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 DEVELOPMENT OF A SYSTEM TO DIAGNOSE PAROXYSMAL 

ATRIAL FIBRILLATION PATIENTS FROM ARRHYTHMIA FREE ECG 

RECORDS  
 

 

ABSTRACT 

 

Atrial fibrillation (AF) patients could easily be determined based on their 

electrocardiogram (ECG) records. However, in paroxysmal atrial fibrillation (PAF) 

case, AF episodes occur randomly and mostly the cardiac rhythm returns to normal 

sinus rhythm before the subjects reach a health care facility. This makes it very 

difficult to obtain ECG records during a PAF attack. Therefore, there is a need for a 

method that could diagnose PAF based on the ECG recordings taken during normal 

sinus rhythm. 

 

In this thesis, a system to diagnose PAF patients from their ECG records taken 

during normal sinus rhythm was proposed. The ECG records of PAF patients were 

selected at least 45-minute away from any PAF attack to ensure the signal is 

independent from any AF effect to simulate real clinical case. A combination of time 

domain, frequency domain and nonlinear heart rate variability (HRV) features were 

offered to discriminate PAF patients and non-PAF subjects. The most distinguishing 

features were selected by genetic algorithm among thirty three features. 

Discriminative ability of the selected features was visualized with self organizing 

maps. Different classifiers were examined to find out which one separates two 

groups better in multidimensional feature space. The best sensitivity, specificity and 

accuracy values, which were obtained with support vector machine classifier, were 

found to be 93%, 95% and 95%, respectively, using the selected features. Hereby, 

the proposed system can be used to detect PAF patients from their 5-minute AF free 

records in clinical use.  

 

Keywords: Paroxysmal atrial fibrillation, classification, heart rate variability 

analysis, genetic algorithm, support vector machine  
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 ARİTMİSİZ EKG KAYITLARINDAN PAROKSİSMAL ATRİYAL 

FİBRİLASYON HASTALARINI TEŞHİŞ EDİCİ SİSTEM GELİŞTİRİLMESİ 

 

ÖZ 

 

Atriyal fibrilasyon (AF) hastaları elektrokardiyagram (EKG) kayıtlarına 

dayanarak kolayca belirlenebilir. Ancak paroksismal atriyal fibrilasyon (PAF) 

durumunda AF atakları rasgeledir ve genellikle hasta bir sağlık kuruluşuna gitmeden 

kalp ritmi kendiliğinden normal sinus ritmine geri döner. Bu durum PAF atağı 

sırasında EKG kaydı almayı çok zorlaştırır. Bu yüzden normal sinus ritminde alınan 

EKG kayıtlarından PAF hastalığını teşhis edici bir metoda ihtiyaç vardır.   

 

Bu tezde, normal sinus ritminde alınan EKG kayıtlarından PAF hastalarını teşhis 

edici bir sistem önerilmiştir. Gerçek klinik durumu simüle etmek için PAF 

hastalarının EKG kayıtları herhangi bir AF atağından en azından 45 dakika uzakta 

alınarak sinyalin  herhangi bir AF etkisinden bağımsız olması sağlanmıştır. PAF 

hastaları ve PAF olmayan kişileri ayırmak için zaman düzlemi, frekans düzlemi ve 

lineer olmayan kalp hızı değişikliği özniteliklerinin bir kombinasyonu önerilmiştir. 

Otuzüç öznitelik arasından en ayırıcı olan öznitelikler genetik algoritma ile 

seçilmiştir. Seçilen özniteliklerin ayırma yeteneği özdüzenleyici haritalar ile 

görselleştirilmiştir. Çok boyutlu öznitelik uzayında iki grubu daha başarılı ayıran 

sınıflandırıcıyı bulmak amacıyla farklı sıınıflandırıcılar incelenmiştir. Vektör destek 

makinesi sınıflandırıcı ile sırasıyla %93, %95, %95 duyarlılık, özgüllük ve doğruluk 

sonuçları elde edilmiştir. Böylelikle önerilen system ile klinik uygulamalarda PAF 

hastaları atriyal fibrilasyonsuz 5 dakikalık kayıtlarından teşhis edilebilir. 

 

Anahtar kelimeler: Paroksismal atriyal fibrilasyon, sınıflandırma, kalp hızı 

değişkenliği analizi, genetik algoritma, vektör destek makinaları 

  



 

vi 

 
 
CONTENTS 

 
Page 

Ph.D. THESIS EXAMINATION RESULT FORM .................................................... ii 

ACKNOWLEDGMENTS .......................................................................................... iii 

ABSTRACT ................................................................................................................ iv 

ÖZ ................................................................................................................................ v 

LIST OF FIGURES .................................................................................................... ix 

LIST OF TABLES .................................................................................................... xiii 

 

CHAPTER ONE - INTRODUCTION ..................................................................... 1 

 

CHAPTER TWO - PHYSIOLOGICAL BACKGROUND.................................... 6 

 

2.1 Circulatory System ......................................................................................... 6 

2.2 Anatomy of the Heart ..................................................................................... 7 

2.2.1 Electroconduction System of the Heart .................................................. 9 

2.2.2 Heart Rate Regulation ........................................................................... 11 

2.3 Electrocardiography ..................................................................................... 14 

2.4 Arrhythmias ................................................................................................. 19 

2.4.1 Ventricular Based Arrhythmias ............................................................ 19 

2.4.2 Supraventricular Based Arrhythmias .................................................... 22 

2.4.3 Atrial Fibrillation .................................................................................. 28 

 

CHAPTER THREE – HEART RATE VARIABILITY ANALYSIS ................. 30 

 

3.1 Background .................................................................................................. 30 

3.1.1 Clinical Applications of HRV ............................................................... 30 

3.1.2 Physiological Origins of HRV .............................................................. 32 

3.2 Preprocessing ............................................................................................... 33 

3.2.1 Derivation of Cardiovascular Time Series ............................................ 34 



 

vii 

3.2.2 Segmentation ........................................................................................ 37 

3.2.3 Artifact Removal ................................................................................... 37 

3.3 Feature Extraction from RR Interval Data ................................................... 40 

3.4 Feature Normalization ................................................................................. 41 

3.4.1 Time Domain Analysis ......................................................................... 41 

3.4.2 Frequency Domain Analysis ................................................................. 43 

3.4.3 Nonlinear Analysis ............................................................................... 50 

 

CHAPTER FOUR - FEATURE SELECTION WITH GENETIC 

ALGORITHMS ........................................................................................................ 62 

 

4.1 Representation of Individuals ...................................................................... 65 

4.2 Fitness .......................................................................................................... 65 

4.3 Selection ....................................................................................................... 66 

4.4 Crossover ..................................................................................................... 67 

4.5 Mutation ....................................................................................................... 68 

 

CHAPTER FIVE - METHODS .............................................................................. 71 

 

5.1 Data Acqusition ........................................................................................... 71 

5.2 Classification Stage ...................................................................................... 73 

5.2.1 Bayes’ Classification ............................................................................ 74 

5.2.2 K-Nearest Neighbor Classification ....................................................... 77 

5.2.3 Artificial Neural Network Classification .............................................. 79 

5.2.4 Support Vector Machine Classification ................................................ 83 

5.3 Model Evaluation ......................................................................................... 87 

5.3.1 Cross Validation ................................................................................... 87 

5.3.2 Performance Assessment ...................................................................... 88 

5.4 Representation of Data with Self Organizing Maps .................................... 91 

 

CHAPTER SIX - RESULTS AND DISCUSSION ................................................ 96 

 



 

viii 

CHAPTER SEVEN - CONCLUSION ................................................................. 111 

 

REFERENCES ....................................................................................................... 114 

 

APPENDIX- STATISTICAL ANALYSIS ........................................................... 137 

  



 

ix 

 
 
LIST OF FIGURES  
 

Page 

Figure 2.1 Basic representation of human circulatory system ..................................... 7 

Figure 2.2 Anatomic structure of the heart and the direction of the blood flow. ......... 8 

Figure 2.3 The electroconduction system of the heart. .............................................. 10 

Figure 2.4 Regulation of heart rate by autonomic nervous system. ........................... 14 

Figure 2.5 Electrical vectors for the standard ECG lead configurations .................... 15 

Figure 2.6 Standard electrode positions for 12-lead ECG configuration ................... 17 

Figure 2.7 Einthoven’s triangle. ................................................................................. 17 

Figure 2.8 A 12 lead ECG sheet. ............................................................................... 18 

Figure 2.9 A typical ECG waveform for one heart beat. The vertical axis represents 

the mV fluctuations whereas the horizontal axis shows the time in ms .. 19 

Figure 2.10 An example ECG strip with two premature ventricular contractions. 

Inverted peaks can be noticed between QRS complexes. ....................... 20 

Figure 2.11 An example ECG strip with ventricular flutter. No identifiable peaks. . 20 

Figure 2.12 An example ECG strip with ventricular tachycardia. ............................. 21 

Figure 2.13 An example ECG strip with ventricular fibrillation. Waveform is 

completely irregular. ............................................................................... 21 

Figure 2.14 An example ECG strip with ventricular escape beats. QRS complexes 

are wider and rate is slower. .................................................................... 22 

Figure 2.15 An example ECG strip with right bundle branch block with wide, blurred 

S-wave. .................................................................................................... 22 

Figure 2.16 An example ECG strip with sinus bradycardia....................................... 23 

Figure 2.17 An example ECG strip with sinus tachycardia. ...................................... 23 

Figure 2.18 An example ECG strip with 2nd degree Type II SA block. .................... 24 

Figure 2.19 An example ECG strip with sinus arrest................................................. 24 

Figure 2.20 An example ECG strip with sick sinus syndrome. ................................. 24 

Figure 2.21 An example ECG strip with 1st degree AV block. Notice PR interval is 

longer. ...................................................................................................... 25 

Figure 2.22 An example ECG strip with 2nd degree AV block type 1 (Wenckebach). 

PR interval increases and finally a beat is dropped. ................................ 26 



 

x 

Figure 2.23 An example ECG strip with 2nd degree AV block type 2 (Mobitz). Notice 

P-waves are not followed by QRS complexes. ....................................... 26 

Figure 2.24 An example ECG strip with 3rd degree AV block. Notice the dissociation 

between atrial and ventricular contractions. ............................................ 26 

Figure 2.25 An example ECG strip with premature atrial contractions. The 3rd  and 

7th beats are PACs. .................................................................................. 27 

Figure 2.26 An example ECG strip with atrial tachycardia. Atrial rate is faster and P-

wave morphology is abnormal. ............................................................... 27 

Figure 2.27 An example ECG strip with atrial flutter. Sawtooth pattern between QRS 

complexes can be seen. It is a 3:1 block. ................................................ 27 

Figure 2.28 An example ECG strip with atrial fibrillation. Uncoordinated electrical 

activity can be noticed between QRS complexes. QRS complexes are 

irregular. .................................................................................................. 28 

Figure 3.1 Block diagram of QRS detection algorithm. ............................................ 35 

Figure 3.2 (a) ECG signal with beat occurrence times (tn) and RR intervals (TN). (b) 

RR intervals as a function of beat number. (c) RR intervals as a function 

of beat occurrence times. (d) RR intervals represented with impulses in 

IPFM. ...................................................................................................... 36 

Figure 3.3 Two methods for ectopic beat elimination (a) RR series with ectopic beats 

(AEB: Atrial Ectopic Beat, VEB: Ventricular Ectopic Beat  (b) Deletion 

method (c) Interpolation method. ............................................................ 39 

Figure 3.4 Ectopic beat elimination algorithm. .......................................................... 40 

Figure 3.5 Original and resampled RR data. Cubic spline interpolation with 4 Hz 

sampling frequency was used. ................................................................. 44 

Figure 3.6 Original and (b) detrended RR interval time series with smoothness priors 

detrending method with λ=500. .............................................................. 46 

Figure 3.7 Comparison of the spectrums of (a) nondetrended and (b) detrended 

signals. ..................................................................................................... 47 

Figure 3.8 Comparison of FFT and AR methods. (a) The spectrum obtained with 

FFT based Welch’s periodogram (b) The spectrum obtained with AR 

method with order 16. (c) The spectrum obtained with AR method with 

order 32. .................................................................................................. 49 



 

xi 

Figure 3.9 An example plot as the output of DFA. α1 is the short term and α2 is the 

long term fluctuation ............................................................................... 53 

Figure 3.10 An approximation of the correlation dimension D2 ................................ 55 

Figure 3.11 An example RP matrix of an RR series .................................................. 56 

Figure 3.12 Lag versus mutual information plot of an RR interval series. The graph 

first falls to its minimum is lag 1 ............................................................ 58 

Figure 3.13 Poincare plot of an RR interval series with lag 1. An ellipse is fitted on 

the data points. SD1 describes short-term variability and SD2 describes 

long-term variability ................................................................................ 59 

Figure 3.14 Construction of triangles for the calculation of CCM. ........................... 61 

Figure 4.1 Increasing the dimension over optimal number of features degrades 

classification performance due to curse of dimensionality ..................... 63 

Figure 4.2 Representation of N features with a binary string .................................... 65 

Figure 4.3 Roulette wheel selection. The chance of selecting the individual with 

higher fittness is also high which means fittest individuals continue 

genetic operations. ................................................................................... 67 

Figure 4.4 One point crossover. The bits after crossover point are exchanged between 

parents to create offsprings to jump new points in searchspace. ............ 68 

Figure 4.5 Mutation operation. The randomly selected bits are complemented. ....... 69 

Figure 5.1 The distribution of the afpdb obtained from Physionet. The records shown 

with bold characters were used in the study. ........................................... 73 

Figure 5.2 Classification of a sample with kNN algorithm. The sample to be 

classified (test sample) is shown as a circle. The train samples from two 

different classes are represented with squares and triangles. If k was 

selected 3, the test sample would be assigned to class ‘triangle’. If k was 

selected 5, the test sample would be assigned to class ‘square’. ............. 78 

Figure 5.3 The architecture of an MLP network. ....................................................... 80 

Figure 5.4 Training and validation errors versus iteration number. Training stops 

when the the error at validation set starts to increase .............................. 81 

Figure 5.5 A representation of support vector machine algorithm. Red and blue dots 

represent two different classes. SVM finds the optimum hyper plane that 



 

xii 

maximizes the margin between support vectors while trying to minimize 

wrong classifications. .............................................................................. 84 

Figure 5.6 Error rate plot when all 33 features were used for classification. Minimum 

error rate is 0.13 when σ=10.5 and c=1. ................................................. 86 

Figure 5.7 Error rate plot when selected 8 features were used for classification. 

Minimum error rate is 0.05 when σ=4 and c=1.5.................................... 86 

Figure 5.8 Area under ROC curve. ............................................................................ 90 

Figure 5.9 ROC curve in case of one sensitivity-specificity pair. The area under 

curve is the average of sensitivity and specificity values........................ 91 

Figure 5.10 SOM network structures (a) Rectangular Grid (b) Hexagonal Grid. ...... 92 

Figure 5.11 Self organizing map (SOM) structure..................................................... 93 

Figure 5.12 A simple way of calculating the U-matrix with dummy grids. .............. 94 

Figure 5.13 U-matrix representation of SOM network with gray-level image. ......... 95 

Figure 6.1 Flowchart of the whole study. .................................................................. 97 

Figure 6.2 Number of neighbors versus the areas under ROC curve for three different 

distance metrics by using all features. ................................................... 100 

Figure 6.3 Number of neighbors versus the areas under ROC curve for three different 

distance metrics by using selected features. .......................................... 100 

Figure 6.4 Distribution of non-PAF and PAF groups for selected features by the 

genetic algorithm. The features other than sample entropy (p-value 

0.2183) found to be statistically different between PAF and non-PAF 

groups (p<0.05). .................................................................................... 106 

Figure 6.5 Hill-valley representation of (a) all features (b) selected features. There is 

no obvious cluster in (a) whereas two clusters separated by a hill can be 

seen in (b). ............................................................................................. 107 

Figure 6.6 Clusters in U-matrix. Red cells represent PAF patients whereas blue cells 

represent non-PAF subjects. .................................................................. 107 

  



 

xiii 

 
 
LIST OF TABLES  
 

Page 

Table 2.1 Blood flow through the heart in one beat cycle. .......................................... 9 

Table 2.2 Effects of  autonomic nervous system on the heart and other structures ... 12 

Table 3.1 Frequency bands defined for frequency domain HRV analysis and their 

regulators. ................................................................................................ 43 

Table 5.1 A two-by-two confusion matrix. ................................................................ 88 

Table 6.1 Classification results where k is the parameter of the kNN classifier. The 

distance metric is ‘Euclidean’. ................................................................ 99 

Table 6.2 Classification results where k is the parameter of the kNN classifier. The 

distance metric is ‘Cityblock’. ................................................................ 99 

Table 6.3 Classification results where k is the parameter of the kNN classifier. The 

distance metric is ‘Cosine’. ..................................................................... 99 

Table 6.4 Classification results of each feature with kNN classifier where k is 1 and 

distance metric is Euclidean. Features are presented as mean±standard 

deviation and their p-values are given................................................... 101 

Table 6.5 Classification results with Bayes’ classifier............................................. 102 

Table 6.6 Classification results where the number of hidden layer units is the 

parameter of the ANN classifier. Levenberg-Marquardt training 

algorithm was used. ............................................................................... 103 

Table 6.7 Classification results with SVM. ............................................................. 104 

Table 6.8 Features selected by genetic algorithm given with their mean±std and p 

values. .................................................................................................... 104 

Table 6.9 Classification results of all classifiers when all and selected features were 

used. ...................................................................................................... 105 

 



 

1 

CHAPTER ONE 

1INTRODUCTION 

 

Human body is a life-sustaining structure which is composed of 11 body systems; 

circulatory, digestive, respiratory, urinary, skeletal, muscular, integumentary, 

immune, nervous, endocrine and reproductive (Sherwood, 2015). Body systems 

function in cooperation with each other to achieve homeostasis, which is keeping the 

internal environment of the body in steady state with respect to changing external 

conditions. 

 

Circulatory system is the transport system of the body to maintain homeostasis. It 

carries the vital materials such as nutrients, oxygen, carbon dioxide, wastes, and 

hormones from one part of the body to another part. The circulatory system, in other 

words the cardiovascular system, consists of the heart, the blood vessels and the 

blood. The heart produces necessary pressure to the blood for flowing through whole 

body. The blood vessels are the passageways through which the blood is directed. 

The blood is the transport medium of dissolved or suspended materials to reach all 

parts of the body. Any problem in one of these parts strongly affects the proper 

functioning of other body systems. 

 

The term arrhythmia refers to any change of the normal electrical impulses in the 

heart. The impulses might be too slow, too fast or erratic which causes the heart to 

pump blood insufficiently. Atrial fibrillation (AF) is an arrhythmia which is caused 

by the disordered electrical impulses in the atria. These disordered impulses prevail 

the normal sinus rhythm and thus atria start to contract in a disordered way. As a 

result, the atria cannot empty the blood to ventricles completely and clot formation 

may occur in atria. If this clot joins the circulation, it may lead to stroke. In fact, AF 

is the leading cause of 15% of all stroke cases (Go, Hylek, Phillips, & Chang, 2001). 

AF is the most common sustained arrhythmia (Camm et al., 2010; Miyasaka et al., 

2006) and recognized as an increasing health-care burden due to the aging population 

and survival from cardiac disorders. Prevalence of AF is estimated 1-2% in general 

population (Camm et al., 2010; Stewart, Hart, Hole, & McMurray, 2001) whereas 
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this ratio increases with age from 0.5% at 40-50 years to 5% over 65 years, and to 

14% in subjects over 85 years (Majeed, Moser, & Carroll, 2001; Naccarelli, Varker, 

Lin, & Schulman, 2009). However, studies show that the real  prevalence is much 

higher (Gladstone et al., 2014; Sanna et al., 2014). The reason why the real numbers 

are unclear is that approximately one third of AF cases is asymptomatic (Furberg et 

al., 1994; Savelieva & Camm, 2000) and even in symptomatic cases, the symptoms 

are ascribed to other illnesses. 

 

AF may be self-terminating or non-self-terminating. If the episodes of AF self-

terminate within 48 hours, it is called paroxysmal atrial fibrillation (PAF). Even if 

the definition is 48 hours, AF episodes generally terminate within minutes (Hoshino, 

Ishizuka, Nagao, Shimizu, & Uchiyama, 2013; Page, Wilkinson, Clair, McCarthy, & 

Pritchett, 1994). If an episode of AF lasts more than 7 days, this kind of AF is 

referred to as persistent AF. Electrical or pharmacological cardioversion is necessary 

to recover the normal rhythm. AF is called permanent if AF exists for some time and 

return to normal rhythm fails with cardioversion or AF returns within 24h after 

successful cardioversion (Levy et al., 2003; Lip & Hee, 2001). 

 

Studies show that a large number of PAF patients would develop permanent AF 

with time (de Vos et al., 2010; Kato, Yamashita, Sagara, Iinuma, & Fu, 2004; Kerr et 

al., 2005; Van Gelder & Hemels, 2006). Also the risk of stroke in PAF patients is 

similar to the risk of persistent/permanent AF patients (Friberg, Hammar, & 

Rosenqvist, 2010; Hart et al., 2000). Therefore, it is crucial that PAF patients are 

diagnosed early and correctly. If PAF patients are detected in early stages of the 

illness, the progression to more sustained AF can be avoided. Also, the stroke risk 

can be reduced considerably with suitable antithrombotic treatment in PAF patients. 

 

However, it is difficult to detect AF patients since there are no specific symptoms 

assigned to AF. If it is asymptomatic AF, there is no obvious complaint of the 

patient. The complaints of the symptomatic AF patients are breathlessness/dyspnea, 

palpitations, syncope/dizziness, chest discomfort and stroke/transient ischemic 

attack. The first step in diagnosis is to perform manual examination of the rhythm to 
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find if there is any irregular pulse. If an irregular pulse has been detected, an 

electrocardiogram is performed. If the patient has PAF, it is difficult to detect the 

arrhythmia with a standard ECG since the episodes are random and there might be 

even days within paroxysms. William Evans describes the difficulty of diagnosing 

paroxysmal atrial fibrillation as “A fugitive illness that only visits a patient 

periodically may be more difficult to bear than one whose effects are durable and 

persistent. Paroxysmal atrial fibrillation is such an illness.” (Evans, 1959). 

