DOKUZ EYLUL UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND APPLIED
SCIENCES

DESIGN AND DEVELOPMENT OF A THREE
DIMENSIONAL AUGMENTED REALITY
SYSTEM AIMING MEDICAL AND
ENGINEERING APPLICATIONS

by
Ruha Ugras ERDOGAN

October, 2010
IZMIR

DESIGN AND DEVELOPMENT OF A THREE
DIMENSIONAL AUGMENTED REALITY
SYSTEM AIMING MEDICAL AND
ENGINEERING APPLICATIONS

A Thesis Submitted to the
Graduate School of Natural and Applied Sciences of Dokuz Eyliil University
In Partial Fulfillment of the Requirements for the Degree of Master of Science
in Electrical and Electronics Engineering, Electrical and Electronics

Engineering Program

by
Ruha Ugras ERDOGAN

October, 2010
IZMIR

M.Sc THESIS EXAMINATION RESULT FORM

We have read the thesis entitled “DESIGN AND DEVELOPMENT OF A THREE
DIMENSIONAL AUGMENTED REALITY SYSTEM AIMING MEDICAL
AND ENGINEERING APPLICATIONS” completed by RUHA UGRAS
ERDOGAN under supervision of ASST. PROF. DR. AHMET OZKURT and we
certify that in our opinion it is fully adequate, in scope and in quality, as a thesis for

the degree of Master of Science.

Asst. Prof. Dr. Ahmet OZKURT

Prof. Dr. Mustafa SABUNCU
Director

Graduate School of Natural and Applied Sciences

ii

ACKNOWLEDGMENTS

The author would like to appreciate Asst. Prof. Dr. Ahmet OZKURT for his
valuable and important theoretical, technical support and suggestions for the software
development process in addition to his management of the research project period.
Without those directions and management, this thesis would be very hard to be
accomplished and it would be hard to survive from awful periods. The author would
like to appreciate Prof. Dr. Ciineyt GUZELIS for the support during the project
preparation stage and for the guidance to the graphics processing workshops
GAG’09 and GAG’10 respectively. Those workshops were definitely two of the
important sources of theoretical and practical knowledge in the field that gave
direction to the thesis work. The author would like to appreciate Prof. Dr. Murat
OZGOREN, Assoc. Prof. Dr. Adile ONIZ, Dr. Onur BAYAZIT and Dokuz Eyliil
University Faculty of Medicine the Department of Biophysics for their patience,
sincerity and most importantly for their helps while I try to stand up again. This M.Sc
thesis was completed in the scope of the M.Sc graduate level study at the Graduate
School of Natural and Applied Sciences of Dokuz Eyliil University. The author
would like to appreciate the Graduate School of Natural and Applied Sciences of
Dokuz Eyliil University for their support during the M.Sc thesis period.

This project is supported in the scope of Dokuz Eyliil University Scientific
Research Project with Project No. 2008.KB.FEN.027 (Dokuz Eyliil Universitesi
Bilimsel Arastirma Projesi (BAP), Proje No. 2008.KB.FEN.027.). VESTEL
supported the establishment of the computer graphics and virtual reality laboratory

with a LCD panel.

Ruha Ugras ERDOGAN

iii

DESIGN AND DEVELOPMENT OF A THREE DIMENSIONAL
AUGMENTED REALITY SYSTEM AIMING MEDICAL AND
ENGINEERING APPLICATIONS

ABSTRACT

Three dimensional modeling and simulation software are becoming more
widespread in medical applications. Enabling the user to view the 3D models of
biological tissues and materials, to interact with the models with the ability to
observe the reaction of the models to different force loading conditions in a virtual
environment are the main properties of these kind of software. In addition to these
properties, the graphical user interface enables the user to easily interact with the
software and access its properties. These software specifications give an opportunity
to understand the physical and mathematical reasons of dynamical processes in
addition to presenting a visual learning environment to the researchers in not only in
medicine but also in different fields of science. Considering above, the development
of software which will immerse the user into a virtual environment providing an
opportunity to observe and to interact with the anatomical models is aimed.
Additionally, the software system will be able to simulate the responses of the
models depending on different force loading conditions and material properties in
real time. Additionally, the development of the necessary hardware platform has

been aimed.

Keywords: Real time computer graphics, virtual reality and human interaction, 3-D
medical simulation, numerical methods for rigid and elastic object modeling, real
time collision detection methods, force and penetration depth computations, graphics

processing unit programming, Cg - C for Graphics, HLSL, GLSL, NVIDIA CUDA.

v

TIP VE MUHENDISLiK UYGULAMALARINI AMACLAYAN UC
BOYUTLU ARTTIRILMIS GERCEKLIK SISTEMi TASARIMI VE
GELISTIiRILMESI

0z

Uc boyutlu modelleme ve simiilasyon yazilimlarinin kullanimi, tibbi
uygulamalarda giin gectikce artmaktadir. Bu yazilimlarin sahip olduklari onemli
ozelliklerin basinda iic boyutlu biyolojik doku ve materyal modellerinin
incelenebilmesine, etkilesim kurulabilmesine, farkli yiik bindirimleri altindaki
davraniglarinin ii¢ boyutlu sanal bir ortam igerisinde gozlenebilmesine imkan
tanimalar1 gelmektedir. Bu 6zelliklere ek olarak, sunulan grafiksel kullanici arayiizii,
kisinin yazilim ile kolay bir sekilde iletisim kurmasina ve 6zelliklerine ulagsmasina
izin vermektedir. Bu yazilim nitelikleri, sadece saglik bilimlerinde degil farkli bilim
alanlarinda c¢alisan tiim aragtirmacilara gorsel bir 6grenme imakani ve dinamik
stireclerin fiziksel ve matematiksel nedenlerini anlama olanagr sunmaktadir. Bu
noktadan yola cikarak, kullanicinin sanal, {ic boyutlu bir ortam igerisinde
bulunmasini saglayacak; istedigi anatomik modeli, ii¢ boyutlu ortam igerisinde
gercek zamanli olarak incelenmesine ve onunla etkilesim kurmasina izin verecek bir
yazilim gelistirmek amaclanmistir. Gelistirilecek yazilimin belirtilen amaca ek
olarak, modellerin materyal 6zelliklerine bagli olarak farkli yiik durumlar: altindaki
tepkilerinin ii¢ boyutlu sanal bir ortam igerisinde benzetimini gergek zamanl olarak

yapabilmesi ve ayrica gerekli donanimsal altyapinin hazirlanmasi amaglanmistir.

Anahtar kelimeler: Gergek zamanli bilgisayar grafikleri, sanal gerceklik ve
kullanici etkilesimi, tibbi benzetim, rijit ve elastik nesneler i¢in numerik modelleme,
es zamanl ¢arpigsma belirleme yontemleri, kuvvet ve girisim derinligi hesabi, grafik

islem birimi programlama, Cg - C for Graphics, HLSL, GLSL, NVIDIA CUDA.

CONTENTS

Page

M.Sc THESIS EXAMINATION RESULT FORM......cccccoctiiiiiiniiniiiinicnecieeeeniene i
ACKNOWLEDGEMENTSociiiiiiiiiiteeee et 1l
ABSTRACT ..ttt sttt sttt v
OZ oottt A%
CHAPTER ONE - INTRODUCTIONccuceviisrisrnnsuecsassncssesssessecssscsassssssssssassssssaee 1
1.1 Introduction to Real-Time Computer Graphics and Virtual Environments....... 2
1.2 A Reading Guide for the Following Chapters...........ccoceeeviiiiniiinnieennieenneen. 8
CHAPTER TWO - LITERATURE SURVEYiiirnensnensnnsaenssccsassansssecsanes 10

2.1 Researches on Interactive Real-Time Computer Graphics and Virtual Reality
in Medical and Engineering Simulationscccceeveeriiieeriiieenieeeneee e 10
2.2 Researches on the Use of Graphics Processing Unit (GPU) Programmable
Pipeline in Computer Graphics and Virtual Environments.........c..ccocceeveeniieenneenne 22
2.3 Researches on Graphics and Physics Software Libraries Developed by
Academia and INAUSIIY.......ccuiieiiiieiiieeieece e e e e e e 25
2.4 Researches on Augmented Reality Applicationscceeevvveerveeenieeereveennnen. 27

CHAPTER THREE - DATA STRUCTURES AND SOFTWARE DESIGN

PATTERNS uitetinttitnsnnsnnisssicsssisssessssisssiesss 28
3.1 DAta SIIUCTUIES «..eenevieiiieiieeieenit ettt ettt st eanee 28

T 0 L F: o TSR PUSRRRPR 29

312 GraPRS ettt eaean 30

BULL3 TTIEES ettt et 34

3.1.4 Scene Graphscooouiiiiiieiiiie e 36

vi

3.2 Software Design Patternsc.coovveiiiiiiiiiiiiiieenieeieeeee e 38

3.2.1 Visitor Design Patterncooooueiiiiiiiiiiiiniieeiieeieeeee e 40
3.2.2 Observer Design Patterncccuveeiiieeiiieeiieeeiee e 42
3.2.3 Singleton Design Patternccceeeiiieeiiiieeiiiieeiie et 44
3.2.4 Factory Method Design Patterncoocveeviiiiniiiiiniiiiiieeieececeeiieee 45
3.2.5 Tterator Design Patterncc.ooviiiiiiiiiiiiiiiiieeiiceeceeecee e 46
3.2.6 The Facade Design Patterncccoveeeiiieeiiiieiiieeeiee e 48
3.3 What is a Software Engine?ccccoevviiieiiiieiiieeiieeeie e 50

CHAPTER FOUR - GRAPHICS PROCESSING UNIT PROGRAMMING
FOR GRAPHICS AND GENERAL PURPOSE COMPUTING........ccccecerueruerune 51

4.1 Short History of Computing Machines — From Antikythera Mechanism to
Today’s Massively Parallel GPUS..........ccccooouiiiiiiiiiiieciecceeecee e 51
4.2 SNAETS ..o 59

4.5 The Need for High Level Programming Languages for Computer Graphics—
Cg HLSL and GLSL.......ooiiiiiiieeeetee ettt e 67
4.6 NVIDIA Compute Unified Device Architecture - CUDA and General Purpose
COMPULIIEZ ...ttt ettt ettt e e st e et e e it e e e st e e ebbeesnbbeeenbneesasaes 68

CHAPTER FIVE - ESSENTIALS OF REAL TIME GRAPHICS RENDERING

5.1 Transformations, Lines, Surfaces and Rendering Techniques in Computer

GIAPNICS ...ttt eitee ettt et e e e st e e st e e nbee e sbae e sbeeenseeensaeeensaeeennnas 77
5.2 Gimbal Lock Problem — Rotation via Euler Angles and Quaternions 77
5.3 Lighting and Implementation of Light Shaftscccocceiriiiiiiiiiie, 79
5.4 Texturing and Implementation of Bump Mapping with Parallax Offset 80
5.5 Hand Rigging and SKiNNINgcccvvieeiiiiriiiieniieeeiie et 81

vii

CHAPTER SIX - ESSENTIALS OF REAL TIME PHYSICS RENDERING

AND SIMULATION OF DYNAMICAL SYSTEMSuiivicniinsnncsnncsssnsssscsansens 84
6.1 Topological DefiNItioNS.eeeruiiiriiiieniieeriie ettt 85
6.1.1 AffINE SPACES....eiiiiiiiiiiiiiiiee ettt 85

6.1.2 BUCIA@an SPACEScccuveeeiuiieeiiieeiiieeiee et ettt e seaeeeaaee s 88

6.1.3 Affine Transformationsccoceerieriieenienieiieeeeee e 90

Convex Combination and Convex Hullcccccooviiiiiiiiiiinceeeee 93
6.2.1 POLYLOPES ..eveeeniiieeiiie ettt e e et e e tee e veeeae e e s e e snnseesnsaaesnnneeas 94
6.2.2 POLYZOMS ...eviieiiiiieiiie ettt ste ettt e eeiae e e b e e enaeeennaeeennneens 95
0.2.3 QUAAIICS ...uviviiiieiee ettt eeeecrree e e e e e eeretrrreeeeeeeeeeearrareeeaeeeeennnnnnns 95

6.3 Minkowski Sum and Its Relation with an Intersection Testccccuveeneee. 95

6.4 Separating A XIS TESE ...ccccuiieiiieeiieeie ettt eeeaee e ee e 99

6.5 Primitive Bounding Volumes for Collision Detection Used in the Software 101
6.5.1 Axis Aligned Bounding BOXESccccuveeriiieiiiiiiiiiiiicciieeceeeeee 102
6.5.2 Sphere Bounding VOIUMEScccceeeiiiiiniiiiiieeieeeeeeeeeee e 104
6.5.3 Oriented Bounding BOXeS.........ccocuvieriiiiiiiiieciieciee e 104

6.6 Collision Detection Pipeline Used in the Software............cccceevvveeriieennenns 105
6.6.1 Collision MaSKING......c.ceeeiiieriiieiiiieciie et e 106
6.6.2 Broad Phaseccooiiiiiiiiiiiicececcceeece e 107
6.6.3 NaIrOW Phase.........cooiiiiiiiiiiiiiicceeee e 110

6.6.3.1 Gilbert - Johnson - Keerthi Algorithm (GJK) for Collision Detection
between Convex Objects and Expanding Polytope Algorithm (EPA) for
Penetration Depth Calculationceooviiiiniiiiniieniiieiieeeieeeeeeen 111

6.6.3.2 Solving the Constraints at Mechanical Joints—Linear Complementary

Problem (LCP) ...ooueiieeeeee e 112

6.7 Mass-Spring Systems and Numerical Solutions for Governing Differential
BEQUATIONS ...ttt ettt e 112
6.7.1 1-D 2-D and 3-D Mass-Spring Systems and Governing Differential
EQUAIONS ..ottt ettt e e e et e e e 113
6.7.2 Explicit Euler INtegrationcccceevueeeeiieeriiieeniie e 116

viii

6.7.3 Second and Fourth Order Runge Kutta Integration...........c.cccccevuveennnee. 118

6.7.4 Verlet INte@ration..........ccouveeriiieiniieeniieeniteesie et 122
6.8 Mesh Topology Processing and Mesh Refinement — An Example to Mesh
CULEINE 1ottt e ettt e et e e et e e e teeessbaeesnseeeassee e sseeessaeesseeensseesnnneennes 124
6.9 Haptic Rendering with Rigid and Deformable Models..........c.ccccoeueennennnne 126

CHAPTER SEVEN - FEATURE SEGMENTATION TRACKING AND POSE
ESTIMATION METHODS USED FOR AUGMENTED REALITY

APPLICATION DEVELOPMENT DURING THE THESIS WORK............. 127
7.1 Feature Segmentationcc.eeerueeeeiieeeiiieeeiieesieeesieeesaeeesaseeessseeessseesnaneeanns 127
7.2 Feature Tracking and Pose EStimation...........cccceeeviieiniieiniiennieenieeeeeeae 128

CHAPTER EIGHT - ESTABLISHMENT AND CURRENT SETUP OF

COMPUTER GRAPHICS AND VIRTUAL REALITY LABORATORY 131
8.1 VESTEL LCD Panelcoceoiiiiiiiiiiiieeeceteeeeeeeete et 133
8.2 Polhemus Fastrak Motion Tracking SysStemcccceccveeviiieerciieenieeerreeennee. 133

8.2.1 Reference Frame Alignment............ccceeevieeriiieeniieeniie e 135
8.2.2 BOTESIZNEING. ...ccoiuiiiiiiiiiiiie ettt 136
8.2.3 Hemisphere Tracking.........c.cceeeiieiiiiiiiiiiiiniieiniieeeeeee e 137
8. 2.4 OULPUL DAta......eiiiiiiiiiiiiiiee et 137
8.2.5 Angular Operational Envelopeccccecvuveeviiieniiieniieeciie e 137
8.2.6 Position Operational ENvelopecoocveeviiiiiiiieniieiiiecieeeieeeenn 138
8.3 Sensable Phantom Omni Haptic Devicecccoevuiieriiiiniieiiiieiiiecieeeee, 138
8.4 5DT Data Glove 5 Ultra USB Left and Right Pairs..........cccccocvveeniiienennee. 139
8.5 5DT HMD 800 — 26 3-D Head Mounted Display.........cccccceveerieineenicnneenne 140
8.6 Logitech QuickCam Pro 9000 Webcamsccocveeviiiiniieiniieiiceciieeeee, 141
8.7 ATI X1550 and NVIDIA GeForce GTX295ccoceviiviineniinienenieneeiee 141

CHAPTER NINE - SOFTWARE DEVELOPMENT AND HARDWARE
INTEGRATION RESULTS . ..uuoiiietennnnnisnnnsensnnsnssansssssssssssessssssssssssssasssssssssssssans 143

iX

9.1 Software Development Tools Used During the Thesis Work...................... 143
9.2 Implementations Completed during Augmented Reality (AR) Application
RESEATCH ... 144
9.3 Development Result of the Immersive Interactive Virtual Environment for
Collaborative Anatomy Inspections in Medical Education...............ccccceeevunennne 147

9.4 Implementations Completed during Mathematical Elements of Computer

Graphics and Real Time Graphics Rendering Researchc.ccoecvvveiiiennnenns 164
9.5 Implementations Completed during Collision Detection Research 167
9.6 Experiences with SOFA — Simulation Open Framework Architecture 170

9.7 Development Stages of the Graphics User Interface using Qt Development

9.8 Experiences with Cg and GPU Programming for Graphics............c.ccceuveennn. 175
9.9 Experiences with NVIDIA CUDA and Performance Comparisons for Further
Projects and Possible Implementationscceeevieeriieeniieeeniieenieeeiee e 180
9.10 Experiences with NVIDIA PhysX and Performance Comparisons for
Further Projects and Possible Implementationsccccoeeveeriiieencieeenieeeniieeens 183
9.11 Construction of Mesh Spring Structures and Implementation of Topology

Processing and Refinement for Mesh Cutting Operation Using Bullet Engine .. 184

9.12 Haptic Rendering Implementation Results.............cccoouieiiiiiniiiinniiinniennns 186
CHAPTER TEN - CONCLUSIONS ...ccoiiininrensecsnncsnnssesssncsasssesssesssssssssssssssssassss 188
REFERENCESuuooiniitiniiniissicssisicssissssssessssssssssesssssssssssssssssssssssssessassssssassssssss 194
APPENDICES ...uuuiiiiiitiictinnnisnnisnisssissssisssnss 221

CHAPTER ONE

INTRODUCTION

Real time computer graphics rendering and physics simulation cover broad range
of fields ranging from mathematics to software design; from hardware design of

human-computer interfaces to arts and system dynamics modeling.

The studies (Azuma, 1997), (Grady, 2003, p. 56), (Grady, 2003, p. 116), (Grady,
2003, p. 123) related with computer graphics and simulation engines such as
(NVIDIA, 2008), (Coumans, 2010) and (The SOFA Team at INRIA Grenoble, 2009)
aim the most realistic graphics in the 2D or 3D medias. At the same time, graphics
hardware performance and architectures are vital for effective visualization systems
when screen refresh rates and resolution are of concern. By the rapid developing
graphics hardware technologies (Refer to chapter 2 and chapter 4), not only fast, high
resolution and realistic images can be rendered via many display methods such as
using the programmable graphics pipeline (Refer to chapter 4, chapter 5 and chapter
9) of the graphics processing units but also performance demanding scientific and
general purpose computations can be accomplished by utilizing their massively

parallel architectures (Refer to chapter 4 and chapter 9.).

The other variable which must be studied on is the realism and the 3-D perception
of the images; because the human brain uses visual stimuli and other senses in order
to perceive its real physical surrounding. The more realistic visual, auditory, tactile,
olfactive stimuli, dynamically consistent and intelligent virtual environments the
computer systems are able to generate, the more realistic and immersive perception
of the virtual 3-D environment by the brain is accomplished. Therefore, various types
of sensors can be used to create more realistic bio-feedback for more realistic

perception.

The Virtual Reality (VR) and the Augmented Reality (AR) systems are based on

the computer graphics, numerical modeling of systems and hardware components for

creating motion feedback in order to create immersive and realistic perception (Refer

to Chapter 2.).

In this study, VR and AR systems are developed for the purpose of education in
the areas of engineering and medicine. The main idea is to create computer graphics
(Refer to chapter 5 and chapter 9) and dynamical system simulation (Refer to chapter
6 and chapter 9) based synthetic and semi-synthetic virtual (Refer to chapter 7 and
chapter 9) environments, in which the user can interact with all synthetic and semi-
synthetic objects by using hardware feedback components. For this purpose,
hardware components (Refer to chapter 8) and also the necessary software modules
(Refer to chapter 5, chapter 6 and chapter 7) must be combined together in order to
create the sense of reality and immersion. The necessary graphics rendering and
dynamical simulation or in other words physics rendering modules and hardware
communication modules (Refer to chapter 3) were developed and applied in several
applications in a specialized laboratory environment which has been equipped with
VR hardware components and computer systems (Refer to chapter 8, chapter 9 and
chapter 10). The figure 1.2 shows the fundamental block diagram of the thesis
study.

1.1 Introduction to Real-Time Computer Graphics and Virtual Environments

Computer graphics has attracted a great attention from the researchers since mid
1970s. This attention was mostly motivated by the development in graphics hardware
as will be mentioned in the following chapters. One of the first graphics hardware
developed by IBM can be inspected at (Elliot, 2010). 1970s and early 1980s were
mostly dominated by 2-D computer graphics some of which could be just rendered
offline. Beginning from early 1980s, technological researches and investments
pioneered by academia and industry resulted in significant technical and scientific
leap in the field and opened new horizons for possible applications. The graphics
hardware improvements that started at late 1980s allowed desktop computers to use
graphics acceleration hardware that was once found just in workstations. These

graphics accelerators enabled 3-D graphics applications run in interactive rates.

Therefore, algorithms concerning 2-D and 3-D graphics that were developed by
academia and industry became executable in real-time at interactive rates not only on
workstations, but also on desktop computers of normal users. This trend pushed the
limits more and more in 1990s. This progress enabled graphics processing units to
play an important role in computer graphics, scientific visualization, several
optimization applications, entertainment and films. By the early 2000s, the
researches of several institutions led to graphics processing hardware with massive
power of parallel numeric computation. In this period, algorithms for generating
more life like and interactive visualizations, games and the computation source
demanding numerical and scientific computations began to be executed on graphics
processing hardware, harnessing its computational power. Hence, general purpose
central processing units are offloaded for other computational and control tasks. An
introductory coverage of graphics processing unit architecture can be found in

(Moller, Haines, & Hoffman, 2008).

One of the common motivating problems throughout all of the above period was
the performance demand of real-time computer graphics based interactive
applications, which should run at least at 15 frames per second (fps). On the other
hand, computation power and parallelism need of the scientific, numerical
applications and physics simulations were the other concerns that the researchers
should have handled. Such applications include medical simulations, astrophysical
simulations, molecular dynamics simulations, flight simulations for military,
volumetric visualizations, visualization of differential equations, aerodynamics and
fluid dynamics simulations and 3-D graphics rendering in entertainment field. Figure
1.1 presents relatively recent application examples from (Tatarchuk & Shopf, 2007)
and (Tatarchuk, 2006).

() (b)

Figure 1.1 (a) An example of GPU based real-time medical visualization on ATI FireGL workstation

graphics accelerator (Tatarchuk & Shopf, 2007). (b) An example of real-time rendering of a scene

with lighting, shadows and rain (Tatarchuk, 2006).

The term interactive virtual environments or its more popular name virtual reality
(VR) can be regarded as a special case of a simulation. As indicated in (Heim, 1998),
different research groups use different terms for the same concept such that, the
researchers at MIT, University of North Carolina preferred the term virtual
environments, military scientist prefer synthetic environments, researchers at Human
Interface Technology Lab at the University of Washington at Seattle refer to virtual
worlds and Japanese researchers prefer fele-existence. Virtual reality can be
considered as a 3-D interactive simulation of a real world environment or of a certain
physical process. The user is immersed into the computer generated synthetic
environment via head mounted display where he or she can interact with the virtual
environment via haptic device or data gloves. At this point, efficient collision
detection gains importance. (Bergen, 2004) and (Ericson, 2005) are important
sources on the subject. Furthermore, the user can walk around in the virtual
environment via motion tracker device. The users can even have meetings and
collaborations with other users in the same synthetic environment but at the same
time at the different real world place via network connections. All of these features
mean that the user can manipulate, deform and change the virtual environment; and
at the same time the virtual environment reacts according to the user actions in an
intelligent way in order to make the user’s senses perceive the virtual environment as
real as possible. These interactions require numerical and stable solutions to linear or

nonlinear differential equations governing the simulated system dynamics. Two

Van) VIAIAN (901A9p J03[OBI} UOTIOW JO SOB[oY) Ul JUSTUOIIAUS [ENIIIA O} M JOBIOUI 0)
JuIsn sIsAjeue JUSWAYS UL ADuadQ 193u] pue ydeinousoguad 9[00 YV Sursn pado[oAd(]) ‘SoWeI} 09pIA WOIJ
SpIemo} SAIpys ATeuruurald o0oe} ueWNY © pue ooejans Jeueld € JO SUOL]) UOIOW SWI}-[€d] J0J S[NPOW dIEMIFOS Y
_ _
| | (yuowradojoasp
(e Sy ey Iopun ‘sondequadQ
| 30 2doos agy ut | Suisn JIom
_ wsnog) samyxe) | | s1soy) oy Jo 2doos 20120 ondey
v Ew%@oa | o ur padojaray) 400 9 Mo
(R BRcUILIEINOY WOouRYJ S[qesud
Rk (a911ng SuIsn yiom SIP pIef] _ [ONUOS 20IASD WUl 21qEsues
10309(01d BIEP E:EoE.MmoE s1soy) ot Jo adoos oty : | | oy 10] 14| S1RMIJOS
0Aueg Io [oued ur padojoaa() 1oAe| _
_

ac
adT TdLSdA _ o1emjjos uonenduwiod ¢ _
S OO so1sAyd s [eay | v

(30 Sursn y10M SIS} Y)Y

([z0M 15913 9y Jo odoos ayy 9SNON
ur padojoAa(]) o130] uonoRIANUI
JUSWIUOIIAUS (¢-UBWUNY PUE <

(@ge130 Susn vﬁo.B UOIB[NWIS [BIIPIW WL} [BY

Jo adoos a3 ur padojaasq) <+
sampaooxd dmas
soryde1d pue uoneiqIyeo

9AO[3 EJEp ‘IOYOBI) UONOW || pIeoqAay

(0SSTX 1LV 1o SR ST JO 00 £ | 103 9oejIo)uI Josn Jedrydern)
67 XD 9910490 VIAIAN) le—y U P2do[aaaq) 1o4e] A|_ 4

1un Suissaooid soryder 9IeMyOS SULISPUDI
n 5 I O moﬂﬂgwhw umn ey Am~m< AJIAJP — WMMWWMHMMM\MMM [9:¢: |
% ﬁ Suisn y1om s1say) o — ¢ JoAldl
70 2doos oy ut padofara() Aensed
(rrom [OTUOD JTASP qosmﬂwwwwaﬂ %) <4 Snusyod
([zoM s1S91 913 JO s1say) o Jo 9doos Iy ur oy} 10J I0AE[OIBMIJOS [—— :
adoos oy ur pado[oas) | | pado[oad() JUSWUOIIAUD XL~ lopiuisuen
Jenseq snwoyjo] | X
Syeysy3Iy,, se poweu oY) Surmjxa) 10§ J9S}JO
s1009 SunysI wioyod xe[rered yim Surddew — [1oAlo03l
0} TS'TH Ul U9)ILIM 90D duing,, woyrad 03 89 Aensed
jun Surssaoold somydern | | VIQIAN UI US)LIM SpOd shuatIod
jiun Surssasoad somydern

Figure 1.2 The overview of the 3-D virtual interactive environment developed during the thesis work.

important sources on the subject are (Khalil, 2002), (Hutton, 2004). Several
applications of virtual reality can be found in (Grady, 2003). A historical
development and technical terms of virtual reality can be found in (Heim, 1998).
Considering the properties of a virtual reality system mentioned above, the overview
of the completed software development during the thesis work targeting the
generation of a collaborative dynamic virtual anatomy laboratory is presented in

figure 1.2. Figure 9.2 presents the complete software layer diagram developed.

The term augmented reality (AR) can be regarded also as an interactive virtual
environment, but with an exception. In augmented reality, the user and the virtual
agents — intelligent or not — are in the real world. The real world surrounding the user
is projected to the eyes via video or transparent head mounted displays. The virtual
agents are registered with the features segmented from the video. These features may
be natural environmental features as well as recognizable artificial features imposed
by the humans. The accurate tracking of the recognized features in the real world and
the accurate registration in real time are the key concerns of augmented reality
applications. The historical development of augmented reality and technical terms
can be found in (Azuma, 1997). A relatively recent work on a medical augmented
reality application can be found in (Reitinger, Bornik, Beichel, & Schmalstieg,

2006).

Then what are the important components of an interactive immersive virtual

environment that enable it to simulate the reality?

Vision is one of the most important senses of human. A virtual reality system
attempting to immerse a person in a life like virtual 3-D environment should render
the environment by appropriate real-time rendering techniques and by benefiting
from the computational power of graphics processors. The static and dynamic
systems in the virtual environment should be modeled mathematically such that their
behaviors will be consistent. The preferred display scheme in these applications is

the usage of the 3-D stereoscopic head mounted displays (HMDs). These displays

have two screens on which the synthetic virtual environment or the augmented real

environment is rendered.

Human tactile sensory system should also be considered by the virtual reality
system. The collisions of the user hand trying to touch a virtual object should be
detected, computations should be done to calculate the contact points, the contact
directions and the forces generated due to the collisions. Then necessary physical
reactions should be simulated by the virtual environment. Data gloves or haptic

devices are used for creating tactile senses in immersive systems.

Human auditory system should also be in concern to simulate the real world in a
virtual environment so that the synthetic environment behaves acoustically

consistent.

Human olfactory system has a vital role in many real world situations to perceive
the environment. Therefore, a virtual environment in which collaborators live in
should consider generating necessary stimuli in accordance with the environmental

constraints and situations.

Finally, the user will expect to interact with intelligent virtual agents in the virtual
environment as in the real world. So the virtual reality system should have
intelligence and a capability to learn in order to evolve. This evolving intelligence
can be used by the virtual environment to work in collaboration with the user such as
an intelligent simulator evaluating or correcting the wrong actions of its user or to

work against the user as an opponent such as a game.

All of the concepts mentioned above can be expressed and implemented in pure
mathematics. Therefore, prior to attempting to design such a system, the researcher
should understand how each of those components built up mathematically,
algorithmically and then implemented programmatically. In order to be able to
develop a simulation or immersive virtual interactive environment in which visual

entities of the real environment and dynamics of the systems are simulated as

consistent as possible; the researcher should have a well established background in
theoretical and practical aspects of computer graphics, central processing unit and
graphics processing unit architectures and their programming, mathematics
particularly in differential equations, topology and numerical analysis. Otherwise, the
end product will just have empty but attractive names called virtual reality or
augmented reality. In order to fill inside of these names theoretically and practically,
the interested researcher should divide the whole work into its constituents that are

mentioned above and study them carefully.

In the light of above concerns, as indicated briefly in the previous paragraphs, the
scope of the thesis is to design and to develop a 3-D interactive virtual environment
in which users are immersed to work collaboratively on medical anatomical
operation scenarios. The virtual environment is aimed to be dynamic so that, the
users can grasp the anatomical body parts, get medical information about that part
and apply forces to soft tissues to deform them. The user can cut the soft body tissues
to simulate a medical operation. These interaction options are presented to the users
with a 3-D graphical user interface shown to the user upon a collision between a
rigged and skinned user hand (Refer to chapter 5) and the corresponding anatomical
model (Refer to chapter 9). Instead of rigging a hand mesh and using a data glove,
other methods such as just capturing hand features then estimating the hand and
fingers rotation and translation matrices by inverse kinematics from a camera can be
implemented. In addition to the software development, the establishment of a new
computer graphics and virtual reality laboratory in Dokuz Eyliil University Electrical
and Electronics Engineering Department is included in the scope of the thesis work
(Refer to chapter 8). The simulation logic of the software is planned to be modular so

that it can be suitable for the engineering simulations as well (Refer to chapter 9).

1.2 A Reading Guide for the Following Chapters

This section serves as a guide for the researcher for branching to the appropriate

chapter of interest. Chapter two will provide a literature survey on virtual reality,

graphics processor programming for virtual environments and on augmented reality

respectively. Chapter three will give an overview of data structures and software
design patterns used throughout the thesis work. Chapter four will be about graphics
processor unit programming for graphics and general purpose computing. Chapter
five and chapter six will give a mathematical review about real time rendering and
numerical methods for physics simulation used in the thesis work respectively.
Chapter seven will be on feature segmentation, tracking and pose estimation methods
used for augmented reality application developed during the thesis work. The reason
of the development of a video based real time tracking system in the scope of an
augmented reality application is the lack of the motion tracking and data glove
equipment for the two years of the thesis project period. Chapter eight will give
information on the computer graphics and virtual reality laboratory establishment
process that has been completed in Dokuz Eyliil University Electrics and Electronics
Engineering Department (DEU EEE) in the scope of the thesis work. Chapter nine
and chapter ten will be the software development results of the thesis and conclusion

respectively.

A reader may find chapters two, three and four too exhaustive or overwhelming.
But a wise and dedicated researcher will know that the time and the effort put into
the mathematical theory, algorithmic details and into the previous applications of
other research groups in the field are going to pay when the time comes for the
software, algorithm design and implementation. Additionally, a researcher with a
solid working background in the field can easily trace the problems and be on the
confident side by comparing the results with the theory and previous researches
during the algorithm implementation phase. But beyond all these, the time invested
in mathematical theory and well accepted applications of the research groups;
provide a researcher a different perspective to handle the problems and an enhanced

imagination for new solutions.

CHAPTER TWO

LITERATURE SURVEY

Computer graphics with its roots originating from diverse fields of mathematics
has been a wide research area in computer science since late 1970s. Evolving
graphics hardware, together with the improving mathematics and graphics software
libraries led to the field of real time computer. The related researches enabled the
development of software that is able to generate 3-D life like virtual immersive
interactive environments based on computer graphics. The user in this virtual
environment can interact with its surrounding, collaborate with other users in the
environment, simulate various dynamical systems in science and engineering in real

time, intelligently interact with the computer, train and even entertain.

The aim of this chapter is to provide a literature survey on the recent applications
conducted by the industry and the academia on virtual reality, the usage of graphics
processing units as general purpose computation units and augmented reality. The
applications are targeted to engineering and medical applications; but the researcher
will find other diverse application areas. Hence, the researcher can immediately

branch to the mathematical method or application reference of interest.

2.1 Researches on Interactive Real - Time Computer Graphics and

Virtual Reality in Medical and Engineering Simulations

Researchers both in academia and have worked on applications of computer
graphics and virtual reality targeting medical and engineering simulations. Virtual
reality has found wide application area in medicine. One of the hot topics is 3-D
realistic soft tissue deformations modeling in a virtual surgery. Mass-spring models,
linear finite element method and nonlinear finite element method are generally used
for modeling soft tissues. Mass-spring models are easy to simulate in real-time;

however they are unable to simulate the process physically consistent. On the other

10

11

(8 (h)
Figure 2.1 (a) The first fully functional VR display in history named as The Virtual Interactive
Environment Workstation (VIEW) in NASA Ames Research Center (Grady, 2003, p. 56). (b) Shutter

glasses in combination with flat-panel screens for three dimensional displays utilized in NASA Ames
Research Center (Grady, 2003, p. 83). (¢) NASA Virtual Windtunnel utilizing VR (Grady, 2003, p.
109). (d) NASA the Dextrous Anthropomorphic Testbed demonstrates VR-controlled robot to gather
rock samples on distant planets (Grady, 2003, p. 116). (e) A helicopter flight simulator utilizing VR
(Grady, 2003, p. 123). (f) Worker training with VR to fix elevators (Grady, 2003, p. 131). (g) The
CAVE environment to design a wheel loader (Grady, 2003, p. 144). (h) VR therapy in medicine
(Grady, 2003, p. 159).

