. 29

3.1.2 Graphs.. 30

3.1.3 Trees .. 34

3.1.4 Scene Graphs ... 36

vii

3.2 Software Design Patterns .. 38

3.2.1 Visitor Design Pattern ... 40

3.2.2 Observer Design Pattern .. 42

3.2.3 Singleton Design Pattern ... 44

3.2.4 Factory Method Design Pattern ... 45

3.2.5 Iterator Design Pattern... 46

3.2.6 The Façade Design Pattern .. 48

3.3 What is a Software Engine? ... 50

CHAPTER FOUR - GRAPHICS PROCESSING UNIT PROGRAMMING

FOR GRAPHICS AND GENERAL PURPOSE COMPUTING......................... 51

4.1 Short History of Computing Machines – From Antikythera Mechanism to

Today’s Massively Parallel GPUs... 51

4.2 Shaders .. 59

4.3 Fixed Function Graphics Pipeline and Programmable Graphics Pipeline

Architecture in Detail .. 60

4.4 Unified Shader Architecture.. 65

4.5 The Need for High Level Programming Languages for Computer Graphics–

Cg HLSL and GLSL.. 67

4.6 NVIDIA Compute Unified Device Architecture - CUDA and General Purpose

Computing ... 68

CHAPTER FIVE - ESSENTIALS OF REAL TIME GRAPHICS RENDERING

.. 76

5.1 Transformations, Lines, Surfaces and Rendering Techniques in Computer

Graphics... 77

5.2 Gimbal Lock Problem – Rotation via Euler Angles and Quaternions 77

5.3 Lighting and Implementation of Light Shafts ... 79

5.4 Texturing and Implementation of Bump Mapping with Parallax Offset 80

5.5 Hand Rigging and Skinning .. 81

viii

CHAPTER SIX - ESSENTIALS OF REAL TIME PHYSICS RENDERING

AND SIMULATION OF DYNAMICAL SYSTEMS ... 84

6.1 Topological Definitions... 85

6.1.1 Affine Spaces... 85

6.1.2 Euclidean Spaces ... 88

6.1.3 Affine Transformations ... 90

6.2 Important Geometric Primitives for Computer Graphics and Definitions of

Convex Combination and Convex Hull .. 93

6.2.1 Polytopes ... 94

6.2.2 Polygons .. 95

6.2.3 Quadrics... 95

6.3 Minkowski Sum and Its Relation with an Intersection Test 95

6.4 Separating Axis Test ... 99

6.5 Primitive Bounding Volumes for Collision Detection Used in the Software 101

6.5.1 Axis Aligned Bounding Boxes .. 102

6.5.2 Sphere Bounding Volumes .. 104

6.5.3 Oriented Bounding Boxes.. 104

6.6 Collision Detection Pipeline Used in the Software 105

6.6.1 Collision Masking.. 106

6.6.2 Broad Phase ... 107

6.6.3 Narrow Phase... 110

6.6.3.1 Gilbert - Johnson - Keerthi Algorithm (GJK) for Collision Detection

between Convex Objects and Expanding Polytope Algorithm (EPA) for

Penetration Depth Calculation ... 111

6.6.3.2 Solving the Constraints at Mechanical Joints–Linear Complementary

Problem (LCP) .. 112

6.7 Mass-Spring Systems and Numerical Solutions for Governing Differential

Equations ... 112

6.7.1 1-D 2-D and 3-D Mass-Spring Systems and Governing Differential

Equations .. 113

6.7.2 Explicit Euler Integration .. 116

ix

6.7.3 Second and Fourth Order Runge Kutta Integration............................... 118

6.7.4 Verlet Integration... 122

6.8 Mesh Topology Processing and Mesh Refinement – An Example to Mesh

Cutting ... 124

6.9 Haptic Rendering with Rigid and Deformable Models................................. 126

CHAPTER SEVEN - FEATURE SEGMENTATION TRACKING AND POSE

ESTIMATION METHODS USED FOR AUGMENTED REALITY

APPLICATION DEVELOPMENT DURING THE THESIS WORK 127

7.1 Feature Segmentation .. 127

7.2 Feature Tracking and Pose Estimation.. 128

CHAPTER EIGHT - ESTABLISHMENT AND CURRENT SETUP OF

COMPUTER GRAPHICS AND VIRTUAL REALITY LABORATORY 131

8.1 VESTEL LCD Panel ... 133

8.2 Polhemus Fastrak Motion Tracking System ... 133

8.2.1 Reference Frame Alignment.. 135

8.2.2 Boresighting... 136

8.2.3 Hemisphere Tracking... 137

8.2.4 Output Data.. 137

8.2.5 Angular Operational Envelope .. 137

8.2.6 Position Operational Envelope .. 138

8.3 Sensable Phantom Omni Haptic Device ... 138

8.4 5DT Data Glove 5 Ultra USB Left and Right Pairs 139

8.5 5DT HMD 800 – 26 3-D Head Mounted Display... 140

8.6 Logitech QuickCam Pro 9000 Webcams .. 141

8.7 ATI X1550 and NVIDIA GeForce GTX295 .. 141

CHAPTER NINE - SOFTWARE DEVELOPMENT AND HARDWARE

INTEGRATION RESULTS.. 143

x

9.1 Software Development Tools Used During the Thesis Work....................... 143

9.2 Implementations Completed during Augmented Reality (AR) Application

Research .. 144

9.3 Development Result of the Immersive Interactive Virtual Environment for

Collaborative Anatomy Inspections in Medical Education................................. 147

9.4 Implementations Completed during Mathematical Elements of Computer

Graphics and Real Time Graphics Rendering Research 164

9.5 Implementations Completed during Collision Detection Research 167

9.6 Experiences with SOFA – Simulation Open Framework Architecture 170

9.7 Development Stages of the Graphics User Interface using Qt Development

Kit .. 174

9.8 Experiences with Cg and GPU Programming for Graphics.......................... 175

9.9 Experiences with NVIDIA CUDA and Performance Comparisons for Further

Projects and Possible Implementations ... 180

9.10 Experiences with NVIDIA PhysX and Performance Comparisons for

Further Projects and Possible Implementations .. 183

9.11 Construction of Mesh Spring Structures and Implementation of Topology

Processing and Refinement for Mesh Cutting Operation Using Bullet Engine .. 184

9.12 Haptic Rendering Implementation Results.. 186

CHAPTER TEN - CONCLUSIONS .. 188

REFERENCES... 194

APPENDICES .. 221

1

CHAPTER ONE

INTRODUCTION

 Real time computer graphics rendering and physics simulation cover broad range

of fields ranging from mathematics to software design; from hardware design of

human-computer interfaces to arts and system dynamics modeling.

 The studies (Azuma, 1997), (Grady, 2003, p. 56), (Grady, 2003, p. 116), (Grady,

2003, p. 123) related with computer graphics and simulation engines such as

(NVIDIA, 2008), (Coumans, 2010) and (The SOFA Team at INRIA Grenoble, 2009)

aim the most realistic graphics in the 2D or 3D medias. At the same time, graphics

hardware performance and architectures are vital for effective visualization systems

when screen refresh rates and resolution are of concern. By the rapid developing

graphics hardware technologies (Refer to chapter 2 and chapter 4), not only fast, high

resolution and realistic images can be rendered via many display methods such as

using the programmable graphics pipeline (Refer to chapter 4, chapter 5 and chapter

9) of the graphics processing units but also performance demanding scientific and

general purpose computations can be accomplished by utilizing their massively

parallel architectures (Refer to chapter 4 and chapter 9.).

The other variable which must be studied on is the realism and the 3-D perception

of the images; because the human brain uses visual stimuli and other senses in order

to perceive its real physical surrounding. The more realistic visual, auditory, tactile,

olfactive stimuli, dynamically consistent and intelligent virtual environments the

computer systems are able to generate, the more realistic and immersive perception

of the virtual 3-D environment by the brain is accomplished. Therefore, various types

of sensors can be used to create more realistic bio-feedback for more realistic

perception.

The Virtual Reality (VR) and the Augmented Reality (AR) systems are based on

the computer graphics, numerical modeling of systems and hardware components for

2

creating motion feedback in order to create immersive and realistic perception (Refer

to Chapter 2.).

In this study, VR and AR systems are developed for the purpose of education in

the areas of engineering and medicine. The main idea is to create computer graphics

(Refer to chapter 5 and chapter 9) and dynamical system simulation (Refer to chapter

6 and chapter 9) based synthetic and semi-synthetic virtual (Refer to chapter 7 and

chapter 9) environments, in which the user can interact with all synthetic and semi-

synthetic objects by using hardware feedback components. For this purpose,

hardware components (Refer to chapter 8) and also the necessary software modules

(Refer to chapter 5, chapter 6 and chapter 7) must be combined together in order to

create the sense of reality and immersion. The necessary graphics rendering and

dynamical simulation or in other words physics rendering modules and hardware

communication modules (Refer to chapter 3) were developed and applied in several

applications in a specialized laboratory environment which has been equipped with

VR hardware components and computer systems (Refer to chapter 8, chapter 9 and

chapter 10). The figure 1.2 shows the fundamental block diagram of the thesis

study.

1.1 Introduction to Real-Time Computer Graphics and Virtual Environments

Computer graphics has attracted a great attention from the researchers since mid

1970s. This attention was mostly motivated by the development in graphics hardware

as will be mentioned in the following chapters. One of the first graphics hardware

developed by IBM can be inspected at (Elliot, 2010). 1970s and early 1980s were

mostly dominated by 2-D computer graphics some of which could be just rendered

offline. Beginning from early 1980s, technological researches and investments

pioneered by academia and industry resulted in significant technical and scientific

leap in the field and opened new horizons for possible applications. The graphics

hardware improvements that started at late 1980s allowed desktop computers to use

graphics acceleration hardware that was once found just in workstations. These

graphics accelerators enabled 3-D graphics applications run in interactive rates.

3

Therefore, algorithms concerning 2-D and 3-D graphics that were developed by

academia and industry became executable in real-time at interactive rates not only on

workstations, but also on desktop computers of normal users. This trend pushed the

limits more and more in 1990s. This progress enabled graphics processing units to

play an important role in computer graphics, scientific visualization, several

optimization applications, entertainment and films. By the early 2000s, the

researches of several institutions led to graphics processing hardware with massive

power of parallel numeric computation. In this period, algorithms for generating

more life like and interactive visualizations, games and the computation source

demanding numerical and scientific computations began to be executed on graphics

processing hardware, harnessing its computational power. Hence, general purpose

central processing units are offloaded for other computational and control tasks. An

introductory coverage of graphics processing unit architecture can be found in

(Möller, Haines, & Hoffman, 2008).

One of the common motivating problems throughout all of the above period was

the performance demand of real-time computer graphics based interactive

applications, which should run at least at 15 frames per second (fps). On the other

hand, computation power and parallelism need of the scientific, numerical

applications and physics simulations were the other concerns that the researchers

should have handled. Such applications include medical simulations, astrophysical

simulations, molecular dynamics simulations, flight simulations for military,

volumetric visualizations, visualization of differential equations, aerodynamics and

fluid dynamics simulations and 3-D graphics rendering in entertainment field. Figure

1.1 presents relatively recent application examples from (Tatarchuk & Shopf, 2007)

and (Tatarchuk, 2006).

4

 (a) (b)

Figure 1.1 (a) An example of GPU based real-time medical visualization on ATI FireGL workstation

graphics accelerator (Tatarchuk & Shopf, 2007). (b) An example of real-time rendering of a scene

with lighting, shadows and rain (Tatarchuk, 2006).

The term interactive virtual environments or its more popular name virtual reality

(VR) can be regarded as a special case of a simulation. As indicated in (Heim, 1998),

different research groups use different terms for the same concept such that, the

researchers at MIT, University of North Carolina preferred the term virtual

environments, military scientist prefer synthetic environments, researchers at Human

Interface Technology Lab at the University of Washington at Seattle refer to virtual

worlds and Japanese researchers prefer tele-existence. Virtual reality can be

considered as a 3-D interactive simulation of a real world environment or of a certain

physical process. The user is immersed into the computer generated synthetic

environment via head mounted display where he or she can interact with the virtual

environment via haptic device or data gloves. At this point, efficient collision

detection gains importance. (Bergen, 2004) and (Ericson, 2005) are important

sources on the subject. Furthermore, the user can walk around in the virtual

environment via motion tracker device. The users can even have meetings and

collaborations with other users in the same synthetic environment but at the same

time at the different real world place via network connections. All of these features

mean that the user can manipulate, deform and change the virtual environment; and

at the same time the virtual environment reacts according to the user actions in an

intelligent way in order to make the user’s senses perceive the virtual environment as

real as possible. These interactions require numerical and stable solutions to linear or

nonlinear differential equations governing the simulated system dynamics. Two

5

H
ar

d
di

sk

co
nt

ai
ni

ng
 3

-D

m
od

el
s

an
d

te
xt

ur
es

 (
B

ou
gh

t
in

 th
e

sc
op

e
of

th

e
th

es
is

 w
or

k)

G
ra

ph
ic

al
 u

se
r

in
te

rf
ac

e
fo

r
m

ot
io

n
tr

ac
ke

r,
 d

at
a

gl
ov

e
ca

li
br

at
io

n
an

d
gr

ap
hi

cs

se
tu

p
pr

oc
ed

ur
es

(D

ev
el

op
ed

 in
 th

e
sc

op
e

of

th
e

th
es

is
 w

or
k

us
in

g
Q

t)

K
ey

bo
ar

d

M
ou

se

R
ea

l t
im

e
gr

ap
hi

cs

re
nd

er
in

g
so

ft
w

ar
e

la
ye

r
(D

ev
el

op
ed

 in

th
e

sc
op

e
of

 th
e

th
es

is

w
or

k
us

in
g

O
gr

e3
D

)

R
ea

l t
im

e
ph

ys
ic

s
co

m
pu

ta
ti

on
 s

of
tw

ar
e

la
ye

r
(D

ev
el

op
ed

 in

th
e

sc
op

e
of

 th
e

th
es

is

w
or

k
us

in
g

B
ul

le
t)

G
ra

ph
ic

s
pr

oc
es

si
ng

 u
ni

t
co

de
 w

ri
tt

en
 in

 N
V

ID
IA

C

g
to

 p
er

fo
rm

 “
bu

m
p

m
ap

pi
ng

 w
it

h
pa

ra
ll

ax

of
fs

et
”

fo
r

te
xt

ur
in

g
th

e
en

vi
ro

nm
en

t (
D

ev
el

op
ed

in

 th
e

sc
op

e
of

 th
e

th
es

is

w
or

k)

G
ra

ph
ic

s
pr

oc
es

si
ng

 u
ni

t
co

de
 w

ri
tt

en
 in

 H
L

S
L

 to

pe
rf

or
m

 li
gh

ti
ng

 e
ff

ec
ts

na

m
ed

 a
s

“l
ig

ht
sh

af
ts

”
(D

ev
el

op
ed

 in
 th

e
sc

op
e

of
 th

e
th

es
is

 w
or

k)

R
ea

l t
im

e
m

ed
ic

al
 s

im
ul

at
io

n
an

d
hu

m
an

-3
D

 e
nv

ir
on

m
en

t
in

te
ra

ct
io

n
lo

gi
c

(D
ev

el
op

ed
 in

th

e
sc

op
e

of
 th

e
th

es
is

 w
or

k)

G
ra

ph
ic

s
pr

oc
es

si
ng

 u
ni

t
(N

V
ID

IA
 G

eF
or

ce
 G

T
X

 2
95

or

 A
T

I
X

15
50

)

5D
T

 8
00

 –
26

3D

H

ea
d

M
ou

nt
ed

D

is
pa

y

V
E

S
T

E
L

 L
C

D

P
an

el
 o

r
S

an
yo

da

ta
 p

ro
je

ct
or

S
en

sa
bl

e
P

ha
nt

om

O
m

ni
 6

 D
O

F

H
ap

ti
c

D
ev

ic
e

S
of

tw
ar

e
la

ye
r

fo
r

th
e

de
vi

ce
 c

on
tr

ol

(D
ev

el
op

ed
 in

 th
e

sc
op

e
of

 th
e

th
es

is

w
or

k
us

in
g

O
pe

nH
ap

ti
cs

, u
nd

er

de
ve

lo
pe

m
en

t)

P
ol

he
m

us

F
as

tr
ak

re

ce
iv

er
 1

 –
R

X
1

P
ol

he
m

us

F
as

tr
ak

re

ce
iv

er
 2

 –
R

X
2

P
ol

he
m

us
 F

as
tr

ak

tr
an

sm
it

te
r

–
T

X
(6

 D
O

F
 m

ot
io

n
tr

ac
ke

r)

5D
T

 D
at

a
G

lo
ve

s
–

ri
gh

t/
le

ft
 h

an
d

pa
ir

s

S
of

tw
ar

e
la

ye
r

fo
r

th
e

de
vi

ce
 c

on
tr

ol
(D

ev
el

op
ed

 in
 th

e
sc

op
e

of

th
e

th
es

is
 w

or
k

us
in

g
de

vi
ce

 A
P

Is
)

P
re

li
m

in
ar

y
st

ud
ie

s
to

w
ar

ds

fi
ni

te
 e

le
m

en
t a

na
ly

si
s

us
in

g
N

V
ID

IA
 C

U
D

A

A
 s

of
tw

ar
e

m
od

ul
e

fo
r

re
al

-t
im

e
m

ot
io

n
tr

ac
ki

ng
 o

f
a

pl
an

ar
 s

ur
fa

ce
 a

nd
 a

 h
um

an
 f

ac
e

fr
om

 v
id

eo
 f

ra
m

es
. (

D
ev

el
op

ed
 u

si
ng

 A
R

T
oo

lk
it

, O
pe

nS
ce

ne
G

ra
ph

 a
nd

 I
nt

el
 O

pe
nC

V

to
 in

te
ra

ct
 w

it
h

th
e

vi
rt

ua
l e

nv
ir

on
m

en
t i

n
th

e
la

ck
 o

f
m

ot
io

n
tr

ac
ke

r
de

vi
ce

)

Figure 1.2 The overview of the 3-D virtual interactive environment developed during the thesis work.

6

important sources on the subject are (Khalil, 2002), (Hutton, 2004). Several

applications of virtual reality can be found in (Grady, 2003). A historical

development and technical terms of virtual reality can be found in (Heim, 1998).

Considering the properties of a virtual reality system mentioned above, the overview

of the completed software development during the thesis work targeting the

generation of a collaborative dynamic virtual anatomy laboratory is presented in

figure 1.2. Figure 9.2 presents the complete software layer diagram developed.

The term augmented reality (AR) can be regarded also as an interactive virtual

environment, but with an exception. In augmented reality, the user and the virtual

agents – intelligent or not – are in the real world. The real world surrounding the user

is projected to the eyes via video or transparent head mounted displays. The virtual

agents are registered with the features segmented from the video. These features may

be natural environmental features as well as recognizable artificial features imposed

by the humans. The accurate tracking of the recognized features in the real world and

the accurate registration in real time are the key concerns of augmented reality

applications. The historical development of augmented reality and technical terms

can be found in (Azuma, 1997). A relatively recent work on a medical augmented

reality application can be found in (Reitinger, Bornik, Beichel, & Schmalstieg,

2006).

Then what are the important components of an interactive immersive virtual

environment that enable it to simulate the reality?

Vision is one of the most important senses of human. A virtual reality system

attempting to immerse a person in a life like virtual 3-D environment should render

the environment by appropriate real-time rendering techniques and by benefiting

from the computational power of graphics processors. The static and dynamic

systems in the virtual environment should be modeled mathematically such that their

behaviors will be consistent. The preferred display scheme in these applications is

the usage of the 3-D stereoscopic head mounted displays (HMDs). These displays

7

have two screens on which the synthetic virtual environment or the augmented real

environment is rendered.

Human tactile sensory system should also be considered by the virtual reality

system. The collisions of the user hand trying to touch a virtual object should be

detected, computations should be done to calculate the contact points, the contact

directions and the forces generated due to the collisions. Then necessary physical

reactions should be simulated by the virtual environment. Data gloves or haptic

devices are used for creating tactile senses in immersive systems.

Human auditory system should also be in concern to simulate the real world in a

virtual environment so that the synthetic environment behaves acoustically

consistent.

Human olfactory system has a vital role in many real world situations to perceive

the environment. Therefore, a virtual environment in which collaborators live in

should consider generating necessary stimuli in accordance with the environmental

constraints and situations.

Finally, the user will expect to interact with intelligent virtual agents in the virtual

environment as in the real world. So the virtual reality system should have

intelligence and a capability to learn in order to evolve. This evolving intelligence

can be used by the virtual environment to work in collaboration with the user such as

an intelligent simulator evaluating or correcting the wrong actions of its user or to

work against the user as an opponent such as a game.

All of the concepts mentioned above can be expressed and implemented in pure

mathematics. Therefore, prior to attempting to design such a system, the researcher

should understand how each of those components built up mathematically,

algorithmically and then implemented programmatically. In order to be able to

develop a simulation or immersive virtual interactive environment in which visual

entities of the real environment and dynamics of the systems are simulated as

8

consistent as possible; the researcher should have a well established background in

theoretical and practical aspects of computer graphics, central processing unit and

graphics processing unit architectures and their programming, mathematics

particularly in differential equations, topology and numerical analysis. Otherwise, the

end product will just have empty but attractive names called virtual reality or

augmented reality. In order to fill inside of these names theoretically and practically,

the interested researcher should divide the whole work into its constituents that are

mentioned above and study them carefully.

 In the light of above concerns, as indicated briefly in the previous paragraphs, the

scope of the thesis is to design and to develop a 3-D interactive virtual environment

in which users are immersed to work collaboratively on medical anatomical

operation scenarios. The virtual environment is aimed to be dynamic so that, the

users can grasp the anatomical body parts, get medical information about that part

and apply forces to soft tissues to deform them. The user can cut the soft body tissues

to simulate a medical operation. These interaction options are presented to the users

with a 3-D graphical user interface shown to the user upon a collision between a

rigged and skinned user hand (Refer to chapter 5) and the corresponding anatomical

model (Refer to chapter 9). Instead of rigging a hand mesh and using a data glove,

other methods such as just capturing hand features then estimating the hand and

fingers rotation and translation matrices by inverse kinematics from a camera can be

implemented. In addition to the software development, the establishment of a new

computer graphics and virtual reality laboratory in Dokuz Eylül University Electrical

and Electronics Engineering Department is included in the scope of the thesis work

(Refer to chapter 8). The simulation logic of the software is planned to be modular so

that it can be suitable for the engineering simulations as well (Refer to chapter 9).

1.2 A Reading Guide for the Following Chapters

This section serves as a guide for the researcher for branching to the appropriate

chapter of interest. Chapter two will provide a literature survey on virtual reality,

graphics processor programming for virtual environments and on augmented reality

9

respectively. Chapter three will give an overview of data structures and software

design patterns used throughout the thesis work. Chapter four will be about graphics

processor unit programming for graphics and general purpose computing. Chapter

five and chapter six will give a mathematical review about real time rendering and

numerical methods for physics simulation used in the thesis work respectively.

Chapter seven will be on feature segmentation, tracking and pose estimation methods

used for augmented reality application developed during the thesis work. The reason

of the development of a video based real time tracking system in the scope of an

augmented reality application is the lack of the motion tracking and data glove

equipment for the two years of the thesis project period. Chapter eight will give

information on the computer graphics and virtual reality laboratory establishment

process that has been completed in Dokuz Eylül University Electrics and Electronics

Engineering Department (DEU EEE) in the scope of the thesis work. Chapter nine

and chapter ten will be the software development results of the thesis and conclusion

respectively.

 A reader may find chapters two, three and four too exhaustive or overwhelming.

But a wise and dedicated researcher will know that the time and the effort put into

the mathematical theory, algorithmic details and into the previous applications of

other research groups in the field are going to pay when the time comes for the

software, algorithm design and implementation. Additionally, a researcher with a

solid working background in the field can easily trace the problems and be on the

confident side by comparing the results with the theory and previous researches

during the algorithm implementation phase. But beyond all these, the time invested

in mathematical theory and well accepted applications of the research groups;

provide a researcher a different perspective to handle the problems and an enhanced

imagination for new solutions.

10

CHAPTER TWO

LITERATURE SURVEY

 Computer graphics with its roots originating from diverse fields of mathematics

has been a wide research area in computer science since late 1970s. Evolving

graphics hardware, together with the improving mathematics and graphics software

libraries led to the field of real time computer. The related researches enabled the

development of software that is able to generate 3-D life like virtual immersive

interactive environments based on computer graphics. The user in this virtual

environment can interact with its surrounding, collaborate with other users in the

environment, simulate various dynamical systems in science and engineering in real

time, intelligently interact with the computer, train and even entertain.

 The aim of this chapter is to provide a literature survey on the recent applications

conducted by the industry and the academia on virtual reality, the usage of graphics

processing units as general purpose computation units and augmented reality. The

applications are targeted to engineering and medical applications; but the researcher

will find other diverse application areas. Hence, the researcher can immediately

branch to the mathematical method or application reference of interest.

2.1 Researches on Interactive Real - Time Computer Graphics and

Virtual Reality in Medical and Engineering Simulations

Researchers both in academia and have worked on applications of computer

graphics and virtual reality targeting medical and engineering simulations. Virtual

reality has found wide application area in medicine. One of the hot topics is 3-D

realistic soft tissue deformations modeling in a virtual surgery. Mass-spring models,

linear finite element method and nonlinear finite element method are generally used

for modeling soft tissues. Mass-spring models are easy to simulate in real-time;

however they are unable to simulate the process physically consistent. On the other

11

 (a) (b)

 (c) (d)

 (e) (f)

 (g) (h)

Figure 2.1 (a) The first fully functional VR display in history named as The Virtual Interactive

Environment Workstation (VIEW) in NASA Ames Research Center (Grady, 2003, p. 56). (b) Shutter

glasses in combination with flat-panel screens for three dimensional displays utilized in NASA Ames

Research Center (Grady, 2003, p. 83). (c) NASA Virtual Windtunnel utilizing VR (Grady, 2003, p.

109). (d) NASA the Dextrous Anthropomorphic Testbed demonstrates VR-controlled robot to gather

rock samples on distant planets (Grady, 2003, p. 116). (e) A helicopter flight simulator utilizing VR

(Grady, 2003, p. 123). (f) Worker training with VR to fix elevators (Grady, 2003, p. 131). (g) The

CAVE environment to design a wheel loader (Grady, 2003, p. 144). (h) VR therapy in medicine

(Grady, 2003, p. 159).

12

hand, finite element models can capture the physical characteristics of the dynamical

system, they are very hard to simulate in real-time especially when the number of

elements gets higher. But the advances in graphics hardware and the

programmability of newer graphics processing units, enabled the researchers to

perform computation power demanding tasks in real-time on graphics processing

units. For the remaining details about development process of virtual reality, the

researcher should refer to (Heim, 1998) and (Grady, 2003). Prior to moving onto the

details of medical applications, the usage of virtual reality in diverse application

fields conducted by National Aeronautics and Space Administration (NASA),

industry field and medical therapists will be illustrated in figure 2.1.

For soft tissue modeling in a virtual environment, (Yan, Gu, Huang, Lv, Yu, &

Kong, 2007) uses nonlinear finite element method for soft tissue modeling in real

time. Additionally, for real time collision detection with soft tissue they use a spatial

hashing collision detection method. They claim the superiority of their method over

traditional mass-spring models and linear finite element models. The related work is

shown in figure 2.2 (a). In (Wang, Becker, Jones, Glover, Benford, Greenhalg, &

Vloeberghs, 2007), the authors propose the use of boundary element method for

several topological operations such as prodding, pinching and cutting on soft tissues.

In response to these operations, haptic and visual feedback is generated for the user

in real time. In (Wang, & et al., 2007), the authors use boundary element method to

model only the surface of the elastic objects. The related work is shown in figure 2.2

(b). In (Hamam, Nourian, El-Far, Malric, Shen, & Georganas, 2006), collaboration in

distributed surgery simulation is emphasized. Another research on interaction in a

distributed and shared virtual environment is (Glencross, Otaduy, & Chalmers,

2005). The research emphasizes on the challenges in visualization, collision

detection, haptic rendering, dynamic system modeling and artificial intelligence

while building such an interactive and intelligent environment. Figure 2.3 (a) and (b)

shows a collaborative CAD prototyping application and haptic feedback application

mentioned in (Glencross, & et al., 2005) respectively.

13

 (a) (b)

 Figure 2.2 (a) Linear strain deformation of human kidney (Yan, & et al., 2007). (b) An example of

 soft tissue cutting with haptic feedback (Wang, & et al., 2007).

 (a) (b)

Figure 2.3 (a) An example of collaborative CAD prototyping application. (b) Real-time haptic

rendering application. Both applications can be found in (Glencross, & et al., 2005).

 The other important work on simulating surgical cuts is (Bielser, & Gross, 2002).

In that work, tetrahedral primitives are used for volumetric modeling in addition to

adaptive subdivision scheme dynamically in order to keep the mesh topology

consistent. For tissue deformation modeling they apply a relaxation scheme. For

collision detection, they utilize a two stage hierarchical collision detection scheme.

The first stage detects the boundary an element colliding with the surgical tool, the

second stage finds the tetrahedral that is in contact with the surgical tool. Haptic

feedback is also provided in real-time during the simulation. The related wok is

shown in figure 2.4 (a).

14

 (a) (b)

Figure 2.4 (a) Collision detection and topology processing of tetrahedral meshes (Bielser, &

Gross, 2002). (b) Processing intersections of tetrahedral meshes and a state machine

approach to progressive subdivision (Bielser, & et al., 2003).

 The authors of (Bielser, Glardon, Teschner, & Gross, 2003) propose an algorithm

that consistently and accurately processes intersections of tetrahedral meshes in real

time. Progressive subdivision and its state machine control are mentioned in that

paper. The related work is shown in figure 2.4 (b). An application of real-time

computer graphics and virtual reality in orthopedic surgery is covered in (Qin, Pang,

Chui, Wong, & Heng, 2008). The authors propose a novel modeling framework for

multilayered soft tissue deformation based on layered structure of real human organs.

Considering performance issues, they employ a 3-D mass spring system for

modeling biomechanical properties of the tissues. In order to increase the efficiency

and interactivity, the authors use a physics processing unit. Their research is shown

in figure 2.5.

 (a) (b)

15

 (c) (d)

 Figure 2.5 (a) and (c) State of 3-D mesh spring models while pulling and pushing. (b) and (d)

Texturized models corresponding to 3-D mesh spring models in (a) and (c) respectively (Qin, & et al.,

2008).

 Contact handling is a subfield in interactive computer graphics. A good theoretical

and implementation coverage of constrained dynamics formulation with implicit

complementary constraints, a time stepping algorithm based on progressive

constraint manifold refinement (CMR) for progressive refinement of the constrained

dynamics problem ensuring non-penetration, a solver based on iterative constraint

anticipation for mixed linear complementary problems (MLCP) are given in (Otaduy,

Tamstorf, Steinemann, & Gross, 2009). These topics are vital for many of the contact

handling and collision detection problems. The proposed unified contact solver can

cope with rigid bodies, co-rotational Finite Element Models (FEM), and mass spring

systems. Figure 2.6 represents the results of the unified contact solver proposed by

(Otaduy, & et. el, 2009).

 (a) (b)

16

 (c) (d)

 Figure 2.6 (a) and (b) demonstrate contact handling of rigid bodies (yellow), co-rotational FEM

models (orange) and mass spring clothes (red) by the unified contact solver. (c) and (d) demonstrate

the interpenetration in the mass spring model of a cloth ensuring that response to the interpenetrations

does not add energy to the system (Otaduy, & et al., 2009).

 Another application is the pathogical object removal in a hysteroscopy simulator

as given in (Steinemann, Harders, Gross, & Szekely, 2006). The authors propose a

hysteroscopy simulator in which cutting of soft deformable tissues is modeled by a

tetrahedral mass spring system. A hybrid model is proposed that performs tetrahedral

decomposition of the 3-D model, approximates the cut trajectory, new surface

generation after the cut. Figure 2.7 represents some results from their work.

 (a) (b)

Figure 2.7 (a) Tetrahedral mesh is cut along existing edges, nodes and faces. (b) After cutting with

hybrid approach and snapping the nodes to the sweep surface (Steinemann, & et al., 2006).

 A novel algorithm for efficient splitting of deformable solids along arbitrary

piecewise linear crack surfaces in cutting and fracture simulations is proposed in

17

(Steinemann, Otaduy, & Gross, 2006). In this work, a meshless discretization of the

deformation field and a novel visibility graph for fast update of shape functions in

meshless discretization are proposed. Splitting operation is handled in two steps.

Crack surfaces are synthesized as triangle meshes, these newly synthesized surfaces

are used to update the visibility graph and thus the meshless discretization of the

deformation field. Their results are given in figure 2.8.

 (a) (b)

 (c) (d)

Figure 2.8 (a) and (b) represent surgical cuts. (c) and (d) represent spiral cuts (Steinemann, & et al.,

2006).

Convex or non-convex polyhedral elements can be simulated and deformed by

using discontinuous Galerkin finite element method (DG FEM) with simple

polynomial basis functions in (Kaufmann, Martin, Botsch, & Gross, 2008). They

claim the superiority of DG FEM over standard FEM for incompressible materials.

Additionally, the authors propose techniques for volumetric mesh generation,

adaptive mesh refinement, and robust cutting. The results are in figure 2.9.

18

 (a) (b)

Figure 2.9 (a) An example of non-convex element. (b) An example of topological change of convex

element (Kaufmann, & et al., 2008).

The extended finite element method (XFEM) is adopted for simulating highly

detailed cutting and fracturing of thin shells using low resolution meshes in

(Kaufmann, Martin, Botsch, Grinspun, & Gross, 2009). Custom basis functions are

used in the approximation process. It is claimed that cutting discontinuities by

proposed method is possible in higher resolutions than the underlying mesh. The

results are shown in figure 2.10.