 

In suspected PAF case, 

 

• a 24-hour ambulatory ECG monitoring is used in patients with suspected 

asymptomatic episodes or symptomatic episodes less than 24 hours apart 

• an event recorder ECG is used in patients with symptomatic episodes more 

than 24 hours apart (Cowan et al., 2014). 

 

Therefore, there is a need for a new and efficient method that could correctly 

diagnose PAF patients based on the ECG recordings taken during normal sinus 

rhythm periods. There are many papers published on detection of PAF patients from 

ECG records. Most of them are the throughputs of Computers in Cardiology 

Challenge 2001: Predicting the Onset of Paroxysmal Atrial Fibrillation.  This 

competition had two events. The first event was PAF screening, which is to classify 

the subjects into PAF and non-PAF groups. The second event was PAF prediction, 

which is identifying the record that immediately precedes PAF, by using the records 

of detected patients in the first event (Moody, Goldberger, McClennen, & Swiryn, 

2001).  The subject of this thesis is similar to the first event and a part of the database 

of this competition was used. However, there are fundamental differences between 

the competition and this work, which will be mentioned in the next chapters. 

 

In the literature, most of the successful works are based on morphological features 

obtained from ECG records. Martinez et al. used morphological features of P-waves 

to discriminate ECG segments of healthy subjects and patients suffering from PAF 

(Martínez, Alcaraz, & Rieta, 2012, 2014). Ros et al. studied 22 parameters obtained 
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from P-wave analysis to correctly classify PAF patients (Ros, Mota, Fernández, 

Toro, & Bernier, 2004). Thuraisingham examined wavelet decomposition of ECG 

signals (Thuraisingham, 2007). Schreier et al. used a correlation based assessment of 

the P-wave morphology of both regular and premature heartbeats from 

supraventricular origin (Schreier, Kastner, & Marko, 2001). Zong et al. developed an 

algorithm based upon the number and timing of the atrial premature complexes in the 

ECG (Zong, Mukkamala, & Mark, 2001). Maier et al. used different features 

obtained from heart rate variability analysis describing the magnitude as well as the 

regularity of heart rate fluctuations and the number of supraventricular and 

ventricular premature beats (Maier, Bauch, & Dickhaus, 2001). Lynn and Chiang 

created feature vectors from return and difference maps of 30 minute ECG signals. 

They divided the maps into lattices and found the number of samples in each lattice. 

Then they created vectors from those numbers and fed into a k-nearest neighbor 

classifier (Lynn & Chiang, 2001). Yang and Yin coded successive RR intervals as 

equal, accelerated or decelerated and mapped to a single integer. Then, the histogram 

of those numbers was constructed for PAF patients and non-PAF subjects. The best 

cutoff frequency was found with receiver operator characteristics (ROC) analysis 

(Yang & Yin, 2001). Chazal and Heneghan examined features from the interval 

based power spectral density of RR intervals, time domain measures, P-wave 

amplitude features and frequency representation of the P-wave. The effect of the 

length of the signal was also controlled by using 30-minute, 10-minute and 5-minute 

windows of the ECG signals. Their best performance was obtained with power 

spectral density (de Chazal & Heneghan, 2001). 

 

The main goal of this thesis is to develop a system to diagnose PAF patients from 

arrhythmia free ECG records. The records belonging to PAF patients were taken at 

least 45-minutes away from any AF episode because the proposed method in this 

thesis is based on whether an ECG taken from a PAF patient at a normal time reveals 

any information for the existence of the illness. Thirty three features were derived 

from RR series. Thirty one features come from short-time heart rate variability 

(HRV) analysis and the other two features are atrial and ventricular ectopic beat 

numbers. The best discriminating features were selected by using genetic algorithms. 
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PAF and non-PAF patients were discriminated with Bayes’, k-nearest neighbor 

(kNN), artificial neural network (ANN) and support vector machine (SVM) 

classifiers. The most successful discrimination was achieved by the SVM classifier 

when eight features selected by genetic algorithms were used as the input of the 

classifier. 

 

Chapter 2 of the thesis presents the physiological background of circulatory 

system and arrhythmias. Preprocessing of cardiovascular time series and derivation 

of heart rate variability features are given in Chapter 3. Feature selection with genetic 

algorithm is explained in Chapter 4. The classification and evaluation methods are 

explained in Chapter 5. Results are presented and discussed in Chapter 6. Finally, a 

conclusion is given in Chapter 7. 
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CHAPTER TWO 

2PHYSIOLOGICAL BACKGROUND 

 

There is a great organization from cell to systems in multicellular organisms. The 

cell is the smallest unit of life. Cells which have similar structure and function are 

organized into tissues. Two or more types of primary tissues form organs whose 

function is to perform a specific function. Different organs function in cooperation 

which each other to achieve a common activity and form body systems. Finally, the 

body, which is an independently living individual, is composed of different body 

systems. Human body consists of circulatory, digestive, respiratory, urinary, skeletal, 

muscular, integumentary, immune, nervous, endocrine and reproductive systems 

which function in close cooperation in order to maintain the body survival. 

 

The circulatory system is responsible for maintaining blood flow in the body. In 

this section, basic components of the circulatory system, the anatomy and regulation 

system of the heart, measurement of cardiac signals and arrhythmias are described 

together with related literature review. 

 

2.1 Circulatory System 

 

Circulatory system is responsible for transporting nutrients, oxygen, 

carbondioxide, hormones throughout whole body. A basic representation of the 

human circulatory system is given in Figure 2.1. Circulatory system has three 

components: the heart, the blood vessels and the blood. The system can be considered 

as a closed loop hydraulic system (Webster, 1998). The heart is the driving force of the 

system. It provides necessary pressure to the system for the circulation of blood within 

blood vessels. The blood vessels are the channels for blood flowing. Arteries are the 

blood vessels that carry blood away from the heart whereas veins are the blood vessels 

that carry blood toward the heart. Since circulatory system is a closed loop, there are 

capillaries between arteries and veins which are very narrow vessels located within 

tissues. The exchange of materials between blood and cells occur at capillaries. 
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Figure 2.1 Basic representation of human circulatory system (Circulatory system, (n.d.)). 

 

2.2 Anatomy of the Heart 

 

The heart is a hollow muscular tube that consists of four chambers; two upper 

chambers called atria and two lower chambers called ventricles. These chambers are 

organized in a way that right atrium coworks with right ventricle to get carbon 

dioxide rich blood from body and pump it to lungs whereas left atrium coworks with 

left ventricle to get oxygen rich blood from lungs and pump it to the whole body. The 

basic structure of the heart is given in Figure 2.2. 

 

The blood flow inside the heart is always unidirectional which is achieved by the 

organized contraction of the heart and the orientation of the cardiac valves. There are 

four valves within the heart: 

 

• Tricuspid valve: Lies between right atrium and right ventricle 

• Mitral valve: Lies between left atrium and left ventricle 
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Figure 2.2 Anatomic structure of the heart and the direction of the blood flow (Webster, 1998). 
 

• Pulmonic valve: Lies between right ventricle and pulmonary vein to lungs 

• Aortic valve: Lies between left ventricle and aorta 

 

As the blood leaves each chamber of the heart, it passes through a valve. The heart 

valves make sure that blood flows in only one direction through the heart. The valve 

is made of strong, thin pieces or flaps of tissue called leaflets. The leaflets are 

attached to and supported by a ring of though fibrous tissue called annulus. The 

annulus helps to provide support and maintain the proper shape of the valve. The 

valve leaflets can be compared to doors opening and closing while the annulus 

functions as the door frame. The leaflets of the valves which are between atria and 

ventricle are also supported by though, fibrous strings called chordae tendineae. The 

chordae tendineae extend from the valve leaflets to small muscles, called papillary 

muscles, which are part of the inside walls of the ventricles. The chordae tendineae 

and papillary muscle keep the leaflets stable against any backward flow of blood 

(Berne & Levy, 1997). 
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The right and left sides of the heart work simultaneously. The flow of the blood 

inside the heart during a beat can be summarized as in Table 2.1. 

 
Table 2.1 Blood flow through the heart in one beat cycle. 

 

Stage Chamber Action 

Filling 

Right Side 

Blood enters the heart through two 
large veins, the inferior and superior 
vena cava, emptying oxygen-poor 
blood from body into the right 
atrium. 

Left Side 
The pulmonary vein empties the 
oxygen-rich blood, from the lung into 
the left atrium. 

Atrial contraction 

Right Side 
Blood flows from the right atrium 
into the right ventricle through the 
open tricuspid valve 

Left Side 
Blood flows from the left atrium into 
the left ventricle through the open 
mitral valve. 

Ventricular contraction 

Right Side 
Blood leaves the heart through the 
pulmonic valve, into the pulmonary 
artery and to the lungs. 

Left Side 
Blood leaves the heart through the 
aortic valve, into the aorta and to the 
body. 

 

2.2.1 Electroconduction System of the Heart 

 

The heart tissue is an extremely specialized form of tissue. Most of the cardiac 

muscle (nearly 99%) is the contractile cells which do the mechanical work of 

pumping and do not initiate action potentials normally.  The remainder of the cells 

(about 1%) is autorhythmic cells which initiate and conduct action potentials for the 

contraction of working cells. Although the heart is innervated by the autonomic 

nervous system, the heart does not require the nervous system to function because of 

these autorhtyhmic cells. These cells are found in sinoatrial (SA) node, 
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atrioventricular (AV) node, bundle of His (or common bundle), the right and left 

bundle branches and Purkinje fiber (see Figure 2.3) (Webster, 1995).  

 

 
 

Figure 2.3 The electroconduction system of the heart (Todd, 2013). 
 

The SA node is a small, specialized region in the right atrial wall near the opening 

of the superior vena cava. It can produce 70-80 action potentials per minute and has 

the fastest rate of action potential initiation. It dominates all other cells and known as 

the pacemaker of the heart. Once the cardiac impulse originates in SA node, it 

spreads through atria and reaches AV node via specialized ways called intermodal 

tracts. 

 

The AV node is a small bundle of specialized cardiac muscle cells located at the 

base of the right atrium near the septum, just above the junction of atria and 

ventricles. It electrically connects the atria and ventricles. It can produce 40-60 

action potentials per minute. One important task of the AV node is to delay electrical 

signals to pass to ventricles before the atria is fully empty. After the delay, the 

impulse continues into the bundle of His, the right and left bundle branches and the 

Purkinje network. 
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The bundle of His is a tract of specialized cells that originate at AV node and 

enter the septum between the ventricles. Here, it divides to right and left bundle 

branches that travel down the septum.  

 

The Purkinje fibers are small terminal fibers that extend from bundle branches and 

are spread throughout the ventricular myocardium.  

 

The bundle of His and Purkinje fibers can produce 20-40 action potentials per 

minute. 

 

2.2.2 Heart Rate Regulation 

 

The cardiovascular system must be able to adapt to changing circumstances to 

provide necessary blood to tissues. This is achieved by the autonomic nervous 

system (ANS) and circulating hormones (Klabunde, 2011). The effect of ANS on 

cardiac system is modifying the cardiac cycle length (hence the heart rate) and the 

speed of conduction of the electrical activity through the heart. Autonomic regulation 

of cardiovascular function is controlled by the two divisions of the nervous system: 

parasympathetic and sympathetic nerves (Berne & Levy, 1997). 

 

The parasympathetic nerves innervating the heart originate from the cell bodies 

located within medulla of the brainstem. On the other hand, cardiac sympathetic 

fibers originate in the inter-mediolateral columns of the upper five or six thoracic and 

lower one or two cervical segments of the spinal cord and alter the cardiac cycle 

through adrenergic neurotransmitters. Parasympathetic nervous system is dominant 

under quiet, relaxed situations when the body is not demanding an enhanced cardiac 

output whereas sympathetic nervous system controls heart action in emergency or 

exercise situations when there is a need for increased blood flow (Sherwood, 2015). 

The effects of autonomic nervous system on the heart and other structures which 

influence the heart are summarized in Table 2.2. 
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Table 2.2 Effects of  autonomic nervous system on the heart and other structures (Sherwood, 2015). 
 

Affected Area Effect of Parasympathetic 
Nervous System 

Effect of Sympathetic 
Nervous System 

SA node Decreases rate of 
depolarization 

Increases rate of 
depolarization 

AV node Increases AV nodal delay Decreases AV nodal delay 

Ventricular conduction 
pathway No effect 

Increases the speed of 
conduction through bundle 
of His and Purkinje fibers 

Atrial Muscle Decreases contractility Increases contractility 

Ventricular Muscle No effect Increases contractility 

Adrenal Medulla No effect 

Promotes epinephrine 
secretion which augments 
the sympathetic nervous 
system’s action on the heart 

Veins No effect 
Increases venous return, 
which strengthens the 
cardiac contraction 

 

If there was no intervention to heart from ANS, the heart would beat at 90-100 

bpm which is called the intrinsic rate of the heart. However, in resting conditions, the 

heart is slower than the intrinsic rate due to the inhibitory influence of the 
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parasympathetic nervous system. The monitoring for this critical homeostatic process 

entails firstly mechanical information about pressure in the arterial system and, 

secondarily, chemical information about the level of oxygen and carbon dioxide in 

the blood. The parasympathetic and sympathetic activity relevant to cardiovascular 

control is determined by the information supplied by these sensors.  

 

The mechanoreceptors, also called baroreceptors, are located in the heart and 

major blood vessels; i.e. aortic arch and carotid sinuses. The nerve endings in 

baroreceptors are activated by deformation as the elastic elements of the vessel walls 

expand and contract. The chemoreceptors in the carotid bodies and aorta respond 

directly to the partial pressure of oxygen and carbondioxide in the blood. Both 

afferent systems convey their status via the vagus nerve to the nucleus of the solitary 

tract which relays this information to the hypothalamus and the relevant brainstem 

tegmental nuclei (Purves et al., 2012) .  

 

The afferent information from changes in arterial pressure and blood gas levels 

reflexively modulates the activity of the relevant visceral motor pathways and, 

ultimately, of target smooth and cardiac muscles and other more specialized 

structures. For example, a rise in blood pressure activates baroreceptors that inhibit 

the tonic activity of sympathetic nerves and stimulates parasympathetic activity in 

parallel. As a result of this shift in the balance of sympathetic and parasympathetic 

activity, heart rate and the effectiveness of atrial and ventricular myocardial 

contraction are reduced and peripheral arterioles dilate, the blood pressure decreases. 

 

The heart rate regulation mechanism is summarized in Figure 2.4. The control is 

made with the direct intervention of sympathetic and parasympathetic nerves to the 

cardiac muscle to change heart rate. Sympathetic activity also has control over 

adrenal medulla, arterioles, veins and strength of contraction to increase both heart 

rate and stroke volume.  
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Figure 2.4 Regulation of heart rate by autonomic nervous system. 
 

2.3 Electrocardiography 

 

In a normal heart, each beat begins with the stimulation of the SA node which is 

spontaneous and regular, i.e. autorhtyhmic as mentioned in the previous section. This 

stimulation spreads through atria and depolarize the two upper chambers. The 

electrical signal from SA node reaches the AV node through specialized pathways. 

An impulse can reach the ventricles via the AV node only since the rest of the 

myocardium is separated by a non-conducting fibrous ring between atria and 

ventricles.  

 

As the impulse reaches the AV node, it is momentarily delayed by the AV node as 

a precaution to prevent rapid atrial impulses from spreading to ventricles at the same 

rate. If AV node fails to receive signals from SA node, it will take the responsibility 

of being the pacemaker of the heart with a slower rate (40-60 bpm). Normally, SA 

node inhibits the impulses from AV node with its higher frequency. 
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Once the impulse has passed the AV node, it enters the bundle of His and spreads 

through right and left bundle branches then Purkinje fibers which cause the 

depolarization of the ventricles. If there is no stimulation from AV node, the 

ventricular pathways take over as the main pacemaker with 20-40 bpm frequency. 

 

After the depolarization of the ventricles, there is a transient period where no 

further ionic current can flow through myocardium which is known as refractory 

period and lasts about 200 ms. Then, a new heart beat starts. 

 

The most common and easy method to monitor the electrical activity of the heart 

is to place electrodes on the skin and record the measured electrical signal versus 

time. The resultant waveform is called electrocardiogram (ECG). 

 

The choice of the electrode configuration on the thorax to record the ECG is 

dictated by the type of clinical information required. Since the voltage difference 

between a pair of electrodes (called as lead) is only representative of variations along 

one axis from the heart (see Figure 2.5), there is no three-dimensional activity 

information in single lead configuration.  

 

 
 

Figure 2.5 Electrical vectors for the standard ECG lead configurations (Clifford, 2002). 
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In order to get a detailed picture of a patient’s cardiac activity, 12-lead ECG 

recording is made. Figure 2.6 shows the standard positions for 12 lead ECG 

recordings and Figure 2.7 shows the standard vectors that are visualized by these 

leads.  

 

Leads I, II and III are bipolar leads which have one positive and one negative pole 

(see Figure 2.7). They make up the frontal-plane ECG (the plane of your body that is 

perpendicular to ground when you are standing erect). The three electrodes are 

connected to left arm (LA), right arm (RA) and left leg (LL). Also, an electrode can 

be attached to right leg and grounded or connected to special circuits. The resultant 

leads are lead I from LA to RA; lead II LL to RA and lead III from LL to LA. These 

three leads can be approximated by an equilateral triangle called as Einthoven’s 

triangle as shown in Figure 2.7. Since the scalar signal on each lead can be 

represented as a voltage source, the Kirchoff’s voltage law for three leads can be 

written as follows: 

 𝐼 − 𝐼𝐼 + 𝐼𝐼𝐼 = 0 (2.1) 

 
Three additional leads in frontal plane are augmented leads. These leads are 

unipolar leads whose negative pole is a composite pole made up of signals from 

multiple other electrodes, which is called Wilson’s central terminal (Vw). Wilson’s 

central terminal is produced by connecting the electrodes RA, LA and LL together 

through a resistive network and give an average potential across the body as in 

Equation (2.2). The value of the resistors should be at least 5 MΩ so that the loading 

will be minimum (Webster, 1998). 

 

 
𝑉𝑤 =

1
3

(𝑅𝐴 + 𝐿𝐴 + 𝐿𝐿) (2.2) 

 

The signal between the central point and LA is called as aVL, and RA as aVR and  

LL as aVF (see Figure 2.5). 
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Figure 2.6 Standard electrode positions for 12-lead ECG configuration (Clifford, 2002). 
 

In order to check the electrical activity in transverse plane (the plane of your body 

that is parallel to ground when you are standing erect), precordial (chest leads) are 

used. These six leads (V1 to V6) are also unipolar leads as seen in Figure 2.5 and 

their placement on the chest is shown in Figure 2.6. 

 

 
 

Figure 2.7 Einthoven’s triangle. 
 

An example 12 lead ECG sheet is given in Figure 2.8. Each small square has 1 

mm width and height. Also, 5mm divisions are denoted with bold lines in horizontal 

and vertical direction. It is standard to represent 1 mV on the y-axis as 1 cm and each 

second as 25 mm on the x-axis. In standard 12 lead ECG, short segments of each 
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lead is shown with labels (see Figure 2.8) for the same measurement time. After that 

cycle, the new measurement cycle results are shown. 

 

 
 

Figure 2.8 A 12 lead ECG sheet. 
 

The ECG of a typical heart beat is shown in Figure 2.9. A beat normally 

comprises of an initial P-wave followed by the main QRS complex and a trailing T-

wave. These waves are described as follows: 

 

• P-wave: The low voltage fluctuation caused by the depolarization of the atria 

prior to contraction. The atria muscle is small, and then the voltage change is 

small. The duration is less than 0.12 s and amplitude is less than 0.25 mV. 

 

• QRS complex: The largest amplitude portion of the ECG caused by the 

depolarization of ventricles. The time during which the ventricular contraction 

occurs is referred to as the systole. Although the atrial repolarization occurs 

simultaneously, it is not seen due to the low amplitude of the signal generated 

by this process. The duration of the complex is less than 0.1 s and amplitude 

varies in different lead configurations but upper limit is 2.5-3 mV. 

 

• T-wave: Caused by ventricular repolarization and identification of a discrete T 

wave is difficult (Yanowitz, 2012).  
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Figure 2.9 A typical ECG waveform for one heart beat. The vertical axis represents the mV 
fluctuations whereas the horizontal axis shows the time. 

 

2.4 Arrhythmias 

 

Arrhythmia can be defined as any deviation of heart’s rhythm from normal 

operation. The result of arrhythmias may change from nothing to death.  During an 

arrhythmia, the heart can beat too fast, too slow or irregularly. Arrhythmias can be 

classified according to the underlying mechanism or the origin of the arrhythmia. 

Three underlying mechanism of arrhythmias are abnormal impulse initiation, 

abnormalities of impulse propagation and combination of both (Gertsch, 2003; 

Webster, 1995). Arrhythmias can also be identified according to where they occur in 

the heart as supraventricular or ventricular arrhythmias. Supraventricular arrhythmias 

include atrial tissue or AV node originated disorders whereas ventricular arrhythmias 

originate from ventricular tissue. 

 

2.4.1 Ventricular Based Arrhythmias 

 

Premature Ventricular Contractions (PVC): It is also called ventricular ectopic 

beats (VEB). It is an early contraction resulting from abnormal electrical activation 

originating in the ventricles before a normal heartbeat would occur (see Figure 2.10). 

Rate is variable and rhythm is irregular. Skipped beats and palpitations may be felt. 

Medication is needed for treatment. 
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Figure 2.10 An example ECG strip with two premature ventricular contractions. Inverted peaks can be 
noticed between QRS complexes. 

 

Ventricular Flutter: Fast discharging of heart from an ectopic focus in ventricles. 

Waveform on ECG is similar to sine wave and no identifiable P, T-waves and QRS 

complex (see Figure 2.11). Rate can be faster than 250 bpm and very dangerous 

because ventricles cannot fill completely, resulting in very low cardiac output. 