12

hand, finite element models can capture the physical characteristics of the dynamical
system, they are very hard to simulate in real-time especially when the number of
elements gets higher. But the advances in graphics hardware and the
programmability of newer graphics processing units, enabled the researchers to
perform computation power demanding tasks in real-time on graphics processing
units. For the remaining details about development process of virtual reality, the
researcher should refer to (Heim, 1998) and (Grady, 2003). Prior to moving onto the
details of medical applications, the usage of virtual reality in diverse application
fields conducted by National Aeronautics and Space Administration (NASA),

industry field and medical therapists will be illustrated in figure 2.1.

For soft tissue modeling in a virtual environment, (Yan, Gu, Huang, Lv, Yu, &
Kong, 2007) uses nonlinear finite element method for soft tissue modeling in real
time. Additionally, for real time collision detection with soft tissue they use a spatial
hashing collision detection method. They claim the superiority of their method over
traditional mass-spring models and linear finite element models. The related work is
shown in figure 2.2 (a). In (Wang, Becker, Jones, Glover, Benford, Greenhalg, &
Vloeberghs, 2007), the authors propose the use of boundary element method for
several topological operations such as prodding, pinching and cutting on soft tissues.
In response to these operations, haptic and visual feedback is generated for the user
in real time. In (Wang, & et al., 2007), the authors use boundary element method to
model only the surface of the elastic objects. The related work is shown in figure 2.2
(b). In (Hamam, Nourian, El-Far, Malric, Shen, & Georganas, 2006), collaboration in
distributed surgery simulation is emphasized. Another research on interaction in a
distributed and shared virtual environment is (Glencross, Otaduy, & Chalmers,
2005). The research emphasizes on the challenges in visualization, collision
detection, haptic rendering, dynamic system modeling and artificial intelligence
while building such an interactive and intelligent environment. Figure 2.3 (a) and (b)
shows a collaborative CAD prototyping application and haptic feedback application

mentioned in (Glencross, & et al., 2005) respectively.

13

(@ (b)
Figure 2.2 (a) Linear strain deformation of human kidney (Yan, & et al., 2007). (b) An example of
soft tissue cutting with haptic feedback (Wang, & et al., 2007).

(a) (b)
Figure 2.3 (a) An example of collaborative CAD prototyping application. (b) Real-time haptic

rendering application. Both applications can be found in (Glencross, & et al., 2005).

The other important work on simulating surgical cuts is (Bielser, & Gross, 2002).
In that work, tetrahedral primitives are used for volumetric modeling in addition to
adaptive subdivision scheme dynamically in order to keep the mesh topology
consistent. For tissue deformation modeling they apply a relaxation scheme. For
collision detection, they utilize a two stage hierarchical collision detection scheme.
The first stage detects the boundary an element colliding with the surgical tool, the
second stage finds the tetrahedral that is in contact with the surgical tool. Haptic
feedback is also provided in real-time during the simulation. The related wok is

shown in figure 2.4 (a).

14

Figure 2.4 (a) Collision detection and topology processing of tetrahedral meshes (Bielser, &

Gross, 2002). (b) Processing intersections of tetrahedral meshes and a state machine

approach to progressive subdivision (Bielser, & et al., 2003).

The authors of (Bielser, Glardon, Teschner, & Gross, 2003) propose an algorithm
that consistently and accurately processes intersections of tetrahedral meshes in real
time. Progressive subdivision and its state machine control are mentioned in that
paper. The related work is shown in figure 2.4 (b). An application of real-time
computer graphics and virtual reality in orthopedic surgery is covered in (Qin, Pang,
Chui, Wong, & Heng, 2008). The authors propose a novel modeling framework for
multilayered soft tissue deformation based on layered structure of real human organs.
Considering performance issues, they employ a 3-D mass spring system for
modeling biomechanical properties of the tissues. In order to increase the efficiency

and interactivity, the authors use a physics processing unit. Their research is shown

in figure 2.5.

(b)

15

(d
Figure 2.5 (a) and (c) State of 3-D mesh spring models while pulling and pushing. (b) and (d)

Texturized models corresponding to 3-D mesh spring models in (a) and (c) respectively (Qin, & et al.,

2008).

Contact handling is a subfield in interactive computer graphics. A good theoretical
and implementation coverage of constrained dynamics formulation with implicit
complementary constraints, a time stepping algorithm based on progressive
constraint manifold refinement (CMR) for progressive refinement of the constrained
dynamics problem ensuring non-penetration, a solver based on iterative constraint
anticipation for mixed linear complementary problems (MLCP) are given in (Otaduy,
Tamstorf, Steinemann, & Gross, 2009). These topics are vital for many of the contact
handling and collision detection problems. The proposed unified contact solver can

cope with rigid bodies, co-rotational Finite Element Models (FEM), and mass spring

systems. Figure 2.6 represents the results of the unified contact solver proposed by

(Otaduy, & et. el, 2009).

16

(c) (d)
Figure 2.6 (a) and (b) demonstrate contact handling of rigid bodies (yellow), co-rotational FEM
models (orange) and mass spring clothes (red) by the unified contact solver. (c¢) and (d) demonstrate
the interpenetration in the mass spring model of a cloth ensuring that response to the interpenetrations

does not add energy to the system (Otaduy, & et al., 2009).

Another application is the pathogical object removal in a hysteroscopy simulator
as given in (Steinemann, Harders, Gross, & Szekely, 2006). The authors propose a
hysteroscopy simulator in which cutting of soft deformable tissues is modeled by a
tetrahedral mass spring system. A hybrid model is proposed that performs tetrahedral
decomposition of the 3-D model, approximates the cut trajectory, new surface

generation after the cut. Figure 2.7 represents some results from their work.

(b)
Figure 2.7 (a) Tetrahedral mesh is cut along existing edges, nodes and faces. (b) After cutting with

hybrid approach and snapping the nodes to the sweep surface (Steinemann, & et al., 2006).

A novel algorithm for efficient splitting of deformable solids along arbitrary

piecewise linear crack surfaces in cutting and fracture simulations is proposed in

17

(Steinemann, Otaduy, & Gross, 2006). In this work, a meshless discretization of the
deformation field and a novel visibility graph for fast update of shape functions in
meshless discretization are proposed. Splitting operation is handled in two steps.
Crack surfaces are synthesized as triangle meshes, these newly synthesized surfaces
are used to update the visibility graph and thus the meshless discretization of the

deformation field. Their results are given in figure 2.8.

(©) (d)
Figure 2.8 (a) and (b) represent surgical cuts. (c) and (d) represent spiral cuts (Steinemann, & et al.,

2006).

Convex or non-convex polyhedral elements can be simulated and deformed by
using discontinuous Galerkin finite element method (DG FEM) with simple
polynomial basis functions in (Kaufmann, Martin, Botsch, & Gross, 2008). They
claim the superiority of DG FEM over standard FEM for incompressible materials.
Additionally, the authors propose techniques for volumetric mesh generation,

adaptive mesh refinement, and robust cutting. The results are in figure 2.9.

18

() (b)
Figure 2.9 (a) An example of non-convex element. (b) An example of topological change of convex

element (Kaufmann, & et al., 2008).

The extended finite element method (XFEM) is adopted for simulating highly
detailed cutting and fracturing of thin shells using low resolution meshes in
(Kaufmann, Martin, Botsch, Grinspun, & Gross, 2009). Custom basis functions are
used in the approximation process. It is claimed that cutting discontinuities by
proposed method is possible in higher resolutions than the underlying mesh. The

results are shown in figure 2.10.

(a) (b)

19

h

(© ()

(e) ®

Figure 2.10 (a) Represents the harmonic enrichment function for a partial cut in a single element. (b)

Represents the corresponding quad element behavior. (c) Represents a C° continuous enrichment
element is used to add a crease to an element in as shown in (d). (¢) Represents harmonic enrichment
textures for multiple cuts within an element. (f) Represents the simulation of the element (Kaufmann,

& et al., 2009).

Topological changes of dropping viscoelastic balls in an Eulerian fluid simulation

are handled in (Wojtan, Thuerey, Gross, & Turk, 2009).

Collision detection is a vital concept for interactive virtual environments and
medical simulators. Advances in deformable collision detection based on various
approaches such as bounding volume hierarchies (BVHs), distance fields and spatial
partitioning is discussed in (Teschner, Kimmerle, Heidelberger, Zachmann,
Raghupathi, Fuhrmann, Cani, Faure, Thalmann, Strasser, & Volino, 2004). The

related work is shown in figure 2.11.

20

Figure 2.11 (a) An example of deformable collision detection during virtual surgery. (b) An example

use of bounding volume hierarchies for detection between rigid floor and deformable cloth. (c) Real
time collision detection between intestine and mesentery. (d) Distance fields generated for collision

detection between Happy Budha and other models (Teschner, & et al., 2004).

Another technique for collision detection for deformable volumetric bodies is the
ray-traced collision detection. The detection and contact force generation using this
technique is presented in (Hermann, Faure, & Raffin, 2008). Volumetric collision
detection for deformable objects is covered in (Heidelberger, Teschner, & Gross,

2003) using layered depth image (LDI) decomposition of the intersection volume.

The researches on collision detection have been conducted for a long time.
Especially, collision detection between rigid objects is a well-studied area. The
motivation is towards the accurate collision detection of deformable topologies. But
to understand the new concepts, the researcher should have a well established
theoretical background on necessary data structures, mathematics and numerical

methods. The collision detection methodologies given in the following references

21

form a basis of collision detection scheme that is used during the thesis work.
Therefore (Tropp, Tal, & Shimshoni, 2005), (Mdéller, 1997), (Gottschalk, Lin, &
Manocha, 1996), (Devillers & Guigue, 2002), (Hoff, Zaferakis, Lin, & Manocha,
n.d.), (Moller, 2001), (Lin & Gottschalk, 1998), (Hubbard, P. M., 1995), (Barequet,
Chazelle, Guibas, Mitchell, & Tal, 1996), (Held, Klosowski, & Mitchell, 1995),
(Baraff, 1989), (Larsson & Moller, 2001), (Tan, Chong, & Low, 1999), (Held, 1998),
(Eberly, 2008), (Jiménez, Thomas, & Torras, 2001), (Karabassi, Papaioannou, &
Theoharis, 1999), (Barber, Dobkin, & Huhdanha, 1996), (Bielser, Maiwald, & Gross,
1999), (Teschner, Heidelberger, Miiller, Pomeranets, & Gross, 2003), (Heidelberger,
Teschner, Keiser, Miiller, & Gross, 2004), (Baraff, 2001) and (Bergen, 1998) should
definitely be studied.

The following reference papers will include researches on important numerical
methods that are also used in the thesis work for collision detection, distance
measurement, time of impact (TOI) calculation, penetration depth, solution of
constraints and necessary mathematical topology. One of the fundamental algorithms
for solving proximities between convex objects is the Gilbert-Johnson-Keerthi (GJK)
Algorithm. Its mathematical theory and applications are studied in (Gilbert, Johnson,
& Keerthi, 1988), (Bergen, 1999), (Vlack & Tachi, 2001), (Eberle, 2004) and
(Kataria, n.d.). Expanding Polytope Algorithm (EPA) is important in calculating the
penetration depth. Its theory and application are given in (Heidelberger, Teschner,
Kaiser, Miiller, & Gross, 2004), (University of North Carolina at Chapel Hill
Department of Computer Science, 2004) and (Bergen, n.d.). For more detailed
coverage of the concepts, the researcher should refer to (Bergen, 2004) and (Ericson,

2005).

Differential equations, their numerical solution methods and stability are the heart
of a physically consistent simulation or virtual environment. Moreover, as the
computational power of the hardware increases, the use of finite element method
increases resulting in more physically consistent simulations when compared with
the mass spring systems. In addition to the references given above, the theoretical

and implementation aspects are studied for simulating fundamental dynamic systems

22

such as cloths and volumetric elements in (Provot, 1996), (Desbrun, Schroder, &
Barr, 1999), (Nielsen & Cotin, 1996), (Cotin, Delingette & Ayache, 1999), (Miiller,
Stam, & James, 2008), (Miiller, James, Stam, & Thuerey, 2008), (James, 2008),
(Nealen, Miiller, Keiser, Boxermann, & Carlson, 2005), (Miiller, Heidelberger,
Hennix, & Ratcliff, 2006), (Miiller, McMillan, Dorsey, & Jagnow, 2001), (Stam,
2009) and (Thuerey, 2008). For further details, the researcher should refer to (Press,
Teukolsky, Vetterling, & Flannery, 2007), (Sewell, 2005), (Bathe, 1996), (Cook,
Malkus, & Plesha, 1989), (Strang, 1986), (Hutton, 2004), (Ferreira, 2009), (Eberly,
2004), (Khalil, 2002), (Lander, 1999a), (Lander, 1999b) and (Lander, 1999c).

2.2 Researches on the Use of Graphics Processing Unit (GPU)

Programmable Pipeline in Computer Graphics and Virtual Environments

Programmable graphics pipeline has dominated the fixed function graphics
pipeline since early 2000s. Many application developers make use of this to perform

graphics and numerical tasks on GPUs rather than central processing units (CPUs).

As seen from the researches from the previous section, most of the works depend
heavily on numerical solutions especially on finite element method (FEM) and its
derivatives. For computational power demanding virtual reality applications or
simulations where high number of vertices, triangles and faces are present, GPUs are
now alternative to CPUs for numerical computations. In (Taylor, Cheng, & Ourselin,
2008), the authors simulate a biomechanical model in real time. In that work,
nonlinear Lagrangian FEM is used for modeling soft tissues. Their research is shown
in figure 2.12 (a). Another research using GPU acceleration for cardiac intervention
is (Yu, Chiang, Chen, Zheng, Cai, Ye, Zhang, S., Zhang, Y., & Mak, 2009) and their

result are shown in figure 2.12 (b).

23

(@) (b)

Figure 2.12 (a) Overlaid images of the undeformed (wire-frame) and deformed (surface) brain model

with 46655 elements. Anchor nodes at the brain stem are shown as red points, displacement direction
of the displaced nodes are shown as blue arrows (Taylor, & et al., 2008). (b) White blue catheter and
heart wall interaction (Yu, & et al., 2009).

Another surgical simulation utilizing GPU acceleration with spring mass system is
(Mosegaard, Herborg, & Sgrensen, 2005). Their research is shown in figure 2.13 (a).
NVIDIA CUDA based system is used for surgery simulation in (Liu & De, 2008), in
(Farias, Almeida, Teixeira, Teichrieb, & Kelner, 2008) for deformable body physics
simulation, in (Rasmusson, Mosegaard, & Sgrensen, 2008) for volumetric mass
spring damper models. Another application of mass spring systems are 2-D
topologies such as clothes. This topic is examined in (Georgii & Westermann, 2005)

based on GPU. Their work is given in figure 2.13 (b).

(a) (b)
Figure 2.13 (a) Heart surgical simulation (Mosegaard, & et al., 2005). (b) Mass spring system for

simulating 2-D topology i.e. cloth (Georgii & Westermann, 2005).

24

Similar researches that should be inspected are (Ranzuglia, Cignoni, Ganovelli, &
Scopigno, 2006) and (Liu, Jiao, Wu, & De, 2008). Additionally, (Géddeke, Buijssen,
Wobker, & Turek, 2009) presents an overview of GPU cluster computing for finite
element applications. An important research from INRIA is presented in (Comas,

Taylor, Allard, Ourselin, Cotin, & Passenger, 2008). Results from that research are

given in figure 2.16.

(a) (b)
Figure 2.16 (a) A solid rendering. (b) Wireframe rendering of a real-time eye surgery using FEM in

SOFA (Comas, & et al., 2008).

An implementation of ocean surface generation, adaptive tessellation and optical
effects generation on the GPU is presented in (Li, B., Wang, Li, Z., & Chen, 2009)

with the shown results in figure 2.17.

(a) (b)
Figure 2.17 (a) A wireframe rendering. (b) A solid rendering of a real time ocean simulation with

optical effects on GPU (Li, & et al., 2009).

25

Programming GPUs towards important numerical computations are studied in
(Lahabar & Narayanan, 2009), (Kriiger & Westermann, 2003), (Spampinato, Elster,
2009), (Fujimoto, 2008), (Jang, Park, & Jung, 2008), (Velamparambil, Cormier,
Perry, Lemos, Okoniewski, & Leon, 2008), (Amorim, Haase, Liebmann, & Santos,
2009), (Bolz, Farmer, Grinspun, & Schroder, 2003) and (Huang, Ponce, Park, Cao, &
Quek, 2008).

2.3 Researches on Graphics and Physics Software Libraries Developed

by Academia and Industry

OpenSceneGraph is a real time graphics rendering engine needed to manage
scenes with huge number of nodes. It has been used in the thesis work for initial
application development phase and for augmented reality application development.
But the choice for a real time rendering engine for final application is Object
Oriented Graphics Rendering Engine (Ogre3D). This decision was given due to its
ease of integration with the preferred physics rendering engine Bullet, well designed
documentation, shader handling and ease of scene management. The interested
researcher should refer to (OpenSceneGraph, 2010) and (Martz, 2007) for
OpenSceneGraph; to (Jacob, 2010) and (Junker, 2006) for Ogre3D.

Sofa is a well designed open source physics simulation framework developed at
Institut National De Recherche En Informatique Et En Automatique - INRIA
Grenoble. Although many of physical processes can be simulated, it is mostly
specialized for medical applications. Because of its specialized structure, the
developer should have a well understanding of numerical concepts especially
nonlinear finite element modeling, advanced collision detection techniques and
etc.... At first sight, the software modules seem tightly connected to each other,
therefore the developer should carefully inspect and do necessary modifications on
the source code for using modules independently with custom software modules and
graphics engines. Sofa supports GPU general purpose processing with NVIDIA
CUDA (Compute Unified Device Architecture). The developer need not to write a

C++ code, a XML script can also be used for application development. But

26

integration with custom software modules should be concerned, if a XML script is
used. The researcher interested in Sofa should refer to (The SOFA Team at INRIA
Grenoble, 2009) and (The Sofa Team, 2008). Refer to section 9.6 for implementation
results accomplished using SOFA through the thesis period.

Bullet3D is an industry standard physics engine used by SONY Playstation,
Microsoft Xbox360, Nintendo Wii, AMD, movies such as Toy Story 3 and many
other scientific simulation purposes. As a physics engine, Bullet was the preferred
one throughout the thesis work. The main reasons for this choice were the ease of
integration with the preferred graphics engine Ogre3D, the well designed open
source engine software, availability of tutorials and papers and most importantly
Bullet is well suited for the researchers who desire to understand the fundamental
concepts of contact detection and collision detection methodologies for several
topological constructs, mass-spring models for deformable objects, numerical
calculations for fluids and particles, physical constraints and the numerical ways
used in handling them, 2-D and 3-D elements that are triangle and tetrahedral
respectively and their construction, proximity detection, penetration depth, necessary
software interrupt generation and all the related numerical analysis concepts. One
more important point with Bullet is that the theoretical mathematical concepts given
in many fundamental books such as (Ericson, 2005), (Bergen, 2004) can easily be
followed in the source code of Bullet. But prior to integration with the custom or
open source graphics engine, the source code of Bullet should be inspected carefully.
The researchers interested in Bullet should refer to (Coumans, 2010), (Coumans,

2009) and (McShaffry & et al., 2009).

NVIDIA PhysX is a C++ physics engine developed by NVIDIA for its GPUs.
Rigid and soft objects, collision models can be handled with this engine. The engine
also supports physics rendering based on GPU. The interested researcher should refer

to (NVIDIA, 2009b), (NVIDIA, 2008) and section 9.10 for implementation results.

Computational Geometry Algorithms Library (CGAL) is a C++ computational

geometry library developed by well known collaborative institutions. The researchers

27

interested in computational geometry should definitely search on (CGAL, 2010) and
(CGAL, 2009). Besides, this field is a vital area of mathematics.

2.4 Researches on Augmented Reality Applications

The researchers interested in augmented reality may use (Azuma, 1997), (Brown,
Julier, Baillot, & Livingston, 2003), (Barakonyi, Psik, & Schmalstieg, 2004),
(Vallino, & Brown, 1999), (Harada, Nazir, Shiote, & Ito, 2006), (Reitinger, Zach, &
Schmalstieg, 2007), (Reitmayr & Schmalstieg, 2007), (Reitmayr & Schmalstieg,
2004), (Pathomaree & Charoenseang, 2005), (Piekarski & Thomas, 2003), (White,
Feiner, & Kopylec, 2006), (Goose, Sudarsky, Zhang, & Navab, 2002), (Mizuno,
Kato, & Nishida, 2004), (Reitmayr & Schmalstieg, 2001), (Marathe, Carey, &
Taylor, 2007), (Fiirnstahl, Reitinger, & Schmalstieg, 2006), (Reitinger, Bornik,
Beichel, & Schmalstieg, 2006) as a starting point for current applications. In figure

2.18, some of those researches are illustrated.

Pk ug B ond then steckt n & slal

© (d)
Figure 2.18 (a) Playing chess in a collaborative AR environment (Reitmayr, & Schmalstieg, 2001). (b)
Global mesh partitioning (Fiirnstahl, & et al., 2006). (c) Liver surgery planning with AR (Reitinger, &
et al, 2006). (d) Task assisting with AR (Pathomaree & Charoenseang, 2005).

CHAPTER THREE

DATA STRUCTURES AND SOFTWARE DESIGN PATTERNS

The developments in the architecture of computation machines and the increasing
diverse application areas of these machines from scientific simulation, embedded
applications, and interactive 3-D applications to entertainment have become one of
the reasons of the evolution in software design and programming paradigms.
Therefore, programming and software design have undergone several periods
starting from mechanical scheme, hardwired scheme of 1940s, machine language,
assembly language to more flexible, performance oriented and portable functional
programming schemes. Finally, object oriented programming paradigms starting
from late 1960s have resulted in more reusable, modular, portable, manageable and

maintainable software.

Today’s modern software runs on both sequential and parallel computing
architectures. Therefore it is essential to understand certain data structures and
software design patterns in order to design, to manage and to maintain software as a
solution to a specific problem at hand. Hence, this chapter is going to explain
important data structures, their mathematical origins and software design patterns
that are benefited from, during the software development process in the scope of this
thesis. The chapter will end with the definition of a “software engine” and its relation

with data structures and software design patterns.

3.1 Data Structures

Data structures are fundamental concepts for computer science. When a research
is done on the data structures, it will be seen that all have a well-established
mathematical and theoretical roots. In this part, brief mathematical aspects in
addition to an introduction will be given on the data structures that are fundamental
to understand for the scope of the thesis goal. For the excellent theoretical and

applied coverage of data structures and algorithms, the researcher should refer to

28

29

(Cormen, Leiserson, Rivest, & Stein, 2003). Additionally, excellent information

about applied data structures specifically for C++ can be found in (Smith, 2004).

3.1.1 Maps

Maps are data structures that have two fields as a primary key and a value. A map
provides a mapping between the primary key and the memory slot where the
corresponding value is stored. The memory slots constitute the hash table. Hence, the
key-value relationship in a map can be considered as an associative memory as given
in (Smith, 2004); that is, a particular value can be searched in, removed from,
inserted to a map or can be modified by using a particular key. Although maps
provide fast, random access and dynamic size change in runtime, their
implementations should guarantee that all the values should have a unique key.
Therefore, there should be a one-to-one (injective) and onto (surjective) function or
in another words a bijective function that maps the key values in its domain to the
corresponding memory slots in its range where the corresponding values are stored.

This is depicted in figure 2.1.

Let K be a space of used keys in the map. Considering K as the domain of

bijective function f{(k), then,

f:K—>M ,McN 3.1)

K M
fik) : bijective function
JA

A4

.Memory Address f{Key0): Value0
.Memory Address f(Keyl): Valuel
.Memory Address f(Key2): Value2

A4

\4

\4

.Memory Address f(KeyP): ValueP

V
f(k) is a hash function

Figure 3.1 Mapping between keys and memory slot addresses of the hash table.

30

Essentially, while designing the hash function f{k), several constraints should be
considered. First of all, f(k) should be deterministic because the storage and the
retrieval of the value will be performed using the same corresponding key value that
belongs to the domain of f{k). Secondly, to minimize the latencies, f{k) should map
the key value to the memory address f(key) as soon as possible during the value
storage and retrieval. Thirdly, f{k) should uniformly map the key values from its
domain to its range that is the memory space of the computing machine reserved for
the hash table. In other words, biasing towards the same memory address should be
avoided. Finally, keeping the third constraint in mind, while designing f(k), memory
collision that is the mapping of the key value to an occupied memory address should

be handled.

Although there are several methods for resolving collisions and designing hash
functions such as collision resolving by chaining, hash function generation by
multiplication or division, universal hashing and etc..., these are out of the scope of
the thesis. The interested researcher should refer to (Smith, 2004, chap. 5), (Cormen,
& et al., 2003, chap. 11), (Knuth, 1973) and (Marsaglia, 1996).

As an application example from the thesis work, maps are used to store pointers to

render models and also pointers to collision models with corresponding keys.

3.1.2 Graphs

A graph is formed by a nonempty set of vertices V and a nonempty set of edges E.
Typically, set E can be either empty or nonempty according to the topology of the

graph. In literature, a graph G is typically denoted as follows;

G=(V,E), whereV ={v,,v,,....v,, },
E={(vi,vj):Vi,je N,vieV/\vjeV} 3.2)

5> E forms a binary relationon V.

31

Simply speaking, a binary relation on V is a subset of all ordered pairs (v;, v;); in

other words, a subset of the Cartesian product V x V as depicted in equation (3.3).

EcVxV ={(v,,v;):Vv,e VAVY eV} (3.3)

Edges have weights w;; such that,

AfE->R)>w, = f(E;) (3.4)

Graphs can be represented in three ways in computer memory: Sets, adjacency list

and adjacency matrix. These representations will be exemplified using the figure 3.3.

List Array LA ‘

List Node /n;, List Node /n,;

List Node /n;:

List Node /n;,

(b)

0 2.1 05 0.8]
32 0 0 O

Vertex SetV ={1,2,3,4}
Edge Set £ ={(1,2,2.1),(1,3,0.5),

(1,4,0.8),(2,1,3.2), 0 0O 0.1 1.1
(3,3,0.1),(3,4,1.1), 0 15 0 0 |
(4,2,1.5)) -

(c) (d)

Figure 3.3 (a) An example Graph G. (b) The adjacency list representation of G. (c) The set

representation of G. (d) The adjacency matrix of G.

32

Referring to the figure 3.3, the set representation uses two sets. One of the sets is
for the vertices and the other is for edges. Each triple element in the edge set

represent the start vertex, end vertex and connection weight respectively.

The adjacency list representation is composed of an array of lists forvVv, e V.
Hence, every member of the list in the array depicts the edge formed by v,eV

andvj e V. That is,

Vv, eV,v; € list(v,),3 edge(v;,v;,)€ E > list(v,)is alist of
’ 3.5)
vertices connected to v,

The adjacency matrix representation uses NxN adjacency matrix M where N is the
number of vertices in the graph. Row i of M represents the start vertex, column j of M

represents end vertex and M;; represent the connection weights.

According to their connection topologies, graphs can be divided in two main
groups as directed graphs and undirected graphs. As opposed to directed graphs, the

edges of the undirected graphs are composed of unordered pairs such as,
edge(v,,v;)=edge(v,,v,) (3.6)
If a vertex of a directed graph has a cycle edge, then it is called directed cyclic

graph else it is called directed acyclic graph. Undirected graphs do not have cycles.

These are shown in figure 3.4.

OB B O
D ¢ e @ 9 &

() (b) ©)
Figure 3.4 (a) Directed graph. (b) Undirected graph. (c) Directed cyclic graph respectively.

33

There are graph algorithms some of which are also used in the thesis work that
worth mentioning. First of them is finding a path, that is querying if there exists a
path between vertices v; and v; in other words querying whether v; is reachable from
v; or not; or reachability can be checked in the reverse direction if the graph topology
permits. The simplest methods for this task are breadth-first search and depth-first
search. Breadth-first search looks at all vertices length one away relative to the start
vertex v; where the search is initiated from. If the target vertex v; is found the
algorithm terminates, else all the vertices at length two away relative to v; are
searched. The graph is traversed in this scheme till the target vertex v; is found. If v;
is not found null is returned. At the end of the traversal, a tree containing all the
reachable vertices from v; is built. This tree contains the shortest paths to all the
reachable vertices from v;. On the other hand, depth-first search chooses one of the
edges from the most recently discovered vertex v;. Then, the search progresses along
that path until the target vertex v; reachable from v; is found or an edge that has been
traversed is reached. Then the search backtracks the most recently traversed edge ey
to the vertex v, where e, originates from. Then the search selects an edge originating
from v, that has not been traversed and traverses that path. This search scheme
continues until the reachable target vertex v; is discovered or all the reachable edges

are traversed.

In graph theory and also in computer science, the shortest path between the vertex
v; to a reachable vertex v; is of particular interest. Mathematically, it is the path that

has the least connection weight sum when traversed from v; to v;. That is,

j-1
Shortest path p = min (Z wkj > w, is the connection weight

v; connected tov; e

3.7

between vertices v, and its descendant v, ,,

The researcher should refer to (Dijkstra, 1959) for a detailed explanation of a

fundamental algorithm to find the shortest path.

34

The spanning tree is another interesting concept in graphs. It can be regarded as
the subset of the edges that are connected and have no cycles making every vertex in
the graph reachable. For algorithmic details, the researcher should refer to (Kruskal,

1956) and (Prim, 1957).

As an application example from the thesis work, while using OpenSceneGraph
(OSG), a directed acyclic graph is created for implementing the scene graph in order
to store the 3-D virtual environment, the 3-D models that the environment
constitutes, graphics rendering tasks in appropriate graph vertices. Therefore, fast
storage and retrieval of models in vertices, search of desired vertices and performing
all rendering tasks are done efficiently. A spanning tree can be used to represent a
3-D virtual scene and its contents so that the scene will need less memory storage

and still all the 3-D scene contents can be reachable via a pointer.

In mathematical perspective, graphs find use in topological processing of meshes
composed of several vertices i.e. a mass-spring system representing an elastic model
can be thought as a graph such that each mass is a vertex, each spring is an edge
connecting masses and finally connection weight of the related graph edge is the
corresponding spring constant. Furthermore, in optimization theory, a neural network

topology can even be represented as a graph.

For the sake of simplicity, the further details on graph data structures and in
general on the graph theory will not be covered here. But the researcher should
definitely refer to (Cormen, & et al., 2003, chap. 22, chap. 23, chap. 24, chap. 25,
chap. 26, chap. 27, app. B), (Smith, 2004, chap. 7) for very interesting applications in

computer science and refer to (Diestel, 2005) for theoretical details.

3.1.3 Trees

Trees can be thought as a special case of graphs. Graph algorithms mentioned in
section 3.1.2 are valid with some modifications for trees. Similar to a graph, a tree is

a set of vertices. Simply speaking, a tree or a free tree is an undirected acyclic

35

connected graph as mentioned by (Cormen, & et al., 2003, p. 1085). If the tree is
undirected acyclic but unconnected it is called as a forest. A free tree is called a
rooted tree if one of the vertices in the vertex set is selected as a root vertex and the
rest of the vertices form connected subtrees. Hence, a recursive structure can be
noticed at first glance. The depth of a vertex v; is the length of the path from the root
vertex v, to v;. If vertex v. at depth level d is connected to v, that is on the previous

depth level d - 1, v, is the child vertex of v, and v, is the parent vertex of v.

One of the important types of trees is the binary tree which has at most two
children. When it has ordered vertices (any ordering relation can be chosen) in its
structure such that the values in vertices at left relative to their parent are smaller and
the values in vertices at right relative to their parent are greater than their parent, it is
called as binary search tree. Binary search trees are suitable for search purposes in
the sense of their algorithmic complexity which is O(logN) for average case analysis
and worst case analysis. Other types of trees are red-black trees, B-Trees, random
trees, AVL trees and etc... The figure 2.5 shows a binary search tree. The details and
information on further tree types and related algorithms can be found in (Smith,
2004, chap. 6). Additionally, (Cormen, & et al., chap 12, app. B) will be a good
starting point for further theoretical details.

‘ Depth 0

IS [C P P R

Figure 3.5 Binary search tree.

36

From the thesis work perspective, a tree is created to implement a scene graph
when using Ogre3D to include the virtual world contents and several application
specific tasks that are also mentioned in section 2.1.3. In fact, Ogre3D employs an
octree by default which is a special type of tree data structure that will be mentioned

in the following sections.

3.1.4 Scene Graphs

It should be noted a priori that the term node that will be used in this section is
equivalent to the term vertex used in the previous sections 3.1.2 and 3.1.3. A scene
graph is a data structure that is used in simulators and computer games to manage
virtual models according to the logical and spatial relationships between them and
perform several graphics and physics rendering tasks in the virtual world. Hence a
hierarchical representation of the scene data is maintained. Technically, it can be
implemented as a directed acyclic graph or as a tree. A scene graph consists of
several nodes. A node can technically represent a model, an affine transformation, an
animation, sound, a light or any kind of entity that a virtual scene includes. Each
transform performed on a parent node affects its child node during the graph

traversal in runtime.

Dispatching the transform type, in other words, defining which operation should
be performed on a particular node can be done in several ways as depicted in
(Wikipedia, 2010a). The transform dispatching is done according to the type of the
node. In object oriented programming languages such as C++, virtual functions and
runtime type identification techniques are widely used for transform dispatching.
These techniques are the implementations of polymorphism property of object
oriented programming. Application of the visitor design pattern as explained in
section 3.2.1 is another way for transform dispatching. Both ways have pros and
cons. For technical information on C++ and object oriented programming, the
researcher should refer to (Stroustrup, 2000) and (Stroustrup, 2008). A sample scene
graph might be as in figure 3.6.

37

Root Node

Transform Node 1 Transform Node 2 Animation Node

Child Node
1
Transform Node 2 Leaf Node 1 (holds Leaf Node 2 (holds
render model 2) render model 2)

I

Leaf Node 2 (holds
render model 3)

Figure 3.6 A sample scene graph.

The scene graph in figure 3.6 represents a virtual scene with a camera, a light, an
animation and three render models. Camera has no degrees of freedom in the scene
hence it is static and holds camera parameters i.e. near clip plane, far clip plane,
perspective parameters and etc.... Light is not static as camera for this particular
scene and it holds light parameters i.e. light type, light power, attenuation constant
and etc.... Animation Node deals with the animation related tasks i.e. querying for
the key frame, interpolation and etc... Transform Node 1 and Transform Node 2
apply affine transformations to Child Node I and Child Node 2 respectively. A
second affine transform is applied to the Leaf Node 2 by Transform Node 3. Notice
that Transform Node 1 effects both Leaf Node 1 and Leaf Node 2; but on the other
hand Transform Node 3 only affects Leaf Node 2. So, Leaf Node 1, Leaf Node 2 and
Leaf Node 3 can rotate and translate independent from each other. Additionally,
Light undergoes the same affine transformations as with as they are connected to the

same node which is Child Node 2.

38

The operations are applied by traversing the scene graph forward from the root
node up to the leaf node and then traversing backwards to the root node. When
traversing forward to the leaf nodes, pre-render operations are performed; when
traversing backward to the root node, post-render operations are performed. Tasks
such as culling, depth sorting, render state manipulation, several environmental
effects, affine transformation, event dispatching and handling, animation operations
are accomplished at different stages of the scene graph traversal. The implementation
is specific to the developed scene graph. More information on implementation details

can be found in (Foster, 2010).

Some of the scene graphs that are widely used today are OpenSG,
OpenSceneGraph, X3D, Java3D, Gizmo3D, RenderWare, NetImmerse Gamebryo,
OpenPerformer and Ogre3D. Details on these scene graphs and particularly on the
development history of scene graph technology can be found in (Avi, 2007). For
implementation and technical details on OpenSceneGraph and Object Oriented
Graphics Rendering Engine - Ogre3D both of which are used during the thesis work,
the researcher should refer to (Martz, 2007) and (Junker, 2006) respectively. For
additional tutorials on OpenSceneGraph and Ogre3D refer to their web sites

(OpenSceneGraph, 2010) and (Jacob, 2010) respectively.

3.2 Software Design Patterns

Software engineering and especially object oriented software design rely on the
extensive use of software design patterns. Design patterns are the tested, optimum
design solutions of the problems that have been come across during the development
process in software engineering for years. In this part, important design patterns that
are used in many software as well as in scene graphs such as OpenSceneGraph,
Object Oriented Graphics Rendering Engine (Ogre3D) and also in GUI development
kits such as Qt are going to be introduced briefly in order to understand the
simulation development process during the thesis work. For more detailed coverage

of the software design patterns, the involved researcher should refer to (Gamma,

39

Helm, Johnson, & Vlissides, 1995). Additionally, a mathematical theory of software
design patterns can be found at (Eden, Gil, Hirshfeld, & Yehudai, 1998).