 (a) (b)

19

 (c) (d)

 (e) (f)

Figure 2.10 (a) Represents the harmonic enrichment function for a partial cut in a single element. (b)

Represents the corresponding quad element behavior. (c) Represents a C0 continuous enrichment

element is used to add a crease to an element in as shown in (d). (e) Represents harmonic enrichment

textures for multiple cuts within an element. (f) Represents the simulation of the element (Kaufmann,

& et al., 2009).

Topological changes of dropping viscoelastic balls in an Eulerian fluid simulation

are handled in (Wojtan, Thuerey, Gross, & Turk, 2009).

Collision detection is a vital concept for interactive virtual environments and

medical simulators. Advances in deformable collision detection based on various

approaches such as bounding volume hierarchies (BVHs), distance fields and spatial

partitioning is discussed in (Teschner, Kimmerle, Heidelberger, Zachmann,

Raghupathi, Fuhrmann, Cani, Faure, Thalmann, Strasser, & Volino, 2004). The

related work is shown in figure 2.11.

20

 (a) (b)

 (c) (d)

Figure 2.11 (a) An example of deformable collision detection during virtual surgery. (b) An example

use of bounding volume hierarchies for detection between rigid floor and deformable cloth. (c) Real

time collision detection between intestine and mesentery. (d) Distance fields generated for collision

detection between Happy Budha and other models (Teschner, & et al., 2004).

Another technique for collision detection for deformable volumetric bodies is the

ray-traced collision detection. The detection and contact force generation using this

technique is presented in (Hermann, Faure, & Raffin, 2008). Volumetric collision

detection for deformable objects is covered in (Heidelberger, Teschner, & Gross,

2003) using layered depth image (LDI) decomposition of the intersection volume.

 The researches on collision detection have been conducted for a long time.

Especially, collision detection between rigid objects is a well-studied area. The

motivation is towards the accurate collision detection of deformable topologies. But

to understand the new concepts, the researcher should have a well established

theoretical background on necessary data structures, mathematics and numerical

methods. The collision detection methodologies given in the following references

21

form a basis of collision detection scheme that is used during the thesis work.

Therefore (Tropp, Tal, & Shimshoni, 2005), (Möller, 1997), (Gottschalk, Lin, &

Manocha, 1996), (Devillers & Guigue, 2002), (Hoff, Zaferakis, Lin, & Manocha,

n.d.), (Möller, 2001), (Lin & Gottschalk, 1998), (Hubbard, P. M., 1995), (Barequet,

Chazelle, Guibas, Mitchell, & Tal, 1996), (Held, Klosowski, & Mitchell, 1995),

(Baraff, 1989), (Larsson & Möller, 2001), (Tan, Chong, & Low, 1999), (Held, 1998),

(Eberly, 2008), (Jiménez, Thomas, & Torras, 2001), (Karabassi, Papaioannou, &

Theoharis, 1999), (Barber, Dobkin, & Huhdanha, 1996), (Bielser, Maiwald, & Gross,

1999), (Teschner, Heidelberger, Müller, Pomeranets, & Gross, 2003), (Heidelberger,

Teschner, Keiser, Müller, & Gross, 2004), (Baraff, 2001) and (Bergen, 1998) should

definitely be studied.

 The following reference papers will include researches on important numerical

methods that are also used in the thesis work for collision detection, distance

measurement, time of impact (TOI) calculation, penetration depth, solution of

constraints and necessary mathematical topology. One of the fundamental algorithms

for solving proximities between convex objects is the Gilbert-Johnson-Keerthi (GJK)

Algorithm. Its mathematical theory and applications are studied in (Gilbert, Johnson,

& Keerthi, 1988), (Bergen, 1999), (Vlack & Tachi, 2001), (Eberle, 2004) and

(Kataria, n.d.). Expanding Polytope Algorithm (EPA) is important in calculating the

penetration depth. Its theory and application are given in (Heidelberger, Teschner,

Kaiser, Müller, & Gross, 2004), (University of North Carolina at Chapel Hill

Department of Computer Science, 2004) and (Bergen, n.d.). For more detailed

coverage of the concepts, the researcher should refer to (Bergen, 2004) and (Ericson,

2005).

Differential equations, their numerical solution methods and stability are the heart

of a physically consistent simulation or virtual environment. Moreover, as the

computational power of the hardware increases, the use of finite element method

increases resulting in more physically consistent simulations when compared with

the mass spring systems. In addition to the references given above, the theoretical

and implementation aspects are studied for simulating fundamental dynamic systems

22

such as cloths and volumetric elements in (Provot, 1996), (Desbrun, Schröder, &

Barr, 1999), (Nielsen & Cotin, 1996), (Cotin, Delingette & Ayache, 1999), (Müller,

Stam, & James, 2008), (Müller, James, Stam, & Thuerey, 2008), (James, 2008),

(Nealen, Müller, Keiser, Boxermann, & Carlson, 2005), (Müller, Heidelberger,

Hennix, & Ratcliff, 2006), (Müller, McMillan, Dorsey, & Jagnow, 2001), (Stam,

2009) and (Thuerey, 2008). For further details, the researcher should refer to (Press,

Teukolsky, Vetterling, & Flannery, 2007), (Sewell, 2005), (Bathe, 1996), (Cook,

Malkus, & Plesha, 1989), (Strang, 1986), (Hutton, 2004), (Ferreira, 2009), (Eberly,

2004), (Khalil, 2002), (Lander, 1999a), (Lander, 1999b) and (Lander, 1999c).

2.2 Researches on the Use of Graphics Processing Unit (GPU)

Programmable Pipeline in Computer Graphics and Virtual Environments

Programmable graphics pipeline has dominated the fixed function graphics

pipeline since early 2000s. Many application developers make use of this to perform

graphics and numerical tasks on GPUs rather than central processing units (CPUs).

As seen from the researches from the previous section, most of the works depend

heavily on numerical solutions especially on finite element method (FEM) and its

derivatives. For computational power demanding virtual reality applications or

simulations where high number of vertices, triangles and faces are present, GPUs are

now alternative to CPUs for numerical computations. In (Taylor, Cheng, & Ourselin,

2008), the authors simulate a biomechanical model in real time. In that work,

nonlinear Lagrangian FEM is used for modeling soft tissues. Their research is shown

in figure 2.12 (a). Another research using GPU acceleration for cardiac intervention

is (Yu, Chiang, Chen, Zheng, Cai, Ye, Zhang, S., Zhang, Y., & Mak, 2009) and their

result are shown in figure 2.12 (b).

23

 (a) (b)

Figure 2.12 (a) Overlaid images of the undeformed (wire-frame) and deformed (surface) brain model

with 46655 elements. Anchor nodes at the brain stem are shown as red points, displacement direction

of the displaced nodes are shown as blue arrows (Taylor, & et al., 2008). (b) White blue catheter and

heart wall interaction (Yu, & et al., 2009).

Another surgical simulation utilizing GPU acceleration with spring mass system is

(Mosegaard, Herborg, & Sørensen, 2005). Their research is shown in figure 2.13 (a).

NVIDIA CUDA based system is used for surgery simulation in (Liu & De, 2008), in

(Farias, Almeida, Teixeira, Teichrieb, & Kelner, 2008) for deformable body physics

simulation, in (Rasmusson, Mosegaard, & Sørensen, 2008) for volumetric mass

spring damper models. Another application of mass spring systems are 2-D

topologies such as clothes. This topic is examined in (Georgii & Westermann, 2005)

based on GPU. Their work is given in figure 2.13 (b).

 (a) (b)

Figure 2.13 (a) Heart surgical simulation (Mosegaard, & et al., 2005). (b) Mass spring system for

simulating 2-D topology i.e. cloth (Georgii & Westermann, 2005).

24

Similar researches that should be inspected are (Ranzuglia, Cignoni, Ganovelli, &

Scopigno, 2006) and (Liu, Jiao, Wu, & De, 2008). Additionally, (Göddeke, Buijssen,

Wobker, & Turek, 2009) presents an overview of GPU cluster computing for finite

element applications. An important research from INRIA is presented in (Comas,

Taylor, Allard, Ourselin, Cotin, & Passenger, 2008). Results from that research are

given in figure 2.16.

 (a) (b)

Figure 2.16 (a) A solid rendering. (b) Wireframe rendering of a real-time eye surgery using FEM in

SOFA (Comas, & et al., 2008).

An implementation of ocean surface generation, adaptive tessellation and optical

effects generation on the GPU is presented in (Li, B., Wang, Li, Z., & Chen, 2009)

with the shown results in figure 2.17.

 (a) (b)

Figure 2.17 (a) A wireframe rendering. (b) A solid rendering of a real time ocean simulation with

optical effects on GPU (Li, & et al., 2009).

25

 Programming GPUs towards important numerical computations are studied in

(Lahabar & Narayanan, 2009), (Krüger & Westermann, 2003), (Spampinato, Elster,

2009), (Fujimoto, 2008), (Jang, Park, & Jung, 2008), (Velamparambil, Cormier,

Perry, Lemos, Okoniewski, & Leon, 2008), (Amorim, Haase, Liebmann, & Santos,

2009), (Bolz, Farmer, Grinspun, & Schröder, 2003) and (Huang, Ponce, Park, Cao, &

Quek, 2008).

2.3 Researches on Graphics and Physics Software Libraries Developed

by Academia and Industry

 OpenSceneGraph is a real time graphics rendering engine needed to manage

scenes with huge number of nodes. It has been used in the thesis work for initial

application development phase and for augmented reality application development.

But the choice for a real time rendering engine for final application is Object

Oriented Graphics Rendering Engine (Ogre3D). This decision was given due to its

ease of integration with the preferred physics rendering engine Bullet, well designed

documentation, shader handling and ease of scene management. The interested

researcher should refer to (OpenSceneGraph, 2010) and (Martz, 2007) for

OpenSceneGraph; to (Jacob, 2010) and (Junker, 2006) for Ogre3D.

Sofa is a well designed open source physics simulation framework developed at

Institut National De Recherche En Informatique Et En Automatique - INRIA

Grenoble. Although many of physical processes can be simulated, it is mostly

specialized for medical applications. Because of its specialized structure, the

developer should have a well understanding of numerical concepts especially

nonlinear finite element modeling, advanced collision detection techniques and

etc…. At first sight, the software modules seem tightly connected to each other,

therefore the developer should carefully inspect and do necessary modifications on

the source code for using modules independently with custom software modules and

graphics engines. Sofa supports GPU general purpose processing with NVIDIA

CUDA (Compute Unified Device Architecture). The developer need not to write a

C++ code, a XML script can also be used for application development. But

26

integration with custom software modules should be concerned, if a XML script is

used. The researcher interested in Sofa should refer to (The SOFA Team at INRIA

Grenoble, 2009) and (The Sofa Team, 2008). Refer to section 9.6 for implementation

results accomplished using SOFA through the thesis period.

Bullet3D is an industry standard physics engine used by SONY Playstation,

Microsoft Xbox360, Nintendo Wii, AMD, movies such as Toy Story 3 and many

other scientific simulation purposes. As a physics engine, Bullet was the preferred

one throughout the thesis work. The main reasons for this choice were the ease of

integration with the preferred graphics engine Ogre3D, the well designed open

source engine software, availability of tutorials and papers and most importantly

Bullet is well suited for the researchers who desire to understand the fundamental

concepts of contact detection and collision detection methodologies for several

topological constructs, mass-spring models for deformable objects, numerical

calculations for fluids and particles, physical constraints and the numerical ways

used in handling them, 2-D and 3-D elements that are triangle and tetrahedral

respectively and their construction, proximity detection, penetration depth, necessary

software interrupt generation and all the related numerical analysis concepts. One

more important point with Bullet is that the theoretical mathematical concepts given

in many fundamental books such as (Ericson, 2005), (Bergen, 2004) can easily be

followed in the source code of Bullet. But prior to integration with the custom or

open source graphics engine, the source code of Bullet should be inspected carefully.

The researchers interested in Bullet should refer to (Coumans, 2010), (Coumans,

2009) and (McShaffry & et al., 2009).

NVIDIA PhysX is a C++ physics engine developed by NVIDIA for its GPUs.

Rigid and soft objects, collision models can be handled with this engine. The engine

also supports physics rendering based on GPU. The interested researcher should refer

to (NVIDIA, 2009b), (NVIDIA, 2008) and section 9.10 for implementation results.

Computational Geometry Algorithms Library (CGAL) is a C++ computational

geometry library developed by well known collaborative institutions. The researchers

27

interested in computational geometry should definitely search on (CGAL, 2010) and

(CGAL, 2009). Besides, this field is a vital area of mathematics.

2.4 Researches on Augmented Reality Applications

The researchers interested in augmented reality may use (Azuma, 1997), (Brown,

Julier, Baillot, & Livingston, 2003), (Barakonyi, Psik, & Schmalstieg, 2004),

(Vallino, & Brown, 1999), (Harada, Nazir, Shiote, & Ito, 2006), (Reitinger, Zach, &

Schmalstieg, 2007), (Reitmayr & Schmalstieg, 2007), (Reitmayr & Schmalstieg,

2004), (Pathomaree & Charoenseang, 2005), (Piekarski & Thomas, 2003), (White,

Feiner, & Kopylec, 2006), (Goose, Sudarsky, Zhang, & Navab, 2002), (Mizuno,

Kato, & Nishida, 2004), (Reitmayr & Schmalstieg, 2001), (Marathe, Carey, &

Taylor, 2007), (Fürnstahl, Reitinger, & Schmalstieg, 2006), (Reitinger, Bornik,

Beichel, & Schmalstieg, 2006) as a starting point for current applications. In figure

2.18, some of those researches are illustrated.

 (a) (b)

 (c) (d)

Figure 2.18 (a) Playing chess in a collaborative AR environment (Reitmayr, & Schmalstieg, 2001). (b)

Global mesh partitioning (Fürnstahl, & et al., 2006). (c) Liver surgery planning with AR (Reitinger, &

et al., 2006). (d) Task assisting with AR (Pathomaree & Charoenseang, 2005).

28

CHAPTER THREE

DATA STRUCTURES AND SOFTWARE DESIGN PATTERNS

The developments in the architecture of computation machines and the increasing

diverse application areas of these machines from scientific simulation, embedded

applications, and interactive 3-D applications to entertainment have become one of

the reasons of the evolution in software design and programming paradigms.

Therefore, programming and software design have undergone several periods

starting from mechanical scheme, hardwired scheme of 1940s, machine language,

assembly language to more flexible, performance oriented and portable functional

programming schemes. Finally, object oriented programming paradigms starting

from late 1960s have resulted in more reusable, modular, portable, manageable and

maintainable software.

Today’s modern software runs on both sequential and parallel computing

architectures. Therefore it is essential to understand certain data structures and

software design patterns in order to design, to manage and to maintain software as a

solution to a specific problem at hand. Hence, this chapter is going to explain

important data structures, their mathematical origins and software design patterns

that are benefited from, during the software development process in the scope of this

thesis. The chapter will end with the definition of a “software engine” and its relation

with data structures and software design patterns.

3.1 Data Structures

Data structures are fundamental concepts for computer science. When a research

is done on the data structures, it will be seen that all have a well-established

mathematical and theoretical roots. In this part, brief mathematical aspects in

addition to an introduction will be given on the data structures that are fundamental

to understand for the scope of the thesis goal. For the excellent theoretical and

applied coverage of data structures and algorithms, the researcher should refer to

29

(Cormen, Leiserson, Rivest, & Stein, 2003). Additionally, excellent information

about applied data structures specifically for C++ can be found in (Smith, 2004).

3.1.1 Maps

Maps are data structures that have two fields as a primary key and a value. A map

provides a mapping between the primary key and the memory slot where the

corresponding value is stored. The memory slots constitute the hash table. Hence, the

key-value relationship in a map can be considered as an associative memory as given

in (Smith, 2004); that is, a particular value can be searched in, removed from,

inserted to a map or can be modified by using a particular key. Although maps

provide fast, random access and dynamic size change in runtime, their

implementations should guarantee that all the values should have a unique key.

Therefore, there should be a one-to-one (injective) and onto (surjective) function or

in another words a bijective function that maps the key values in its domain to the

corresponding memory slots in its range where the corresponding values are stored.

This is depicted in figure 2.1.

Let K be a space of used keys in the map. Considering K as the domain of

bijective function f(k), then,

 NMMKf ⊂→ , : (3.1)

 Figure 3.1 Mapping between keys and memory slot addresses of the hash table.

.Key0

.Key1

.Key2

...

.KeyP

K M
f(k) : bijective function

f(k) is a hash function

.Memory Address f(Key0): Value0

.Memory Address f(Key1): Value1

.Memory Address f(Key2): Value2

...

.Memory Address f(KeyP): ValueP

30

Essentially, while designing the hash function f(k), several constraints should be

considered. First of all, f(k) should be deterministic because the storage and the

retrieval of the value will be performed using the same corresponding key value that

belongs to the domain of f(k). Secondly, to minimize the latencies, f(k) should map

the key value to the memory address f(key) as soon as possible during the value

storage and retrieval. Thirdly, f(k) should uniformly map the key values from its

domain to its range that is the memory space of the computing machine reserved for

the hash table. In other words, biasing towards the same memory address should be

avoided. Finally, keeping the third constraint in mind, while designing f(k), memory

collision that is the mapping of the key value to an occupied memory address should

be handled.

Although there are several methods for resolving collisions and designing hash

functions such as collision resolving by chaining, hash function generation by

multiplication or division, universal hashing and etc…, these are out of the scope of

the thesis. The interested researcher should refer to (Smith, 2004, chap. 5), (Cormen,

& et al., 2003, chap. 11), (Knuth, 1973) and (Marsaglia, 1996).

As an application example from the thesis work, maps are used to store pointers to

render models and also pointers to collision models with corresponding keys.

3.1.2 Graphs

A graph is formed by a nonempty set of vertices V and a nonempty set of edges E.

Typically, set E can be either empty or nonempty according to the topology of the

graph. In literature, a graph G is typically denoted as follows;

.on relation binary a forms

 },,:),{(

 },,...,,{ where,),(10

VE

VvVvNjivvE

vvvVEVG

jiji

M

∋

∈∧∈∈∀=

==

 (3.2)

31

 Simply speaking, a binary relation on V is a subset of all ordered pairs (vi, vj); in

other words, a subset of the Cartesian product V x V as depicted in equation (3.3).

 }:),{(VvVvvvVxVE jiji ∈∀∧∈∀=⊆ (3.3)

 Edges have weights wij such that,

)():(ijij EfwEf =∋ℜ→∃ (3.4)

 Graphs can be represented in three ways in computer memory: Sets, adjacency list

and adjacency matrix. These representations will be exemplified using the figure 3.3.

 (a) (b)

)}5.1,2,4(

),1.1,4,3(),1.0,3,3(

),2.3,1,2(),8.0,4,1(

),5.0,3,1(),1.2,2,1{(Set Edge

}4,3,2,1{Set Vertex

=

=

E

V



















005.10

1.11.000

0002.3

8.05.01.20

 (c) (d)

Figure 3.3 (a) An example Graph G. (b) The adjacency list representation of G. (c) The set

representation of G. (d) The adjacency matrix of G.

32

 Referring to the figure 3.3, the set representation uses two sets. One of the sets is

for the vertices and the other is for edges. Each triple element in the edge set

represent the start vertex, end vertex and connection weight respectively.

 The adjacency list representation is composed of an array of lists for Vvi ∈∀ .

Hence, every member of the list in the array depicts the edge formed by Vvi ∈

and Vv j ∈ . That is,

i

ijiiji

v

vlistEvvedgevlistvVv

 toconnected vertices

oflist a is)(),(,)(, ∋∈∃∈∈∀
 (3.5)

 The adjacency matrix representation uses NxN adjacency matrix M where N is the

number of vertices in the graph. Row i of M represents the start vertex, column j of M

represents end vertex and Mij represent the connection weights.

 According to their connection topologies, graphs can be divided in two main

groups as directed graphs and undirected graphs. As opposed to directed graphs, the

edges of the undirected graphs are composed of unordered pairs such as,

),(),(ijji vvedgevvedge = (3.6)

 If a vertex of a directed graph has a cycle edge, then it is called directed cyclic

graph else it is called directed acyclic graph. Undirected graphs do not have cycles.

These are shown in figure 3.4.

 (a) (b) (c)

 Figure 3.4 (a) Directed graph. (b) Undirected graph. (c) Directed cyclic graph respectively.

33

 There are graph algorithms some of which are also used in the thesis work that

worth mentioning. First of them is finding a path, that is querying if there exists a

path between vertices vi and vj in other words querying whether vj is reachable from

vi or not; or reachability can be checked in the reverse direction if the graph topology

permits. The simplest methods for this task are breadth-first search and depth-first

search. Breadth-first search looks at all vertices length one away relative to the start

vertex vi where the search is initiated from. If the target vertex vj is found the

algorithm terminates, else all the vertices at length two away relative to vi are

searched. The graph is traversed in this scheme till the target vertex vj is found. If vj

is not found null is returned. At the end of the traversal, a tree containing all the

reachable vertices from vi is built. This tree contains the shortest paths to all the

reachable vertices from vi. On the other hand, depth-first search chooses one of the

edges from the most recently discovered vertex vi. Then, the search progresses along

that path until the target vertex vj reachable from vi is found or an edge that has been

traversed is reached. Then the search backtracks the most recently traversed edge ek

to the vertex vk where ek originates from. Then the search selects an edge originating

from vk that has not been traversed and traverses that path. This search scheme

continues until the reachable target vertex vj is discovered or all the reachable edges

are traversed.

 In graph theory and also in computer science, the shortest path between the vertex

vi to a reachable vertex vj is of particular interest. Mathematically, it is the path that

has the least connection weight sum when traversed from vi to vj. That is,

1

1

 toconnected

 descendant its and rticesbetween ve

 weightconnection theis minpath Shortest

+

−

=

∋







= ∑

kk

k

j

ik

k
vv

vv

wwp
ji (3.7)

 The researcher should refer to (Dijkstra, 1959) for a detailed explanation of a

fundamental algorithm to find the shortest path.

34

 The spanning tree is another interesting concept in graphs. It can be regarded as

the subset of the edges that are connected and have no cycles making every vertex in

the graph reachable. For algorithmic details, the researcher should refer to (Kruskal,

1956) and (Prim, 1957).

 As an application example from the thesis work, while using OpenSceneGraph

(OSG), a directed acyclic graph is created for implementing the scene graph in order

to store the 3-D virtual environment, the 3-D models that the environment

constitutes, graphics rendering tasks in appropriate graph vertices. Therefore, fast

storage and retrieval of models in vertices, search of desired vertices and performing

all rendering tasks are done efficiently. A spanning tree can be used to represent a

3-D virtual scene and its contents so that the scene will need less memory storage

and still all the 3-D scene contents can be reachable via a pointer.

 In mathematical perspective, graphs find use in topological processing of meshes

composed of several vertices i.e. a mass-spring system representing an elastic model

can be thought as a graph such that each mass is a vertex, each spring is an edge

connecting masses and finally connection weight of the related graph edge is the

corresponding spring constant. Furthermore, in optimization theory, a neural network

topology can even be represented as a graph.

For the sake of simplicity, the further details on graph data structures and in

general on the graph theory will not be covered here. But the researcher should

definitely refer to (Cormen, & et al., 2003, chap. 22, chap. 23, chap. 24, chap. 25,

chap. 26, chap. 27, app. B), (Smith, 2004, chap. 7) for very interesting applications in

computer science and refer to (Diestel, 2005) for theoretical details.

3.1.3 Trees

Trees can be thought as a special case of graphs. Graph algorithms mentioned in

section 3.1.2 are valid with some modifications for trees. Similar to a graph, a tree is

a set of vertices. Simply speaking, a tree or a free tree is an undirected acyclic

35

connected graph as mentioned by (Cormen, & et al., 2003, p. 1085). If the tree is

undirected acyclic but unconnected it is called as a forest. A free tree is called a

rooted tree if one of the vertices in the vertex set is selected as a root vertex and the

rest of the vertices form connected subtrees. Hence, a recursive structure can be

noticed at first glance. The depth of a vertex vi is the length of the path from the root

vertex vr to vi. If vertex vc at depth level d is connected to vp that is on the previous

depth level d - 1, vc is the child vertex of vp and vp is the parent vertex of vc.

One of the important types of trees is the binary tree which has at most two

children. When it has ordered vertices (any ordering relation can be chosen) in its

structure such that the values in vertices at left relative to their parent are smaller and

the values in vertices at right relative to their parent are greater than their parent, it is

called as binary search tree. Binary search trees are suitable for search purposes in

the sense of their algorithmic complexity which is O(logN) for average case analysis

and worst case analysis. Other types of trees are red-black trees, B-Trees, random

trees, AVL trees and etc… The figure 2.5 shows a binary search tree. The details and

information on further tree types and related algorithms can be found in (Smith,

2004, chap. 6). Additionally, (Cormen, & et al., chap 12, app. B) will be a good

starting point for further theoretical details.

5

9742

83

6 101

Depth 0

Depth 3

Depth 2

Depth 1

 Figure 3.5 Binary search tree.

36

 From the thesis work perspective, a tree is created to implement a scene graph

when using Ogre3D to include the virtual world contents and several application

specific tasks that are also mentioned in section 2.1.3. In fact, Ogre3D employs an

octree by default which is a special type of tree data structure that will be mentioned

in the following sections.

3.1.4 Scene Graphs

It should be noted a priori that the term node that will be used in this section is

equivalent to the term vertex used in the previous sections 3.1.2 and 3.1.3. A scene

graph is a data structure that is used in simulators and computer games to manage

virtual models according to the logical and spatial relationships between them and

perform several graphics and physics rendering tasks in the virtual world. Hence a

hierarchical representation of the scene data is maintained. Technically, it can be

implemented as a directed acyclic graph or as a tree. A scene graph consists of

several nodes. A node can technically represent a model, an affine transformation, an

animation, sound, a light or any kind of entity that a virtual scene includes. Each

transform performed on a parent node affects its child node during the graph

traversal in runtime.

Dispatching the transform type, in other words, defining which operation should

be performed on a particular node can be done in several ways as depicted in

(Wikipedia, 2010a). The transform dispatching is done according to the type of the

node. In object oriented programming languages such as C++, virtual functions and

runtime type identification techniques are widely used for transform dispatching.

These techniques are the implementations of polymorphism property of object

oriented programming. Application of the visitor design pattern as explained in

section 3.2.1 is another way for transform dispatching. Both ways have pros and

cons. For technical information on C++ and object oriented programming, the

researcher should refer to (Stroustrup, 2000) and (Stroustrup, 2008). A sample scene

graph might be as in figure 3.6.

37

 Figure 3.6 A sample scene graph.

 The scene graph in figure 3.6 represents a virtual scene with a camera, a light, an

animation and three render models. Camera has no degrees of freedom in the scene

hence it is static and holds camera parameters i.e. near clip plane, far clip plane,

perspective parameters and etc…. Light is not static as camera for this particular

scene and it holds light parameters i.e. light type, light power, attenuation constant

and etc…. Animation Node deals with the animation related tasks i.e. querying for

the key frame, interpolation and etc… Transform Node 1 and Transform Node 2

apply affine transformations to Child Node 1 and Child Node 2 respectively. A

second affine transform is applied to the Leaf Node 2 by Transform Node 3. Notice

that Transform Node 1 effects both Leaf Node 1 and Leaf Node 2; but on the other

hand Transform Node 3 only affects Leaf Node 2. So, Leaf Node 1, Leaf Node 2 and

Leaf Node 3 can rotate and translate independent from each other. Additionally,

Light undergoes the same affine transformations as with as they are connected to the

same node which is Child Node 2.

38

 The operations are applied by traversing the scene graph forward from the root

node up to the leaf node and then traversing backwards to the root node. When

traversing forward to the leaf nodes, pre-render operations are performed; when

traversing backward to the root node, post-render operations are performed. Tasks

such as culling, depth sorting, render state manipulation, several environmental

effects, affine transformation, event dispatching and handling, animation operations

are accomplished at different stages of the scene graph traversal. The implementation

is specific to the developed scene graph. More information on implementation details

can be found in (Foster, 2010).

 Some of the scene graphs that are widely used today are OpenSG,

OpenSceneGraph, X3D, Java3D, Gizmo3D, RenderWare, NetImmerse Gamebryo,

OpenPerformer and Ogre3D. Details on these scene graphs and particularly on the

development history of scene graph technology can be found in (Avi, 2007). For

implementation and technical details on OpenSceneGraph and Object Oriented

Graphics Rendering Engine - Ogre3D both of which are used during the thesis work,

the researcher should refer to (Martz, 2007) and (Junker, 2006) respectively. For

additional tutorials on OpenSceneGraph and Ogre3D refer to their web sites

(OpenSceneGraph, 2010) and (Jacob, 2010) respectively.

3.2 Software Design Patterns

Software engineering and especially object oriented software design rely on the

extensive use of software design patterns. Design patterns are the tested, optimum

design solutions of the problems that have been come across during the development

process in software engineering for years. In this part, important design patterns that

are used in many software as well as in scene graphs such as OpenSceneGraph,

Object Oriented Graphics Rendering Engine (Ogre3D) and also in GUI development

kits such as Qt are going to be introduced briefly in order to understand the

simulation development process during the thesis work. For more detailed coverage

of the software design patterns, the involved researcher should refer to (Gamma,

39

Helm, Johnson, & Vlissides, 1995). Additionally, a mathematical theory of software

design patterns can be found at (Eden, Gil, Hirshfeld, & Yehudai, 1998).

Design patterns can be grouped into three main classes as creational patterns,

structural patterns and behavioral patterns.

When the history of computers is inspected, it can be noticed that the tendency of

the progression is towards the easily programmable and reconfigurable systems

instead of hard-wired computing devices with fixed functionalities. This is one of the

reasons why the programming languages were born. With this thought in mind,

creational design patterns can be regarded as design methodologies that contain

information about when, how and which primitive objects should be instantiated for

the system to perform a specific complex task. Therefore, these types of patterns

enable a system to reconfigure itself for more than one task easily. Some examples of

creational patterns are abstract factory, factory method, singleton and builder design

patterns.

On the other hand, the structural design patterns deal with the composition of

classes and objects instantiated. Compositions of interfaces of classes and also of

primitive objects to perform different and more complex tasks are the scope of the

structural patterns. Composite, proxy, adapter and flyweight design patterns are some

examples for this kind of design pattern.

And finally, the behavioral design patterns deal not only with the algorithms the

objects implement but also with the flow of control between the objects

interconnected to perform more complex tasks. Therefore, as mentioned by (Gamma,

& et al., 1995, p. 221), the developer can focus on the way objects interconnected

and need not have to deal with the flow of control. Observer, mediator, template

method and interpreter design patterns are some examples for behavioral design

patterns.

40

3.2.1 Visitor Design Pattern

The visitor design pattern belongs to the class of behavioral patterns. It establishes

an abstraction between the function that contains the defined algorithm and the

structure composed of objects that are instantiated from same or different classes on

which the visitor will operate. Therefore, in order to add new algorithm, there

remains no need to alter the object classes, as indicated by (Gamma & et al., 1995).

It will be better to give an example to motivate the concept. Consider a 3-D

simulation software utilizing a scene graph data structure for functional and spatial

grouping of several node objects instantiated from different classes, for adding new

node objects to the graph and also for performing several rendering operations such

as culling, level of detail (LOD) modification, vertex processing, texture processing

and altering the transformation matrices of several node objects forming the scene

graph. If all these operations are implemented as member functions in each different

class, then there will exist unnecessary code overhead that may cause conflicts. As

indicated in (Gamma, & et al., 1995), each new operation could be added separately,

and also the node hierarchy should be independent of the functions that will operate

on them. This will also lead to node objects of different classes that will consume

less memory. So, the solution is to develop a class that will contain the necessary

operations and then to instantiate an object from that class named as a visitor. The

visitor class and the scene graph structure will be independent. When a new

functionality is demanded, it will simply be a member of a child visitor derived from

the abstract parent visitor. Additionally, no modification will be done to the graph

node classes. Therefore, a minimal code development effort will be needed.

The visitor pattern works simply as follows. It contains two hierarchies of classes.

The different types of objects forming the data structure are instantiated from the first

class hierarchy which is the object hierarchy. The visitors that embody the necessary

functionalities and operate on the data structure’s objects from different classes are

instantiated from the second class hierarchy which is the visitor hierarchy. The

function that will be called when the visitor is accepted by the object of the data

41

structure – in the above example, the nodes of the scene graph- is selected using the

concept of double dispatch. This means that, the visit function call of the visitor

object is done considering the function signature, the runtime type of both the visitor

and the visited object.

For the general implementation case, the object class hierarchy and visitor class

hierarchy implementation details can be followed from figure 3.7 which is taken

from (Gamma, & et al., 1995). In this figure, the visit functions are declared in

Visitor class. The implementations of the declared functions are done in

ConcreteVisitor1 and ConcreteVisitor2 classes which inherit from Visitor class.

These functions are called according to the double dispatch concept defined above.

Element class declares the accept function. The implementation of that function is

done in ConcreteElementA and ConcreteElementB classes. ObjectStructure hold

Element objects together.

ObjectStructure

Client

Visitor

VisitConcreteElementA(ConcreteElementA)

VisitConcreteElementB(ConcreteElementB)

ConcreteVisitor2

VisitConcreteElementA(ConcreteElementA)
VisitConcreteElementB(ConcreteElementB)

ConcreteVisitor1

VisitConcreteElementA(ConcreteElementA)
VisitConcreteElementB(ConcreteElementB)

ConcreteElementA

Accept(Visitor v)
OperationA()

ConcreteElementB

Accept(Visitor v)
OperationB()

v VisitConcreteElementA(this) v VisitConcreteElementB(this)

Element

Accept(Visitor)

 Figure 3.7 Visitor design pattern class diagram (Gamma, & et al., 1995, p.334).

42

 For the specific 3-D simulation software example given in the preceding

paragraphs, Visitor corresponds to the parent class of visitor classes specialized for

culling, coordinate transformation computing, texture processing and so on. These

specialized visitor classes in the example correspond to ConcreteVisitor1 and

ConcreteVisitor2 classes in figure 3.7. ObjectStructure corresponds to the scene

graph, Element corresponds to the nodes, ConcreteElementA and ConcreteElementB

correspond to nodes derived from a parent class and Client corresponds to the

application.