 

 
 

Figure 2.11 An example ECG strip with ventricular flutter. No identifiable peaks. 
 

The patient is close to unconsciousness and defibrillation is needed to return to 

normal rhythm. 

 

Ventricular Tachycardia: It is a fast arrhythmia initiated within the ventricles, 

characterized by 3 or more consecutive ventricular ectopic beats. Rate is over 100 

bpm, the width of the QRS-complexes increases and dissociated P-waves occur (see 

Figure 2.12). Palpitations, paroxysmal dyspnea and syncope can be seen. Medication 

is needed to return to normal rhythm. 
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Figure 2.12 An example ECG strip with ventricular tachycardia. 

 

Ventricular fibrillation: Uncoordinated contractions of lower chambers due to 

depolarization of ventricles repeatedly in an erratic, uncoordinated manner. The ECG 

waveform is chaotic and no identifiable P, T-waves and QRS complex (see Figure 

2.13). Ventricular fibrillation is fatal because the uncoordinated contractions of 

ventricular myocardium result in ineffective pumping and little or no blood flow to 

the body. There is lack of a pulse and patient loses consciousness rapidly. 

Defibrillation is needed to return to normal rhythm. 

 

 
 

Figure 2.13 An example ECG strip with ventricular fibrillation. Waveform is completely irregular. 

 

Ventricular Escape Beats: Beat production in ventricles due to the absence of a 

trigger from upper sites. Rate is slow (20-40 bpm) and rhythm is irregular. QRS 

complexes are broad (see Figure 2.14). This is caused by the absence of sinus node 

inhibitation. Skipped beats may be felt and cardiac output is low. Medication is 

needed to increase the rhythm.  
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Figure 2.14 An example ECG strip with ventricular escape beats. QRS complexes are wider and rate 
is slower. 

 

Bundle Branch Block: It is a conduction block in left or right bundle branches and 

can reduce pumping efficiency of ventricles. Abnormalities in QRS complex (m-

shaped QRS complex, blurred S-wave, notched R-wave) exist (see Figure 2.15). 

Syncope can be seen in patients. The treatment should be solving the underlying 

mechanism of the block. 

 

 
 

Figure 2.15 An example ECG strip with right bundle branch block with wide, blurred S-wave. 

 

2.4.2 Supraventricular Based Arrhythmias 

 

Sinus Bradycardia: The initiation of impulses from SA node is slower than 

normal. The heart rate is lower than 60 bpm (see Figure 2.16) and results in 

decreased cardiac output. The underlying mechanism is increased parasympathetic 

activity and a pacemaker is used for treatment. 
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Figure 2.16 An example ECG strip with sinus bradycardia. 

 

Sinus Tachycardia: The initiation of impulses from SA node is faster than normal. 

The heart rate is above 100 bpm (see Figure 2.17) and results in decreased cardiac 

output. The underlying mechanism is external factors, hormones, infarction. 

Medication is necessary for treatment. 

 

 
 

Figure 2.17 An example ECG strip with sinus tachycardia. 

 

SA Block: SA block is grouped into different classes according to severity. 1st 

degree SA block is the conduction delay between SA node and atria. Rate and 

rhythm is normal. 2nd degree SA block type I is the conduction delay and block 

between SA node and atria.  It includes the conduction delay and sometimes the 

conduction block. Thus, PP intervals shorten. 2nd degree SA block type II is the 

conduction block between SA node and atria intermittently (see Figure 2.18). Rate is 

slower because  some pulses are not conducted to atria. 3rd degree SA block is the 

complete conduction block between SA node and atria. Rate and rhythm are irregular 

because no pulse is transmitted to atria from SA node. Escape rhythm is the 

pacemaker. The underlying mechanisms may be medication, myocardial infarct, 

change in anisotropy or gap junction resistance. SA block patients feel escape beats 

and if the delay is longer than 3s, dizziness, weakness, syncope, chest pressure is felt. 

Medication to increase SA node activity or pacemaker is needed for treatment. 
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Figure 2.18 An example ECG strip with 2nd degree Type II SA block. 

 

Sinus Arrest: SA node stops producing impulses (see Figure 2.19). Rate varies 

due to pauses and rhythm is irregular. Sinus node disease or increases in 

parasympathetic activity may cause sinus arrest. If the pauses are between 3-9 s and 

frequent, low cardiac output symptoms are seen. Medication to increase SA node 

activity is needed. If the underlying reason is myocardial infarct, pacemaker is 

necessary. 

 

 
 

Figure 2.19 An example ECG strip with sinus arrest. 

 

Sick Sinus Syndrome: This arrhythmia is also called sinus node dysfunction. Slow 

and fast arrhythmias alternate (brady-tachy) in sick sinus syndrome resulting in 

irregular rate and rhythm (see Figure 2.20). A damage or scar in the conduction  

 

 
 

Figure 2.20 An example ECG strip with sick sinus syndrome. 
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system may result in sick sinus syndrome. Both pacemaker and medication are 

needed for treatment of slow and fast arrhythmias. 

 

AV Block: AV block is grouped into different classes similar to SA block. 1st 

degree AV block is the conduction delay between SA node and AV node. PR interval 

is longer than 210 ms (see Figure 2.21). No symptom is felt. 2nd degree AV block 

type I, also called Wenckebach, is the conduction delay in AV node. Delays in PR 

interval increase progressively and a beat is dropped finally resulting in low cardiac 

output (see Figure 2.22). 2nd degree AV block type II, also called Mobitz, is the 

intermittent conduction block in His bundle or bundle branches. Some SA node 

impulses are not conducted to ventricles resulting in some P waves not followed by 

QRS complexes (see Figure 2.23). This type of AV block may progress to complete 

heart block, which may result in cardiac arrest or sudden cardiac death. 3rd degree 

AV block is the complete conduction block in AV node. There is no conduction 

between atria and ventricles. Ventricular escape rhythm is dominant and rate is 

slower than 60 bpm (see Figure 2.24). Coronary ischemia or degeneration of the 

electrical conduction system may cause complete block and results in low cardiac 

output. Medication to increase SA node activity or pacemaker is needed for 

treatment. 

 

 
 

Figure 2.21 An example ECG strip with 1st degree AV block. Notice PR interval is longer. 
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Figure 2.22 An example ECG strip with 2nd degree AV block type 1 (Wenckebach). PR interval 
increases and finally a beat is dropped. 

 

 
 
Figure 2.23 An example ECG strip with 2nd degree AV block type 2 (Mobitz). Notice P-waves are not 
followed by QRS complexes. 

 

 
 
Figure 2.24 An example ECG strip with 3rd degree AV block. Notice the dissociation between atrial 
and ventricular contractions. 

 

Premature Atrial Contractions (PAC): It is also called atrial ectopic beats (AEB). 

Normally SA node regulates the heart rate. However, if another region of the atria 

(ectopic focus) depolarizes faster than SA node, premature atrial contraction is 

triggered. Rate is normal, but rhythm is irregular due to premature contractions (see 

Figure 2.25). Skipped beats may be felt but generally no treatment is needed. 
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Figure 2.25 An example ECG strip with premature atrial contractions. The 3rd  and 7th beats are PACs. 

 

Atrial Tachycardia: Beat production in atria is from an ectopic focus and faster 

than SA node. The rate is between 140-250 bpm. Rhythm is irregular (see Figure 

2.26). Patient feels dizziness, syncope, chest pain or pressure, shortness of breath and 

chest palpitations. 

 

 
 
Figure 2.26 An example ECG strip with atrial tachycardia. Atrial rate is faster and P-wave 
morphology is abnormal. 

 
Atrial Flutter: Beat production in atria is faster than 250 bpm and out of sync with 

ventricular rhythm (see Figure 2.27). Patients feel heart palpitations, shortness of 

breath, discomfort in chest and dizziness. Cardioversion to return to normal rhythm 

and ablation is suggested for treatment.  

 

 
 
Figure 2.27 An example ECG strip with atrial flutter. Sawtooth pattern between QRS complexes can 
be seen. It is a 3:1 block. 
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2.4.3 Atrial Fibrillation 

 

Atrial fibrillation is also a supraventricular based arrhythmia. Since it is the main 

interest of this thesis, a separate section is dedicated to this arrhythmia. The 

mechanism behind AF is focal activation or multiple wavelets. Atrial fibrillation is 

based on the generation of random impulses at multiple areas of the atria. This results 

in uncoordinated atrial activity, resulting in deterioration of mechanical function and 

insufficient filling/emptying. The rate of the atrial impulses is 300-650 bpm and they 

cannot be conducted to the ventricles because of the recovery period of AV node. 

Thus the ventricles have an irregular depolarizing rate (Webster, 1995) and 

ventricular rate, i.e. heart rate, might be 100-175 bpm. The symptoms vary from 

nothing to breathlessness, palpitations, syncope, dizziness, chest discomfort and 

stroke/transient ischemic attack (Cowan et al., 2014). This arrhythmia can be 

detected with disorganized electrical activity between QRS complexes and absent P 

waves (see Figure 2.28).  

 

 
 

Figure 2.28 An example ECG strip with atrial fibrillation. Uncoordinated electrical activity can be 
noticed between QRS complexes. QRS complexes are irregular. 

 

Classification of atrial fibrillation is necessary because different cases need 

different treatments. Atrial fibrillation is classified into 3 groups according to 

termination characteristics (Camm et al., 2010; Fuster et al., 2006; Gallagher & 

Camm, 1998; Lévy et al., 2003; Lip & Tse, 2007): 

 

1. Paroxysmal atrial fibrillation terminates spontaneously; usually within 48 h. 

Although the termination is defined 48 h, the reality is that the episodes 

generally lasts shorter (even minutes) and patients present with sinus rhythm 

on their ECGs (Hoshino et al., 2013; Page et al., 1994). 
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2. Persistent atrial fibrillation is present when AF episode lasts more than 7 days. 

Cardioversion with drug or direct current is needed to return to normal 

rhythm. 

 

3. Permanent atrial fibrillation exists when AF episode cannot be reverted to 

normal rhythm. 

 

The major risk of paroxysmal atrial fibrillation is that it increases the 

predisposition to stroke due to the clot formation in left atria. Uncoordinated 

contractions in atria reduce the transfer of all blood to ventricles and there is some 

remaining blood inside which may form clots. Studies show that the stroke risk of 

PAF patients is similar to persistent/permanent AF patients (Hohnloser et al., 2007; 

Lip & Li Saw Hee, 2001). 

 

The treatment of PAF has three goals (Lip, 1999): 

 

1. Suppressing paroxysms of AF and maintaining long term sinus rhythm with 

suitable medication 

2. Controlling heart rate during paroxysms of AF by increasing the refractoriness 

of AV node with medication. Pacemaker implantation and ablation are also 

used to control ventricular rate (Heist, Mansour, & Ruskin, 2011) 

3. Preventing the complications associated with PAF; i.e. stroke with 

antithrombotic therapy. 
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CHAPTER THREE 

3HEART RATE VARIABILITY ANALYSIS 

 

3.1 Background 

 

Heart rate variability (HRV) is the evaluation of the fluctuations in the time 

intervals between heart beats, known as RR intervals. The importance of HRV  is 

that it can reveal information about the autonomic nervous function, sympathetic-

parasympathetic balance and cardiovascular health (Berntson, 1997; Camm, Malik, 

Bigger, & Breithardt, 1996; Malik & Camm, 1995). In the last three decade, HRV 

has been popular for the investigation of cardiovascular physiology. Before HRV, 

complex invasive techniques in animal models or imprecise reflex based tests in 

humans were required for the investigation of autonomic physiology. HRV analysis 

has provided a simple reproducible and non-invasive method for autonomic 

assessment (Pumprla, Howorka, Groves, Chester, & Nolan, 2002).  

 

HRV analysis is the key point of this thesis. The feature space, which was used 

for the input of the classifiers, was constructed with the outcomes of the HRV 

analysis. 

 

3.1.1 Clinical Applications of HRV 

 

The first clinical use of HRV is in 1965 when Hon and Lee noticed that fetal 

distress was accompanied by the changes in beat-to-beat variation of the fetal heart 

(Hon & Lee, 1963). In the 1970s, Ewing et al. showed that short-term HRV 

measurement is a marker of diabetic autonomic neuropathy (Ewing, Martyn, Young, 

& Clarke, 1985). In 1977, Wolf et al. found that patients with reduced HRV after a 

myocardial infarction (MI) had an increased mortality (Wolf, Varigos, Hunt, & 

Sloman, 1978). Later, other work supported that persistent low HRV after MI is a 

strong predictor of mortality post MI (Bigger et al., 1992; Bigger, Fleiss, Rolnitzky, 

Steinman, & Schneider, 1991; Kleiger, Miller, Bigger, & Moss, 1987; Malik, Farrell, 

Cripps, & Camm, 1989). Since then, HRV analysis has become a frequently visited 
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research area in relation to several cardiovascular diseases, physical exercise, stress, 

gender, age, sleep, smoking and bio-feedback (Acharya, Joseph, Kannathal, Lim, & 

Suri, 2006; Achten & Jeukendrup, 2003; Camm et al., 1996; Malik & Camm, 1993; 

Pumprla et al., 2002; van Ravenswaaij-Arts, Kollee, Hopman, Stoelinga, & van 

Geijn, 1993). In more recent work, Zuern et al. (Zuern, Barthel, & Bauer, 2011) and 

Huikuri & Stein (Huikuri & Stein, 2012) evaluated HRV and heart rate turbulence 

(HRT) as a tool for risk assessment for the patients recovering from MI. Perkiömäki 

has reported that HRV indices that quantifies the non-linear dynamics of HR may 

have a greater prognostic value to identify patients with greatest risk for adverse 

cardiovascular events than do conventional HRV indices (Perkiömäki, 2011). 

Papaioannou et al. investigated the association between changes in HRV and the 

inflammatory response in patients with cardiovascular diseases (Papaioannou, 

Pneumatikos, & Maglaveras, 2013). Different changes in HRV produced by 

physiological and pathological stress were explored by Bravi et al. (Bravi et al., 

2013). Hinojosa-Laborde et al. investigated whether any HRV index could accurately 

distinguish between individuals with high and low tolerances to simulated 

hemorrhage (Hinojosa-Laborde, Rickards, Ryan, & Convertino, 2011). Tobaldini et 

al. used linear and non-linear HRV analysis to assess autonomic changes during 

sleep under physiological and pathological conditions such as sleep-related breathing 

disorders or insomnia (Tobaldini et al., 2015). İşler & Kuntalp found that combining 

classical HRV indices with wavelet entropy measures improves the performance in 

diagnosing congestive heart failure patients (Işler & Kuntalp, 2007). 

 

Although HRV has found a wide application area as mentioned, clinical 

implication of HRV analysis has been recognized in two areas: (1) as predictor of 

arrhythmic events or sudden cardiac death after acute myocardial infarction (MI) 

(Acharya et al., 2006; Camm et al., 1996; Laitio, Jalonen, Kuusela, & Scheinin, 

2007) and (2) as an early warning sign of diabetic neuropathy (Acharya et al., 2006; 

Camm et al., 1996). 
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3.1.2 Physiological Origins of HRV 

 

The cardiovascular system achieves dynamical stability by autonomically 

mediated control of heart rate, blood pressure and other factors which respond to 

internal and external stimuli such as acute ischemia, metabolic imbalance and 

changes in physical or mental activity (Pumprla et al., 2002). 

 

The main pacemaker of the heart, the SA node, is highly innervated by both 

sympathetic and parasympathetic nervous system and reflects their modulating 

effect. Parasympathetic activity slows the heart rate by synaptic release of 

acetylcholine, which has a very short latency and high turnover rate. This enables the 

parasympathetic nervous system to regulate cardiac function on a beat to beat basis. 

Sympathetic activation increases the heart rate, conduction speed and contractility. 

This is achieved by the release of noradrenalin which is reabsorbed and metabolised 

relatively slowly. Therefore, the changes in cardiac function under sympathetic 

activity have a slower time course. Because of the different behavior of these 

neurotransmitters, sympathetic and parasympathetic nervous system operates at 

different frequencies. Thus, their activity can be identified and quantified by the 

variation of heart rate (Greenwood, Batin, & Nolan, 1997; Greenwood, Durham, & 

Nolan, 1998). Thus, analysis of HRV data in frequency domain provide the basis for 

non-invasive semi-quantitive assessment of autonomic activity (Camm et al., 1996; 

Eckberg, 1997). 

 

In normal individuals, there are cyclic oscillations as a result of respiration 

(Pagani et al., 1986). This respiratory related variation occurs typically around 0.25 

Hz and can be abolished by vagal blockade (Keselbrener & Akselrod, 1998). These 

two factors suggest that this particular type of high frequency cyclic HRV is 

parasympathetically mediated (Pumprla et al., 2002). 

 

Another cyclic oscillation occurs with the changes in baroreceptor activity due to 

fluctuations in blood pressure (Sleight et al., 1995).  This baroreceptor mediated 

activity occurs at a lower frequency, typically around 0.1 Hz and can be significantly 
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modified by sympathetic blockade (Keselbrener & Akselrod, 1998). There is also 

close relationship between this low frequency variation in heart rate and direct 

measures of muscle sympathetic nerve activity (Pagani et al., 1997). These factors 

suggest that sympathetic activity is a strong mediator of this low frequency. 

However, some studies showed that vagal blockade also produces some changes in 

this low frequency. Therefore, measurement of low frequency cyclic HRV is not a 

direct quantitive index of sympathetic activity (Keselbrener & Akselrod, 1998). 

However, simultaneous measurement of high and low frequency can be used to 

investigate the sympathovagal balance (Bootsma et al., 1994; Montano et al., 1994). 

 

There are also very slow cyclic variations equal to or less than 0.01 Hz. The 

mechanism behind this modulation is not well defined but thought to be related to 

changes in autonomic activity associated with thermoregulatory mechanism (Fleisher 

et al., 1996), changes in peripheral chemoreceptor activity (Francis et al., 2000; 

Ponikowski et al., 1997) and fluctuations in the activity of the renin-angiotension and 

parasympathetic systems (Duprez et al., 1995; Taylor, Carr, Myers, & Eckberg, 

1998). 

 

3.2 Preprocessing 

 

Signals obtained from real life measurements always include unwanted parts such 

as interference from other sources, artifacts or simply noise. Before the processing of 

the signals, these undesirable components must be eliminated for accurate results. 

This is called preprocessing of data. In this study, the preprocessing starts with 

derivation of cardiovascular time series; i.e. derivation of RR interval series from 

ECG signals. Then, the artifacts caused by the measurement and ectopic beats are 

eliminated. The next step is dividing RR series into 5 min segments for short time 

HRV analysis. Preprocessing steps are explained with details in the following 

sections. 
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3.2.1 Derivation of Cardiovascular Time Series 

 

HRV analysis is the examination of the time series which are constructed from the 

durations between consecutive heart beats. QRS complex is the most dominant 

pattern in ECG and used as the marker of a heart beat. Several methods have been 

proposed for the detection of QRS complex. 

 

Several methods have been investigated by researchers for accurate QRS 

detection. Wavelet transform (Kadambe, Murray, & Boudreaux-Bartels, 1999; Li, 

Zheng, & Tai, 1995), Hilbert transform (Benitez, Gaydecki, Zaidi, & Fitzpatrick, 

2001), artificial neural networks (Dokur, Olmez, Yazgan, & Ersoy, 1997; Vijaya, 

Kumar, & Verma, 1998), digital filters (Afonso, Tompkins, Nguyen, & Luo, 1999; 

Keselbrener, Keselbrener, & Akselrod, 1997), geometrical matching (Suárez, Silva, 

Berthoumieu, Gomis, & Najim, 2007), slope vector waveform (Xu & Liu, 2004) and 

difference operation method (Yeh & Wang, 2008) are some of the suggested 

algorithms. 

 

The algorithm suggested by Pan & Tompkins has been widely accepted (Pan & 

Tompkins, 1985). The algorithm includes the steps in Figure 3.1. The energy of QRS 

complex is concentrated approximately between 5-15 Hz (Pan & Tompkins, 1985). 

Then the signal is filtered by a cascaded low-pass and high-pass filter firstly.  

 

The next step in QRS detection is differentiation which makes R points more clear 

in ECG signal and also attenuates the P and T-waves. Squaring the signal is a 

nonlinear transformation and increases the output of the differentiation process. 

Since there might be large amplitude and long duration QRS complexes which 

cannot be detected with the slope of R-waves, moving window integration is 

necessary for further feature extraction. The last step in QRS detection is applying an 

adaptive threshold to detect R-peak locations. 
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Figure 3.1 Block diagram of QRS detection algorithm. 

 

Once the locations of R peaks are detected, RR interval time series can be derived. 

Firstly, the time differences between consecutive R peaks are calculated, i.e. n’th RR 

interval is calculated by   𝑇𝑛 = 𝑡𝑛 − 𝑡𝑛−1 (see Figure 3.2a). Then, three methods are 

offered in literature for the representation of RR interval series. The simplest 

approach is to represent RR intervals as a function of the beat number which is also 

called RR tachogram (see Figure 3.2b) (Baselli et al., 1987). However, this 

assumption causes distortion in spectral analysis (Mateo & Laguna, 2000). Another 

approach, which is used in this study, is to represent RR intervals as a function of RR 

durations (see Figure 3.2c). In this representation, the series is not equidistantly 

sampled and must be interpolated and resampled for correct frequency domain 

analysis (Camm et al., 1996). The third approach is spectrum of counts method 

which places impulse functions at R peak occurrence times (see Figure 3.2d). This 

method is based on integral pulse frequency modulator (IPFM) which aims to reflect 

the neural modulation of SA node (Rompelman, 1993). In this method, the 

modulating signal is integrated until a threshold is achieved which an impulse is 

emitted and the integrator is set to zero. Then, the spectrum of the series can be 
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calculated by first lowpass filtering the series and then calculating the spectrum 

(Deboer, Karemaker, & Strackee, 1984). 