Design patterns can be grouped into three main classes as creational patterns,

structural patterns and behavioral patterns.

When the history of computers is inspected, it can be noticed that the tendency of
the progression is towards the easily programmable and reconfigurable systems
instead of hard-wired computing devices with fixed functionalities. This is one of the
reasons why the programming languages were born. With this thought in mind,
creational design patterns can be regarded as design methodologies that contain
information about when, how and which primitive objects should be instantiated for
the system to perform a specific complex task. Therefore, these types of patterns
enable a system to reconfigure itself for more than one task easily. Some examples of
creational patterns are abstract factory, factory method, singleton and builder design

patterns.

On the other hand, the structural design patterns deal with the composition of
classes and objects instantiated. Compositions of interfaces of classes and also of
primitive objects to perform different and more complex tasks are the scope of the
structural patterns. Composite, proxy, adapter and flyweight design patterns are some

examples for this kind of design pattern.

And finally, the behavioral design patterns deal not only with the algorithms the
objects implement but also with the flow of control between the objects
interconnected to perform more complex tasks. Therefore, as mentioned by (Gamma,
& et al., 1995, p. 221), the developer can focus on the way objects interconnected
and need not have to deal with the flow of control. Observer, mediator, template
method and interpreter design patterns are some examples for behavioral design

patterns.

40

3.2.1 Visitor Design Pattern

The visitor design pattern belongs to the class of behavioral patterns. It establishes
an abstraction between the function that contains the defined algorithm and the
structure composed of objects that are instantiated from same or different classes on
which the visitor will operate. Therefore, in order to add new algorithm, there

remains no need to alter the object classes, as indicated by (Gamma & et al., 1995).

It will be better to give an example to motivate the concept. Consider a 3-D
simulation software utilizing a scene graph data structure for functional and spatial
grouping of several node objects instantiated from different classes, for adding new
node objects to the graph and also for performing several rendering operations such
as culling, level of detail (LOD) modification, vertex processing, texture processing
and altering the transformation matrices of several node objects forming the scene
graph. If all these operations are implemented as member functions in each different
class, then there will exist unnecessary code overhead that may cause conflicts. As
indicated in (Gamma, & et al., 1995), each new operation could be added separately,
and also the node hierarchy should be independent of the functions that will operate
on them. This will also lead to node objects of different classes that will consume
less memory. So, the solution is to develop a class that will contain the necessary
operations and then to instantiate an object from that class named as a visitor. The
visitor class and the scene graph structure will be independent. When a new
functionality is demanded, it will simply be a member of a child visitor derived from
the abstract parent visitor. Additionally, no modification will be done to the graph

node classes. Therefore, a minimal code development effort will be needed.

The visitor pattern works simply as follows. It contains two hierarchies of classes.
The different types of objects forming the data structure are instantiated from the first
class hierarchy which is the object hierarchy. The visitors that embody the necessary
functionalities and operate on the data structure’s objects from different classes are
instantiated from the second class hierarchy which is the visitor hierarchy. The

function that will be called when the visitor is accepted by the object of the data

41

structure — in the above example, the nodes of the scene graph- is selected using the
concept of double dispatch. This means that, the visit function call of the visitor
object is done considering the function signature, the runtime type of both the visitor

and the visited object.

For the general implementation case, the object class hierarchy and visitor class
hierarchy implementation details can be followed from figure 3.7 which is taken
from (Gamma, & et al., 1995). In this figure, the visit functions are declared in
Visitor class. The implementations of the declared functions are done in
ConcreteVisitorl and ConcreteVisitor2 classes which inherit from Visitor class.
These functions are called according to the double dispatch concept defined above.
Element class declares the accept function. The implementation of that function is
done in ConcreteElementA and ConcreteElementB classes. ObjectStructure hold

Element objects together.

Visitor
Client » VisitConcreteElementA(ConcreteElementA)
VisitConcreteElementB(ConcreteElementB)
ConcreteVisitorl ConcreteVisitor2
VisitConcreteElementA(ConcreteElementA) VisitConcreteElementA(ConcreteElementA)
VisitConcreteElementB(ConcreteElementB) VisitConcreteElementB(ConcreteElementB)
v
ObjectStructure :J Element
Accept(Visitor)
ConcreteElementA ConcreteElementB
Accept(Visitor v) Accept(Visitor v)
OperationA() ? OperationB() 9
v VisitConcreteElementA (this) v%VisitConcreteEleIInentB(this)

Figure 3.7 Visitor design pattern class diagram (Gamma, & et al., 1995, p.334).

42

For the specific 3-D simulation software example given in the preceding
paragraphs, Visitor corresponds to the parent class of visitor classes specialized for
culling, coordinate transformation computing, texture processing and so on. These
specialized visitor classes in the example correspond to ConcreteVisitorl and
ConcreteVisitor2 classes in figure 3.7. ObjectStructure corresponds to the scene
graph, Element corresponds to the nodes, ConcreteElementA and ConcreteElementB
correspond to nodes derived from a parent class and Client corresponds to the

application.

3.2.2 Observer Design Pattern

The observer design pattern belongs to the class of behavioral patterns. This
pattern is composed of at least two objects instantiated from subject and observer
classes respectively. Subject and its observers are decoupled. Additionally, the
objects instantiated from observer classes are independent of each other. This
structure leads to an increased reusability. The observer objects are registered with
the subject object. The goal of the pattern is to define a relationship between the
subject object and its observer objects so that when the subject object changes its
state, the observer objects that depend on the subject object are notified and their

states are updated automatically.

The subject object encapsulates the data. On the other hand, the observer objects
encapsulate their own member functions that operate on the data encapsulated by the
subject object. As mentioned by (Gamma, & et al., 1995), this pattern can be used
when there are two abstractions one dependent on the other so that encapsulating
these abstractions in separate objects increases reusability and the independent
modification of the object classes. The pattern is also suitable for cases when a
change in one object requires a change in the dependent objects without the
knowledge of the number of dependent objects and without the knowledge of who

those objects are.

43

The class diagram of the observer pattern is summarized in figure 3.8 which is
taken from (Gamma, & et al., 1995). In the figure, Subject class provides a
registration interface for any number of observers; on the other hand Observer class
provides an updating interface for the subject state change notifications.
ConcreteSubject and ConcreteObserver classes are child classes of Subject and
Observer classes respectively. ConcreteSubject stores the state in which
ConcreteObserver objects are interested; and it notifies them when that state
changes. ConcreteObserver stores the state it is interested in and implements

observer update interface to synchronize that state with ConcreteSubject.

Subject observers J Observer
Attach(Observer)
Detach(Observer) Update()
Notify() Erommonad -
For all o in observers {
o~ Update()
} L\
ConcreteObserver
subject —anhi
. P Wk o -1 observerState=subject
ConcreteSubject ¢ pdate() > GetState()
GetState() O------- return subjectState observerState
SetState()
subjectState

Figure 3.8 Observer design pattern class diagram (Gamma, & et al., 1995, p. 294).

Two of the application examples where this pattern is used in the scope of this
thesis are as follows. The first of them is the graphical user interface development by
using Qt Toolkit. The signal / slot model of Qt Toolkit implements the observer
design model. In Qt, the controls can send signals to other controls for notifications.
The signals contain the event information and the slots contain the functions for state
update as depicted by (Blanchette & Summerfield, 2008). The second section where
the observer pattern used is the Ogre3D rendering engine. Several observers are
registered to the corresponding subjects within the engine in order to receive

notifications upon state changes during the simulation and then act accordingly. For

44

instance, (Junker, 2006, p. 38) depicts that FrameListener is a way to notify the
application about the frame-started and frame-ended events during the simulation in

Ogre3D rendering engine.

3.2.3 Singleton Design Pattern

The singleton design pattern belongs to the class of creational patterns. It can be
thought as the implementation of mathematical concept of singleton in which a
singleton means a set with only one element. This is depicted at (Wikipedia, 2010b).
The term singleton has also correspondences in set-theoretic construction of natural
numbers, in axiomatic set theory and in topological constructions in mathematics as

mentioned by (Wikipedia, 2010c).

This pattern finds use when there is a need for only one instance of a certain class
and only one access to that instance. One might think that declaring a global variable
can satisfy this need, but as depicted by (Gamma, & et al., 1995, p. 127), although
object that is accessible is instantiated, declaring a global variable does not guarantee

preventing multiple object instantiations.

The class diagram of the pattern is given in figure 3.9 which can be found in
(Gamma, & et al., 1995, p. 127). In the figure, Singleton class defines Instance

operation and lets its clients to access its data.

Singleton
static Instance() O------- --- return uniquelnstance
SingletonOperation()

GetSingletonData()

static uniquelnstance
singletonData

Figure 3.9 Singleton design pattern class diagram (Gamma, &

etal., 1995, p. 127).

45

As an example, the rendering system of Ogre3D used throughout the thesis work
can be considered. The engine implements the rendering system using the singleton
design pattern, because there should be only one instance of the render system and

only one access point for the clients of that system.

3.2.4 Factory Method Design Pattern

The factory method design pattern belongs to the creational patterns class. It
defines an interface in a parent class for instantiating an object without defining its
class. The subclasses can override the creating function which is named as factory
method to define the class of object that will be instantiated. Therefore, not only a
common interface is established between different classes from which objects are
instantiated, but also flexibility is gained in application by delegating the subclasses
to take the responsibility of knowledge of object instantiation and freeing the parent
class from estimating which classes might be needed in the application for the future.
As a result, each new application developed using the participant classes of the
factory method design pattern can derive a class with different functionality when a
need occurs without breaking the common interface persistent in the application or in

the framework.

The class diagram of the factory method design pattern is given in figure 3.10
which is taken from (Gamma, & et al., 1995, p. 108). In the figure, Creator class
declares the factory method to instantiate an object from Product class. Product
declares the interface for objects instantiated by the factory method. ConcreteCreator
is the subclass of Creator class. It is responsible for the implementation of the

factory method to instantiate ConcreteProduct object.

46

Creator
FactoryMethod()
i anQOperation() @777 product=FactoryMethod()
roduc
ConcreteProduct [47~~~~7 ConcreteCreator
FactoryMethod() o-4----- return new ConcreteProduct

Figure 3.10 The factory method design pattern class diagram (Gamma, & et al., 1995, p. 108).

Many software frameworks are examples where the factory method design pattern
is used extensively. Ogre3D rendering engine widely uses this pattern to create
instances of abstract interfaces as depicted by (Junker, 2006, p. 38). For example,
Scene manager API of the engine acts as a factory for instantiating different objects

such as cameras and lights which is also mentioned by (Junker, 2006, p. 57).

3.2.5 Iterator Design Pattern

Iterator design pattern is one of the behavioral patterns. The pattern aims to access
the elements of an aggregate object without the need for the knowledge of the inner
structure of that object. An aggregate object is an object instantiated from a class
with no user constructor, no private or protected non-static data members, no parent
class and with no virtual functions. Two examples are lists and vectors. Detailed

explanation with an example can be found at (Wikipedia, 2010d).

In addition to accessing the elements of an aggregate object, in many cases, there
will be a need for traversing the elements in different directions or a need for

multiple traversals on the aggregate object. These tasks can be accomplished trivially

47

by encapsulating each different traversing algorithm in each of the aggregate classes.
The end result will be unwanted increase in the code size, difficulty in development
and maintenance of the software. Instead, the traversing algorithm can be decoupled
from the aggregate class and it can be put into an iterator. By this way, a need to
modify the aggregate class won’t exist any more and all different traversing
algorithms can be put into the iterator class as mentioned in (Gamma, & et al., 1995,

p. 258).

Polymorphic iteration is the key concept in this pattern that decouples the
aggregate object and the iterator. Therefore, the iterator does not have to know the
particular type of the aggregate object it is traversing. Hence a uniform and
transparent interface for traversing aggregate objects instantiated from different
classes is maintained. Therefore, the iterator class does not need to be modified when

a change occurs in the class of the aggregate object being traversed.

The class diagram of the iterator design pattern is given in figure 3.11 which is
taken from (Gamma, & et al., 1995, p. 258). In the figure, Iterator class declares an
interface for traversing elements. Concretelterator class not only implements the
interface that Iterator class declared but also knows the position in the current
traversal of the elements of aggregate object. Aggregate class declares an interface
for creating Iterator object. ConcreteAggregate class implements that interface in
order to create suitable Concretelterator object. One point should be considered here.
As seen in figure 3.11, the factory method pattern is used in the Aggregate class
hierarchy in order to create the appropriate Concretelterator object; Aggregate class
has no knowledge which Concretelterator object to create at compile time. That task
is passed to ConcreteAggregate class. ConcreteAggregate classes create suitable

Concretelterator objects at runtime.

48

Aggregate < Client » Iterator
First()
Createlterator() Next()
IsDone()
Currentltem()
ConcreteAggregate = |—cc oo oo mm oo -
Concretelterator

Createlterator() ? b

return new Concretelterator(this)

Figure 3.11 Iterator design pattern class diagram (Gamma, & et al., 1995, p. 258).

As an example, C++ Standard Template Library (STL) uses this pattern to access
and traverse the elements of objects instantiated from template classes such as vector,
map and list. C++ STL is widely used to keep track of the render objects and their
corresponding collision shapes in appropriate data structures like maps. The elements
of maps and other data structures implemented in C++ STL can easily be accessed
and traversed by appropriate iterators. Similarly, in Ogre3D engine, the elements of

the scene graph are manipulated and traversed using the appropriate iterators.

3.2.6 The Fagade Design Pattern

This pattern belongs to the class of structural design patterns. For the researches
interested in the word facade; the word is from the French Language in which it is
used to mean the exterior of building. This explanation will certainly make things
clear for understanding the pattern. The detailed explanation of the literal meaning
can be found at (Wikipedia, 2010e). The aim of the pattern is to provide a simple
interface enabling the client objects to access the subsystems of a complex system

thereby, abstracting the clients from the complexity of the subclasses. What a client

49

sees 1s just one simple interface that has the ability to get the full potential of the
subsystems. On the other hand, the subclasses in the system are unaware of the
facade object they are communicating with. Although this pattern simplifies the
development process, it may limit benefiting from the full potential of the subclasses;
because providing one simple interface to all subsystems may limit customizability
of the subsystems. Therefore, the pattern should have a second access point to the
subsystems for the clients wanting to customize and more functionalities to the

subsystems.

The class diagram of the facade pattern is given in figure 3.12 which is taken from
(Gamma, & et al., 1995, p. 187). In the figure, Facade class is responsible of
transmitting requests of the clients to the appropriate subsystem classes. Upon
receiving the request from the object instantiated from Facgade class, the subsystem

objects perform the related tasks.

The facade design pattern is used in Ogre3D rendering engine to implement Root
class. The client object can access the required functionality of the root object
instantiated from Root class. Therefore, a simple interface for the client is established
to use the various functions of the rendering engine. The detailed explanation of the

concept can be found at (Junker, 2006, p. 46).

Facade
subsystem classes

I :

A

Figure 3.12 Facade design pattern class diagram (Gamma, & et al., 1995, p. 187).

50

3.3 What is a Software Engine?

The visual rendering and physics rendering tasks of the virtual environments in
many simulation software are accomplished via independent set of functions in two
independent software assemblies aimed for a common task. These software

assemblies are named as graphics engine and physics engine respectively.

Considering the explanations in the previous sections of this chapter, the concept
of engine can be explained as follows. Engine in software is a collection of modules
that implement required data structures and algorithms and designed by benefiting
from the related software design patterns where necessary to accomplish a common
task. These tasks can be graphics rendering, physics rendering as well as video

processing and audio processing.

Figure 3.13 depicts the first real time graphics engine coded by means of getting
reference from (Seddon, 2005) for creating a 3-D virtual environment. This practical
study helped in understanding the composition of the software modules,
communication between the software modules and working principles of a simple

graphics engine.

Figure 3.13 A 3-D scene from the first real time graphics engine coded for in-depth study.

CHAPTER FOUR

GRAPHICS PROCESSING UNIT PROGRAMMING FOR GRAPHICS AND
GENERAL PURPOSE COMPUTING

Graphics processing units (GPUs) have undergone a rapid evolution period since
late 90s up to now. Today, GPUs are far beyond a simple hardwired 2-D rendering
control units. They evolved into programmable massively parallel computational
processors with their flexible architecture specialized for matrix and vector
calculations and with their own programming languages. This chapter serves as a
survey to understand the fundamentals in computation and to leverage the power of
modern GPUs. The development history of “the computation” and of GPUs, the
hardware architecture of modern GPUs, the benefits of parallelism, the use of GPUs
for graphics and general purpose computing, the need for high level programming
languages for GPUs and the related programming languages are briefly covered in

this chapter.

4.1 Short History of Computing Machines — From Antikythera Mechanism to
Today’s Massively Parallel GPUs

Accurate and fast computing has always been a need for humans since ancient
ages. The oldest computing machine discovered so far and named as the Antikythera
Mechanism belongs to Ancient Greek. It is thought to have been built at about 150 —
100 BC with the intent to calculate the cycles of the Solar System and astronomical
positions. With its complex mechanical gear structure, it is accepted as the first
known analog computer. Figure 4.1 depicts the main fragment and the 3-D rendering
of the machine. No sign of such technically complex computing machine was found
until the 14™ century when mechanical astronomical clocks appeared in Europe. An
astronomical clock invented by Al-Jazari in 1206 is considered to be the first
programmable computer as depicted by (Wikipedia, 2010f). For further details, the
researcher should refer to (Freeth, Jones, Steel, & Bitsakis, 2008), (Wikipedia,
2010g) and (Edmunds, 2010).

51

52

(a) (b)
Figure 4.1 (a) The main fragment of the Antikythera Mechanism (Wikipedia, 2010g). (b) The 3-D

rendering of the complete computing machine (Edmunds, 2010).

For the investigation of the roots of today’s powerful processors and
programming languages, a long jump is needed from the mid ages to the time of
Charles Babbage (26.12.1791 - 18.10.1871). Babbage was an English
mathematician, philosopher, inventor and mechanical engineer who originated the

concept of programmable computer (Wikipedia, 2010h).

The inspiration for his inventions was mostly due to the high error rate of
calculations performed by humans at that time. His intent was to mechanically
calculate mathematical tables to prevent the human errors. Towards this aim, he
began building a special purpose mechanical machine which he named as the
Difference Machine in 1822. The difference machine can automatically calculate
polynomial functions. As polynomial functions can also be used to approximate
trigonometric and logarithmic functions, the machine would find a very wide usage
area. The operation principle of the difference machine was based on Newton’s
divided differences. If the initial value of a polynomial (and of its finite differences)
is calculated by some means for some value of X, the difference engine can
calculate any number of nearby values using the method of finite differences
(Wikipedia, 2010i). Therefore there was no need for multiplication and division
during the computations. In addition to this technically complex machine, Babbage
also designed a printer for his difference engine that is highly complicated for the

19" century. The reconstruction of the difference engine is seen in figure 4.2 (a).

53

() (b)
Figure 4.2 (a) The fully operational Difference Engine at Computer History Museum in Mountain
View, CA. (Wikipedia, 20101). (b) A trial model of a part of the Analytical Engine at the Science
Museum, London (Wikipedia, 2010j).

In 1837, Babbage designed the first version of his second computing machine
named as the Analytical Engine. A trial model of a part of the Analytical Engine is
seen in figure 4.2 (b). This machine is the first mechanical general purpose computer.
The important point when compared to the Difference Engine which was a special
purpose machine was that the Analytical Engine was programmable via punched
cards. Ada Lovelace was the first mathematician and the first computer programmer
who first wrote a program to compute a sequence of Bernoulli Numbers for the
Analytical Engine. The Analytical Engine had several features such as sequential
control, conditional branching and looping in addition to mechanical units to
implement today’s memory units, arithmetical logical units (ALUs) for arithmetic
operations and comparisons and optionally for square roots calculations. The
complex instructions that the user’s program includes are computed by the ALU of
the machine which was a mill relying on its own internal procedures. The punched
cards on which the user’s program was written were of three different types aimed
for arithmetical operations, numerical constants and read write operations. These
punched cards were being inserted into their own readers on the machine. For more
information, the researcher should refer to (Wikipedia, 2010j). The language used by
the machine can be regarded as the origin of the today’s assembly language. As the
machine has support for conditional branching and memory read write operations,
the machine can be called as Turing complete in the context of Computability

Theory. More on this can be found at (Wikipedia, 2010k).

54

Analog computers were being used in the 20" century for the computations
regarding scientific problems. Those machines used mechanical or electrical model
of the scientific problem for computation. But important point was that, they were
not programmable and not accurate. Hence they can be considered as specific
purpose computing machines. One of the first steps in 1937 towards today’s digital
computing machines was a relay based calculator named Model K whose designer
was George Stibitz. It was the first model that used binary circuits to perform
arithmetic operations. The other important step was the programmability. The first
programmable, fully automatic computing machine was the electomechanical device
Zuse Z3 designed by Konrad Zuse. It performed binary arithmetic and floating point
arithmetic. It was a program controlled device that used punched cards. The picture
(a) of figure 4.3 shows Zuse Z3 replica. Following Zuse Z3, the non-programmable
Atanasoff Berry computer designed in 1941 was important for its vacuum tube based
computation, binary numbers and its regenerative capacitor memory that allowed a
feed back mechanism to be established for feeding back the stored elements into
computation. The period of World War Il witnessed many technical improvements in
programmability and hardware of computing machines. For breaking German secret
ciphers, the British Colossus computers were developed in 1943. The picture (b) of
figure 4.3 shows a Colossus rebuild. It had limited programmability capabilities, but
thousands of vacuum tubes in its architecture were reliable and electronically
reprogrammable. The Harvard Mark I computing machine developed in 1944 was
another important electromechanical device with limited programming capabilities.
ENIAC that was designed in 1946 at the U.S Army’s Ballistic Research Laboratory
was the first general purpose computer that would highlight the future designs. The
handicap of the device was its inflexible architecture and the need to change the
wiring to reprogram the device. The picture (a) of figure 4.4 shows the vacuum tubes

of ENIAC.

55

Figure 4.3 (a) Zuse Z3 replica at Deutsches Museum in Munich (Wikipedia, 20101). (b) A rebuilt
version of the Colossus (Wikipedia, 2010m).

i

HENED ew

¢ee HOTD

o= R PR PR RAT[RAY PRAY PR A PR PG Y FE

I';;?':ﬁ‘ = FRLLD R RA R I AUTTERATRRAT R =
= il 1
= = o ;-r::"L-L
I ——

4

iy & O 1 B

)

i dyig
LA

T

g

Ty
pee GoAGH

L B

===
-T-L

IO
T

Figure 4.4 (a) The vacuum tubes of ENIAC (Wikipedia, 2010n). (b) A die of Intel 80486DX2
microprocessor (Wikipedia, 2010f).

Up to now, it is seen that two important concepts in computing was
programmability and hardware architecture (application of electromechanics,

vacuum tubes, etc...) of the devices.

At this point the mathematical theories and ideas of two mathematicians gain
importance. Those mathematicians namely John Von Neumann and Alan Turing
were considered to be the fathers of computer science. The theoretical works of
Neumann and Turing should be definitely studied by anyone scientifically interested
in computer science and mathematics. Those details will not be covered here as they

are out of the scope of the thesis research.

56

The inflexible architecture and the need for rewiring for programming were
potential problems of ENIAC. The solution was John Von Neumann architecture
which was a model for stored program architecture. Stored program architecture
refers to a computing machine that has built-in instruction set and to a memory to
write and read the program and the data for the computations. The theory and
technical details of this architecture can be found in (Neumann, 1945). Although the
semiconductor technology that is the base of computers has advanced from 1940s up
to now, the architecture of most computers used today is exactly the von Neumann
architecture or modified version of the von Neumann architecture. A die of Intel
80486DX2 which can be considered as an advanced semiconducter technology for
1990s is seen in the picture (b) of figure 4.4. In von Neumann architecture, the
instructions and data are stored in the same memory unit that can be read and written.
This is in contrast to Harvard architecture where the instructions and data are stored
in seperate memory units. In fact, Alan Turing had previously described the stored
program concept. At this point, his paper (Turing, 1936) is an important resource for
the researcher. In that paper, he describes a hypothetical machine with an infinite
memory in which both instructions and data are stored. In the literature, this
hypothetical machine is called as Universal Turing Machine. In 1946, both Alan
Turing’s Automatic Computing Machine (ACE) and the other computing machine
EDVAC in which John Von Neumann participated in its development process, used

the stored program concept in their designs.

In addition to flexible programmability, error free programming is an important
concept for computing machines. In the early days, the programs were being written
directly in machine code in which each instruction was represented with an unique
number namely with its opcode. Although this technique was used in early
computing machines, it had high error probability especially as the complexity of the
programs evolved. The next programming technique was to write the program in the
computing machine’s assembly language in which each instruction was given a short
name identifying its function. For complex programs, assembly language was also

error prone. Together with the machine language, assembly language were low level

57

programming languages targeted for a specific machine. What if someone wanted to

port a program developed for a specific machine to another one?

At that point, high level languages and specific design patterns gained importance
as a solution. High level languages like C, Fortran, C++ or Java abstract the
programmer from the hardware details of the computing machine, hence the
programmer could focus on the main problem to be solved. Additionally, the
developments in high level languages were more error free and portable across
different computing platforms. The history, technical details and related links of the
preceeding paragraphs can be found in (Turing, 1936), (Neumann, 1945),
(Wikipedia, 2010h), (Wikipedia, 2010f) and (Wikipedia, 2010k).

A reader might think that the preceeding paragraphs might be long for a scientific
history of computing machines. But when inspected, beginning from 1970s until
today it can be seen that the evolution of graphics processing units (GPUs) has
correspondances more or less with the evolution of modern computing machines that

are central processing units with appropriate peripheral units.

The evolution of special purpose processors for graphics began with ANTIC and
CTIA chips produced for hardware control of mixed graphics and text modes on
Atari 8-bit computers in 1970s. In 1984, IBM released its first 2-D/3-D graphics
accelerator namely IBM Professional Graphics Controller (PGC) as seen in figure
3.5 which is taken from (Elliot, 2010). Technical details of PGC can be found in
(Wikipedia, 20100). IBM 8514 video card was one of the pioneers that implement
2-D primitives in hardware. At this time, Commodore Amiga has its own full
graphics accelerator and graphics coprocessor with its own primitive set that offloads
all video generation functions to hardware. Prior to this, those tasks were being

handled by central processing unit (CPU).

58

Back PCB
Processor 4-bit DAG

CGA emulator jumper

Front PCB

Middle PCB (CGA emulator)
Character ROM

Figure 4.5 Three layers of IBM’s first 2-D/3-D accelerator PGC released in 1984 (Elliot, 2010).

Beginning from 1990s, OpenGL and Microsoft DirectX became the horsepower
of hardware development. OpenGL had both software and hardware
implementations. The detailed development history can be found at (Wikipedia,
2010s) and (Fernando & Kilgard, 2003, chap. 1). Up to late 1990s, the GPUs in this
period were capable of rasterizing pre-transformed triangles and one of two textures.
GPUs were performing pixel updates instead of central processing units (CPUs). But
on the other hand, they lack of adequate set of math operations for computing
rasterized pixel color. Additionally, CPUs were still performing vertex

transformations.

At the end of 1990s, both vertex transformations and lighting has begun to be
done by GPUs instead of CPUs. OpenGL and Microsoft DirectX supported hardware
vertex transformation. The hardware in this period were configurable rather than
programmable. As in the mid 1990s, although the set of mathematical operations that
the GPUs support in hardware improved, they were not adequate for complex texture

and pixel color operations.

59

By the early 2000s, GPUs began to support vertex programmability. This was an
important step, because rather than using only the predefined OpenGL or Microsoft
DirectX transformation and lighting techniques, from there on, the developers would
be able to define a program for transforming the vertices according to their needs. On
the other hand, pixel programmability was still impossible. Only OpenGL and

Microsoft DirectX were supporting their pre-defined pixel level configurability.

Towards the mid 2000s, GPUs were supporting not only vertex programmability
but also pixel programmability. Therefore, CPUs completely released vertex
transformation and pixel shading operations to GPUs. In addition to this, both
OpenGL and Microsoft DirectX began to support vertex-level and pixel-level

programmability.

4.2 Shaders

At this point an important technical term gains importance that is “shader”.
Shaders are set of instructions that is used to program the programmable pipeline of
the GPU. Technical details can be found in (Mdller, & et al., 2008, chap. 2, chap. 3),
and (Wikipedia, 2010p). There are three types of shader.

Vertex shaders are run for each vertex that is transferred to the GPU. The
developer can code a vertex shader for transforming the vertices according to the
needs. No topology change that is addition or removal of a vertex can be done in this
stage. The output of the vertex shader is either transferred to the rasterizer or if exists
to the geometry shader along the graphics pipeline of the GPU. Geometry shaders
can perform a topology change. Geometry shaders are set of instructions that are
used to generate geometry or add volumetric details to the existing geometry that will
be too costly if done on the CPU. The output of a geometry shader is transferred to
the rasterizer along the graphics pipeline. Finally, fragment shaders (pixel shaders
can be used interchangebaly although not appropriate) are set of instructions that are
used to calculate the color of each pixel. The input to the fragment shaders are from

the rasterizer. The rasterization stage uses the vector graphics that are polygons to

60

generate a raster image that are composed of pixels to be displayed on a display.
Fragment shaders are used for lighting, several graphics effects like bump mapping
and for other application specific transformations for pixel color. As it is seen
developer can develop necessary programs for appropriate shaders for each pixel that

will be seen on the screen.

4.3 Fixed Function Graphics Pipeline and Programmable Graphics Pipeline

Architecture in Detail

Geometry shaders will be shown partly connected in the figures of this section as
geometry shaders were not used in the shader models prior to Shader Model 4.0 as
depicted in (Moller, & et al., 2008 p. 41). The fixed function graphics pipeline is

seen in figure 4.6.

In figure 4.6, the 3-D application layer can be a simulation, a game or etc... using
OpenGL API or Microsoft Direct3D API high level instructions to process the scene.
These APIs decompose complex meshes into triangle primitives and then send
necessary low level instructions along with the data stream to the GPU via the
communication bus between CPU and GPU. In the GPU front end, the vertices are
transformed into a common coordinate system for further transformations and
lighting. Only affine transformation is performed in this stage in order not to twist
triangles into curled shapes. At the vertex transformation stage, other necessary
geometric transformations are done and the vertices are transformed into the screen
coordinate space for the rasterizer. Texture coordinates and vertex lighting are also
completed in this stage for texturing and vertex color calculation respectively. The
output of the vertex transformation stage is input to the primitive assembly stage
along with the vertex indices for generating triangles, lines or points. These

primitives are input to the rasterization stage.

In the rasterizer, the primitives are either clipped to the view frustrum or
application defined clipping volume. This process is called as clipping. View

frustrum is a pyramid that is cut beneath its apex by a near clip plane and a far clip

61

plane forming its base. View frustrum represents the 3-D scene that the camera in
other words the viewer observes at a particular time. It can be configured by field of
view angles. Additionally, the rasterizer may discard primitives according to their
face orientation that is either front face, back face or none of the faces are discarded.
This called culling. Clipping and culling is important for reducing the number of
primitives that will be transferred to the later stages in the pipeline in order to

decrease the work load of the following stages.

AGP or PCle bus for
. CPU-GPU communication
Microsoft GPU instruction
3-D AP1 |Direct3D API or d GPU front end for
instructions | OpenGL API: dataa:tream ModelView
3-D Application —— complex mesh transform: Affine
layer — topologies are transform vertices tc
decomposed a common coordinate
into triangles, system
etc...
Pre-transformed
Green blocks is fully programmable in vertices in a common
- 5w coordinate system
programmable graphics pipeline, yellow
blocks are configurable by the application
both in fixed and programmable pipelines. vertex
transformation: v
Transformation | &
and lighting &
Transformed é
Geometry shaders were vertices in the screen S
not used prior to Shader coordinate system.
Model 4.0 viewer at origin
directed to +Z direction
Fragment Fragments Rasterization
texturing and and Primitive
colouring interpolation Assembly

Assembled primitives:
Triangles, lines, points

Textured and coloured
fragments

Raster Pixel positions

operations

Pixel updates

Screen. disk.
etc...

Frame buffer

Raster image for
display

DSUR 15 screen connection
or communication bus

Figure 4.6 Fixed function graphics pipeline.

The rasterization stage calculates the pixels in the screen that is covered by the

primitive and the fragments needed to update the pixel locations. Fragments

62

generated in this stage are used for pixel update decision. Consider that the pixel p,

is in the rasterizer output set W and the rasterizer input set is V in which a

geometric primitive vertices are contained. Then;

)] 1 ,if point
‘v’pieW,VvieV,pi=Zafnvn 9Za/n=1,0{n 20 wherek =<2 ,if line
" " 3 ,if triangle

The fragment texturing and final colour calculation task is performed in the
fragment colouring and texturing stage. A depth value may be defined, the fragment
value may conditionally be discarded or not. The output of this stage is one or zero
coloured fragments for each of the input fragment. These output fragments are
processed by raster operations that are shown in figure 4.7. These operations are

common both in Microsoft Direct3D and OpenGL APIs.

Fragments from
rasterizer

<

Raster operations

Pixel ownership

Depth test K}:‘ Stencil test ‘

Depth Stencil
buffer buffer

Blending dq Logic Operations
% L
Frame
buffer

Figure 4.7 Raster operations in detail.

63

Raster operations stage is the last stage prior to updating the pixel value in the
frame buffer. As depicted in (Luebke & Humphreys, 2007), many rasterization
algorithms have been developed for this stage. All of these algorithms utilize one
common observation that is each pixel can be processed independently from the
others in parallel. This observation has resulted in development of massively parallel
pipeline architectures in GPUs. Pixel ownership identifies whether the pixel is
obscured by an overlapping window. Scissor test clips the fragments defined by the
application. Alpha test discards the fragment based on its alpha value. Stencil test
discards the fragment based on the comparison between the value in the stencil
buffer and the reference value. Stencil buffer is composed of non-displayable bit
planes that provides stencil value for every pixel. Stencil test provides extra
rendering control by logical operations. Depth test discards the fragment by
comparing its depth value with the corresponding depth value in the depth buffer.
The depth buffer stores floating point depth values for every pixel that will be
rendered. Stencil test together with depth test is used in many fundemental computer
graphics techniques such as shadowing and reflections. For details in stenciling refer
to (Kilgard, 1999). Blending combines the final colour of the fragment with

corresponding pixel value.

Dithering is the means of noise addition to the signal to reduce the quantization
errors that occurs due to the analog digital conversion of continuous data, as the
resultant digitized data is just the representation with limited bits of the analog data.
Similarly in computer graphics, dithering is a technique to create an effect of color
depth more than actual limited colors due to the colors represented with limited
number of bits i.e. 2 bits, 4 bits. The detailed examples can be found at (Wikipedia,
2010r).

At the end of the rasterizer stage, application defined logical operations are
performend, and according to the cumulative result of the rasterizer stage, a write to

the frame buffer is performed.

64

In years, GPUs evolved from fixed function graphics pipeline into fully

programmable computational units. Figure 4.8 shows the programmable graphics

pipeline.
AGP or PCle bus for
. CPU-GPU communication
AAGCHDH GPU instruction
1D API Direct3D API or and GPU front end for
o OpenGL API ModelView
3-D Application |_instructions | complex mesh data stream transform Affine
layer E— topologies are transform vertices tc
decomposed a common coordinate
into triangles, system
etc...
Pre-transformed
vertices in a common
Geometry shaders were coordinate system
not used prior to Shader
Model 4 0

Programmable
vertex processor

Textured and coloured
fragments Transformed vertices

Vertex indices

Raster L according to the
operations fragment developer’s vertex
REOCESSOT shader executed on the
programmable vertex
Fragments processor
Rasterization Programmable
and 1 Primitive <: geometry
interpolation Assembled| Assembly processor

primitives Changed topology
Pixel positions Triangles, according to the
lines, points developer’s geometry

shader executed on the
programmable

geometry processor
Pixel updates

DSUB 15 screen connection
or communication bus

Vertex indices

Raster image for
display

Screen, disk.,
etc...

Frame buffer

Figure 4.8 Programmable graphics pipeline.