3.2.2 Observer Design Pattern

The observer design pattern belongs to the class of behavioral patterns. This

pattern is composed of at least two objects instantiated from subject and observer

classes respectively. Subject and its observers are decoupled. Additionally, the

objects instantiated from observer classes are independent of each other. This

structure leads to an increased reusability. The observer objects are registered with

the subject object. The goal of the pattern is to define a relationship between the

subject object and its observer objects so that when the subject object changes its

state, the observer objects that depend on the subject object are notified and their

states are updated automatically.

The subject object encapsulates the data. On the other hand, the observer objects

encapsulate their own member functions that operate on the data encapsulated by the

subject object. As mentioned by (Gamma, & et al., 1995), this pattern can be used

when there are two abstractions one dependent on the other so that encapsulating

these abstractions in separate objects increases reusability and the independent

modification of the object classes. The pattern is also suitable for cases when a

change in one object requires a change in the dependent objects without the

knowledge of the number of dependent objects and without the knowledge of who

those objects are.

43

The class diagram of the observer pattern is summarized in figure 3.8 which is

taken from (Gamma, & et al., 1995). In the figure, Subject class provides a

registration interface for any number of observers; on the other hand Observer class

provides an updating interface for the subject state change notifications.

ConcreteSubject and ConcreteObserver classes are child classes of Subject and

Observer classes respectively. ConcreteSubject stores the state in which

ConcreteObserver objects are interested; and it notifies them when that state

changes. ConcreteObserver stores the state it is interested in and implements

observer update interface to synchronize that state with ConcreteSubject.

 Figure 3.8 Observer design pattern class diagram (Gamma, & et al., 1995, p. 294).

Two of the application examples where this pattern is used in the scope of this

thesis are as follows. The first of them is the graphical user interface development by

using Qt Toolkit. The signal / slot model of Qt Toolkit implements the observer

design model. In Qt, the controls can send signals to other controls for notifications.

The signals contain the event information and the slots contain the functions for state

update as depicted by (Blanchette & Summerfield, 2008). The second section where

the observer pattern used is the Ogre3D rendering engine. Several observers are

registered to the corresponding subjects within the engine in order to receive

notifications upon state changes during the simulation and then act accordingly. For

44

instance, (Junker, 2006, p. 38) depicts that FrameListener is a way to notify the

application about the frame-started and frame-ended events during the simulation in

Ogre3D rendering engine.

3.2.3 Singleton Design Pattern

The singleton design pattern belongs to the class of creational patterns. It can be

thought as the implementation of mathematical concept of singleton in which a

singleton means a set with only one element. This is depicted at (Wikipedia, 2010b).

The term singleton has also correspondences in set-theoretic construction of natural

numbers, in axiomatic set theory and in topological constructions in mathematics as

mentioned by (Wikipedia, 2010c).

This pattern finds use when there is a need for only one instance of a certain class

and only one access to that instance. One might think that declaring a global variable

can satisfy this need, but as depicted by (Gamma, & et al., 1995, p. 127), although

object that is accessible is instantiated, declaring a global variable does not guarantee

preventing multiple object instantiations.

The class diagram of the pattern is given in figure 3.9 which can be found in

(Gamma, & et al., 1995, p. 127). In the figure, Singleton class defines Instance

operation and lets its clients to access its data.

 Figure 3.9 Singleton design pattern class diagram (Gamma, &

 et al., 1995, p. 127).

45

As an example, the rendering system of Ogre3D used throughout the thesis work

can be considered. The engine implements the rendering system using the singleton

design pattern, because there should be only one instance of the render system and

only one access point for the clients of that system.

3.2.4 Factory Method Design Pattern

The factory method design pattern belongs to the creational patterns class. It

defines an interface in a parent class for instantiating an object without defining its

class. The subclasses can override the creating function which is named as factory

method to define the class of object that will be instantiated. Therefore, not only a

common interface is established between different classes from which objects are

instantiated, but also flexibility is gained in application by delegating the subclasses

to take the responsibility of knowledge of object instantiation and freeing the parent

class from estimating which classes might be needed in the application for the future.

As a result, each new application developed using the participant classes of the

factory method design pattern can derive a class with different functionality when a

need occurs without breaking the common interface persistent in the application or in

the framework.

The class diagram of the factory method design pattern is given in figure 3.10

which is taken from (Gamma, & et al., 1995, p. 108). In the figure, Creator class

declares the factory method to instantiate an object from Product class. Product

declares the interface for objects instantiated by the factory method. ConcreteCreator

is the subclass of Creator class. It is responsible for the implementation of the

factory method to instantiate ConcreteProduct object.

46

ConcreteProduct

Product

Creator

FactoryMethod()

AnOperation()

ConcreteCreator

FactoryMethod() return new ConcreteProduct

...
product=FactoryMethod()
...

 Figure 3.10 The factory method design pattern class diagram (Gamma, & et al., 1995, p. 108).

 Many software frameworks are examples where the factory method design pattern

is used extensively. Ogre3D rendering engine widely uses this pattern to create

instances of abstract interfaces as depicted by (Junker, 2006, p. 38). For example,

Scene manager API of the engine acts as a factory for instantiating different objects

such as cameras and lights which is also mentioned by (Junker, 2006, p. 57).

3.2.5 Iterator Design Pattern

Iterator design pattern is one of the behavioral patterns. The pattern aims to access

the elements of an aggregate object without the need for the knowledge of the inner

structure of that object. An aggregate object is an object instantiated from a class

with no user constructor, no private or protected non-static data members, no parent

class and with no virtual functions. Two examples are lists and vectors. Detailed

explanation with an example can be found at (Wikipedia, 2010d).

 In addition to accessing the elements of an aggregate object, in many cases, there

will be a need for traversing the elements in different directions or a need for

multiple traversals on the aggregate object. These tasks can be accomplished trivially

47

by encapsulating each different traversing algorithm in each of the aggregate classes.

The end result will be unwanted increase in the code size, difficulty in development

and maintenance of the software. Instead, the traversing algorithm can be decoupled

from the aggregate class and it can be put into an iterator. By this way, a need to

modify the aggregate class won’t exist any more and all different traversing

algorithms can be put into the iterator class as mentioned in (Gamma, & et al., 1995,

p. 258).

 Polymorphic iteration is the key concept in this pattern that decouples the

aggregate object and the iterator. Therefore, the iterator does not have to know the

particular type of the aggregate object it is traversing. Hence a uniform and

transparent interface for traversing aggregate objects instantiated from different

classes is maintained. Therefore, the iterator class does not need to be modified when

a change occurs in the class of the aggregate object being traversed.

 The class diagram of the iterator design pattern is given in figure 3.11 which is

taken from (Gamma, & et al., 1995, p. 258). In the figure, Iterator class declares an

interface for traversing elements. ConcreteIterator class not only implements the

interface that Iterator class declared but also knows the position in the current

traversal of the elements of aggregate object. Aggregate class declares an interface

for creating Iterator object. ConcreteAggregate class implements that interface in

order to create suitable ConcreteIterator object. One point should be considered here.

As seen in figure 3.11, the factory method pattern is used in the Aggregate class

hierarchy in order to create the appropriate ConcreteIterator object; Aggregate class

has no knowledge which ConcreteIterator object to create at compile time. That task

is passed to ConcreteAggregate class. ConcreteAggregate classes create suitable

ConcreteIterator objects at runtime.

48

Iterator

First()

Next()

IsDone()

CurrentItem()

Aggregate

CreateIterator()

ConcreteAggregate

CreateIterator()

return new ConcreteIterator(this)

ConcreteIterator

Client

 Figure 3.11 Iterator design pattern class diagram (Gamma, & et al., 1995, p. 258).

 As an example, C++ Standard Template Library (STL) uses this pattern to access

and traverse the elements of objects instantiated from template classes such as vector,

map and list. C++ STL is widely used to keep track of the render objects and their

corresponding collision shapes in appropriate data structures like maps. The elements

of maps and other data structures implemented in C++ STL can easily be accessed

and traversed by appropriate iterators. Similarly, in Ogre3D engine, the elements of

the scene graph are manipulated and traversed using the appropriate iterators.

3.2.6 The Façade Design Pattern

This pattern belongs to the class of structural design patterns. For the researches

interested in the word façade; the word is from the French Language in which it is

used to mean the exterior of building. This explanation will certainly make things

clear for understanding the pattern. The detailed explanation of the literal meaning

can be found at (Wikipedia, 2010e). The aim of the pattern is to provide a simple

interface enabling the client objects to access the subsystems of a complex system

thereby, abstracting the clients from the complexity of the subclasses. What a client

49

sees is just one simple interface that has the ability to get the full potential of the

subsystems. On the other hand, the subclasses in the system are unaware of the

façade object they are communicating with. Although this pattern simplifies the

development process, it may limit benefiting from the full potential of the subclasses;

because providing one simple interface to all subsystems may limit customizability

of the subsystems. Therefore, the pattern should have a second access point to the

subsystems for the clients wanting to customize and more functionalities to the

subsystems.

The class diagram of the façade pattern is given in figure 3.12 which is taken from

(Gamma, & et al., 1995, p. 187). In the figure, Façade class is responsible of

transmitting requests of the clients to the appropriate subsystem classes. Upon

receiving the request from the object instantiated from Façade class, the subsystem

objects perform the related tasks.

The façade design pattern is used in Ogre3D rendering engine to implement Root

class. The client object can access the required functionality of the root object

instantiated from Root class. Therefore, a simple interface for the client is established

to use the various functions of the rendering engine. The detailed explanation of the

concept can be found at (Junker, 2006, p. 46).

subsystem classes

Façade

 Figure 3.12 Façade design pattern class diagram (Gamma, & et al., 1995, p. 187).

50

3.3 What is a Software Engine?

The visual rendering and physics rendering tasks of the virtual environments in

many simulation software are accomplished via independent set of functions in two

independent software assemblies aimed for a common task. These software

assemblies are named as graphics engine and physics engine respectively.

Considering the explanations in the previous sections of this chapter, the concept

of engine can be explained as follows. Engine in software is a collection of modules

that implement required data structures and algorithms and designed by benefiting

from the related software design patterns where necessary to accomplish a common

task. These tasks can be graphics rendering, physics rendering as well as video

processing and audio processing.

Figure 3.13 depicts the first real time graphics engine coded by means of getting

reference from (Seddon, 2005) for creating a 3-D virtual environment. This practical

study helped in understanding the composition of the software modules,

communication between the software modules and working principles of a simple

graphics engine.

 Figure 3.13 A 3-D scene from the first real time graphics engine coded for in-depth study.

51

CHAPTER FOUR

GRAPHICS PROCESSING UNIT PROGRAMMING FOR GRAPHICS AND

GENERAL PURPOSE COMPUTING

 Graphics processing units (GPUs) have undergone a rapid evolution period since

late 90s up to now. Today, GPUs are far beyond a simple hardwired 2-D rendering

control units. They evolved into programmable massively parallel computational

processors with their flexible architecture specialized for matrix and vector

calculations and with their own programming languages. This chapter serves as a

survey to understand the fundamentals in computation and to leverage the power of

modern GPUs. The development history of “the computation” and of GPUs, the

hardware architecture of modern GPUs, the benefits of parallelism, the use of GPUs

for graphics and general purpose computing, the need for high level programming

languages for GPUs and the related programming languages are briefly covered in

this chapter.

4.1 Short History of Computing Machines – From Antikythera Mechanism to

Today’s Massively Parallel GPUs

 Accurate and fast computing has always been a need for humans since ancient

ages. The oldest computing machine discovered so far and named as the Antikythera

Mechanism belongs to Ancient Greek. It is thought to have been built at about 150 –

100 BC with the intent to calculate the cycles of the Solar System and astronomical

positions. With its complex mechanical gear structure, it is accepted as the first

known analog computer. Figure 4.1 depicts the main fragment and the 3-D rendering

of the machine. No sign of such technically complex computing machine was found

until the 14th century when mechanical astronomical clocks appeared in Europe. An

astronomical clock invented by Al-Jazari in 1206 is considered to be the first

programmable computer as depicted by (Wikipedia, 2010f). For further details, the

researcher should refer to (Freeth, Jones, Steel, & Bitsakis, 2008), (Wikipedia,

2010g) and (Edmunds, 2010).

52

 (a) (b)

Figure 4.1 (a) The main fragment of the Antikythera Mechanism (Wikipedia, 2010g). (b) The 3-D

rendering of the complete computing machine (Edmunds, 2010).

 For the investigation of the roots of today’s powerful processors and

programming languages, a long jump is needed from the mid ages to the time of

Charles Babbage (26.12.1791 – 18.10.1871). Babbage was an English

mathematician, philosopher, inventor and mechanical engineer who originated the

concept of programmable computer (Wikipedia, 2010h).

The inspiration for his inventions was mostly due to the high error rate of

calculations performed by humans at that time. His intent was to mechanically

calculate mathematical tables to prevent the human errors. Towards this aim, he

began building a special purpose mechanical machine which he named as the

Difference Machine in 1822. The difference machine can automatically calculate

polynomial functions. As polynomial functions can also be used to approximate

trigonometric and logarithmic functions, the machine would find a very wide usage

area. The operation principle of the difference machine was based on Newton’s

divided differences. If the initial value of a polynomial (and of its finite differences)

is calculated by some means for some value of X , the difference engine can

calculate any number of nearby values using the method of finite differences

(Wikipedia, 2010i). Therefore there was no need for multiplication and division

during the computations. In addition to this technically complex machine, Babbage

also designed a printer for his difference engine that is highly complicated for the

19th century. The reconstruction of the difference engine is seen in figure 4.2 (a).

53

 (a) (b)

Figure 4.2 (a) The fully operational Difference Engine at Computer History Museum in Mountain

View, CA. (Wikipedia, 2010i). (b) A trial model of a part of the Analytical Engine at the Science

Museum, London (Wikipedia, 2010j).

 In 1837, Babbage designed the first version of his second computing machine

named as the Analytical Engine. A trial model of a part of the Analytical Engine is

seen in figure 4.2 (b). This machine is the first mechanical general purpose computer.

The important point when compared to the Difference Engine which was a special

purpose machine was that the Analytical Engine was programmable via punched

cards. Ada Lovelace was the first mathematician and the first computer programmer

who first wrote a program to compute a sequence of Bernoulli Numbers for the

Analytical Engine. The Analytical Engine had several features such as sequential

control, conditional branching and looping in addition to mechanical units to

implement today’s memory units, arithmetical logical units (ALUs) for arithmetic

operations and comparisons and optionally for square roots calculations. The

complex instructions that the user’s program includes are computed by the ALU of

the machine which was a mill relying on its own internal procedures. The punched

cards on which the user’s program was written were of three different types aimed

for arithmetical operations, numerical constants and read write operations. These

punched cards were being inserted into their own readers on the machine. For more

information, the researcher should refer to (Wikipedia, 2010j). The language used by

the machine can be regarded as the origin of the today’s assembly language. As the

machine has support for conditional branching and memory read write operations,

the machine can be called as Turing complete in the context of Computability

Theory. More on this can be found at (Wikipedia, 2010k).

54

 Analog computers were being used in the 20th century for the computations

regarding scientific problems. Those machines used mechanical or electrical model

of the scientific problem for computation. But important point was that, they were

not programmable and not accurate. Hence they can be considered as specific

purpose computing machines. One of the first steps in 1937 towards today’s digital

computing machines was a relay based calculator named Model K whose designer

was George Stibitz. It was the first model that used binary circuits to perform

arithmetic operations. The other important step was the programmability. The first

programmable, fully automatic computing machine was the electomechanical device

Zuse Z3 designed by Konrad Zuse. It performed binary arithmetic and floating point

arithmetic. It was a program controlled device that used punched cards. The picture

(a) of figure 4.3 shows Zuse Z3 replica. Following Zuse Z3, the non-programmable

Atanasoff Berry computer designed in 1941 was important for its vacuum tube based

computation, binary numbers and its regenerative capacitor memory that allowed a

feed back mechanism to be established for feeding back the stored elements into

computation. The period of World War II witnessed many technical improvements in

programmability and hardware of computing machines. For breaking German secret

ciphers, the British Colossus computers were developed in 1943. The picture (b) of

figure 4.3 shows a Colossus rebuild. It had limited programmability capabilities, but

thousands of vacuum tubes in its architecture were reliable and electronically

reprogrammable. The Harvard Mark I computing machine developed in 1944 was

another important electromechanical device with limited programming capabilities.

ENIAC that was designed in 1946 at the U.S Army’s Ballistic Research Laboratory

was the first general purpose computer that would highlight the future designs. The

handicap of the device was its inflexible architecture and the need to change the

wiring to reprogram the device. The picture (a) of figure 4.4 shows the vacuum tubes

of ENIAC.

55

 (a) (b)

Figure 4.3 (a) Zuse Z3 replica at Deutsches Museum in Munich (Wikipedia, 2010l). (b) A rebuilt

version of the Colossus (Wikipedia, 2010m).

 (a) (b)

Figure 4.4 (a) The vacuum tubes of ENIAC (Wikipedia, 2010n). (b) A die of Intel 80486DX2

microprocessor (Wikipedia, 2010f).

 Up to now, it is seen that two important concepts in computing was

programmability and hardware architecture (application of electromechanics,

vacuum tubes, etc…) of the devices.

 At this point the mathematical theories and ideas of two mathematicians gain

importance. Those mathematicians namely John Von Neumann and Alan Turing

were considered to be the fathers of computer science. The theoretical works of

Neumann and Turing should be definitely studied by anyone scientifically interested

in computer science and mathematics. Those details will not be covered here as they

are out of the scope of the thesis research.

56

 The inflexible architecture and the need for rewiring for programming were

potential problems of ENIAC. The solution was John Von Neumann architecture

which was a model for stored program architecture. Stored program architecture

refers to a computing machine that has built-in instruction set and to a memory to

write and read the program and the data for the computations. The theory and

technical details of this architecture can be found in (Neumann, 1945). Although the

semiconductor technology that is the base of computers has advanced from 1940s up

to now, the architecture of most computers used today is exactly the von Neumann

architecture or modified version of the von Neumann architecture. A die of Intel

80486DX2 which can be considered as an advanced semiconducter technology for

1990s is seen in the picture (b) of figure 4.4. In von Neumann architecture, the

instructions and data are stored in the same memory unit that can be read and written.

This is in contrast to Harvard architecture where the instructions and data are stored

in seperate memory units. In fact, Alan Turing had previously described the stored

program concept. At this point, his paper (Turing, 1936) is an important resource for

the researcher. In that paper, he describes a hypothetical machine with an infinite

memory in which both instructions and data are stored. In the literature, this

hypothetical machine is called as Universal Turing Machine. In 1946, both Alan

Turing’s Automatic Computing Machine (ACE) and the other computing machine

EDVAC in which John Von Neumann participated in its development process, used

the stored program concept in their designs.

 In addition to flexible programmability, error free programming is an important

concept for computing machines. In the early days, the programs were being written

directly in machine code in which each instruction was represented with an unique

number namely with its opcode. Although this technique was used in early

computing machines, it had high error probability especially as the complexity of the

programs evolved. The next programming technique was to write the program in the

computing machine’s assembly language in which each instruction was given a short

name identifying its function. For complex programs, assembly language was also

error prone. Together with the machine language, assembly language were low level

57

programming languages targeted for a specific machine. What if someone wanted to

port a program developed for a specific machine to another one?

 At that point, high level languages and specific design patterns gained importance

as a solution. High level languages like C, Fortran, C++ or Java abstract the

programmer from the hardware details of the computing machine, hence the

programmer could focus on the main problem to be solved. Additionally, the

developments in high level languages were more error free and portable across

different computing platforms. The history, technical details and related links of the

preceeding paragraphs can be found in (Turing, 1936), (Neumann, 1945),

(Wikipedia, 2010h), (Wikipedia, 2010f) and (Wikipedia, 2010k).

 A reader might think that the preceeding paragraphs might be long for a scientific

history of computing machines. But when inspected, beginning from 1970s until

today it can be seen that the evolution of graphics processing units (GPUs) has

correspondances more or less with the evolution of modern computing machines that

are central processing units with appropriate peripheral units.

 The evolution of special purpose processors for graphics began with ANTIC and

CTIA chips produced for hardware control of mixed graphics and text modes on

Atari 8-bit computers in 1970s. In 1984, IBM released its first 2-D/3-D graphics

accelerator namely IBM Professional Graphics Controller (PGC) as seen in figure

3.5 which is taken from (Elliot, 2010). Technical details of PGC can be found in

(Wikipedia, 2010o). IBM 8514 video card was one of the pioneers that implement

2-D primitives in hardware. At this time, Commodore Amiga has its own full

graphics accelerator and graphics coprocessor with its own primitive set that offloads

all video generation functions to hardware. Prior to this, those tasks were being

handled by central processing unit (CPU).

58

 Figure 4.5 Three layers of IBM’s first 2-D/3-D accelerator PGC released in 1984 (Elliot, 2010).

 Beginning from 1990s, OpenGL and Microsoft DirectX became the horsepower

of hardware development. OpenGL had both software and hardware

implementations. The detailed development history can be found at (Wikipedia,

2010s) and (Fernando & Kilgard, 2003, chap. 1). Up to late 1990s, the GPUs in this

period were capable of rasterizing pre-transformed triangles and one of two textures.

GPUs were performing pixel updates instead of central processing units (CPUs). But

on the other hand, they lack of adequate set of math operations for computing

rasterized pixel color. Additionally, CPUs were still performing vertex

transformations.

 At the end of 1990s, both vertex transformations and lighting has begun to be

done by GPUs instead of CPUs. OpenGL and Microsoft DirectX supported hardware

vertex transformation. The hardware in this period were configurable rather than

programmable. As in the mid 1990s, although the set of mathematical operations that

the GPUs support in hardware improved, they were not adequate for complex texture

and pixel color operations.

59

 By the early 2000s, GPUs began to support vertex programmability. This was an

important step, because rather than using only the predefined OpenGL or Microsoft

DirectX transformation and lighting techniques, from there on, the developers would

be able to define a program for transforming the vertices according to their needs. On

the other hand, pixel programmability was still impossible. Only OpenGL and

Microsoft DirectX were supporting their pre-defined pixel level configurability.

 Towards the mid 2000s, GPUs were supporting not only vertex programmability

but also pixel programmability. Therefore, CPUs completely released vertex

transformation and pixel shading operations to GPUs. In addition to this, both

OpenGL and Microsoft DirectX began to support vertex-level and pixel-level

programmability.

4.2 Shaders

At this point an important technical term gains importance that is “shader”.

Shaders are set of instructions that is used to program the programmable pipeline of

the GPU. Technical details can be found in (Möller, & et al., 2008, chap. 2, chap. 3),

and (Wikipedia, 2010p). There are three types of shader.

Vertex shaders are run for each vertex that is transferred to the GPU. The

developer can code a vertex shader for transforming the vertices according to the

needs. No topology change that is addition or removal of a vertex can be done in this

stage. The output of the vertex shader is either transferred to the rasterizer or if exists

to the geometry shader along the graphics pipeline of the GPU. Geometry shaders

can perform a topology change. Geometry shaders are set of instructions that are

used to generate geometry or add volumetric details to the existing geometry that will

be too costly if done on the CPU. The output of a geometry shader is transferred to

the rasterizer along the graphics pipeline. Finally, fragment shaders (pixel shaders

can be used interchangebaly although not appropriate) are set of instructions that are

used to calculate the color of each pixel. The input to the fragment shaders are from

the rasterizer. The rasterization stage uses the vector graphics that are polygons to

60

generate a raster image that are composed of pixels to be displayed on a display.

Fragment shaders are used for lighting, several graphics effects like bump mapping

and for other application specific transformations for pixel color. As it is seen

developer can develop necessary programs for appropriate shaders for each pixel that

will be seen on the screen.

4.3 Fixed Function Graphics Pipeline and Programmable Graphics Pipeline

Architecture in Detail

 Geometry shaders will be shown partly connected in the figures of this section as

geometry shaders were not used in the shader models prior to Shader Model 4.0 as

depicted in (Möller, & et al., 2008 p. 41). The fixed function graphics pipeline is

seen in figure 4.6.

 In figure 4.6, the 3-D application layer can be a simulation, a game or etc… using

OpenGL API or Microsoft Direct3D API high level instructions to process the scene.

These APIs decompose complex meshes into triangle primitives and then send

necessary low level instructions along with the data stream to the GPU via the

communication bus between CPU and GPU. In the GPU front end, the vertices are

transformed into a common coordinate system for further transformations and

lighting. Only affine transformation is performed in this stage in order not to twist

triangles into curled shapes. At the vertex transformation stage, other necessary

geometric transformations are done and the vertices are transformed into the screen

coordinate space for the rasterizer. Texture coordinates and vertex lighting are also

completed in this stage for texturing and vertex color calculation respectively. The

output of the vertex transformation stage is input to the primitive assembly stage

along with the vertex indices for generating triangles, lines or points. These

primitives are input to the rasterization stage.

In the rasterizer, the primitives are either clipped to the view frustrum or

application defined clipping volume. This process is called as clipping. View

frustrum is a pyramid that is cut beneath its apex by a near clip plane and a far clip

61

plane forming its base. View frustrum represents the 3-D scene that the camera in

other words the viewer observes at a particular time. It can be configured by field of

view angles. Additionally, the rasterizer may discard primitives according to their

face orientation that is either front face, back face or none of the faces are discarded.

This called culling. Clipping and culling is important for reducing the number of

primitives that will be transferred to the later stages in the pipeline in order to

decrease the work load of the following stages.

 Figure 4.6 Fixed function graphics pipeline.

The rasterization stage calculates the pixels in the screen that is covered by the

primitive and the fragments needed to update the pixel locations. Fragments

62

generated in this stage are used for pixel update decision. Consider that the pixel ip

is in the rasterizer output set W and the rasterizer input set is V in which a

geometric primitive vertices are contained. Then;









=≥=∋=∈∀∈∀ ∑∑
==

 triangleif ,3

 line if ,2

point if ,1

 where0,1,,
11

kvpVvWp n

k

n

n

k

n

nniii ααα

 The fragment texturing and final colour calculation task is performed in the

fragment colouring and texturing stage. A depth value may be defined, the fragment

value may conditionally be discarded or not. The output of this stage is one or zero

coloured fragments for each of the input fragment. These output fragments are

processed by raster operations that are shown in figure 4.7. These operations are

common both in Microsoft Direct3D and OpenGL APIs.

 Figure 4.7 Raster operations in detail.

63

 Raster operations stage is the last stage prior to updating the pixel value in the

frame buffer. As depicted in (Luebke & Humphreys, 2007), many rasterization

algorithms have been developed for this stage. All of these algorithms utilize one

common observation that is each pixel can be processed independently from the

others in parallel. This observation has resulted in development of massively parallel

pipeline architectures in GPUs. Pixel ownership identifies whether the pixel is

obscured by an overlapping window. Scissor test clips the fragments defined by the

application. Alpha test discards the fragment based on its alpha value. Stencil test

discards the fragment based on the comparison between the value in the stencil

buffer and the reference value. Stencil buffer is composed of non-displayable bit

planes that provides stencil value for every pixel. Stencil test provides extra

rendering control by logical operations. Depth test discards the fragment by

comparing its depth value with the corresponding depth value in the depth buffer.

The depth buffer stores floating point depth values for every pixel that will be

rendered. Stencil test together with depth test is used in many fundemental computer

graphics techniques such as shadowing and reflections. For details in stenciling refer

to (Kilgard, 1999). Blending combines the final colour of the fragment with

corresponding pixel value.

Dithering is the means of noise addition to the signal to reduce the quantization

errors that occurs due to the analog digital conversion of continuous data, as the

resultant digitized data is just the representation with limited bits of the analog data.

Similarly in computer graphics, dithering is a technique to create an effect of color

depth more than actual limited colors due to the colors represented with limited

number of bits i.e. 2 bits, 4 bits. The detailed examples can be found at (Wikipedia,

2010r).

At the end of the rasterizer stage, application defined logical operations are

performend, and according to the cumulative result of the rasterizer stage, a write to

the frame buffer is performed.

64

In years, GPUs evolved from fixed function graphics pipeline into fully

programmable computational units. Figure 4.8 shows the programmable graphics

pipeline.

 Figure 4.8 Programmable graphics pipeline.

 In the programmable graphics pipeline, vertex processor, geometry processor and

fragment processor are fully programmable by the application developer. The first

task in the vertex processor is to load vertex specific data such as position, texture

coordinates, color, and etc... to the vertex processor. Then, the next instruction in the

vertex shader is fetched continuously until the vertex shader terminates. There are

three types of registers that the vertex processor uses. The vertex attribute registers

65

contain position, normal and colour vector values which are read only and defined by

the application. The temporary registers are for intermediate computation and they

can be read from or written to. The write only output registers are used for output

results for the transformed vertices and written by the vertex processor. This data is

either sent to the geometry processor or to the rasterizer along the pipeline. The

fragment processor perform texturing tasks in addition to the ability of performing

the math operations that the vertex processor has. The fragment processor can access

to a texture image by using texture coordinates and return a filtered sample of a

texture image. The fragment shader has instructions to fetch textures. The key point

for performance at this point is to use the lowest machine precision that is adequate

for the application, because fragment shaders are executed until the shaders terminate

for each fragment received. The read only input registers of the fragment processors

contain the interpolated per fragment parameters derived from the per vertex

parameters of the fragments primitive as depicted in (Fernando & Kilgard, 2003, p.

20). The temporary registers can be read from and written to for intermadiate

computations. The resultant color and depth value for each fragment are written to

the write only output registers of the fragment processor.

For further details, the researcher may refer to (Fernando & Kilgard, 2003,

chap. 1), (Möller, & et al., 2008, chap. 2, chap. 3) and (Kirk & Hwu, 2010, chap. 1,

chap. 2).

4.4 Unified Shader Architecture

The evolution of GPUs from a fixed pipeline to a programmable pipeline is an

important technical process on its own. But another important technical development

is “the unified shader model”. This model is also known as “Shader Model 4.0”. The

first hardware examples for this architecture were ATI Xenos chip for Xbox 360 and

NVIDIA 8800 chip for PCs. The unified shader architecture of NVIDIA 8800 is

shown in figure 4.9.

66

Vertex programs Fragment programs
Geometry
programs

Compute programs

GPU Memory (Image or data of general purpose computation is stored)

Rasterization
Hidden surface

removal

Programmable unified processor

Graphics
processing

unit

3-
D

 g
eo

m
et

ri
c

pr
im

it
iv

es

 Figure 4.9 One of the first unified shader architectures belonging to NVIDIA 8800 (Inspired from

 Luebke & Humphreys, 2007, p. 4).

Geometry shader was not part of the hardware accelerated graphics pipeline prior

to Shader Model 4.0 as depicted by (Möller, & et al., 2008, p. 41). Instead of seperate

custom processors for vertex, geometry and pixel shaders, a unified shader

architecture provides one large grid of data-parallel floating point processors general

enough to run all these shader workloads (Luebke & Humphreys, 2007). This model

uses almost the same instruction set for developing vertex, geometry or fragment

shaders. During the task processing vertices, triangles and pixels pass through a set

of programmable processors. The architecture that uses unified shader model is

named as “the unified shader architecture”. This architecture is more flexible than the

previous ones, because during the runtime of the application, the need for different

types of shader processors continuously varies. For example, at one time the

application may need vertex processors’ computation power more than that of

geometry or fragment processors for generating a detailed scene with millions of

vertices. In that case, geometry processors and fragment processors can be used as

vertex processors. Otherwise, they would wait idle for the vertex processors to

complete the task resulting in delayed task completition. Reversely, the application

67

may need a topology processing or pixel processing power for lighting or image

processing more than others. Again for that case, the idle shader processors can be

used for the geometry or fragment shaders respectively. As a result, in this

architecture a necessary amount of processors in the processor pool can be assigned

to the appropriate shader to balance the load. For further details, the researcher may

refer to (Kirk & Hwu, 2010, chap. 2).

4.5 The Need for High Level Programming Languages for Computer

Graphics–Cg HLSL and GLSL

 As a result of evolution in the programmability of GPU hardware, developers felt

a need for a programming language that will increase efficiency in development. As

in the case of history of CPU development, the assembly language was the initial

choice. Although assembly language enabled the programmers to use the GPU and

its registers as they wanted, the code development process became error prone

especially for long codes. The assembly code was not portable across different GPU

platforms and the learning curve of the several GPU assembly languages slowed

down the code development process severely.

The next step in developing codes for programmable graphics pipelines was the

high level languages that were portable, easy to learn and less error prone.

Additionally, these languages enabled the developer to focus on the problem at hand

not on the hardware layer. Today three high level programming languages for

programming the graphics pipeline for graphics dominated the world. These are Cg –

C for Graphics - a cross platform language which can be executed with Microsoft

Direct3D or OpenGL, HLSL – High Level Shading Language - from Microsoft

which needs Microsoft DirectX and hence Microsoft Windows to execute and GLSL

– OpenGL Shading Language - from OpenGL which needs OpenGL to execute. All

of them are C like language with some restrictions and some semantic differences

that allow the developer to program the vertex processors and fragment processors in

the programmable graphics pipeline of the GPU. Cg and HLSL are nearly similar in

programming perspectives as NVIDIA and Microsoft worked together during the

68

language development phase for common standards. For programming details in Cg,

HLSL and GLSL the researcher should refer to (Fernando & Kilgard, 2003) for Cg,

(Engel, 2004a), (Engel, 2004b) for HLSL and (Rost & Kane, 2010) for GLSL

respectively. The researcher interested in development in assembly language for

GPUs should refer to (Leiterman, 2004).

In the implementation case, Cg code cannot be used directly by a GPU. The code

should be converted to the target machine code. The Cg compiler compiles the code

that can be accepted by either Microsoft Direct3D or OpenGL API based on the

choice of the developer. The API translation of the code is passed to the GPU via

Microsoft Direct3D or OpenGL commands. Finally, Microsoft Direct3D or OpenGL

driver produces the machine code that is accepted by the target GPU. These

procedures are handled by the real time graphics engine Ogre3D that is used

throughout the thesis work.