 

 
 

Figure 3.2 (a) ECG signal with beat occurrence times (tn) and RR intervals (TN). (b) RR intervals as a 
function of beat number. (c) RR intervals as a function of beat occurrence times. (d) RR intervals 
represented with impulses in IPFM. 
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3.2.2 Segmentation 

 

Some HRV metrics are affected by the length of the RR interval data used for the 

analysis. Thus, it is inappropriate to compare the HRV measures obtained from 

different duration signals. For this reason, the HRV analysis uses short-term 5 min or 

long-term 24 h recordings (Camm et al., 1996). In this study, short–term HRV 

analysis was preferred because of the available dataset, whose the recordings were 30 

min long, and for the ease of use in real application of the method.  Then, six 5 min 

data segments were obtained from each recoding without any overlap. Totally 288 

five minute segments from PAF patients and 510 five minute segments from non-

PAF subjects were obtained. The segments belonging to the same subject were 

labeled in such a way that the data belonging the same subject never be in test and 

train group at the same time during validation in order to avoid any false bias due to 

correlation. 

 

3.2.3 Artifact Removal 

 

In HRV analysis, it is desirable to examine the autonomic function; i.e. the 

function of sympathetic and parasympathetic nervous system (Camm et al., 1996). 

However, RR interval time series include physiological or technical artifacts. 

Physiological artifacts are ectopic beats or fibrillation waves. Technical artifacts can 

be poorly fastened electrodes or movement of the subject which result in 

abnormalities in ECG and thus problems in QRS detection. All artifacts should be 

eliminated for accurate HRV analysis. 

 

Ectopic beats originate from heart tissue other than autonomic cells and are not 

under the control of autonomic nervous system. Further, they give an impulse type 

appearance in the RR interval time series (see Figure 3.3a) and can give erroneous 

statistical measures in HRV analysis if not removed (Thuraisingham, 2006). 

 

Deletion and interpolation are two common methods for the correction of ectopic 

beats (Peltola, 2012). In deletion method, abnormal RR intervals are just omitted 
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from the series and remaining data is concatenated (see Figure 3.3b). In interpolation 

method, abnormal RR intervals are replaced with new interpolated RR intervals. 

Interpolation of degree zero, linear, spline and non-linear predictive interpolation are 

among various interpolation algorithms (see Figure 3.3c)  (Peltola, 2012). Both 

methods have different side effects on HRV analysis and different studies have been 

made to find out how different editing methods affect HRV analysis (Albrecht & 

Cohen, 1988; Lippman, Stein, & Lerman, 1994; Tarkiainen et al., 2007). However, 

the studies are on different populations and the lengths of RR interval time series 

used are different. Then, it is difficult to say one method is superior to other method. 

General acceptance is that deletion method is suitable for time domain analysis 

whereas interpolation method is more suitable for frequency domain analysis (Salo, 

Huikuri, & Seppanen, 2001).  

 

While selecting the ectopic beat correction method in this study, RR interval time 

series were examined to see the patterns of the ectopic beats. Two patterns are 

observed: single ectopic beats and recurrent ectopic beats. In single ectopic beat case, 

the preceding and the following beats of the abnormal beats are around the average 

RR value. Then, deleting the ectopic beat and related abnormal beats does not cause 

any problems in frequency domain analysis. In recurrent ectopic beats case, 

numerous ectopic beats are excluded as suggested by other work (Kamath & Fallen, 

1995). In both cases, the duration of the remaining signal was checked and the 

signals longer than 270 s were accepted adequate for short-term HRV analysis. 

 

The algorithm suggested by Langley et al. was used to detect and eliminate atrial 

and ventricular ectopic beats (Langley et al., 2001). The method detects ectopic beats 

by identifying short RR intervals relative to average of the surrounding RR intervals 

(RRav). The number of RR intervals in moving average window and thresholds were 

optimized for the RR interval series used in this study. The algorithm is given in 

Figure 3.4. Ectopic beat detection starts with taking the average of four consecutive 

beats; i.e. RRav. If the next beat (RRk) is below some percentage of the average, it is 

a suspected beat. Langley et al. took this threshold about 80% of the average. 
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Figure 3.3 Two methods for ectopic beat elimination (a) RR series with ectopic beats (AEB: Atrial 
Ectopic Beat, VEB: Ventricular Ectopic Beat  (b) Deletion method (c) Interpolation method. 

 

When this threshold was used in RR time interval series in this thesis, some 

obvious ectopic beats were not eliminated. After some trials, the best elimination 

performance was found as 92% of the average. If RRk is below 92% of the average 

(RRav), the next beat (RRk+1) is checked. If it is +/-10% range of the average, RRk is 

an atrial ectopic beat and RRk is omitted from the series. If the change between RRk+1 

and the average is 30% greater than the change between RRk and the average, RRk is 

a ventricular ectopic beat. Then RRk and RRk+1 are omitted from the series. If the 

sum of the RRk and RRk+1 is within 10% of the average, it is accepted as wrong 

detection of T wave as an R wave and both RRk and RRk+1 are omitted. During 

examination of the data, it was observed that some RR intervals were very long with 

respect to average. The ECG records of that RR series were checked and seen that 

there were some artifacts in the signal such as saturation or electrode movement. 

These components were eliminated from the series by omitting the RR intervals 

which were 120% of the average. 
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Figure 3.4 Ectopic beat elimination algorithm. 

 

3.3 Feature Extraction from RR Interval Data 

 

In this section, the derivation of HRV features from short-term RR series was 

explained. The analysis methods are based on guideline (Camm et al., 1996). HRV 

analysis can be grouped as time domain, frequency domain and non-linear methods. 

The features were extracted with Kubios HRV software (Tarvainen, Niskanen, 

Lipponen, Ranta-Aho, & Karjalainen, 2014). Derivation of features and the selection 

of parameters used for the calculation of each feature are given in the following 

sections. 
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3.4 Feature Normalization 

 

The values of the features obtained from RR interval series varies widely and may 

lead to wrong operation of the classifiers. Also, some studies show that 

normalization improves the performance of the classifiers (Kotsiantis, 

Kanellopoulos, & Pintelas, 2006). In this thesis, min-max normalization was used. In 

this method, all the samples are normalized to the range [0,1] by  

 

 𝑓𝑖,𝑁 =
𝑓𝑖 − min (𝑓𝑖)

max(𝑓𝑖) − min (𝑓𝑖)
  ,       i=1, 2, …, d (3.1) 

 

where d is the number of features, fi,N is the normalized i-th feature, fi is the i-th 

feature, min(fi) and max(fi) are the minimum and maximum values of the i-th feature 

respectively. 

 

3.4.1 Time Domain Analysis 

 

Time domain analysis is the statistical examination of the fluctuations in RR 

intervals and commonly used because of easy calculation. Statistical analysis and 

geometrical analysis are two branches of time domain HRV analysis. Geometrical 

methods require long-term RR interval data and not used in this thesis (Camm et al., 

1996).  

 

In some sources, normal-to-normal (NN) interval phrase is used to indicate that 

the intervals are obtained from QRS complexes originated from SA node 

depolarization (Camm et al., 1996). In practice, the NN and RR intervals are the 

same and RR is preferred in this thesis. 

 

The statistical measures and their derivation are summarized below: 

 

Mean NN (s): Arithmetic mean value of all RR intervals. For a series with length 

N, the mean is calculated as 
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𝑀𝑒𝑎𝑛 𝑁𝑁 = 𝑁𝑁����� =

1
𝑁
� 𝑁𝑁𝑖

𝑁

𝑖=1
 (3.2) 

 

SDNN (s): Standard deviation of RR intervals which reflect overall variation and 

defined as 
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 (3.3) 

 

SDHR (Hz): Standard deviation of instantaneous heart rate. Instantaneous heart 

rate is calculated with 𝐻𝑅 = 60/𝑅𝑅 and standard deviation of instantaneous heart 

rate is 

 

 

𝑆𝐷𝐻𝑅 = �
1

𝑁 − 1
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𝑁
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 (3.4) 

 

RMSSD (s): Root mean square of successive differences between RR intervals 

and calculated as (Berntson, 1997) 
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𝑁 − 1
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 (3.5) 

 

NN50 (n.u.): Number of successive NN interval pairs that differ by more than 50 

ms (Bigger et al., 1989). 

 

pNN50 (%): Relative amount of successive NN interval pairs that differ by more 

than 50 ms: 

 

 
𝑝𝑁𝑁50 =

𝑁𝑁50
𝑁 − 1

𝑥100% (3.6) 
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3.4.2 Frequency Domain Analysis 

 

Frequency domain methods decompose the total variation of the RR interval 

series into different frequency components, which can be considered as markers of 

different physiological effects (Camm et al., 1996; Nattel & Harada, 2014). The 

frequency bands for short-term HRV analysis and the regulators for these bands are 

summarized in Table 3.1. For long-term RR interval series ULF band is also 

introduced whose frequency range is 0-0.003. Since the data used in this thesis are 

short-term, this band is not used and VLF band includes its frequencies. 

 
Table 3.1 Frequency bands defined for frequency domain HRV analysis and their regulators. 

 

Band Frequency Range (Hz) Regulation Mechanism 

Very Low Frequency 
(VLF) 0-0.04 

Temperature & humoral systems (Braga, 
Lemos, Da Silva, Fontes, & Dos Santos, 
2002; Porter & Rivkees, 2001; Williams, 
Chambers, Henderson, Rashotte, & 
Overton, 2002) and circadian rhythm 
(Barrett, Navakatikyan, & Malpas, 2001; 
Braga et al., 2002) 

Low Frequency (LF) 0.04-0.15 
Both sympathetic and parasympathetic 
nervous system (Goldstein et al., 1998; 
Malpas, 2002) 

High Frequency (HF) 0.15-0.4 

Parasympathetic (vagal) intervention and 
respiratory sinus arrhythmia (RSA) 
(Barbieri, Triedman, & Saul, 2002; Rentero 
et al., 2002) 

 

Prior to frequency domain analysis, RR interval series must be interpolated and 

resampled because they are unevenly sampled. Also, detrending should be done to 

eliminate slowly varying trends from the signal. These preprocessing steps for 

frequency domain analysis are explained in the following sections. 
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3.4.2.1 Interpolation 

 

The RR interval time series is an unevenly sampled data as shown in Figure 3.2c. 

Before spectral analysis, the series must be interpolated and evenly re-sampled. 

Cubic spline interpolation with 4 Hz sampling rate was applied to series similar to 

other work in literature (Berntson, 1997; Tarvainen et al., 2014). A short segment of 

the original and resampled data is given in Figure 3.5. 

 

 
 

Figure 3.5 Original and resampled RR data. Cubic spline interpolation with 4 Hz sampling frequency 
was used. 

 

3.4.2.2 Detrending 

 

The RR interval time series are generally obtained from long duration recordings 

such as 24 hour Holter monitors and often includes baseline trends (Tarvainen, 

Ranta-Aho, & Karjalainen, 2002). These slowly varying trends must be eliminated in 

order to avoid any intervention to cardiovascular signals.  

 

An advanced detrending method called smoothness priors detrending was used 

(Tarvainen et al., 2002). In this method, the signal is considered to have two parts; 

the first is the stationary signal and the second is the low frequency trend component. 

The task is to estimate low frequency component by some fitting procedure and get 

stationary signal by subtracting the trend component from the original signal. This 

method works as a high pass filter by which the frequency components below a 

selected frequency are eliminated. The method suggested by Tarvainen et al. is 

summarized below (Tarvainen et al., 2002). 
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Let x ∈ RN denote the RR interval time series which includes two parts:  

 

 𝑥 = 𝑥𝑠𝑡𝑎𝑡 + 𝑥𝑡𝑟𝑒𝑛𝑑 (3.7) 

 

where 𝑥𝑠𝑡𝑎𝑡 is the nearly stationary component and 𝑥𝑡𝑟𝑒𝑛𝑑 is the low frequency 

aperiodic trend component. Suppose that the trend component can be modeled with a 

linear observation model as 

 

 𝑥𝑡𝑟𝑒𝑛𝑑 = 𝐻𝜃 + 𝑒 (3.8) 

 

where 𝐻 ∈ 𝑅𝑁𝑥𝑝 is the observation matrix, 𝜃 ∈ 𝑅𝑝 are regression parameters, and 𝑒 

is the observation error. Then, the task is to estimate the parameters by some fitting 

procedure so that 𝑥�𝑡𝑟𝑒𝑛𝑑 = 𝐻𝜃� can be used as the estimate of trend. Regularized least 

squares solution is used for the estimation of 𝜃� 

 

 
𝜃�𝜆 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃{‖𝑥 − 𝐻𝜃‖2 + 𝜆‖𝐷𝑑(𝐻𝜃)‖2} (3.9) 

 

where λ is the regularization parameter and 𝐷𝑑 indicates the discrete approximation 

of d-th derivative operator. This is clearly a modification of the ordinary least 

squares solution to the direction in which the side norm ‖𝐷𝑑(𝐻𝜃)‖ gets smaller. In 

this way, prior information about the predicted trend Hθ can be incorpoated to the 

estimation. The solution of Equation (3.9) can be written in the following form 

 

 
𝜃�𝜆 = (𝐻𝑇𝐻 + 𝜆𝐻𝑇𝐷𝑑𝑇𝐷𝑑𝐻)−1𝐻𝑇𝑥 (3.10) 

 

and the estimate of the trend is 

 

 
𝑥�𝑡𝑟𝑒𝑛𝑑 = 𝐻𝜃�𝜆 (3.11) 
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The selection of the observation matrix H can be implemented according to some 

known properties of the data x. Here, identity matrix 𝐻 = 𝐼 ∈ 𝑅𝑁𝑥𝑁 was used. Also 

second order difference (D2) was used for the estimation of the trend. With these 

choices, the detrended nearly stationary RR series can be written as 

 

 
𝑥�𝑠𝑡𝑎𝑡 = 𝑥 − 𝐻𝜃�𝜆 = (1 − (1 + 𝜆𝐷2𝑇𝐷2)−1)𝑥 (3.12) 

 

The regularization parameter λ was selected 500, which corresponds to a cutoff 

frequency of 0.035 Hz and preserves the information in VLF band (Tarvainen et al., 

2002). An RR interval time series is shown in Figure 3.6 before and after detrending 

operation with selected parameters. The effect of detrending on frequency domain 

analysis can be seen in Figure 3.7. FFT spectrum of the nondetrended signal is given 

in Figure 3.7a and detrended signal with smoothness prior detrending method in 

Figure 3.7b. The power of the low frequency band decreases significantly which 

affect many frequency domain measures. 

 

 
Figure 3.6 Original and (b) detrended RR interval time series with smoothness priors detrending 
method with λ=500. 
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Figure 3.7 Comparison of the spectrums of (a) nondetrended and (b) detrended signals.  
 

3.4.2.3 Derivation of Frequency Domain HRV Features 

 

There are two possible methods for spectrum calculation: Fast Fourier Transform 

(FFT) based Welch’s periodogram and autoregressive (AR) modeling based method. 

However, there is not an exact rule for model order selection in AR. The main 

problems with AR model order selection are that only one AR component will result 

in each frequency band and, secondly, negative power values can result in closely 

spaced AR components (Tarvainen & Niskanen, 2008). The spectrums of an RR 
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interval series obtained with two methods are given in Figure 3.8. When FFT and AR 

spectrums are compared, it can be seen that AR spectrum is smoother. Increasing the 

model order in AR model affects mostly VLF and LF bands. 

 

Power spectrum density (PSD) estimates of the RR interval series were calculated 

by using the FFT based Welch’s periodogram (Tarvainen et al., 2002). In using this 

method, the RR interval series were divided into 50% overlapping windows each 

with 256 samples and then the FFT was calculated for each window. The final 

spectrum was found by averaging the spectrums of the individual windows. The 

variance of the FFT spectrum was decreased by this averaging effect. Absolute 

powers of each frequency band were calculated by integrating the spectrum over the 

specified band limits. Frequency domain features used in this study are: 

 

VLF peak (Hz): VLF band peak frequency. 

 

LF peak (Hz): LF band peak frequency. 

 

HF peak (Hz): HF band peak frequency. 

 

VLF power (ms2): Absolute power of VLF band. 

 

LF power (ms2): Absolute power of LF band. 

 

HF power (ms2): Absolute power of HF band. 

 

VLF power prc (%): Relative power of VLF band: 

 

 𝑉𝐿𝐹 𝑝𝑜𝑤𝑒𝑟 𝑝𝑟𝑐 =
𝑉𝐿𝐹 𝑝𝑜𝑤𝑒𝑟
𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑤𝑒𝑟

𝑥100% (3.13) 
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Figure 3.8 Comparison of FFT and AR methods. (a) The spectrum obtained with FFT based Welch’s 
periodogram (b) The spectrum obtained with AR method with order 16. (c) The spectrum obtained 
with AR method with order 32. 
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LF power prc (%): Relative power of LF band: 

 

 𝐿𝐹 𝑝𝑜𝑤𝑒𝑟 𝑝𝑟𝑐 =
𝐿𝐹 𝑝𝑜𝑤𝑒𝑟
𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑤𝑒𝑟

𝑥100% (3.14) 

 

HF power prc (%): Relative power of HF band. 

 

 𝐻𝐹 𝑝𝑜𝑤𝑒𝑟 𝑝𝑟𝑐 =
𝐻𝐹 𝑝𝑜𝑤𝑒𝑟
𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑤𝑒𝑟

𝑥100% (3.15) 

 

LF power norm (n.u): Power of LF band in normalized units.  

 𝐿𝐹 𝑝𝑜𝑤𝑒𝑟 𝑛𝑜𝑟𝑚 =
𝐿𝐹 𝑝𝑜𝑤𝑒𝑟

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 − 𝑉𝐿𝐹 𝑝𝑜𝑤𝑒𝑟
𝑥100% (3.16) 

 

HF power norm (n.u.): Power of HF band in normalized units. 

 

 𝐻𝐹 𝑝𝑜𝑤𝑒𝑟 𝑛𝑜𝑟𝑚 =
𝐻𝐹 𝑝𝑜𝑤𝑒𝑟

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 − 𝑉𝐿𝐹 𝑝𝑜𝑤𝑒𝑟
𝑥100% (3.17) 

 

LF/HF power (n.u.): Ratio of LF and HF power bands. 

 

 𝐿𝐹/𝐻𝐹 =
𝐿𝐹 𝑝𝑜𝑤𝑒𝑟
𝐻𝐹 𝑝𝑜𝑤𝑒𝑟

𝑥100% (3.18) 

 

3.4.3 Nonlinear Analysis 

 

Heart is under the control of autonomic nervous system which has a nonlinear 

nature and analyzing the nonlinear properties of the RR intervals may thus reveal 

some information about the complex and inherently nonlinear nature of these 

physiological mechanisms (Huikuri, Mäkikallio, & Perkiömäki, 2003). The number 

of studies using nonlinear HRV analysis is increasing (Alcaraz, Abásolo, Hornero, & 

Rieta, 2010; Costa, Goldberger, & Peng, 2002, 2005; Goldberger, Amaral, Glass, & 

Hausdorff, 2000; Hu, Ivanov, Chen, Carpena, & Stanley, 2001; Huikuri et al., 2003; 

Kamen, Krum, & Tonkin, 1996; Kantelhardt, Koscielny-Bunde, Rego, Havlin, & 
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Bunde, 2001; Karmakar, Khandoker, Gubbi, & Palaniswami, 2009; Martínez et al., 

2014; Perkiömäki, 2011; Yeragani et al., 1998). However, the difficulty in nonlinear 

analysis is the physiological interpretation of the results. Nonlinear features used in 

this study are given below. 

 

Approximate Entropy (ApEn): Approximate entropy measures the complexity or 

irregularity of the signal (Richman & Moorman, 2000). ApEn of a time series is a 

nonnegative number whose large values indicate high irregularity or complexity 

(Pincus, 1991). For an RR interval series with length N and an embedding space of 

Rm , ApEn is calculated by (Acharya et al., 2006): 

 

 
𝐴𝑝𝐸𝑛(𝑚, 𝑟,𝑁) =

1
𝑁 −𝑚 + 1

� 𝑙𝑜𝑔𝐶𝑖𝑚(𝑟) −
1

𝑁 −𝑚
� 𝑙𝑜𝑔𝐶𝑖𝑚+1(𝑟)
𝑁−𝑚

𝑖=1

𝑁−𝑚+1

𝑖=1

 (3.19) 

 

where 𝐶𝑖𝑚(𝑟) = 1
𝑁−𝑚+1

∑ 𝛩�𝑟 − �𝑥𝑖 − 𝑥𝑗��𝑁−𝑚+1
𝑗=1  is the correlation integral, ‘r’ is 

the tolerance value and ‘m’ is the embedding dimension. ‘r’ has a strong effect on 

ApEn and should be selected as a fraction of the standard deviation of the data to 

enable the comparison of different data sets.  In this thesis, ‘m’ was set as 2 and ‘r’ 

was selected as 0.2𝑥𝑆𝐷𝑁𝑁 based on the studies of Pincus (Pincus & Goldberger, 

1994). 

 

Sample Entropy (SampEn): Sample entropy is similar to ApEn but it does not 

include self-similarity patterns as ApEn and shows advantages such as data length 

independence (Richman & Moorman, 2000). In ApEn, the comparison of template 

vector with other vectors also includes the comparison with itself which guarantees 

that probabilities 𝐶𝑖𝑚(𝑟) are always nonzero and allows taking logarithms of 

probabilities. This lowers the ApEn values and the signals are considered more 

regular than as they are (Acharya et al., 2006). For SampEn, the vector comparison 

with itself is removed 

 

 𝐶𝑖′ (𝑟) = �
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑗, 𝑗 ≠ 𝑖, 𝑗 ≤ 𝑁 −𝑚 + 1,

 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑑[𝑢(𝑖),𝑢(𝑗)] ≤ 𝑟 � /(𝑁 −𝑚 + 1𝑚 ) (3.20) 
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where 𝑢(𝑗) = (𝑅𝑅𝑗 ,𝑅𝑅𝑗+1, … ,𝑅𝑅𝑗+𝑚−1) and j = 1, 2, …, N-m+1. 