In the programmable graphics pipeline, vertex processor, geometry processor and
fragment processor are fully programmable by the application developer. The first
task in the vertex processor is to load vertex specific data such as position, texture
coordinates, color, and etc... to the vertex processor. Then, the next instruction in the
vertex shader is fetched continuously until the vertex shader terminates. There are

three types of registers that the vertex processor uses. The vertex attribute registers

65

contain position, normal and colour vector values which are read only and defined by
the application. The temporary registers are for intermediate computation and they
can be read from or written to. The write only output registers are used for output
results for the transformed vertices and written by the vertex processor. This data is
either sent to the geometry processor or to the rasterizer along the pipeline. The
fragment processor perform texturing tasks in addition to the ability of performing
the math operations that the vertex processor has. The fragment processor can access
to a texture image by using texture coordinates and return a filtered sample of a
texture image. The fragment shader has instructions to fetch textures. The key point
for performance at this point is to use the lowest machine precision that is adequate
for the application, because fragment shaders are executed until the shaders terminate
for each fragment received. The read only input registers of the fragment processors
contain the interpolated per fragment parameters derived from the per vertex
parameters of the fragments primitive as depicted in (Fernando & Kilgard, 2003, p.
20). The temporary registers can be read from and written to for intermadiate
computations. The resultant color and depth value for each fragment are written to

the write only output registers of the fragment processor.

For further details, the researcher may refer to (Fernando & Kilgard, 2003,
chap. 1), (Mboller, & et al., 2008, chap. 2, chap. 3) and (Kirk & Hwu, 2010, chap. 1,
chap. 2).

4.4 Unified Shader Architecture

The evolution of GPUs from a fixed pipeline to a programmable pipeline is an
important technical process on its own. But another important technical development
is “the unified shader model”. This model is also known as “Shader Model 4.0”. The
first hardware examples for this architecture were ATI Xenos chip for Xbox 360 and
NVIDIA 8800 chip for PCs. The unified shader architecture of NVIDIA 8800 is

shown in figure 4.9.

66

primitives

3-D geometric

Programmable unified processor

Geometry
programs

4 Tap st

Vertex programs Fragment programs | | Compute programs

L
Graphics Rasterization Hidden surlface
processing remova
unit
GPU Memory (Image or data of general purpose computation is stored)

Figure 4.9 One of the first unified shader architectures belonging to NVIDIA 8800 (Inspired from
Luebke & Humphreys, 2007, p. 4).

Geometry shader was not part of the hardware accelerated graphics pipeline prior
to Shader Model 4.0 as depicted by (Mdller, & et al., 2008, p. 41). Instead of seperate
custom processors for vertex, geometry and pixel shaders, a unified shader
architecture provides one large grid of data-parallel floating point processors general
enough to run all these shader workloads (Luebke & Humphreys, 2007). This model
uses almost the same instruction set for developing vertex, geometry or fragment
shaders. During the task processing vertices, triangles and pixels pass through a set
of programmable processors. The architecture that uses unified shader model is
named as “the unified shader architecture”. This architecture is more flexible than the
previous ones, because during the runtime of the application, the need for different
types of shader processors continuously varies. For example, at one time the
application may need vertex processors’ computation power more than that of
geometry or fragment processors for generating a detailed scene with millions of
vertices. In that case, geometry processors and fragment processors can be used as
vertex processors. Otherwise, they would wait idle for the vertex processors to

complete the task resulting in delayed task completition. Reversely, the application

67

may need a topology processing or pixel processing power for lighting or image
processing more than others. Again for that case, the idle shader processors can be
used for the geometry or fragment shaders respectively. As a result, in this
architecture a necessary amount of processors in the processor pool can be assigned
to the appropriate shader to balance the load. For further details, the researcher may

refer to (Kirk & Hwu, 2010, chap. 2).

4.5 The Need for High Level Programming Languages for Computer
Graphics-Cg HLSL and GLSL

As a result of evolution in the programmability of GPU hardware, developers felt
a need for a programming language that will increase efficiency in development. As
in the case of history of CPU development, the assembly language was the initial
choice. Although assembly language enabled the programmers to use the GPU and
its registers as they wanted, the code development process became error prone
especially for long codes. The assembly code was not portable across different GPU
platforms and the learning curve of the several GPU assembly languages slowed

down the code development process severely.

The next step in developing codes for programmable graphics pipelines was the
high level languages that were portable, easy to learn and less error prone.
Additionally, these languages enabled the developer to focus on the problem at hand
not on the hardware layer. Today three high level programming languages for
programming the graphics pipeline for graphics dominated the world. These are Cg —
C for Graphics - a cross platform language which can be executed with Microsoft
Direct3D or OpenGL, HLSL — High Level Shading Language - from Microsoft
which needs Microsoft DirectX and hence Microsoft Windows to execute and GLSL
— OpenGL Shading Language - from OpenGL which needs OpenGL to execute. All
of them are C like language with some restrictions and some semantic differences
that allow the developer to program the vertex processors and fragment processors in
the programmable graphics pipeline of the GPU. Cg and HLSL are nearly similar in

programming perspectives as NVIDIA and Microsoft worked together during the

68

language development phase for common standards. For programming details in Cg,
HLSL and GLSL the researcher should refer to (Fernando & Kilgard, 2003) for Cg,
(Engel, 2004a), (Engel, 2004b) for HLSL and (Rost & Kane, 2010) for GLSL
respectively. The researcher interested in development in assembly language for

GPUs should refer to (Leiterman, 2004).

In the implementation case, Cg code cannot be used directly by a GPU. The code
should be converted to the target machine code. The Cg compiler compiles the code
that can be accepted by either Microsoft Direct3D or OpenGL API based on the
choice of the developer. The API translation of the code is passed to the GPU via
Microsoft Direct3D or OpenGL commands. Finally, Microsoft Direct3D or OpenGL
driver produces the machine code that is accepted by the target GPU. These
procedures are handled by the real time graphics engine Ogre3D that is used

throughout the thesis work.

During the thesis work, Cg was mainly used for programming vertex and
fragment processors for bump mapping with parallax offset. This texturing method
and its modified schemes were used to texture wireframe models in the virtual
environment. HLSL was used for a special lighting effect namely for light shafts
implementation. Implementation of these graphics processing tasks in GPU released

CPU for handling simulation logic, physical rendering and collision detection tasks.

Prior to implementation in the actual simulation, theoretical and practical study
period for understanding general programming aspects of Cg and HLSL had been

evaluated. The results are given in figures 9.23 — 9.25.

4.6 NVIDIA Compute Unified Device Architecture - CUDA and General

Purpose Computing

As the evolution of GPUs continued towards unified processor architectures, they
became more like parallel computation units. Therefore, researchers wanted to

exploit the usage of these systems in performance sensitive scientific and engineering

69

applications. Initially, the graphics APIs were just capable of executing graphics
related calls. The problem at hand should be cast in terms of these calls within a pixel
shader. The input data for the computation was being stored as a texture and sent to
the GPU by submitting triangles. Furthermore, the restrictive memory interface of
the GPUs and limited read and write abilities made the storage of the computation
results in the frame buffer much more difficult. The attempts for overcoming these
technical difficulties resulted in General-purpose computing on graphics processing
units (GPGPU). For details, the researcher should refer to (GPGPU.org, 2010). In
spite of its technical problems, the researchers in several institutions developed
successful applications. Stanford University’s folding@home project relies on GPU
based computations to study protein folding by using the spare cycles of the
computers of the users that donate to the project. The researchers at University of

North Carolina and Microsoft won a competition on sorting a database.

By the time, NVIDIA was designing a floating point and integer processor that
could run tasks in parallel for Microsoft DirectX 10. The shader processors became
fully programmable with increased instruction memory, cache and sequencing logic
where each shader processor share its instruction cache and sequencing logic with
others. In addition to this hardware, memory load and store instructions were added
with the support of random byte addressing for compiled C programs. As a result, for
non graphics applications, this GPU architecture was a generic programming model
with a hierarchy of parallel thread, barrier synchronization and atomic operations to
dispatch and manage parallel work load. At this point the development of CUDA C
compiler (a support for C++ exist in newer versions of CUDA API for object
oriented programming), libraries and runtime enabled the program developers to use
this new hardware architecture. The main point was that, the application developers
were no longer needed to use graphics API such as Microsoft Direct3D or OpenGL

to access the GPU hardware for general purpose programming.

Similarly, ATI developed ATI Stream for general purpose computation on its
GPUs. An open source API named as OpenCL exists for the same general computing

purposes on both NVIDIA and ATI GPUs. But OpenCL is still under development.

70

CUDA enables the GPU to be accessed like a general purposes CPU. The
application developer can access the virtual instruction set and memory units of
parallel computation elements in the architecture. In a typical heterogeneous
computing environment where CPU and GPU exists simultaneously; CPU is
typically called as a host and GPU is called as a device. The function that will be
executed in parallel is called kernel. The threads are contained in thread blocks
which can be one, two or three dimensional. In a same way, thread blocks form a
grid. This hierarchy is shown in figure 4.10 and figure 4.11 inspired from (NVIDIA,
2009a, p. 10, p. 11). The host executes the sequential code; on the other hand, the
device executes the parallel portion of the computation. The device code is compiled
by NVIDIA C Compiler nvce which can be integrated into several development
environments such as Microsoft Visual Studio 2005, therefore both the host code
(Microsoft Visual C++ compiler for this particular case) and the device code can be
compiled in a batch. The researcher who isn’t convenient with multithreading and

multiprocessing concepts should refer to (Deitel, H., Deitel, P., & Choffnes, 2004).

Block (1, 1)

Block (1, 1)
Thread (0, 0) Thread (1, 0)

o 16

Thread (0, 1) Thread (1, 1)

o 16

Figure 4.10 Threads inside of a thread block.

71

Thread

4——p Per-thread local memory

Thread block ———— P
>
é <' <' <' I I Per-block shared memory

Block (. 0) Block (1. 0) Block (2. 0)

Global memory

Block (0, 0) Block (1, 0)

Block (G, 2) Block (1. 2)

iy

Figure 4.11 Memory hierarchy of NVIDIA CUDA.

The following characteristics are valid for the time this thesis was being written.
Any frame memory area can be read from or written to. Threads can share a fast
shared memory region and high bandwidth communication is possible. Reads and
writes by GPU is faster. Integer and bitwise operations, integer texture looks up are

faster. The language for the device code is in fact ANSI C with no recursion and no

72

"= 4883.8 MyT

Magnet sectors

(b)

o
— single |

e double

=0 N=05x10%]

GPU :21s

0 1000 2000 0 00025 0005
t P(a;t = 2500)

—150

(e) ®
Figure 4.12 Applications using NVIDIA CUDA. (a) Simulation of approaching two galaxies with
260k particles for an initial interaction. (b) Calculation of beam dynamics of a cyclotron. (c)
Numerical solution of stochastic differential equation for modeling the noisy dynamics of phase
in Josephson junction. (d) Simulating brain vision and olfactory circuit. (¢) Simulation of Nal

solution molecular dynamics. (f) Level set segmentation with MRI.

function pointers but with addition of special keywords. The support for C++ is
available in Fermi GPUs. Thousands of threads can run simultaneously in total but
they should be in groups of at least 32 for optimized performance. Texture rendering

is not supported. Double precision data is supported for NVIDIA GTX 260 and

73

newer GPUs. The bandwidth and latency between GPU and CPU is a disadvantage.
CUDA is available only for NVIDIA GPUs such as NVIDIA GeForce 8 and up,
Quadro and Tesla; on the other hand OpenCL can be used by many GPUs from

different vendors.

A simple example of matrix multiplication will give an insight of usefulness of

GPUs. Consider two matrices A,,, and B, ,. In a sequential matrix multiplication
code executed on a CPU, the complexity of the algorithm will be O(MNP) , whereas

if that multiplication is executed parallel on a GPU, each row-column multiplications
will be completed at once in parallel. There are many more uses of computing based
on GPUs in science and engineering. In figure 4.12, some examples from several
research communities and academia are given. For the practices done regarding

NVIDIA CUDA during the thesis period, refer to figure 9.26.

Considering figure 4.12, the top left research is from (Groen, Harfst, & Zwart,
2009); top right research is from (Perepelkin, Smirnov, & Vorozhtsov, 2009) and
represents the calculation of beam dynamics of a cyclotron on two different
platforms. With 1000000 particles, the computations take 2 days 4 hours and 25
minutes on a 2.5GHz CPU and the same computations take just 34 minutes and 29
seconds on NVIDIA Tesla C1060 GPU. The middle left research represents a
numerical calculation of stochastic differential equation and a 675 times faster
calculation with NVIDIA TESLA 1060C than a CPU is indicated in (JanuszewsKi,
Kostur, 2009). The middle right research represents brain circuitry, vision and
olfactory sensory computing with GPU in which the computations are executed with
130 times faster than CPU taken form (Kirk, n.d.). The bottom left research is a
molecular dynamics research with Nal solution from (Davis, Ozsoy, Patel, & Taufer,
2009) indicating 7 times speed up with GPU computing over CPU computing. The
bottom right research from (Roberts, Packer, Sousa, & Mitchell, 2010) represents the
level set segmentation of 256° MRI data with GPU. GPU provides 14 times speed up
with GPU computing over CPU computing.

74

This evolution of GPUs will continue in the future, perhaps faster than the
evolution of CPUs. GPUs have many more transistors than CPUs dedicated for
computations, more streaming bandwidth for data transfer and many more processing
units than CPUs. Figure 4.13 taken from (Kirk & Hwu, 2010, chap. 1, p. 3) depicts a
comparison of floating point operations per second between CPUs and GPUs from

year 2001 to 2009.

1200 . -
AMD (GPU)
NVIDIA (GPU)
1000 | #= |ntel (CPU)
800k Many-core GPL .']
(]
S
9 BO0
L
[] _—
400} .
200+ 7 Multicore CPU 7

. !.— - [_)\.L‘Jal—c_-:: e uad-core

2001 2002 2003 2004 2005 2008 2007 2008 2009
Year Courtesy: John Owens

Figure 4.13 Floating point operations per second for INTEL CPU, NVIDIA GPU
and ATI GPU. (Kirk & Hwu, 2010, p.3).

Although a 64 bit INTEL Core 17 980X has a memory bandwidth of 25.6 GB/sec
(INTEL, 2010), NVIDIA GTX 295 has 223.8 GB/sec (NVIDIA, 2010) with 896 bit
memory interface width. Although today’s modern CPUs such as INTEL Q9550 and
Core i7 CPUs have 4 to 6 computation cores respectively, modern GPUs such as
NVIDIA GeForce GTX 295 have 480 computation cores in their architecture. This is
because, over the history of their development CPUs have evolved to decrease the
latency between the memory unit and the CPU (the researcher should notice the
connection with the von Neumann architecture mentioned previously) and for
executing sequential programs faster, but on the other hand GPUs have evolved for
massive vector and matrix operations done in parallel by thousands of threads which
is impossible even for the most high end CPU today. This parallelism and data

processing capacity make them very suitable not only for computation power

75

demanding visualization applications but also for scientific and general purpose

computation.

The researcher should refer to (Moller, Haines, & Hoffman, 2008), (Fernando &
Kilgard, 2003), (Rost, Kane, Ginsburg, Kessenich, Lichtenbelt, Malan, & Weiblen,
2010), (Kirk & Hwu, 2010), (Fernando, 2004), (Pharr & Fernando, 2005), (Nguyen,
2007) and (NVIDIA, 2009a) for further details in real time computer graphics,
GPUs, available programming languages, general purpose programming and

scientific computation on GPUs and NVIDIA CUDA.

CHAPTER FIVE

ESSENTIALS OF REAL TIME GRAPHICS RENDERING

One of the two important modules of 3-D immersive virtual environment is the
graphics engine. Several visual rendering tasks such as lighting, shadowing, fogging,
texturing of visual synthetic objects, image based effects such as billboarding,
skyboxes, volume rendering, non-photo realistic rendering, etc... and affine
transformations of visuals are accomplished via graphics engine. Additionally,
graphics engines handle curve and surface rendering and processing tasks in 2-D and
3-D. Each graphics rendering engine uses a tree data structure to keep visuals and
rendering functions in a logically and spatially consistent hierarchy. This is already

mentioned in chapter three.

In this chapter, the fundamental rendering techniques implemented, and other
graphics rendering techniques that are implemented targeting the graphics processing
unit (NVIDIA GTX 295 GPU) with programmable graphics pipeline will be given.
One of these techniques regarding lighting is named as “Light Shafts”. The vertex
shaders and fragment shaders for this technique is implemented in Microsoft HLSL
shading language. The other technique regarding the texturing of 3-D objects is
named as “Bump Mapping with Parallax Offset”. The vertex shaders and fragment
shaders for this texturing technique are implemented in NVIDIA Cg shading
language. Several experimental code studies for lighting, transformations, animation,
etc... with NVIDIA Cg can be found in figures 9.23 — 9.25. Therefore the usage of
vertex processors and fragment processors of the programmable graphics pipeline of
the GPU offloaded CPU from these computationally demanding tasks. As it will be
seen in chapter six, CPU mainly deals with the physics simulation tasks throughout
the thesis work. This chapter will present brief information on a well known “Gimbal
Lock Problem”. Finally, a hand rigging and skinning accomplished in the thesis work

for the interaction of the user with the visual object will be presented.

76

77

5.1 Transformations, Lines, Surfaces and Rendering Techniques in Computer

Graphics

Transformations, lines and surfaces are the basic building blocks of computer
graphics. The mathematical details of the subjects are partly given in chapter five.
For more mathematical coverage regarding graphics can be found at (Moller, & et
al., 2008). In the context of the thesis work, during the absence of the necessary
laboratory equipment, a stand alone application was developed targeting the creation
of several line and surface types such as Coons surface, BSpline surface, etc... and
performing transformations on these primitives without any use of graphics library.
The aim was to understand and implement the mathematics underneath. Furthermore,
it is known that the implemented surfaces in this application have a well known
usage in modeling soft tissues and objects. The researcher should refer to figure 9.16

for the implementation results.

Prior to developing the software, it would be wise to practice on fundamental
graphics rendering techniques regarding lighting, texturing, environment mapping
and occlusions. Maintaining a solid working background on these topics would save
time when problems occur in the actual software. Besides we would have a chance to
observe which techniques would be usable for us in the actual software development
process. For practicing rendering techniques, OpenGL is used. A well coverage of
topics can be found in (Moller, & et al., 2008) and (Wright, Lipchak, & Haemel,

2007). The researcher should refer to figure 9.17 for the implementation results.

5.2 Gimbal Lock Problem — Rotation via Euler Angles and Quaternions

In computer graphics, engineering and mathematics, rotations can be represented
by three forms. Briefly these representations are matrix representation, Euler angles
and quaternions. Each representation has its own advantages and disadvantages. The
researcher can refer to (Moller, & et al.,, 2008), (Bergen, 2004) and (Dunn &
Parberry, 2002) for detailed coverage. What we want to mention in this section is the

well known gimbal lock problem that occur with rotations via Euler Angles.

78

The problem occurred in the software development period when a 3-D virtual
object was tried to be oriented in the virtual world coordinate system by using the
Euler angles acquired from the motion tracking device. The technical details of the
motion tracking device can be found in chapter eight. Although a calibration
procedure of the motion tracking device had been done, the rapid rotations and
movements of the virtual object could not be avoided at certain orientations. The
technical and mathematical description of the gimbal lock problem that occurred can

be given as follows referencing from (Wikipedia, 2010t).

Gimbals are a ring like structures that are constrained to rotate only about one
axis. They are places one in another to define rotations about multiple axes. For
example, inertial navigation systems are common devices where gimbals are used. In
these systems, while the inner gimbal is constrained to be fixed, the outer gimbal
rotates about an axis. A set of three gimbals defining the orientation of the arrow is
given in figure 5.1 (a) with no gimbal lock problem. For some coordinate systems, it
seems suitable to assume that there exist gimbals coincident with the coordinate axes.
Therefore using the FEuler angles seems feasible both mathematically and
programmatically. This assumption is valid if and only if the Euler angles are

constrained to an interval.

() (b)
Figure 5.1 (a) Three independent gimbal set with no gimbal lock problem. (b) When the arrow
pitched up 90 degrees, one degree of freedom is lost, yaw axis cannot be controlled. Yaw and roll

axes are dependent resulting in a gimbal lock problem.

79

Mathematically, the reason is that there exists no covering map from Euler angles
to rotations (topologically mapping from a torus to a 3 dimensional real projective
space). Therefore, at some points the rank of the system decreases from 3 to 2.
Hence, Euler angles cannot provide a unique representation at those points. The only
possible solution is to use quaternion representation (topologically mapping from a
sphere to 3 dimensional real projective space). Gimbal lock is exemplified in

configuration of figure 5.2 (b).

Quaternions are 4-D vectors (w, X, y, z) that can be used to represent rotations if

w+x*+y*+z>=1. (x,y,z)is a 3-D complex vector and represents an arbitrary

axis of rotation. w is a real number that represents the angle of rotation. Therefore,
in contrast to Euler angles which are made of three successive rotations, a quaternion
represents a single rotation around an arbitrary axis. Hence a rotation @ around a

normalized axis (x,, y,,z,) is represented as follows in quaternion notation.

0 . (@ . (0 . (0
(008[5} X, s1n(5j, Yo sm(gj, 2, SIH(ED (5.1)

Besides their use in rotations, quaternions are used for the interpolation between
two orientations instead of Euler angles. During the thesis work, quaternions are used

both for rotations and interpolations between two orientations.
5.3 Lighting and Implementation of Light Shafts

Lighting is an important factor in creating natural 3-D virtual environments. Point
lights, directional lights and spotlights are the three important lighting types that can
be used depending on the needs. But none of these simulate how the light scatters
according to the environment it passes through. On the other hand, in a real
environment, light scatters and forms shafts while passing through an environment
with some particles. This effect in real world is shown in figure 5.2 which is taken

from (Smith, 2004).

80

Figure 5.2 Light shafts in a real scene resulting from sun rays partly occluded with clouds (Smith,

2004).

In our 3-D virtual environment, the light rays from medical operation light were
modeled as if the rays were forming shafts because of the scattering. This light shaft
implementation was also used to highlight the anatomical parts that were touched by
the user hand in order to focus attention. Our mathematical, algorithmic reference for
the implementation was (Mitchell, 2004). The implementation results can be seen in

figures 9.4(c) — (d), 9.8 (a), 9.9 (a) and 9.11 (a)-(b).

5.4 Texturing and Implementation of Bump Mapping with Parallax Offset

Bump mapping is another lighting technique that combines per-fragment lighting
with surface normal perturbations supplied by a texture to simulate lighting
interactions on bumpy surface without excessive tessellation as indicated by
(Fernando & Kilgard, 2003). In 3-D real-time rendering applications, parallax offset
provides a depth feel hence more realism, i.e. walls or floors seem as if there were
gaps between the bricks. Simply speaking, the complexity of the scene is increased

without adding new polygons.

81

In order to implement this technique, the texture coordinate of a point on the
polygon should be displaced as a function of the view angle relative to the surface
normal and of the height map value at that point of the polygon. The algorithmic
details and generation of the height map can be found at (Fernando, & Kilgard, 2003)

and a forum topic can be found at (Guest, 2010).

The implementation results of the technique are given at figure 9.4 and 9.5 (a).

5.5 Hand Rigging and Skinning

Hand is an important part of a body for manipulating objects, touching,
mimicking, performing everyday tasks and etc ... In the developed application; a 3-D
hand was used as an object manipulator of the user in the virtual environment. The
global translation and rotation of the 3-D hand was being performed by the second
sensor of the motion tracker device that was attached to the data glove. The first
sensor of the motion tracker device mounted on the HMD was being used for
tracking the user head translation and rotation for walking in the virtual environment.
In order to increase the realism and make the user feel as if he / she were using his /
her own hand, local finger movements of the virtual hand were also modeled
regarding the anatomical constraints of the user hand that is given in (Rhee,
Neumann, & Lewis, 2006). The rigging and skinning of the hand was done using
3DS MAX 2008. Then the completed hand model was exported to our software for

controlling the bones in order to perform various hand gestures.

In the rigging process, the hand was assumed to have 14 degrees of freedom i.e.
total number of joints. Two joints were connected to each other by bones. The bone
structure was setup so that it was coincident with the 3-D hand mesh. In the skinning
process, each bone was assigned a cylindrical like volumetric region in which it
would be able to control the vertices that were in the volumetric region. The
controllability of the vertex was defined by a coefficient value between [0,1]. The
vertices in the cylindrical like volumetric region had the coefficient of 1; and towards

the boundaries of the region the coefficient value decreases towards zero. This means

82

that, the bone would be able to affect less to the vertices on the boundary of its

control region. The results of rigging and skinning are given in figure 5.3.

Top WE

©) | @
Figure 5.3 (a) The anatomical names of the hand joints, A. DIP joint, B. PIP joint, C. MCP joint, D.

IP joint. Each bone is connected to joints at its ends. (b) Five bend sensor data being acquired from
left hand for fist gesture. Right hand is captured for bone mapping in a similar way. (c) - (d) Each
bone has an effective cylindrical like volumetric region in which it can control the corresponding
vertices. The control coefficient of each bone in its region varies between 0 and 1. 1 corresponds to
full control as indicated by red vertices. Towards the boundaries of the volumes the control coefficient
decreases towards 0. Hence the vertices at the boundaries of the volumetric region are effected less by
the rotation of the bones. Those boundary vertices are shown in white. The vertices having

intermediate coefficient values have colors of yellow, green, etc... (Deformed in figure 9.4).

83

The following hand joint heuristics are used regarding (Cerveri, Momi, Lopomo,

Baud-Bovy, Barros, & Ferrigno, 2007), where 6,,.,, 6., .6, and 6,, are the

MCP, PIP, IP and DIP joint angles respectively as shown in figure 5.3 (a).

0°<86,,, <90°

MCP —

0°<8,, <90°

pip =
0°< 8, <90° (5.2)
2

Opip == Oprp

3

For each finger, the only data acquired was from the bend sensor for each finger
found in the data glove. The incoming data for each finger was real valued between
[0, 1] where O corresponds to no bending and 1 corresponds to full bending of the
corresponding finger. This value can be thought as a linear combination of the angles

of the joints such that the n™ sample value x{n] received from the bend sensor can be

expressed as,

x[n]= ¢\ xycp[n]+cyxpplnl+cyxp,pln]

2
=\ Xy cpln]+cyxpplnl+c, gxmp["] (5.3)

= C Xycp [n]+ CyXpp [n] 5 C,=C,+Cy—

Assuming heuristically,

O Xyeplnl = 2(C4xPIP [n]) (5.4

Using (5.4) with (5.3), ¢,x,,-»[n] was found. By assumption c,,c,,c; are all equal
to 1.0. c¢x,,p[n] was linearly mapped to the interval [0, 90] degrees where
Xyepln]l =1.0 = 6,,, =90° x,,.,[n] =0.0 = 6,,,, =0°. Similarly the other angles

are found using (5.4), (5.3) and (5.2). Observe that the calculations are valid up to a

constant. The implementation results are given in figures 9.4 (c) — (d).

CHAPTER SIX

ESSENTIALS OF REAL TIME PHYSICS RENDERING AND SIMULATION
OF DYNAMICAL SYSTEMS

Real time physics rendering can be divided into three main topics as linear
algebra, numerical analysis and topology. Hence, at this point, the fundamental
mathematical terms such as vector space, linear combination, span, linear
transformations and etc... from linear system theory course are assumed to be
understood. This chapter will introduce common topological definitions necessary
for background. Then the chapter will go on with collision models, collision
detection methods, mass-spring systems and constraint solutions. In a typical
application, these concepts are implemented as software modules of a physics engine
as shown in figure 6.1. For the detailed explanations related to topology and collision
detection given in this chapter, the researcher should refer to (Bergen, 2004),
(Ericson, 2005) and (Moller, & et al.,, 2008). For an additional mathematical
resource, the researcher should refer to (Strang, 1986), (Rugh, 1996) and (Rogers &
Adams, 1990).

Interactive real-time
physics engine

Performance for
interactivity

Collision detection for
interaction

Mechanical dynamics
for behaviour

Figure 6.1 Components of an interactive real-time physics engine.

84

85

6.1 Topological Definitions

6.1.1 Affine Spaces

An affine space is defined by a set of points, an associated vector space and two
operations as the addition of a point and a vector, and the subtraction of two points.
The addition of a point and a vector results a point according to the following rules:

(a) The addition of a point and a null vector 0, (b) The addition of a point p and

vectors v and w using commutativity respectively as given below;

pt0=p

6.1)
(p+v)+w=p+(+w)

Subtraction of two points yields a vector according to the following rule, where p

and ¢ are points.

p+(@—p)=q (6.2)

A point xcan be written as the affine combination of points p,,..., p, can be

defined as,
xX= Za[pi , 3 z(xi =1 (¢, are scalars.) (6.3)
i=0 i=0

Eliminating ¢, from the equation and arranging the equation above yields a point

p as seen below.

P=Po+a(p, = py)+..ta,(p,—py)=py+2.2(p;—p,)

i=1
n
E) Zai =1
i=0

(6.4)

86

The set of affine combinations of points A is called as the affine hull and denoted

as aff (A). That is,

aff (A) = {2 a. p[‘ p,eAD a,= 1} (6.5)
i=0 i=0

A set of points that is closed under affine transformations is called as an affine set.

Points, lines and planes are examples of affine sets. A set of points {po,..., pn} is

called affinely independent if the set {p1 — Do Py — po} is linearly independent.

The dimension of the affine space is that of associated vector space. The important
result is, the number of points in an affinely independent set is the dimension of its
affine hull plus one. This can be generalized to N dimensional spaces. A coordinate
system is a tuple of a point and a basis. Consider the point ¢ as origin and basis

{bl,...,bn}, then the point p can be expressed uniquely by vector V that is

V={a,...a, e R" ,whereq, are coordinates of point p

and

p=c+ Zaibi ,that is the affine combination of origin and basis b, (6.6)
i=0

Therefore, the coordinate system defines an affine space in which each point is

defined uniquely by a vector of coordinates.

In many cases while developing a 3-D application, multiple coordinate frames are
used. The same point can be defined relative to different coordinate frames, or the
coordinate system can be defined relative to a parent coordinate system. The affine
transformations are used for transforming coordinates from one coordinate frame to
another. The affine transformation 7' that maps coordinates to coordinates can be

stated as follows,

T(op+ Bg)=al(p)+ BT(q) , a,p arescalars, a+ =1 (6.7)

87

In a same way, an affine transformation is determined by the images of the basis
and the origin of the given coordinate system. Considering B as the image of the

basis, and ¢ be the image of the origin, the corresponding affine transformation 7 is,

T(x)=Bx+c (6.8)

Figure 6.2 Affine transformation in R*
(Bergen, 2004, p. 16).

Considering figure 6.2, coordinates of point p 1is relative to the system
(c,{bl,bz}). Its coordinates relative to (0,{61,62 }) is Bp+c where basis vectors are
B= {bl,bz}. B and care defined relative to (0,{6‘1,62 }). The primal ancestor of all
coordinate systems is named as the world coordinate system. In figure 6.2, the world
coordinate system has origin oand basis vectors E ={el,ez}. The descendent

coordinate systems are named as the local coordinate system.

The function composition operator for the set of affine transformations from R"to

R" can be defined as follows.

T,oT(x)=B,(Bx+c)+c,=B,Bx+B,c, +c, (6.9)

88

The inverse transformation can be defined as follows.

T'(x)=B'(x—¢) (6.10)

The identity transformation is defined as . The composition of affine
transformations has many practical consequences. For example, in the virtual
environment created during the thesis work, a camera translate node was defined
relative to the world coordinate system. The yaw node was relative to the translate
node, the pitch node was relative to yaw node, the roll node was relative to the pitch
node and finally the pitch node held the camera from which the user viewed the
virtual environment. The connections in the graph are presented in chapter 9. These
relative definitions were established to overcome the gimbal lock problem due the
Euler Angels acquired from the motion tracker. Each coordinate system was
constrained to have only 1 degree of freedom. The other solution for gimbal lock
problem was to use quaternions. In the node connection configuration described, 7,
may represent roll node coordinate system relative to pitch node coordinate system.

T, may represent pitch node coordinate system relative yaw node coordinate system,
T, may represent yaw node coordinate system relative to translate node coordinate
system and 7, may represent translate node coordinate system relative to the world
coordinate system. Thus, 7,oT,0T,oT, represents roll node coordinate frame

relative to the world coordinate frame.

6.1.2 Euclidean Spaces

Euclidean space is an affine space with length and distance. At this point, it is
assumed that the researcher is familiar with terms length, distance, orthogonality,
orthonormality and normalization. For definitions of the terms, the researcher may
refer to (Bergen, 2004, chap. 2), (Mdller, & et al., 2008, chap. 4) and (Rugh, 1996).
The definitions of terms normal and orientation for a hyperplane will be given. These
terms have importance in many spatial transformations, lighting, shadowing

calculations, culling and several numerical applications.

89

For ne R" \{0}A § e R, the hyperplane H (n,d) is a set of points defined by

H(n,o0)= {xe cJ{’"‘n.x+ o= 0} , n is the normal, 611)
0 is the offset from origin .

The normal of the hyperplane is normalized prior to transformations. For example

a distance of a point p to the hyperplane is ||n p+ é'" if the norm of the normal is 1.

Additionally, having normalized normal in lighting calculations prevents undesired

distortions.

The orientation of a hyperplane is defined by the direction of the normal. The
simplest application of orientation is the face culling that is to render or not to render
the face viewed by the camera depending on whether back face or front face is

selected for culling. That means, although H(n,0) and H (—n,—9d) refer to the same

point set, they are considered as different planes by the render system.

Simple intersection tests can be performed whether a point is on the positive,
negative closed half space of a hyperplane or on the hyperplane. The positive and

negative closed half spaces are defined as follows respectively.

H+(n,§):{xe R" n.x+§20}

(6.12)

H_(n,5)={xe R” n.x+5£0}

Referring to (Bergen, 2004, p. 21), the following definitions are valid only for 3-D
Euclidean space. A coordinate system is right handed if the matrix B made up of

basis vectors has the following property,

Lo
B=|b b, b| ., det(B)>0 (6.13)
|

90

The cross product definition is important for finding a surface normal n from
three affinely independent (definition is given in section 6.1.3) points p,, p,, p; such

that,

n= (p2 — pl)X(p3 - pl) is a normal to the plane through {Pi|i = 1,2,3}. (6.14)

The cross product of two vectors v, w is a vector vXw with the following
properties,

@ vxwlyv , vxwlw

. . det[v w v X w] > 0,v and w are linearly independent
(b) Positively oriented:

(important for culling).
(©) ||v>< w|| = ||v||||w|| sin(@), @is the angle between v and w

(d) For vectors relative to an orthonormal basis, the cross product is:

o :61 azﬁ3 - aaﬁz
a, |X| B, |=| &,B, —a,f, | where anticommutativity, bilinearity hold.

a; 133 auBz - 0!2,51

6.1.3 Affine Transformations

For all the definitions in this part, figure 6.3 will be used.

Affine
transformations

Angle preserving
transformations

Length preserving
transformations

Rigid motions

7~ Nonuniform ™,

S .)
\._ scalings

{ Translations 3 { Rotations

Figure 6.3 The group of affine transformations. The dashed ellipses are basic operations. Each group

of transformations denoted by a solid ellipse is composed of operations inside that ellipse (Bergen,
2004, p.20).

91

As seen in figure 6.3, rigid motions group is composed of two subgroups:

Translations and rotations. Translations have the following form,
T(x)=x+c (.15)
The rotations which are in fact linear transformations have the form,

R(x)=Bx , where B"' = B" andet(B)=1 (6.16)

As B7'=B", this matrix is orthogonal. The important point is that, an
orthonormal basis is transformed to an orthonormal basis if and only if the
transformation matrix is orthogonal. The proof is as follows using the definition of

dot product and orthogonality;

(Bb,)(Bb,)=(Bb,) (Bb,)=b,"B"Bb, =bb, =b, b, =5,

Y
[Lifi=
oifi#

The length preserving transformation group is formed from rigid motion
transformations and reflection transformation. A transformation in length preserving

group is expressed as,

T (.)€ Group of length preserving transformations <> ||T(x) - T(y)” = ||x -y

,Vx,y

And for the affine transformations group to be length preserving, the following

criterion should hold,

T (.) € Group of affine transformations T(x) = Bx + ¢ <> B is orthogonal

This can be proved as follows using the axiom distribution of multiplication over

addition, the definitions of orthogonality and dot product.