 During the thesis work, Cg was mainly used for programming vertex and

fragment processors for bump mapping with parallax offset. This texturing method

and its modified schemes were used to texture wireframe models in the virtual

environment. HLSL was used for a special lighting effect namely for light shafts

implementation. Implementation of these graphics processing tasks in GPU released

CPU for handling simulation logic, physical rendering and collision detection tasks.

Prior to implementation in the actual simulation, theoretical and practical study

period for understanding general programming aspects of Cg and HLSL had been

evaluated. The results are given in figures 9.23 – 9.25.

4.6 NVIDIA Compute Unified Device Architecture - CUDA and General

Purpose Computing

 As the evolution of GPUs continued towards unified processor architectures, they

became more like parallel computation units. Therefore, researchers wanted to

exploit the usage of these systems in performance sensitive scientific and engineering

69

applications. Initially, the graphics APIs were just capable of executing graphics

related calls. The problem at hand should be cast in terms of these calls within a pixel

shader. The input data for the computation was being stored as a texture and sent to

the GPU by submitting triangles. Furthermore, the restrictive memory interface of

the GPUs and limited read and write abilities made the storage of the computation

results in the frame buffer much more difficult. The attempts for overcoming these

technical difficulties resulted in General-purpose computing on graphics processing

units (GPGPU). For details, the researcher should refer to (GPGPU.org, 2010). In

spite of its technical problems, the researchers in several institutions developed

successful applications. Stanford University’s folding@home project relies on GPU

based computations to study protein folding by using the spare cycles of the

computers of the users that donate to the project. The researchers at University of

North Carolina and Microsoft won a competition on sorting a database.

 By the time, NVIDIA was designing a floating point and integer processor that

could run tasks in parallel for Microsoft DirectX 10. The shader processors became

fully programmable with increased instruction memory, cache and sequencing logic

where each shader processor share its instruction cache and sequencing logic with

others. In addition to this hardware, memory load and store instructions were added

with the support of random byte addressing for compiled C programs. As a result, for

non graphics applications, this GPU architecture was a generic programming model

with a hierarchy of parallel thread, barrier synchronization and atomic operations to

dispatch and manage parallel work load. At this point the development of CUDA C

compiler (a support for C++ exist in newer versions of CUDA API for object

oriented programming), libraries and runtime enabled the program developers to use

this new hardware architecture. The main point was that, the application developers

were no longer needed to use graphics API such as Microsoft Direct3D or OpenGL

to access the GPU hardware for general purpose programming.

Similarly, ATI developed ATI Stream for general purpose computation on its

GPUs. An open source API named as OpenCL exists for the same general computing

purposes on both NVIDIA and ATI GPUs. But OpenCL is still under development.

70

 CUDA enables the GPU to be accessed like a general purposes CPU. The

application developer can access the virtual instruction set and memory units of

parallel computation elements in the architecture. In a typical heterogeneous

computing environment where CPU and GPU exists simultaneously; CPU is

typically called as a host and GPU is called as a device. The function that will be

executed in parallel is called kernel. The threads are contained in thread blocks

which can be one, two or three dimensional. In a same way, thread blocks form a

grid. This hierarchy is shown in figure 4.10 and figure 4.11 inspired from (NVIDIA,

2009a, p. 10, p. 11). The host executes the sequential code; on the other hand, the

device executes the parallel portion of the computation. The device code is compiled

by NVIDIA C Compiler nvcc which can be integrated into several development

environments such as Microsoft Visual Studio 2005, therefore both the host code

(Microsoft Visual C++ compiler for this particular case) and the device code can be

compiled in a batch. The researcher who isn’t convenient with multithreading and

multiprocessing concepts should refer to (Deitel, H., Deitel, P., & Choffnes, 2004).

Block (1, 1)

Thread (1, 0)Thread (0, 0)

Thread (1, 1)Thread (0, 1)

Block (1, 1)

 Figure 4.10 Threads inside of a thread block.

71

 Figure 4.11 Memory hierarchy of NVIDIA CUDA.

The following characteristics are valid for the time this thesis was being written.

Any frame memory area can be read from or written to. Threads can share a fast

shared memory region and high bandwidth communication is possible. Reads and

writes by GPU is faster. Integer and bitwise operations, integer texture looks up are

faster. The language for the device code is in fact ANSI C with no recursion and no

72

 (a) (b)

 (c) (d)

 (e) (f)

 Figure 4.12 Applications using NVIDIA CUDA. (a) Simulation of approaching two galaxies with

 260k particles for an initial interaction. (b) Calculation of beam dynamics of a cyclotron. (c)

 Numerical solution of stochastic differential equation for modeling the noisy dynamics of phase

 in Josephson junction. (d) Simulating brain vision and olfactory circuit. (e) Simulation of NaI

 solution molecular dynamics. (f) Level set segmentation with MRI.

function pointers but with addition of special keywords. The support for C++ is

available in Fermi GPUs. Thousands of threads can run simultaneously in total but

they should be in groups of at least 32 for optimized performance. Texture rendering

is not supported. Double precision data is supported for NVIDIA GTX 260 and

Injection line

ESD

Dee

Magnet sectors

Inflector

Injection line

ESD

Dee

Magnet sectors

Injection line

ESD

Dee

Magnet sectors

Inflector

73

newer GPUs. The bandwidth and latency between GPU and CPU is a disadvantage.

CUDA is available only for NVIDIA GPUs such as NVIDIA GeForce 8 and up,

Quadro and Tesla; on the other hand OpenCL can be used by many GPUs from

different vendors.

A simple example of matrix multiplication will give an insight of usefulness of

GPUs. Consider two matrices MxNA and NxPB . In a sequential matrix multiplication

code executed on a CPU, the complexity of the algorithm will be)(MNPO , whereas

if that multiplication is executed parallel on a GPU, each row-column multiplications

will be completed at once in parallel. There are many more uses of computing based

on GPUs in science and engineering. In figure 4.12, some examples from several

research communities and academia are given. For the practices done regarding

NVIDIA CUDA during the thesis period, refer to figure 9.26.

 Considering figure 4.12, the top left research is from (Groen, Harfst, & Zwart,

2009); top right research is from (Perepelkin, Smirnov, & Vorozhtsov, 2009) and

represents the calculation of beam dynamics of a cyclotron on two different

platforms. With 1000000 particles, the computations take 2 days 4 hours and 25

minutes on a 2.5GHz CPU and the same computations take just 34 minutes and 29

seconds on NVIDIA Tesla C1060 GPU. The middle left research represents a

numerical calculation of stochastic differential equation and a 675 times faster

calculation with NVIDIA TESLA 1060C than a CPU is indicated in (Januszewski,

Kostur, 2009). The middle right research represents brain circuitry, vision and

olfactory sensory computing with GPU in which the computations are executed with

130 times faster than CPU taken form (Kirk, n.d.). The bottom left research is a

molecular dynamics research with NaI solution from (Davis, Ozsoy, Patel, & Taufer,

2009) indicating 7 times speed up with GPU computing over CPU computing. The

bottom right research from (Roberts, Packer, Sousa, & Mitchell, 2010) represents the

level set segmentation of 2563 MRI data with GPU. GPU provides 14 times speed up

with GPU computing over CPU computing.

74

 This evolution of GPUs will continue in the future, perhaps faster than the

evolution of CPUs. GPUs have many more transistors than CPUs dedicated for

computations, more streaming bandwidth for data transfer and many more processing

units than CPUs. Figure 4.13 taken from (Kirk & Hwu, 2010, chap. 1, p. 3) depicts a

comparison of floating point operations per second between CPUs and GPUs from

year 2001 to 2009.

 Figure 4.13 Floating point operations per second for INTEL CPU, NVIDIA GPU

 and ATI GPU. (Kirk & Hwu, 2010, p.3).

Although a 64 bit INTEL Core i7 980X has a memory bandwidth of 25.6 GB/sec

(INTEL, 2010), NVIDIA GTX 295 has 223.8 GB/sec (NVIDIA, 2010) with 896 bit

memory interface width. Although today’s modern CPUs such as INTEL Q9550 and

Core i7 CPUs have 4 to 6 computation cores respectively, modern GPUs such as

NVIDIA GeForce GTX 295 have 480 computation cores in their architecture. This is

because, over the history of their development CPUs have evolved to decrease the

latency between the memory unit and the CPU (the researcher should notice the

connection with the von Neumann architecture mentioned previously) and for

executing sequential programs faster, but on the other hand GPUs have evolved for

massive vector and matrix operations done in parallel by thousands of threads which

is impossible even for the most high end CPU today. This parallelism and data

processing capacity make them very suitable not only for computation power

75

demanding visualization applications but also for scientific and general purpose

computation.

The researcher should refer to (Möller, Haines, & Hoffman, 2008), (Fernando &

Kilgard, 2003), (Rost, Kane, Ginsburg, Kessenich, Lichtenbelt, Malan, & Weiblen,

2010), (Kirk & Hwu, 2010), (Fernando, 2004), (Pharr & Fernando, 2005), (Nguyen,

2007) and (NVIDIA, 2009a) for further details in real time computer graphics,

GPUs, available programming languages, general purpose programming and

scientific computation on GPUs and NVIDIA CUDA.

76

CHAPTER FIVE

ESSENTIALS OF REAL TIME GRAPHICS RENDERING

 One of the two important modules of 3-D immersive virtual environment is the

graphics engine. Several visual rendering tasks such as lighting, shadowing, fogging,

texturing of visual synthetic objects, image based effects such as billboarding,

skyboxes, volume rendering, non-photo realistic rendering, etc… and affine

transformations of visuals are accomplished via graphics engine. Additionally,

graphics engines handle curve and surface rendering and processing tasks in 2-D and

3-D. Each graphics rendering engine uses a tree data structure to keep visuals and

rendering functions in a logically and spatially consistent hierarchy. This is already

mentioned in chapter three.

 In this chapter, the fundamental rendering techniques implemented, and other

graphics rendering techniques that are implemented targeting the graphics processing

unit (NVIDIA GTX 295 GPU) with programmable graphics pipeline will be given.

One of these techniques regarding lighting is named as “Light Shafts”. The vertex

shaders and fragment shaders for this technique is implemented in Microsoft HLSL

shading language. The other technique regarding the texturing of 3-D objects is

named as “Bump Mapping with Parallax Offset”. The vertex shaders and fragment

shaders for this texturing technique are implemented in NVIDIA Cg shading

language. Several experimental code studies for lighting, transformations, animation,

etc… with NVIDIA Cg can be found in figures 9.23 – 9.25. Therefore the usage of

vertex processors and fragment processors of the programmable graphics pipeline of

the GPU offloaded CPU from these computationally demanding tasks. As it will be

seen in chapter six, CPU mainly deals with the physics simulation tasks throughout

the thesis work. This chapter will present brief information on a well known “Gimbal

Lock Problem”. Finally, a hand rigging and skinning accomplished in the thesis work

for the interaction of the user with the visual object will be presented.

77

5.1 Transformations, Lines, Surfaces and Rendering Techniques in Computer

Graphics

Transformations, lines and surfaces are the basic building blocks of computer

graphics. The mathematical details of the subjects are partly given in chapter five.

For more mathematical coverage regarding graphics can be found at (Möller, & et

al., 2008). In the context of the thesis work, during the absence of the necessary

laboratory equipment, a stand alone application was developed targeting the creation

of several line and surface types such as Coons surface, BSpline surface, etc… and

performing transformations on these primitives without any use of graphics library.

The aim was to understand and implement the mathematics underneath. Furthermore,

it is known that the implemented surfaces in this application have a well known

usage in modeling soft tissues and objects. The researcher should refer to figure 9.16

for the implementation results.

Prior to developing the software, it would be wise to practice on fundamental

graphics rendering techniques regarding lighting, texturing, environment mapping

and occlusions. Maintaining a solid working background on these topics would save

time when problems occur in the actual software. Besides we would have a chance to

observe which techniques would be usable for us in the actual software development

process. For practicing rendering techniques, OpenGL is used. A well coverage of

topics can be found in (Möller, & et al., 2008) and (Wright, Lipchak, & Haemel,

2007). The researcher should refer to figure 9.17 for the implementation results.

5.2 Gimbal Lock Problem – Rotation via Euler Angles and Quaternions

In computer graphics, engineering and mathematics, rotations can be represented

by three forms. Briefly these representations are matrix representation, Euler angles

and quaternions. Each representation has its own advantages and disadvantages. The

researcher can refer to (Möller, & et al., 2008), (Bergen, 2004) and (Dunn &

Parberry, 2002) for detailed coverage. What we want to mention in this section is the

well known gimbal lock problem that occur with rotations via Euler Angles.

78

The problem occurred in the software development period when a 3-D virtual

object was tried to be oriented in the virtual world coordinate system by using the

Euler angles acquired from the motion tracking device. The technical details of the

motion tracking device can be found in chapter eight. Although a calibration

procedure of the motion tracking device had been done, the rapid rotations and

movements of the virtual object could not be avoided at certain orientations. The

technical and mathematical description of the gimbal lock problem that occurred can

be given as follows referencing from (Wikipedia, 2010t).

Gimbals are a ring like structures that are constrained to rotate only about one

axis. They are places one in another to define rotations about multiple axes. For

example, inertial navigation systems are common devices where gimbals are used. In

these systems, while the inner gimbal is constrained to be fixed, the outer gimbal

rotates about an axis. A set of three gimbals defining the orientation of the arrow is

given in figure 5.1 (a) with no gimbal lock problem. For some coordinate systems, it

seems suitable to assume that there exist gimbals coincident with the coordinate axes.

Therefore using the Euler angles seems feasible both mathematically and

programmatically. This assumption is valid if and only if the Euler angles are

constrained to an interval.

X
Y

Z

Pitch
Yaw

Roll

X
Y

Z

PitchYaw

Roll

 (a) (b)

Figure 5.1 (a) Three independent gimbal set with no gimbal lock problem. (b) When the arrow

pitched up 90 degrees, one degree of freedom is lost, yaw axis cannot be controlled. Yaw and roll

axes are dependent resulting in a gimbal lock problem.

79

Mathematically, the reason is that there exists no covering map from Euler angles

to rotations (topologically mapping from a torus to a 3 dimensional real projective

space). Therefore, at some points the rank of the system decreases from 3 to 2.

Hence, Euler angles cannot provide a unique representation at those points. The only

possible solution is to use quaternion representation (topologically mapping from a

sphere to 3 dimensional real projective space). Gimbal lock is exemplified in

configuration of figure 5.2 (b).

Quaternions are 4-D vectors ()zyxw ,,, that can be used to represent rotations if

12222 =+++ zyxw .),,(zyx is a 3-D complex vector and represents an arbitrary

axis of rotation. w is a real number that represents the angle of rotation. Therefore,

in contrast to Euler angles which are made of three successive rotations, a quaternion

represents a single rotation around an arbitrary axis. Hence a rotation θ around a

normalized axis ()000 ,, zyx is represented as follows in quaternion notation.










































2
sin,

2
sin,

2
sin,

2
cos 000

θθθθ
zyx (5.1)

 Besides their use in rotations, quaternions are used for the interpolation between

two orientations instead of Euler angles. During the thesis work, quaternions are used

both for rotations and interpolations between two orientations.

5.3 Lighting and Implementation of Light Shafts

Lighting is an important factor in creating natural 3-D virtual environments. Point

lights, directional lights and spotlights are the three important lighting types that can

be used depending on the needs. But none of these simulate how the light scatters

according to the environment it passes through. On the other hand, in a real

environment, light scatters and forms shafts while passing through an environment

with some particles. This effect in real world is shown in figure 5.2 which is taken

from (Smith, 2004).

80

Figure 5.2 Light shafts in a real scene resulting from sun rays partly occluded with clouds (Smith,

2004).

 In our 3-D virtual environment, the light rays from medical operation light were

modeled as if the rays were forming shafts because of the scattering. This light shaft

implementation was also used to highlight the anatomical parts that were touched by

the user hand in order to focus attention. Our mathematical, algorithmic reference for

the implementation was (Mitchell, 2004). The implementation results can be seen in

figures 9.4(c) – (d), 9.8 (a), 9.9 (a) and 9.11 (a)-(b).

5.4 Texturing and Implementation of Bump Mapping with Parallax Offset

Bump mapping is another lighting technique that combines per-fragment lighting

with surface normal perturbations supplied by a texture to simulate lighting

interactions on bumpy surface without excessive tessellation as indicated by

(Fernando & Kilgard, 2003). In 3-D real-time rendering applications, parallax offset

provides a depth feel hence more realism, i.e. walls or floors seem as if there were

gaps between the bricks. Simply speaking, the complexity of the scene is increased

without adding new polygons.

81

In order to implement this technique, the texture coordinate of a point on the

polygon should be displaced as a function of the view angle relative to the surface

normal and of the height map value at that point of the polygon. The algorithmic

details and generation of the height map can be found at (Fernando, & Kilgard, 2003)

and a forum topic can be found at (Guest, 2010).

The implementation results of the technique are given at figure 9.4 and 9.5 (a).

5.5 Hand Rigging and Skinning

Hand is an important part of a body for manipulating objects, touching,

mimicking, performing everyday tasks and etc … In the developed application; a 3-D

hand was used as an object manipulator of the user in the virtual environment. The

global translation and rotation of the 3-D hand was being performed by the second

sensor of the motion tracker device that was attached to the data glove. The first

sensor of the motion tracker device mounted on the HMD was being used for

tracking the user head translation and rotation for walking in the virtual environment.

In order to increase the realism and make the user feel as if he / she were using his /

her own hand, local finger movements of the virtual hand were also modeled

regarding the anatomical constraints of the user hand that is given in (Rhee,

Neumann, & Lewis, 2006). The rigging and skinning of the hand was done using

3DS MAX 2008. Then the completed hand model was exported to our software for

controlling the bones in order to perform various hand gestures.

In the rigging process, the hand was assumed to have 14 degrees of freedom i.e.

total number of joints. Two joints were connected to each other by bones. The bone

structure was setup so that it was coincident with the 3-D hand mesh. In the skinning

process, each bone was assigned a cylindrical like volumetric region in which it

would be able to control the vertices that were in the volumetric region. The

controllability of the vertex was defined by a coefficient value between [0,1]. The

vertices in the cylindrical like volumetric region had the coefficient of 1; and towards

the boundaries of the region the coefficient value decreases towards zero. This means

82

that, the bone would be able to affect less to the vertices on the boundary of its

control region. The results of rigging and skinning are given in figure 5.3.

(a) (b)

 (c) (d)

Figure 5.3 (a) The anatomical names of the hand joints, A. DIP joint, B. PIP joint, C. MCP joint, D.

IP joint. Each bone is connected to joints at its ends. (b) Five bend sensor data being acquired from

left hand for fist gesture. Right hand is captured for bone mapping in a similar way. (c) - (d) Each

bone has an effective cylindrical like volumetric region in which it can control the corresponding

vertices. The control coefficient of each bone in its region varies between 0 and 1. 1 corresponds to

full control as indicated by red vertices. Towards the boundaries of the volumes the control coefficient

decreases towards 0. Hence the vertices at the boundaries of the volumetric region are effected less by

the rotation of the bones. Those boundary vertices are shown in white. The vertices having

intermediate coefficient values have colors of yellow, green, etc… (Deformed in figure 9.4).

D

C

A

B

C

83

 The following hand joint heuristics are used regarding (Cerveri, Momi, Lopomo,

Baud-Bovy, Barros, & Ferrigno, 2007), where MCPθ , PIPθ , IPθ and DIPθ are the

MCP, PIP, IP and DIP joint angles respectively as shown in figure 5.3 (a).

PIPDIP

IP

PIP

MCP

θθ

θ

θ

θ

3

2

900

900

900

=

°≤≤°

°≤≤°

°≤≤°

 (5.2)

 For each finger, the only data acquired was from the bend sensor for each finger

found in the data glove. The incoming data for each finger was real valued between

[0, 1] where 0 corresponds to no bending and 1 corresponds to full bending of the

corresponding finger. This value can be thought as a linear combination of the angles

of the joints such that the nth sample value][nx received from the bend sensor can be

expressed as,

3

2
 ;][][

][
3

2
][][

][][][][

22441

221

321

cccnxcnxc

nxcnxcnxc

nxcnxcnxcnx

PIPMCP

PIPPIPMCP

DIPPIPMCP

+=+=

++=

++=

 (5.3)

 Assuming heuristically,

 ()][2][41 nxcnxc PIPMCP = (5.4)

 Using (5.4) with (5.3),][1 nxc MCP was found. By assumption 321 ,, ccc are all equal

to 1.0.][1 nxc MCP was linearly mapped to the interval [0, 90] degrees where

°=→=°=→= 00.0][,900.1][MCPMCPMCPMCP nxnx θθ . Similarly the other angles

are found using (5.4), (5.3) and (5.2). Observe that the calculations are valid up to a

constant. The implementation results are given in figures 9.4 (c) – (d).

84

CHAPTER SIX

ESSENTIALS OF REAL TIME PHYSICS RENDERING AND SIMULATION

OF DYNAMICAL SYSTEMS

Real time physics rendering can be divided into three main topics as linear

algebra, numerical analysis and topology. Hence, at this point, the fundamental

mathematical terms such as vector space, linear combination, span, linear

transformations and etc… from linear system theory course are assumed to be

understood. This chapter will introduce common topological definitions necessary

for background. Then the chapter will go on with collision models, collision

detection methods, mass-spring systems and constraint solutions. In a typical

application, these concepts are implemented as software modules of a physics engine

as shown in figure 6.1. For the detailed explanations related to topology and collision

detection given in this chapter, the researcher should refer to (Bergen, 2004),

(Ericson, 2005) and (Möller, & et al., 2008). For an additional mathematical

resource, the researcher should refer to (Strang, 1986), (Rugh, 1996) and (Rogers &

Adams, 1990).

 Figure 6.1 Components of an interactive real-time physics engine.

85

6.1 Topological Definitions

6.1.1 Affine Spaces

 An affine space is defined by a set of points, an associated vector space and two

operations as the addition of a point and a vector, and the subtraction of two points.

The addition of a point and a vector results a point according to the following rules:

(a) The addition of a point and a null vector 0 , (b) The addition of a point p and

vectors v and w using commutativity respectively as given below;

)()(

0

wvpwvp

pp

++=++

=+
 (6.1)

 Subtraction of two points yields a vector according to the following rule, where p

and q are points.

qpqp =−+)((6.2)

 A point x can be written as the affine combination of points npp ,...,0 can be

defined as,

1 ,
00

=∋= ∑∑
==

n

i

i

n

i

ii αpx α (iα are scalars.) (6.3)

Eliminating 0α from the equation and arranging the equation above yields a point

p as seen below.

1

,)()(...)(

0

1
0000110

=∋

−+=−++−+=

∑

∑

=

=

n

i

i

n

i

iinn

α

pppppαppαpp α

 (6.4)

86

 The set of affine combinations of points A is called as the affine hull and denoted

as)(Aaff . That is,









=∈= ∑∑
==

1,)(
00

n

i

ii

n

i

ii αAppAaff α (6.5)

 A set of points that is closed under affine transformations is called as an affine set.

Points, lines and planes are examples of affine sets. A set of points { }npp ,...,0 is

called affinely independent if the set { }001 ,..., pppp n −− is linearly independent.

The dimension of the affine space is that of associated vector space. The important

result is, the number of points in an affinely independent set is the dimension of its

affine hull plus one. This can be generalized to N dimensional spaces. A coordinate

system is a tuple of a point and a basis. Consider the point c as origin and basis

{ }nbb ,...,1 , then the point p can be expressed uniquely by vector V that is

{ } pV i

n

n point of scoordinate are where, ,...,1 ααα ℜ∈=

and

i

n

i

ii b and basis of originombinatione affine cthat is thbcp ,
0
∑

=

+= α (6.6)

 Therefore, the coordinate system defines an affine space in which each point is

defined uniquely by a vector of coordinates.

 In many cases while developing a 3-D application, multiple coordinate frames are

used. The same point can be defined relative to different coordinate frames, or the

coordinate system can be defined relative to a parent coordinate system. The affine

transformations are used for transforming coordinates from one coordinate frame to

another. The affine transformation T that maps coordinates to coordinates can be

stated as follows,

1 scalars, are , ,)()()(=++=+ βαβαqTpTqpT βαβα (6.7)

87

 In a same way, an affine transformation is determined by the images of the basis

and the origin of the given coordinate system. Considering B as the image of the

basis, and c be the image of the origin, the corresponding affine transformation T is,

 cBxxT +=)((6.8)

b2

b1

pc

e2

e1o

 Figure 6.2 Affine transformation in

2ℜ
 (Bergen, 2004, p. 16).

Considering figure 6.2, coordinates of point p is relative to the system

{ }()21,, bbc . Its coordinates relative to { }()21,, eeo is cBp + where basis vectors are

{ }21,bbB = . B and c are defined relative to { }()21,, eeo . The primal ancestor of all

coordinate systems is named as the world coordinate system. In figure 6.2, the world

coordinate system has origin o and basis vectors { }21,eeE = . The descendent

coordinate systems are named as the local coordinate system.

The function composition operator for the set of affine transformations from nℜ to

nℜ can be defined as follows.

21212211212)()(ccBxBBccxBBxTT ++=++=o (6.9)

88

The inverse transformation can be defined as follows.

)()(11 cxBxT −= −−
 (6.10)

 The identity transformation is defined as I . The composition of affine

transformations has many practical consequences. For example, in the virtual

environment created during the thesis work, a camera translate node was defined

relative to the world coordinate system. The yaw node was relative to the translate

node, the pitch node was relative to yaw node, the roll node was relative to the pitch

node and finally the pitch node held the camera from which the user viewed the

virtual environment. The connections in the graph are presented in chapter 9. These

relative definitions were established to overcome the gimbal lock problem due the

Euler Angels acquired from the motion tracker. Each coordinate system was

constrained to have only 1 degree of freedom. The other solution for gimbal lock

problem was to use quaternions. In the node connection configuration described, 1T

may represent roll node coordinate system relative to pitch node coordinate system.

2T may represent pitch node coordinate system relative yaw node coordinate system,

3T may represent yaw node coordinate system relative to translate node coordinate

system and 4T may represent translate node coordinate system relative to the world

coordinate system. Thus, 1234 TTTT ooo represents roll node coordinate frame

relative to the world coordinate frame.

6.1.2 Euclidean Spaces

 Euclidean space is an affine space with length and distance. At this point, it is

assumed that the researcher is familiar with terms length, distance, orthogonality,

orthonormality and normalization. For definitions of the terms, the researcher may

refer to (Bergen, 2004, chap. 2), (Möller, & et al., 2008, chap. 4) and (Rugh, 1996).

The definitions of terms normal and orientation for a hyperplane will be given. These

terms have importance in many spatial transformations, lighting, shadowing

calculations, culling and several numerical applications.

89

 For { } ℜ∈∧ℜ∈ δ0\mn , the hyperplane),(δnH is a set of points defined by

{ }
origin fromoffset theis

 normal, theis , 0.),(

δ

δδ nxnxnH m =+ℜ∈=
 (6.11)

 The normal of the hyperplane is normalized prior to transformations. For example

a distance of a point p to the hyperplane is δ+pn. if the norm of the normal is 1.

Additionally, having normalized normal in lighting calculations prevents undesired

distortions.

 The orientation of a hyperplane is defined by the direction of the normal. The

simplest application of orientation is the face culling that is to render or not to render

the face viewed by the camera depending on whether back face or front face is

selected for culling. That means, although),(δnH and),(δ−−nH refer to the same

point set, they are considered as different planes by the render system.

 Simple intersection tests can be performed whether a point is on the positive,

negative closed half space of a hyperplane or on the hyperplane. The positive and

negative closed half spaces are defined as follows respectively.

{ }
{ }0.),(

0.),(

≤+ℜ∈=

≥+ℜ∈=

−

+

δδ

δδ

xnxnH

xnxnH

n

n

 (6.12)

 Referring to (Bergen, 2004, p. 21), the following definitions are valid only for 3-D

Euclidean space. A coordinate system is right handed if the matrix B made up of

basis vectors has the following property,

 0)det(,

|||

|||

321 >

















= BbbbB (6.13)

90

 The cross product definition is important for finding a surface normal n from

three affinely independent (definition is given in section 6.1.3) points 321 ,, ppp such

that,

() ()1312 ppppn −×−= is a normal to the plane through { }3,2,1=ipi . (6.14)

The cross product of two vectors v , w is a vector wv× with the following

properties,

 (a) wwvvwv ⊥×⊥× ,

 (b) Positively oriented:
[]

.cullingfor important

0det

)(

enty independre linearl,v and w awv w v >×

 (c) () wvwvwv and between angle theis ,sin θθ=×

 (d) For vectors relative to an orthonormal basis, the cross product is:

















−

−

−

=

















×

















1221

3113

2332

3

2

1

3

2

1

βαβα

βαβα

βαβα

β

β

β

α

α

α

 where anticommutativity, bilinearity hold.

6.1.3 Affine Transformations

 For all the definitions in this part, figure 6.3 will be used.

Figure 6.3 The group of affine transformations. The dashed ellipses are basic operations. Each group

of transformations denoted by a solid ellipse is composed of operations inside that ellipse (Bergen,

2004, p.20).

91

 As seen in figure 6.3, rigid motions group is composed of two subgroups:

Translations and rotations. Translations have the following form,

 cxxT +=)((.15)

 The rotations which are in fact linear transformations have the form,

1)det(where,)(1 =∧== − BBBBxxR T
 (6.16)

As TBB =−1 , this matrix is orthogonal. The important point is that, an

orthonormal basis is transformed to an orthonormal basis if and only if the

transformation matrix is orthogonal. The proof is as follows using the definition of

dot product and orthogonality;

()() () ()

 if ,0

 if ,1

..

∴





≠

=
=

=====

ji

ji

bbbbBbBbBbBbBbBb ijjij

T

ij

TT

ij

T

iji δ

 The length preserving transformation group is formed from rigid motion

transformations and reflection transformation. A transformation in length preserving

group is expressed as,

yxyxyTxTnsnsformatioerving traength presGroup of lT ,,)()((.) ∀−=−↔∈

 And for the affine transformations group to be length preserving, the following

criterion should hold,

gonalB is orthocBxs T(x)sformationffine tranGroup of aT ↔+=∈(.)

 This can be proved as follows using the axiom distribution of multiplication over

addition, the definitions of orthogonality and dot product.

92

()

∴

−=

−−=−−=

−−=−−=

−=−=

−−+=−

)()()()(

)()()().(

)(

)()(

yx

yxyxyxBByx

yxByxByxByxB

yxBByBx

cBycBxyTxT

TTT

T

A reflection transformation through a plane through origin is defined as

follows,

1det)(-(B) and orthogonalBx, B is xT == (6.17)

 The group of uniform scaling about the origin is defined as follows,

 0 a is)(≠= αscalar andx , α xT α (6.18)

 Notice in figure 6.3 that, the group of angle preserving transformations is the

composition of length preserving transformations and uniform scaling. Therefore

generalizing the property of the length preserving groups is possible as follows,

yxyTxT

ssformationrving tranngle preseGroup of aT

−=−∋>∃

∈∀

αα)()(0

,(.)

 Finally, the group of nonuniform scaling about the origin has the following form,

[]

ji

xxT

ij

ijij

=↔≠

=

0

 scalars, are ,)(

α

αα
 (6.19)

 Referencing to (Bergen, 2004, p. 21), any affine transformation T can be

constructed from three fundamental transformations as translation, rotation and

nonuniform scaling.

93

One of the important points in computer graphics is the calculation of the lighting

on a plane being transformed by an affine transformation. Two parameters, the

normal of the plane and its distance from the origin of the reference system should be

recalculated. This can be done as follows,

Let 'P be an image of P under affine transformation cBxxT +=)(. The

definition of 'P is the set of m
Rx ∈ such that,

{ }
nstem origiference syce from reisδ is the d

mal, is the nornxnRxP m

tan

 ' , 0''.' =+∈= δ
 (6.20)

 Then, by expressing 'P in terms of 1−T ,

)()(11 cxBxT −= −−

system reference theoforigin theto

 distance theis normal is),(, 0)(.,' 1 δn f Pequation ocxBnPx =+−∈∀ − δ
(6.21)

 By definition of orthogonality and dot product,

()() 0)(

0)(

1

1

=+−

=+−

−

−

δ

δ

cxnB

cxBn

TT

T

()()
() 0).(

0).(

1

1

=+−

=+−

−

−

δ

δ

cxnB

cxnB

T

T

 (6.22)

()
cn

BnnBn
T

'.'

' 1

−=

== −

δδ

6.2 Important Geometric Primitives for Computer Graphics and Definitions of

Convex Combination and Convex Hull

 A convex hull of a point set A , denoted by)(Aconv is the smallest object

containing A . The convex hull of a finite point set { }naaA ,...,1= can be expressed

94

as convex combinations of A (Bergen, 2004, p. 23). A convex combination of A is

any point x defined by

 0 and , 1 ,
n

1
i

1

≥=∋= ∑∑
==

i

i

n

i

iiax ααα (6.23)

6.2.1 Polytopes

 The convex hull of a finite point set A is defined as a convex polytope P , that is,

)(AconvP = (6.24)

 As stated in (Bergen, 2004, p. 24), the vertices)(Pvert of a polytope P is the

smallest set AX ⊆ such that)(XconvP = .

 A simplex is the convex hull of an affinely independent set of points. As depicted

in (Bergen, 2004, p. 24), simplices of one, two, three and four vertices are points,

line segments, triangles, and tetrahedra respectively; the dimension of a polytope is

the dimension of its affine hull; finally the set of two and three dimensional

polytopes are the set of convex polygons and the set of convex polyhedra

respectively. For detailed relations, figure 6.4 should be inspected.

 As stated in (Bergen, 2004, p. 28), polytopes may be represented by a

combination of half spaces instead of vertex representation. One example for this

case is the discrete-orientation polytopes (DOP) used as bounding volume

representation. A discrete-orientation polytope is the intersection of fixed number of

slabs. A slab is a region of space bounded by a pair of parallel planes. A k-DOP is

the intersection of k slabs.

95

6.2.2 Polygons

 A closed chain of line segments that bound a region of a plane forms a polygon.