 

Then, 𝜑′ (𝑟) 
𝑚  can be defined as 

 

 
𝜑 
′ (𝑟) =

1
𝑁 −𝑚 + 1

� 𝐶𝑖′ (𝑟) 
𝑚

𝑁−𝑚+1

𝑖=1
 

𝑚  (3.21) 

 

and finally 

 

 
𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟,𝑁) = −𝑙𝑛 �𝜑

′ (𝑟) 
𝑚

𝜑′ (𝑟) 
𝑚+1� � (3.22) 

 

The parameters to be determined for SampEn are similar to ApEN. The 

embedding dimension ‘m’ was again selected as 2 and the tolerance value ‘r’ was 

selected as 0.2xSDNN similar to ApEn as suggested in (Alcaraz et al., 2010). 

 

Detrended Fluctuation Analysis (DFA): Detrended fluctuation analysis quantifies 

the fractal scaling properties of short-term RR intervals series. This method measures 

the root-mean-square fluctuation of an integrated and detrended time series and plots 

against the size of the observation window on a log-log scale (Acharya et al., 2006). 

Firstly, the RR interval series (with length N) is integrated using 

 

 
𝑦(𝑘) = �[𝑅𝑅𝑖 − 𝑅𝑅𝑎𝑣]

𝑘

𝑖=1

 (3.23) 

 

where y(k) is the k th value of the integrated series, RRi is the i th RR interval and 

RRav is the overall average of the entire RR interval series. Then, the integrated series 

is divided into windows with equal length, n. In each window, a least-squares line is 

fitted to the data which is denoted by yn(k). Then, the integrated series y(k) is 

detrended by subtracting the local trend within each segment and the root-mean-

square fluctuation of this integrated and detrended time series is calculated by 
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𝐹(𝑛) = �
1
𝑁
��𝑦(𝑘) − 𝑦𝑛(𝑘)�2
𝑁

𝑘=1

 (3.24) 

 

This computation is repeated for different segment lengths and gives the index 

F(n) as a function of segment length n. Then, (n, F(n)) pairs are plotted on log-log 

scale (see Figure 3.9). 

 

 
 

Figure 3.9 An example plot as the output of DFA. α1 is the short term and α2 is the long term 
fluctuation (Tarvainen & Niskanen, 2008). 

 

A linear relationship on the graph indicates the fractal scaling and the fluctuations 

can be characterized by the scaling exponent α, which is the slope of the regression 

line relating log F(n) to log n. Typically, in DFA the correlations are divided into 

short-term (α1) and long-term (α2) fluctuations. In this thesis, α1 was obtained from 

the range 4 ≤ n ≤ 16 and α2 was obtained from the range 16 ≤ n ≤ 64 as default 

(Peng, Havlin, Stanley, & Goldberger, 1995).  

 

Correlation Dimension (CorDim): Correlation dimension is another method for 

measuring the complexity or strangeness of a time series. It is expected to give 
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information on the minimum number of dynamic variables needed to model the 

underlying system (Grassberger & Procaccia, 1983).  

 

In order to calculate CorDim, the vectors uj with length m were formed and the 

number of vectors uk for which d(uj, uk) ≤ r were calculated similar to ApEn and 

SampEn. However, this time the distance function is defined as 

 

 

𝑑�𝑢𝑗 ,𝑢𝑘� = ���𝑢𝑗(𝑙) − 𝑢𝑘(𝑙)�
2

𝑚

𝑙=1

 (3.25) 

 

Then, an average of the term Cj
m(r) is taken as 

 

 
𝐶𝑚(𝑟) =

1
𝑁 −𝑚 + 1

� 𝐶𝑗𝑚(𝑟)
𝑁−𝑚+1

𝑗=1

 (3.26) 

 

which is called the correlation integral. Then, the correlation dimension (D2) is 

defined as the limit value 

 

 
𝐷2(𝑚) = lim

𝑟→0
lim
𝑁→∞

log𝐶𝑚(𝑟)
log 𝑟

 (3.27) 

 

In practice this limit value is approximated by the slope of the regression curve 

(log r, logCm(r)) as in Figure 3.10 (Henry, Lovell, & Camacho, 2012). The slope is 

calculated from the linear part of the log-log plot. In this thesis, a default value of m 

= 10 was selected for the embedding (Tarvainen et al., 2014). 
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Figure 3.10 An approximation of the correlation dimension D2 (Tarvainen & Niskanen, 2008). 

 

Recurrence Plot Analysis (RPA): Recurrence plot is a visualization of a square 

matrix, in which the matrix elements correspond to those times at which a state of a 

dynamical system recurs. RPA reveals all the times when the phase space trajectory 

of the dynamical system visits roughly the same area in the phase space (Tarvainen 

et al., 2014).  

 

To construct a recurrence plot of an RR series, vectors 

 

 𝑢𝑗 = (𝑅𝑅𝑗 ,𝑅𝑅𝑗+1, … ,𝑅𝑅𝑗+(𝑚−1)𝜏)      j=1, 2, …, N-(m-1)τ (3.28) 

 

are formed. Here m is the embedding dimension and τ is the embedding lag. Then 

vectors uj represent the RR interval series as a trajectory in m dimensional space. A 

recurrence plot is a symmetrical square matrix of ones and zeros. The element in j’th 

row and k’th column, i.e. RP(j,k) is 1 if the point uj on the trajectory is close to point 

uk: 

 

 
𝑅𝑃(𝑗,𝑘) = �1, 𝑑�𝑢𝑗 − 𝑢𝑘� ≤ 𝑟

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         
� (3.29) 
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where d(uj, uk) is the Euclidean distance, and r is a fixed threshold. An example RP 

matrix is given in Figure 3.11. The structure of the RP matrix is symmetric and 

consists short line segments of ones parallel to the main diagonal which are 

represented in black in RP plot (zeros are represented in white). The length of these 

diagonal lines describe the duration of the two points which are close to each other 

(Tarvainen et al., 2014).  

 

In this thesis the embedding dimension m was set as 10 and the threshold distance 

r was selected as √𝑚xSDNN and τ was fixed to 1 similar to (Dabiré, Mestivier, 

Jarnet, Safar, & Chau, 1998).  

 

 
 

Figure 3.11 An example RP matrix of an RR series (Tarvainen & Niskanen, 2008). 
 

The quantification methods of recurrence plots were proposed by Webber & 

Zbilut, which are recurrence rate (REC), maximum diagonal line length (lmax), 

average diagonal line length (lmean), determinism (DET) and Shannon entropy 

(ShanEn) (Webber & Zbilut, 1994). 
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Recurrence rate is the ratio of ones and zeros in the RP matrix. The number of 

elements in RP matrix for τ=1 is N-m+1 and REC is 

 

 
REC =

1
𝑁 −𝑚 + 1

� 𝑅𝑃(𝑗, 𝑘)
𝑁−𝑚+1

𝑗,𝑘=1

 (3.30) 

 

Average diagonal line length lmean is obtained as 

 

 
𝑙𝑚𝑒𝑎𝑛 =

∑ 𝑙𝑁𝑙
𝑙𝑚𝑎𝑥
𝑙=𝑙𝑚𝑖𝑛

∑ 𝑁𝑙
𝑙𝑚𝑎𝑥
𝑙=𝑙𝑚𝑖𝑛

 (3.31) 

 

where Nl is the number of lines with length l.  

 

The determinism (DET) is calculated by 

 

 
DET =

∑ 𝑙𝑁𝑙
𝑙𝑚𝑎𝑥
𝑙=𝑙𝑚𝑖𝑛

∑ 𝑅𝑃(𝑗,𝑘)𝑁−𝑚+1
𝑗,𝑘=1

 (3.32) 

 

The Shannon information entropy (ShanEn) of the line length distribution is 

defined as 

 

 
ShanEn = − � 𝑛𝑙ln 𝑛𝑙

𝑙𝑚𝑎𝑥

𝑙=𝑙𝑚𝑖𝑛

 (3.33) 

 

Poincare Plot: Poincare plot is a method widely used for visually representing the 

heart rate variability obtained from ECG records (Brennan, Palaniswami, & Kamen, 

2001). It shows the correlation between successive RR intervals as a plot of RRj+τ as 

a function of RRj where τ is the time lag. An important issue when plotting Poincare 

plot is to determine time lag (τ). There must be a balance between the values of τ 

such as the coordinates RRj and RRj+τ will not be independent enough if τ is too short 

and will be random with respect to each other due nonlinear nature of the system if τ 

is too large. Shannon’s mutual information can be used to determine the nonlinear 
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dependence between the coordinates (Shannon & Weaver, 1949). Suppose that there 

are two measurements from the same system, which are a[n] and b[n]. Then, the 

amount of information (in bits) about measurement a[n] that is acquired by observing 

b[n] is 

 

 
log2 �

P(𝑎, 𝑏)
P(𝑎)P(𝑏)� (3.34) 

 

In present case, a[n] and b[n] are the time delayed versions of the same time RR 

interval series. Average mutual information is the average of mutual information 

over all measurements: 

 

 
I(τ) = � P�𝑠(𝑛), 𝑠(𝑛 + 𝜏)�

𝑠(𝑛),𝑠(𝑛+𝜏)

log2 �
P(𝑠(𝑛), 𝑠(𝑛 + 𝜏)

P(𝑠(𝑛))P(𝑠(𝑛 + 𝜏)� (3.35) 

 

Then, the suitable time lag is the point where the lag versus mutual information 

graph first falls to its minimum (Abarbanel & Gollub, 1996). This value was found 

as 1 as shown in Figure 3.12 and then τ was fixed to 1 in Poincare plot analysis. 

 

 
 

Figure 3.12 Lag versus mutual information plot of an RR interval series. The graph first falls to its 
minimum is lag 1. 
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An example Poincare plot of an RR interval series with lag 1 is given in Figure 

3.13. The shape of the distribution of the data points is the essential feature. In order 

to quantify the geometry, an ellipse, which is oriented along the line of identity 

(RRj=RRj+1), is fitted to the plot. Then, the dispersion of the data points 

perpendicular to the line of identity (x1 in Figure 3.13) is called SD1, which 

describes the short-term variability, and the dispersion of the data points along the 

line of identity (x2 in Figure 3.13) is called SD2, describes the long-term variability 

(Brennan et al., 2001). Even SD1 nad SD2 are given as nonlinear HRV measures, it 

was shown that they can be expressed as the functions of time domain measures 

SDSD (standard deviation of successive differences) and SDRR as in Equations 

(3.36) and (3.37) (Brennan et al., 2001). 

 

 
SD12 =

1
2

SDSD2 (3.36) 

 
SD22 = 2SDRR2 −

1
2

SDSD2 (3.37) 

 

 
 

Figure 3.13 Poincare plot of an RR interval series with lag 1. An ellipse is fitted on the data points. 
SD1 describes short-term variability and SD2 describes long-term variability (Tarvainen & Niskanen, 
2008). 
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Some other work also showed that SD1 is highly correlated with RMSSD and LF 

power while SD2 is highly correlated with SD and LF/HF power (Carrasco MJ 

Gaitán, 2001; Guzik et al., 2007). 

 

Complex Correlation Measure (CCM): Standard descriptors of Poincare plot (SD1, 

SD2) measure only the gross variability of the time series data. In other words, it 

does not include temporal information. Thus, different RR interval series could have 

the same Poincare indices. To overcome this shortcoming and include temporal 

variations of the time series, a new measure called as complex correlation measure 

(CCM) was introduced (Karmakar et al., 2009). In contrast to SD1 and SD2, CCM is 

interested in point-to-point variation in the time series and thus includes temporal 

information. CCM is calculated by choosing a moving window of three consecutive 

points ((RRk,RRk+1), (RRk+1,RRk+2), (RRk+2,RRk+3)) from the Poincare plot. Then the 

area of the ith triangle A(i) formed by these three points is computed (see Figure 

3.14) and repeated for all points in the series. If the Poincare plot is composed of N 

points with lag τ, then the temporal variation of the plot is composed of all 

overlapping three point windows and can be calculated by (Karmakar et al., 2009) 

 

 
𝐶𝐶𝑀(𝜏) =

1
𝐶𝑛(𝑁 − 2)

�𝐴(𝑖)
𝑁−2

𝑖=1

 (3.38) 

 

where τ represents the lag of Poincare plot and Cn is the normalization constant. Cn is 

calculated by the formula Cn = π × SD1 × SD2 which actually represents the area of 

the fitted ellipse on the Poincare plot. Therefore, CCM is a multiple lag correlation of 

a time series. In this work, the lag was selected as 1 similar to Poincare plot. 
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Figure 3.14 Construction of triangles for the calculation of CCM. 
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CHAPTER FOUR 

4FEATURE SELECTION WITH GENETIC ALGORITHMS 

 

Real word data is generally high dimensional. Dimensionality reduction is the 

transformation of high dimensional data into a meaningful representation of reduced 

dimensionality. Ideally, the reduced representation has a dimensionality that 

corresponds to the intrinsic dimensionality of the data. The intrinsic dimensionality 

of data is the minimum number of parameters needed to account for the observed 

properties of the data (Fukunaga, 2013). Dimensionality reduction is important in 

many domains, since it facilitates classification, visualization, and compression of 

high-dimensional data, by mitigating the curse of dimensionality and other undesired 

properties of high dimensional spaces (Jimenez & Landgrebe, 1998). 

 

For each problem with some sample, there is a maximum number of features 

where performance degrades instead of improves, which is called the curse of 

dimensionality (see Figure 4.1). When the dimensionality increases, the volume of 

the space increases so fast that the available data become sparse. Also, the number of 

learning data should grow exponentially with the dimension. For example, if 10 data 

are reasonable to learn a 1-dimensional model, 100 are necessary for learning a 2-

dimension and 1000 are necessary for learning a 3-dimensional model (Verleysen & 

François, 2005).  An accurate mapping of lower-dimensional space of features is 

needed so no information is lost by discarding important and basic features 

(Hassanien, Kim, Kacprzyk, & Awad, 2014).  

 

https://en.wikipedia.org/wiki/Volume
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Figure 4.1 Increasing the dimension over optimal number of features degrades classification 
performance due to curse of dimensionality (Spruyt, 2014). 

 

Benefits of the feature selection are (Guyon & Elisseeff, 2003) 

 

•  Facilitating data visualization and data understanding 

• Reducing the measurement and storage requirements 

• Reducing training and utilization times 

• Defying the curse of dimensionality to improve prediction performance 

 

There are two methods for dimensionality reduction: feature selection and feature 

extraction. Feature selection approaches try to find an optimal subset of original 

features whereas feature extraction transforms the features from a high dimensional 

space to a space of fewer dimensions.  

 

Feature selection methods are broadly classified into filter, wrapper and 

embedded methods. Filter methods act as preprocessing to rank the features where 

the highly ranked features are selected and applied to a predictor. In wrapper 

methods, the feature selection criterion is the performance of the predictor, i.e. the 

predictor is wrapped on a search algorithm which will find a subset which gives the 

highest predictor performance. Embedding methods include variable selection as part 
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of the training process without splitting the data into training and testing sets 

(Chandrashekar & Sahin, 2014). 

 

Sequential forward/backward selection, exhaustive search, genetic algorithms, 

branch and bound methods are commonly used wrapper methods. Advantages of 

these methods are their implementation does not require much knowledge about the 

structural properties of the problem and algorithms can be easily coded. 

 

Genetic algorithms (GA) is an optimization algorithm founded upon the principles 

of natural evolution discovered by Darwin (Pernkopf, 2007). In nature, individuals 

have to adapt to their environment in order to survive in a process of further 

development. It uses a stochastic, directed and highly parallel search based on 

principles of population genetics that artificially evolve solutions to a given problem 

(Goldberg, 1989; Holland, 1975). 

 

GAs are stochastic optimization procedures which have been successfully applied 

in many feature selection tasks. The problem of dimensionality reduction is well 

suited to formulation as an optimization problem. Given a set of d-dimensional input 

patterns, the task of the GA is to find a transformed set of patterns in an m-

dimensional space (m < d) that maximizes a set of optimization criteria (Raymer, 

Punch, Goodman, Kuhn, & Jain, 2000). Typically, the transformed patterns are 

evaluated based upon their dimensionality, and their class separation or the 

classification accuracy that can be obtained on the patterns with a given classifier. 

 

The advantages of using genetic algorithms are (Goldberg, 1989) 

 

• They work with a coding of the parameter set, not the parameters themselves 

• They search from a population of points, not a single point 

• They use payoff (objective function) information, not derivatives or other 

auxiliary knowledge 

• They use probabilistic transition rules, not deterministic rules. 
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Genetic algorithm was used in this thesis because it is a biologically inspired 

algorithm, not trapped in local optimal solution with crossover and mutation and easy 

to implement. 

 

Main elements of a GA mechanism, used in the feature selection, will be given in 

the following. 

 

4.1 Representation of Individuals 

 

A direct approach to using GA for feature selection was introduced by Siedlecki 

& Sklansky (Siedlecki & Sklansky, 1989). In their work, a GA is used to find an 

optimal binary vector, where each bit represents a feature (Figure 4.2). If the i-th bit 

of this vector equals 1, then the i-th feature is used in classification; otherwise, the 

corresponding feature is not used in classification. A set of binary vectors, which is 

called initial population, is constructed as the first step. 

 

 
 

Figure 4.2 Representation of N features with a binary string (Siedlecki & Sklansky, 1989). 
 

4.2 Fitness 

 

The evolutionary process is driven by the fitness measure. The fitness function 

assigns a value to each string in the population according to some success criteria. 

For feature selection, the criterion is the classification accuracy or error rate. 
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4.3 Selection 

 

The selection operation improves the average quality of the population by giving a 

higher probability to individuals with higher fitness to undertake any genetic 

operation. An important feature of the selection mechanism is its independence of the 

representation scheme, as only the fitness is taken into account. The probabilistic 

feature allocates to every individual a chance of being selected occasionally. 

 

The most popular of the stochastic selection strategies is fitness proportionate 

selection, also called biased roulette wheel selection. It can be regarded as allocating 

pie slices on a roulette wheel, with each slice proportional to a string's fitness as in 

Figure 4.3. Selection of a string to be a parent can then be viewed as a spin of the 

wheel, with the winning slice being the one where the spin ends up. Although this is 

a random procedure, the chance of a string to be selected is directly proportional to 

its fitness and the least fit individuals will gradually be driven out of a population. 

 

A second common strategy is called tournament selection (Goldberg & Deb, 

1991). A subpopulation of individuals is chosen at random. The individual from this 

subpopulation with the highest fitness wins the tournament. Generally, tournaments 

are held between two individuals (binary tournament). However, this can be 

generalized to an arbitrary group whose size is called the tournament size. This 

algorithm can be implemented efficiently as no sorting of the population is required. 

More important, it guarantees diversity of the population. The most important feature 

of this selection scheme is that it does not use the value of the fitness function. It is 

only necessary to determine whether an individual is fitter than any other or not. 
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Figure 4.3 Roulette wheel selection. The chance of selecting the individual with higher fittness is also 
high which means fittest individuals continue genetic operations. 

 

4.4 Crossover 

 

The crossover operator is responsible for combining good information from two 

strings and for testing new points in the search space. The two off-springs are 

composed entirely of the genetic material from their two parents. By recombining 

randomly certain effective parts of a character string, there is a good chance of 

obtaining an even more fit string and making progress toward solving the 

optimization problem. 

 

Several ways of performing crossover can be used. The simplest but very 

effective is the one-point crossover (Goldberg, 1989). Two individual strings are 

selected at random from the population. Next, a crossover point is selected at random 

along the string length, and two new strings are generated by exchanging the 

substrings that come after the crossover point in both parents. The mechanism is 

illustrated in Figure 4.4. 

 

A more general case is the multi-point crossover in which parts of the information 

from the two parents are swapped among more string segments (de Jong, 1975). An 
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example is the two-point crossover, where two crossover points are selected at 

random and the substring lying in between the points are swapped. 

 

 
 

Figure 4.4 One point crossover. The bits after crossover point are exchanged between parents to create 
offsprings to jump new points in searchspace. 

 

In uniform crossover, each bit of the offspring is created by copying the 

corresponding bit from one or the other parent selected at random with equal 

probability (Syswerda, 1989). Uniform crossover has the advantage that the ordering 

of bits is entirely irrelevant because there is no linkage between adjacent bits. Multi-

point crossover takes half of the material from each parent in alternation, while 

uniform crossover decides independently which parent to choose. When the 

population has largely converged, the exchange between two similar parents leads to 

a very similar offspring. This is less likely to happen with uniform crossover 

particularly with small population size, and so, gives more robust performance. 

 

4.5 Mutation 

 

Mutation prevents the population from premature convergence or from having 

multiple copies of the same string. This feature refers to the phenomenon in which 

the GA loses population diversity because an individual that does not represent the 

global optimum becomes dominant. In such cases the algorithm would be unable to 

explore the possibility of a better solution.  

 

Mutation consists of the random alteration of a string with low probability. It is 

implemented by randomly selecting a string location and changing its value from 0 to 

1 or vice versa, as shown in Figure 4.5. 
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Figure 4.5 Mutation operation. The randomly selected bits are complemented. 

 

The implementation of GA for feature selection in this thesis is as follows: 

 

1. Representation: Initial population was constructed with 20 strings. Each 

string consisted of 33 bit representing 33 features. The bit values were 

determined by simulating a random coin flip. Bit 1’s represented selected 

features and bit 0’s not selected features.  

 

2. Fitness: One nearest neighbor classification of PAF and non-PAF subjects 

was done with the selected features in each string. The fitness value was 

selected as the average of sensitivity and specificity of the classification 

which corresponds to the area under ROC curve. 

 

3. Selection: According to fitness values, the parents for the next generation 

were selected with roulette wheel selection. The chance of selecting a string 

with higher fitness value was also higher with this selection. 

 

4. Crossover: Crossover point was determined randomly and the bits after the 

crossover point were exchanged between parents.  

 

5. Mutation: Mutation rate was selected as 0.01. The location of mutate bits 

were selected randomly and those bits were complemented. 

 

6. Stop criteria: One nearest neighbor classification was done with selected 

features. The stop criterion was checked, which was the change in highest 

fitness value. If it does not change more than 0.1, the algorithm stops. The 

selected features of the individual with highest fitness value were taken to 
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represent our data. If the fitness value changed more than 0.1, go step 3 and 

continue until stop criteria was achieved. 