92

||T(x) — T(y)” = ||Bx +c—By—- c||

=[Bx— By| = [B(x—y)

= JB(x—y).Bx—y) =(Bx—)) B(x-y)
=y(x=)" B'B(x-y) =/(x=y) (x~)
=[xy

A reflection transformation through a plane through origin is defined as

follows,

T (x) = Bx, B isorthogonal and det(B)=-1 (6.17)

The group of uniform scaling about the origin is defined as follows,

T(x)=ax , o isascalar and o, #0 (6.18)

Notice in figure 6.3 that, the group of angle preserving transformations is the
composition of length preserving transformations and uniform scaling. Therefore

generalizing the property of the length preserving groups is possible as follows,

VT (.)€ Group of angle preserving transformations,
Fa>05|T(x)-T(y)|=afx-)|

Finally, the group of nonuniform scaling about the origin has the following form,

T(x)= [al.j Jx, o, are scalars,
(6.19)
& #0i=]

Referencing to (Bergen, 2004, p. 21), any affine transformation 7 can be
constructed from three fundamental transformations as translation, rotation and

nonuniform scaling.

93

One of the important points in computer graphics is the calculation of the lighting
on a plane being transformed by an affine transformation. Two parameters, the
normal of the plane and its distance from the origin of the reference system should be

recalculated. This can be done as follows,

Let P' be an image of P under affine transformation 7(x)=Bx+c. The

definition of P' is the set of xe R™ such that,

P'= {xe R’"‘n'.x +0'= O} ,n'is the normal,

(6.20)

0 is the dis tan ce from reference system origin
Then, by expressing P' in terms of 77",
T'(x)=B'(x—c)
Vxe P',n.B™ (x—c)+8=0 , (equation of P),n is normal § is the distance 621)
to the origin of the reference system .
By definition of orthogonality and dot product,
n"B'(x—c)+06=0
((B_I)Tny(x—c)+5 =0
((B_l)T n).(x -c)+0=0

T (6.22)

B n(x—c)+5=0

n'= (B_1)Tn =Bn
o'=0-n'c

6.2 Important Geometric Primitives for Computer Graphics and Definitions of

Convex Combination and Convex Hull

A convex hull of a point setA, denoted by conv(A) is the smallest object

containing A . The convex hull of a finite point set A= {al,...,an} can be expressed

94

as convex combinations of A (Bergen, 2004, p. 23). A convex combination of A is

any point x defined by

1

n n
x=Y aa,> Yo =1, and & 20 (6.23)
i=1 i=1

6.2.1 Polytopes

The convex hull of a finite point set A is defined as a convex polytope P, that is,
P =conv(A) (6.24)

As stated in (Bergen, 2004, p. 24), the vertices vert(P) of a polytope P is the

smallest set X < A such that P =conv(X).

A simplex is the convex hull of an affinely independent set of points. As depicted
in (Bergen, 2004, p. 24), simplices of one, two, three and four vertices are points,
line segments, triangles, and tetrahedra respectively; the dimension of a polytope is
the dimension of its affine hull; finally the set of two and three dimensional
polytopes are the set of convex polygons and the set of convex polyhedra

respectively. For detailed relations, figure 6.4 should be inspected.

As stated in (Bergen, 2004, p. 28), polytopes may be represented by a
combination of half spaces instead of vertex representation. One example for this
case is the discrete-orientation polytopes (DOP) used as bounding volume
representation. A discrete-orientation polytope is the intersection of fixed number of
slabs. A slab is a region of space bounded by a pair of parallel planes. A k-DOP is

the intersection of k slabs.

95

6.2.2 Polygons

A closed chain of line segments that bound a region of a plane forms a polygon.
The coplanar points forming the polygon are called the vertices of the polygon. A
polygon is called simple if no two edges intersect other than the edges that share a

vertex. For more information refer to (Bergen, 2004, p. 29).

6.2.3 Quadrics

A quadric is an object that has quadratic surface elements. The interior part of the
object is part of a quadric. Therefore they are called as solids rather than surfaces.

For more information refer to (Bergen, 2004, p. 32).

Nonconvex
polygons

Convex objects

Polytopes

Concave 5
polygons -~ :

y -
" Convex /' Triangles

polygons

Tetrahedra

,,,,,,,,ff/Convex
polyhedra

Line segments

Convex quadrics

Figure 6.4 Important primitives for computer graphics (Bergen, 2004, p.24).

6.3 Minkowski Sum and Its Relation with an Intersection Test

The Minkowski sum of two objects A and B (A and B can be any primitive
object such as a polygon, a polytope, quadrics and etc...) is defined as follows

(Bergen, 2004, p. 33);

96

A+B={x+y|xe A, ye B} (6.25)

The definition should not be misunderstood, because it does not mean the addition

of two points xe A, ye B. Considering the definition of affine space given in the

previous section, addition of two points is not defined. Hence, according to those
definitions, a point is a vector from the origin of the coordinate system to that point.
The sum of two such vectors is a point that is obtained by adding the sum vector to
the origin of the coordinate frame. Then the new object A+ B is the set of points that

is covered by sweeping B ’s origin over all points of A as shown in figure 6.5.

+

0 (¢

Figure 6.5 The resultant swept volume (sphere-swept volume in this case) formed by the Minkowski

sum of a box and a sphere (Bergen, 2004, p. 33).

The Minkowski sum of two convex objects is convex. The Minkowski sum of two

polytopes is a polytope. The proofs can be found in (Bergen, 2004, p. 34, p. 35).

Several queries on a pair of objects can be performed in terms of their
configuration space obstacle (CSO) by using the Minkowski sum. For this purpose,

the negation operation on an object is defined as follows,
~B={-y|ye B} (6.26)

Then the CSO of objects A and B is the object A+(—B) thatis A—B. A—B is
the set of all vectors from a point of B to a point of A in the same coordinate
system. The intersection query on a pair of objects can be expressed in terms of the

CSO of the two objects such that a pair of objects intersects if and only if their CSO

97

contains the origin. That is, if the objects intersect, they will have a common point,
that is the vector from this point to itself which is the zero vector in the CSO of these
objects. This property can be presented as follows,

ANB#¢«< 0e A-B 6.27)

The distance d(A, B) between two objects A and B is as follows,

d(A,B) = minmx - ymxe A, ye B} (6.28)
The same distance definition can be done in terms of the CSO of the objects A

and B as follows,
d(A,B)= min‘mxmx e A— B} (6.29)
The following property holds for two convex objects A and B,

V(A, B) pair of convex objects, Ixe A-B>d(A,B) = minmx”}
thatis d(A, B) is the closest to origin 0.

(6.30)

Referencing to (Bergen, 2004, p.23, p. 36), this can be proved by a contradiction.

Assume that,

(A, B) are convex objects and expressing distance in terms of CSO
of Aand B,

d(A, B)=min{ix||x, € A~ B}=min{x,||x,e A~ B}

2 2
dx, = Zal.xi ,ZOQ =La, 20 (convex combination of x;)
i=1

i=1

> minfx, |}< d(A, B)

On the other hand, using the convexity of A—B due to the fact that the

Minkowski sum of two convex objects is a convex object as stated above,

98

x;€ A-B and d(A,B)< minﬂ|x3||} which is a contradiction.

The researcher should be aware that the uniqueness of the point of A— B closest

to the origin does not imply that the distance between two convex objects is realized
by a unique pair of points. There may exist multiple xe A,ye B > ||x - y|| =d(A,B).

But, all the closest pairs map to the same point x—ye CSO(A, B).

The penetration depth of two intersecting objects can be expressed in terms of
their CSO (Bergen, 2004, p. 36). The penetration depth of a pair of intersecting
objects is the length of the shortest vector over which one of the objects needs to be
translated in order to bring the pair tangent to each other. The penetration depth

p(A, B) can be expressed as,
p(A,B)=inf{|xe A-B} (6.31)

It should be noticed that infimum (the greatest lower bound) is used instead of
minimum, because A— B is a closed set meaning that it also includes its limit point.
Considering figure 6.6, for a pair of penetrating objects, the penetration depth is
realized by a point on the boundary of A—B that is closest to the origin. As

mentioned before, more than one xe A, ye B pair in the object space may map to

the origin O A— B, hence that point on the boundary of A— B is not unique.

()

99

A A-B
Ke
A
(b)
A A-B
B O+
©
A
> A-B
o
@

Figure 6.6 A pair of convex objects on the left and corresponding CSO on the right. (a)

Nonintersecting, the origin is outside the CSO. The arrow denotes the distance. (b) Intersecting, the

origin is inside the CSO. The arrow denotes the penetration depth. (c) After a translation of B over

the penetration depth vector, the objects are in contact. The origin lies on the boundary of the CSO.

(d) After a rotation of B, the shape of the CSO changes. (Bergen, 2004, p.38)

6.4 Separating Axis Test

Separating axis test (SAT) is an important method that is the result of the
separating hyperplane theorem originating from convex analysis as stated in
(Ericson, 2005, p. 156). The theorem states that, given convex objects A and B
whether they intersect or there exists a separating plane P where A and B exist in the
opposite half spaces. If such a separating plane exists, the normal L of that plane is
called as the separating axis. Figure 6.7 depicts the theorem in 2-D. The detailed
proofs can be found in (Bergen, 2004, p. 78), (Bergen, 2004, p.110).

100

The theorem is not valid for concave objects and in order to prove that two
concave objects do not intersect, a curved surface separating those objects should be
found. But the method of convex decomposition can be applied to both concave

objects and SAT can be applied to the convex partitions created.

In the context of collision detection, SAT has an important role in determining
whether intersection occurs or not between any convex objects such as lines, boxes,
spheres or any simple polytope. Furthermore, together with the CSO of the objects
defined in the previous section; time of collision, penetration depth, contact point and
contact normal can also be computed by this method for both static and moving

objects.

Negative half space of P Positive half space of P

L

Figure 6.7 One of the separating axis tests between objects A and B. P is the separating

plane for A and B; L is the normal of the plane. Inspired from (Ericson, 2005, p. 158).

Considering figure 6.7 and assuming all is valid for R’ let,

d=C,-C,; d,C,,C,eR’

ry, =Lr,

101

— . . 3
er—L.rB, rAp,er,dpeR,rA,rB,LeR

(6.32)
d,=Ld

Considering equations (6.32), the objects do not intersect if r,, +r,, <d, for all

possible separating axis tests.

The complexity of the objects to be tested is important for the efficiency of SAT.
Assuming object A has f; faces and e;; object B has f, faces and e, edges, total of
f1+ f>+ e; e2 SATs should be performed. These tests are for the axes parallel to the
face normals of object A, the axes parallel to the face normals of object B and axes
parallel to the vectors formed by the cross products of all edges of object A and all
edges of object B. As soon as a separating axis is found, the algorithm can terminate
with no intersection. If no separating axis is found as a result of all the tests, it means

that the objects are intersecting.

As stated in the following sections, SAT is used between appropriate convex

bounding volumes throughout the thesis work.

6.5 Primitive Bounding Volumes for Collision Detection Used in the

Software

In a typical interactive 3-D application, simple bounding volumes that can capture
the actual geometry of the objects are used instead of the whole render geometry.
Bounding volumes can be of several types such as axis aligned bounding boxes
(AABBs), spheres, oriented bounding boxes (OBBs), convex hulls, discrete
orientation polytopes (k-DOPs), and etc... In this section, the AABBs, OBBs and
sphere bounding volumes will only be considered, because OBBs and sphere
bounding volumes are the only bounding volume primitives used for fast collision
tests in the narrow phase of the collision pipeline (see figure 6.9) apart from the more
precise collision tests in the scope of the thesis work. Additionally, AABBs are used
in the construction of the bounding volume hierarchy tree for the broad phase of the

collision pipeline (see section 6.6). The calculation of collision parameters such as

102

time of impact (TOI), penetration depth, contact points in local and world coordinate
frames and contact normal are performed in the narrow phase of the collision
pipeline. Therefore the detailed overview of these parameters can be found in the

following sections.

For detailed treatment of bounding volumes, the researcher should refer to
(Ericson, 2005) and (Bergen 2004). In figure 6.8 several types of bounding volumes

are shown for the same render geometry.

Better bounding volume g
»

<

»
»

-
Faster collision test, less memory requirement, easy to
compute

swnjoA Surpunoq 1epeg

@ (®) ©

9indwoo 03 Ased
‘quawaImbar 1owaw S 1S3} UOISI[[0D J)SE,]

(d) (©
Figure 6.8 Several bounding volumes for the same render geometry. The outer thick solid lines are
the bounding volumes. (a) Sphere bounding volume, (b) AABB, (c) OBB, (d) 6-DOP, (e) Convex
hull. Inspired from (Ericson, 2005, p. 77).

6.5.1 Axis Aligned Bounding Boxes

Axis aligned bounding box is one of the simplest bounding volumes. It is formed
from six sides that have normals always parallel to the corresponding coordinate
system. In the thesis work, the AABBs are represented using minimum and
maximum coordinate values along each axis of the render geometry local coordinate

system. The bounding volume is the space between two opposing corners with

103

minimum and maximum coordinates respectively. With this representation, an
AABB can be formed by defining minimum vertex coordinate p,,;,, and maximum
vertex coordinate p,.. as the endpoints of one of the diagonals of the rectangular

prism volume in the local coordinate system of the render geometry such that,

vp:(px’py’pz)(xmin pr S'xmax)/\(ymin Spy S ymax)/\
AABB=1(z,. < P. < Zoax Jpe R, P = (X > Vo> Zoin) E R (6.33)

3
pmax :('xmax’ymax’zmax)e R

The center ¢ of the AABB is defined as the algebraic mean of p,;, and p..
Considering the above representation, two axis aligned bounding boxes AABB, and
AABB, with minimum and maximum vertex coordinates p; min, P2,min> P1,maxs P2,max

respectively, intersect if and only if they intersect on all of the coordinate axes such

that,

AABB, N AABB, = ¢ &

(‘xl,max < ‘x2,min A\ x2,max < xl,min)\/
(yl,max < yZ,min v y2,max < yl,mjn)V
(Zl,max < Z2,min Vv Zl,max < Z2,min)

SVi=12p; in = (X

(6.34)

)e AABB,,
pi,max = ('xi,max 5 yl'!max 5 Zi,max) (S AA]3]31

i,min yi,min ’ Zi,min

The intersection test described above should be done in the same coordinate
system; that is, the AABBs should be either in the local coordinate system of

AABB, or in the local coordinate system of AABB, or in the world coordinate
system. Throughout the thesis work, the local frame of AABB, is used as the

reference coordinate system; the computation and the update of the AABB are
performed dynamically by finding the minimum and maximum coordinates of the

local frame relative to the local origin.

104

6.5.2 Sphere Bounding Volumes

A sphere bounding volume S is represented by its center coordinates cand its

radius r such that,

S = {mep—c”2 < rz;p,ce R*:re R} (6.35)

Considering this representation, two sphere bounding volumes S,, S, with
centers c,, c,respectively and radii 7, r, respectively intersect if and only if the

distance between their centers is less than the sum of their radii such that,

SNS, ¢
(6.36)
Q|c2 —c1||2 < (r1 +r2)2)3 c,c,€ R ,r,r,eR

During the thesis work, the construction of the sphere bounding volume is
performed by first computing the AABB of the render geometry. Then the center of
the computed AABB is selected as the sphere center; the maximum extent among the
three axes is selected as the sphere radius. The calculations are all relative to the
local coordinate frame of the render geometry. During the collision test between two
bounding spheres, the reference coordinate frame is selected as the coordinate system
of the first sphere bounding volume. The update of the bounding sphere involves
only translation along with the actual render geometry, because the sphere is rotation
invariant. For the preceding computations more precise but at the same time more
computationally demanding techniques such as gradient descent based methods or

principal component analysis can be utilized.

6.5.3 Oriented Bounding Boxes

Oriented bounding boxes are similar to AABBs except that they may have
arbitrary alignment. Although representation methods based on principal component

analysis exist in literature; throughout the thesis work, an OBB is defined by its

105

center ¢, orientation matrix M representing local axis and positive half width extents

vector e=(ey,e,, e;) such that,

o
Vp=(p,,p,,p)p=c+M|B | p,cee R*',M e R,
OBB = P=Pe Py PP i P (6.37)
|a|eRSex,,B|eRSey,7|eR£ez

In order to detect intersection and to compute the collision parameters between
two OBBs, the separating axis test (SAT) is used. For the details of SAT, refer to
section 6.4. The collision test between two OBBs is performed relative to the local

coordinate system of the first OBB under consideration throughout the thesis work.

The interested researcher may refer to figures 9.18 and 9.19 for implementations
of and comparison between various collision detection primitives done during the

thesis work.

6.6 Collision Detection Pipeline Used in the Software

In an interactive simulation, collisions between objects are handled in several
consecutive stages forming a collision pipeline. The aim of this pipeline is to
decrease the computational load and memory requirements of collision detection
while favoring the accuracy of collision tests, contact and penetration depth
computations between the geometries of the 3-D objects. The overview of the

collision detection pipeline is given in figure 6.9.

Collision Data Dynamics Data
Collision Object || Overlapping || Contact Transform Rigid body. mass, Constraint
shapes AABB pairs points velocity inertia contacts joints

(a)

106

Collision Masking: Disables collision
interrupt generation for unwanted
2-D object pairs

Forward Dynamics

Apply Predict '

gravity transforms Mask the collision interrupts
according to the predefined mask.

\

Narrow Phase Collision Detection: Fine
collision detection using Triangle-triangle, Broad Phase Collision Detection: Coarse
OBB-triangle, OBB-sphere, sphere-triangle, collision detection using AABBs of render
OBB-OBB, sphere- sphere collision models
detection, SAT, GJK, EPA =
Compute contact coordinates in local and Compute Find collsion
world coordinate frames, contact normal AABB pairs
coordinates for each collision pair

v

Forward Dynamics

Solve Integrate
constraints position

(b)
Figure 6.9 (a) An overview of how the collision data and dynamics data are stored in the developed
software using Bullet. (b) The physics pipeline implemented in the developed software using Bullet.

The red blocks represent how the collisions are handled in three stages.

This section will briefly explain the three important stages of the pipeline as
implemented in the scope of the thesis; collision masking, broad phase and narrow

phase respectively.

6.6.1 Collision Masking

Collision masking is a brute force collision filtering technique to define the
geometries that will be considered in the collision detection process. It is the first
stage of the collision detection pipeline. In the initialization stage of the simulation,
each geometry is given a group and mask identity number to be used in the masking
test. So, the geometries with no matching identity number will not collide to or

receive collisions from other geometries. Therefore, only the geometries with

107

matching identity numbers will be considered in the further stages of the collision

detection pipeline.

6.6.2 Broad Phase

Broad phase stage implemented in the software throughout the thesis work
consists of a model partitioning scheme called as dynamic bounding volume
hierarchy based on axis aligned bounding boxes (AABB). A bounding volume
hierarchy is composed of a tree structure. Each leaf of the tree contains the bounding
volume of the actual geometry. Nodes in the deeper levels of the tree are enclosed in
a larger bounding volume and grouped in nodes towards the root node recursively
such that each node of the tree maintains a bounding volume for a subset of the
geometric primitives. The bounding volume hierarchy tree structure and the

corresponding scene are seen in figure 6.10.

Node 1

AABB of

Wzt 2 Geometry 3

AABB of AABB of
Geometry 1 Geometry 2

(a)

108

2-D Scene
Node 1 o |
Y 9 AABB: |
| y N [
I// . I
e — Node 2 n]
| AABB 1 . A | |
| B A —m—————— | Geometry 2 i I
:/', /J| :/// \\\\ AABB 2 | : Y :
/ |
{ Geometry 1 y | : \\ | : . :
I\ / fometry 2 N : | - |
I N I \ s N |
I \\ | | = -
| \ I e |
Lo Tl | R |
__________ 4
(b)

Figure 6.10 (a) A bounding volume hierarchy. (b) The geometries and collision models represented
by the tree. In (b), the thin continuous lines represent the nodes, the dashed lines indicate the

AABBS, and the outer thick line is the 2-D scene border.

The overall aim of this stage is to reduce the computational costs of the collision
detection as in the collision masking stage. The arrangement of the bounding
volumes of the geometries in a tree structure reduces the time complexity of the
computations logarithmically in the number of tests performed whereas that time
complexity is reduced by a constant factor with bounding volumes not arranged in a
tree. As indicated in (Ericson, 2005, p. 235), for the latter case, although the collision
detection tests are simplified by the bounding volumes, the number of collision tests
to be performed remains the same so the asymptotic time complexity remains the

same.

The bounding volume tree hierarchy is implemented as a preprocessing step in the
developed software to increase the runtime performance. The tree structure is
dynamic meaning that according to the topology changes in the meshes belonging to
the scene, new nodes representing the bounding volumes of the newly created
meshes can be added to or old nodes representing the unnecessary bounding volumes
can be removed from the tree. For example when a soft cloth mesh is cut into many
pieces, new nodes are inserted to the tree representing the bounding volumes of the
mesh pieces. To increase the performance, two bounding volume tree hierarchy is

used; one for the static objects and the other is for the moving objects. In the thesis

109

work, the objects with zero mass are defined as static. During runtime, nodes
belonging to one tree can be detached and attached to the other dynamically or vice
versa. The software implementation details used for bounding volume tree hierarchy
construction, partitioning, node insertion and removal strategies can be found in

(Ericson, 2005, chap. 6).

According to (Ericson, 2005, p. 236), the issues to be considered in order to

balance the performance and the accuracy of this stage are as follows:

e The nodes in a subtree should be near to each other to favor spatial
coherence

¢ A minimal bounding volume that will capture the topology of the objects
should be used for each node to prevent false overlaps and therefore false
collision test results. This also results in a minimal total bounding volume.

e Removing a node close to the root node, eliminates more bounding
volumes from collision detection tests than removing a node at the deeper
levels of the tree.

¢ The bounding volume tree should be balanced in its node structure and
content so that whenever a branch is not traversed, it can be pruned to
increase the performance.

¢ The bounding volume tree should have the minimal memory requirements.

The bounding volumes reported as colliding are directed to the narrow phase stage
found further in the collision detection pipeline. The object pairs reported as
colliding may be actually overlapping or not, depending on the actual geometries of
the objects and their bounding volumes. Considering the figure 6.10 (b), the
geometry 1 and the geometry 2 are not actually overlapping; but they will be
reported as colliding due to the collision of their AABBs. On the other hand, the
AABB of the geometry 3 does not overlap with the other AABBs. So it is impossible
for the actual topology of the geometry 3 to collide with the topologies of the other
objects in the scene; therefore no collision pairs including the geometry 3 will be

reported in this stage.

110

Dynamic bounding volume hierarchies based on spheres, k-DOPs and oriented
bounding boxes (OBB) also exist. Additionally, another broad phase technique
namely “sweep and prune” can also be implemented in this stage. Spatial partitioning
methods based on octree, k-d tree and binary space partitioning tree can also be
considered for implementation in this stage according to the simulation needs. Only
the dynamic bounding volume hierarchy based on AABB is implemented in the
current software. For the other types of bounding volume hierarchies, for the “sweep
and prune” scheme and for the spatial partitioning methods the researcher should

refer to (Ericson, 2005) and (Bergen, 2004).

6.6.3 Narrow Phase

Narrow phase is the final part of the collision detection pipeline. Only the
collision tests that pass the collision masking and broad phase are handled by this
phase. In this phase, if the candidate objects for collision pass the tests performed
here, it is understood that they are actually colliding. Then the collision parameters
such as contact points in local coordinate frames and in world coordinate frames,
contact normal and penetration depth are computed in this phase. In this phase, the
collision models used for visual models can be convex hulls or the triangular element
mesh of the visual object itself. It is seen that, the tests done in the narrow phase are
much more costly than the previous sections. On the other hand these tests are much
more precise. Triangle-triangle collision detection is performed in this phase to
perform the collision check over all the triangular elements forming visual mesh of
the candidate objects. For the results of implementation practices on collision
detection regarding the comparison of triangle-triangle collision detection and
sphere-sphere collision detection refer to figures 9.18 and 9.19. Other collision
detection schemes such as sphere-triangle, OBB-triangle, ray-triangle tests are also
performed in this section. In the narrow phase, the collision with the soft-soft bodies
and rigid-soft bodies are performed by assuming the existence of AABBs bounding
each vertex of the soft object. Therefore the previously mentioned for rigid bodies

also apply for the soft body collision detection.

111

For collision detection between the moving objects, the Minkowski summation is
used. The CSO of the moving objects are computed assuming, one of the objects
static and the other moving relative to the static one. Then the intersection test
mentioned in section 6.3 is applied. It is impossible to give all the mathematics
beneath these tests here, therefore the interested researcher should refer to (Ericson,
2005), (Bergen, 2004) and (Moller, 1997) for mathematical theory of the
implemented collision tests. Two important methods for collision detection,
penetration of two convex objects; and for solving constraints between the collision

object primitives are briefly mentioned below.

6.6.3.1 Gilbert-Johnson-Keerthi Algorithm (GJK) for Collision Detection
between Convex Objects and Expanding Polytope Algorithm (EPA) for

Penetration Depth Calculation

GJK is an iterative method for solving collision between convex objects. It can be
generalized for any type of collision methods mentioned before, for application to
polytopes, quadrics, Minkowski sums of convex objects and images of convex
objects under affine transformations. GJK is an iterative method for approximating
the point closest to the origin of A-B, the CSO of A and B convex objects (see figure
6.6). This point is approximated as follows. At each iteration, a simplex (see section
6.2.1) is constructed that is contained in A-B and lies nearer to the origin than the
simplex constructed in the previous iteration. A simplex is constructed support
mapping of A-B. A support mapping of a convex object A is a function s4 that maps a

vector v to a point of A as follows,

s,(neAsvs,(v)= max{v.x 1XE A} (6.38)

The result of (6.38) is a support point. Each new support point is added to the
simplex, the closest point to the origin is calculated and the farthest point is discarded
at each iteration. The iteration stops, when a change in distance between newly found
points decreases below a threshold. For detailed explanation refer to (Bergen, 2004,

chap. 4).

112

As GJK algorithm was used for computing collisions, contact points and contact
normals between the convex objects during the thesis work; Expanding Polytope
Algorithm (EPA) was used for the penetration depth calculation between two
colliding convex objects. Like GJK, EPA is an iterative algorithm depending on the
CSO of two convex objects. For detailed coverage refer to (Bergen 2004, p. 147).
The researcher may refer to figure 9.4 for the computed collision parameters

displayed in the green overlaid box on the bottom left of the screen.

6.6.3.2 Solving the Constraints at Mechanical Joints — Linear =~ Complementary
Problem (LCP)

The virtual environment developed during the thesis work has a 3-D user interface
for transforming several objects, getting information about them and etc... This user
interface becomes visible when a collision between the user hand and an anatomical
model is detected (see figures 9.4 (d), 9.8 (a)-(b), 9.9 (a), 9.10 (a)-(b), 9.11 (a)-(b)).
As seen from the figures, the user interface contains buttons, a slider and an
information box. Each of these is attached to the base of the user interface with
appropriate constraints so that buttons have no degrees of freedom and the slider has
only one degree of freedom. The new position of the buttons and the slider when a
user collides is computed considering the applied force, contact direction and the
constraints at each time step. In the context, this is formularized as a linear
complementary problem (LCP). The solution is accomplished by Gauss-Siedel
method. The mathematical details can be studied from (Ericson, 2005, chap. 9),
(Baraff, 1989), (Bridson, 2003) and (Lacoursiére, n.d.). The end result is that, the
buttons remain at their original positions when the contact ends; the slider remains at

the place where the user last touches.

6.7 Mass-Spring Systems and Numerical Solutions for Governing Differential

Equations

This section involves various mass spring topologies used to model the dynamical

objects in the 3-D environment throughout the thesis work. Additionally, the

113

numerical solution techniques for the differential equations governing the dynamics

of the mass spring topologies are given.

6.7.1 1-D 2-D and 3-D Mass Spring Systems and Governing Differential

Equations

Mass-spring systems are preferred for modeling solid elastic 1-D, 2-D and 3-D
dynamic systems in real time. 1-D, 2-D and 3-D mass-spring systems with dampers
are presented in figure 6.11. Masses are placed at the vertices of the 3-D model in

this particular case. The edges connecting vertices are represented by springs.

Spring
and

damper

(b) (©
Figure 6.11 Examples of mass-spring systems. (a) 1-D mass-spring-damper system, (b) 2-D

(triangular) mass-spring-damper system and (c) 3-D (tetrahedra) mass-spring-damper system.

Although simple and not computationally demanding these systems have
drawbacks as stated in (Miiller, Stam, & James, 2008a, p.10). The mass-spring
network setup defines the behavior of the object. The spring constants are hard to be

tuned for the desired behavior. Mass-spring systems cannot capture volumetric

114

properties directly. Because of these limitations, better models such as FEM are

preferred in spite of their computational demand.

1-D mass-spring systems are used for modeling 1-D elastic objects such as hair or
rope. 2-D mass-spring systems arranged as triangular elements are used to model 2-D
elastic objects such as a skin, a cloth or a paper. 3-D mass-spring systems arranges as
tetrahedral elements are used to model 3-D volumetric elastic objects such as human

organs.

The physical formulation of the mass-spring system can be stated as follows. For

a mass spring system composed of a set of N particles with masses m, , positions x,
and velocities v, where i€ 1,..., N , the masses are connected with the connection set
S of springs (i, j,l,,k,,k,). i,j are indices of the adjacent masses, [, is the rest
length, k is the spring stiffness and k, is the damping coefficient as stated in
(Miiller, & et al., 2008a, p.11). X;,X; are the positions and v,V are the velocities of

the masses respectively. Then the spring forces on the adjacent particles of a spring

are,

£ = 1) =k, S = 1)

X; =X (6.39)

fj :_fs(xj’xj)

The forces are proportional to the elongation of the spring Hx i H —1, from its

equilibrium state.

The damping forces are proportional to the velocity difference projected onto the
spring. That is,
X. —X.

fi:fd(xi’vnxj’vj):kd(vj_V;)-M (6.40)
j i

fi=f @) ==, (641)

115

Notice that the conservation of momentum holds, therefore f;+ f i =0. The

combination of the forces is,
Fvnx;v) =, x)+ f(x.v,x,,v;) (6.42)
Then, considering the second law of Newton, F =mX, this ordinary differential

equation should be solved for the acceleration ¥ of particles that is the 2" derivative

of the position with respect to time. That is,

. d’x F
f=— = (6.43)

A N"order ordinary differential equation can be written in terms of N coupled
1* order ordinary differential equations. So, F =mi can be written as two coupled

ordinary differential equations as follows,

PICA))
m (6.44)

X=v
The analytical solutions of these equations are respectively,

v(t)=v, +Imdt
m

Iy

t and the initial conditions are v(¢,)=v, , x(f,))=x, (6.45)
x(t) = x, + [v()dt

Iy

As it is seen from the above analytic solutions, simulation is in fact time
integration. In the following sections the numerical integration methods to solve the
initial value problem with the initial value x(t,) will be given. Therefore the
problem at hand is to find a function satisfying the relation described by the ordinary
differential equation x = f(x,7) where fis a known function, x is the state of the

system and xis the derivative of x with respect to time. Theoretical background can

be found at (Khalil, 2002), (Miiller, & et al., 2008a) and (Witkin & Baraff, 2001).

116

6.7.2 Explicit Euler Integration

Assume that x is continuously differentiable function. Then, consider the Taylor

Series Expansion of x at point f, with a small perturbation A¢ from ¢, as follows,

Ldet) 1d°x(0)

1 d"x(t)
x(t, +At) = x(t,) +— At + .+ ———L A" 6.46
(1o + A1) = x(to) I dt 2! dt’ n! dr" (040
Linearizing the function at ¢, yields,
x(t, + At) = x(t,) + % d);(t) At + O(At?) (6.47)
! t
Eliminating 2" order error term O(At?) results in the linearized x as follows,
x(t, + At) = x(t,) + %At = x(t,) + XAt (6.48)
t

The discreet step size 1s At, x defines the norm of the step along the Ar
direction. That is, it is used to calculate the change Axin x corresponding to Ar.
Consider that for N dimensional case, At is a N dimensional vector specifying the

step directions.

For this linearization case, x should at least be C'continuous. Then the integral

equations in (6.45) can be solved numerically by linearizing v(t) and x(z) about

t,and then iterating the following equalities by neglecting the 2" order error terms

respectively.
V. =V, +VAL+O(At?) = v, + VAL (6.49)
X, =X, + XAt +O(At?) = x, + XAt (6.50)

Notice that, ¢ is the frame number and Ar is the time interval between two
consecutive frames for the case of real time graphics rendering. Plugging equalities

in (6.44) into (6.49) and (6.50) yields respectively,

=V, +—f(xr,v,) At
m

Vt+1

X, =X +VvAt

117

6.51)

(6.52)

Calculation of (6.51) and (6.52) are Explicit Euler Integration Method, that is the

values of v,,, and x

.., are calculated using the values v, and x, of the current time

step by explicit formulas as also stated in (Miiller, & et al., 2008a). The following

three pseudocodes of algorithms can be found at (Miiller, & et al., 2008a) and (Press,

& et al., 2007).

/nitialize

forall particles i
initialize x,,v;, m,

endfor

L

//Simulation loop

loop
forall particles i
o oll
L+ D fnx,)
JALJES

endfor
forall particles i

v, v, +At(f, I m,)

X, = x, +At(v,)
endfor

display the system every n" frame
endloop

(a)

P <

>
X

(b)

Figure 6.12 (a) Pseudocode for Explicit Euler Integration. f¢ is the gravity force, £ is the forces

due to the collisions. (b)The phase space representation of differential equation for the mass-spring

system. The actual solution for differential equations form a concentric circles, but due to the

linearization in Explicit Euler Integration, the particle velocity and position overshoots. Smaller time

steps only makes this process occur in longer time but is not a complete solution.

118

Although Explicit Euler Integration is a simple method, it is unstable for large
time steps. The phase space representation is shown in figure 6.12 (b). Therefore,
during simulation, several time steps should be performed per each frame and

damping is necessary otherwise the velocity will overshoot.
6.7.3 Second and Fourth Order Runge Kutta Integration

Considering the Taylor Series Expansion in (6.46), if the second order term is
retained, the expansion of the function will have error terms starting with O(At’)

hence the result will be 2™ order accurate. That 1s,

x(t, +Ar) = x(t,)+ldx(t)A t+— L d°x(0)
1! dt 2! dt?

At? +O(At) (6.53)

Considering x = f(x(t),t), assume that f implicitly depends on time ¢ that is

X = f(x(t)). Using chain rule,

a . F . _
ox

= ff (6.54)

Approximate f in terms of f by using Taylor Expansion of f as follows,

fx, +Ax) = f(x,) +% f(x,)Ax+O(Ax?) (6.55)

Let Ax= %f(xo), then (5.54) can be written as,

f(xﬁ%f(xo)j f(aco)+A F (i) f(x,) + O(A)

(6.56)
—f(x0)+ x(t)+O(AL?) , x, = x(t,)

119

/nitialize //Pseudocode Variables
a,=v,
forall particles i a, = f(x,,v,)/m

initialize x;,v,, m, " s At
1 t 2
2

endfor
At At
* b2=f(xr+7al,v,+7a2)/m
//Simulation loop X, =X, +Ath,
loop V., =V, +Ath,
forall particles i
a,; < v,

a,, <—{fg St Zf(xi,vi,xj,vj)}/mi
J))
endfor
forall particles i

|

At
b, v, +—a,,
' 2

co At At At At
b, < [fg +f, "+ z f(x +7“1,,~’V1— +7a2’l_,x}. +7a1’j,vj +7a2’j) I m,
J)
X; < x; +Ath,
Vv, Vv, +Atb,,
> \%
endfor 4
display the system every n™ frame
endloop
>
0 X
(a) (b)

Figure 6.13 (a) Pseudocode for 2™ order Runge Kutta Integration. (b) The phase space representation
of the differential equation. First, an Euler step is performed and then at the half of the step size, the

second derivative is evaluated to update X at each frame.