The coplanar points forming the polygon are called the vertices of the polygon. A

polygon is called simple if no two edges intersect other than the edges that share a

vertex. For more information refer to (Bergen, 2004, p. 29).

6.2.3 Quadrics

 A quadric is an object that has quadratic surface elements. The interior part of the

object is part of a quadric. Therefore they are called as solids rather than surfaces.

For more information refer to (Bergen, 2004, p. 32).

Figure 6.4 Important primitives for computer graphics (Bergen, 2004, p.24).

6.3 Minkowski Sum and Its Relation with an Intersection Test

 The Minkowski sum of two objects A and B (A and B can be any primitive

object such as a polygon, a polytope, quadrics and etc…) is defined as follows

(Bergen, 2004, p. 33);

96

{ }ByAxyxBA ∈∈+=+ , (6.25)

The definition should not be misunderstood, because it does not mean the addition

of two points ByAx ∈∈ , . Considering the definition of affine space given in the

previous section, addition of two points is not defined. Hence, according to those

definitions, a point is a vector from the origin of the coordinate system to that point.

The sum of two such vectors is a point that is obtained by adding the sum vector to

the origin of the coordinate frame. Then the new object BA + is the set of points that

is covered by sweeping B ’s origin over all points of A as shown in figure 6.5.

Figure 6.5 The resultant swept volume (sphere-swept volume in this case) formed by the Minkowski

sum of a box and a sphere (Bergen, 2004, p. 33).

 The Minkowski sum of two convex objects is convex. The Minkowski sum of two

polytopes is a polytope. The proofs can be found in (Bergen, 2004, p. 34, p. 35).

 Several queries on a pair of objects can be performed in terms of their

configuration space obstacle (CSO) by using the Minkowski sum. For this purpose,

the negation operation on an object is defined as follows,

 { }ByyB ∈−=− (6.26)

 Then the CSO of objects A and B is the object ()BA −+ that is BA − . BA − is

the set of all vectors from a point of B to a point of A in the same coordinate

system. The intersection query on a pair of objects can be expressed in terms of the

CSO of the two objects such that a pair of objects intersects if and only if their CSO

97

contains the origin. That is, if the objects intersect, they will have a common point,

that is the vector from this point to itself which is the zero vector in the CSO of these

objects. This property can be presented as follows,

 BABA −∈↔≠∩ 0φ (6.27)

 The distance),(BAd between two objects A and B is as follows,

 { }ByAxyxBAd ∈∈−= ,min),((6.28)

 The same distance definition can be done in terms of the CSO of the objects A

and B as follows,

 { }BAxxBAd −∈= min),((6.29)

 The following property holds for two convex objects A and B ,

() { }
.0origin closest to theis),(isthat

min),(! objects,convex ofpair ,

BAd

xBAdBAxBA =∋−∈∃∀
 (6.30)

 Referencing to (Bergen, 2004, p.23, p. 36), this can be proved by a contradiction.

Assume that,

()
, and of

CSO of in terms distance expressing and objectsconvex are ,

BA

BA

{ } { }→−∈=−∈= BAxxBAxxBAd 2211 minmin),(

) (0,1,
2

1

2

1
3 ii

i

i

i

ii xfbination oconvex comxx ≥==∃ ∑∑
==

ααα

{ }),(min 3 BAdx <∋

On the other hand, using the convexity of BA − due to the fact that the

Minkowski sum of two convex objects is a convex object as stated above,

98

{ }

∴

≤−∈

 minB)d(A, and 33 tion. contradicwhich is axBAx

 The researcher should be aware that the uniqueness of the point of BA − closest

to the origin does not imply that the distance between two convex objects is realized

by a unique pair of points. There may exist multiple ByAx ∈∈ ,),(BAdyx =−∋ .

But, all the closest pairs map to the same point),(BACSOyx ∈− .

 The penetration depth of two intersecting objects can be expressed in terms of

their CSO (Bergen, 2004, p. 36). The penetration depth of a pair of intersecting

objects is the length of the shortest vector over which one of the objects needs to be

translated in order to bring the pair tangent to each other. The penetration depth

),(BAp can be expressed as,

 { }BAxxBAp −∉= inf),((6.31)

 It should be noticed that infimum (the greatest lower bound) is used instead of

minimum, because BA − is a closed set meaning that it also includes its limit point.

Considering figure 6.6, for a pair of penetrating objects, the penetration depth is

realized by a point on the boundary of BA − that is closest to the origin. As

mentioned before, more than one ByAx ∈∈ , pair in the object space may map to

the origin BA −∈0 , hence that point on the boundary of BA − is not unique.

(a)

99

(b)

A

B

A-B

+O

(c)

(d)

Figure 6.6 A pair of convex objects on the left and corresponding CSO on the right. (a)

Nonintersecting, the origin is outside the CSO. The arrow denotes the distance. (b) Intersecting, the

origin is inside the CSO. The arrow denotes the penetration depth. (c) After a translation of B over

the penetration depth vector, the objects are in contact. The origin lies on the boundary of the CSO.

(d) After a rotation of B , the shape of the CSO changes. (Bergen, 2004, p.38)

6.4 Separating Axis Test

 Separating axis test (SAT) is an important method that is the result of the

separating hyperplane theorem originating from convex analysis as stated in

(Ericson, 2005, p. 156). The theorem states that, given convex objects A and B

whether they intersect or there exists a separating plane P where A and B exist in the

opposite half spaces. If such a separating plane exists, the normal L of that plane is

called as the separating axis. Figure 6.7 depicts the theorem in 2-D. The detailed

proofs can be found in (Bergen, 2004, p. 78), (Bergen, 2004, p.110).

100

The theorem is not valid for concave objects and in order to prove that two

concave objects do not intersect, a curved surface separating those objects should be

found. But the method of convex decomposition can be applied to both concave

objects and SAT can be applied to the convex partitions created.

In the context of collision detection, SAT has an important role in determining

whether intersection occurs or not between any convex objects such as lines, boxes,

spheres or any simple polytope. Furthermore, together with the CSO of the objects

defined in the previous section; time of collision, penetration depth, contact point and

contact normal can also be computed by this method for both static and moving

objects.

 Figure 6.7 One of the separating axis tests between objects A and B. P is the separating

 plane for A and B; L is the normal of the plane. Inspired from (Ericson, 2005, p. 158).

 Considering figure 6.7 and assuming all is valid for 3R
 let,

AAp

BABA

rLr

RCCdCCd

.

,, ; 3

=

∈−=

101

dLd

RLrrRdrrrLr

p

BApBpApBBp

.

,,;,, ;. 3

=

∈∈=
 (6.32)

 Considering equations (6.32), the objects do not intersect if pBpAp drr <+ for all

possible separating axis tests.

The complexity of the objects to be tested is important for the efficiency of SAT.

Assuming object A has f1 faces and e1; object B has f2 faces and e2 edges, total of

f1 + f2 + e1 e2 SATs should be performed. These tests are for the axes parallel to the

face normals of object A, the axes parallel to the face normals of object B and axes

parallel to the vectors formed by the cross products of all edges of object A and all

edges of object B. As soon as a separating axis is found, the algorithm can terminate

with no intersection. If no separating axis is found as a result of all the tests, it means

that the objects are intersecting.

As stated in the following sections, SAT is used between appropriate convex

bounding volumes throughout the thesis work.

6.5 Primitive Bounding Volumes for Collision Detection Used in the

Software

 In a typical interactive 3-D application, simple bounding volumes that can capture

the actual geometry of the objects are used instead of the whole render geometry.

Bounding volumes can be of several types such as axis aligned bounding boxes

(AABBs), spheres, oriented bounding boxes (OBBs), convex hulls, discrete

orientation polytopes (k-DOPs), and etc… In this section, the AABBs, OBBs and

sphere bounding volumes will only be considered, because OBBs and sphere

bounding volumes are the only bounding volume primitives used for fast collision

tests in the narrow phase of the collision pipeline (see figure 6.9) apart from the more

precise collision tests in the scope of the thesis work. Additionally, AABBs are used

in the construction of the bounding volume hierarchy tree for the broad phase of the

collision pipeline (see section 6.6). The calculation of collision parameters such as

102

time of impact (TOI), penetration depth, contact points in local and world coordinate

frames and contact normal are performed in the narrow phase of the collision

pipeline. Therefore the detailed overview of these parameters can be found in the

following sections.

For detailed treatment of bounding volumes, the researcher should refer to

(Ericson, 2005) and (Bergen 2004). In figure 6.8 several types of bounding volumes

are shown for the same render geometry.

Render geometry

Render geometry

Render geometry

Render geometry

Render geometry

Faster collision test, less memory requirement, easy to
compute

Better bounding volume

F
aster collision test, less m

em
ory requirem

ent,
easy to com

pute

B
etter bounding volum

e

(a) (b) (c)

(d) (e)

Figure 6.8 Several bounding volumes for the same render geometry. The outer thick solid lines are

the bounding volumes. (a) Sphere bounding volume, (b) AABB, (c) OBB, (d) 6-DOP, (e) Convex

hull. Inspired from (Ericson, 2005, p. 77).

6.5.1 Axis Aligned Bounding Boxes

 Axis aligned bounding box is one of the simplest bounding volumes. It is formed

from six sides that have normals always parallel to the corresponding coordinate

system. In the thesis work, the AABBs are represented using minimum and

maximum coordinate values along each axis of the render geometry local coordinate

system. The bounding volume is the space between two opposing corners with

103

minimum and maximum coordinates respectively. With this representation, an

AABB can be formed by defining minimum vertex coordinate pmin and maximum

vertex coordinate pmax as the endpoints of one of the diagonals of the rectangular

prism volume in the local coordinate system of the render geometry such that,

() ()
()



















∈=

∈=∈≤≤

∧≤≤∧≤≤=∀

=
3

maxmaxmaxmax

3
minminminmin

3
maxmin

maxminmaxmin

),,(

,),,(,;

),,(

AABB

Rzyxp

RzyxpRpzpz

ypyxpxpppp

z

yxzyx

 (6.33)

 The center c of the AABB is defined as the algebraic mean of pmin and pmax.

Considering the above representation, two axis aligned bounding boxes 1AABB and

2AABB with minimum and maximum vertex coordinates p1,min, p2,min, p1,max, p2,max

respectively, intersect if and only if they intersect on all of the coordinate axes such

that,

()
()
()

imax,max,max,max,

imin,min,min,min,

min,2max,1min,2max,1

min,1max,2min,2max,1

min,1max,2min,2max,1

21

AABB),,(

,AABB),,(;2,1

AABB AABB

∈=

∈==∀∋

















<∨<

∨<∨<

∨<∨<

↔=∩

iiii

iiii

zyxp

zyxpi

zzzz

yyyy

xxxx

φ

 (6.34)

 The intersection test described above should be done in the same coordinate

system; that is, the AABBs should be either in the local coordinate system of

1AABB or in the local coordinate system of 2AABB or in the world coordinate

system. Throughout the thesis work, the local frame of 1AABB is used as the

reference coordinate system; the computation and the update of the AABB are

performed dynamically by finding the minimum and maximum coordinates of the

local frame relative to the local origin.

104

6.5.2 Sphere Bounding Volumes

 A sphere bounding volume S is represented by its center coordinates c and its

radius r such that,

 { }RrRcprcppS ∈∈≤−∀= ;,; 322
 (6.35)

 Considering this representation, two sphere bounding volumes 1S , 2S with

centers 1c , 2c respectively and radii 1r , 2r respectively intersect if and only if the

distance between their centers is less than the sum of their radii such that,

()() RrrRccrrcc ∈∈∋+≤−

↔≠∩

21
3

21

2

21

2

12

21

,,,

S S φ
 (6.36)

 During the thesis work, the construction of the sphere bounding volume is

performed by first computing the AABB of the render geometry. Then the center of

the computed AABB is selected as the sphere center; the maximum extent among the

three axes is selected as the sphere radius. The calculations are all relative to the

local coordinate frame of the render geometry. During the collision test between two

bounding spheres, the reference coordinate frame is selected as the coordinate system

of the first sphere bounding volume. The update of the bounding sphere involves

only translation along with the actual render geometry, because the sphere is rotation

invariant. For the preceding computations more precise but at the same time more

computationally demanding techniques such as gradient descent based methods or

principal component analysis can be utilized.

6.5.3 Oriented Bounding Boxes

 Oriented bounding boxes are similar to AABBs except that they may have

arbitrary alignment. Although representation methods based on principal component

analysis exist in literature; throughout the thesis work, an OBB is defined by its

105

center c, orientation matrix M representing local axis and positive half width extents

vector e=(ex ,ey, ez) such that,

























≤∈≤∈≤∈

∈∈

















+==∀
=

zyx

x

zyx

eReReR

RMRecpMcppppp

γβα

γ

β

α

,,

,,,,;),,(
OBB

333

 (6.37)

 In order to detect intersection and to compute the collision parameters between

two OBBs, the separating axis test (SAT) is used. For the details of SAT, refer to

section 6.4. The collision test between two OBBs is performed relative to the local

coordinate system of the first OBB under consideration throughout the thesis work.

 The interested researcher may refer to figures 9.18 and 9.19 for implementations

of and comparison between various collision detection primitives done during the

thesis work.

6.6 Collision Detection Pipeline Used in the Software

 In an interactive simulation, collisions between objects are handled in several

consecutive stages forming a collision pipeline. The aim of this pipeline is to

decrease the computational load and memory requirements of collision detection

while favoring the accuracy of collision tests, contact and penetration depth

computations between the geometries of the 3-D objects. The overview of the

collision detection pipeline is given in figure 6.9.

(a)

106

(b)

 Figure 6.9 (a) An overview of how the collision data and dynamics data are stored in the developed

 software using Bullet. (b) The physics pipeline implemented in the developed software using Bullet.

 The red blocks represent how the collisions are handled in three stages.

 This section will briefly explain the three important stages of the pipeline as

implemented in the scope of the thesis; collision masking, broad phase and narrow

phase respectively.

6.6.1 Collision Masking

 Collision masking is a brute force collision filtering technique to define the

geometries that will be considered in the collision detection process. It is the first

stage of the collision detection pipeline. In the initialization stage of the simulation,

each geometry is given a group and mask identity number to be used in the masking

test. So, the geometries with no matching identity number will not collide to or

receive collisions from other geometries. Therefore, only the geometries with

107

matching identity numbers will be considered in the further stages of the collision

detection pipeline.

6.6.2 Broad Phase

 Broad phase stage implemented in the software throughout the thesis work

consists of a model partitioning scheme called as dynamic bounding volume

hierarchy based on axis aligned bounding boxes (AABB). A bounding volume

hierarchy is composed of a tree structure. Each leaf of the tree contains the bounding

volume of the actual geometry. Nodes in the deeper levels of the tree are enclosed in

a larger bounding volume and grouped in nodes towards the root node recursively

such that each node of the tree maintains a bounding volume for a subset of the

geometric primitives. The bounding volume hierarchy tree structure and the

corresponding scene are seen in figure 6.10.

Node 1

Node 2

AABB of
Geometry 1

AABB of
Geometry 2

AABB of
Geometry 3

(a)

108

(b)

 Figure 6.10 (a) A bounding volume hierarchy. (b) The geometries and collision models represented

 by the tree. In (b), the thin continuous lines represent the nodes, the dashed lines indicate the

 AABBs, and the outer thick line is the 2-D scene border.

The overall aim of this stage is to reduce the computational costs of the collision

detection as in the collision masking stage. The arrangement of the bounding

volumes of the geometries in a tree structure reduces the time complexity of the

computations logarithmically in the number of tests performed whereas that time

complexity is reduced by a constant factor with bounding volumes not arranged in a

tree. As indicated in (Ericson, 2005, p. 235), for the latter case, although the collision

detection tests are simplified by the bounding volumes, the number of collision tests

to be performed remains the same so the asymptotic time complexity remains the

same.

The bounding volume tree hierarchy is implemented as a preprocessing step in the

developed software to increase the runtime performance. The tree structure is

dynamic meaning that according to the topology changes in the meshes belonging to

the scene, new nodes representing the bounding volumes of the newly created

meshes can be added to or old nodes representing the unnecessary bounding volumes

can be removed from the tree. For example when a soft cloth mesh is cut into many

pieces, new nodes are inserted to the tree representing the bounding volumes of the

mesh pieces. To increase the performance, two bounding volume tree hierarchy is

used; one for the static objects and the other is for the moving objects. In the thesis

109

work, the objects with zero mass are defined as static. During runtime, nodes

belonging to one tree can be detached and attached to the other dynamically or vice

versa. The software implementation details used for bounding volume tree hierarchy

construction, partitioning, node insertion and removal strategies can be found in

(Ericson, 2005, chap. 6).

According to (Ericson, 2005, p. 236), the issues to be considered in order to

balance the performance and the accuracy of this stage are as follows:

• The nodes in a subtree should be near to each other to favor spatial

coherence

• A minimal bounding volume that will capture the topology of the objects

should be used for each node to prevent false overlaps and therefore false

collision test results. This also results in a minimal total bounding volume.

• Removing a node close to the root node, eliminates more bounding

volumes from collision detection tests than removing a node at the deeper

levels of the tree.

• The bounding volume tree should be balanced in its node structure and

content so that whenever a branch is not traversed, it can be pruned to

increase the performance.

• The bounding volume tree should have the minimal memory requirements.

The bounding volumes reported as colliding are directed to the narrow phase stage

found further in the collision detection pipeline. The object pairs reported as

colliding may be actually overlapping or not, depending on the actual geometries of

the objects and their bounding volumes. Considering the figure 6.10 (b), the

geometry 1 and the geometry 2 are not actually overlapping; but they will be

reported as colliding due to the collision of their AABBs. On the other hand, the

AABB of the geometry 3 does not overlap with the other AABBs. So it is impossible

for the actual topology of the geometry 3 to collide with the topologies of the other

objects in the scene; therefore no collision pairs including the geometry 3 will be

reported in this stage.

110

Dynamic bounding volume hierarchies based on spheres, k-DOPs and oriented

bounding boxes (OBB) also exist. Additionally, another broad phase technique

namely “sweep and prune” can also be implemented in this stage. Spatial partitioning

methods based on octree, k-d tree and binary space partitioning tree can also be

considered for implementation in this stage according to the simulation needs. Only

the dynamic bounding volume hierarchy based on AABB is implemented in the

current software. For the other types of bounding volume hierarchies, for the “sweep

and prune” scheme and for the spatial partitioning methods the researcher should

refer to (Ericson, 2005) and (Bergen, 2004).

6.6.3 Narrow Phase

Narrow phase is the final part of the collision detection pipeline. Only the

collision tests that pass the collision masking and broad phase are handled by this

phase. In this phase, if the candidate objects for collision pass the tests performed

here, it is understood that they are actually colliding. Then the collision parameters

such as contact points in local coordinate frames and in world coordinate frames,

contact normal and penetration depth are computed in this phase. In this phase, the

collision models used for visual models can be convex hulls or the triangular element

mesh of the visual object itself. It is seen that, the tests done in the narrow phase are

much more costly than the previous sections. On the other hand these tests are much

more precise. Triangle-triangle collision detection is performed in this phase to

perform the collision check over all the triangular elements forming visual mesh of

the candidate objects. For the results of implementation practices on collision

detection regarding the comparison of triangle-triangle collision detection and

sphere-sphere collision detection refer to figures 9.18 and 9.19. Other collision

detection schemes such as sphere-triangle, OBB-triangle, ray-triangle tests are also

performed in this section. In the narrow phase, the collision with the soft-soft bodies

and rigid-soft bodies are performed by assuming the existence of AABBs bounding

each vertex of the soft object. Therefore the previously mentioned for rigid bodies

also apply for the soft body collision detection.

111

 For collision detection between the moving objects, the Minkowski summation is

used. The CSO of the moving objects are computed assuming, one of the objects

static and the other moving relative to the static one. Then the intersection test

mentioned in section 6.3 is applied. It is impossible to give all the mathematics

beneath these tests here, therefore the interested researcher should refer to (Ericson,

2005), (Bergen, 2004) and (Möller, 1997) for mathematical theory of the

implemented collision tests. Two important methods for collision detection,

penetration of two convex objects; and for solving constraints between the collision

object primitives are briefly mentioned below.

6.6.3.1 Gilbert-Johnson-Keerthi Algorithm (GJK) for Collision Detection

between Convex Objects and Expanding Polytope Algorithm (EPA) for

Penetration Depth Calculation

GJK is an iterative method for solving collision between convex objects. It can be

generalized for any type of collision methods mentioned before, for application to

polytopes, quadrics, Minkowski sums of convex objects and images of convex

objects under affine transformations. GJK is an iterative method for approximating

the point closest to the origin of A-B, the CSO of A and B convex objects (see figure

6.6). This point is approximated as follows. At each iteration, a simplex (see section

6.2.1) is constructed that is contained in A-B and lies nearer to the origin than the

simplex constructed in the previous iteration. A simplex is constructed support

mapping of A-B. A support mapping of a convex object A is a function sA that maps a

vector v to a point of A as follows,

{ }AxxvvsvAvs AA ∈=∋∈ :.max)(.)((6.38)

 The result of (6.38) is a support point. Each new support point is added to the

simplex, the closest point to the origin is calculated and the farthest point is discarded

at each iteration. The iteration stops, when a change in distance between newly found

points decreases below a threshold. For detailed explanation refer to (Bergen, 2004,

chap. 4).

112

 As GJK algorithm was used for computing collisions, contact points and contact

normals between the convex objects during the thesis work; Expanding Polytope

Algorithm (EPA) was used for the penetration depth calculation between two

colliding convex objects. Like GJK, EPA is an iterative algorithm depending on the

CSO of two convex objects. For detailed coverage refer to (Bergen 2004, p. 147).

The researcher may refer to figure 9.4 for the computed collision parameters

displayed in the green overlaid box on the bottom left of the screen.

6.6.3.2 Solving the Constraints at Mechanical Joints – Linear Complementary

Problem (LCP)

The virtual environment developed during the thesis work has a 3-D user interface

for transforming several objects, getting information about them and etc… This user

interface becomes visible when a collision between the user hand and an anatomical

model is detected (see figures 9.4 (d), 9.8 (a)-(b), 9.9 (a), 9.10 (a)-(b), 9.11 (a)-(b)).

As seen from the figures, the user interface contains buttons, a slider and an

information box. Each of these is attached to the base of the user interface with

appropriate constraints so that buttons have no degrees of freedom and the slider has

only one degree of freedom. The new position of the buttons and the slider when a

user collides is computed considering the applied force, contact direction and the

constraints at each time step. In the context, this is formularized as a linear

complementary problem (LCP). The solution is accomplished by Gauss-Siedel

method. The mathematical details can be studied from (Ericson, 2005, chap. 9),

(Baraff, 1989), (Bridson, 2003) and (Lacoursiére, n.d.). The end result is that, the

buttons remain at their original positions when the contact ends; the slider remains at

the place where the user last touches.

6.7 Mass-Spring Systems and Numerical Solutions for Governing Differential

Equations

 This section involves various mass spring topologies used to model the dynamical

objects in the 3-D environment throughout the thesis work. Additionally, the

113

numerical solution techniques for the differential equations governing the dynamics

of the mass spring topologies are given.

6.7.1 1-D 2-D and 3-D Mass Spring Systems and Governing Differential

Equations

 Mass-spring systems are preferred for modeling solid elastic 1-D, 2-D and 3-D

dynamic systems in real time. 1-D, 2-D and 3-D mass-spring systems with dampers

are presented in figure 6.11. Masses are placed at the vertices of the 3-D model in

this particular case. The edges connecting vertices are represented by springs.

(a)

 (b) (c)

Figure 6.11 Examples of mass-spring systems. (a) 1-D mass-spring-damper system, (b) 2-D

(triangular) mass-spring-damper system and (c) 3-D (tetrahedra) mass-spring-damper system.

Although simple and not computationally demanding these systems have

drawbacks as stated in (Müller, Stam, & James, 2008a, p.10). The mass-spring

network setup defines the behavior of the object. The spring constants are hard to be

tuned for the desired behavior. Mass-spring systems cannot capture volumetric

114

properties directly. Because of these limitations, better models such as FEM are

preferred in spite of their computational demand.

1-D mass-spring systems are used for modeling 1-D elastic objects such as hair or

rope. 2-D mass-spring systems arranged as triangular elements are used to model 2-D

elastic objects such as a skin, a cloth or a paper. 3-D mass-spring systems arranges as

tetrahedral elements are used to model 3-D volumetric elastic objects such as human

organs.

 The physical formulation of the mass-spring system can be stated as follows. For

a mass spring system composed of a set of N particles with masses im , positions ix

and velocities iv where Ni ,...,1∈ , the masses are connected with the connection set

S of springs),,,,(0 ds kklji . ji, are indices of the adjacent masses, 0l is the rest

length, sk is the spring stiffness and dk is the damping coefficient as stated in

(Müller, & et al., 2008a, p.11). ji xx , are the positions and ji vv , are the velocities of

the masses respectively. Then the spring forces on the adjacent particles of a spring

are,

()

),(

),(0

ji

s

j

ij

ij

ij

sji

s

i

xxff

lxx
xx

xx
kxxff

−=

−−
−

−
==

 (6.39)

 The forces are proportional to the elongation of the spring 0lxx ij −− from its

equilibrium state.

The damping forces are proportional to the velocity difference projected onto the

spring. That is,

ij

ij

ijdjjii

d

i
xx

xx
vvkvxvxff

−

−
−==).(),,,((6.40)

iiijj

d

j fvxvxff −==),,,((6.41)

115

Notice that the conservation of momentum holds, therefore 0=+ ji ff . The

combination of the forces is,

),,,(),(),,,(jjii

d

ji

s

jjii vxvxfxxfvxvxf += (6.42)

Then, considering the second law of Newton, xmF &&= , this ordinary differential

equation should be solved for the acceleration x&& of particles that is the 2nd derivative

of the position with respect to time. That is,

m

F

dt

xd
x ==

2

2

&& (6.43)

A th
N order ordinary differential equation can be written in terms of N coupled

1st order ordinary differential equations. So, xmF &&= can be written as two coupled

ordinary differential equations as follows,

vx

m

vxf
v

=

=

&

&
),(

 (6.44)

The analytical solutions of these equations are respectively,

∫

∫

+=

+=

t

t

t

t

dttvxtx

dt
m

tf
vtv

0

0

)()(

)(
)(

0

0

 and the initial conditions are 0000)(,)(xtxvtv == (6.45)

As it is seen from the above analytic solutions, simulation is in fact time

integration. In the following sections the numerical integration methods to solve the

initial value problem with the initial value)(0tx will be given. Therefore the

problem at hand is to find a function satisfying the relation described by the ordinary

differential equation),(txfx =& where f is a known function, x is the state of the

system and x& is the derivative of x with respect to time. Theoretical background can

be found at (Khalil, 2002), (Müller, & et al., 2008a) and (Witkin & Baraff, 2001).

116

6.7.2 Explicit Euler Integration

 Assume that x is continuously differentiable function. Then, consider the Taylor

Series Expansion of x at point 0t with a small perturbation t∆ from 0t as follows,

 n

n

n

t
dt

txd

n
t

dt

txd
t

dt

tdx
txttx ∆++∆+∆+=∆+

)(

!

1
...

)(

!2

1)(

!1

1
)()(2

2

2

00 (6.46)

 Linearizing the function at 0t yields,

)(
)(

!1

1
)()(2

00 tOt
dt

tdx
txttx ∆+∆+=∆+ (6.47)

 Eliminating 2nd order error term)(2tO ∆ results in the linearized x as follows,

 txtxt
dt

tdx
txttx ∆+=∆+=∆+ &)(

)(
)()(000 (6.48)

 The discreet step size is t∆ , x& defines the norm of the step along the t∆

direction. That is, it is used to calculate the change x∆ in x corresponding to t∆ .

Consider that for N dimensional case, t∆ is a N dimensional vector specifying the

step directions.

For this linearization case, x should at least be 1
C continuous. Then the integral

equations in (6.45) can be solved numerically by linearizing)(tv and)(tx about

0t and then iterating the following equalities by neglecting the 2nd order error terms

respectively.

 tvvtOtvvv ttt ∆+≅∆+∆+=+
&&)(2

1 (6.49)

 txxtOtxxx ttt ∆+≅∆+∆+=+
&&)(2

1 (6.50)

 Notice that, t is the frame number and t∆ is the time interval between two

consecutive frames for the case of real time graphics rendering. Plugging equalities

in (6.44) into (6.49) and (6.50) yields respectively,

117

 t
m

vxf
vv tt

tt ∆+=+

),(
1 (6.51)

tvxx ttt ∆+=+1 (6.52)

 Calculation of (6.51) and (6.52) are Explicit Euler Integration Method, that is the

values of 1+tv and 1+tx are calculated using the values tv and tx of the current time

step by explicit formulas as also stated in (Müller, & et al., 2008a). The following

three pseudocodes of algorithms can be found at (Müller, & et al., 2008a) and (Press,

& et al., 2007).

 (a) (b)

Figure 6.12 (a) Pseudocode for Explicit Euler Integration.
gf is the gravity force,

collf is the forces

due to the collisions. (b)The phase space representation of differential equation for the mass-spring

system. The actual solution for differential equations form a concentric circles, but due to the

linearization in Explicit Euler Integration, the particle velocity and position overshoots. Smaller time

steps only makes this process occur in longer time but is not a complete solution.

//Initialize

forall particles i

initialize ix , iv , im

endfor

//Simulation loop

loop
 forall particles i

 ∑
∈

++←
Sjij

jjii

coll

i

g

i vxvxffff
),(,

),,,(

 endfor
 forall particles i

)(

)/(

iii

iiii

vtxx

mftvv

∆+←

∆+←

 endfor
 display the system every nth frame
endloop

118

 Although Explicit Euler Integration is a simple method, it is unstable for large

time steps. The phase space representation is shown in figure 6.12 (b). Therefore,

during simulation, several time steps should be performed per each frame and

damping is necessary otherwise the velocity will overshoot.

6.7.3 Second and Fourth Order Runge Kutta Integration

 Considering the Taylor Series Expansion in (6.46), if the second order term is

retained, the expansion of the function will have error terms starting with)(3tO ∆

hence the result will be 2nd order accurate. That is,

()32

2

2

00

)(

!2

1)(

!1

1
)()(tOt

dt

txd
t

dt

tdx
txttx ∆+∆+∆+=∆+ (6.53)

 Considering)),((ttxfx =& , assume that f implicitly depends on time t that is

))((txfx =& . Using chain rule,

 ffx
x

f
x &&&& =

∂

∂
= (6.54)

 Approximate f& in terms of f by using Taylor Expansion of f as follows,

)()(
!1

1
)()(2

000 xOxxfxfxxf ∆+∆+=∆+ & (6.55)

Let)(
2

0xf
t

x
∆

=∆ , then (5.54) can be written as,

)(,)()(
2

)(

)()()(
2

)()(
2

00
2

00

2
00000

txxtOtx
t

xf

tOxfxf
t

xfxf
t

xf

=∆+
∆

+=

∆+
∆

+=






 ∆
+

&&

&

 (6.56)

119

 (a) (b)

 Figure 6.13 (a) Pseudocode for 2nd order Runge Kutta Integration. (b) The phase space representation

 of the differential equation. First, an Euler step is performed and then at the half of the step size, the

 second derivative is evaluated to update x at each frame.

//Initialize

forall particles i

initialize ix , iv , im

endfor

//Simulation loop

loop
 forall particles i

i

jij

jjii

coll

i

g

i

ii

mvxvxfffa

va

/),,,(
),(,

,2

,1









++←

←

∑

 endfor
 forall particles i

 iii a
t

vb ,2,1
2

∆
+←

i

jij

jjjjiiii

coll

i

g

i ma
t

va
t

xa
t

va
t

xfffb /)
2

,
2

,
2

,
2

(
),(,

,2,1,2,1,2 






 ∆
+

∆
+

∆
+

∆
+++← ∑

iii

iii

tbvv

tbxx

,2

,1

∆+←

∆+←

 endfor
 display the system every nth frame
endloop

//Pseudocode Variables

ma
t

va
t

xfb

a
t

vb

mvxfa

va

tt

t

tt

t

/)
2

,
2

(

2

/),(

212

21

2

1

∆
+

∆
+=

∆
+=

=

=

21

11

tbvv

tbxx

tt

tt

∆+=

∆+=

+

+

120

(a)

//Initialize

forall particles i

initialize ix , iv , im

endfor

//Simulation loop

loop
 forall particles i

i

jij

jjii

coll

i

g

i

ii

mvxvxfffa

va

/),,,(
),(,

,2

,1









++←

←

∑

 endfor
 forall particles i

i

jij

jjjjiiii

coll

i

g

i

iii

ma
t

va
t

xa
t

va
t

xfffb

a
t

vb

/)
2

,
2

,
2

,
2

(

2

),(,
,2,1,2,1,2

,2,1








 ∆
+

∆
+

∆
+

∆
+++←

∆
+←

∑

 endfor
 forall particles i

i

jij

jjjjiiii

coll

i

g

i

iii

mb
t

vb
t

xb
t

vb
t

xfffc

b
t

vc

/)
2

,
2

,
2

,
2

(

2

),(,
,2,1,2,1,2

,2,1








 ∆
+

∆
+

∆
+

∆
+++←

∆
+←

∑

 endfor
 forall particles i

()

()iiiiii

iiiiii

i

jij

jjjjiiii

coll

i

g

i

iii

dcba
t

vv

dcba
t

xx

mtcvtcxtcvtcxfffd

c
t

vd

,2,2,2,2

,1,1,1,1

),(,
,2,1,2,1,2

,2,1

22
6

22
6

/),,,(

2

+++
∆

+←

+++
∆

+←









∆+∆+∆+∆+++←

∆
+←

∑

 endfor
 display the system every nth frame
endloop

//Pseudocode Variables

mvxfa

va

tt

t

/),(2

1

=

=

ma
t

va
t

xfb

a
t

vb

tt

t

/)
2

,
2

(

2

212

21

∆
+

∆
+=

∆
+=

mb
t

vb
t

xfc

b
t

vc

tt

t

/)
2

,
2

(

2

212

21

∆
+

∆
+=

∆
+=

mtcvtcxfd

c
t

vd

tt

t

/),(
2

212

21

∆+∆+=

∆
+=

()

()22221

11111

22
6

22
6

dcba
t

vv

dcba
t

xx

tt

tt

+++
∆

+=

+++
∆

+=

+

+

121

(b)

 Figure 6.14(a) Pseudocode for 4th order

 Runge Kutta Method. (b) Phase space

 representation.