 

The algorithm was run several times and it is observed that the same features 

yielded the best fitness value in each run. Eight features selected by GA are mean 

value and standard deviation of RR intervals, HF band peak frequency, relative 

powers of LF and HF bands, dispersion of points perpendicular to line of identity in 

Poincare plot (SD1), sample entropy, short term fluctuation slope of detrended 

fluctuation analysis (α1). 
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CHAPTER FIVE 

5METHODS 

 

Paroxysmal atrial fibrillation patients are diagnosed when an AF episode is 

detected in ECG record. However, PAF is a rhythm disorder that starts and 

terminates spontaneously in a short time. Then, it is difficult to get an ECG record 

taken during a PAF episode in routine physical examinations in a healthcare facility. 

Using a Holter or event recorder 24 h or more might be needed for diagnosis which 

is uncomfortable for the patient and an economic burden on the system (Cowan et 

al., 2014). The method proposed in this thesis uses ECG records taken at least 45 min 

away from any PAF episode to diagnose PAF patients. The records were 

preprocessed as explained in Chapter 3 and 31 HRV features were obtained. Atrial 

and ventricular ectopic beat numbers were also used as separate features and the 

dimension of the feature space was 33. Feature selection was done with genetic 

algorithm as explained in Chapter 4 and eight features were selected. Then, 

classification of PAF and non-PAF subjects was done using 4 different classifiers by 

utilizing both whole feature set and selected feature set as given in detail in the 

following sections. 

 

The work is implemented in the software environment of MATLAB version 

2008b. All the study was conducted using an Intel Core Duo-2.2 GHz computer with 

2 GB DDR2 memory. 

 

5.1 Data Acqusition 

 

PhysioNet is a freely available web-based resource providing a wide range of 

physiologic signals and related open-source software to the researchers (Goldberger 

et al., 2000). The PAF Prediction Challenge Database (afpdb) from Physionet was 

used in this study.  This database includes two-channel ECG recordings which have 

been created for use in the Computers in Cardiology Challenge 2001, where the goal 

of the challenge was developing automated methods for predicting PAF (Moody et 

al., 2001). ECG signals were sampled at 128 Hz and digitized with 12 bit resolution. 

https://www.physionet.org/challenge/2001/
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In addition, the database also includes automatically generated QRS occurance times 

of each record. However, these timings are not confirmed by the experts and may 

include ectopic beats or wrong detections (Moody et al., 2001). The RR interval 

series derived from these QRS occurance times were used in this study. The 

advantage of using these unaudited timings is reducing the sensitivity of the system 

to wrong QRS detections in real applications. 

 

The database has 100 ECG record sets obtained from 98 different subjects. Each 

record set contains two 30 min records from the same subject. All records were 

extracted from longer ECG records. The distribution of the dataset is shown in 

Figure 5.1. Among these 100 record sets, 53 come from subjects who have 

previously been diagnosed with PAF. For these record sets, one record of the set is 

obtained just before a PAF attack (from here on will be called as prior-to-PAF 

records); the other record is obtained from ECG periods which are at least 45 min 

away from any PAF episode (from here on will be called as distant-from-PAF 

records). The remaining 47 record sets come from subjects who do not have any PAF 

history (from here on will be called as non-PAF records). These non-PAF subjects 

include healthy controls, patients referred for long term ambulatory ECG monitoring 

and patients in intensive care units without any PAF activity. In this study, only 

distant-from-PAF and non-PAF records were used; the prior-to-PAF records were 

not used. The reason for this approach is to make the performance evaluation of our 

systems more realistic. If the prior-to-PAF records had also been included, this 

would have increased the performance of the classifiers. However, this would be an 

erroneous bias because, in real life, it is almost impossible to get an ECG record just 

prior to a PAF episode from a subject. Since short-term HRV analysis would be 

done, 288 five minute segments from PAF patients and 510 five minute segments 

from non-PAF subjects were obtained with nonoverlapping windowing of the series. 
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Figure 5.1 The distribution of the afpdb obtained from Physionet. The records shown with bold 
characters were used in the study. 
 

5.2 Classification Stage 

 

Pattern classification can be defined as assigning a label to a new pattern based on 

some a priori knowledge (labels, statistics, etc.) of similar data with a learning rule. 

A learning rule is a procedure that modifies the parameters of a network, which can 

also be referred to as a training phase. The learning rule is applied to train the 

network to perform some particular task. There are two learning methods: supervised 

and unsupervised.  

 

In supervised learning, the learning rule is given with a set of examples (the 

training set) and their corresponding outputs (targets) such as {(p1,t1), (p2, t2), …, (pN, 

tN)} where pi is an input to the network, and ti is the corresponding correct (target) 

output. As the inputs are applied to the classifier network, the network outputs are 

compared to the targets and the learning rule adjust the parameters of the network in 

order to force the network outputs closer to the targets.  

 

In unsupervised learning, on the other hand, the parameters of the network are 

modified in response to inputs only. There are no target outputs available. In this 

case, it establishes the classes based on the statistical properties of the patterns 

(Watanabe, 1985). Most of these algorithms perform clustering operations. They 
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categorize the input patterns into a finite number of classes. This is especially useful 

in such applications as vector quantization. 

 

Rapidly growing power and speed of computers enabled processing huge and 

complicated datasets. Thus, many recognition applications are not satisfied with a 

single classification approach. Therefore, multiple methods and approaches are 

needed to be used. Thus, combining several methods and classifiers is now 

commonly used in pattern recognition (Jain, Duin, & Mao, 2000). 

 

In this thesis, supervised learning methods were preferred due to their simplicity 

and understandability. The Bayes’, k-nearest neighbors, artificial neural network and 

support vector machine classifiers were used to find out the best classification of 

PAF and non-PAF subjects. 

 

5.2.1 Bayes’ Classification 

 

In Bayesian decision theory, tradeoffs between probabilities and decision costs 

constitute the basis of a classification decision (Duda, Hart, & Stork, 2001). Bayes's 

rule provides a method of classifying an object optimally into one of c mutually 

exclusive classes, using  

 

• the prior (a priori) probabilities P(Ck)  

• the conditional densities p(x|Ck) 

 

where P(.) denotes probability mass function and p(.) denotes probability density 

function. The class conditional probability density function (p(x|Ck)) determines how 

the feature values are distributed for each class. Feature vector x, where x = {x1, …, 

xd}, will have a distribution described by the probability density function p(x). The 

probability P(x) of a feature vector x lying in a region R is found by the integration of 

the probability density function over R 
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𝑃(𝑥 ∈ 𝑅) = � 𝑝(𝑥)𝑑𝑥

 

𝑥=𝑅

 (5.1) 

 

The class densities are the separate probability density functions formed for each 

class: 𝑝(𝑥|𝐶𝑘). The unconditional probability density function is the sum of the class 

conditional probability density functions weighted by prior probabilities and its 

independent of class (Duda et al., 2001) 

 

 
𝑝(𝑥) = ��𝑝(𝑥|𝐶𝑘)𝑃(𝐶𝑘)�

𝑐

𝑘=1

 (5.2) 

 

The posterior probabilites may be calculated from 

 

 
𝑃(𝐶𝑘|𝑥) =

𝑝(𝑥|𝐶𝑘) × 𝑃(𝐶𝑘)
𝑝(𝑥)  (5.3) 

 

where P(Ck|x) is the posterior probability for class Ck, p(x|Ck) is the class conditional 

probability density function for class Ck, P(Ck) is the prior probability of class Ck, 

p(x) is the unconditional probability density function from Equation (5.2). 

 

To classify x, the class Ck with the highest posterior probability is chosen (or a 

random choice in the case of equal posterior probabilities) using 

 

 𝑃(𝐶𝑘|𝑥) ≥ 𝑃�𝐶𝑗�𝑥� ,∀𝑗 ≠ 𝑘 (5.4) 

 

With Bayes's rule, a classifier is a means of partitioning the input space into c 

decision regions Rk so that feature values in each decision region are associated with 

a particular class. The probability density of a correct classification at point x, for a 

class Ck, in a region is p(x|Ck)P(Ck). Therefore, the overall probability of an accurate 

decision is obtained by integration of the probability density over all regions (Duda 

et al., 2001) 
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𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = � �𝑝(𝑥|𝐶𝑘)

 

𝑅𝑘

𝑐

𝑘=1

𝑃(𝐶𝑘)𝑑𝑥 (5.5) 

 

Pcorrect is maximized by the choice of regions to maximize each of c integrands, 

i.e. by assigning a pattern to class Ck that maximizes p(x|Ck)P(Ck). Since it may be 

seen that the maximum Pcorrect value is achieved by maximizing P(Ck|x), the posterior 

probability. 

 

If p(x|Ck) for different classes overlap, e.g. for the cases of two curves with 

overlapping joint probability density functions, the best classification choice is to 

minimize the overlap area to maximize Equation (5.5); however, in this case, a 

perfect classifier cannot be realized. 

 

Naïve Bayes classifier is based on applying Bayes’ theorem with strong (naïve) 

independence assumption (Duda et al., 2001). A conditional probability is defined as 

the probability of an event given that another event has occurred. The conditional 

probability of x being in each class Ck is  

 

 
𝑃(𝐶𝑘|𝑥) =

𝑃(𝑥|𝐶𝑘)𝑃(𝐶𝑘)
𝑃(𝑥)  (5.6) 

 

where  P(𝐶k|x) is the probability of ‘x’ being in class Ck 

P(x|𝐶𝑘) is the probability of generating instance ‘x’ given class Ck 

P(Ck) is the probability of occurrence of class Ck 

P(x) is the probability of instance ‘x’ occurring.  

 

However, ‘x’ might be a feature vector and it is difficult to calculate P(x|C𝑘) as in 

Equation (5.6). 

 

 
P(Ck|x1,x2,…,xn)=

P(𝑥1,x2,…,xn|C𝑘)𝑃(𝐶𝑘)
P(x1,x2,…,xn)  (5.7) 
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In order to overcome this difficulty, Naïve Bayes classifier assumes that each 

feature x1, x2, …, xn is independent from each other and Equation (5.7) simplifies to 

 

 
P(𝐶𝑘|x1,x2,…,xn)=

P(𝑥1|C𝑘)P(x2|Ck)…P(xn|C𝑘)P(Ck)
𝑃(x1)𝑃(x2)…P(𝑥n)  (5.8) 

 

Then, performance of the Naïve Bayes classifier is strongly affected from feature 

dependencies. Kernel smoothing density estimate for probability distributions was 

used and the kernel smoother was selected normal. In this thesis, the bandwidth of 

the kernel smoothing window was selected automatically for each combination of 

features and class, using a value that is optimal for a Gaussian distribution.  

 

5.2.2 K-Nearest Neighbor Classification 

 

K-nearest neighbor (kNN) algorithm is a simple non-parametric method widely 

used for classification (Altman, 1992). kNN is one of the instance-based classifiers 

whose system parameters are simply the samples that are presented to the system. 

This algorithm assumes that all instances correspond to points in the d-dimensional 

space Rd (Mitchell, 1997). An object is classified according to majority of its 

neighbors. The number of neighbors (k) is a positive integer and generally small. If k 

= 1, then the object is simply assigned the class of its nearest neighbor. In binary 

classifications, it is reasonable to choose k as an odd number in order to avoid 

confusion in case of equal number of neighbors from each class (Nixon & Aguado, 

2008).  

 

In kNN calssification, the training set consists of objects whose correct classes are 

known. In order to identify neighbors, the objects are represented by position vectors 

in a multidimensional feature space. It is usual to use the Euclidean distance 

 

 
𝑑𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 = ��(𝑥𝑖 − 𝑦𝑖)2

𝑖

 (5.9) 

 

where xi represents the test set features and yi represents the train set features. 
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Although using Euclidean distance is very common, other distance measures, such 

as the Mahalanobis, city-block or cosine (1 minus the cosine of the included angle 

between observations) distances could be used instead.  

 

There is no specific operation in training phase of the algorithm such as 

optimizing parameters etc. The training phase of the algorithm consists only of 

storing the feature vectors and class labels of the training samples. In the actual 

classification phase, the test sample (whose class is not known) is represented as a 

vector in the feature space. Distances from the new vector to all stored vectors are 

computed and k closest samples are selected. Then, the test sample is just assigned to 

the class of the majority of its k nearest neighbors (see Figure 5.2). 

 

 
 

Figure 5.2 Classification of a sample with kNN algorithm. The sample to be classified (test sample) is 
shown as a circle. The train samples from two different classes are represented with squares and 
triangles. If k was selected 3, the test sample would be assigned to class ‘triangle’. If k was selected 5, 
the test sample would be assigned to class ‘square’. 

 

kNN classification method does not depend on the data following any particular 

distribution unlike many other classifiers which assume a multivariate Gaussian 

distribution of the feature values. Thus, a kNN classifier allows a great deal of 

generality in the classification  (Duda et al., 2001). But, there are some disadvantages 

of the algorithm. Firstly, for large data sets, this algorithm is very time-consuming 

because each sample in the training set is processed while classifying a new data and 

this requires a longer classification time. Secondly, the accuracy of the kNN 

algorithm can be severely degraded by the presence of noisy or irrelevant features, or 

if the feature scales are not consistent with their importance.  
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5.2.3 Artificial Neural Network Classification 

 

An artificial neural network (ANN) is an interconnected group of simple units 

with adaptive weights (Bishop, 1995). ANNs are inspired by biologic neural 

networks and are composed of neuronlike units connected together through input and 

output paths that have adjustable weights (Bishop, 1995; Haykin, 1999). Each unit 

(neuron) produces an output signal, which is a function of the sum of its inputs. This 

function is formulated as 

 

 
𝑦𝑖 = 𝑓 ��𝑥𝑖𝑤𝑖

𝑁

𝑖=1

� (5.10) 

 

where xi is the input, wi are the weights, f(.) is the activation function and yi is the 

output of the ith unit. Different functions can be utilized as the activation function but 

most often a sigmoid (or hyperbolic tangent) function is used. 

 

Multi-layer perceptrons (MLPs) are the mostly used ANN structures. An MLP 

consists of successive layers, each of which includes a different number of 

processing units. The units in the first layer receive inputs from the outside world and 

are fully connected to units in the hidden layer. The units in the hidden layer, in their 

turn, are fully connected to output layer units. The units in the output layer produce 

the output of the MLP (see Figure 5.3).  
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Figure 5.3 The architecture of an MLP network. 

 

A training phase, where the values of the connection weights are adjusted, is 

needed for ANN algorithm to accomplish the desired task. Then the network would 

produce the correct output for each given input pattern. The proper weights are 

determined under the control of a training algorithm. There are a large number of 

training algorithms and their variants (Haykin, 1999). However, this should be noted 

that the ultimate aim of the training of a neural network is not to force it to learn the 

training set perfectly. Instead good generalization ability is desired, this means 

producing correct output values for inputs which are not seen during the training 

process. The early stopping method avoids overtraining and increases the 

generalization performance of the network (Hagiwara & Kuno, 2000). In this 

method, a validation set, which is different from the training set, is chosen. During 

the training process, the validation error is used as the stopping criterion. As shown 

in Figure 5.4, the training is finished when the validation error reaches its minimum. 
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Figure 5.4 Training and validation errors versus iteration number. Training stops when the the error at 
validation set starts to increase  
 

Commonly used training algorithms are summarized below: 

 

Gradient Descent (GD): A gradient descent based optimization algorithm such as 

back propagation is the most common method used to adjust the connection weights 

in MLP iteratively in order to minimize an error function (Bishop, 1995; Duda et al., 

2001; Yu, Efe, & Kaynak, 2002) Generally the error function used is the mean 

square error (MSE): 

 

 
𝐸𝑀𝑆𝐸(𝑦) =

1
2
��𝑡𝑗 − 𝑦𝑗�

2
𝑁

𝑗=1

 (5.11) 

 

where t is the target, y is the output, and EMSE is the error function. The errors 

calculated at the output units are then propagated backward to units in other layers. 

In order to minimize the error occurred in backpropagation phase, the value of each 

weight is updated by 

 

 ∆𝑤𝑗𝑖𝑙 = 𝜂𝛿𝑗
(𝑙)𝑦𝑖

(𝑙−1) (5.12) 

 

where η is the learning rate and δ is the derivative of error function with respect to 

the weight, i.e. 
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𝛿(𝑛) =

𝜕𝐸
𝜕𝑤

 (5.13) 

 

Gradient Descent with Adaptive Learning Rate (GDALR): In plain gradient 

descent, as described above, the learning rate is held fixed during the training phase. 

However, changing the learning rate during the training process is a method that 

could increase the performance of the network (Yu & Liu, 2002). In this variant of 

gradient descent, when the new error exceeds the previous one, the learning rate is 

decreased and the new weight and bias values are discarded. If, on the other hand, 

the new error is less than the old one, the learning rate is increased by 

 

 
𝑒𝑟(𝑛) =

𝐸(𝑛) − 𝐸(𝑛 − 1)
𝐸(𝑛)

 (5.14) 

 

where E(n) is the current error, E(n-1) is the previous error and er is the relative 

factor. During the training process, the learning rate is changed according to relative 

factor 

 

 𝑓𝑜𝑟  𝑒𝑟 < 0, 𝜂(𝑛 + 1) = 𝜂(𝑛)(𝑙 + 𝑢. 𝑒−𝑒𝑟(𝑛)) 
𝑓𝑜𝑟  𝑒𝑟 > 0, 𝜂(𝑛 + 1) = 𝜂(𝑛)(𝑙 − 𝑢. 𝑒−𝑒𝑟(𝑛)) 

(5.15) 

 

where η(n+1) is the updated learning rate, η(n) is the previous learning rate and u is 

the relative control parameter (0<u<1). 

 

Levenberg-Marquart (LM) Algorithm : The LM method shows the fastest 

convergence during the training process based on gradient descent methods because 

it acts as a compromise between the stability of the first-order optimization methods 

(e.g., steepest-descent method) and the fast convergence properties of the second 

order optimization methods (e.g., Gauss-Newton method) (Chen, Han, Au, & Tham, 

2003; Hagan & Menhaj, 1994). When training with the LM method, the update of the 

weights are obtained as 

 

 ∆𝑤 = [𝐽𝑇𝐽 + 𝜆𝐼]−1𝐽𝑇𝑒 (5.16) 
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where J is the Jacobian matrix, λ is the learning parameter, and e is the sum of error 

squares. In this study, LM algorithm was used for the training of ANN classifier. 

 

Regularization Method: It is another method that does not use early stopping but 

also increases the generalization performance of an ANN (Chan, Ngan, Rad, & Ho, 

2002; Hagiwara & Kuno, 2000). In this method, a penalty term is added to the error 

function as shown below 

 

 
𝐸� = 𝐸 + 𝑣𝛺    𝑤ℎ𝑒𝑟𝑒     𝛺 =

1
𝑛
�𝑤𝑖2
𝑛

𝑖=1

 (5.17) 

 

Here E is the mean square error function, v is the control parameter of the penalty 

term, and Ω is the penalty term. Using this method has the similar effect of applying 

early stopping during the training process. 

 

5.2.4 Support Vector Machine Classification 

 

Support vector machine (SVM) is a powerful technique proposed for solving 

pattern recognition problems (Blanz et al., 1996; Cortes & Vapnik, 1995; Osuna, 

Freund, & Girosi, 1997). According to the theory of SVMs (Vapnik, 1982, 1995), 

they minimize the structural risk while traditional techniques for pattern recognition 

are based on the minimization on the training set. This new induction principle, 

which is equivalent to minimize an upper bound on the generalization error, relies on 

the theory of uniform convergence in probability (Vapnik, 2006).  

 

In the linearly separable case, the key idea of an SVM can be explained more 

easily. Suppose a training set S is given. The set contains points of either of two 

classes, a SVM separates the classes through a hyper-plane determined by certain 

points of S, termed “support vectors” (see Figure 5.5). In the separable case, this 

hyper-plane maximizes the margin, or twice the minimum distance of either class 

from the hyper-plane, and all the support vectors lie at the same minimum distance 

from the hyper-plane. In real cases, the two classes may not be linearly separable and 
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the data vectors are mapped to a higher dimensional space by a kernel function. Then 

SVM finds a linear separating hyperplane with the maximal margins in this higher 

dimensional space. The solution is a trade-off between the largest margin and the 

lowest number of errors; trade-off is controlled by a regularization parameter. 

 

 
 
Figure 5.5 A representation of support vector machine algorithm. Red and blue dots represent two 
different classes. SVM finds the optimum hyper plane that maximizes the margin between support 
vectors while trying to minimize wrong classifications. 

 

Given a training set of (xi, yi),  i=1, 2, …,l where x𝑖 ∈ 𝑅𝑛 and y𝑖 ∈ {−1, 1}, the 

traditional SVM algorithm is reduced to the optimization problem 

 

 
min
𝑤,𝑏,𝜉

�
1
2

w𝑇w + 𝐶 ��𝜉𝑖

𝑙

𝑖=1

�� 

subject to ∶  y𝑖(w𝑇𝜙(x𝑖) + 𝑏) ≥ 1 − 𝜉𝑖 ,   𝜉𝑖 > 0 ∀𝑖      

(5.18) 

 

where 𝜙(x) is a nonlinear function that maps x into a high dimensional space (Wang, 

Liu, & Wan, 2005). w, b and ξi are the weight vector, bias and slack variable, 

respectively. C is a constant and determined a priori. Searching for the optimal 

hyperplane in Equation (5.18) is a quadratic programming problem, which can be 
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solved by constructing a Lagrangian and transforming it into a dual maximization 

problem of the function Q(a), defined as 

 

 
max

 
𝑄(𝛼) = �𝛼𝑖 −

1
2
��𝛼𝑖𝛼𝑗y𝑖𝑦𝑗𝐾�x𝑖 , x𝑗�

𝑙

𝑗=1

𝑙

𝑖=1

𝑙

𝑖=1

 

subject to ∶  �𝛼𝑖y𝑖 = 0 ,   0 ≤ 𝛼𝑖 ≤ 𝐶 for 𝑖 = 1, 2, … , 𝑙
𝑙

𝑖=1

 

(5.19) 

 

where K(xi, xj) = ϕ(xi)Tϕ(xj) is the kernel function and, α = (α1, α2, . . ., αl) is the 

vector of nonnegative Lagrange multipliers. Assuming that the optimum values of 

the Lagrange multipliers are denoted as αo,i(i=1, 2,. . ., l), it is then possible to 

determine the corresponding optimum value of the linear weight vector wo and the 

optimal hyperplane as in Equations (5.20) and (5.21), respectively 

 
 

wo = �𝛼𝑜,𝑖y𝑖𝜙(x𝑖)
𝑙

𝑖=1

 (5.20) 

 
 

�𝛼𝑜,𝑖y𝑖𝐾(x, x𝑖) + 𝑏 = 0
𝑙

𝑖=1

 (5.21) 

 

The decision function can be written as 

 

 
𝑓(𝑥) = sign��𝛼𝑜,𝑖y𝑖K(x, x𝑖) + 𝑏

𝑙

𝑖=1

� (5.22) 

 

In this work, the Gaussian radial basis function (RBF) given in Equation (5.23) 

was used as the kernel function.  