120

/nitialize //Pseudocode Variables
al = Vt
forall particles i
_ .I.)ar.lce“ a,=f(x,,v,)/m
initialize X, ,v,, m, _ Az
endfor bl =V, + 7 a,
At At
4 b,=f(x,+—a,,v,+—a,)/m
. . 2 2
//Simulation loop
At
¢ =v,+—b,
2
At At
¢, = f(x,+—b,v+—>b,)/m
loop 2 2
forall particles i
a,; < v, d, =vt+7c2

t,; {fg + £ Y v V)}/m. d, = f(x,+Atc;v, +Atc,) [m
! ! (ARG Rt R i

i) At
endfor Xy =X + 3 (a, +2b,+2¢,+d,)
forall particles i

Vi =V, —f-%(a2 +2b, +2c, +d2)

At
bl,i —V, +7Clz .

]
B

coll At At At At
bz,i — |:fg +fi + z f(xi +7au,vl‘ +7612’i,)€j +7611!J-,Vj +702J) /mi
FACY))
endfor
forall particles i
At
Cy; —V, +7b2]

R}

co At At At At
| fE+] "+ z f+—b;,vi+—b,,,x;+—b ;,v;+—Db, ;) |/ m,
’ j,(l,j) 2 ’ 2 ’ 2 ’ 2 ’
endfor
forall particles i

At
dl,i —V +?Cz .

d,, e{fg +ff”” + Zf(xi + AL, v, +Ate, , x; + Atey v, +Atcz’j)}/mi
)

X, X, + % (a,, +2b,, +2¢,, +d,,)

At
Vv, &V, +Z (az,l. + 2b2,[S0 dz,[)

endfor
display the system every n™ frame
endloop

()

121

P <

(b)
Figure 6.14(a) Pseudocode for 4™ order
Runge Kutta Method. (b) Phase space

representation.

Multiply both sides of (6.56) by At,

2

(Ar) f[xo + % f(xo)j = (A1) f(x,) + A%)'e(zo) +O(AF) (6.57)

Use (6.57) in (6.53) considering x = f(x(1)),

xao+Ar>=x<t0>+(m>(f(xo>+§f(xo>j 658

Equation (6.58) indicates that, an Explicit Euler scheme is performed up to the
half of the step size, then a second derivative is evaluated at the half of the step size
to update x at each frame. Therefore this method is 2" order accurate and more
precise than the Explicit Euler scheme. The two Euler step evaluation brings a
computational cost. Additionally the 2" order Runge Kutta still lacks instability
problems. 2™ order Runge Kutta is also an explicit numerical integration method.
The pseudocode is given in figure 6.13 (a) and the phase space representation is

given in figure 6.13 (b).

122

4™ order Runge Kutta integration is similar, but it is 4™ order accurate as opposed
to 2" order accuracy. This costs four times the computational load that of the
Explicit Euler Integration. The pseudocode is given in figure 6.14 (a) and the phase

space representation is given in 6.14 (b).
6.7.4 Verlet Integration

This method uses the values evaluated at the past steps to increase the stability
and accuracy of the prediction at the current step. The method is accurate up to the
4™ order. Consider the forward and backward Taylor Expansion of xas follows

respectively,

x(t+At) = x(t) + x(1) At + 1 ()AL + 1 X ()AL +O(At?)
? f (6.59)
x(t—At) = x(t) — x(t) At + Ex'(t)At2 —g'fc'(t)At3 +0(Ath)

Sum the expansions in (5.58) as follows,

x(t+ Af) = 2x(t) — x(t — At) + (1) At + O(Ar*)

= () + () 2t — 8+ LD A v ocarty (6.60)

m
Then by letting v(¢) = [x(t) —x(t— At)]/ At , the followings are obtained,

f(x)

X=X+ VtAt+7At2
(6.61)

- ('xH—l - 'xt)
1+1 At

123

P <

>
X

Figure 6.13 Phase space representation for
Verlet Method. The energy remains constant

with sufficiently small steps.

All the above methods were explicit integration methods. Those methods are
stable for a limited range of time steps which depends on the stiffness of the springs;
hence they are conditionally stable as stated in (Miiller, & et al., 2008a). Smaller
time steps should be used to maintain the stability of the simulation as the springs get
stiffer. The real time simulation applications require unconditional stability for any
value of time steps. This requirement can be satisfied by using implicit integration
methods. An implicit integration uses the new of values of x and v for computing

the followings,

=y + f(le)At

me m (6.62)
X, =X +v, At

Equation (6.62) cannot be evaluated explicitly. Instead, the system can be solved
for velocities by linearizing this nonlinear system at each time step using Newton-
Raphson method. Then the linearized system can be solved using iterative methods
such as Conjugate Gradients. As stated in (Miiller, & et al. 2008a), although this

integration scheme is unconditionally stable, it is slow so large time steps should be

124

performed, and additionally temporal details disappear due to the numerical

damping.

6.8 Mesh Topology Processing and Mesh Refinement — An Example to Mesh
Cutting

The method used in the developed software to process the topology of the meshes
is referenced from (Coumans, 2009). The method works as follows: A ray is casted
from the camera along the forward direction of the user hand towards the soft object.
Then an intersection query is performed whether the raycasting is resulted in an
intersection with an efficient closure to any of the constraints (lines) connecting the
AABBs of the vertices of the geometric topology of the soft object (see section
6.6.3). If this is the case, create a sphere s with unit radius of 1 centered at the
collision coordinates of the ray and the constraint. Then the distance of the collision
point to the supporting vertices along the constraint are calculated numerically. The
new vertices with appropriate velocity, position and mass are added to topology of
the soft object and the connections between the cut part of the topology and the rest
of the topology is broken. The position, velocity and the mass of the new vertex are
calculated as the linear interpolation of the positions, velocities and the masses of
two supporting vertices of the constraint (line) on which a new vertex is placed.
Considering the vertices a, b and the sphere s given above, the problem is

formularized as follows:

min(z) (6.63)

vl<e

¢ 1s the user controlled value controlling the minimum distance from sphere s that
can be considered as the surface of the sphere. ||v|| is the distance to the collision
point that is the center of sphere s. t =t * is the value at which the iteration goes into

the &- neighborhood of the surface of the sphere s. If no such ¢ is found in a given

step number than ¢ =—1 is returned resulting in no topology process, else t =¢* is

125

returned. The position x, and the velocity v, of the new vertex ¢ are computed as

follows:

X, =x,+(x, —x)t*

(6.64)
v, =v,+(v, —v,)t*
The mass m_ of the new vertex c is computed as follows:
m=m,+(m,—m,)t*
m, +m,
=——a " (6.65)
m, +m,+m

m. =mf

If one of the supporting vertices is static that is it has zero mass. The mass of the
supporting vertex with the positive mass is assigned to the new vertex, and the mass
of that supporting vertex is doubled. If both supporting vertices have zero mass, the
newly created vertex is assigned a zero mass. The process is repeated for all the

(a, b) vertex pairs in the ||v|| neighborhood of the collision point v. The geometric

representation of the process is given in figure 6.14.

Figure 6.14 The geometric representation of the cutting
topological operation. v is the collision point of the ray
with the constraint n; a and b are the existing supporting
vertices of the constraint n; ¢ is the newly added vertex.
This process is done for all the (a, b) vertex pairs in the

[IvIl neighborhood of the collision point v.

126

Finally, the node hierarchy data structure representing the soft object is updated
accordingly. The topology processes were all done just for the surface models, no

volumetric model was evaluated.

The research may refer to figures 9.12, 9.13 and 9.28 for the implementations
done during the thesis period. Figure 9.27 is a stand-alone application compiled with

NVIDIA PhysX for test purposes.

6.9 Haptic Rendering with Rigid and Deformable Models

Haptic senses provide important cues for getting information about the geometry
and the structure of the object. Therefore, in order to provide a haptic feedback to the
user in the virtual environment, haptic device was used. The technical details of the

device are given in section 8.3.

Haptic rendering module of the software was at its development stage at the time
this thesis was written. The main task of the module was to model the anatomical
parts to create a haptic perception for the user when a tissue or organ was touched.
Additionally, when the user applied a force over a threshold, a topology of the mesh
would be altered, for example a fracturing of a rigid bone or cutting of a deformable
organ would be performed. Initial haptic rendering module developed, was tested
using the same dynamic modeling principles — namely mass spring model — and
collision detection techniques mentioned in the previous sections. OpenHaptics API
was used for the implementation. The instability of typical numerical integration
method namely Explicit Euler Method used in this module was also observed for
large time steps and also for the high forces loading that makes the mesh system
diverge from its equilibrium point in these tests. The haptic rendering module initial

results can be seen in figures 9.29.

CHAPTER SEVEN

FEATURE SEGMENTATION TRACKING AND POSE ESTIMATION
METHODS USED FOR AUGMENTED REALITY APPLICATION
DEVELOPMENT DURING THE THESIS WORK

This chapter presents a basic application created to fulfill the need of tracking a
human hand and head motions without any motion tracking device precisely. The
tracking results was planned to be used for controlling a 3-D virtual object and to
perform pan movements for the user head in a synthetic environment. These were
necessary to be immersed in a 3-D virtual environment because it was not possible to

get the motion tracking device till the end of the second year of the thesis work.

The preferred way for tracking a user hand holding a known marker was tracking
from real time video frames taken from a calibrated stationary single camera. The
reference for this method was (Kato & Billinghurst, 2006). For in depth
understanding, the researcher should refer to (Tekalp, 1995) and (Forsyth & Ponce,
2003). This method was in fact a registration meaning to estimate the rotation and
translation parameters of the tracked features over the video frames taken from a
calibrated camera. Therefore it was also used for registering a 3-D virtual object
with the tracked object in real time. This type of application is called as an
augmented reality application in the literature. In a same way, the user head was
tracked using facial features such as the structures of eyes, nose and mouth. This
method was referenced from (Viola & Jones, 2004) and (Bradsky & Kaehler, 2008).
The explanations relating to this chapter will be kept relatively brief, because the

focus of the thesis work was the real time computer graphics and physics simulation.

7.1 Feature Segmentation
Considering the human hand tracking, a known, rectangular planar marker is used.

The assumption that all the features lie on the same plane decreases the number of

unknowns in the rotation and translation matrix. The features segmented were the

127

128

corners of the black rectangle. The researcher can refer to (Bradsky & Kaehler, 2008)

for corner extraction in sub pixel accuracies.

For the 2-D face tracking task, the Haar features of the face are used. A threshold
is applied to the sums and differences of rectangular image regions. An integral
image technique is used for rapid computation of the value of rectangular regions or
45 degree rotated versions. Then a statistical boosting technique is used to create face
and non-face classification nodes characterized by high detection and weak
detection. Then the algorithm organizes the weak classifier nodes of a rejection
cascade. Meaning that, the first group of classifiers is selected that best detects image
regions containing a face while allowing mistaken detections; the next classifier
group is the second-best at detection with weak rejection, etc... In test mode, a face
is detected if and only if it makes through the entire cascade. The details are given in

(Bradsky & Kaehler, 2008, p. 508).

7.2 Feature Tracking and Pose Estimation

Considering the case of hand tracking, in every video frame, the corners of the
rectangle is segmented and their coordinates are tracked. The rotation matrix and
translation vector for the tracked rectangle were computed using homography matrix
computation. Hence from there on, the tracked features in the consecutive frames are
related. The computed rotation and translation parameters of the rectangle in 3-D
space were then used to control the orientation and translation of a 3-D virtual user

interface tablet in the synthetic environment.

Considering the case of the head tracking, the center coordinate of the rectangular
area including the detected human face was tracked. As the tracking was performed
in 2-D space, only the pan movements of the head corresponding to the pan
movements of the camera of the synthetic scene were possible in the virtual
environment. The algorithm flows of the tracking schemes are given in figures 7.1

and 7.2 respectively. The implementation results can be seen in figures 9.1 (a)-(f).

129

l Image (I)
Binarization Manual Thresholding
llmage I)

Labeling

- Components List
(Cna C:{Xi,}’i}m

Contour Detection

l Contours List

(Ch C={xpyi} "

Line Contour
Estimation

l Lines Parameters List

(C’ ’na C’ = {aiabiaci}4)

Sub-Pixel Corner Detection

Corners List
(C’”m C” ’:{Xi,}’i}4

Pattern Camera Intrinsic
Lines Parameters List Normalization Parameters (K)

(C7, C7={abici}’ Marker Region
List P¢

Template Matching Marker Patterns List(P’9)

l Markers Size
(

v C””’n, C””’:Xi,yj))

Homography Computation

Markers Homography
({H}")

Camera
Transformation

Markers Transformation

v ({R.t}")

Optimization

Markers Homography
v ({R%0}")

Figure 7.1 Tracking algorithm for a planar object held by the user hand. This algorithm was both used

for controlling a virtual user interface tablet in the synthetic environment and also for registering a

3-D virtual object with a feature in real-time (Kato & Billinghurst, 2006).

Training Phase of a Boosted Haar Cascade Classifier

for Face Detection

Next Image from face €———
datebase

Haar features: Apply threshold to sums
and differences of image regions

v

Calculate integral image

v

Create face and non-face classification
nodes by using statistical boosting

v

Organize the weak classifier nodes of a
rejection cascade

Were all of the faces in the

database processed?

Classifier trained
for face detection

()

Test Phase of a Boosted Haar Cascade Classifier for

Face Detection
Next Image from

camera <
4

Was any face detected by the
classifier?

Trace the rectangular regions containing
a face with a marker of different color
and calculate the center coordinate of the

first rectagunlar region containing the
face

(b)

Figure 7.2 (a) Training phase of Haar Classifier for face

detection. (b) Test phase of the classifier.

130

CHAPTER EIGHT

ESTABLISHMENT AND CURRENT SETUP OF COMPUTER GRAPHICS
AND VIRTUAL REALITY LABORATORY

This chapter will explain the establishment process of the computer graphics and

virtual reality laboratory in Dokuz Eyliil University.

A new research laboratory has been established in the scope of this thesis work.
The laboratory is located in Dokuz Eyliil University Electrical and Electronics
Engineering Department (DEU EEE Department). The aim of the laboratory is to
provide necessary equipment and development environment for undergraduate and
graduate level researches on computer graphics, scientific simulation and
visualization, computer vision, virtual environments and augmented reality.
Laboratory establishment period and current setup of the laboratory will be explained
in this chapter. Then the technical details of fundamental laboratory equipments that

a researcher should know will be given briefly.

The thesis project and the laboratory establishment are supported in the scope of
Dokuz Eyliil University Scientific Research Project (BAP) with the support code of
2008.KB.FEN.027. VESTEL Electronics supported the establishment process with a
LCD panel. The establishment process of the laboratory and the important technical

details of several equipments are as follows.

Table 8.1 lists the equipments that the computer graphics and virtual reality
laboratory in DEU EEE Department has. The establishment progress of the computer
graphics and virtual reality laboratory in DEU EEE Department can be followed in

date order can be followed from figures 8.1 to 8.3.

131

132

Table 8.1 DEU EEE Department Computer Graphics and Virtual Reality Lab. Equipment List.

Equipment No. |Equipment Name

VESTEL 102" Full HD LCD

Polhemus Fastrak 6 DOF motion tracker

Sensable Phantom Omni haptic device

5DT Data Glove 5 Ultra USB (left and right pairs)

5SDT HMD 800-26 3-D head mounted display

Logitech QuickCam Pro 9000 webcams (2 pieces for augmented reality and
computer vision applications)

Intel Quad Core and Core i7 based computers using Microsoft Windows XP
ATI X1550 based graphics card

NVIDIA GeForce GTX 295 based graphics card

10 Sanyo data projector

(O, 1 E AU | O 3

Nel[e B ENN o)

Sanal Gergeklik Lab.

(b)
Figures 8.1 (a) and (b) are two views from the laboratory by the end of October 2008.

Figures 8.2 (a) and (b) are two views from the laboratory by the end of December 2009.

133

Figures 8.3 (a) and (b) are two views from the laboratory by the end of August 2010.

8.1 VESTEL LCD Panel

VESTEL Electronics supported the laboratory establishment with a LCD panel. It
is a 102” Full-HD 1080p model with composite, PC, YPbPr, HDMI inputs. The LCD

is used as a primary or secondary display device together with the HMD.

8.2 Polhemus Fastrak Motion Tracking System

Polhemus Fastrak motion tracker is a six degrees of freedom (6 DOF) motion
tracking system. It is capable of tracking both position and orientation using
electromagnetic fields. The near field, low frequency magnetic field vectors are
generated via three concentric, stationary antennas in the transmitter. The generated
magnetic field vectors are detected by three concentric, stationary antennas in the
receiver. The position and the orientation of the receiver relative to the transmitter is
calculated by using the sensed signals as the input arguments of a mathematical
formulation. Figures 8.4 and 8.5 show the main components of Polhemus Fastrak
motion tracking system. The details of technical specifications of the tracking system

and the software development kit can be found in (Polhemus, 2009).

134

VESTEL !
LCD ‘
N

l’ x .
. . @ Polhemus Fastrak
Connections of receivers . .
/ system electronics unit

RECEIVERS

Transmitter

Ao, VN : connection
;1.. & & | Powerled

Figure 8.5 Polhemus Fastrak motion tracking system rear side connections.

The tracking system includes a system electronics unit, a power adapter, a
transmitter and up to four receivers. The sampling frequency of the receivers is
dependent on the number of receivers physically connected to the system electronics
unit. Therefore, a single receiver is sampled at 120 Hz which is the maximum

sampling rate. Two receivers are sampled at 60 Hz each. Three receivers and four

135

receivers configurations operate at 40 Hz and 30 Hz sampling frequency for each of
the receivers respectively. The interface with the host computer can either be

RS — 232 interface or USB interface.

The tracking system is designed to provide the optimum accuracy when the
standard receivers are within the 76 cm of the standard transmitter. The receivers are
all — attitude. The static accuracy of the system is 0.08 cm RMS for X, Y or Z
receiver position, and 0.15° RMS for receiver orientation. The positional and angular
resolutions are 0.0005 cms/cm of range, and 0.025° respectively. The latency of the
system from the center of receiver measurement period to beginning of transfer from

output port is 4.0 ms.

By default, the output position data is X, Y, Z position (cm or inch) in
Cartesian Coordinate System considering the reference point on the transmitter as the
origin of the system. By default, the output orientation data is azimuth, elevation and
roll in Euler Angles considering the reference point on the transmitter as the origin of
the system. If needed, the application developer can select direction cosines or
quaternion as an output data. The metric unit can be selected as inch or metric units.

The type of output data can be ASCII or binary.

Prior to using Polhemus Fastrak, it should be calibrated for all the connected
receivers. In order to understand the calibration procedure, the developer should
know where the origins and reference frames on the transmitter and on the receivers
are located respectively. The related origins and reference frames are given in figure
7.6. Additionally, working knowledge on boresighting, reference frame alignment,

hemisphere tracking should be gathered.

8.2.1 Reference Frame Alignment

Reference frame alignment is needed as the first part of the calibration procedure

prior to each use.

136

Z'l

Cable to
System Blectronics

Unit

Alignment
Reference
Frame

-
Transmitter

Yl

| Origin(0x,0y,02)

v Cable to
System Electronics
Unit
ecei
Reference
Frame

Xll

Figure 8.6 The coordinate systems of the transmitter and the receiver.

The alignment creates a reference frame where the position and orientation data
gathered from the receiver are referenced to. The receiver is placed on the desired
location within the limits of the transmitter and the origin O(Ox,0Oy,0z) of the
transmitter — receiver pair is defined. That location will be the origin for only that

particular transmitter — receiver pair. Then, two more spatial points (Xx, Xy, Xz) and
(Yx,Yy,Yz) are defined in the positive X' and Y' directions respectively so that rays

OX' and OY' are orthogonal. The norms of these rays are defined by the user. By
default they are defined as 200cm. Finally, using three pointsO, X' and Y', a 2-D
space that is a plane can be defined. The normal of the plane is calculated by the

cross product of the rays OX' and OY'. Hence a Cartesian Reference Frame is built.

8.2.2 Boresighting

Boresighting is not mandatory in the calibration procedure. Boresighting aligns

the orientation of the receiver with the user coordinate system. This means that, when

137

boresighting is applied, the azimuth, elevation and roll at that moment will be
referenced as zero values. Then the further orientation measurements will be

performed relative to this reference orientation.

8.2.3 Hemisphere Tracking

The magnetic fields generated by the transmitter are symmetric. Therefore there
are two mathematical solutions to each set of receiver data as depicted by (Polhemus,
2009, p. 48). To provide a unique solution to the equations, only one hemisphere
named as the current hemisphere is used during the tracking. Outside the current
hemisphere, mathematical ambiguities i.e. sign flips occur. These ambiguities will
result in positioning and orienting the 3-D virtual model (for the application in the
scope of the thesis) inappropriately. Therefore the tracking system provides a
hemisphere tracking feature to track the current hemisphere that the receiver in. But
to enable this option, the hemisphere tracking should be enabled when the receiver is
in a known initial condition. This means that, the receiver should be in the + X
direction relative to the transmitter initially, prior to turning on the tracking system

and enabling this feature.

8.2.4 Output Data

The needed output data can be acquired from the motion tracking system by
software configuration prior to the operation. For most of the time X, Y and Z
Cartesian coordinates of position, azimuth, elevation and roll Euler orientation angles
and orientation quaternion will be adequate. Additionally, configuring the output

data format as binary instead of ASCII will reduce the data packet size.

8.2.5 Angular Operational Envelope

If needed, the azimuth, elevation and roll angles can be constraint to intervals. If

the receiver is outside these intervals, the user is notified.

138

8.2.6 Position Operational Envelope

If needed, the positions along + X, *Y, *Z directions can be constraint to

intervals. If the receiver is outside these intervals, the user is notified.

In most of the operation purposes, configuring the parameters mentioned in

section 8.2.1 to 8.2.6 will be adequate for tracking.

8.3 Sensable Phantom Omni Haptic Device

When a human touches an object in real world, a tactile stimulus is generated due
to the forces that are generated between the object and the point of contact. The
stimulus signal is transmitted to the brain via the nervous system. Then the
transmitted signal is interpreted appropriately by the brain. This leads to the haptic
perception. Then necessary reaction signals are generated accordingly by the brain
and transmitted to the motor system. The reaction signals are transformed into an

action by the motor system of the human.

Similarly, haptic devices aim to simulate the tactile stimulus generated when a
contact occurs between the human body and an object in virtual or real teleoperated
environment. The ultimate goal of the device is to make the human user perceive as
if he or she is really touching an object in the virtual or teleoperated environment
although the object is in fact virtual or far away. A haptic device performs this
simulation by applying appropriate forces along the appropriate linear or radial axes.
Thus a physical resistance is applied to the human holding the end-effector of the
haptic device. The strength and direction of the resistance depend on the material
composition of the object being touched. A good coverage of haptics can be found in

(Srinivasan, n.d.).

Sensable Phantom Omni has recently arrived at the laboratory by the time this
thesis was written. It has 6 degrees of freedom positional sensing with IEEE 1394a

interface for host computer connection. For further technical details the researcher

139

may refer to (SensAble Technologies, Inc., 2008). Figure 8.7 shows Sensable

Phantom Omni haptic device in the laboratory.

USB connections of
data gloves

IEEE1394a
connection of
haptic device

Logitech QuickCam
Pro 9000 pair
'0!
& Polhemus Fastrak
receiver 2
P ®
SDT Data Glove 5
Ultra USB pair Sensable Phantom Omni

haptic device

Power connection
of haptic device

Figure 8.7 The haptic device, the data glove pair with the receiver 2 and the webcam pair.

8.4 5DT Data Glove S Ultra USB Left and Right Pairs

SDT Data Glove 5 Ultra USB is a device for hand motion data capture. The
laboratory has both left and right data glove pairs. The data gloves have a USB
interface for host computer connection. Each data glove has five bend sensors to
measure the flexure of each finger. The flexure is measured as an average of first
joint and second joint on each finger. Each bend sensor analog output is digitized
with 12 bit analog digital converter. All the bend sensors are sampled at least at

60 Hz. The figure 8.7 shows each pair of data gloves that the laboratory has.

The data gloves can be integrated to a development environment via its bundled

software development kit. The data acquired from the sensors can either be raw or

140

scaled data. A total of 16 simple gestures can be defined for a single hand via the
software development kit. A calibration procedure is necessary. Auto-calibration
procedure is the simplest way to go. Technically, in auto-calibration mode, the raw

value x acquired from the bend sensor is compared to the current boundary values

x,,and x_ . If the read raw value is outside this inclusive interval, the boundary

values are updated. The corresponding sensor data observed from the application is
calculated as follows;
X=X

x,, =—=—MaxVal , MaxValis set by the user.
'xmax - xmin

For further information, the researcher should refer to (Fifth Dimension

Technologies [SDT], 2004a).

8.5 SDT HMD 800 - 26 3-D Head Mounted Display

SDT HMD 800 — 26 3-D head mounted display is a stereoscopic SVGA device
that has 26° viewing angle and 44 inch virtual image size at 2 meters. Each LCD
panel of the device can generate 800x600 image plane for each red, green an blue
colors resulting in 1.44 million pixels. The device in the laboratory is shown in figure

8.8. For further technical details the researcher may refer to (SDT, 2004b).

Polhemus Fastrak

receiver 1 Polhemus
Fastrak
transmitter
. i Eiedc® — .t
o\ E: é A o -
= 1
— Fixation plane for

| SDT HMD 800 - 26 3D head mounted display | | tracker calibration

Figure 8.8 5SDT HMD 800 — 26 3D head mounted display, mounted tracking system receiver and

transmitter.

141

8.6 Logitech QuickCam Pro 9000 Webcams

The laboratory has two Logitech QuickCam Pro 9000 webcams for augmented
reality and video processing applications. The webcams have Carl Zeiss optics with
2-MP HD sensor that can produce high definition video up to (1600 x 1200). The

devices in the laboratory are shown in the figure 8.7.

8.7 ATI X1550 and NVIDIA GeForce GTX295

ATI X1550 is an ATI RV515 core based graphics card with 105 million
transistors on 90nm fabrication process. It has 4 fragment (pixel) shaders, 2 vertex
shaders, 4 raster operation pipelines (ROPs) and 4 texture units. A support for
DirectX 9.0c, OpenGL 2.0, multiple render target and render to vertex buffer is
provided. It supports Shader Model 3.0 programmable vertex and fragment shaders
in hardware and up to 128 simultaneous pixel thread. The card has PCle x16 bus
interface for host computer communication. For more technical details, the
researcher should refer to (Advanced Micro Devices, Inc. [AMD], 2010) and
(Wikipedia, 2010s).

NVIDIA GeForce GTX 295 is a 2™ generation NVIDIA® Unified Architecture
and 10" generation NVIDIA GeForce series. It has two graphics processing unit.
Each graphics processing unit has 1.4 billion transistors on 55 nm fabrication
process. It supports NVIDIA® CUDA™ technology for general purpose computing.
Each graphics processing unit has 240 CUDA cores resulting in total of 480 CUDA
cores. It supports programmable graphics pipeline and hence programmable vertex,
geometry and fragment processors in hardware. The card supports NVIDIA®
PhysX™ for graphics processing unit based physics tasks for complex rigid body,
soft body, particle system, character control, ray-cast and articulated vehicle
dynamics, volumetric fluid simulation, cloths and volumetric force fields. NVIDIA®
PhysX™ is also multithreaded, multi platform and physics processing unit enabled.
Additionally a support for NVIDIA 3D Vision is provided for stereoscopic 3-D
applications. The card has NVIDIA Quad SLI® support for multi-graphics card

142

utilization, SLI multi monitor support and GigaThread™ technology that is a
massively multi threaded architecture for running thousands of independent threads
simultaneously. A support for Direct3D 10.0, OpenGL 3.3 and Shader Model 4.0
programmable vertex and fragment shaders in hardware is provided. The card uses
PCle x16 2.0 for communication with the host computer. For more technical

information, the researcher should refer to (NVIDIA, 2010) and (Wikipedia, 2010t).

CHAPTER NINE

SOFTWARE DEVELOPMENT AND HARDWARE INTEGRATION
RESULTS

In this chapter, all the software implementation results from the beginning of the

thesis to the end will be presented.

9.1 Software Development Tools Used During the Thesis Work

Microsoft Visual C++ 2005 Development Environment was used throughout the
thesis work. Mathworks MATLAB 2008a was used for numerical verification of the
methods implemented. The configuration graphical user interface (GUI) of the
software was developed using Qt GUI Development Kit which is platform
independent. Qt has its own meta object compiler and thus cannot be compiled
directly with Microsoft Visual C++ or other compilers. For technical details,
software design patterns and implementation considerations regarding Qt, the
researcher should refer to (Blanchette & Summerfield, 2008). Ogre3D was used as a
real time graphics rendering engine. For the technical and implementation
considerations, the researcher should refer to (Junker, 2006). Prior to Ogre3D,
OpenSceneGraph was the choice as a graphics rendering engine. It is used during the
augmented reality (AR) application development together with osgART. osgART is
the ARToolkit plug-in for OpenSceneGraph. INTEL OpenCV was also used for the
development of AR application. For more information about INTEL OpenCV, the
researcher should refer to (Bradsky & Kaehler, 2008). Ogre3D was the choice over
OpenSceneGraph during the virtual reality (VR) application development because of
its flexibility, ease of integration, support of shaders and most importantly the
availability of learning resources. The researcher interested in OpenSceneGraph
should refer to (Martz, 2007). Bullet was used as a physics engine during the thesis
work. A good learning resource for Bullet is (Coumans, 2009). For code
development tests accomplished using NVIDIA CUDA were compiled using
NVIDIA C Compiler that can be executed under Microsoft Visual C++ 2005. CUDA

143

144

API 2.2 was used during these tests. Microsoft DirectX 9.0c and Cg 2.0 were used
during the development. Apart from the actual software development, in order to
practice GPU based physics rendering and to test whether NVIDIA PhysX could be
useful for the development target or not, NVIDIA PhysX SDK 2.8.1 was studied
theoretically and practically. For details of NVIDIA PhysX, the researcher should
refer to (NVIDIA, 2008).

9.2 Implementations Completed during Augmented Reality (AR) Application

Research

In the beginning of the thesis work period, the necessary tracking and data glove
equipment could not be purchased. That meant a slow down for the laboratory
establishment process and also for the application development during that period.
Because, the user would not be able to interact with the virtual environment without
the tracker and the data gloves. Then for the period, the main target was defined to be
a development of a virtual environment in which the user can pan in the environment
with the head movements and control a virtual graphical user interface tablet for
several actions. At the result of this period, a virtual environment in which an user
can control a virtual graphical user interface tablet via real time video tracking was
developed. The user head could successfully tracked for movements that are not very
fast so that linearity conditions satisfy. The Z distance that is the distance of the user
from the camera could not be calculated at that moment. To calculate the Z distance,
either a stereo rig should have been setup, or the affine relations of feature points
between two consecutive frames should be tracked. The real time tracking study was
not carried so far as the main goal of the thesis work was not computer vision. The
necessary theoretical background was given in the previous chapters. The
implementation results will be given in figure 9.1. For necessary camera calibration,
ARToolkit was used. For 2-D head tracking was performed using INTEL OpenCV
Library. For development of the virtual environment OpenSceneGraph was used.
Finally, the integration of OpenSceneGraph with ARToolkit was established via
0sgART plug-in.

Input center coordinates: X 164.H0806BA
H 114. a8

Input distortion ratio: F 68 . 708

Input size adjustment factor: § 1.989284

Humber of horizontal lines <7>: 7

Humber of vertical lines (%2: %

Humber of iteration (52: &

[Distance among lines (46.088880>: 48.APARAA
a6aea> : 100.A0A0AR

{320.248>

iGrabbed image .

bicture Tools Help

Calibration result

| 100% +

145

Type a question for

B P 4% S| LS Edit Pickores... |] Auto

CalibZ

1 67.599984

164.A008BA
114

67.5999084
67.5999684
67.5999684
67.5999604
67.5999604
67.5999684
67.5999684
67.5999084
67.5999684
67.5999684

167.221795
15 L6873

[]c]a]
=] i}

t on image o £
s mouse button to check fit of next image.

1

Image size <x.w> = <3I20.248>
Camera Param epr e

= 159 _258d88 131 .7580840 1
5]

AlAAn B.9AAWA 1. BWd8 A

Registered 3D virtual cube
in real time

68 \58.25000 O.00000 =
_B000B 363 .04707 20.75000 O.00008 N s L
o

<320,

e

£ S
4 A ARAAA 158 256L

888 131 .756000 164
| A AARAG

Registered 3D virtual cube
real time

146

Registered 3D anatomy
models under affine
transformation in real time

(d)

Fyameﬁate,j.%- ~— S

Virtual GUI tablet is being
controlled by the user via
real time video data.

Corners of the square are
used as features for tracking
and pose estimation

(e)

147

—1 rasuix Lol

2-D face tracking for pan
movements in virtual
environment

.zHEBHB
.ES-HBEB
.ES-HHEB
.EEHHHEB

oL
oL
m
m
m
m

o MR

ra

Ly |
n
m
m
m
m

.zHBBBB
.=HEBHB
:CHHEB

ra

O T T I T I U T T T T
ra

Figure 9.1 (a) Camera calibration. (b), (c) Initial implementations for registering 3-D models with the
video in real time. (d) Application of affine transformations to 3-D model in real time by tracking the
corner features of the square on the planar paper in the video data. (e) User interaction with the virtual
environment and the control of a graphical user interface tablet via tracking the same features in (d);
white wireframe overlays indicate the model part selection. (f) Face tracking for pan movements in the

virtual environment.

The face tracking implementation remained as a separate module, because at that

time the necessary equipments arrived.

9.3 Development Result of the Immersive Interactive Virtual Environment for

Collaborative Anatomy Inspections in Medical Education

The final development results are presented in this part. The software layers and
scene graph hierarchy are developed as given in figures 9.2 and 9.3 respectively.
Then the views from the real time interactive environment will be presented.
Following this part, the preliminary implementation experiences and study results

leading to the final software development will be presented.

148

Configuration GUI by Qt
Video & SDT Data
3-D simulation Monstor Fommemus | “Gilove s
application Settings <> ?JS;IB Ultra =P
logic - USB
* comm comm *
A A ;

Real time graphics engine v Real time physics v ¢ ¢ v
Ogre3D (Modified engine Bullet
according to the (Modified according to
software needs) the software needs)

Cg Compiler |« Direct3D * * * * *

Cg Runtime

Polhemus | 5DT Data

o
A
n
2z
Core Cg Fastrak | Gloves | % '§
ol APl | UltraAPI| €35
Microsoft § =
Direct3D API O g
Direct3D g
HLSL g
Compiler @ 1L.SL Runtime =
Core HLSL
Runtime *
Operation System | | |
4 (Microsoft Windows XP SP3) ¢ ¢
* Polhemus .
Graphics processing unit Fastrak ¢ | 5DT Data Har(c;g isk
and DOF Glove 5 models
hardware motion Ultra and)
(NVIDIA GTX295 or ATI X1550 is used) tracker | hardware -
hardware
Primary display unit Secondary display unit
5DT HMD 800-26 3-D VESTEL LCD panel or
head mounted display Sanyo data projector

Figure 9.2 Functional layers of the developed software.

Light 1 World Axis Light 2
Node Entity Node
Light 1
Camera 2
Translate Root
Node
Camera 1
Translate
Camera 2
Floor
Node
Floor
Entity
Camera 1
Pitch Node
Camera 2
a2 Roll Node GUl oo
Tablet

Camera 1
Roll Node

Camera 2
Entity

Camera 2
Axis Entity

Camera 1
Axis Entity

Camera 1

Camera 1
Entity

N

Skeleton

Childnode 1

Body

Skeleton

Light 2

Subroot
Node

Node

MR
Childnode
1

R Child
Childnode
1

Part 1 of
MR

Device
Entity

Muscle Body
Childnode 1

Child

Wall
Node

Wall
Entity

MR
Childnode
2

Part 2 of
MR
Device
Entity

Muscle Body

Childnode 1

Childnode

149

MR
e e e e |Childnode
N

Part N of
MR
Device
Entity

uscle
Body

N

Skeleton Part 1 of
Part 1 of Body Child Muscle
Body Childnode 1 Body
Skin Entity
Entity
Part 1 of
Skeleton
Body
Entity

Figure 9.3 Directed acyclic graph representing a part of the virtual environment developed. Only a

representative portion of the whole graph is given because of the page size constraint. Black dots

represent remaining node connections in the graph.