Multiply both sides of (6.56) by t∆ ,

() ())()(
2

)()(
2

3
0

2

000 tOtx
t

xftxf
t

xft ∆+
∆

+∆=






 ∆
+∆ && (6.57)

 Use (6.57) in (6.53) considering ())(txfx =& ,

 () () ()






 ∆
+∆+=∆+ 0000

2
)()(xf

t
xfttxttx (6.58)

 Equation (6.58) indicates that, an Explicit Euler scheme is performed up to the

half of the step size, then a second derivative is evaluated at the half of the step size

to update x at each frame. Therefore this method is 2nd order accurate and more

precise than the Explicit Euler scheme. The two Euler step evaluation brings a

computational cost. Additionally the 2nd order Runge Kutta still lacks instability

problems. 2nd order Runge Kutta is also an explicit numerical integration method.

The pseudocode is given in figure 6.13 (a) and the phase space representation is

given in figure 6.13 (b).

122

4th order Runge Kutta integration is similar, but it is 4th order accurate as opposed

to 2nd order accuracy. This costs four times the computational load that of the

Explicit Euler Integration. The pseudocode is given in figure 6.14 (a) and the phase

space representation is given in 6.14 (b).

6.7.4 Verlet Integration

 This method uses the values evaluated at the past steps to increase the stability

and accuracy of the prediction at the current step. The method is accurate up to the

4th order. Consider the forward and backward Taylor Expansion of x as follows

respectively,

)()(
6

1
)(

2

1
)()()(

)()(
6

1
)(

2

1
)()()(

432

432

tOttxttxttxtxttx

tOttxttxttxtxttx

∆+∆−∆+∆−=∆−

∆+∆+∆+∆+=∆+

&&&&&&

&&&&&&

 (6.59)

 Sum the expansions in (5.58) as follows,

[])(

)(
)()()(

)()()()(2)(

42

42

tOt
m

tf
ttxtxtx

tOttxttxtxttx

∆+∆+∆−−+=

∆+∆+∆−−=∆+ &&

 (6.60)

 Then by letting [] tttxtxtv ∆∆−−= /)()()(, the followings are obtained,

()

t

xx
v

t
m

xf
tvxx

tt
t

t
ttt

∆

−
=

∆+∆+=

+
+

+

1
1

2
1

)(

 (6.61)

123

v

xo

 Figure 6.13 Phase space representation for

 Verlet Method. The energy remains constant

 with sufficiently small steps.

All the above methods were explicit integration methods. Those methods are

stable for a limited range of time steps which depends on the stiffness of the springs;

hence they are conditionally stable as stated in (Müller, & et al., 2008a). Smaller

time steps should be used to maintain the stability of the simulation as the springs get

stiffer. The real time simulation applications require unconditional stability for any

value of time steps. This requirement can be satisfied by using implicit integration

methods. An implicit integration uses the new of values of x and v for computing

the followings,

tvxx

t
m

xf
vv

ttt

t
tt

∆+=

∆+=

++

+
+

11

1
1

)(

 (6.62)

Equation (6.62) cannot be evaluated explicitly. Instead, the system can be solved

for velocities by linearizing this nonlinear system at each time step using Newton-

Raphson method. Then the linearized system can be solved using iterative methods

such as Conjugate Gradients. As stated in (Müller, & et al. 2008a), although this

integration scheme is unconditionally stable, it is slow so large time steps should be

124

performed, and additionally temporal details disappear due to the numerical

damping.

6.8 Mesh Topology Processing and Mesh Refinement – An Example to Mesh

Cutting

 The method used in the developed software to process the topology of the meshes

is referenced from (Coumans, 2009). The method works as follows: A ray is casted

from the camera along the forward direction of the user hand towards the soft object.

Then an intersection query is performed whether the raycasting is resulted in an

intersection with an efficient closure to any of the constraints (lines) connecting the

AABBs of the vertices of the geometric topology of the soft object (see section

6.6.3). If this is the case, create a sphere s with unit radius of 1 centered at the

collision coordinates of the ray and the constraint. Then the distance of the collision

point to the supporting vertices along the constraint are calculated numerically. The

new vertices with appropriate velocity, position and mass are added to topology of

the soft object and the connections between the cut part of the topology and the rest

of the topology is broken. The position, velocity and the mass of the new vertex are

calculated as the linear interpolation of the positions, velocities and the masses of

two supporting vertices of the constraint (line) on which a new vertex is placed.

Considering the vertices a, b and the sphere s given above, the problem is

formularized as follows:

)min(
ε<v

t (6.63)

ε is the user controlled value controlling the minimum distance from sphere s that

can be considered as the surface of the sphere. v is the distance to the collision

point that is the center of sphere s. *tt = is the value at which the iteration goes into

the ε - neighborhood of the surface of the sphere s. If no such t is found in a given

step number than 1−=t is returned resulting in no topology process, else *tt = is

125

returned. The position cx and the velocity cv of the new vertex c are computed as

follows:

*)(

*)(

tvvvv

txxxx

abac

abac

−+=

−+=
 (6.64)

 The mass cm of the new vertex c is computed as follows:

mfm

mmm

mm
f

tmmmm

c

ba

ba

aba

=

++

+
=

−+= *)(

 (6.65)

 If one of the supporting vertices is static that is it has zero mass. The mass of the

supporting vertex with the positive mass is assigned to the new vertex, and the mass

of that supporting vertex is doubled. If both supporting vertices have zero mass, the

newly created vertex is assigned a zero mass. The process is repeated for all the

(a, b) vertex pairs in the v neighborhood of the collision point v. The geometric

representation of the process is given in figure 6.14.

||v||

a

b

c

n

Figure 6.14 The geometric representation of the cutting

topological operation. v is the collision point of the ray

with the constraint n; a and b are the existing supporting

vertices of the constraint n; c is the newly added vertex.

This process is done for all the (a, b) vertex pairs in the

||v|| neighborhood of the collision point v.

126

Finally, the node hierarchy data structure representing the soft object is updated

accordingly. The topology processes were all done just for the surface models, no

volumetric model was evaluated.

 The research may refer to figures 9.12, 9.13 and 9.28 for the implementations

done during the thesis period. Figure 9.27 is a stand-alone application compiled with

NVIDIA PhysX for test purposes.

6.9 Haptic Rendering with Rigid and Deformable Models

 Haptic senses provide important cues for getting information about the geometry

and the structure of the object. Therefore, in order to provide a haptic feedback to the

user in the virtual environment, haptic device was used. The technical details of the

device are given in section 8.3.

Haptic rendering module of the software was at its development stage at the time

this thesis was written. The main task of the module was to model the anatomical

parts to create a haptic perception for the user when a tissue or organ was touched.

Additionally, when the user applied a force over a threshold, a topology of the mesh

would be altered, for example a fracturing of a rigid bone or cutting of a deformable

organ would be performed. Initial haptic rendering module developed, was tested

using the same dynamic modeling principles – namely mass spring model – and

collision detection techniques mentioned in the previous sections. OpenHaptics API

was used for the implementation. The instability of typical numerical integration

method namely Explicit Euler Method used in this module was also observed for

large time steps and also for the high forces loading that makes the mesh system

diverge from its equilibrium point in these tests. The haptic rendering module initial

results can be seen in figures 9.29.

127

CHAPTER SEVEN

FEATURE SEGMENTATION TRACKING AND POSE ESTIMATION

METHODS USED FOR AUGMENTED REALITY APPLICATION

DEVELOPMENT DURING THE THESIS WORK

 This chapter presents a basic application created to fulfill the need of tracking a

human hand and head motions without any motion tracking device precisely. The

tracking results was planned to be used for controlling a 3-D virtual object and to

perform pan movements for the user head in a synthetic environment. These were

necessary to be immersed in a 3-D virtual environment because it was not possible to

get the motion tracking device till the end of the second year of the thesis work.

 The preferred way for tracking a user hand holding a known marker was tracking

from real time video frames taken from a calibrated stationary single camera. The

reference for this method was (Kato & Billinghurst, 2006). For in depth

understanding, the researcher should refer to (Tekalp, 1995) and (Forsyth & Ponce,

2003). This method was in fact a registration meaning to estimate the rotation and

translation parameters of the tracked features over the video frames taken from a

calibrated camera. Therefore it was also used for registering a 3-D virtual object

with the tracked object in real time. This type of application is called as an

augmented reality application in the literature. In a same way, the user head was

tracked using facial features such as the structures of eyes, nose and mouth. This

method was referenced from (Viola & Jones, 2004) and (Bradsky & Kaehler, 2008).

The explanations relating to this chapter will be kept relatively brief, because the

focus of the thesis work was the real time computer graphics and physics simulation.

7.1 Feature Segmentation

 Considering the human hand tracking, a known, rectangular planar marker is used.

The assumption that all the features lie on the same plane decreases the number of

unknowns in the rotation and translation matrix. The features segmented were the

128

corners of the black rectangle. The researcher can refer to (Bradsky & Kaehler, 2008)

for corner extraction in sub pixel accuracies.

 For the 2-D face tracking task, the Haar features of the face are used. A threshold

is applied to the sums and differences of rectangular image regions. An integral

image technique is used for rapid computation of the value of rectangular regions or

45 degree rotated versions. Then a statistical boosting technique is used to create face

and non-face classification nodes characterized by high detection and weak

detection. Then the algorithm organizes the weak classifier nodes of a rejection

cascade. Meaning that, the first group of classifiers is selected that best detects image

regions containing a face while allowing mistaken detections; the next classifier

group is the second-best at detection with weak rejection, etc… In test mode, a face

is detected if and only if it makes through the entire cascade. The details are given in

(Bradsky & Kaehler, 2008, p. 508).

7.2 Feature Tracking and Pose Estimation

 Considering the case of hand tracking, in every video frame, the corners of the

rectangle is segmented and their coordinates are tracked. The rotation matrix and

translation vector for the tracked rectangle were computed using homography matrix

computation. Hence from there on, the tracked features in the consecutive frames are

related. The computed rotation and translation parameters of the rectangle in 3-D

space were then used to control the orientation and translation of a 3-D virtual user

interface tablet in the synthetic environment.

 Considering the case of the head tracking, the center coordinate of the rectangular

area including the detected human face was tracked. As the tracking was performed

in 2-D space, only the pan movements of the head corresponding to the pan

movements of the camera of the synthetic scene were possible in the virtual

environment. The algorithm flows of the tracking schemes are given in figures 7.1

and 7.2 respectively. The implementation results can be seen in figures 9.1 (a)-(f).

129

Binarization

Labeling

Contour Detection

Line Contour
Estimation

Sub-Pixel Corner Detection

Pattern
Normalization

Template Matching

Homography Computation

Optimization

Manual Thresholding

Camera Intrinsic
Parameters (K)

Marker Patterns List(P’q)

Image (I)

Image (I’)

Components List
(Cn, C={xi,yi}

m

Contours List
(C’n, C’={xi,yi}

m

Markers Size
(C’’’’’n, C’’’’’=xi,yi))

Corners List
(C’’’n, C’’’={xi,yi}

4

Lines Parameters List
(C’’’’n, C’’’’={ai,bi,ci}

4
Marker Region

List Pq

Markers Homography
({H}n)

Lines Parameters List
(C’’n, C’’={ai,bi,ci}

4)

Camera
Transformation

Markers Transformation
({R,t}n)

Markers Homography
({R’,t’}n’)

Figure 7.1 Tracking algorithm for a planar object held by the user hand. This algorithm was both used

for controlling a virtual user interface tablet in the synthetic environment and also for registering a

3-D virtual object with a feature in real-time (Kato & Billinghurst, 2006).

130

(a)

(b)

Figure 7.2 (a) Training phase of Haar Classifier for face

detection. (b) Test phase of the classifier.

131

CHAPTER EIGHT

ESTABLISHMENT AND CURRENT SETUP OF COMPUTER GRAPHICS

AND VIRTUAL REALITY LABORATORY

This chapter will explain the establishment process of the computer graphics and

virtual reality laboratory in Dokuz Eylül University.

A new research laboratory has been established in the scope of this thesis work.

The laboratory is located in Dokuz Eylül University Electrical and Electronics

Engineering Department (DEU EEE Department). The aim of the laboratory is to

provide necessary equipment and development environment for undergraduate and

graduate level researches on computer graphics, scientific simulation and

visualization, computer vision, virtual environments and augmented reality.

Laboratory establishment period and current setup of the laboratory will be explained

in this chapter. Then the technical details of fundamental laboratory equipments that

a researcher should know will be given briefly.

 The thesis project and the laboratory establishment are supported in the scope of

Dokuz Eylül University Scientific Research Project (BAP) with the support code of

2008.KB.FEN.027. VESTEL Electronics supported the establishment process with a

LCD panel. The establishment process of the laboratory and the important technical

details of several equipments are as follows.

 Table 8.1 lists the equipments that the computer graphics and virtual reality

laboratory in DEU EEE Department has. The establishment progress of the computer

graphics and virtual reality laboratory in DEU EEE Department can be followed in

date order can be followed from figures 8.1 to 8.3.

132

Table 8.1 DEU EEE Department Computer Graphics and Virtual Reality Lab. Equipment List.

Equipment No. Equipment Name
1 VESTEL 102" Full HD LCD
2 Polhemus Fastrak 6 DOF motion tracker
3 Sensable Phantom Omni haptic device
4 5DT Data Glove 5 Ultra USB (left and right pairs)
5 5DT HMD 800-26 3-D head mounted display

6
Logitech QuickCam Pro 9000 webcams (2 pieces for augmented reality and
computer vision applications)

7 Intel Quad Core and Core i7 based computers using Microsoft Windows XP
8 ATI X1550 based graphics card
9 NVIDIA GeForce GTX 295 based graphics card
10 Sanyo data projector

 (a) (b)

Figures 8.1 (a) and (b) are two views from the laboratory by the end of October 2008.

 (c) (d)

Figures 8.2 (a) and (b) are two views from the laboratory by the end of December 2009.

133

 (e) (f)

Figures 8.3 (a) and (b) are two views from the laboratory by the end of August 2010.

8.1 VESTEL LCD Panel

 VESTEL Electronics supported the laboratory establishment with a LCD panel. It

is a 102” Full-HD 1080p model with composite, PC, YPbPr, HDMI inputs. The LCD

is used as a primary or secondary display device together with the HMD.

8.2 Polhemus Fastrak Motion Tracking System

 Polhemus Fastrak motion tracker is a six degrees of freedom (6 DOF) motion

tracking system. It is capable of tracking both position and orientation using

electromagnetic fields. The near field, low frequency magnetic field vectors are

generated via three concentric, stationary antennas in the transmitter. The generated

magnetic field vectors are detected by three concentric, stationary antennas in the

receiver. The position and the orientation of the receiver relative to the transmitter is

calculated by using the sensed signals as the input arguments of a mathematical

formulation. Figures 8.4 and 8.5 show the main components of Polhemus Fastrak

motion tracking system. The details of technical specifications of the tracking system

and the software development kit can be found in (Polhemus, 2009).

134

Figure 8.4 Polhemus Fastrak motion tracking system front side connections.

Figure 8.5 Polhemus Fastrak motion tracking system rear side connections.

 The tracking system includes a system electronics unit, a power adapter, a

transmitter and up to four receivers. The sampling frequency of the receivers is

dependent on the number of receivers physically connected to the system electronics

unit. Therefore, a single receiver is sampled at 120 Hz which is the maximum

sampling rate. Two receivers are sampled at 60 Hz each. Three receivers and four

Transmitter
connection

Polhemus Fastrak
system electronics unit

Power led

Connections of receivers

Transmitter

USB connection

Power
connection

Polhemus Fastrak
receiver 1

Fixation plane for
tracker calibration

HMD

VESTEL
LCD

135

receivers configurations operate at 40 Hz and 30 Hz sampling frequency for each of

the receivers respectively. The interface with the host computer can either be

RS – 232 interface or USB interface.

 The tracking system is designed to provide the optimum accuracy when the

standard receivers are within the 76 cm of the standard transmitter. The receivers are

all – attitude. The static accuracy of the system is 0.08 cm RMS for X, Y or Z

receiver position, and 0.15° RMS for receiver orientation. The positional and angular

resolutions are 0.0005 cms/cm of range, and 0.025° respectively. The latency of the

system from the center of receiver measurement period to beginning of transfer from

output port is 4.0 ms.

 By default, the output position data is X , Y , Z position (cm or inch) in

Cartesian Coordinate System considering the reference point on the transmitter as the

origin of the system. By default, the output orientation data is azimuth, elevation and

roll in Euler Angles considering the reference point on the transmitter as the origin of

the system. If needed, the application developer can select direction cosines or

quaternion as an output data. The metric unit can be selected as inch or metric units.

The type of output data can be ASCII or binary.

 Prior to using Polhemus Fastrak, it should be calibrated for all the connected

receivers. In order to understand the calibration procedure, the developer should

know where the origins and reference frames on the transmitter and on the receivers

are located respectively. The related origins and reference frames are given in figure

7.6. Additionally, working knowledge on boresighting, reference frame alignment,

hemisphere tracking should be gathered.

8.2.1 Reference Frame Alignment

 Reference frame alignment is needed as the first part of the calibration procedure

prior to each use.

136

 Figure 8.6 The coordinate systems of the transmitter and the receiver.

 The alignment creates a reference frame where the position and orientation data

gathered from the receiver are referenced to. The receiver is placed on the desired

location within the limits of the transmitter and the origin),,(OzOyOxO of the

transmitter – receiver pair is defined. That location will be the origin for only that

particular transmitter – receiver pair. Then, two more spatial points),,(XzXyXx and

),,(YzYyYx are defined in the positive 'X and 'Y directions respectively so that rays

'OX and 'OY are orthogonal. The norms of these rays are defined by the user. By

default they are defined as 200cm. Finally, using three pointsO , 'X and 'Y , a 2-D

space that is a plane can be defined. The normal of the plane is calculated by the

cross product of the rays 'OX and 'OY . Hence a Cartesian Reference Frame is built.

8.2.2 Boresighting

 Boresighting is not mandatory in the calibration procedure. Boresighting aligns

the orientation of the receiver with the user coordinate system. This means that, when

137

boresighting is applied, the azimuth, elevation and roll at that moment will be

referenced as zero values. Then the further orientation measurements will be

performed relative to this reference orientation.

8.2.3 Hemisphere Tracking

 The magnetic fields generated by the transmitter are symmetric. Therefore there

are two mathematical solutions to each set of receiver data as depicted by (Polhemus,

2009, p. 48). To provide a unique solution to the equations, only one hemisphere

named as the current hemisphere is used during the tracking. Outside the current

hemisphere, mathematical ambiguities i.e. sign flips occur. These ambiguities will

result in positioning and orienting the 3-D virtual model (for the application in the

scope of the thesis) inappropriately. Therefore the tracking system provides a

hemisphere tracking feature to track the current hemisphere that the receiver in. But

to enable this option, the hemisphere tracking should be enabled when the receiver is

in a known initial condition. This means that, the receiver should be in the X+

direction relative to the transmitter initially, prior to turning on the tracking system

and enabling this feature.

8.2.4 Output Data

 The needed output data can be acquired from the motion tracking system by

software configuration prior to the operation. For most of the time X , Y and Z

Cartesian coordinates of position, azimuth, elevation and roll Euler orientation angles

and orientation quaternion will be adequate. Additionally, configuring the output

data format as binary instead of ASCII will reduce the data packet size.

8.2.5 Angular Operational Envelope

 If needed, the azimuth, elevation and roll angles can be constraint to intervals. If

the receiver is outside these intervals, the user is notified.

138

8.2.6 Position Operational Envelope

 If needed, the positions along X± , Y± , Z± directions can be constraint to

intervals. If the receiver is outside these intervals, the user is notified.

 In most of the operation purposes, configuring the parameters mentioned in

section 8.2.1 to 8.2.6 will be adequate for tracking.

8.3 Sensable Phantom Omni Haptic Device

 When a human touches an object in real world, a tactile stimulus is generated due

to the forces that are generated between the object and the point of contact. The

stimulus signal is transmitted to the brain via the nervous system. Then the

transmitted signal is interpreted appropriately by the brain. This leads to the haptic

perception. Then necessary reaction signals are generated accordingly by the brain

and transmitted to the motor system. The reaction signals are transformed into an

action by the motor system of the human.

Similarly, haptic devices aim to simulate the tactile stimulus generated when a

contact occurs between the human body and an object in virtual or real teleoperated

environment. The ultimate goal of the device is to make the human user perceive as

if he or she is really touching an object in the virtual or teleoperated environment

although the object is in fact virtual or far away. A haptic device performs this

simulation by applying appropriate forces along the appropriate linear or radial axes.

Thus a physical resistance is applied to the human holding the end-effector of the

haptic device. The strength and direction of the resistance depend on the material

composition of the object being touched. A good coverage of haptics can be found in

(Srinivasan, n.d.).

Sensable Phantom Omni has recently arrived at the laboratory by the time this

thesis was written. It has 6 degrees of freedom positional sensing with IEEE 1394a

interface for host computer connection. For further technical details the researcher

139

may refer to (SensAble Technologies, Inc., 2008). Figure 8.7 shows Sensable

Phantom Omni haptic device in the laboratory.

Figure 8.7 The haptic device, the data glove pair with the receiver 2 and the webcam pair.

8.4 5DT Data Glove 5 Ultra USB Left and Right Pairs

 5DT Data Glove 5 Ultra USB is a device for hand motion data capture. The

laboratory has both left and right data glove pairs. The data gloves have a USB

interface for host computer connection. Each data glove has five bend sensors to

measure the flexure of each finger. The flexure is measured as an average of first

joint and second joint on each finger. Each bend sensor analog output is digitized

with 12 bit analog digital converter. All the bend sensors are sampled at least at

60 Hz. The figure 8.7 shows each pair of data gloves that the laboratory has.

 The data gloves can be integrated to a development environment via its bundled

software development kit. The data acquired from the sensors can either be raw or

IEEE1394a
connection of
haptic device

Power connection
of haptic device

Polhemus Fastrak
receiver 2

USB connections of
data gloves

Sensable Phantom Omni
haptic device

5DT Data Glove 5
Ultra USB pair

Logitech QuickCam
Pro 9000 pair

140

scaled data. A total of 16 simple gestures can be defined for a single hand via the

software development kit. A calibration procedure is necessary. Auto-calibration

procedure is the simplest way to go. Technically, in auto-calibration mode, the raw

value x acquired from the bend sensor is compared to the current boundary values

minx and maxx . If the read raw value is outside this inclusive interval, the boundary

values are updated. The corresponding sensor data observed from the application is

calculated as follows;

user. by theset is ,
minmax

min MaxValMaxVal
xx

xx
xout

−

−
=

 For further information, the researcher should refer to (Fifth Dimension

Technologies [5DT], 2004a).

8.5 5DT HMD 800 – 26 3-D Head Mounted Display

 5DT HMD 800 – 26 3-D head mounted display is a stereoscopic SVGA device

that has 26° viewing angle and 44 inch virtual image size at 2 meters. Each LCD

panel of the device can generate 800x600 image plane for each red, green an blue

colors resulting in 1.44 million pixels. The device in the laboratory is shown in figure

8.8. For further technical details the researcher may refer to (5DT, 2004b).

Figure 8.8 5DT HMD 800 – 26 3D head mounted display, mounted tracking system receiver and

transmitter.

Polhemus
Fastrak
transmitter

Polhemus Fastrak
receiver 1

5DT HMD 800 – 26 3D head mounted display
Fixation plane for
tracker calibration

141

8.6 Logitech QuickCam Pro 9000 Webcams

 The laboratory has two Logitech QuickCam Pro 9000 webcams for augmented

reality and video processing applications. The webcams have Carl Zeiss optics with

2-MP HD sensor that can produce high definition video up to (1600 x 1200). The

devices in the laboratory are shown in the figure 8.7.

8.7 ATI X1550 and NVIDIA GeForce GTX295

 ATI X1550 is an ATI RV515 core based graphics card with 105 million

transistors on 90nm fabrication process. It has 4 fragment (pixel) shaders, 2 vertex

shaders, 4 raster operation pipelines (ROPs) and 4 texture units. A support for

DirectX 9.0c, OpenGL 2.0, multiple render target and render to vertex buffer is

provided. It supports Shader Model 3.0 programmable vertex and fragment shaders

in hardware and up to 128 simultaneous pixel thread. The card has PCIe x16 bus

interface for host computer communication. For more technical details, the

researcher should refer to (Advanced Micro Devices, Inc. [AMD], 2010) and

(Wikipedia, 2010s).

 NVIDIA GeForce GTX 295 is a 2nd generation NVIDIA® Unified Architecture

and 10th generation NVIDIA GeForce series. It has two graphics processing unit.

Each graphics processing unit has 1.4 billion transistors on 55 nm fabrication

process. It supports NVIDIA® CUDATM technology for general purpose computing.

Each graphics processing unit has 240 CUDA cores resulting in total of 480 CUDA

cores. It supports programmable graphics pipeline and hence programmable vertex,

geometry and fragment processors in hardware. The card supports NVIDIA®

PhysXTM for graphics processing unit based physics tasks for complex rigid body,

soft body, particle system, character control, ray-cast and articulated vehicle

dynamics, volumetric fluid simulation, cloths and volumetric force fields. NVIDIA®

PhysXTM is also multithreaded, multi platform and physics processing unit enabled.

Additionally a support for NVIDIA 3D Vision is provided for stereoscopic 3-D

applications. The card has NVIDIA Quad SLI® support for multi-graphics card

142

utilization, SLI multi monitor support and GigaThreadTM technology that is a

massively multi threaded architecture for running thousands of independent threads

simultaneously. A support for Direct3D 10.0, OpenGL 3.3 and Shader Model 4.0

programmable vertex and fragment shaders in hardware is provided. The card uses

PCIe x16 2.0 for communication with the host computer. For more technical

information, the researcher should refer to (NVIDIA, 2010) and (Wikipedia, 2010t).

143

CHAPTER NINE

SOFTWARE DEVELOPMENT AND HARDWARE INTEGRATION

RESULTS

 In this chapter, all the software implementation results from the beginning of the

thesis to the end will be presented.

9.1 Software Development Tools Used During the Thesis Work

 Microsoft Visual C++ 2005 Development Environment was used throughout the

thesis work. Mathworks MATLAB 2008a was used for numerical verification of the

methods implemented. The configuration graphical user interface (GUI) of the

software was developed using Qt GUI Development Kit which is platform

independent. Qt has its own meta object compiler and thus cannot be compiled

directly with Microsoft Visual C++ or other compilers. For technical details,

software design patterns and implementation considerations regarding Qt, the

researcher should refer to (Blanchette & Summerfield, 2008). Ogre3D was used as a

real time graphics rendering engine. For the technical and implementation

considerations, the researcher should refer to (Junker, 2006). Prior to Ogre3D,

OpenSceneGraph was the choice as a graphics rendering engine. It is used during the

augmented reality (AR) application development together with osgART. osgART is

the ARToolkit plug-in for OpenSceneGraph. INTEL OpenCV was also used for the

development of AR application. For more information about INTEL OpenCV, the

researcher should refer to (Bradsky & Kaehler, 2008). Ogre3D was the choice over

OpenSceneGraph during the virtual reality (VR) application development because of

its flexibility, ease of integration, support of shaders and most importantly the

availability of learning resources. The researcher interested in OpenSceneGraph

should refer to (Martz, 2007). Bullet was used as a physics engine during the thesis

work. A good learning resource for Bullet is (Coumans, 2009). For code

development tests accomplished using NVIDIA CUDA were compiled using

NVIDIA C Compiler that can be executed under Microsoft Visual C++ 2005. CUDA

144

API 2.2 was used during these tests. Microsoft DirectX 9.0c and Cg 2.0 were used

during the development. Apart from the actual software development, in order to

practice GPU based physics rendering and to test whether NVIDIA PhysX could be

useful for the development target or not, NVIDIA PhysX SDK 2.8.1 was studied

theoretically and practically. For details of NVIDIA PhysX, the researcher should

refer to (NVIDIA, 2008).

9.2 Implementations Completed during Augmented Reality (AR) Application

Research

 In the beginning of the thesis work period, the necessary tracking and data glove

equipment could not be purchased. That meant a slow down for the laboratory

establishment process and also for the application development during that period.

Because, the user would not be able to interact with the virtual environment without

the tracker and the data gloves. Then for the period, the main target was defined to be

a development of a virtual environment in which the user can pan in the environment

with the head movements and control a virtual graphical user interface tablet for

several actions. At the result of this period, a virtual environment in which an user

can control a virtual graphical user interface tablet via real time video tracking was

developed. The user head could successfully tracked for movements that are not very

fast so that linearity conditions satisfy. The Z distance that is the distance of the user

from the camera could not be calculated at that moment. To calculate the Z distance,

either a stereo rig should have been setup, or the affine relations of feature points

between two consecutive frames should be tracked. The real time tracking study was

not carried so far as the main goal of the thesis work was not computer vision. The

necessary theoretical background was given in the previous chapters. The

implementation results will be given in figure 9.1. For necessary camera calibration,

ARToolkit was used. For 2-D head tracking was performed using INTEL OpenCV

Library. For development of the virtual environment OpenSceneGraph was used.

Finally, the integration of OpenSceneGraph with ARToolkit was established via

osgART plug-in.

145

 (a)

 (b) (c)

Registered 3D virtual cube
in real time

Registered 3D virtual cube
real time

Calibration result

146

(d)

(e)

Registered 3D anatomy
models under affine
transformation in real time

Virtual GUI tablet is being
controlled by the user via
real time video data.

Corners of the square are
used as features for tracking
and pose estimation

147

(f)

Figure 9.1 (a) Camera calibration. (b), (c) Initial implementations for registering 3-D models with the

video in real time. (d) Application of affine transformations to 3-D model in real time by tracking the

corner features of the square on the planar paper in the video data. (e) User interaction with the virtual

environment and the control of a graphical user interface tablet via tracking the same features in (d);

white wireframe overlays indicate the model part selection. (f) Face tracking for pan movements in the

virtual environment.

 The face tracking implementation remained as a separate module, because at that

time the necessary equipments arrived.

9.3 Development Result of the Immersive Interactive Virtual Environment for

Collaborative Anatomy Inspections in Medical Education

 The final development results are presented in this part. The software layers and

scene graph hierarchy are developed as given in figures 9.2 and 9.3 respectively.

Then the views from the real time interactive environment will be presented.

Following this part, the preliminary implementation experiences and study results

leading to the final software development will be presented.

2-D face tracking for pan
movements in virtual
environment

148

Figure 9.2 Functional layers of the developed software.

149

Figure 9.3 Directed acyclic graph representing a part of the virtual environment developed. Only a

representative portion of the whole graph is given because of the page size constraint. Black dots

represent remaining node connections in the graph.

150

(a)

(b)

151

(c)

(d)

152

(e)

Figure 9.4 (a) and (b) represent two views from the virtual environment in which two users are

present. The uses are indicated by blue pyramids together with local coordinate axis. Each user has a

local coordinate axis in the bottom left of the view to see his or her orientation in the virtual

environment (See section 5.2 for gimbal lock problem). Object manipulations are done by hand. The

frame rate is 18 fps at average. The texturing and lightning are performed using programmable

graphics pipeline by using Cg language (See section 5.4). (c) and (d) represent the rigged and skinned

hand deforming in accordance with the user’s hand gestures (See section 5.5). A light shaft is rendered

at the position of the medical light aimed towards the human body (See section 5.3). (e) Represents

the deformable cloths and tissues. The green info overlay at the lower left corner of the screen informs

the user about the penetration depth, collision contact point and contact normal and the applied

impulse when collision occurs between the user’s hand and between any virtual object (See chapter 6

and sections 6.6.3.1, 6.6.3.2). White wireframes represent the collision models used for related render

models.

153

(a)

(b)

Figure 9.5 (a) A close look at bump mapping with parallax offset technique used for texturing the

environment. The model-view matrix and light parameters are continuously passed to the GPU as the

vertex code input arguments to update the lighting effects such as reflection power and its direction.

This technique is applied by using programmable graphics pipeline with the help of vertex processor

and fragment processor codes written in Cg (See section 5.4). (b) A 2-D dynamic mass-spring

topology namely – the cloth simulation - on which two logos present. This dynamic topology is used

154

to study the tradeoffs of numerical integration methods between their stability and accuracy in

conditions where time steps are changed and to implement integration methods such as explicit Euler

integration, second order Runge-Kutta integration, fourth order Runge-Kutta integration and Verlet

integration are considered. The other particular importance of that scene is that, one of the first

collision detections are implement by using the white sphere standing in front of the 2-D mass-spring

topology. The collision between the sphere and the 2-D mass-spring topology is solved by

implementing fitting a sphere around the mesh of the white sphere and detecting collisions between

this sphere and the vertices of the 2-D mass-spring topology to which masses are bound. The

governing differential equation of the 2-D mass spring topology, applied forces and collision scheme

are independent from the physics properties of rest of the virtual environment (See chapter 6).

(a)

155

(b)

Figure 9.6 Interaction is possible with the 3-D models in the virtual environment. (a) One of the users

has taken the light standing on the bed by touching and holding with his or her hand. (b) The other

user is looking at the user holding the light. The light can be notices on the hand of the user (See

chapter 6).

(a)

156

(b)

Figure 9.7 (a) One of the users is looking at the other user who has left the light to the ground. (b) The

view of the user who has left the light near the wall. Leaving the 3-D model can be done by colliding

it with the bed or according to the bending data of the fingers of the user retrieved from the data glove

(See chapter 5 and chapter 6).

(a)

157

(b)

Figure 9.8 A user interface with several controls is displayed when a user wants to manipulate the

parts of the anatomy model. (a) and (b) presents the views of two users. Lights are dimmed if wanted,

during inspection (See section 5.3 for light shafts rendering).