 

 
𝐾�𝑥𝑖 , 𝑥𝑗� = 𝑒𝑥𝑝 �−

�𝑥𝑖 − 𝑥𝑗�
2

2𝜎2 � (5.23) 

 

The parameters, which are kernel width ‘σ’ and regularization constant ‘C’, were 

experimentally defined to achieve the best classification result. Grid search was 
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performed to find σ and C values that give the minimum error rate in classification. 

In grid search, several (σ, C) pairs were used for classification and the pair with 

minimum error rate (maximum accuracy) was selected. Cross validation was made to 

take the classification success of whole data into consideration. Figure 5.6 and Figure 

5.7 shows error rate for many (σ , C) values. The values of both variables were 

searched from 0 to 15 with 0.5 steps. The error rate was minimum for σ=10.5 and 

C=1 when all 33 features were used.  The σ and C values found to be 4 and 1.5 

respectively when selected 8 features were used. 

 

 
 

Figure 5.6 Error rate plot when all 33 features were used for classification. Minimum error rate is 0.13 
when σ=10.5 and c=1. 
 

 
 

Figure 5.7 Error rate plot when selected 8 features were used for classification. Minimum error rate is 
0.05 when σ=4 and c=1.5. 
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5.3 Model Evaluation 

 

In this section, a few standard measures are explained to discuss the applications 

and accomplishments of various classifiers used in this study. These measures have 

been recommended by physicians and health-care workers by various organizations, 

and therefore are good measures for evaluating the performance of any automated 

system that is designed to assist these health-care professionals (Valafar, 2000).  

 

5.3.1 Cross Validation 

 

The performance of the features to discriminate between PAF patients and non-

PAF subjects were evaluated using 10-fold cross validation. With this validation, the 

whole dataset was divided into ten groups randomly and one group was used for 

testing while the remaining nine groups were used for training. The same procedure 

was repeated for all folds and the average of performance values were used for the 

final evaluation. In this study, each fold had approximately 80 five minute RR 

interval series and the numbers of PAF and non-PAF segments were controlled to 

ensure that each fold represented the whole data adequately (approximately 50 from 

non-PAF subjects and 30 from PAF patients). 

 

Due to the splitting of 30 min RR series into 5 min segments, there were at least 

six 5-minutes RR segments from the same subject. If the whole dataset had been 

divided into test and train groups randomly, some of the 5 min records belonging to a 

specific subject would have been in the train set while the remaining ones of the 

same subject would be in the test set. Such a situation would probably affect the 

results positively but erroneously. To avoid such a bias, the test and train sets were 

constructed on a subject basis. This way, all 5 min RR segments belonging to a 

specific subject was put in either the test or training set. 
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5.3.2 Performance Assessment 

 

The output of a binary classifier is generally designed as either “1” or “0” which 

means "positive" or "negative". Each decision may be "true" or "false". So there are 

two kinds of responses for each decision. According to two-class case, there are four 

possible situations as a decision (Gibbons et al., 1997). If the instance is positive and 

it is classified as positive, it is assigned as true positive (TP); if it is classified as 

negative, then it is assigned as false negative (FN). If the instance is negative and it is 

classified as negative, it is assigned as true negative (TN); if it is classified as 

positive, it is assigned as false positive (FP). 

 

Given a recognition system, a two-by-two decision matrix can be constructed 

according to decision of the test set. This matrix is also known as a contingency table 

or confusion matrix as shown in Table 5.1. Throughout this thesis, PAF patients were 

regarded as ‘Positive’ and non-PAF subjects were regarded as ‘Negative’ during 

classifications. 

 
Table 5.1 A two-by-two confusion matrix. 

 

  System Output 
  Positive Negative 

True Condition 
Positive True positive  

(TP) 
False Negative 

(FN) 

Negative False Positive  
(FP) 

True Negative 
(TN) 

 

Performance of a recognition system is measured by several parameters using the 

decision matrix (Eberhart, 2014). Sensitivity (SEN), selectivity (SEL), specificity 

(SPE), and overall accuracy (ACC) are the mostly used parameters. 

 

Sensitivity is described as the ratio of the number of positives correctly classified 

by the recognition system to the total number of real positives. It shows the ratio of 

the correctly classified PAF patients to the total number of PAF patients: 
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𝑆𝑒𝑛 =

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

× 100 (5.24) 

 

Specificity is described as the ratio of the number of negatives correctly classified 

by the recognition system to the total number of real negatives. It shows the ratio of 

correctly classified non-PAF subjects to the total number of non-PAF subjects: 

 

 
𝑆𝑝𝑒 =

𝑇𝑁
𝑇𝑁 + 𝐹𝑃

× 100 (5.25) 

 

Selectivity is described as the ratio of the number of positives correctly classified 

by the recognition system to the total number of samples classified as positive. It 

shows the ratio of correctly classified PAF patients to the total number of subjects 

classified as PAF: 

 

 
𝑆𝑒𝑙 =

𝑇𝑃
𝑇𝑃 + 𝐹𝑃

× 100 (5.26) 

 

Overall Accuracy is the ratio of the total number of positives and negatives 

correctly classified by the recognition system to the all decisions. 

 

 
𝐴𝑐𝑐 =

𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃

× 100 (5.27) 

 

In addition to these performance measures, positive predictive value (PPV) and 

negative predictive value (NPV) are two other commonly used performance 

measures that describe the performance of a diagnostic test (Fletcher, Fletcher, & 

Wagner, 2005). Positive predictive value is the same with selectivity measure 

described by Equation (5.26). Negative predictive value is described as the ratio of 

the number of negatives correctly classified by the recognition system to the total 

number of samples classified as negative. It shows the ratio of correctly classified 

non-PAF subjects to the total number of subjects classified as non-PAF: 

 

 
𝑁𝑃𝑉 =

𝑇𝑁
𝑇𝑁 + 𝐹𝑁

× 100 (5.28) 
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Another performance evaluation tool is Receiver Operating Characteristic (ROC) 

analysis. It is a plot of sensitivity (true positive rate) versus 1-specificity (false 

positive rate) values as shown in Figure 5.8. It is widely used in the medical 

applications to evaluate the performance of diagnostic tests. Area under the ROC 

curve is a measure of discrimination, or the performance measure of a diagnostic test. 

 

Overall accuracy or overall misclassification rate is not a useful measure when the 

disparity between classes is high (Alberg, Park, Hager, Brock, & Diener-West, 

2004). An area of 1 represents a perfect test; an area of 0.5 represents a worthless 

test. The traditional academic point system is used to evaluate the performance of a 

diagnostic test: if the area is between 0.90-1 it is excellent, between 0.80-0.90 it is 

good, between 0.70-0.80 it is fair, 0.60-0.70 it is poor, and between 0.50-0.60 it is 

fail (Alberg et al., 2004; Fawcett, 2006; Van Erkel & Peter, 1998). 

 

 
 

Figure 5.8 Area under ROC curve. 
 

There are many methods to determine area under ROC curve. Two methods are 

commonly used to compute the area of ROC curve: a non-parametric method based 

on constructing trapezoids under the curve to approximate the integral or the area 

under the curve and a parametric method, using a maximum likelihood estimator to 

fit a smooth curve to the data points.  
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Ideally, the predictive value in terms of ROC areas is based on a series of 

sensitivity-specificity pairs. However, in this study there is only one pair per each 

system and the ROC area reduces to a trapezoidal area (see Figure 5.9) which 

corresponds to the average of sensitivity and specificity values (Inan & Kuntalp, 

2007). These areas were given in classification performance tables as AUC values. 

 

 
𝐴𝑈𝐶 ≈

𝑆𝐸𝑁 + 𝑆𝑃𝐸
2

 (5.29) 

 

 
 

Figure 5.9 ROC curve in case of one sensitivity-specificity pair. The area under curve is the average 
of sensitivity and specificity values. 
 

5.4 Representation of Data with Self Organizing Maps 

 

Self-organizing maps (SOMs) are biologically inspired neural network 

architectures trained by unsupervised learning algorithms based on competitive 

learning rule (Kohonen, 1982, 2001). There are two usages of SOM in the literature. 

In the first one, the neurons in the SOM represent different clusters in the data space. 

The number of neurons in this network corresponds to the number of clusters that 

exist in the input data. Hence, neuron size is very small; it is generally less than 

twenty. The other usage of SOM is related to the low dimensional visualization of 

high dimensional data (Ultsch, 2003). Humans simply cannot visualize high 

dimensional data. Therefore, different techniques have been developed to help 

visualize this kind of high dimensional data. One of these methods is the Unified 
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Distance Matrix (U-matrix). U-matrices were invented for the visualization purposes 

of these high dimensional structural features. The U-matrix is the canonical tool for 

the display of the distance (and topological) structures of the input data (Ultsch, 

1993). In these models of SOM, very large numbers of neurons are used, generally 

over 1000. 

 

SOM is an unsupervised type neural network architecture used to visualize and 

interpret high-dimensional data sets on the map. The map usually consists of a two-

dimensional regular (rectangular or hexagonal) grid of nodes called neurons as 

shown in Figure 5.10. Each sample of high dimensional input data is associated with 

a unit which is the winner. Not only the winning neuron but also its neighbors on the 

lattice are allowed to learn and adapt their weights towards the input. This way, the 

representations will become ordered on the map. After training, the responses of the 

SOM network are ordered on the map. This is the essence of the SOM algorithm and 

its main distinction from other networks. 

 

 
 

Figure 5.10 SOM network structures (a) Rectangular Grid (b) Hexagonal Grid. 

 

An N-dimensional input is presented to each neuron of a SOM network as shown 

in Figure 5.11. Then, the winner unit (indicated by the index c), i.e. best match, is 

identified by the condition shown below for each sample 

 

 ‖𝑥𝑖(𝑡) − 𝑤𝑐(𝑡)‖ = min
𝑡
‖𝑥𝑖(𝑡) − 𝑤𝑖(𝑡)‖ (5.30) 
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where xi is the input vector with dimension N, wi is the i-th weight, and c indicates 

the winning neuron. 

 

 
 

Figure 5.11 Self organizing map (SOM) structure. 

 

The update of the weights in the SOM network is limited by neighborhood 

function (Ωc(i)). The neighborhood function plays a fundamental role in SOM 

algorithm regardless of the type of the learning algorithm. Three frequently used 

neighborhood functions are Gaussian, rectangular and cut Gaussian. The weight of 

the winning unit and its neighbors are updated by the formula 

 

 ∆𝑤𝑖 = 𝜂(𝑥 − 𝑤𝑖)𝛺𝑐(𝑖),         𝑖 ∈ 𝑁𝐵𝑐 (5.31) 

 

where η is the learning rate in the interval 0<η 1, Ωc(i) is the neighborhood function 

and NBc indicates the neighbor neurons centered around node c, i.e. the winning 

neuron. 

 

After training the SOM network, the weight vectors that connect the high 

dimensional input vector space to 2-D output map grid are obtained. The distance 

between the two mapped units on the projected plane is obtained through their 

respective weight vectors. The U-matrix method determines the distances between 
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weight vectors of the adjacent map units. A U-matrix is originally defined on planar 

map spaces and a U-matrix representation of the SOM visualizes the distances 

between the neurons. The distance between the neighbor neurons is calculated and 

presented with different colorings. There are various methods for U-matrix 

calculation from the trained weight vectors (Iivarinen, Kohonen, Kangas, & Kaski, 

1994; Oja et al., 2006; Ultsch, 1993). One of the methods used in the construction of 

the U-matrix uses the sum of the distances of the weight vectors to their neighboring 

weight vectors at each map coordinate (X;Y) (Ultsch, 1993). Another method is the 

median method. In this method, the distances between all adjacent neighbors are 

computed using the same distance metric. The median distance corresponds to the 

distance measure for that grid. Another commonly used approach uses a dummy grid 

in between every pair of map grids. In this method, the distance between two map 

grids are calculated and then assigned to the dummy grids as shown in Figure 5.12. 

This is one simple way of calculating of the U-matrix with dummy grids (Oja et al., 

2006). The value to be assigned to the original map grids are taken as the median 

distance of all its neighbors. A different method of U-matrix computation for various 

types of lattice grids is discussed in the literature (Iivarinen et al., 1994).  

 

 
 

Figure 5.12 A simple way of calculating the U-matrix with dummy grids. 

 

The computed U-matrix is visualized via a colored image or a gray-level image. 

The resultant gray-level image is a hexagonal grid map with different shades of 

grayscale for the grids. The gray-scale map carries input pattern identification labels. 

The formation of clusters in the data and location of outlier observations become 

visible from such a gray-scale image. Typically, lighter shade patches indicate the 

location of data vectors which are similar and have less mutual distance; darker 

shade patches, on the other hand, indicate the location of data vectors having larger 
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distance with observations in adjoining lighter shade areas. The outliers are identified 

as observations located in the darkest patches of the projected map. Figure 5.13 

shows a U-matrix representation of a SOM network with a gray-level image. The 

neurons of the network are marked as black dots. The representation shows that they 

correspond to separate clusters in the upper right corner of this representation. The 

clusters are separated by a dark gap. 

 

 
 

Figure 5.13 U-matrix representation of SOM network with gray-level image. 
 

The distances between the neighboring units are represented as heights in a 3- 

dimensional landscape. This is called as the hill-valley landscape visualization of the 

SOM. In this representation, there are valleys where the reference vectors in the 

lattice are close to each other and hills where there are larger mutual distances 

indicating dissimilarities in the input data. The height of the hills reveals the degree 

of dissimilarity among the data vectors. Thus, hills represent border of the clusters. 

Outliers can be identified from this 'hill-valley' landscape visualization as they are 

typically located at higher locations on the hills. The degree of leverage of the 

outliers is associated with the height of the peaks of the corresponding hills. 
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CHAPTER SIX 

6RESULTS AND DISCUSSION 

 

Diagnosing PAF patients from their normal sinus rhythm ECG is an important 

clinical challenge. This could lead to early and easy detection of the illness to take 

precautions. The whole study is visualized with a flowchart in Figure 6.1. In this 

study, a feature vector (see the first column in Table 6.4) was constructed from HRV 

measures and atrial & ventricular ectopic beat numbers. HRV measures were 

obtained from time domain, frequency domain, and nonlinear analysis of RR interval 

series. The RR intervals were obtained from Physionet Atrial Fibrillation Prediction 

Database (afpdb). Totally 288 five minute records from PAF patients and 510 five 

minute records from non-PAF subjects were obtained by windowing thirty minute 

signals. Short-term (5 min) HRV analysis was made. In the preprocessing stage, 

atrial and ventricular ectopic beats were eliminated from the series. The numbers of 

atrial and ventricular ectopic beats in each 5 min data were also kept as two features. 

For the frequency domain analysis, the series were interpolated using cubic spline 

method, resampled with 4 Hz for frequency domain analysis and then slowly varying 

trends were eliminated with smoothness priors detrending method with a threshold of 

α=500 which corresponds to 0.035 Hz cutoff frequency. Finally, feature vectors with 

length 33 (6 time-domain features, 12 frequency domain features, 13 nonlinear 

features, atrial and ventricular ectopic beat numbers) were constructed and they were 

fed to the inputs of different classifiers: k-nearest neighbor, Bayes’, artificial neural 

network and support vector machine. Genetic algorithms was used for feature 

selection and eight features (mean of RR intervals, standard deviation of RR 

intervals, HF band peak frequency, relative power of LF band, relative power of HF 

band, dispersion of points perpendicular to line of identity in Poincare plot (SD1), 

sample entropy and short term fluctuation slope of detrended fluctuation analysis 

(α1) were found to be the best discriminating features. All classifications were made 

with two feature vectors: all features and selected features.  
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Figure 6.1 Flowchart of the whole study. 
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The first classification was performed with kNN classifier. The number of 

neighbors (k) and the distance metric were the two parameters that were examined 

for best performance. The number of nearest neighbors varied from 1 to 11 for all 

features and selected features. The distance metrics, which are ‘Euclidean’, 

‘Cityblock’ and ‘Cosine’, were also examined with different runs of the classifier.  

 

The results obtained by increasing the number of neighbors for all and selected 

features are given in Table 6.1-6.3. The results obtained with ‘Euclidean’ distance 

were given in Table 6.1, ‘Cityblock’ distance in Table 6.2 and ‘Cosine’ distance in 

Table 6.3. In all tables, SEN refers to sensitivity (%), SPE refers to specificity (%), 

PPV refers to positive predictive value (%), NPV refers to negative predictive value 

(%), ACC refers to overall accuracy (%), AUC refers to the area under ROC curve. 

In features (Feat.) column, “ALL” indicates that all features were used and “GA” 

indicates that selected features by GA were used for classification. 

 

In all distance metrics, increasing the number of neighbors negatively affects the 

classification performance for both feature groups. This might be due to the unequal 

number of samples from PAF and non-PAF groups. In kNN classification, the more 

frequent examples tend to dominate the prediction of the new vector as they tend to 

come up in the k-nearest neighborhood due to their large numbers (Watanabe, 1985).  

 

The most successful kNN classification was achieved with k=1 and ‘Euclidean’ 

distance for both all and selected features. For all features, the performance measures 

were 67% sensitivity, 80% specificity, 75% accuracy and the area under ROC curve 

was 0.74. The classification success increased when selected features were used. For 

selected features, the performance measures were 72% sensitivity, 87% specificity, 

82% accuracy and the area under ROC curve was 0.8. 
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Table 6.1 Classification results where k is the parameter of the kNN classifier. The distance metric is 
‘Euclidean’. 

 

Euclidean Distance 
Feat. k SEN SPE PPV NPV ACC AUC 

ALL 

1 67 80 65 81 75 0.74 
3 55 79 59 76 70 0.67 
5 52 80 61 75 70 0.66 
7 50 83 64 75 71 0.67 
9 49 85 66 75 72 0.67 

11 47 84 64 74 70 0.66 

GA 

1 72 87 77 85 82 0.80 
3 64 82 68 81 75 0.73 
5 59 81 68 77 73 0.70 
7 60 81 70 78 74 0.71 
9 58 82 71 77 74 0.70 

11 56 81 69 76 72 0.69 
 

Table 6.2 Classification results where k is the parameter of the kNN classifier. The distance metric is 
‘Cityblock’. 
 

Cityblock Distance 
Feat. k SEN SPE PPV NPV ACC AUC 

ALL 

1 49 76 54 72 66 0.63 
3 46 82 59 73 69 0.64 
5 45 84 63 73 69 0.65 
7 46 85 65 74 71 0.66 
9 43 84 61 72 69 0.64 

11 44 84 62 73 69 0.64 

GA 

1 66 82 68 82 76 0.74 
3 63 79 65 79 73 0.71 
5 58 81 67 77 72 0.70 
7 53 80 63 75 70 0.67 
9 53 81 66 75 71 0.67 

11 50 80 63 74 69 0.65 
 
Table 6.3 Classification results where k is the parameter of the kNN classifier. The distance metric is 
‘Cosine’. 

 
Cosine Distance 

Feat. k SEN SPE PPV NPV ACC AUC 

ALL 

1 65 79 63 80 74 0.72 
3 56 80 61 76 71 0.68 
5 51 81 61 75 70 0.66 
7 51 82 62 75 71 0.67 
9 49 83 63 75 71 0.66 

11 49 84 64 75 71 0.67 

GA 

1 64 81 66 80 75 0.73 
3 64 80 65 80 74 0.72 
5 61 81 67 79 74 0.71 
7 61 80 68 79 74 0.71 
9 59 79 65 77 72 0.69 

11 57 80 64 78 72 0.69 
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The comparison of the success of the distance metrics is given in Figure 6.2 and 

Figure 6.3 for all features and selected features, respectively. Euclidean distance has 

been shown to be superior to the other metrics for both all and selected features. 

 

 
 

Figure 6.2 Number of neighbors versus the areas under ROC curve for three different distance metrics 
by using all features. 

 

 
 

Figure 6.3 Number of neighbors versus the areas under ROC curve for three different distance metrics 
by using selected features. 
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After determining the best nearest neighbor number and distance metric, the 

classification performance of each feature was examined. The results are given in 

Table 6.4. Also the mean values and standard deviations of each feature for PAF and 

non-PAF groups are given together with p-values.  

 
Table 6.4 Classification results of each feature with kNN classifier where k is 1 and distance metric is 
Euclidean. Features are presented as mean±standard deviation and their p-values are given. 