150

151

(d)

152

Figure 9.4 (a) and (b) represent two views from the virtual environment in which two users are

present. The uses are indicated by blue pyramids together with local coordinate axis. Each user has a
local coordinate axis in the bottom left of the view to see his or her orientation in the virtual
environment (See section 5.2 for gimbal lock problem). Object manipulations are done by hand. The
frame rate is 18 fps at average. The texturing and lightning are performed using programmable
graphics pipeline by using Cg language (See section 5.4). (c) and (d) represent the rigged and skinned
hand deforming in accordance with the user’s hand gestures (See section 5.5). A light shaft is rendered
at the position of the medical light aimed towards the human body (See section 5.3). (e) Represents
the deformable cloths and tissues. The green info overlay at the lower left corner of the screen informs
the user about the penetration depth, collision contact point and contact normal and the applied
impulse when collision occurs between the user’s hand and between any virtual object (See chapter 6
and sections 6.6.3.1, 6.6.3.2). White wireframes represent the collision models used for related render

models.

153

(b)
Figure 9.5 (a) A close look at bump mapping with parallax offset technique used for texturing the

environment. The model-view matrix and light parameters are continuously passed to the GPU as the
vertex code input arguments to update the lighting effects such as reflection power and its direction.
This technique is applied by using programmable graphics pipeline with the help of vertex processor
and fragment processor codes written in Cg (See section 5.4). (b) A 2-D dynamic mass-spring

topology namely — the cloth simulation - on which two logos present. This dynamic topology is used

154

to study the tradeoffs of numerical integration methods between their stability and accuracy in
conditions where time steps are changed and to implement integration methods such as explicit Euler
integration, second order Runge-Kutta integration, fourth order Runge-Kutta integration and Verlet
integration are considered. The other particular importance of that scene is that, one of the first
collision detections are implement by using the white sphere standing in front of the 2-D mass-spring
topology. The collision between the sphere and the 2-D mass-spring topology is solved by
implementing fitting a sphere around the mesh of the white sphere and detecting collisions between
this sphere and the vertices of the 2-D mass-spring topology to which masses are bound. The

governing differential equation of the 2-D mass spring topology, applied forces and collision scheme

are independent from the physics properties of rest of the virtual environment (See chapter 6).

155

(b)
Figure 9.6 Interaction is possible with the 3-D models in the virtual environment. (a) One of the users
has taken the light standing on the bed by touching and holding with his or her hand. (b) The other
user is looking at the user holding the light. The light can be notices on the hand of the user (See
chapter 6).

156

(b)
Figure 9.7 (a) One of the users is looking at the other user who has left the light to the ground. (b) The
view of the user who has left the light near the wall. Leaving the 3-D model can be done by colliding
it with the bed or according to the bending data of the fingers of the user retrieved from the data glove

(See chapter 5 and chapter 6).

157

(b)
Figure 9.8 A user interface with several controls is displayed when a user wants to manipulate the
parts of the anatomy model. (a) and (b) presents the views of two users. Lights are dimmed if wanted,

during inspection (See section 5.3 for light shafts rendering).

158

(b)
Figure 9.9 (a) One of the users looks at the user interface. Notice that information can be displayed on
the user interface. (b) A user in the same scene holding the part of an anatomy model. A light shaft is

located over the model part of interest (See section 5.3 for light shafts rendering).

159

(b)
Figure 9.10 Several properties of the 3-D models can be controlled via the user interface. Constraints
defined for the controls of the user interface define their behaviour. When a user touches or grabs the
user control, the color of the related control goes to green. When the user leaves the user control its
color returns to the original color (See chapter 6 for the collision detection and constraint solution
methods). These are presented in (a) and (b). Anatomic parts can be attached, detached and

manipulated freely by the user via the virtual hand.

160

(©

Figure 9.11 One of the users decides the inspect one of the parts. Any affine transform can be applied

for this purpse. A light shaft is seen over the model of interest. These are presented in (a) and (b) from
the views of two users. In (c), a user inspects inside of the anatomy models and if wants interacts with

the anatomy model parts.

161

Figure 9.12 Initial tests for using 2-D mass spring systems with volumetric 3-D models. The

implementation should be tuned by appropriate spring constants and volume preservation constraints.
But the correct approach is to use tetrahedral mass-spring ssystem and solve those models numerically
for modeling states of dynamic 3-D topologies i.e deformation, due to the applied force, because using
2-D mass-spring system can capture the surface of the 3-D model with lack of information relating
volume of the 3-D model (the hand in this particular case). (a) and (b) presents two states of a
deformable volumetric hand tried to be modeled by 2-D mass-spring system. Notice that the applied
force is due to the gravity and due to the collisions from the ground. Due to the lack of necessary

constraints on the 2-D mass-spring system, hand behaves in an inconsistent manner (See chapter 6).

162

(b)
Figure 9.13 (a) 2-D mesh-spring system for modeling 2-D dynamics and collision. (b) 3-D tetrahedral

mesh-spring system for modeling 3-D volumetric dynamics and collision (See chapter 6).

163

(b)

Figure 9.14 (a) and (b) presents initial views from the environment prior to programming vertex

processors and fragment processors with Cg. White wireframes represent the collision models used for

related render models.

164

Figure 9.15 A person using the system for testing.

9.4 Implementations Completed during Mathematical Elements of Computer

Graphics and Real Time Graphics Rendering Research

The time period in which no tracker and data glove exist was also used to get
theoretical and practical background on curves and surfaces in 3-D spaces such as
Bezier surface, Spline curves and surfaces and their variants, Coons Bicubic surface,
etc... and real time graphics rendering. The interested researcher should refer to
(Rogers & Adams, 1990) for the theory of mathematical elements of computer
graphics. Figure 9.16 presents custom software developed using Visual C++ and
without using any graphics API such as Microsoft Direct3D or OpenGL during this
period for visualizing and affine transforming several different types of surfaces and
curves mentioned above. For theoretical and implementation studies in real time
graphics rendering, (Moller & et al., 2008) and (Wright, & et al., 2007) are preferred.

Figure 9.17 presents several implementations completed.

165

" B .
File Edit View iindow DRAWII Drawing Properties Hel BEES
q Prop: o

IR IR T R I T A

ey
e i B

Pas(¥, ¥, Z)=(246,248,303) L hom
Figure 9.16 A custom software developed for visualizing and transforming several primitives and
functions such as Bspline surface, conics, etc ... for modeling topology changes in later stages. Using

splines instead of linear models for interpolations i.e. in FEM produces more physically consistent

results (See section 5.1).

166

%

— Gpeutl Cubs idaps

167

(d)

Figure 9.17 Several implementations completed for practicing real time graphics rendering referring

to (Wright, & et al., 2007). (a) Texture mapping with lights and shadows. (b) Environment mapping.
(c) Reflection. (d) 3-D object selection. Some of these techniques were used in the actual virtual

environment (See section 5.1).

9.5 Implementations Completed during Collision Detection Research

As seen from the previous chapters, collision detection is an important subject not
only in computer graphics but also in path finding problems and robotics. As seen
from the papers referenced in the previous chapters, it would be suitable to use the
appropriate collision detection method for appropriate situations. For example, an
interactive application simulating deformable objects might require a fine
triangle-triangle collision detection that needs a high computational power; but on
the other hand an oriented bounding box that needs a low computational power might
be sufficient for a game. Therefore prior to implementation, the needs should be
analyzed well and the tradeoff between the performance of the application and the
error between the collision models that will approximate the actual 3-D render model
and the actual render topology should be considered. During this phase of the
research period, to get insight into collision detection techniques, well known simple

methods such bounding sphere and bounding box are implemented in addition to

168

more accurate triangle-triangle collision detection. The mathematical theory and
implementation details can be found at (Morefield & Malloy, 2007), (Moéller, 1997).
For more in depth study in collision detection, the researcher should refer to the
papers mentioned in chapter 1. The results are shown in figures 9.18 and 9.19.

Car pizina Hzlirlzmsz J d

No collision detected

169

[

Carpizima Bezlirlzms il ..j

Incorrect collision detected

(b)

Figure 9.18 Implementing collision detection in 3-D space using bounding sphere referencing

(Morefield & Malloy, 2007). (a) No collision detection. (b) Incorrect collision detection due to the
high error rate between the 3-D render topology and the collision model chosen to approximate that
topology. Due to its simplicity and several topological properties given in chapter 6, this technique is

used where coarse collision detection is adequate (See section 6.5).

— Trianglzs Daizeiion Iz Corplisma Bolirle __’j !

170

— Trianglzs Dotzeiion 2 Corpisma Bolirls ﬁ

Figure 9.19 Implementing collision detection in 3-D space using triangle-triangle collision test
referencing (Morefield & Malloy, 2007), (Moller, 1997). (a) No collision detected. (b) Correctly
detected collision because of the minimization of the error between the collision model chosen and the
3-D render topology. This technique is used only for anatomical models where fine collision detection

is needed i.e. for cutting due its high computation power demand (See section 6.6.3).

9.6 Experiences with SOFA — Simulation Open Framework Architecture

As mentioned before, SOFA is an important simulation framework developed by
INRIA. It supports NVIDIA CUDA. Although not tested yet, it is claimed that it also
supports several haptic devices. It consists of a rich numerical algorithm package
including finite element model solvers, conjugate gradient solver, mass-spring
system solver and etc..., collision detection package, collision model and render
model mapping package including barycentric mapping, etc... and several space
partitioning methods. During the thesis work, source code of SOFA was inspected
for integration with the thesis development. But, due to the complexity of the
relations between the software modules of the source code and our limited
knowledge on some of the numerical methods used in SOFA at that time, this aim

could not be accomplished. But this study on the source code of SOFA provided a

171

well established knowledge about the design of such simulation framework for

future. Figures 9.20 and 9.21 present some results from this period.

S9.6FPS Time: 1.51e+0035 | & Il |1= 0 Init: 0s End: 05

(b)

172

LEFPS Time: 1.57e+0035 | @ T= 0 Inik: 0 s Erdi 05

()

SQ.FPS Time: 22.4 s E @I @ ’E IEI T= 0 Ink:0s End:0s
(d)
Figure 9.20 A simulation example with SOFA using NVIDIA CUDA (See section 2.3). (a) and (b)

represent two different deformation states of a liver where FEM is used for numerical calculations. (c)
Barycentric mapping is used to control the deformation of the render models meaning that a
mechanical model of the liver is used in the FEM and each node of this model is the center of collision
spheres indicated in orange color. The position of the nodes hence the center of collision spheres are
defined as linear combination of suitable triangular render elements indicated in red color (d) Sphere

collision models are used for collision detection with the liver to save computation sources.

173

221 FPS Time: Z.64s E E @ @ T= 0 Init: 0s _| End: 0Os
(a)

30.6FPS Time: 1455 @[« [0 [p][0][p]=0 Init: 0s EndiOs

(b)
Figure 9.21 Practicing fluid dynamics in SOFA (See section 2.3). (a) and (b) represent two different
states of a stable fluid. This simulation technique can be used to model some of the body fluids and

their interaction with i.e. vessels in further studies.

174

9.7 Development Stages of the Graphics User Interface using Qt Development
Kit

Developed by
Dokuz Eylul University
Electrics and Electronics Eng. VR Lab.
&
Fac. of Medicine Biophysics Dept.

(CLLLLLLLLL LI LI L LI

(CLLLLLLLIIL]

Station 1 akgnment reset successtul. =
7 acaust on

Acquired station 1 origin point coordinate(x, v,
2 (32027733, 8.996520, 8453117

s defaut X axis vector end coordriatels, v,
2 200500005, 0.000000, 0.000000].

Eosng

s dlefaut ¥ axis vector end coordiiete(s, v,
2 (0000000, 200000000, 0.000000].

<

g
ol Fastrak Tracker boresial g
enabied. .

Staton 1 akaniment successfal.

(b)

175

Oreet 7 g Sabaystern 52
1O SR e
an -
Fastent
Leveit

Comater o) active dhevicn

1. Prips J20CW (2inch LD MONITOR: F200WS]
01 MVIDIIA GeFores GTX 205
3+

ENABLED

s of Right Fingers Lower Thiestokds of Right Fingers
R L T I MR L

|Glove calibration thread alive...

(d)
Figure 9.22 The setup and calibration GUI developed for the application with Qt Kit. The GUI is used
for (a) entering to the virtual environment, (b) the tracker calibration, (c) video settings and (d) data

glove calibration.

9.8 Experiences with Cg and GPU Programming for Graphics

Prior to the implementation of the GPU programming for graphics for the actual
software, several stand-alone practices had been completed. This was necessary to

learn implementation of rendering codes for vertex processors and fragment

176

processors, how they were executed on the processor and their differences. The

following figures are some results from this period.

(b)

177

(©
Figure 9.23 Practical implementations on lighting using vertex processors and fragment processors in
the programmable graphics pipeline of the GPU. (a) and (b) present vertex lighting and fragment
lighting respectively. Notice the smoothness in the specular lights in (b) because lighting code is
implemented in the fragment processor. In this case this code is executed for every pixel in the scene.
On the other hand, in (a) the lighting code is implemented in vertex processor. In this case this code is
executed for every vertex in the scene. The lighting for remaining pixels where no vertex exists, the
lighting is interpolated as a linear combination of corresponding vertices, which is in fact Gouraud
lighting. In (c) two spotlights are implemented using vertex processors (See section 5.1 and chapter 4

for GPU programming).

178

(b)

179

(d)
Figure 9.24 The pictures above represent snapshots from the real time rendering of dispersion,
reflection, refraction calculated on GPU using Cg. The environmental mapping method is used to

perceive a car in an real environment (See section 5.1 and chapter 4).

180

(b)

Figure 9.25 In (a) practicing affine transformation using vertex and fragment processors; and in (b)

practicing particle simulation using vertex and fragment processors in the programmable graphics

pipeline using Cg (See section 4.5).

9.9 Experiences with NVIDIA CUDA and Performance Comparisons for

Further Projects and Possible Implementations

Integration of CUDA to the current developed software will enable using more
computationally demanding but on the other more physically consistent numerical
methods such as finite element models (FEM) via GPU implementation. Although,
the aim was to use FEM to model elastic objects, time was not adequate. But several
code implementations were investigated for getting insight to using CUDA. The

following pictures present some results.

181

& - |=] x|
(@)
Rendering at 16269.0 fps with GPU
= o . implementation, 0.7 fps with CPU

implementation

exture created.
reating PBO.
BO created.
reating GL texture

exture created.

texture
ted.

PU inplementation
PU inplementation

182

(©
Figure 9.26 Practicing NVIDIA CUDA for several simulations. (a) presents the hardware

configuration on which the implementations are done. (b) presents an simulation of Mandelbrot fractal
for different depth levels. The pixels with black color are in the Mandelbrot set and the other colors
represent the rate of divergence of the recursive generating sequence to infinity. The Mandelbrot set is
generated in real-time on GPU. (c¢) presents a fluid dynamics simulation for a stable fluid with defined
boundary conditions. Navier-Stokes Equations are numerically solved on GPU. These are all
simulated in real time. The necessary solvers and example source codes are found in NVIDIA CUDA
SDK. They should be compiled a priori (See chapter 4 for programming GPUs for general purpose

computations).

183

9.10 Experiences with NVIDIA PhysX and Performance Comparisons for

Further Projects and Possible Implementations

(b)
Figure 9.27 Practicing NVIDIA PhysX for several simulations for taking advantage of physics

rendering with GPU. (a) presents a texturize cloth made up of 2-D mass-spring system. Vertices at the
top part of the cloth are constrained to a rigid body at the ceiling, hence they are not moveable. The
state of the remaining vertices is controlled by the governing differential equation d*x/dt*=F,, driven
by the gravitational force. If desired, a force can be applied to a vertex by selecting and pulling or
pushing it to appropriate direction. From there on, that applied force will also be used for calculating
the net force to drive the governing differential equation of the system (b) presents a cutting operation
which can be executed by canceling links of the selected vertices to adjacent vertices. The necessary
solvers and example source codes are found in NVIDIA PhysX SDK. They should be compiled a

priori.

184

9.11 Construction of Mesh Spring Structures and Implementation of Topology

Processing and Refinement for Mesh Cutting Operation Using Bullet Engine

(b)

185

(d)

Figure 9.28 (a) and (b) present a construction of 2-D mass-spring system with AABBs at vertices

indicated in white color and model partitioning indicated with violet color for collision detection. (c)
and (d) present topology processing for the actual 2-D mass-spring system for simulating a cutting
operation. For each cut surface, necessary extra vertices, masses, velocities, related AABBs and faces

are generated both on the remaining mass-spring system and on the cut piece (See chapter 6).

186

9.12 Haptic Rendering Implementation Results

apolugy aad baptics »i DEV EEE VR LAB.

Study for dynamic mesh topology and haptics
Interact with body skin mesh topology

The direction of
The I12 norm of e

be(x, y, z): -2.431802, 18.192868, 32.857173 m.
e: 37.636258 N.

(b)

187

Y, z): -0.186003, 0.2775874, 1.809245 m.

__The i2 norm af lell by the haptic device: 2.558376 N. ;
/ A

(d)

Figure 9.29 Initial haptic rendering module developed during the thesis period. The integration

The direction of force applied by the haptic device(x, y, z): -0.537674, 0.328347, 2.47558

method used in the module is an Explicit Euler Method. (a), (b) show that for small time steps and low
force loading condition, the mesh topology of the body can be deformed via the haptic device. The
norm of the applied force, the application direction is overlaid on the screen. (c), (d) show that in high

force loading conditions, the mesh system diverges from its equilibrium point (See section 6.9).

CHAPTER TEN

CONCLUSIONS

Prior to going on with the conclusions of the thesis work, the author’s viewpoint
of a scientific research should be indicated. Computer technology has led to the
development of many applications targeted to scientific researches; but the more
important concept than an application is the mathematical theory of computation and
complexity that forms a basis for all of the today’s programming languages,
algorithms and computing machines. Therefore the application should not be the
only target of the research in engineering, but a tool for understanding the origins of
the established theories, thinking styles of the pioneers in the computation field, the
“why” and “how” questions these pioneers asked and their solutions. The researches
of important pioneers such as Charles Babbage, John Von Neumann and Alan Turing
should be well analyzed to maintain a complete and connected background for
synthesizing new theories and designs in the field. While doing these, gaining a
working knowledge in applied sciences such as physics, chemistry and biology will

definitely change the way a researcher handles a problem and understands the nature.

At the end of thesis work and at the end of the software development stage, the

following goals were achieved:

e A well equipped and operational computer graphics and virtual reality
laboratory was established with the setup seen in chapter eight. The
laboratory is the first one in Dokuz Eyliil University that specifically target
the researches in mathematical theory and applications of computer graphics,
scientific simulation and visualization, the architecture and programming of
graphics processing units for not only graphics processing but also for general
purpose computing and scientific computations.

e A functional interactive virtual environment in which the user can interact
with the surrounding rigid and deformable objects and with the other

collaborators was constructed.

188

189

Necessary software modules were developed for interfacing the motion
tracker device and the data gloves. The software module for interfacing the
haptic device was also developed but it was in the early stages.

Necessary software modules were developed for physics and graphics
rendering. Then the communication connections between these modules were
established.

A user interface was developed with Qt to enter the virtual environment,
perform tracker calibration, data glove calibration and video settings for the
user. Hence, the user’s position in real world is transformed properly to
coordinates in the virtual world. The user could see a virtual hand deforming
according to bending amounts of his/her fingers. This was necessary to
generate hand gestures in the virtual environment or to trigger certain events.
A 3-D hand mesh was rigged and skinned so that when the user in the real
world moved his/her fingers, the same movements were also done by the
rigged hand mesh using the bending values acquired from the data glove
sensors. This gave the user a more immersive and natural feeling in the
virtual environment.

The lighting and texture rendering were accomplished by programming the
programmable pipeline of the graphics processing unit. NVIDIA Cg and
Microsoft HLSL shader languages were used for this purpose. Accomplishing
the rendering tasks on the GPU side, released the CPU for other tasks such as
computing the simulation parameters and acquiring data from external
hardware such as the motion tracker device and the data gloves.

Inside the virtual environment, the user could manipulate the virtual objects
with an additional 3-D graphical user interface that is shown when the virtual
object is being touched.

Collisions between rigid and deformable objects were detected and
parameters such as contact points, normals in local and world space and
penetration depths were calculated.

The user could also cut or deform the soft models.

190

e NVIDIA CUDA API was evaluated for the research accomplished on
programming GPUs for scientific and general purpose computing during the
thesis period.

e Several other engines other than Ogre3D and Bullet were tested for their
capabilities and usability for future development projects. Those engines
were SOFA, ODE — Open Dynamics Engine, NVIDIA PhysX, OpenTissue,
SPRING Simulator Framework, Openlnventor, OpenProducer and Havoc.

¢ A simple augmented reality application was developed for registering the 3-D
virtual objects with the video and for tracking the user hand to control a 3-D
virtual user interface in real time. The segmented features for registration
were artificial and hence imposed by humans.

® Haptics rendering with soft anatomical and tissue models was accomplished
by using the methods in chapter 6 via OpenHaptics APIL.

® Preliminary studies and researches for finite element modeling were
accomplished for more precise mathematical representation of the system

dynamics being simulated.

The following criterions should be considered to enhance the current application:

e Further improvements for topology processing should be done in order to
capture the dynamics of the soft models. The numerical stability of the
differential equation solver was not appropriate for scientific usages.

e The opinions of several users should be obtained for user interface
development.

¢ Physics rendering and dynamic system modeling were done using CPU.
Moving these calculations onto GPU will free the CPU for other tasks and
increasing the frame rate.

e Instead of using a mass-spring system, better numerical methods such as
finite element modeling will produce more physically consistent results.

¢ Instead of rigging and skinning a hand, a stationary calibrated camera system
can be used to segment hand features and then inverse kinematics methods

can used for estimating the rotation and translation matrices of a hand and

191

fingers for user interaction and capturing the state of the hand to the virtual
environment.

e The augmented reality application may use natural environment features.
Hence, it will be more usable and practical to be used in outside
environments for information visualization.

e The 3-D anatomical models used in the thesis work should be replaced with
3-D models reconstructed from MRI, CT data acquired from Dokuz Eyliil
University Faculty of Medicine. For initial researches, the medical data at
(United States National Library of Medicine National Institutes of Health
[NLM], 2010) can be used.

According to our observations during the thesis period, it can be concluded that
VR has the ability to change the interaction styles not only between the human and
the computers but also between the humans. The interactive and immersive nature of
VR can shorten time needed to understand the fundamental of the dynamics of a
scientific processes, because a well-designed VR system can not only simulate the
dynamics of a scientific process in real time but also takes the user to the place of
occurrence of that process. The interaction ability provided to the user for affecting
the current dynamics of the simulated process is a key for providing a learning
opportunity of the different behaviors of the simulated system. Additionally, by
increasing the intelligence of the agents in the VR systems will increase the

interaction capabilities of the system with humans and alter its behavior accordingly.

AR is rather a new way of visualization of the data at hand and also a new way of
human computer interaction. As in VR, its development mostly depends on
expensive and powerful computation units, but on the other hand, its utilization as a
way of human-computer interaction and visualization is expected to increase in the
future. At the time this thesis was written, many entertainment companies such as
Microsoft and Sony were developing user interfaces for many games and
applications using AR technology for XBox360 and PlayStation 3 respectively.
Apart from the games, AR changes the real world a person lives in into a mixture of

reality and unreality which is limited by the user imagination and the intelligence of

192

the computing system. The AR software developed during the thesis work is in very
preliminary stages and needs improvements. It needs markers in order to track the
user and control the virtual user interface. Markerless tracking of the user, more
intelligent software that can understand the emotions of the user and respond
according to user’s movements will definitely make the interaction more natural and

will improve its usability.

On the other hand, as seen from the experimentations on graphics processor
programming accomplished during the thesis period, programming graphics
processing units for scientific calculations and for general purpose computing is an
important and promising research area for both hardware and software perspectives.
The performance gains of x10 and x100 over the central processing units (CPUs) had
been observed during the thesis work. The benchmarking was done using the
programmable graphics pipeline for implementing several graphics processing
techniques by Cg and NVIDIA CUDA for numerical computing research purposes
on graphics processing unit (GPU). The CPU used was Intel Q9550 and graphics
processor was NVIDIA GTX 295. The survey completed in the thesis work showed
an increasing usage of GPUs in scientific computing. This is not only because of the
increasing amount of data to be analyzed by the researchers, but also because of the
existence of algorithms and numerical analysis methods that are parallel in their
nature and the ability of GPUs in performing matrix vector operations very quickly
as these operations are why GPUs were designed and optimized for. The key concept
is the parallelism that these GPUs present with their many core hardware architecture
and their high bandwidths for data transmission compared to the general purpose
CPUs. Additionally, availability of appropriate compilers, high level programming
environments for use in heterogeneous computing systems where both CPU and
GPU exist simultaneously and the increasing number of GPU general purpose
programming APIs such as NVIDIA CUDA, ATI Stream and OpenCL enable the
researchers in diverse fields benefit from the computational power that GPUs have.
More in depth research on GPUs should be carried on in the future projects. Current

stages completed in the thesis work may be ported to GPU code where appropriate.

193

The collision detection and numerical solutions of differential equations

accomplished on GPU will definitely increase the performance of the software.

The planned research areas of the laboratory for undergraduate and graduate

levels are as follows:

e Mathematical theory and applications of collision detection in 3-D virtual
environments.

e Haptic rendering and applications in human computer interaction,
collaborative virtual reality and augmented reality applications in
engineering, medicine and applied sciences.

e Numerical computing, development of graphics processing unit based
numerical solution packages.

e QGraphics processing unit programming for real time computer vision.

e Parallel processing software design patterns.

¢ Computational geometry and mathematical topology.

e Mathematical theory and applications of scientific simulation and
visualization of rigid and elastic bodies, fluid mechanics for gas, liquid and
blood flows that will be useful in engineering, applied sciences and medicine.

e Methods for machine intelligence and for more interactive and intelligent

communication with computers.

194

REFERENCES

Advanced Micro Devices, Inc. [AMD)]. (2010). ATI RadeonTM X 1550 specifications.
Retrieved September 01, 2010, from http://www.amd.com/us/
products/desktop/graphics/other/Pages/x1550-specifications.aspx .

Amorim, R., Haase, G., Liebmann, M., & Santos, R. W. D. (2009). Comparing
CUDA and OpenGL implementations for a Jacobi iteration. HPCS’09,
International Conference on High Performance Computing & Simulation, 2009,
22-32. Retrieved September 20, 2009, from IEEE Xplore Digital Library

Database.

Avi. (2007). RealityPrime >> scenegraphs: Past, present, and future. Retrieved
September 01, 2010, from http://www.realityprime.com/articles.com/ar

ticles/scenegraphs-past-present-and-future#tomorrow .

Azuma, R. T. (1997). A Survey of augmented reality. Retrieved February 17, 2008,
from CiteSeerX Database.

Baraff, D. (1989). Analytical methods for dynamic simulation of nonpenetrating
rigid bodies. Computer Graphics, 23, (3) 223-232. Retrieved November 28, 2008
, from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.163.5683 .

Baraff, D., & Witkin, A. (1998). Large steps in cloth simulation. Retrieved
September 11, 2009, from http://www.cs.cmu.edu/~baraff/papers/sig98.pdf .

Baraff, D. (2001). Collision and contact — physically based modelling, SIGGRAPH
2001 course notes. Retrieved March 21, 2010, from http://www.pixar.com/comp
anyinfo/research/pbm2001/ .

Barakonyi, I, Psik, T., & Schmalstieg, D. (2004). Agents that talk and hit back:
Animated agents in augmented reality. ISMAR 2004 IEEE and ACM

195

International Symposium on Mixed and Augmented Reality, 2004, 141-150.
Retrieved March 01, 2007, from CiteSeerX Database.

Barber, C. B., Dobkin, D. P., & Huhdanha, H. (1996). The quickhull algorithm for
convex hulls. ACM Transactions on Mathematical Software, 22, (4) 469-483.
Retrieved November 27, 2008 from CiteSeerX Database.

Barequet, G., Chazelle, B., Guibas, L. J., Mitchell, J. S. B., & Tal, A. (1996).
BOXTREE: A hierachical representation for surfaces in 3D. EUROGRAPHICS
'96, 15 (3) 387-396. Retrieved November 24, 2008, from CiteSeerX Database.

Bathe, K. J. (1996). Finite element procedures. New Jersey: Prentice-Hall, Inc.

Bergen, G. V. (n.d.). Proximity queries and penetration depth computation on 3D
game objects. Retrieved March 16, 2010, from http://www.google.com.tr/url?sa=
t&source=web&cd=1&ved=0CBkQFjAA&url=http%3 A %2F%2Fciteseerx.ist.psu
.edu%?2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.113.6708%26rep%3Drepl%?2
6type%3Dpdf&rct=j&q=Proximity%20Queries %20and%20Penetration%20Depth
%20Computation%200n%203D%20Game%200bjects&ei=tmeOTPzuBMKU4ga
n6eGECg&usg=AFQjCNHwI3SeLYmNt1zrMc87EL5X_au8jw .

Bergen, G. V. D. (1998). Efficient collision detection of complex deformable
models using AABB trees. Journal of Graphics Tools, 2. Retrieved May 17, 2010,

from CiteSeerX Database.

Bergen, G. V. D. (1999). A fast and robust GJK implementation for collision
detection of convex objects. Retrieved March 13, 2010, from

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.7659 .

Bergen, G. V. D. (2004). Collision detection in interactive 3D environments. CA:

Morgan Kaufmann Publishers.

196

Bielser, D., Maiwald, V. A., & Gross M. H. (1999). Interactive cuts through 3
dimensional soft tissue. EUROGRAPHICS’99, 18, (3) 31-38. Retrieved March
31, 2010, from CiteSeerX Database.

Bielser, D., & Gross, M. H. (2002). Interactive simulation of surgical cuts. The
Eight Pacific Conference on Computer Graphics and Applications 2000
Proceedings. Retrieved February 03, 2009, from http://ieeexplore.ieee.org/st/amp/
stamp.jsp?arnumber=00883933 .

Bielser, D., Glardon, P., Teschner, M., & Gross, M. (2003). A state machine for
real-time cutting of tetrahedral meshes. /1" Pacific Conference on Computer
Graphics and Applications 2003 Proceedings. Retrieved February 02, 20009,
from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1238279&tag=1 .

Blanchette, J., & Summerfield, M. (2008). C++ gui programming with Qt 4 (2nd

ed.). Massachusetts: Prentice Hall.

Bolz, J., Farmer, 1., Grinspun, E., & Schréder, P. (2003). Sparse matrix solvers on
the gpu: Conjugate gradients and multigrid. ACM Transactions on Graphics,
22,917-924. Retrieved September 20, 2009, from CiteSeerX Database.

Bradsky, G., & Kaehler, A. (2008). Learning OpenCV computer vision with the
OpenCYV Library . CA: O’Reilly Media, Inc.

Bridson, R. E. (2003). Computational aspects of dynamics surfaces — PhD thesis.
Retrieved March 29, 2010, from http://www.cs.ubc.ca/~rbridson/ .

Brown, D., Julier, S., Baillot, Y., & Livingston, M. A. (2003). An event based data
distribution mechanism for collaborative mobile augmented reality and virtual
environments. Proceedings of the IEEE Virtual Reality 2003 VR’03, 43-52.
Retrieved March, 01, 2007, from CiteSeerX Database.

197

Cerveri, P., Momi, E. D., Lopomo, N., Baud-Bovy, G., Barros, R. M. L., & Ferrigno
G. (2007). Finger kinematic modeling and real-time hand motion estimation.
Annals of Biomedical Engineering, 35, (11) 1989-2002. Retrieved September 10,
2010, from SpringerLink Database.

CGAL. (2009). CGAL wuser and reference manual: All Parts. Retrieved
February 01, 2009, from http://www.cgal.org/Manual/ .

CGAL. (2010). CGAL - computational geometry algorithms library. Retrieved
February 01, 2009, from http://www.cgal.org/download.html .

Comas, O, Taylor, Z. A., Allard, J., Ourselin, S, Cotin, S., & Passenger, J. (2008).
Efficient nonlinear FEM for soft tissue modelling and its GPU implementation
within the open source framework SOFA. International Symposium on
Computational Models for Biomedical Simulation, 2008, 28-39. Retrieved

September 10, 2009, from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1
.1.156.8345 .

Cook, D. R., Malkus, D. S., & Plesha M. E. (1989). Concepts and applications of
finite element analysis (3rd ed.). NY: John Wiley & Sons, Inc.

Cotin, S., Delingette, H., & Ayache, N. (1999). Real-time elastic deformations of
soft tissues for surgery simulation. IEEE Transactions on Visualization and
Computer Graphics, 5, (1) 62-73. Retrieved January 6, 2009, from IEEE Xplore
Digital Library Database.

Coumans, E. (2009). Bullet 2.74 physics SDK manual. Retrieved October 16, 2009,
from http://code.google.com/p/bullet/downloads/list .

Coumans, E. (2010). Bullet physics library. Retrieved October 16, 2009, from
http://code.google.com/p/bullet/downloads/list .

198

Davis, E. J., Ozsoy A., Patel S., & Taufer M. (2009). Towards large — scale
molecular dynamics simulation on graphics processors. Retrieved September 10,

2010, from http://www.nvidia.com/object/cuda_apps_flash_new.html#state=
detailsOpen;aid=55b2f736-0a6b-4893-aaed-272cb5dd676d .

Deitel, H. M., Deitel, P. J., & Choffnes, D. R. (2004). Operating systems (3rd ed.).

New Jersey: Prentice Hall.

Desbrun, M., Schroder, P., & Barr, A. (1999). Interactive animation of structured
deformable objects — technical report 034. Retrieved July 07, 2009, from
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.26.4150&rep=rep1 &ty
pe=pdf .

Devillers, O., & Guigue, P. (2002). Faster triangle — triangle intersection tests.
Retrieved November 24, 2008, from http://citeseerx.ist.psu.edu/viewdoc/downloa
d?doi=10.1.1.6.1725&rep=rep1 &type=pdf .

Diestel, R. (2005). Graph theory (3rd ed.). Heidelberg: Springer-Verlag.

Dijkstra, E. W. (1959). A note on two problems in connection with graphs.
Numerische Mathematik, 1, 269-271.

Dunn, F., & Parberry 1. (2002). 3D math primer for graphics and game development.

Texas: Wordware Publishing, Inc.

Eberly, D. H. (2004). Game physics. CA: Morgan Kaufmann Publishers.

Eberly, D. (2004). Primitive tests for collision detection. Retrieved March 15,2010,

from http://www.cse.ttu.edu.tw/~jmchen/compg/slides/collision/taxonomy.pdf .

Eberly, D. (2008). Intersection of convex objects: The method of seperating axes.

Retrieved November 28, 2008, from http://geometrictools.com/Documentation/M

199

ethodOfSeparatingAxes.pdf .

Eden, A. H., Gil, J., Hirshfeld, Y., & Yehudai, A. (1998). Towards a mathematical
foundation for design patterns. Retrieved August 17, 2010, from

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.6332 .

Edmunds, M. (2010). Contact, the Antikythera Mechanism research project.
Retrieved September 01, 2010, from http://www.antikythera-mechanism.gr/con

tact .

Elliot J. (2010). Professional Graphics Controller notes. Retrieved September 06,
2010, from http://www.seasip.info/VintagePC/pgc.html .

Engel, W. F. (2004a). ShaderX2: Introductions & tutorials with DirectX 9. Texas:
Wordware Publishing, Inc.

Engel, W. F. (2004b). Shader X2: Shader programming tips & tricks with DirectX 9.

Texas: Wordware Publishing, Inc.

Ericson, C. (2005). Real time collision detection. CA: Morgan Kaufmann Publishers.

Farias, T., Almeida, M., Teixeira, J. M., Teichrieb, V., & Kelner, J. (2008). A high
performance massively parallel approach for real time deformable body physics
simulation. Retrieved July 21, 2009, from
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4685727 &tag=1 .

Fernando, R. (2004). GPU gems programmaing techniques, tips, and tricks for real-

time graphics. MA: Addison-Wesley, Pearson Education, Inc.

Fernando, R., & Kilgard, M. J. (2003). The Cg tutorial the definitive guide to

programmable real-time graphics. MA: Addison-Wesley, Pearson Education, Inc.

200

Ferreira, A. J. M. (2009). MATLAB codes for finite element analysis solids and

structures. Springer.

Fifth Dimension Technologies [SDT]. (2004a). SDT data glove ultra series user’s
manual. SDT.