(a)

158

(b)

Figure 9.9 (a) One of the users looks at the user interface. Notice that information can be displayed on

the user interface. (b) A user in the same scene holding the part of an anatomy model. A light shaft is

located over the model part of interest (See section 5.3 for light shafts rendering).

(a)

159

(b)

Figure 9.10 Several properties of the 3-D models can be controlled via the user interface. Constraints

defined for the controls of the user interface define their behaviour. When a user touches or grabs the

user control, the color of the related control goes to green. When the user leaves the user control its

color returns to the original color (See chapter 6 for the collision detection and constraint solution

methods). These are presented in (a) and (b). Anatomic parts can be attached, detached and

manipulated freely by the user via the virtual hand.

(a)

160

(b)

(c)

Figure 9.11 One of the users decides the inspect one of the parts. Any affine transform can be applied

for this purpse. A light shaft is seen over the model of interest. These are presented in (a) and (b) from

the views of two users. In (c), a user inspects inside of the anatomy models and if wants interacts with

the anatomy model parts.

161

(a)

(b)

Figure 9.12 Initial tests for using 2-D mass spring systems with volumetric 3-D models. The

implementation should be tuned by appropriate spring constants and volume preservation constraints.

But the correct approach is to use tetrahedral mass-spring ssystem and solve those models numerically

for modeling states of dynamic 3-D topologies i.e deformation, due to the applied force, because using

2-D mass-spring system can capture the surface of the 3-D model with lack of information relating

volume of the 3-D model (the hand in this particular case). (a) and (b) presents two states of a

deformable volumetric hand tried to be modeled by 2-D mass-spring system. Notice that the applied

force is due to the gravity and due to the collisions from the ground. Due to the lack of necessary

constraints on the 2-D mass-spring system, hand behaves in an inconsistent manner (See chapter 6).

162

(a)

(b)

Figure 9.13 (a) 2-D mesh-spring system for modeling 2-D dynamics and collision. (b) 3-D tetrahedral

mesh-spring system for modeling 3-D volumetric dynamics and collision (See chapter 6).

163

(a)

(b)

Figure 9.14 (a) and (b) presents initial views from the environment prior to programming vertex

processors and fragment processors with Cg. White wireframes represent the collision models used for

related render models.

164

Figure 9.15 A person using the system for testing.

9.4 Implementations Completed during Mathematical Elements of Computer

Graphics and Real Time Graphics Rendering Research

The time period in which no tracker and data glove exist was also used to get

theoretical and practical background on curves and surfaces in 3-D spaces such as

Bezier surface, Spline curves and surfaces and their variants, Coons Bicubic surface,

etc… and real time graphics rendering. The interested researcher should refer to

(Rogers & Adams, 1990) for the theory of mathematical elements of computer

graphics. Figure 9.16 presents custom software developed using Visual C++ and

without using any graphics API such as Microsoft Direct3D or OpenGL during this

period for visualizing and affine transforming several different types of surfaces and

curves mentioned above. For theoretical and implementation studies in real time

graphics rendering, (Möller & et al., 2008) and (Wright, & et al., 2007) are preferred.

Figure 9.17 presents several implementations completed.

165

Figure 9.16 A custom software developed for visualizing and transforming several primitives and

functions such as Bspline surface, conics, etc … for modeling topology changes in later stages. Using

splines instead of linear models for interpolations i.e. in FEM produces more physically consistent

results (See section 5.1).

(a)

166

(b)

(c)

167

(d)

Figure 9.17 Several implementations completed for practicing real time graphics rendering referring

to (Wright, & et al., 2007). (a) Texture mapping with lights and shadows. (b) Environment mapping.

(c) Reflection. (d) 3-D object selection. Some of these techniques were used in the actual virtual

environment (See section 5.1).

9.5 Implementations Completed during Collision Detection Research

 As seen from the previous chapters, collision detection is an important subject not

only in computer graphics but also in path finding problems and robotics. As seen

from the papers referenced in the previous chapters, it would be suitable to use the

appropriate collision detection method for appropriate situations. For example, an

interactive application simulating deformable objects might require a fine

triangle-triangle collision detection that needs a high computational power; but on

the other hand an oriented bounding box that needs a low computational power might

be sufficient for a game. Therefore prior to implementation, the needs should be

analyzed well and the tradeoff between the performance of the application and the

error between the collision models that will approximate the actual 3-D render model

and the actual render topology should be considered. During this phase of the

research period, to get insight into collision detection techniques, well known simple

methods such bounding sphere and bounding box are implemented in addition to

168

more accurate triangle-triangle collision detection. The mathematical theory and

implementation details can be found at (Morefield & Malloy, 2007), (Möller, 1997).

For more in depth study in collision detection, the researcher should refer to the

papers mentioned in chapter 1. The results are shown in figures 9.18 and 9.19.

(a)

No collision detected

169

 (b)

Figure 9.18 Implementing collision detection in 3-D space using bounding sphere referencing

(Morefield & Malloy, 2007). (a) No collision detection. (b) Incorrect collision detection due to the

high error rate between the 3-D render topology and the collision model chosen to approximate that

topology. Due to its simplicity and several topological properties given in chapter 6, this technique is

used where coarse collision detection is adequate (See section 6.5).

(a)

No collision detected

Incorrect collision detected

170

(b)

Figure 9.19 Implementing collision detection in 3-D space using triangle-triangle collision test

referencing (Morefield & Malloy, 2007), (Möller, 1997). (a) No collision detected. (b) Correctly

detected collision because of the minimization of the error between the collision model chosen and the

3-D render topology. This technique is used only for anatomical models where fine collision detection

is needed i.e. for cutting due its high computation power demand (See section 6.6.3).

9.6 Experiences with SOFA – Simulation Open Framework Architecture

 As mentioned before, SOFA is an important simulation framework developed by

INRIA. It supports NVIDIA CUDA. Although not tested yet, it is claimed that it also

supports several haptic devices. It consists of a rich numerical algorithm package

including finite element model solvers, conjugate gradient solver, mass-spring

system solver and etc…, collision detection package, collision model and render

model mapping package including barycentric mapping, etc… and several space

partitioning methods. During the thesis work, source code of SOFA was inspected

for integration with the thesis development. But, due to the complexity of the

relations between the software modules of the source code and our limited

knowledge on some of the numerical methods used in SOFA at that time, this aim

could not be accomplished. But this study on the source code of SOFA provided a

Collision detected

171

well established knowledge about the design of such simulation framework for

future. Figures 9.20 and 9.21 present some results from this period.

 (a)

 (b)

172

 (c)

(d)

Figure 9.20 A simulation example with SOFA using NVIDIA CUDA (See section 2.3). (a) and (b)

represent two different deformation states of a liver where FEM is used for numerical calculations. (c)

Barycentric mapping is used to control the deformation of the render models meaning that a

mechanical model of the liver is used in the FEM and each node of this model is the center of collision

spheres indicated in orange color. The position of the nodes hence the center of collision spheres are

defined as linear combination of suitable triangular render elements indicated in red color (d) Sphere

collision models are used for collision detection with the liver to save computation sources.

173

(a)

(b)

Figure 9.21 Practicing fluid dynamics in SOFA (See section 2.3). (a) and (b) represent two different

states of a stable fluid. This simulation technique can be used to model some of the body fluids and

their interaction with i.e. vessels in further studies.

174

9.7 Development Stages of the Graphics User Interface using Qt Development

Kit

 (a)

 (b)

175

 (c)

(d)

Figure 9.22 The setup and calibration GUI developed for the application with Qt Kit. The GUI is used

for (a) entering to the virtual environment, (b) the tracker calibration, (c) video settings and (d) data

glove calibration.

9.8 Experiences with Cg and GPU Programming for Graphics

 Prior to the implementation of the GPU programming for graphics for the actual

software, several stand-alone practices had been completed. This was necessary to

learn implementation of rendering codes for vertex processors and fragment

176

processors, how they were executed on the processor and their differences. The

following figures are some results from this period.

(a)

 (b)

177

(c)

Figure 9.23 Practical implementations on lighting using vertex processors and fragment processors in

the programmable graphics pipeline of the GPU. (a) and (b) present vertex lighting and fragment

lighting respectively. Notice the smoothness in the specular lights in (b) because lighting code is

implemented in the fragment processor. In this case this code is executed for every pixel in the scene.

On the other hand, in (a) the lighting code is implemented in vertex processor. In this case this code is

executed for every vertex in the scene. The lighting for remaining pixels where no vertex exists, the

lighting is interpolated as a linear combination of corresponding vertices, which is in fact Gouraud

lighting. In (c) two spotlights are implemented using vertex processors (See section 5.1 and chapter 4

for GPU programming).

(a)

178

 (b)

(c)

179

(d)

Figure 9.24 The pictures above represent snapshots from the real time rendering of dispersion,

reflection, refraction calculated on GPU using Cg. The environmental mapping method is used to

perceive a car in an real environment (See section 5.1 and chapter 4).

(a)

180

 (b)

Figure 9.25 In (a) practicing affine transformation using vertex and fragment processors; and in (b)

practicing particle simulation using vertex and fragment processors in the programmable graphics

pipeline using Cg (See section 4.5).

9.9 Experiences with NVIDIA CUDA and Performance Comparisons for

Further Projects and Possible Implementations

 Integration of CUDA to the current developed software will enable using more

computationally demanding but on the other more physically consistent numerical

methods such as finite element models (FEM) via GPU implementation. Although,

the aim was to use FEM to model elastic objects, time was not adequate. But several

code implementations were investigated for getting insight to using CUDA. The

following pictures present some results.

181

(a)

 (b)

Rendering at 16269.0 fps with GPU
implementation, 0.7 fps with CPU
implementation

182

(c)

Figure 9.26 Practicing NVIDIA CUDA for several simulations. (a) presents the hardware

configuration on which the implementations are done. (b) presents an simulation of Mandelbrot fractal

for different depth levels. The pixels with black color are in the Mandelbrot set and the other colors

represent the rate of divergence of the recursive generating sequence to infinity. The Mandelbrot set is

generated in real-time on GPU. (c) presents a fluid dynamics simulation for a stable fluid with defined

boundary conditions. Navier-Stokes Equations are numerically solved on GPU. These are all

simulated in real time. The necessary solvers and example source codes are found in NVIDIA CUDA

SDK. They should be compiled a priori (See chapter 4 for programming GPUs for general purpose

computations).

183

9.10 Experiences with NVIDIA PhysX and Performance Comparisons for

Further Projects and Possible Implementations

 (a)

 (b)

Figure 9.27 Practicing NVIDIA PhysX for several simulations for taking advantage of physics

rendering with GPU. (a) presents a texturize cloth made up of 2-D mass-spring system. Vertices at the

top part of the cloth are constrained to a rigid body at the ceiling, hence they are not moveable. The

state of the remaining vertices is controlled by the governing differential equation d2x/dt2=Fnet driven

by the gravitational force. If desired, a force can be applied to a vertex by selecting and pulling or

pushing it to appropriate direction. From there on, that applied force will also be used for calculating

the net force to drive the governing differential equation of the system (b) presents a cutting operation

which can be executed by canceling links of the selected vertices to adjacent vertices. The necessary

solvers and example source codes are found in NVIDIA PhysX SDK. They should be compiled a

priori.

184

9.11 Construction of Mesh Spring Structures and Implementation of Topology

Processing and Refinement for Mesh Cutting Operation Using Bullet Engine

(a)

 (b)

185

(c)

(d)

Figure 9.28 (a) and (b) present a construction of 2-D mass-spring system with AABBs at vertices

indicated in white color and model partitioning indicated with violet color for collision detection. (c)

and (d) present topology processing for the actual 2-D mass-spring system for simulating a cutting

operation. For each cut surface, necessary extra vertices, masses, velocities, related AABBs and faces

are generated both on the remaining mass-spring system and on the cut piece (See chapter 6).

186

9.12 Haptic Rendering Implementation Results

(a)

 (b)

187

(c)

(d)

Figure 9.29 Initial haptic rendering module developed during the thesis period. The integration

method used in the module is an Explicit Euler Method. (a), (b) show that for small time steps and low

force loading condition, the mesh topology of the body can be deformed via the haptic device. The

norm of the applied force, the application direction is overlaid on the screen. (c), (d) show that in high

force loading conditions, the mesh system diverges from its equilibrium point (See section 6.9).

188

CHAPTER TEN

CONCLUSIONS

 Prior to going on with the conclusions of the thesis work, the author’s viewpoint

of a scientific research should be indicated. Computer technology has led to the

development of many applications targeted to scientific researches; but the more

important concept than an application is the mathematical theory of computation and

complexity that forms a basis for all of the today’s programming languages,

algorithms and computing machines. Therefore the application should not be the

only target of the research in engineering, but a tool for understanding the origins of

the established theories, thinking styles of the pioneers in the computation field, the

“why” and “how” questions these pioneers asked and their solutions. The researches

of important pioneers such as Charles Babbage, John Von Neumann and Alan Turing

should be well analyzed to maintain a complete and connected background for

synthesizing new theories and designs in the field. While doing these, gaining a

working knowledge in applied sciences such as physics, chemistry and biology will

definitely change the way a researcher handles a problem and understands the nature.

 At the end of thesis work and at the end of the software development stage, the

following goals were achieved:

• A well equipped and operational computer graphics and virtual reality

laboratory was established with the setup seen in chapter eight. The

laboratory is the first one in Dokuz Eylül University that specifically target

the researches in mathematical theory and applications of computer graphics,

scientific simulation and visualization, the architecture and programming of

graphics processing units for not only graphics processing but also for general

purpose computing and scientific computations.

• A functional interactive virtual environment in which the user can interact

with the surrounding rigid and deformable objects and with the other

collaborators was constructed.

189

• Necessary software modules were developed for interfacing the motion

tracker device and the data gloves. The software module for interfacing the

haptic device was also developed but it was in the early stages.

• Necessary software modules were developed for physics and graphics

rendering. Then the communication connections between these modules were

established.

• A user interface was developed with Qt to enter the virtual environment,

perform tracker calibration, data glove calibration and video settings for the

user. Hence, the user’s position in real world is transformed properly to

coordinates in the virtual world. The user could see a virtual hand deforming

according to bending amounts of his/her fingers. This was necessary to

generate hand gestures in the virtual environment or to trigger certain events.

• A 3-D hand mesh was rigged and skinned so that when the user in the real

world moved his/her fingers, the same movements were also done by the

rigged hand mesh using the bending values acquired from the data glove

sensors. This gave the user a more immersive and natural feeling in the

virtual environment.

• The lighting and texture rendering were accomplished by programming the

programmable pipeline of the graphics processing unit. NVIDIA Cg and

Microsoft HLSL shader languages were used for this purpose. Accomplishing

the rendering tasks on the GPU side, released the CPU for other tasks such as

computing the simulation parameters and acquiring data from external

hardware such as the motion tracker device and the data gloves.

• Inside the virtual environment, the user could manipulate the virtual objects

with an additional 3-D graphical user interface that is shown when the virtual

object is being touched.

• Collisions between rigid and deformable objects were detected and

parameters such as contact points, normals in local and world space and

penetration depths were calculated.

• The user could also cut or deform the soft models.

190

• NVIDIA CUDA API was evaluated for the research accomplished on

programming GPUs for scientific and general purpose computing during the

thesis period.

• Several other engines other than Ogre3D and Bullet were tested for their

capabilities and usability for future development projects. Those engines

were SOFA, ODE – Open Dynamics Engine, NVIDIA PhysX, OpenTissue,

SPRING Simulator Framework, OpenInventor, OpenProducer and Havoc.

• A simple augmented reality application was developed for registering the 3-D

virtual objects with the video and for tracking the user hand to control a 3-D

virtual user interface in real time. The segmented features for registration

were artificial and hence imposed by humans.

• Haptics rendering with soft anatomical and tissue models was accomplished

by using the methods in chapter 6 via OpenHaptics API.

• Preliminary studies and researches for finite element modeling were

accomplished for more precise mathematical representation of the system

dynamics being simulated.

 The following criterions should be considered to enhance the current application:

• Further improvements for topology processing should be done in order to

capture the dynamics of the soft models. The numerical stability of the

differential equation solver was not appropriate for scientific usages.

• The opinions of several users should be obtained for user interface

development.

• Physics rendering and dynamic system modeling were done using CPU.

Moving these calculations onto GPU will free the CPU for other tasks and

increasing the frame rate.

• Instead of using a mass-spring system, better numerical methods such as

finite element modeling will produce more physically consistent results.

• Instead of rigging and skinning a hand, a stationary calibrated camera system

can be used to segment hand features and then inverse kinematics methods

can used for estimating the rotation and translation matrices of a hand and

191

fingers for user interaction and capturing the state of the hand to the virtual

environment.

• The augmented reality application may use natural environment features.

Hence, it will be more usable and practical to be used in outside

environments for information visualization.

• The 3-D anatomical models used in the thesis work should be replaced with

3-D models reconstructed from MRI, CT data acquired from Dokuz Eylül

University Faculty of Medicine. For initial researches, the medical data at

(United States National Library of Medicine National Institutes of Health

[NLM], 2010) can be used.

 According to our observations during the thesis period, it can be concluded that

VR has the ability to change the interaction styles not only between the human and

the computers but also between the humans. The interactive and immersive nature of

VR can shorten time needed to understand the fundamental of the dynamics of a

scientific processes, because a well-designed VR system can not only simulate the

dynamics of a scientific process in real time but also takes the user to the place of

occurrence of that process. The interaction ability provided to the user for affecting

the current dynamics of the simulated process is a key for providing a learning

opportunity of the different behaviors of the simulated system. Additionally, by

increasing the intelligence of the agents in the VR systems will increase the

interaction capabilities of the system with humans and alter its behavior accordingly.

 AR is rather a new way of visualization of the data at hand and also a new way of

human computer interaction. As in VR, its development mostly depends on

expensive and powerful computation units, but on the other hand, its utilization as a

way of human-computer interaction and visualization is expected to increase in the

future. At the time this thesis was written, many entertainment companies such as

Microsoft and Sony were developing user interfaces for many games and

applications using AR technology for XBox360 and PlayStation 3 respectively.

Apart from the games, AR changes the real world a person lives in into a mixture of

reality and unreality which is limited by the user imagination and the intelligence of

192

the computing system. The AR software developed during the thesis work is in very

preliminary stages and needs improvements. It needs markers in order to track the

user and control the virtual user interface. Markerless tracking of the user, more

intelligent software that can understand the emotions of the user and respond

according to user’s movements will definitely make the interaction more natural and

will improve its usability.

 On the other hand, as seen from the experimentations on graphics processor

programming accomplished during the thesis period, programming graphics

processing units for scientific calculations and for general purpose computing is an

important and promising research area for both hardware and software perspectives.

The performance gains of x10 and x100 over the central processing units (CPUs) had

been observed during the thesis work. The benchmarking was done using the

programmable graphics pipeline for implementing several graphics processing

techniques by Cg and NVIDIA CUDA for numerical computing research purposes

on graphics processing unit (GPU). The CPU used was Intel Q9550 and graphics

processor was NVIDIA GTX 295. The survey completed in the thesis work showed

an increasing usage of GPUs in scientific computing. This is not only because of the

increasing amount of data to be analyzed by the researchers, but also because of the

existence of algorithms and numerical analysis methods that are parallel in their

nature and the ability of GPUs in performing matrix vector operations very quickly

as these operations are why GPUs were designed and optimized for. The key concept

is the parallelism that these GPUs present with their many core hardware architecture

and their high bandwidths for data transmission compared to the general purpose

CPUs. Additionally, availability of appropriate compilers, high level programming

environments for use in heterogeneous computing systems where both CPU and

GPU exist simultaneously and the increasing number of GPU general purpose

programming APIs such as NVIDIA CUDA, ATI Stream and OpenCL enable the

researchers in diverse fields benefit from the computational power that GPUs have.

More in depth research on GPUs should be carried on in the future projects. Current

stages completed in the thesis work may be ported to GPU code where appropriate.

193

The collision detection and numerical solutions of differential equations

accomplished on GPU will definitely increase the performance of the software.

The planned research areas of the laboratory for undergraduate and graduate

levels are as follows:

• Mathematical theory and applications of collision detection in 3-D virtual

environments.

• Haptic rendering and applications in human computer interaction,

collaborative virtual reality and augmented reality applications in

engineering, medicine and applied sciences.

• Numerical computing, development of graphics processing unit based

numerical solution packages.

• Graphics processing unit programming for real time computer vision.

• Parallel processing software design patterns.

• Computational geometry and mathematical topology.

• Mathematical theory and applications of scientific simulation and

visualization of rigid and elastic bodies, fluid mechanics for gas, liquid and

blood flows that will be useful in engineering, applied sciences and medicine.

• Methods for machine intelligence and for more interactive and intelligent

communication with computers.

194

REFERENCES

Advanced Micro Devices, Inc. [AMD]. (2010). ATI RadeonTM X1550 specifications.

Retrieved September 01, 2010, from http://www.amd.com/us/

products/desktop/graphics/other/Pages/x1550-specifications.aspx .

Amorim, R., Haase, G., Liebmann, M., & Santos, R. W. D. (2009). Comparing

 CUDA and OpenGL implementations for a Jacobi iteration. HPCS’09,

 International Conference on High Performance Computing & Simulation, 2009,

 22-32. Retrieved September 20, 2009, from IEEE Xplore Digital Library

 Database.

Avi. (2007). RealityPrime >> scenegraphs: Past, present, and future. Retrieved

September 01, 2010, from http://www.realityprime.com/articles.com/ar

ticles/scenegraphs-past-present-and-future#tomorrow .

Azuma, R. T. (1997). A Survey of augmented reality. Retrieved February 17, 2008,

from CiteSeerX Database.

Baraff, D. (1989). Analytical methods for dynamic simulation of nonpenetrating

 rigid bodies. Computer Graphics, 23, (3) 223-232. Retrieved November 28, 2008

 , from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.163.5683 .

Baraff, D., & Witkin, A. (1998). Large steps in cloth simulation. Retrieved

 September 11, 2009, from http://www.cs.cmu.edu/~baraff/papers/sig98.pdf .

Baraff, D. (2001). Collision and contact – physically based modelling, SIGGRAPH

 2001 course notes. Retrieved March 21, 2010, from http://www.pixar.com/comp

 anyinfo/research/pbm2001/ .

Barakonyi, I, Psik, T., & Schmalstieg, D. (2004). Agents that talk and hit back:

 Animated agents in augmented reality. ISMAR 2004 IEEE and ACM

195

 International Symposium on Mixed and Augmented Reality, 2004, 141-150.

 Retrieved March 01, 2007, from CiteSeerX Database.

Barber, C. B., Dobkin, D. P., & Huhdanha, H. (1996). The quickhull algorithm for

 convex hulls. ACM Transactions on Mathematical Software, 22, (4) 469-483.

 Retrieved November 27, 2008 from CiteSeerX Database.

Barequet, G., Chazelle, B., Guibas, L. J., Mitchell, J. S. B., & Tal, A. (1996).

 BOXTREE: A hierachical representation for surfaces in 3D. EUROGRAPHICS

 ’96, 15 (3) 387-396. Retrieved November 24, 2008, from CiteSeerX Database.

Bathe, K. J. (1996). Finite element procedures. New Jersey: Prentice-Hall, Inc.

Bergen, G. V. (n.d.). Proximity queries and penetration depth computation on 3D

 game objects. Retrieved March 16, 2010, from http://www.google.com.tr/url?sa=

 t&source=web&cd=1&ved=0CBkQFjAA&url=http%3A%2F%2Fciteseerx.ist.psu

.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.113.6708%26rep%3Drep1%2

6type%3Dpdf&rct=j&q=Proximity%20Queries%20and%20Penetration%20Depth

%20Computation%20on%203D%20Game%20Objects&ei=tmeOTPzuBMKU4ga

n6eGECg&usg=AFQjCNHwI3SeLYmNt1zrMc87EL5X_au8jw .

Bergen, G. V. D. (1998). Efficient collision detection of complex deformable

 models using AABB trees. Journal of Graphics Tools, 2. Retrieved May 17, 2010,

 from CiteSeerX Database.

Bergen, G. V. D. (1999). A fast and robust GJK implementation for collision

detection of convex objects. Retrieved March 13, 2010, from

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.7659 .

Bergen, G. V. D. (2004). Collision detection in interactive 3D environments. CA:

Morgan Kaufmann Publishers.

196

Bielser, D., Maiwald, V. A., & Gross M. H. (1999). Interactive cuts through 3

 dimensional soft tissue. EUROGRAPHICS’99, 18, (3) 31-38. Retrieved March

 31, 2010, from CiteSeerX Database.

Bielser, D., & Gross, M. H. (2002). Interactive simulation of surgical cuts. The

Eight Pacific Conference on Computer Graphics and Applications 2000

Proceedings. Retrieved February 03, 2009, from http://ieeexplore.ieee.org/st/amp/

stamp.jsp?arnumber=00883933 .

Bielser, D., Glardon, P., Teschner, M., & Gross, M. (2003). A state machine for

real-time cutting of tetrahedral meshes. 11
th

 Pacific Conference on Computer

Graphics and Applications 2003 Proceedings. Retrieved February 02, 2009,

from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1238279&tag=1 .

Blanchette, J., & Summerfield, M. (2008). C++ gui programming with Qt 4 (2nd

 ed.). Massachusetts: Prentice Hall.

Bolz, J., Farmer, I., Grinspun, E., & Schröder, P. (2003). Sparse matrix solvers on

 the gpu: Conjugate gradients and multigrid. ACM Transactions on Graphics,

 22, 917-924. Retrieved September 20, 2009, from CiteSeerX Database.

Bradsky, G., & Kaehler, A. (2008). Learning OpenCV computer vision with the

 OpenCV Library . CA: O’Reilly Media, Inc.

Bridson, R. E. (2003). Computational aspects of dynamics surfaces – PhD thesis.

Retrieved March 29, 2010, from http://www.cs.ubc.ca/~rbridson/ .

Brown, D., Julier, S., Baillot, Y., & Livingston, M. A. (2003). An event based data

 distribution mechanism for collaborative mobile augmented reality and virtual

 environments. Proceedings of the IEEE Virtual Reality 2003 VR’03, 43-52.

 Retrieved March, 01, 2007, from CiteSeerX Database.

197

Cerveri, P., Momi, E. D., Lopomo, N., Baud-Bovy, G., Barros, R. M. L., & Ferrigno

G. (2007). Finger kinematic modeling and real-time hand motion estimation.

Annals of Biomedical Engineering, 35, (11) 1989-2002. Retrieved September 10,

2010, from SpringerLink Database.

CGAL. (2009). CGAL user and reference manual: All Parts. Retrieved

 February 01, 2009, from http://www.cgal.org/Manual/ .

CGAL. (2010). CGAL - computational geometry algorithms library. Retrieved

February 01, 2009, from http://www.cgal.org/download.html .

Comas, O, Taylor, Z. A., Allard, J., Ourselin, S, Cotin, S., & Passenger, J. (2008).

 Efficient nonlinear FEM for soft tissue modelling and its GPU implementation

 within the open source framework SOFA. International Symposium on

 Computational Models for Biomedical Simulation, 2008, 28-39. Retrieved

 September 10, 2009, from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1

 .1.156.8345 .

Cook, D. R., Malkus, D. S., & Plesha M. E. (1989). Concepts and applications of

 finite element analysis (3rd ed.). NY: John Wiley & Sons, Inc.

Cotin, S., Delingette, H., & Ayache, N. (1999). Real-time elastic deformations of

 soft tissues for surgery simulation. IEEE Transactions on Visualization and

 Computer Graphics, 5, (1) 62-73. Retrieved January 6, 2009, from IEEE Xplore

 Digital Library Database.

Coumans, E. (2009). Bullet 2.74 physics SDK manual. Retrieved October 16, 2009,

 from http://code.google.com/p/bullet/downloads/list .

Coumans, E. (2010). Bullet physics library. Retrieved October 16, 2009, from

http://code.google.com/p/bullet/downloads/list .

198

Davis, E. J., Ozsoy A., Patel S., & Taufer M. (2009). Towards large – scale

molecular dynamics simulation on graphics processors. Retrieved September 10,

2010, from http://www.nvidia.com/object/cuda_apps_flash_new.html#state=

detailsOpen;aid=55b2f736-0a6b-4893-aaed-272cb5dd676d .

Deitel, H. M., Deitel, P. J., & Choffnes, D. R. (2004). Operating systems (3rd ed.).

 New Jersey: Prentice Hall.

Desbrun, M., Schröder, P., & Barr, A. (1999). Interactive animation of structured

 deformable objects – technical report 034. Retrieved July 07, 2009, from

 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.26.4150&rep=rep1&ty

 pe=pdf .

Devillers, O., & Guigue, P. (2002). Faster triangle – triangle intersection tests.

Retrieved November 24, 2008, from http://citeseerx.ist.psu.edu/viewdoc/downloa

d?doi=10.1.1.6.1725&rep=rep1&type=pdf .

Diestel, R. (2005). Graph theory (3rd ed.). Heidelberg: Springer-Verlag.

Dijkstra, E. W. (1959). A note on two problems in connection with graphs.

 Numerische Mathematik, 1, 269–271.

Dunn, F., & Parberry I. (2002). 3D math primer for graphics and game development.

Texas: Wordware Publishing, Inc.

Eberly, D. H. (2004). Game physics. CA: Morgan Kaufmann Publishers.

Eberly, D. (2004). Primitive tests for collision detection. Retrieved March 15, 2010,

 from http://www.cse.ttu.edu.tw/~jmchen/compg/slides/collision/taxonomy.pdf .

Eberly, D. (2008). Intersection of convex objects: The method of seperating axes.

Retrieved November 28, 2008, from http://geometrictools.com/Documentation/M

199

ethodOfSeparatingAxes.pdf .

Eden, A. H., Gil, J., Hirshfeld, Y., & Yehudai, A. (1998). Towards a mathematical

 foundation for design patterns. Retrieved August 17, 2010, from

 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.6332 .

Edmunds, M. (2010). Contact, the Antikythera Mechanism research project.

 Retrieved September 01, 2010, from http://www.antikythera-mechanism.gr/con

 tact .

Elliot J. (2010). Professional Graphics Controller notes. Retrieved September 06,

2010, from http://www.seasip.info/VintagePC/pgc.html .

Engel, W. F. (2004a). ShaderX2: Introductions & tutorials with DirectX 9. Texas:

Wordware Publishing, Inc.

Engel, W. F. (2004b). Shader X2: Shader programming tips & tricks with DirectX 9.

Texas: Wordware Publishing, Inc.

Ericson, C. (2005). Real time collision detection. CA: Morgan Kaufmann Publishers.

Farias, T., Almeida, M., Teixeira, J. M., Teichrieb, V., & Kelner, J. (2008). A high

performance massively parallel approach for real time deformable body physics

simulation. Retrieved July 21, 2009, from

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4685727&tag=1 .

Fernando, R. (2004). GPU gems programmaing techniques, tips, and tricks for real-

time graphics. MA: Addison-Wesley, Pearson Education, Inc.

Fernando, R., & Kilgard, M. J. (2003). The Cg tutorial the definitive guide to

 programmable real-time graphics. MA: Addison-Wesley, Pearson Education, Inc.

200

Ferreira, A. J. M. (2009). MATLAB codes for finite element analysis solids and

 structures. Springer.

Fifth Dimension Technologies [5DT]. (2004a). 5DT data glove ultra series user’s

 manual. 5DT.

Fifth Dimension Technologies [5DT]. (2004b). 5DT HMD 800-26 series user’s

 manual. 5DT.

Forsyth, D. A., & Ponce, J. (2003). Computer vision a modern approach. NJ:

Prentice Hall.

Foster, G. (2010). GameDev.net – understanding and implementing scene graphs.

 Retrieved September 01, 2010, from http://www.gamedev.net/reference/program

 ming/features/scenegraph/default.asp .

Freeth, T., Jones, A., Steele, J. M., & Bitsakis, Y. (2008). Calendars with olympiad

 display and eclipse prediction on the Antikythera Mechanism. Nature

 International Weekly Journal of Science, 454, 614-617.

Fujimoto, N., (2008). Faster matrix-vector multiplication on GeForce 8800GTX.

IPDPS 2008, IEEE International Symposium on Parallel & Distributed

Processing, 2009, 1-8. Retrieved September 20, 2009, from IEEE Xplore Digital

Library Database.

Fürnstahl, P., Reitinger, B., & Schmalstieg, D. (2006). Global mesh partitioning for

 surgical planning. Central European Multimedia and Virtual Reality Conference,

 2006. Retrieved February 17, 2008, from http://citeseerx.ist.psu.edu/viewdoc/sum

 mary?doi=10.1.1.164.9922 .

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995). Design patterns elements

 of reusable object-oriented software. IN: Addison-Wesley.

201

Georgii, J., & Westermann, R. (2005). Mass-spring systems on the GPU. Simulation

 Modelling Practice and Theory, 13, (8) 693-702. Retrieved September 21, 2009,

 from ScienceDirect Database.

Gilbert, E. G., Johnson, D. W., & Keerthi S. S. (1988). A fast procedure for

computing the distance etween complex objects in three dimensional space. IEEE

Journal of Robotics and Automation, 4 (2) 193-203. Retrieved March 13, 2010,

from IEEE Xplore Digital Library Database.

Glencross, M., Otaduy, M., & Chalmers, A. (2005). Interaction in distributed virtual

environments. EUROGRAPHICS 2005. Retrieved September 01, 2009, from

http://isg.cs.tcd.ie/eg2005/T8.html .

Goose, S., Sudarsky, S., Zhang, X., & Navab, N. (2002). SEAR: Towards a mobile

 and context-sensitive speech-enabled augmented reality. IEEE International

 Conference on Multimedia and Expo ICME’02 Proceedings, 2002, 1, 849-852.

 Retrieved March 01 2007, from IEEE Xplore Digital Library Database.

Gottschalk S., Lin M. C., & Manocha D. (1996). OBBTree: A hierachical structure

for rapid interference detection. Proceedings of the 23rd Annual Conference on

Computer Graphics and Interactive Techniques, 1, 171-180. Retrieved December

02, 2008, from http://portal.acm.org/citation.cfm?id=237244 .