 

Feature PAF Non-PAF p SEN SPE PPV NPV ACC AUC 

Mean RR 0.913±0.19 0.862±0.21 0 41 63 38 66 55 0.52 

SDRR 0.023±0.01 0.029±0.02 0 38 61 35 63 52 0.50 
SDHR 2.275±1.59 2.977±1.75 0 37 63 36 64 54 0.50 

RMSSD 0.030±0.02 0.032±0.02 0.27 39 65 38 65 55 0.52 
nn50 27.646±44.49 29.788±40.3 0.5 82 20 37 68 42 0.51 
pnn50 8.815±13.69 9.575±13.81 0.45 56 51 39 67 53 0.54 

VLF_peak 0.034±0.00 0.035±0.00 0.14 100 0 36 NaN 36 0.50 
LF_peak 0.071±0.03 0.069±0.03 0.33 100 1 36 NaN 37 0.51 

HF_peak 0.264±0.06 0.255±0.07 0.002 87 8 35 52 37 0.48 
VLF_power 0.000±0.00 0.000±0.00 0.35 37 66 38 65 56 0.52 

VLF_power_prc 10.459±10.08 11.391±9.28 0.19 40 66 39 66 57 0.53 
LF_power 0.000±0.00 0.001±0.00 0 39 64 38 65 55 0.52 

LF_power_prc 35.650±20.45 49.527±20.49 0 51 70 50 72 63 0.61 
LF_power_norm 41.654±25.48 56.771±23.72 0 45 68 45 69 60 0.57 

HF_power 0.000±0.00 0.000±0.00 0.02 39 66 39 66 56 0.53 

HF_power_prc 53.891±26.53 39.083±23.03 0 45 69 46 70 61 0.57 
HF_power_norm 58.346±25.48 43.229±23.72 0 43 68 44 68 59 0.56 

LF/HF_power 1.418±2.02 2.627±3.09 0 41 67 42 67 58 0.54 

SD1 0.021±0.01 0.023±0.02 0.038 40 35 39 66 56 0.38 
SD2 0.045±0.03 0.060±0.04 0 40 69 42 67 58 0.55 

ApEn 0.994±0.20 0.986±0.20 0.55 37 64 37 64 54 0.51 

SampEn 1.456±0.51 1.358±0.50 0.218 36 64 35 64 54 0.50 

DFA_α1 0.859±0.38 1.013±0.37 0 42 65 41 67 57 0.54 
DFA_α2 0.970±0.31 0.987±0.28 0.44 39 66 40 60 57 0.53 

CorDim_D2 1.068±1.20 1.439±1.27 0 38 61 35 63 52 0.50 
RPA_Lmax 187.417±111.84 226.396±140.84 0 59 51 40 69 54 0.55 
RPA_Lmean 18.626±16.91 19.611±15.58 0.41 43 69 44 68 60 0.56 
RPA_REC 0.388±0.17 0.410±0.14 0.06 39 62 37 64 53 0.51 
RPA_DET 0.980±0.02 0.985±0.02 0 42 67 42 67 58 0.55 

RPA_ShanEn 3.381±0.58 3.495±0.55 0.007 39 64 38 65 55 0.52 
CCM -0.355±0.38 -0.186±0.12 0 44 67 44 68 59 0.56 

AEB # 1.740±5.54 0.941±3.69 0 99 1 36 NaN 36 0.50 
VEB # 4.764±10.17 3.359±10.73 0.002 95 2 35 NaN 35 0.49 
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The statistical analysis of the dataset was made with unpaired t-test (see the 

Appendix). The p-values less than 0.05 were regarded as statistical evidence that 

there was significant difference between two groups. The eight features selected by 

GA were denoted with bold italic characters in Table 6.4. Other than SampEn, p-

values of the selected features have been shown to be significantly different (p<0.05) 

for PAF and non-PAF groups. 

 

Naive Bayes classification was the second method tried. Here, kernel smoothing 

density estimate for probability distributions was used. The kernel smoother was 

selected as normal. The bandwidth of the kernel smoothing window was selected 

automatically for each combination of feature and class, using a value that is optimal 

for a Gaussian distribution. The results were similar to kNN classification results as 

given in Table 6.5. The best performance rates are 69% sensitivity, 83% specificity, 

76% accuracy for all features and 74% sensitivity, 88% specificity and 83% accuracy 

for selected features. 

 
Table 6.5 Classification results with Bayes’ classifier. 

 

Alg. SEN SPE PPV NPV ACC AUC 
ALL 69 83 73 81 76 0.71 
GA 74 88 81 85 83 0.81 

 

The third classification method was ANN classification. Levenberg-Marquardt 

algorithm was preferred for faster speed of convergence. The networks used with all 

features had 33 inputs, whereas the networks used with only the selected features had 

8 inputs. The output of both neural network classifiers had two neurons and a single 

hidden layer. However, the number of neurons in the hidden layer was varied in 

order to find the classifier with the best performance as given in Table 6.6. The 

optimum number of hidden units was found to be 27 for the networks constructed for 

all features. This number turned out to be 8 for the networks which work with the 

selected features only. The transfer functions of the hidden layer units were all 

chosen as tangential sigmoid whereas they were linear for the units of the output 

layer. Mean squared error was chosen as the performance criterion. 
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The best performance for all features was achieved with 27 units in hidden layer 

with 78% sensitivity, 89% specificity, 83% accuracy, and 0.84 area under ROC 

curve. Classification with selected features was again more succesfull. With 8 

neurons in hidden layer, 76% sensitivity, 95% specificity, 88% accuracy were 

obtained. 

 
Table 6.6 Classification results where the number of hidden layer units is the parameter of the ANN 
classifier. Levenberg-Marquardt training algorithm was used.  

 

Alg. 
Hidden 
layer 
unit # 

SEN SPE PPV NPV ACC AUC 

ALL 

35 67 88 77 83 81 0.77 
34 76 81 71 85 79 0.78 
33 76 88 80 88 84 0.82 
32 75 87 80 86 83 0.81 
31 77 88 81 87 84 0.82 
30 74 89 81 86 84 0.82 
29 54 92 81 78 78 0.73 
28 62 90 78 80 79 0.76 
27 78 89 81 87 83 0.84 
26 73 83 74 84 80 0.78 
25 72 87 78 85 82 0.79 
24 73 85 74 84 80 0.79 
23 65 88 76 82 80 0.77 
22 68 91 83 84 84 0.80 

GA 

11 75 84 79 83 80 0.80 
10 77 94 91 87 87 0.86 
9 78 92 89 88 86 0.85 
8 76 95 92 87 88 0.86 
7 67 95 93 84 84 0.81 
6 70 91 83 83 82 0.81 
5 75 84 79 83 80 0.80 
4 65 87 73 81 78 0.76 

 

The last employed classifier was the SVM classifier. Gaussian radial basis 

function (RBF) was used as the kernel function that maps the features to a higher 

dimensional feature space where the PAF and non-PAF subjects can be linearly 

separable. The kernel width σ and regularization constant C values were determined 

with a grid search for all features and selected features (see Section 5.2.4 for details). 

Different values of σ and C for all and selected features yield the best classification 

as given in Table 6.7. SVM classifier is the most successful classifier with 84% 

sensitivity, 91% specificity, 88% accuracy and area under ROC curve was 0.88 for 
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all features. When selected features were used 93% sensitivity, 95% specificity, 95% 

accuracy were obtained and area under ROC curve was 0.94. 

 
Table 6.7 Classification results with SVM. 
 

Alg. SEN SPE PPV NPV ACC AUC 
ALL 

(σ=10.5,C=1) 84 91 86 91 88 0.88 

GA 
(σ=4,C=1.5) 93 95 93 96 95 0.94 

 

Using selected features (summarized in Table 6.8) increased the performance for 

all classifiers. This is probably a result of the curse of dimensionality effect. The 

most successful classification results obtained from each classifier is summarized in 

Table 6.9. The most successful records were obtained by using a vector of the 

features given in Table 6.8 as the input to an SVM classifier which discriminated 

PAF patients and non-PAF subjects with 95% accuracy.  
 

Table 6.8 Features selected by genetic algorithm given with their mean±std and p values. 
 

Feature Description PAF Non-PAF p-value 

Mean RR Mean of RR intervals 0.913±0.19 0.862±0.21 0 

SDRR Standard deviation of 
RR intervals 0.023±0.01 0.029±0.02 0 

HF peak HF band peak 
frequency 0.264±0.06 0.255±0.07 0.002 

LF power 
prc 

Relative power of LF 
band (LF 
power/Total power) 

35.650±20.45 49.527±20.49 0 

HF power 
prc 

Relative power of HF 
band (HF 
power/Total power) 

53.891±26.53 39.083±23.03 0 

SD1 

Dispersion of points 
perpendicular to line 
of identity in 
Poincare plot 

0.021±0.01 0.023±0.02 0.038 

SampEn Sample entropy 1.456±0.51 1.358±0.50 0.218 

DFA ɑ1 

Short term 
fluctuation slope of 
detrended fluctuation 
analysis 

0.859±0.38 1.013±0.37 0 
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Table 6.9 Classification results of all classifiers when all and selected features were used.  
 

Alg. Classifier SEN SPE PPV NPV ACC AUC 

ALL 

SVM 
(Gaussian RBF kernel, 

σ=10.5,c=1) 
84 91 86 91 88 88 

ANN  
(27 units in hidden layer) 78 88 80 87 84 83 

Bayes’  
(Kernel smoothing 

density) 
69 83 73 81 76 76 

kNN  
(1 neighbor, Euclidean 

distance) 
68 77 64 80 74 73 

GA 

SVM  
(Gaussian RBF kernel, 

σ=4,c=1.5) 
93 95 93 96 95 94 

ANN  
(8 units in hidden layer) 76 95 92 87 88 86 

Bayes’  
(Kernel smoothing 

density) 
74 88 81 85 83 81 

kNN  
(1 neighbor, Euclidean 

distance) 
72 89 82 85 83 81 

 

The distributions of the normalized features belonging to PAF and non-PAF 

groups are also given in Figure 6.4. The need for complex combination of these 

features to successfully discriminate PAF and non-PAF subjects blurs the clinical 

meaning of each single feature in the model. However, it seems that there is an 

increase in relative power of HF band (vagal tone) and a decrease in relative power 

of LF band (sympathetic and vagal) in PAF patients. Also a decrease is observed in 

short term fluctuation slope of DFA (complexity) in PAF patients. Mean RR values 

of PAF patients were also found to be higher which means there is a decrease in their 

heart rate which supports the work of Hoshino et al. (Hoshino et al., 2013).  
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Figure 6.4 Distribution of non-PAF and PAF groups for selected features by the genetic algorithm. 
The features other than sample entropy (p-value 0.2183) found to be statistically different between 
PAF and non-PAF groups (p<0.05). 

 

In order to visualize the high dimensional feature vector, Matlab SOM Toolbox 

was used to get the U-matrix representation of our data. A 30x50 grid was selected. 

The hill-valley representation for all the features is given in Figure 6.5a and for the 

selected features is given in Figure 6.5b. There is no obvious cluster in the data for 

all features whereas there are two valleys which are separated by a hill for selected 

features. However, there is a region where two clusters merge which makes the data 

not easily separable.  The clusters can be seen in Figure 6.6 in 2-dimensions. The red 

region represents PAF patients whereas the blue region represents non-PAF subjects. 
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(a)                                                                (b) 

 

Figure 6.5 Hill-valley representation of (a) all features (b) selected features. There is no obvious 
cluster in (a) whereas two clusters separated by a hill can be seen in (b). 
 

 
 

Figure 6.6 Clusters in U-matrix. Red cells represent PAF patients whereas blue cells represent non-
PAF subjects.  

 

Comparison of proposed system with other systems reported in the literature is 

really difficult because of the varieties in the classification techniques and datasets. 

But still, results show that the proposed novel system based on a combination of time 

domain, frequency domain, and nonlinear HRV measures with an SVM classifier 

performs very well in terms of sensitivity, specificity, positive predictive value, 

negative predictive value, overall accuracy, and ROC area of 93%, 95%, 93%, 96%, 

95%, and 0.88, respectively. 
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Martinez et al. utilized ECG records of 46 PAF patients and 53 healthy subjects. 

They got 2-hour ECG records preceding a PAF episode. They divided it into two 

groups: first is the one hour just prior to PAF onset and called ECG segment close to 

PAF episode and  the second set is one hour away from the PAF episode called ECG 

segment away from PAF episode. Then they calculated the variability of many 

morphological features of P-wave. They found that using a decision tree with P-wave 

area and p-wave arc length achieved 95.42% accuracy to discriminate ECG segments 

of healthy subjects and patients suffering from PAF (includes both close to and away 

from PAF records) (Martínez et al., 2014). 

 

In another work of Martinez et al., they obtained 2-hour ECG records of 24 PAF 

patients just preceding a PAF episode and 1-hour ECG records of 28 healthy 

subjects. They extracted morphological features from P-wave and obtained 91% 

accuracy to discriminate PAF patients and healthy subjects (Martínez et al., 2012). 

 

Ros et al. used only the train set (50 non-PAF records and 50 records including 

both prior-to-PAF and distant-from-PAF records from PAF patients) of Physionet 

PAF Prediction Challenge Database (afpdb) (Goldberger et al., 2000). They obtained 

92% correct classification rate using 22 parameters obtained from P-wave analysis 

(Ros et al., 2004). 

 

Thuraisingham used the same dataset with Ros et al. and got a failure rate of 

22.4% to detect PAF patients and false alarm rate of 20.4% in healthy records with 

wavelet decomposition of ECG signals (Thuraisingham, 2007). 

 

The rest of the work summarized from here on used Physionet afpdb (Goldberger 

et al., 2000) similar to our work.  

 

Schreier et al. used a correlation based assessment of the P-wave morphology of 

both regular and premature heartbeats from supraventricular origin and obtained 82% 

accuracy (Schreier et al., 2001). 

 



 

109 

Zong et al. developed an algorithm based upon the number and timing of the atrial 

premature complexes in the ECG and got 78% accuracy (Zong et al., 2001). 

 

Maier et al. used different features obtained from HRV analysis describing the 

magnitude as well as the regularity of heart rate fluctuations and the number of 

supraventricular and ventricular premature beats. They discriminated two groups 

with 72% success (Maier et al., 2001). 

 

Lynn and Chiang created feature vectors from return and difference maps of 30 

minute ECG signals. They divided the maps into lattices and found the number of 

samples in each lattice. Then, they created vectors from those numbers and fed into 

k-nearest neighbor classifier which gave an accuracy of 68% (Lynn & Chiang, 

2001).  

 

Yang and Yin coded successive RR intervals as equal, accelerated, or decelerated 

and mapped to a single integer. Then, the histogram of those numbers was 

constructed for PAF patients and non-PAF subjects. The best cutoff frequency was 

found with receiver operator characteristics (ROC) analysis and resulted in 66% 

success rate (Yang & Yin, 2001). 

 

Chazal and Heneghan examined features from the interval based power spectral 

density of RR intervals, time domain measures, P-wave amplitude features, and 

frequency representation of the P-wave. The effect of the length of the signal was 

also controlled by using 30-minute, 10-minute, and 5-minute windows of the ECG 

signals. Their best performance was obtained with power spectral density with 64% 

accuracy (de Chazal & Heneghan, 2001).  

 

When compared to these previously reported works which have used the same 

dataset, the system developed in this study seems to be superior for the diagnosis of 

PAF from normal sinus rhythm ECG. As can be seen from these numbers, the best 

performing classifier designed in this study (SVM classifier with selected input 

features outperforms the others in the literature which are using the same dataset. 
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Moreover, the method presented in this study yields comparable performance when 

compared to the results of other works which have used different (their own) 

databases. 
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CHAPTER SEVEN 

7CONCLUSION 

 

A new and efficient system for paroxysmal atrial fibrillation (PAF) diagnosis 

from normal sinus rhythm ECG records has been proposed in this thesis. Pattern 

recognition techniques, heart rate variability analysis, performance measures, 

different classification models, statistical analysis, and visualization of the dataset 

have been introduced. 

 

Atrial fibrillation (AF) is an arrhythmia in which disordered electrical impulses 

cause atria to contract in an erratic way. As a result, the atria cannot empty the blood 

to ventricles completely and clot formation occurs which may lead to stroke. 

Paroxysmal AF is a class of AF in which the arrhythmia initiates and terminates 

spontaneously. PAF has no specific symptoms and the termination of the arrhythmia 

is so quick that it is difficult for the patient to go to a healthcare facility during a PAF 

episode. However, the diagnosis of PAF is currently based on the detection of 

arrhythmia on ECG which is very difficult to obtain. Generally, Holter monitors or 

event recorders are needed for diagnosis. 

 

In this thesis, the goal is to diagnose PAF patients from their AF free ECG 

records. In this regard, nearly all HRV features obtained from the ECG signals of 

both PAF patients and non-PAF subjects were used. A total of 31 features were 

obtained from HRV analysis (time domain, frequency domain and nonlinear) of 5-

minute RR interval time series. The numbers of atrial and ventricular ectopic beats in 

each 5-minute RR interval were also used as additional two features. 

 

Four types of classifiers were designed based on k-nearest neighbor, Bayes, 

artificial neural network, and support vector machine networks. Parameters of the 

classifiers were examined to find out the ones which achieve the best discrimination. 

The results showed that none of these features provided satisfactory results when 

used alone. But using all 33 features as input to the classifiers, better results were 
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obtained. Nevertheless, these results were still not comparable to results presented in 

the literature. 

 

In order to increase the performance of the classifier systems, best discriminating 

features were selected with genetic algorithms. Eight features, which are mean of RR 

intervals, standard deviation of RR intervals, HF band peak frequency, relative 

power of LF band, relative power of HF band, dispersion of points perpendicular to 

line of identity in Poincare plot (SD1), sample entropy, and short term fluctuation 

slope (α1) of detrended fluctuation analysis were selected by the genetic algorithm as 

the best discriminating feature subset. By using only those selected features (instead 

of using all features), the performances of all classifier systems were significantly 

increased. This is probably a result of the curse of dimensionality effect. The 

sensitivity, specificity and accuracy values obtained with the best performing 

classifier, which is the one based on SVM, were found to be 93%, 95%, 95%, 

sensitivity, specificity and accuracy values, respectively.  

 

Due to the high discrimination rate and additional advantages, the system 

presented in this study can easily be used in health clinics, hospitals and even mobile 

phones for the quick and easy detection of PAF from normal sinus rhythm ECG 

recordings. Moreover, since the method uses only RR interval data, it could be easily 

modified to work with RR interval data obtained from a simple pulse meter instead 

of a regular ECG device.  

 

In addition to producing high performance values, the developed system has some 

other advantages due to using only HRV derived features. First, the method 

presented in this study is relatively simple; it just uses 5-minutes RR interval data to 

obtain time-domain, frequency-domain and nonlinear HRV features. Second, studies 

with noticeable success rates have taken into account the morphological features of 

the ECG signal which are very sensitive to noise. In contrast, the RR-interval series 

data is more robust to noise. Third, using only the RR-interval series data effectively 

reduces the processing time when compared to the ECG based methods. 
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In addition, the AR-based frequency domain measures were not included in the 

study because of its limitation in selecting an adequate model order. Although there 

have been many papers on selecting an adequate model order, it is still an open 

question in studies related to the HRV analysis. After including these AR-based 

frequency-domain measures, the study may expose a higher classification power. 

 

Although the classification results achieved in the thesis seem satisfactory, larger 

databases are needed to confirm the achieved results. In addition, there is a lack of 

demographic information such as drug use, physical activity, and emotional states, 

which should be considered during performing the HRV analysis. Because this 

information was not available in the database used, the studies covered in the thesis 

neglected these considerations. Also, the length of the records in the database is 30 

min which allows only short-term HRV analysis. Using long-term HRV measures in 

addition to the short-time ones could also increase the diagnostic ability of the 

classifiers. Performances of the classification systems are expected to be improved 

further if these additional parameters are taken into account. 
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APPENDIX 

8STATISTICAL ANALYSIS 

 

Hypothesis Testing 

 

Hypothesis testing is the use of statistics to determine the probability that a given 

hypothesis is true. There are four general steps to test (Ashcroft & Pereira, 2003):  

 

1. Formulate the null hypothesis H0 (commonly, that the observations are the 

result of pure chance) and the alternative hypothesis H1 (commonly, that the 

observations show a real effect combined with a component of chance 

variation).  

 

2. Identify a test statistic that can be used to assess the truth of the null 

hypothesis.  

 

3. Compute the p-value, which is the probability that a statistic at least as 

significant as the one observed would be obtained assuming that the null 

hypothesis were true. The smaller p-value, the stronger the evidence against 

the null hypothesis.  

 

4. Compare the p-value to an acceptable significance value, α. If p≤ α, that the 

observed effect is statistically significant, and the alternative hypothesis is 

valid. The most commonly used significance level is α=0.05 (for a two-sided 

test, α/2).  

 

Hypotheses are generally defined as: 

 

𝐻0: 𝜇1 = 𝜇2 (A.1) 

and 

𝐻1: 𝜇1 ≠ 𝜇2 (A.2) 
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where 𝜇1and 𝜇2are the mean values of two groups. 

 

General t-Testing 

 

A t-test is a statistical hypothesis test in which the test statistic has a Student's t 

distribution if the null hypothesis is true. It is applied when the population is assumed 

to be normally distributed but the sample sizes are small enough that the statistic on 

which inference is based is not normally distributed because it relies on an uncertain 

estimate of standard deviation rather than on a precisely known value. The general 

formula for t-test is as follows: 

 

𝑡 =
(𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠) − (𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑧𝑒𝑑  𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟)

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟 𝑜𝑓 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠
 (A.3) 

 

Among the t tests, the unpaired t-Test with Unequal Variance method, which is 

given in the following subsection, is used in the thesis. 

 

Unpaired t-Test with Unequal Variance 

 

The difference from the previous test is that the variance in two samples is 

extremely different, meaning samples are very different in size. The two sample t test 

for unpaired data is defined as: 

 

𝑡 =
𝑥1��� − 𝑥2���

�𝑠1
2

𝑛1
+ 𝑠22
𝑛2

 
(A.4) 

 

where 𝑛1 and 𝑛2 are the sample sizes, 𝑥1��� and 𝑥2��� are the sample means, 𝑠12 and 𝑠22 are 

the sample variances. It assumes that the degree of freedom (d.f.) is calculated by: 
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𝑑.𝑓 =
�𝑠1

2

𝑛1
+ 𝑠22
𝑛2
�
2

�𝑠1
2

𝑛1
�
2

𝑛1 − 1 +
�𝑠2

2

𝑛2
�
2

𝑛2 − 1

 (A.5) 

 

where d.f. is rounded to an integer value after this calculation is completed. 
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