Fifth Dimension Technologies [SDT]. (2004b). 5SDT HMD 800-26 series user’s
manual. SDT.

Forsyth, D. A., & Ponce, J. (2003). Computer vision a modern approach. NIJ:

Prentice Hall.

Foster, G. (2010). GameDev.net — understanding and implementing scene graphs.
Retrieved September 01, 2010, from http://www.gamedev.net/reference/program

ming/features/scenegraph/default.asp .

Freeth, T., Jones, A., Steele, J. M., & Bitsakis, Y. (2008). Calendars with olympiad
display and eclipse prediction on the Antikythera Mechanism. Nature

International Weekly Journal of Science, 454, 614-617.

Fujimoto, N., (2008). Faster matrix-vector multiplication on GeForce 8800GTX.
IPDPS 2008, IEEE International Symposium on Parallel & Distributed
Processing, 2009, 1-8. Retrieved September 20, 2009, from IEEE Xplore Digital

Library Database.

Fiirnstahl, P., Reitinger, B., & Schmalstieg, D. (2006). Global mesh partitioning for
surgical planning. Central European Multimedia and Virtual Reality Conference,
2006. Retrieved February 17, 2008, from http://citeseerx.ist.psu.edu/viewdoc/sum
mary?doi=10.1.1.164.9922 .

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995). Design patterns elements
of reusable object-oriented software. IN: Addison-Wesley.

201

Georgii, J., & Westermann, R. (2005). Mass-spring systems on the GPU. Simulation
Modelling Practice and Theory, 13, (8) 693-702. Retrieved September 21, 2009,

from ScienceDirect Database.

Gilbert, E. G., Johnson, D. W., & Keerthi S. S. (1988). A fast procedure for
computing the distance etween complex objects in three dimensional space. [EEE
Journal of Robotics and Automation, 4 (2) 193-203. Retrieved March 13, 2010,
from IEEE Xplore Digital Library Database.

Glencross, M., Otaduy, M., & Chalmers, A. (2005). Interaction in distributed virtual
environments. EUROGRAPHICS 2005. Retrieved September 01, 2009, from
http://isg.cs.tcd.ie/eg2005/T8.html .

Goose, S., Sudarsky, S., Zhang, X., & Navab, N. (2002). SEAR: Towards a mobile
and context-sensitive speech-enabled augmented reality. IEEE International
Conference on Multimedia and Expo ICME’02 Proceedings, 2002, 1, 849-852.
Retrieved March 01 2007, from IEEE Xplore Digital Library Database.

Gottschalk S., Lin M. C., & Manocha D. (1996). OBBTree: A hierachical structure
for rapid interference detection. Proceedings of the 23rd Annual Conference on
Computer Graphics and Interactive Techniques, 1, 171-180. Retrieved December

02, 2008, from http://portal.acm.org/citation.cfm?id=237244 .

Goddeke, D., Buijssen, S. H. M., Wobker, H., & Turek, S. (2009). GPU cluster
computing for finite element applications. SIAM Conference on Computational
Science and Engineering Emerging Manycore Architectures Minisymposium.
Retrieved September 14, 2010, from http://people.maths.ox.ac.uk
/~gilesm/SIAM_CSE/goeddeke.pdf .

GPGPU.org. (2010). GPGPU.org:: General-purpose computation on graphics

processing units. Retrieved September 01, 2010, from www.gpgpu.org .

202

Grady, S. M. (2003). Virtual Reality: Simulating and enhancing the world with
computers. NY: Facts On File, Inc.

Groen D., Harfst S., & Zwart S. P. (2009). The living application: A self-organizing
system for complex grid tasks. Retrieved September 10, 2010, from
http://www.nvidia.com/object/cuda_apps_flash_new.html#state=detailsOpen;aid=
a0d09099-5643-406d-9d4a-9¢7053425028 .

Guest. (2010). Offset mapping or parallax effect [2004, Feb 09]. Message posted to
http://www.ogre3d.org/forums/viewtopic.php?f=3&t=343 2&start=0 .

Hamam, A., Nourian, S., El-Far, N. R., Malric, F., Shen, X., & Georganas, N. D.,
(2006). A distributed, collaborative and haptic-enabled eye cataract surgery
application with a user interface on desktop, stereo desktop and immersive
displays. Retrieved July 28, 20009, from
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4062520&tag=1 .

Harada, Y., Nazir, N., Shiote, Y., & Ito, T. (2006). Human-machine collaboration
system for fine assembly process. International Joint Conference SICE-ICASE,
2006, 5355-5360. Retrieved March 01, 2007, from IEEE Xplore Digital Library

Database.

Heidelberger, H., Teschner, M., & Gross, M. (2003). Volumetric collision
detection for deformable objects. Retrieved October 4, 2009, from
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.13.2297 &rep=rep 1 &ty
pe=pdf .

Heidelberger, B., Teschner, M., Keiser, R., Miiller, M., & Gross, M. (2004).
Consistent penetration depth estimation for deformable collision response.
Retrieved April 01, 2010, from http://citeseerx.ist.psu.edu/viewdoc/sum
mary?doi=10.1.1.130.5656 .

203

Heidelberger, B., Teschner, M., Keiser, R., Miiller, M., & Gross, M. (2004).
Consistent penetration depth estimation for deformable collision response.

Retrieved April 01, 2010, from http://citeseerx.ist.psu.edu/viewdoc/summary?doi

=10.1.1.130.5656 .

Heim, M. (1998). Virtual realism. New York: Oxford University Press.

Held, M., Klosowski, J. T., & Mitchell, J. S. B. (1995). Evaluation of collision
detection methods for virtual reality fly-throughs. In Canadian Conference on
Computational Geometry, 205-210. Retrieved November 25, 2008, CiteSeerX

Database.

Held, M. (1998). ERIT — A collection of efficient and reliable intersection tests.
Journal of Graphics Tools, 2, 25-44. Retrieved November 28, 2008, from
CiteSeerX Database.

Hermann, E., Faure, F., & Raffin, B. (2008). Ray-traced collision detection for
deformable bodies. Retrieved October 5, 2009, from http://citeseerx.ist.psu.edu/v
iewdoc/summary?doi=10.1.1.141.7858 .

Hoff III, K. E., Zaferakis, A., Lin, M, & Manocha, D. (n.d.). Fast 3-D geometric
proximity queries between rigid and deformable models using graphics
hardware acceleration. Retrieved November 24, 2008, from http://citeseerx.ist.ps

u.edu/viewdoc/download?doi=10.1.1.111.9155&rep=rep1 &type=pdf .

Huang, J., Ponce, S. P., Park, S. I, Cao, Y., & Quek, F. (2008). GPU accelerated
computation for robust motion tracking using the CUDA framework. VIE2008,

Sth International Conference on Visual Information Engineering, 2008, 437-

442. Retrieved September 20, 2009, from IEEE Xplore Digital LibraryDatabase.

Hubbard, P. M. (1995). Collision detection for interactive graphics applications —

204

PhD thesis. Retrieved November 24, 2008, from ftp://ftp.cs.brown.edu/pub/techr
eports/95/cs95-08.pdf .

Hutton, D. V. (2004). Fundementals of finite element analysis. NY: McGraw-Hill

Companies, Inc.

INTEL. (2010). INTEL® Core™ {7 Processor Extreme Edition. Retrieved
September 06, 2010, from http:www.intel.com/products/processor/corei7ee/index.

htm .

Jacob, M. (2010). OGRE — Open source 3D graphics engine. Retrieved October
07, 2009, from http://www.ogre3d.org/download/source .

James, D. L. (2008). Multi-sensory physics and user interaction SIGGRAPH2008
course. Retrieved April 05, 2010, from http://www.matthiasmueller.info/realtime

physics/index.html .

Jang, H., Park, A., & Jung, K. (2008). Neural network implementation using CUDA
and OpenMP. DICTA 08, Digital Image Computing Techniques and Application,
2008, 155-161. Retrieved September 20, 2009, from IEEE Xplore Digital Library

Database.

Januszewski, M., & Kostur M. (2009). Accelerating numerical solutions of
stochastic differential qquations with CUDA. Retrieved September 10, 2010, from
http://www.nvidia.com/object/cuda_apps_flash_new.html#state=detailsOpen
;aid=2234c230-375e-11de-8a39-0800200c9a66 .

Jiménez, P., Thomas, F., & Torras C. (2001). 3D collision detection : A survey.
Computers & Graphics, 25, (2001) 269-285. Retrieved November 28, 2008, from

http://www.stanford.edu/class/cs277/schedule/assets/Jimenez2001.pdf .

Junker, G. (2006). Pro OGRE 3D programming. CA: Apress.

205

Karabassi, E. A., Papaioannou, G., & Theoharis, T. (1999). Intersection test for
collision detection in particle systems. Journal of Graphics Tools, 4. Retrieved

December 01, 2009, from CiteSeerX Database.

Kataria, M. (n.d.). Force feedback and collision detection of 3D primitives in
virtual environments. Retrieved March 15, 2010, from http://www.ee.iitb.ac.in/st

udent/~kataria/data/Academics/HapticsInVE-report.pdf .

Kato, H. & Billinghurst, M. (2006). ARToolkit. Retrieved October 01, 2007, from

http://www.hitl.washington.edu/artoolkit/documentation/ .

Kaufmann, P., Martin, S., Botsch, M., & Gross, M. (2008). Flexible simulation of
deformable models using discontinuous Galerkin FEM. Journal of Graphical
Models — Special Issue of ACM SIGGRAPH / Eurographics Symposium on
Computer Animation 2008, 71, (4) 153-167.

Kaufmann, P., Martin, S., Botsch, M., Grinspun, E., & Gross, M. (2009). Enrichment
textures for detailed cutting of shells. ACM Transactions on Graphics, 28, (3) 1-
10.

Khalil, H. K. (2002). Nonlinear systems (3rd ed.). NJ: Prentice-Hall, Inc.

Kilgard, M. J. (1999). Improving shadows and reflections via the stencil buffer.
Retrieved September 08, 2010, from http://developer.nvidia.com/object/St

encil_Buffer Tutorial.html .

Kirk, (n.d.). The future of massively parallel and GPU computing. Retrieved
September 01, 2010, from http://www.greatlakesconsortium.org/events/GPUMulti
core/kirk.pdf .

206

Kirk, D. B., & Hwu, W. W. (2010). Programming massively parallel processors a

hands on approach. MA: Elsevier Inc., Morgan Kaufmann.

Knuth, D. E. (1973). Sorting and searching the art of computer programming.
Boston: Addison — Wesley.

Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical Society, 7, (1) 48-

50.

Kriiger, J., & Westermann, R. (2003). Linear algebra operators for GPU
implementation of numerical algorithms. Retrieved September 20, 2009, from

http://wwwcg.in.tum.de/Research/Publications/LinAlg .

Lacoursiére, C. (n.d.). Splitting methods for dry frictional contact problems in rigid
multibody systems: Preliminary performance results. Retrieved March 28, 2010,
from http://www.ep.liu.se/ecp/010/004/ecp01004.pdf .

Lahabar, S., & Narayanan, P. J. (2009). Singular value decomposition on GPU
using CUDA. IPDPS 2009, IEEE International Symposium on Parallel &
Distributed Processing, 2009, 1- 10. Retrieved September 20, 2009, from IEEE
Xplore Digital Library Database.

Lander, J. (1999a). Devil in the blue-faceted dress: Real-time cloth animation.

Game Developer, May 1999, 17-21.

Lander, J.(1999b). Apply the force to get the right amount of friction. Game
Developer, August 1999, 19-24.

Lander, J.(1999c). Collision response: Bouncy, trouncy, fun. Game Developer,

March 1999, 15-19.

207

Larsson, T., & Moller, T. A. (2001). Collision detection for continuously deforming
bodies. The Visual Computer, 19, (2-3) 164-174. Retrieved November 28, 2008,
from SpringerLink Database.

Leiterman, J. C. (2004). Learn vertex and pixel shader programming with DirectX®

9. Texas: Wordware Publishing, Inc.

Li, B., Wang, C., Li, Z., & Chen, Y. (2009). A practical method for real time
ocean simulation. 4th International Conference on Computer Science &
Education, 2009, 742-747. Retrieved September 20, 2009, from
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05228129 .

Lin, M. C., & Gottschalk, S. (1998). Collision detection between geometric models:
A survey. In Proc. of IMA Conference on Mathematics of Surfaces, 37-56.
Retrieved November 24, 2008, from CiteSeerX Database.

Liu, Y., & De, S. (2008). CUDA-based real time surgery simulation. Retrieved July
21, 2009, from http://www.acor.rpi.edu/research/CUDA.pdf .

Liu, Y., Jiao, S., Wu, W., & De, S. (2008). GPU accelerated fast FEM deformation
simulation. APCCAS 2008 IEEE Asia Pacific Conference on Circuits and Systems,
2008, 606-609. Retrieved September 21, 2009, from IEEE Xplore Digital Library

Database.

Luebke, D., & Humphreys, G. (2007). How GPUs work. Computer, February 2007,
126-130.

Marathe, A. R., Carey, H. L., & Taylor, D. M. (2007). Virtual reality hardware and
graphic display options for brain-machine interfaces. Journal of Neuroscience
Methods, 167, (1) 2-14. Retrieved January 09, 2008, from ScienceDirect

Database.

208

Marsaglia, G. (1996). Diehard random number testing. Retrieved October 2002,
from http://stat.fsu.edu/~geo/diehard.html .

Martz, P. (2007). OpenSceneGraph quick start guide. California: Computer Systems

Development Coorporation.

McShaffry, M. & et al. (2009). Game coding complete (3rd ed.). MA: Course
Technology PTR.

Mitchell, J. (2004). Light shafts rendering shadows in participating media.
Retrieved January 10, 2010, from http://developer.amd.com/media/gpu_assets/
Mitchell_LightShafts.pdf .

Mizuno, Kato, & Nishida (2004). Outdoor augmented reality for direct display of
hazard information. SICE 2004 Annual Conference 2004, 1, 831-836. Retrieved
March 01, 2007, from IEEE Xplore Digital Library Database.

Moller T. A., Haines E., & Hoffman N. (2008). Real time rendering. (3rd ed.). MA:
A K Peters, Ltd.

Morefield, R., & Malloy, B. (2007). 3D game development tutorials using SDL and
OSG. Retrieved October 01, 2008, from http://www.cs.clemson.edu/~malloy/
courses/3dgames-2007/tutor/ .

Mosegaard, J., Herborg, P., & Sgrensen, S. (2005). A GPU accelerated spring mass
system for surgical simulation. Retrieved September 21, 2009 from,

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.117.2423&rep=rep1 &t
ype=pdf .

Moller, T. (1997). A fast triangle-triangle intersection test. Journal of Graphics
Tools, 2, 25-30. Retrieved December 11, 2008, from CiteSeerX Database.

209

Moller, T. A. (2001). Fast 3-D triangle-box overlap testing. RetrievedNovember 24,
2008, from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.2.4803
&rep=repl &type=pdf .

Miiller, M., Heidelberger, B., Hennix, M., & Ratcliff, J. (2006). Position based
dynamics. Retrieved April 06, 2010, from http://www.matthiasmueller.info/publi
cations/posBasedDyn.pdf .

Miiller, M., James, D., Stam, J., & Thuerey, N. (2008b). Real time physics
SIGGRAPH2008. Retrieved April 05, 2010, from http://www.matthiasmueller.inf

o/realtimephysics/index.html .

Miiller, M., McMillan, L., Dorsey, J., & Jagnow, R., (2001). Real-time simulation of
deformation and fracture of stiff materials. EUROGRAPHICS 2001 Computer
Animation and Simulation Workshop, 99-111. Retrieved April 06, 2010, from
CiteSeerX Database.

Miiller, M., Stam, J., & James, D. (2008a). Real time physics class notes. Retrieved
August 15, 2009, from http://www.matthiasmueller.info/realtimephysics/index.ht

ml .

Nealen, A., Miiller, M., Keiser, R., Boxermann, E., & Carlson, M. (2005). Physically
based deformable models in computer graphics. Computer Graphics Forum, 25,
(4) 809-836. Retrieved April 06, 2010, from http://www.matthiasmueller.info/rea
Itimephysics/index.html .

Neumann J. V. (1945). First draft of a report on the EDVAC. Moore School of

Electrical Engineering, University of Pennsylvania.

Nguyen, H. (2007). GPU Gems 3. MA: Addison-Wesley, Pearson Education, Inc.

210

Nielsen, M. B., & Cotin, S. (1996). Real-time volumetric deformable models for
surgery simulation using finite elements and condensation. Computer Graphics

Forum, 57-66. Retrieved January 6, 2009, from CiteSeerX Database.

NVIDIA (2008). NVIDIA PhysX 2.8 documentation. Retrieved August 01, 2009,
from http://developer.nvidia.com/object/physx_downloads.html .

NVIDIA (2009b). NVIDIA PhysX physics simulation for developers. Retrieved July
17, 2009, http://developer.nvidia.com/object/physx_downloads.ht ml .

NVIDIA (2009a). NVIDIA CUDA™ programming guide (Version 2.2.1,
26.05.2009). Retrieved August 01, 2009, from http://developer.nvidia.com/object/
cuda_2_2_downloads.html .

NVIDIA. (2010). GeForce GTX 295. retrieved September 06, 2010, from
http://www.nvidia.com/object/product_geforce_gtx_295_us.html .

OpenSceneGraph. (2010). OpenSceneGraph web site. Retrieved February 10, 2009,

from http://www.openscenegraph.org/projects/osg/wiki/Downloads .

Otaduy, M., Tamstorf, R., Steinemann, D., & Gross, M. (2009). Implicit contact
handling for deformable objects. EUROGRAPHICS 2009 Journal Compilation,
28, (2). Retrieved August 31, 2009, from http://geom.mi.fu-
berlin.de/res/teaching/ss09/sem_geometrieverarbeitung/material/paper/otaduy_im

plicit_contact_handling.pdf .

Pathomaree, N., & Charoenseang, S. (2005). Augmented reality for skill transfer in
assembly task. IEEE International Workshop on Robots and Human Interactive
Communication, 2005, 500-504. Retrieved March 01, 2007, from IEEE Xplore
Digital Library Database.

211

Perepelkin, E., Smirnov, V., & Vorozhtsov S. (2009). Beam dynamic calculation by
NVIDIA® CUDA technology. Retrieved September 10, 2010, from
http://www.nvidia.com/object/cuda_apps_flash_new.html#state=detailsOpen;aid=
d508073b-38bf-4fc7-b99b-1ad6ff71b86S .

Pharr, M., & Fernando R. (Eds). (2005). GPU gems 2 programming techniques for
high-performance graphics and general-purpose computation. NJ:Addison

Wesley, Pearson Education, Inc.

Piekarski, W., & Thomas, B. H. (2003). Tinmith — mobile outdoor augmented reality
modelling demostration. ISMAR’03 Proceedings of the Second IEEE and ACM
International Symposium on Mixed and Augmented Reality, 2003, 317-318.
Retrieved March 01, 2007, from http://www.informatik.uni-
trier.de/~ley/db/indices/a-tree/p/Piekarski: Wayne.html .

Polhemus. (2009). Fastrak user manual (OPMOOPIO0O2 REV. F. June 2009).
Colchester, Vermont U.S.A: Polhemus.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery B. P. (2007).
Numerical recipes the art of scientific computing (3rd ed.). New York: Cambridge

University Press.

Prim, C. (1957). Shortest connections networks and some generalizations. Bell

System Technical Journal 36, (6) 1389-1401.

Provot, X. (1996). Deformation constraints in a mass-spring model to describe rigid
cloth behavior. In Graphics Interface, 147 - 154. Retrieved July 07, 2009, from
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.4040 .

Qin, J., Pang, W. M., Chui, Y. P.,, Wong, T. T., & Heng, P. A. (2008). A novel

modelling framework for multilayered soft tissue deformation in virtual

212

orthopedic surgery. Journal of Medical Systems, 34, (3) 261-271. Retrieved
September 10, 2009, from SpringerLink Database.

Ranzuglia, G., Cignoni, P., Ganovelli, F., & Scopigno R. (2006). Implementing
mesh-Based approaches for deformable objects on GPU. Fourth Eurographics
Italian Chapter, 2006, 213-218. Retrieved September 21, 2009, from
http://vcg.isti.cnr.it/Publications/2006/RCGS06/ .

Rasmusson, A., Mosegaard, J., & Sgrensen, S. (2008). Exploring parallel algorithms
for volumetric mass-spring-damper models in CUDA. Lecture Notes in
Computer Science 2008, 5104/2008, 49-58. Retrieved July 30, 2009, from
SpringerLink Database.

Reitinger, B., Bornik, A., Beichel, R., & Schmalstieg, D. (2006). Liver surgery
planning using virtual reality. IEEE Computer Graphics and Applications, 26,
(6) 36-47. Retrieved February 17, 2008, from IEEE Xplore Digital Library

Database.

Reitinger, B., Zach, C., & Schmalstieg, D. (2007). Augmented reality scouting for
interactive 3D reconstruction. Proceedings of IEEE Virtual Reality 2007, 219-
222. Retrieved February 17, 2008, from http://www.vrvis.at/publications/PB-
VRVis-2007-006 .

Reitmayr, G., & Schmalstieg, D. (2001). Mobile collaborative augmented reality. In
Proceedings ISAR 2001. Retrieved March 01, 2007, from http://studierstube.icg

.tu-graz.ac.at/projects/mobile/ .

Reitmayr, G., & Schmalstieg, D. (2004). Collaborative augmented reality for outdoor
navigation and information browsing. In Prooceedings of the Symposium on
Location Based Services and TeleCartography 2004, 31-41. Retrieved October
06, 2007, from CiteSeerX Database.

213

Reitmayr, G., & Schmalstieg, D. (2007). Scalable techniques for collaborative
outdoor augmented reality. Retrieved October 06, 2007, from http://www.ims.tu

wien.ac.at/media/documents/publications/reitmayrIsmarO4.pdf .

Rhee, T., Neumann, U., & Lewis, J. P. (2006). Human hand modelling from surface
anatomy. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games
2006. Retrieved September 05, 2010, from http://www.google.com.tr/url?
sa=t&source=web&cd=1&ved=0CBOQFjAA&url=http%3 A%2F%?2Fciteseerx.ist.
psu.edu%?2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.119.6648%26rep%3Drep1
%26type%3Dpdf&rct=j&q=Human%20Hand%20Modelling%20from%20Surface
%20Anatomy&ei=Qc_sTI6MK4PwsgbjotyGDw&usg=AFQjCNEHKEOrAbUlsq
XV2Ap2qB0GgXSgFQé&cad=rja .

Roberts, M., Packer, J., Sousa M. C., & Mitchell J. R. (2010). A work- efficient GPU
algorithms for level set segmentation. Retrieved September 10, 2010, from
http://www.nvidia.com/object/cuda_apps_flash_new.html#state=detail sOpen;aid=
f695686e-a314-4d4c-a222-7a1e88c75313 .

Rogers, D. F., & Adams, J. A. (1990). Mathematical elements for computer
graphics (2nd ed.). Singapore: McGraw-Hill.

Rost R. J., & Kane B. L. (2010). OpenGL shading language (3rd ed.). MA:

Addison-Wesley, Pearson Education, Inc.

Rugh, W. J. (1996). Linear system theory (2nd ed.). NJ: Prentice-Hall, Inc.

Seddon, C. (2005). OpenGL game development. Texas: Wordware Publishing, Inc.

SensAble Technologies, Inc. (2008). Specifications for the PHANTOM Omni®
haptic device. MA: SensAble Technologies, Inc.

214

Sewell, G. (2005). The numerical solution of ordinary and partial differential
equations (2nd ed.). New Jersey: John Wiley & Sons, Inc.

Smith, D. (2004). Light shafts photo — Duncan Smith photos at pbase.com.
Retrieved November 20, 2010, from http://www.pbase.com/duncansmith/image/3
7466541 .

Spampinato, D. G., Elster, A. C. (2009). Linear optimization on modern GPUs.
IPDPS 2009, IEEE International Symposium on Parallel & Distributed
Processing, 2009, 1-8. Retrieved September 20, 2009, from IEEE Xplore Digital
Library Database.

Srinivasan, M. A. (n.d.) What is haptics? Retrieved September 01, 2010, from
http://touchlab.mit.edu .

Stam, J. (2009). Nucleus: Towards a unified dynamics solver for computer graphics.
11th IEEE International Conference on Computer-Aided Design and Computer
Graphics, 2009, 1-11. Retrieved April 05, 2010, from IEEE Xplore Digital
Library Database.

Steinemann, D., Harders, M., Gross, M., & Szekely, G. (2006). Hybrid cutting of
deformable solids. Virtual Reality Conference 2006. Retrieved August 31, 2009,
from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1667 624 .

Steinemann, D., Otaduy, M. A., & Gross, M. (2006). Fast arbitrary splitting of
deforming objects. EUROGRAPHICS / ACM SIGGRAPH Symposium on
Computer Animation 2006. Retrieved August 31, 2009, from http://citeseerx.ist.ps
u.edu/viewdoc/summary?doi=10.1.1.87.1089 .

Strang, G. (1986). Introduction to applied mathematics. MA: Wellesley- Cambridge

Press.

215

Stroustrup, B. (2000). The C++ programming language (3rd ed.). AT&T Labs.
Murray Hill, New Jersey: MA: Addison — Wesley.

Stroustrup, B. (2008). Programming — principles and practice using C++. Addison
— Wesley.

Tan, T. S., Chong, K. F., & Low, K. L. (1999). Computing bounding volume
hierarchies using model simplification. 7999 ACM Symposium on Interactive

3D Graphics, 63-70. Retrieved November 25, 2008, from CiteSeerX Database.

Tatarchuk, N. (2006). Artist-directable real-time rain rendering in city environments,
SIGGRAPH 2006 advanced real-time rendering in 3D graphics and games course
notes. Retrieved September 11, 2010, from
http://developer.amd.com/media/gpu_assets/Tatarchuk-Rain.pdf .

Tatarchuk, N., & Shopf, J. (2007). Real -time medical visualization with FireGL.
SIGGRAPH 2007, AMD Technical Talk. Retrieved September 11, 2010, from
http://developer.amd.com/media/gpu_assets/Medical Visualization.pdf .

Tekalp, A. M. (1995). Digital video processing. NJ: Prentice Hall.

Taylor, Z. A., Cheng, M., & Ourselin, S. (2008). High-speed nonlinear finite
element analysis for surgical simulation using graphics processing units. /EEE

Transactions on Medical Imaging, 27, (5) 650-663.

Teschner, M., Heidelberger, B., Miiller, M., Pomeranets, D., & Gross, M. (2003).
Optimized spatial hashing for collision detection of deformable objects.
Retrieved March 30, 2010, from http://citeseerx.ist.psu.edu/viewdoc/download?do
i=10.1.1.4.5881&rep=rep1 &type=pdf .

Teschner, M., Kimmerle, S., Heidelberger, B., Zachmann, G., Raghupathi, L.,
Fuhrmann, A., Cani M. P., Faure, F., Thalmann, N. M., Strasser, W., & Volino, P.

216

(2004). Collision detection for deformable objects. EUROGRAPHICS
Association, 23, (3) 1-22.

The SOFA Team at INRIA Grenoble. (2009). Simulation open framework
architecture — The SOFA project. Retrieved August 05, 2009, from

http://www.sofa-framework.org/ .

The Sofa Team. (2008). Sofa documentation. Retrieved August 05, 2009, from

http://www.sofa-framework.org/manual .

Thuerey, N. (2008). Real-time physics part Ill: Fluids. Retrieved April 05, 2010,

from http://www.matthiasmueller.info/realtimephysics/index.html .

Tropp, O., Tal, A., & Shimshoni, L. (2005). A fast triangle to triangle intersection
test for collision detection. Retrieved November 25, 2008, from

http://mis.hevra.haifa.ac.il/~ishimshoni/papers/TroppTalShimshoni.pdf .

Turing A. M. (1936). On computable numbers, with an application to the
Entscheidungsproblem. The Graduate College, Princeton University, New Jersey,

US.A.

United States National Library of Medicine National Institutes of Health, [NLM].
(2010). The National Library of Medicine’s Visible Human Project. Retrieved
September 01, 2010, from http://www.nlm.nih.gov/research/visible/ .

University of North Carolina at Chapel Hill Department of Computer Science,
(2004). Fast penetration depth computation. Retrieved March 16, 2010, from

http://www.cs.unc.edu/Research/ProjectSummaries/penetration.pdf .

Vallino, J., & Brown, C. (1999). Haptics in augmented reality. IEEE International
Conference on Multimedia Computing and Systems 1999, 1, 195-200. Retrieved
March 01, 2007, from IEEE Xplore Digital Library Database.

217

Velamparambil, S., Cormier, S. M., Perry, J., Lemos, R., Okoniewski, M., & Leon J.
(2008). GPU Accelerated Krylov Subspace Methods for Computational
Electromagnetics. EuMC 2008, 38th European Microwave Conference, 2008,
1312-1314. Retrieved September 20, 2009, from IEEE Xplore Digital Library

Database.

Viola, P., & Jones, M. J. (2004). Robust real-time face detection. International
Journal of Computer Vision, 57, (2004) 137-154.

Vlack, K., & Tachi, S. (2001). Fast and accurate spacio — temporal intersection
detection with GJK algorithm. Retrieved March 13, 2010, from
http://www.vrsj.org/ic-at//papers/01079.pdf .

Wang, P., Becker, A. A., Jones, L.A., Glover A. T., Benford, S. D., Greenhalg, C. M.,
& Vloeberghs, M. (2007). Virtual reality simulation of surgery with haptic
feedback based on the boundary element method. ELSEVIER Computer and
Structures, 85, (2007) 331-339.

White, S., & Feiner, S., & Kopylec, J. (2006). Virtual vouchers: Prototyping a
mobile augmented reality user interface for botanical species identification. 3DUI
2006 IEEE Symposium on 3D User Interfaces, 2006, 119-126. Retrieved March
01, 2007, from IEEE Xplore Digital Library Database.

Wikipedia. (2010c). Singleton (mathematics): Wikipedia, the free encyclopedia.
Retrieved September 01, 2010, from http://en.wikipedia.org/wiki/Si
ngleton_%28mathematics %29 .

Wikipedia. (2010s). Radeon R520: Wikipedia, the free encyclopedia. Retrieved
September 01, 2010, http://en.wikipedia.org/wiki/Radeon_R520 .

218

Wikipedia. (2010a). Scene graph: Wikipedia, the free encyclopedia.Retrieved
September 01, 2010, from http://en.wikipedia.org/wiki/Scene_graph .

Wikipedia. (2010p). Shader:- Wikipedia, the free encyclopedia. Retrieved September
01, 2010, from http://en.wikipedia.org/wiki/Programmable_shader .

Wikipedia. (2010m). Colossus Compute:r — Wikipedia, the free encyclopedia.
Retrieved September 01, 2010, from http://en.wikipedia.org/wiki/C

olossus_computer .

Wikipedia. (20100). Professional Graphics Controller: Wikipedia, the free
encyclopedia. Retrieved September 01, 2010, from http://en.wikipedia.org/wi

ki/Professional_Graphics_Controller

Wikipedia. (2010g). Antikythera Mechanism: Wikipedia, the free encyclopedia.
Retrieved September 01, 2010, from http://en.wikipedia.org/wiki/A

ntikythera_mechanism .

Wikipedia. (20101). The Difference Engine: Wikipedia, the free encylopedia.
Retrieved September 01, 2010, from http://en.wikipedia.org/wiki/Dif

ference_engine .

Wikipedia. (2010e). Facade: Wikipedia, the free encyclopedia. Retrieved
September 01, 2010, from http://en.wikipedia.org/wiki/Facade .

Wikipedia. (2010d). C++ classes: Wikipedia, the free encyclopedia. Retrieved
September 01, 2010, from http://en.wikipedia.org/wiki/C%2B%?2B_classes .

Wikipedia. (20101). Z3 (computer): Wikipedia, the free encyclopedia. Retrieved
September 01, 2010, from http://en.wikipedia.org/wiki/Zuse_Z3 .

219

Wikipedia. (2010r). Dither: Wikipedia, the free encyclopedia. Retireved
September 08, 2010, from http://en.wikipedia.org/wiki/Dither .

Wikipedia. (2010k). Turing Completeness: Wikipedia, the free encyclopedia.
Retrieved September 01, 2010, from http://en.wikipedia.org/wiki/Turing-complete

Wikipedia. (2010t). GeForce 200 series: Wikipedia, the free encyclopedia.
Retrieved September 01, 2010, from http://en.wikipedia.org/wiki/G

eForce 200 _Series .

Wikipedia. (2010b). Singleton pattern: Wikipedia, the free encyclopedia.
Retrieved September 01, 2010, from http://en.wikipedia.org/wiki/Si

ngleton_pattern .

Wikipedia. (2010f). Computer: Wikipedia, the free encyclopedia. Retrieved
September 01, 2010, from http://en.wikipedia.org/wiki/Computer .

Wikipedia. (2010j). The Analytical Engine: ~ Wikipedia, the free encyclopedia.
Retrieved September 01, 2010, from http://en.wikipedia.org/wiki/A

nalytical_engine .

Wikipedia. (2010n). ENIAC: Wikipedia, the free encyclopedia. Retrieved
September 01, 2010, from http://en.wikipedia.org/wiki/ENIAC .

Wikipedia. (2010h). Charles Babbage: Wikipedia, the free encyclopedia. Retrieved
September 01, 2010, from http://en.wikipedia.org/wiki/C harles_Babbage .

Wikipedia. (2010s). Graphics processing unit: Wikipedia, the free encyclopedia.
Retrieved November 02, 2010, from http://en.wikipedia.org/wiki/G

raphics_processing_unit .

Wikipedia. (2010t). Gimbal lock: Wikipedia, the free encyclopedia. Retrieved

220

November 20, 2010, from http://en.wikipedia.org/wiki/Gimbal_lock .

Witkin, A., & Baraff, D. (2001). Physically based modeling, differential equation
basics. Retrieved September 10, 2009, from http://www.cs.cmu.edu/~baraff/sigco

urse/notesb.pdf .

Wojtan, C., Thuerey, N., Gross, M., & Turk, G. (2009). Deforming meshes that split
and merge. ACM Transactions on Graphics, 28, (3) 1-10.

Wright, R. S. J., Lipchak, B., & Haemel, N. (2007). OpenGL superbible

comprehensive tutorial and reference (4th ed.). MA: Addison-Wesley.

Yan, Z., Gu, L., Huang, P., Lv, S., Yu, X., & Kong, X. (2007). Soft tissue
deformation simulation in virtual surgery using nonlinear finite element method.
Retrieved July 04, 2009 from http://ieeexplore.ieee.org/xpls/abs_all.jsp?t
p=&arnumber=4353120&tag=1 .

Yu, R., Chiang, P., Chen, W., Zheng, J., Cai, Y., Ye, X., Zhang, S., Zhang, Y. &
Mak K. H. (2009). A framework for GPU-accelerated virtual cardiac

intervention. The International Journal of Virtual Reality, 8, (1) 37-41.

221

APPENDICES

The followings are submitted in the DVD in the pocket attached to the backcover

of this thesis. The detailed information regarding the directory structure can be found

in “README_Directory_Structure.txt” in the DVD.

x2S

1.

12.

All the C, VC++, Cg, HLSL codes developed using Microsoft Visual Studio
2005 in the scope of this M.Sc thesis. These are 3-D interactive and
immersive virtual reality application for medical simulations; the haptic
rendering application and the augmented reality application respectively.
Bullet physics library with the necessary code modifications for the M.Sc
thesis.

Ogre3D real time graphics engine with the necessary code modifications for
the M.Sc thesis.

Qt Toolkit used for the user interface development in the M.Sc thesis period.

. Microsoft DirectX 9.0c was used during the software development. It should

be downloaded from its web site. NVIDIA CUDA Library and NVIDIA
PhysX Library can be downloaded from NVIDIA Web Site.

3-D model meshes used in the developed software during this M.Sc thesis.
NVIDIA Cg used for GPU programming for graphics during this M.Sc thesis.
NVIDIA Texture Tools and Photoshop plug-ins.

SOFA Library used for research and practice oriented purposes.

. OpenCV library used in the augmented reality application developed during

the M.Sc thesis period.
ARToolkit library used in the augmented reality application developed during
the M.Sc thesis period
OpenSceneGraph library used in the augmented reality application developed

during the M.Sc thesis period.