Göddeke, D., Buijssen, S. H. M., Wobker, H., & Turek, S. (2009). GPU cluster

computing for finite element applications. SIAM Conference on Computational

Science and Engineering Emerging Manycore Architectures Minisymposium.

Retrieved September 14, 2010, from http://people.maths.ox.ac.uk

/~gilesm/SIAM_CSE/goeddeke.pdf .

GPGPU.org. (2010). GPGPU.org:: General-purpose computation on graphics

processing units. Retrieved September 01, 2010, from www.gpgpu.org .

202

Grady, S. M. (2003). Virtual Reality: Simulating and enhancing the world with

 computers. NY: Facts On File, Inc.

Groen D., Harfst S., & Zwart S. P. (2009). The living application: A self-organizing

system for complex grid tasks. Retrieved September 10, 2010, from

http://www.nvidia.com/object/cuda_apps_flash_new.html#state=detailsOpen;aid=

a0d09099-5643-406d-9d4a-9e7053425028 .

Guest. (2010). Offset mapping or parallax effect [2004, Feb 09]. Message posted to

http://www.ogre3d.org/forums/viewtopic.php?f=3&t=343 2&start=0 .

Hamam, A., Nourian, S., El-Far, N. R., Malric, F., Shen, X., & Georganas, N. D.,

(2006). A distributed, collaborative and haptic-enabled eye cataract surgery

application with a user interface on desktop, stereo desktop and immersive

displays. Retrieved July 28, 2009, from

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4062520&tag=1 .

Harada, Y., Nazir, N., Shiote, Y., & Ito, T. (2006). Human-machine collaboration

 system for fine assembly process. International Joint Conference SICE-ICASE,

 2006, 5355-5360. Retrieved March 01, 2007, from IEEE Xplore Digital Library

 Database.

Heidelberger, H., Teschner, M., & Gross, M. (2003). Volumetric collision

 detection for deformable objects. Retrieved October 4, 2009, from

 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.13.2297&rep=rep1&ty

 pe=pdf .

Heidelberger, B., Teschner, M., Keiser, R., Müller, M., & Gross, M. (2004).

Consistent penetration depth estimation for deformable collision response.

Retrieved April 01, 2010, from http://citeseerx.ist.psu.edu/viewdoc/sum

mary?doi=10.1.1.130.5656 .

203

Heidelberger, B., Teschner, M., Keiser, R., Müller, M., & Gross, M. (2004).

 Consistent penetration depth estimation for deformable collision response.

 Retrieved April 01, 2010, from http://citeseerx.ist.psu.edu/viewdoc/summary?doi

 =10.1.1.130.5656 .

Heim, M. (1998). Virtual realism. New York: Oxford University Press.

Held, M., Klosowski, J. T., & Mitchell, J. S. B. (1995). Evaluation of collision

 detection methods for virtual reality fly-throughs. In Canadian Conference on

 Computational Geometry, 205-210. Retrieved November 25, 2008, CiteSeerX

 Database.

Held, M. (1998). ERIT – A collection of efficient and reliable intersection tests.

 Journal of Graphics Tools, 2, 25-44. Retrieved November 28, 2008, from

 CiteSeerX Database.

Hermann, E., Faure, F., & Raffin, B. (2008). Ray-traced collision detection for

 deformable bodies. Retrieved October 5, 2009, from http://citeseerx.ist.psu.edu/v

 iewdoc/summary?doi=10.1.1.141.7858 .

Hoff III, K. E., Zaferakis, A., Lin, M, & Manocha, D. (n.d.). Fast 3-D geometric

 proximity queries between rigid and deformable models using graphics

 hardware acceleration. Retrieved November 24, 2008, from http://citeseerx.ist.ps

 u.edu/viewdoc/download?doi=10.1.1.111.9155&rep=rep1&type=pdf .

Huang, J., Ponce, S. P., Park, S. I, Cao, Y., & Quek, F. (2008). GPU accelerated

computation for robust motion tracking using the CUDA framework. VIE 2008,

5th International Conference on Visual Information Engineering, 2008, 437-

442. Retrieved September 20, 2009, from IEEE Xplore Digital Library Database.

Hubbard, P. M. (1995). Collision detection for interactive graphics applications –

204

PhD thesis. Retrieved November 24, 2008, from ftp://ftp.cs.brown.edu/pub/techr

 eports/95/cs95-08.pdf .

Hutton, D. V. (2004). Fundementals of finite element analysis. NY: McGraw-Hill

Companies, Inc.

INTEL. (2010). INTEL® Core™ i7 Processor Extreme Edition. Retrieved

 September 06, 2010, from http:www.intel.com/products/processor/corei7ee/index.

 htm .

Jacob, M. (2010). OGRE – Open source 3D graphics engine. Retrieved October

07, 2009, from http://www.ogre3d.org/download/source .

James, D. L. (2008). Multi-sensory physics and user interaction SIGGRAPH2008

 course. Retrieved April 05, 2010, from http://www.matthiasmueller.info/realtime

 physics/index.html .

Jang, H., Park, A., & Jung, K. (2008). Neural network implementation using CUDA

and OpenMP. DICTA ’08, Digital Image Computing Techniques and Application,

2008, 155-161. Retrieved September 20, 2009, from IEEE Xplore Digital Library

Database.

Januszewski, M., & Kostur M. (2009). Accelerating numerical solutions of

stochastic differential qquations with CUDA. Retrieved September 10, 2010, from

http://www.nvidia.com/object/cuda_apps_flash_new.html#state=detailsOpen

;aid=2234c230-375e-11de-8a39-0800200c9a66 .

Jiménez, P., Thomas, F., & Torras C. (2001). 3D collision detection : A survey.

 Computers & Graphics, 25, (2001) 269-285. Retrieved November 28, 2008, from

 http://www.stanford.edu/class/cs277/schedule/assets/Jimenez2001.pdf .

Junker, G. (2006). Pro OGRE 3D programming. CA: Apress.

205

Karabassi, E. A., Papaioannou, G., & Theoharis, T. (1999). Intersection test for

collision detection in particle systems. Journal of Graphics Tools, 4. Retrieved

December 01, 2009, from CiteSeerX Database.

Kataria, M. (n.d.). Force feedback and collision detection of 3D primitives in

 virtual environments. Retrieved March 15, 2010, from http://www.ee.iitb.ac.in/st

 udent/~kataria/data/Academics/HapticsInVE-report.pdf .

Kato, H. & Billinghurst, M. (2006). ARToolkit. Retrieved October 01, 2007, from

http://www.hitl.washington.edu/artoolkit/documentation/ .

Kaufmann, P., Martin, S., Botsch, M., & Gross, M. (2008). Flexible simulation of

 deformable models using discontinuous Galerkin FEM. Journal of Graphical

 Models – Special Issue of ACM SIGGRAPH / Eurographics Symposium on

 Computer Animation 2008, 71, (4) 153-167.

Kaufmann, P., Martin, S., Botsch, M., Grinspun, E., & Gross, M. (2009). Enrichment

textures for detailed cutting of shells. ACM Transactions on Graphics, 28, (3) 1-

10.

Khalil, H. K. (2002). Nonlinear systems (3rd ed.). NJ: Prentice-Hall, Inc.

Kilgard, M. J. (1999). Improving shadows and reflections via the stencil buffer.

Retrieved September 08, 2010, from http://developer.nvidia.com/object/St

encil_Buffer_Tutorial.html .

Kirk, (n.d.). The future of massively parallel and GPU computing. Retrieved

 September 01, 2010, from http://www.greatlakesconsortium.org/events/GPUMulti

 core/kirk.pdf .

206

Kirk, D. B., & Hwu, W. W. (2010). Programming massively parallel processors a

 hands on approach. MA: Elsevier Inc., Morgan Kaufmann.

Knuth, D. E. (1973). Sorting and searching the art of computer programming.

 Boston: Addison – Wesley.

Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and the traveling

 salesman problem. Proceedings of the American Mathematical Society, 7, (1) 48-

 50.

Krüger, J., & Westermann, R. (2003). Linear algebra operators for GPU

 implementation of numerical algorithms. Retrieved September 20, 2009, from

 http://wwwcg.in.tum.de/Research/Publications/LinAlg .

Lacoursiére, C. (n.d.). Splitting methods for dry frictional contact problems in rigid

multibody systems: Preliminary performance results. Retrieved March 28, 2010,

from http://www.ep.liu.se/ecp/010/004/ecp01004.pdf .

Lahabar, S., & Narayanan, P. J. (2009). Singular value decomposition on GPU

 using CUDA. IPDPS 2009, IEEE International Symposium on Parallel &

 Distributed Processing, 2009, 1- 10. Retrieved September 20, 2009, from IEEE

 Xplore Digital Library Database.

Lander, J. (1999a). Devil in the blue-faceted dress: Real-time cloth animation.

 Game Developer, May 1999, 17-21.

Lander, J.(1999b). Apply the force to get the right amount of friction. Game

 Developer, August 1999, 19-24.

Lander, J.(1999c). Collision response: Bouncy, trouncy, fun. Game Developer,

 March 1999, 15-19.

207

Larsson, T., & Möller, T. A. (2001). Collision detection for continuously deforming

bodies. The Visual Computer, 19, (2-3) 164-174. Retrieved November 28, 2008,

from SpringerLink Database.

Leiterman, J. C. (2004). Learn vertex and pixel shader programming with DirectX®

 9. Texas: Wordware Publishing, Inc.

Li, B., Wang, C., Li, Z., & Chen, Y. (2009). A practical method for real time

 ocean simulation. 4th International Conference on Computer Science &

 Education, 2009, 742-747. Retrieved September 20, 2009, from

 http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05228129 .

Lin, M. C., & Gottschalk, S. (1998). Collision detection between geometric models:

 A survey. In Proc. of IMA Conference on Mathematics of Surfaces, 37-56.

 Retrieved November 24, 2008, from CiteSeerX Database.

Liu, Y., & De, S. (2008). CUDA-based real time surgery simulation. Retrieved July

21, 2009, from http://www.acor.rpi.edu/research/CUDA.pdf .

Liu, Y., Jiao, S., Wu, W., & De, S. (2008). GPU accelerated fast FEM deformation

simulation. APCCAS 2008 IEEE Asia Pacific Conference on Circuits and Systems,

2008, 606-609. Retrieved September 21, 2009, from IEEE Xplore Digital Library

Database.

Luebke, D., & Humphreys, G. (2007). How GPUs work. Computer, February 2007,

 126-130.

Marathe, A. R., Carey, H. L., & Taylor, D. M. (2007). Virtual reality hardware and

 graphic display options for brain-machine interfaces. Journal of Neuroscience

 Methods, 167, (1) 2-14. Retrieved January 09, 2008, from ScienceDirect

 Database.

208

Marsaglia, G. (1996). Diehard random number testing. Retrieved October 2002,

 from http://stat.fsu.edu/~geo/diehard.html .

Martz, P. (2007). OpenSceneGraph quick start guide. California: Computer Systems

Development Coorporation.

McShaffry, M. & et al. (2009). Game coding complete (3rd ed.). MA: Course

 Technology PTR.

Mitchell, J. (2004). Light shafts rendering shadows in participating media.

Retrieved January 10, 2010, from http://developer.amd.com/media/gpu_assets/

Mitchell_LightShafts.pdf .

Mizuno, Kato, & Nishida (2004). Outdoor augmented reality for direct display of

 hazard information. SICE 2004 Annual Conference 2004, 1, 831-836. Retrieved

 March 01, 2007, from IEEE Xplore Digital Library Database.

Möller T. A., Haines E., & Hoffman N. (2008). Real time rendering. (3rd ed.). MA:

 A K Peters, Ltd.

Morefield, R., & Malloy, B. (2007). 3D game development tutorials using SDL and

OSG. Retrieved October 01, 2008, from http://www.cs.clemson.edu/~malloy/

courses/3dgames-2007/tutor/ .

Mosegaard, J., Herborg, P., & Sørensen, S. (2005). A GPU accelerated spring mass

 system for surgical simulation. Retrieved September 21, 2009 from,

 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.117.2423&rep=rep1&t

 ype=pdf .

Möller, T. (1997). A fast triangle-triangle intersection test. Journal of Graphics

 Tools, 2, 25-30. Retrieved December 11, 2008, from CiteSeerX Database.

209

Möller, T. A. (2001). Fast 3-D triangle-box overlap testing. Retrieved November 24,

2008, from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.2.4803

&rep=rep1&type=pdf .

Müller, M., Heidelberger, B., Hennix, M., & Ratcliff, J. (2006). Position based

 dynamics. Retrieved April 06, 2010, from http://www.matthiasmueller.info/publi

 cations/posBasedDyn.pdf .

Müller, M., James, D., Stam, J., & Thuerey, N. (2008b). Real time physics

 SIGGRAPH2008. Retrieved April 05, 2010, from http://www.matthiasmueller.inf

 o/realtimephysics/index.html .

Müller, M., McMillan, L., Dorsey, J., & Jagnow, R., (2001). Real-time simulation of

deformation and fracture of stiff materials. EUROGRAPHICS 2001 Computer

Animation and Simulation Workshop, 99-111. Retrieved April 06, 2010, from

CiteSeerX Database.

Müller, M., Stam, J., & James, D. (2008a). Real time physics class notes. Retrieved

 August 15, 2009, from http://www.matthiasmueller.info/realtimephysics/index.ht

 ml .

Nealen, A., Müller, M., Keiser, R., Boxermann, E., & Carlson, M. (2005). Physically

 based deformable models in computer graphics. Computer Graphics Forum, 25,

 (4) 809-836. Retrieved April 06, 2010, from http://www.matthiasmueller.info/rea

 ltimephysics/index.html .

Neumann J. V. (1945). First draft of a report on the EDVAC. Moore School of

 Electrical Engineering, University of Pennsylvania.

Nguyen, H. (2007). GPU Gems 3. MA: Addison-Wesley, Pearson Education, Inc.

210

Nielsen, M. B., & Cotin, S. (1996). Real-time volumetric deformable models for

 surgery simulation using finite elements and condensation. Computer Graphics

 Forum, 57-66. Retrieved January 6, 2009, from CiteSeerX Database.

NVIDIA (2008). NVIDIA PhysX 2.8 documentation. Retrieved August 01, 2009,

 from http://developer.nvidia.com/object/physx_downloads.html .

NVIDIA (2009b). NVIDIA PhysX physics simulation for developers. Retrieved July

17, 2009, http://developer.nvidia.com/object/physx_downloads.ht ml .

NVIDIA (2009a). NVIDIA CUDA™ programming guide (Version 2.2.1,

 26.05.2009). Retrieved August 01, 2009, from http://developer.nvidia.com/object/

 cuda_2_2_downloads.html .

NVIDIA. (2010). GeForce GTX 295. retrieved September 06, 2010, from

 http://www.nvidia.com/object/product_geforce_gtx_295_us.html .

OpenSceneGraph. (2010). OpenSceneGraph web site. Retrieved February 10, 2009,

from http://www.openscenegraph.org/projects/osg/wiki/Downloads .

Otaduy, M., Tamstorf, R., Steinemann, D., & Gross, M. (2009). Implicit contact

 handling for deformable objects. EUROGRAPHICS 2009 Journal Compilation,

 28, (2). Retrieved August 31, 2009, from http://geom.mi.fu-

 berlin.de/res/teaching/ss09/sem_geometrieverarbeitung/material/paper/otaduy_im

 plicit_contact_handling.pdf .

Pathomaree, N., & Charoenseang, S. (2005). Augmented reality for skill transfer in

 assembly task. IEEE International Workshop on Robots and Human Interactive

 Communication, 2005, 500-504. Retrieved March 01, 2007, from IEEE Xplore

 Digital Library Database.

211

Perepelkin, E., Smirnov, V., & Vorozhtsov S. (2009). Beam dynamic calculation by

NVIDIA® CUDA technology. Retrieved September 10, 2010, from

http://www.nvidia.com/object/cuda_apps_flash_new.html#state=detailsOpen;aid=

d508073b-38bf-4fc7-b99b-1ad6ff71b868 .

Pharr, M., & Fernando R. (Eds). (2005). GPU gems 2 programming techniques for

high-performance graphics and general-purpose computation. NJ:Addison

Wesley, Pearson Education, Inc.

Piekarski, W., & Thomas, B. H. (2003). Tinmith – mobile outdoor augmented reality

modelling demostration. ISMAR’03 Proceedings of the Second IEEE and ACM

International Symposium on Mixed and Augmented Reality, 2003, 317-318.

Retrieved March 01, 2007, from http://www.informatik.uni-

trier.de/~ley/db/indices/a-tree/p/Piekarski:Wayne.html .

Polhemus. (2009). Fastrak user manual (OPM00PI002 REV. F. June 2009).

 Colchester, Vermont U.S.A: Polhemus.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery B. P. (2007).

Numerical recipes the art of scientific computing (3rd ed.). New York: Cambridge

University Press.

Prim, C. (1957). Shortest connections networks and some generalizations. Bell

 System Technical Journal 36, (6) 1389–1401.

Provot, X. (1996). Deformation constraints in a mass-spring model to describe rigid

cloth behavior. In Graphics Interface, 147 - 154. Retrieved July 07, 2009, from

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.4040 .

Qin, J., Pang, W. M., Chui, Y. P., Wong, T. T., & Heng, P. A. (2008). A novel

 modelling framework for multilayered soft tissue deformation in virtual

212

 orthopedic surgery. Journal of Medical Systems, 34, (3) 261-271. Retrieved

 September 10, 2009, from SpringerLink Database.

Ranzuglia, G., Cignoni, P., Ganovelli, F., & Scopigno R. (2006). Implementing

 mesh-Based approaches for deformable objects on GPU. Fourth Eurographics

 Italian Chapter, 2006, 213-218. Retrieved September 21, 2009, from

 http://vcg.isti.cnr.it/Publications/2006/RCGS06/ .

Rasmusson, A., Mosegaard, J., & Sørensen, S. (2008). Exploring parallel algorithms

 for volumetric mass-spring-damper models in CUDA. Lecture Notes in

 Computer Science 2008, 5104/2008, 49-58. Retrieved July 30, 2009, from

 SpringerLink Database.

Reitinger, B., Bornik, A., Beichel, R., & Schmalstieg, D. (2006). Liver surgery

 planning using virtual reality. IEEE Computer Graphics and Applications, 26,

 (6) 36-47. Retrieved February 17, 2008, from IEEE Xplore Digital Library

 Database.

Reitinger, B., Zach, C., & Schmalstieg, D. (2007). Augmented reality scouting for

 interactive 3D reconstruction. Proceedings of IEEE Virtual Reality 2007, 219-

 222. Retrieved February 17, 2008, from http://www.vrvis.at/publications/PB-

 VRVis-2007-006 .

Reitmayr, G., & Schmalstieg, D. (2001). Mobile collaborative augmented reality. In

Proceedings ISAR 2001. Retrieved March 01, 2007, from http://studierstube.icg

.tu-graz.ac.at/projects/mobile/ .

Reitmayr, G., & Schmalstieg, D. (2004). Collaborative augmented reality for outdoor

navigation and information browsing. In Prooceedings of the Symposium on

Location Based Services and TeleCartography 2004, 31-41. Retrieved October

06, 2007, from CiteSeerX Database.

213

Reitmayr, G., & Schmalstieg, D. (2007). Scalable techniques for collaborative

 outdoor augmented reality. Retrieved October 06, 2007, from http://www.ims.tu

 wien.ac.at/media/documents/publications/reitmayrIsmar04.pdf .

Rhee, T., Neumann, U., & Lewis, J. P. (2006). Human hand modelling from surface

anatomy. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games

2006. Retrieved September 05, 2010, from http://www.google.com.tr/url?

sa=t&source=web&cd=1&ved=0CB0QFjAA&url=http%3A%2F%2Fciteseerx.ist.

psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.119.6648%26rep%3Drep1

%26type%3Dpdf&rct=j&q=Human%20Hand%20Modelling%20from%20Surface

%20Anatomy&ei=Qc_sTI6MK4PwsgbjotyGDw&usg=AFQjCNEHKE0rAbUlsq

XV2Ap2qB0GgXSgFQ&cad=rja .

Roberts, M., Packer, J., Sousa M. C., & Mitchell J. R. (2010). A work- efficient GPU

algorithms for level set segmentation. Retrieved September 10, 2010, from

http://www.nvidia.com/object/cuda_apps_flash_new.html#state=detail sOpen;aid=

f695686e-a314-4d4c-a222-7a1e88c753f3 .

Rogers, D. F., & Adams, J. A. (1990). Mathematical elements for computer

 graphics (2nd ed.). Singapore: McGraw-Hill.

Rost R. J., & Kane B. L. (2010). OpenGL shading language (3rd ed.). MA:

 Addison-Wesley, Pearson Education, Inc.

Rugh, W. J. (1996). Linear system theory (2nd ed.). NJ: Prentice-Hall, Inc.

Seddon, C. (2005). OpenGL game development. Texas: Wordware Publishing, Inc.

SensAble Technologies, Inc. (2008). Specifications for the PHANTOM Omni®

 haptic device. MA: SensAble Technologies, Inc.

214

Sewell, G. (2005). The numerical solution of ordinary and partial differential

 equations (2nd ed.). New Jersey: John Wiley & Sons, Inc.

Smith, D. (2004). Light shafts photo – Duncan Smith photos at pbase.com.

Retrieved November 20, 2010, from http://www.pbase.com/duncansmith/image/3

7466541 .

Spampinato, D. G., Elster, A. C. (2009). Linear optimization on modern GPUs.

IPDPS 2009, IEEE International Symposium on Parallel & Distributed

Processing, 2009, 1-8. Retrieved September 20, 2009, from IEEE Xplore Digital

Library Database.

Srinivasan, M. A. (n.d.) What is haptics? Retrieved September 01, 2010, from

 http://touchlab.mit.edu .

Stam, J. (2009). Nucleus: Towards a unified dynamics solver for computer graphics.

11th IEEE International Conference on Computer-Aided Design and Computer

Graphics, 2009, 1-11. Retrieved April 05, 2010, from IEEE Xplore Digital

Library Database.

Steinemann, D., Harders, M., Gross, M., & Szekely, G. (2006). Hybrid cutting of

deformable solids. Virtual Reality Conference 2006. Retrieved August 31, 2009,

from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1667 624 .

Steinemann, D., Otaduy, M. A., & Gross, M. (2006). Fast arbitrary splitting of

 deforming objects. EUROGRAPHICS / ACM SIGGRAPH Symposium on

 Computer Animation 2006. Retrieved August 31, 2009, from http://citeseerx.ist.ps

 u.edu/viewdoc/summary?doi=10.1.1.87.1089 .

Strang, G. (1986). Introduction to applied mathematics. MA: Wellesley- Cambridge

Press.

215

Stroustrup, B. (2000). The C++ programming language (3rd ed.). AT&T Labs.

 Murray Hill, New Jersey: MA: Addison – Wesley.

Stroustrup, B. (2008). Programming – principles and practice using C++. Addison

– Wesley.

Tan, T. S., Chong, K. F., & Low, K. L. (1999). Computing bounding volume

 hierarchies using model simplification. 1999 ACM Symposium on Interactive

 3D Graphics, 63-70. Retrieved November 25, 2008, from CiteSeerX Database.

Tatarchuk, N. (2006). Artist-directable real-time rain rendering in city environments,

SIGGRAPH 2006 advanced real-time rendering in 3D graphics and games course

notes. Retrieved September 11, 2010, from

http://developer.amd.com/media/gpu_assets/Tatarchuk-Rain.pdf .

Tatarchuk, N., & Shopf, J. (2007). Real -time medical visualization with FireGL.

SIGGRAPH 2007, AMD Technical Talk. Retrieved September 11, 2010, from

http://developer.amd.com/media/gpu_assets/MedicalVisualization.pdf .

Tekalp, A. M. (1995). Digital video processing. NJ: Prentice Hall.

Taylor, Z. A., Cheng, M., & Ourselin, S. (2008). High-speed nonlinear finite

 element analysis for surgical simulation using graphics processing units. IEEE

 Transactions on Medical Imaging, 27, (5) 650-663.

Teschner, M., Heidelberger, B., Müller, M., Pomeranets, D., & Gross, M. (2003).

 Optimized spatial hashing for collision detection of deformable objects.

 Retrieved March 30, 2010, from http://citeseerx.ist.psu.edu/viewdoc/download?do

 i=10.1.1.4.5881&rep=rep1&type=pdf .

Teschner, M., Kimmerle, S., Heidelberger, B., Zachmann, G., Raghupathi, L.,

 Fuhrmann, A., Cani M. P., Faure, F., Thalmann, N. M., Strasser, W., & Volino, P.

216

 (2004). Collision detection for deformable objects. EUROGRAPHICS

 Association, 23, (3) 1-22.

The SOFA Team at INRIA Grenoble. (2009). Simulation open framework

architecture – The SOFA project. Retrieved August 05, 2009, from

http://www.sofa-framework.org/ .

The Sofa Team. (2008). Sofa documentation. Retrieved August 05, 2009, from

http://www.sofa-framework.org/manual .

Thuerey, N. (2008). Real-time physics part III: Fluids. Retrieved April 05, 2010,

 from http://www.matthiasmueller.info/realtimephysics/index.html .

Tropp, O., Tal, A., & Shimshoni, I. (2005). A fast triangle to triangle intersection

test for collision detection. Retrieved November 25, 2008, from

http://mis.hevra.haifa.ac.il/~ishimshoni/papers/TroppTalShimshoni.pdf .

Turing A. M. (1936). On computable numbers, with an application to the

 Entscheidungsproblem. The Graduate College, Princeton University, New Jersey,

 U.S.A.

United States National Library of Medicine National Institutes of Health, [NLM].

(2010). The National Library of Medicine’s Visible Human Project. Retrieved

September 01, 2010, from http://www.nlm.nih.gov/research/visible/ .

University of North Carolina at Chapel Hill Department of Computer Science,

(2004). Fast penetration depth computation. Retrieved March 16, 2010, from

http://www.cs.unc.edu/Research/ProjectSummaries/penetration.pdf .

Vallino, J., & Brown, C. (1999). Haptics in augmented reality. IEEE International

 Conference on Multimedia Computing and Systems 1999, 1, 195-200. Retrieved

 March 01, 2007, from IEEE Xplore Digital Library Database.

217

Velamparambil, S., Cormier, S. M., Perry, J., Lemos, R., Okoniewski, M., & Leon J.

 (2008). GPU Accelerated Krylov Subspace Methods for Computational

 Electromagnetics. EuMC 2008, 38th European Microwave Conference, 2008,

 1312-1314. Retrieved September 20, 2009, from IEEE Xplore Digital Library

 Database.

Viola, P., & Jones, M. J. (2004). Robust real-time face detection. International

Journal of Computer Vision, 57, (2004) 137-154.

Vlack, K., & Tachi, S. (2001). Fast and accurate spacio – temporal intersection

detection with GJK algorithm. Retrieved March 13, 2010, from

http://www.vrsj.org/ic-at//papers/01079.pdf .

Wang, P., Becker, A. A., Jones, I.A., Glover A. T., Benford, S. D., Greenhalg, C. M.,

 & Vloeberghs, M. (2007). Virtual reality simulation of surgery with haptic

 feedback based on the boundary element method. ELSEVIER Computer and

 Structures, 85, (2007) 331-339.

White, S., & Feiner, S., & Kopylec, J. (2006). Virtual vouchers: Prototyping a

mobile augmented reality user interface for botanical species identification. 3DUI

2006 IEEE Symposium on 3D User Interfaces, 2006, 119-126. Retrieved March

01, 2007, from IEEE Xplore Digital Library Database.

Wikipedia. (2010c). Singleton (mathematics): Wikipedia, the free encyclopedia.

 Retrieved September 01, 2010, from http://en.wikipedia.org/wiki/Si

ngleton_%28mathematics%29 .

Wikipedia. (2010s). Radeon R520: Wikipedia, the free encyclopedia. Retrieved

September 01, 2010, http://en.wikipedia.org/wiki/Radeon_R520 .

218

Wikipedia. (2010a). Scene graph: Wikipedia, the free encyclopedia. Retrieved

September 01, 2010, from http://en.wikipedia.org/wiki/Scene_graph .

Wikipedia. (2010p). Shader:- Wikipedia, the free encyclopedia. Retrieved September

01, 2010, from http://en.wikipedia.org/wiki/Programmable_shader .

Wikipedia. (2010m). Colossus Compute:r – Wikipedia, the free encyclopedia.

Retrieved September 01, 2010, from http://en.wikipedia.org/wiki/C

olossus_computer .

Wikipedia. (2010o). Professional Graphics Controller: Wikipedia, the free

encyclopedia. Retrieved September 01, 2010, from http://en.wikipedia.org/wi

ki/Professional_Graphics_Controller

Wikipedia. (2010g). Antikythera Mechanism: Wikipedia, the free encyclopedia.

Retrieved September 01, 2010, from http://en.wikipedia.org/wiki/A

ntikythera_mechanism .

Wikipedia. (2010i). The Difference Engine: Wikipedia, the free encylopedia.

Retrieved September 01, 2010, from http://en.wikipedia.org/wiki/Dif

ference_engine .

Wikipedia. (2010e). Facade: Wikipedia, the free encyclopedia. Retrieved

September 01, 2010, from http://en.wikipedia.org/wiki/Facade .

Wikipedia. (2010d). C++ classes: Wikipedia, the free encyclopedia. Retrieved

September 01, 2010, from http://en.wikipedia.org/wiki/C%2B%2B_classes .

Wikipedia. (2010l). Z3 (computer): Wikipedia, the free encyclopedia. Retrieved

September 01, 2010, from http://en.wikipedia.org/wiki/Zuse_Z3 .

219

Wikipedia. (2010r). Dither: Wikipedia, the free encyclopedia. Retireved

September 08, 2010, from http://en.wikipedia.org/wiki/Dither .

Wikipedia. (2010k). Turing Completeness: Wikipedia, the free encyclopedia.

Retrieved September 01, 2010, from http://en.wikipedia.org/wiki/Turing-complete

.

Wikipedia. (2010t). GeForce 200 series: Wikipedia, the free encyclopedia.

Retrieved September 01, 2010, from http://en.wikipedia.org/wiki/G

eForce_200_Series .

Wikipedia. (2010b). Singleton pattern: Wikipedia, the free encyclopedia.

Retrieved September 01, 2010, from http://en.wikipedia.org/wiki/Si

ngleton_pattern .

Wikipedia. (2010f). Computer: Wikipedia, the free encyclopedia. Retrieved

September 01, 2010, from http://en.wikipedia.org/wiki/Computer .

Wikipedia. (2010j). The Analytical Engine: Wikipedia, the free encyclopedia.

Retrieved September 01, 2010, from http://en.wikipedia.org/wiki/A

nalytical_engine .

Wikipedia. (2010n). ENIAC: Wikipedia, the free encyclopedia. Retrieved

September 01, 2010, from http://en.wikipedia.org/wiki/ENIAC .

Wikipedia. (2010h). Charles Babbage: Wikipedia, the free encyclopedia. Retrieved

September 01, 2010, from http://en.wikipedia.org/wiki/C harles_Babbage .

Wikipedia. (2010s). Graphics processing unit: Wikipedia, the free encyclopedia.

Retrieved November 02, 2010, from http://en.wikipedia.org/wiki/G

raphics_processing_unit .

Wikipedia. (2010t). Gimbal lock: Wikipedia, the free encyclopedia. Retrieved

220

November 20, 2010, from http://en.wikipedia.org/wiki/Gimbal_lock .

Witkin, A., & Baraff, D. (2001). Physically based modeling, differential equation

 basics. Retrieved September 10, 2009, from http://www.cs.cmu.edu/~baraff/sigco

 urse/notesb.pdf .

Wojtan, C., Thuerey, N., Gross, M., & Turk, G. (2009). Deforming meshes that split

 and merge. ACM Transactions on Graphics, 28, (3) 1-10.

Wright, R. S. J., Lipchak, B., & Haemel, N. (2007). OpenGL superbible

 comprehensive tutorial and reference (4th ed.). MA: Addison-Wesley.

Yan, Z., Gu, L., Huang, P., Lv, S., Yu, X., & Kong, X. (2007). Soft tissue

deformation simulation in virtual surgery using nonlinear finite element method.

Retrieved July 04, 2009 from http://ieeexplore.ieee.org/xpls/abs_all.jsp?t

p=&arnumber=4353120&tag=1 .

Yu, R., Chiang, P., Chen, W., Zheng, J., Cai, Y., Ye, X., Zhang, S., Zhang, Y. &

 Mak K. H. (2009). A framework for GPU-accelerated virtual cardiac

 intervention. The International Journal of Virtual Reality, 8, (1) 37-41.

221

APPENDICES

The followings are submitted in the DVD in the pocket attached to the backcover

of this thesis. The detailed information regarding the directory structure can be found

in “README_Directory_Structure.txt” in the DVD.

1. All the C, VC++, Cg, HLSL codes developed using Microsoft Visual Studio

2005 in the scope of this M.Sc thesis. These are 3-D interactive and

immersive virtual reality application for medical simulations; the haptic

rendering application and the augmented reality application respectively.

2. Bullet physics library with the necessary code modifications for the M.Sc

thesis.

3. Ogre3D real time graphics engine with the necessary code modifications for

the M.Sc thesis.

4. Qt Toolkit used for the user interface development in the M.Sc thesis period.

5. Microsoft DirectX 9.0c was used during the software development. It should

be downloaded from its web site. NVIDIA CUDA Library and NVIDIA

PhysX Library can be downloaded from NVIDIA Web Site.

6. 3-D model meshes used in the developed software during this M.Sc thesis.

7. NVIDIA Cg used for GPU programming for graphics during this M.Sc thesis.

8. NVIDIA Texture Tools and Photoshop plug-ins.

9. SOFA Library used for research and practice oriented purposes.

10. OpenCV library used in the augmented reality application developed during

the M.Sc thesis period.

11. ARToolkit library used in the augmented reality application developed during

the M.Sc thesis period

12. OpenSceneGraph library used in the augmented reality application developed

during the M.Sc thesis period.

