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DESIGN OFWEARABLE SYSTEMS FOR ACTIVITY MONITORING AND

THEIR APPLICATIONS USING NEURAL NETWORKS AND DATA FUSION

TECHNIQUES

ABSTRACT

Motion analysis assists experts in the evaluation of health problems including

depression and immobility. Continuously monitoring is important for early detection

and to prevent irreversible deformities. Video­based systems are popular due to their

high accuracy. However; they are expensive and convenient for indoor use. To

overcome these challenges, we presented various wearable devices; namely a smart

garment, wireless smart insoles, and wireless inertial measurement units (IMUs).

Designed wearable systems provide valuable information for gait analysis and

activity recognition. Firstly, lower limb joint angles were predicted using smart

garment and fusion techniques during activities. Video­based system was used as a

reference device to evaluate the performance of applied techniques. Secondly, it was

planned to determine the ideal sensor locations for activity recognition. IMU sensors

were placed on various points of the human body and collected data was fed into

artificial neural networks for evaluation. Thirdly, activity recognition were aimed

using various deep learning neural networks, namely convolutional neural networks,

long­short term neural networks, and convolutional long­short term neural networks.

Finally, activity recognition performance was evaluated for different sensor

modalities including smart insoles and IMU sensors using neural networks.

The results of four studies show that; i) our smart garment presents similar

performance with a video based system, ii) chest and leg are the most ideal positions

for activity recognition, iii) convolutional long short term neural networks outperform

the other tested networks for activity recognition, and iv) smart insoles provide the

same activity recognition performance with IMU sensors attached on the leg.

Keywords: Wearable devices, motion monitoring, gait analysis, activity recognition,

sensor technologies, neural networks, fusion techniques
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AKTİVİTE İZLEME İÇİN GİYİLEBİLİR SİSTEMLERİN TASARIMI VE

SİNİR AĞLARI VE VERİ FÜZYON TEKNİKLERİ KULLANILARAK

UYGULAMALARI

ÖZ

Hareket analizi, depresyon ve hareketsizlik gibi sağlık sorunlarının

değerlendirilmesinde uzmanlara yardımcı olur. Erken teşhis ve geri dönüşü olmayan

deformiteleri önlemek için sürekli izleme önemlidir. Video tabanlı sistemler, yüksek

doğrulukları nedeniyle popülerdir. Ancak, maliyetleri yüksek ve iç mekan kullanımı

için uygundurlar. Bu zorlukların üstesinden gelmek için; akıllı giysi, kablosuz akıllı

tabanlık ve kablosuz atalet ölçüm birimleri gibi çeşitli giyilebilir cihazlar tasarlandı.

Tasarlanan giyilebilir sistemler, yürüyüş analizi ve aktivite tanıma için değerli

bilgiler sağlamıştır. İlk olarak; akıllı giysi ve füzyon teknikleri kullanılarak alt

ekstremite eklem açıları tahmin edildi. Uygulanan tekniklerin performansını

değerlendirmek için referans cihaz olarak video tabanlı bir sistem kullanılmıştır.

İkinci olarak; aktivite tanıma için ideal sensör konumlarının tespiti planlanmıştır.

İnsan vücudunun çeşitli noktalarına atalet ölçüm birimi yerleştirildi. Toplanan veriler

değerlendirme için yapay sinir ağlarına beslendi. Üçüncü olarak; aktivite tanıma

evrişimli sinir ağları, uzun kısa vadeli sinir ağları ve evrişimli uzun­kısa vadeli sinir

ağları dahil olmak üzere çeşitli derin öğrenme sinir ağları kullanılarak amaçlandı. Son

olarak; sinir ağları ile akıllı tabanlık ve kablosuz atalet ölçüm birimleri kullanılarak

farklı sensör modaliteleri için aktivite tanıma performansı değerlendirildi.

Dört çalışmanın sonuçları gösteriyor ki; i) akıllı giysimiz video tabanlı bir sistemle

benzer performans göstermektedir, ii) göğüs ve bacak, aktivite tanıma için en ideal

konumlar, iii) konvolüsyonel uzun kısa vadeli sinir ağları, aktivite tanıma için test

edilen diğer ağlardan daha iyi performans sunmaktadır ve iv) akıllı tabanlık, bacağa

takılan IMU sensörleri ile benzer aktivite tanıma performansını sağlamaktadır.

Anahtar kelimeler: Giyilebilir cihazlar, hareket izleme, yürüme analizi, aktivite

tanıma, sensör teknolojileri, sinir ağları, füzyon teknikleri
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CHAPTER ONE

INTRODUCTION

1.1 Motion Analysis

There is a relationship between human motion and disease symptoms as a result

of nervous and musculoskeletal systems. Motion analysis provides characteristic and

valuable information to experts for assessment of health­related applications such as

fall detection in elderly people, evaluation of rehabilitation process, obesity, cardiac

diseases, and so on (Wang & Zhou, 2015; Jarchi et al., 2018; Qi et al., 2018; Lee &

Chung, 2009). As such, reliable and accurate motion monitoring can assist  an early

and precise diagnosis of the mentioned disorders.

Gait analysis and activity recognition are unique topics to diagnose some diseases

and evaluate the treatment process. Gait analysis parameters such as stride length,

duration of gait phases, and joint angles can be indicators in order to evaluate problems

including Parkinson disease and walking abnormalities (Hausdorff, 2009; Chambers

& Sutherland, 2002). Activity recognition is potentially useful for the detection of

mobility­based problems such as falling and obesity (Sansrimahachai & Toahchoodee,

2016; Artikis et al., 2010).

Motion monitoring is performed using camera­based and sensor­based systems.

Camera­based systems provide the highest accuracy (Cuadrado et al., 2021).

However, they have some disadvantages such as cost, need a special environment,

and useful for only indoor applications (Tao et al., 2012; Bhosale et al., 2015).

Moreover, these systems suffer from issues such as privacy and ethics (Lago et al.,

2017). Sensor­based systems allow monitoring daily movements with superior

advantages including low­cost, lightweight, and small­size (Mukhopadhyay, 2014;

Zhang et al., 2012). Moreover, they enable continuous monitoring with low­power

consumption even if the user is in the outdoor environment.
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1.2 Gait Analysis

Human gait analysis is a mathematical analysis and modeling of human walking.

It characterizes human walking in terms of measurement and quantities such as step

length, walking speed and so on (Ghoussayni et al., 2004). Gait analysis has focused

on three domains including kinetic, kinematic, and spatio­temporal parameters (Tao

et al., 2012). The kinetic analysis examines the required forces for walking movement.

This type of analysis is usually utilized from ground­reaction forces. The kinematic

analysis evaluates body motions through space. The body position and movement of

each segment are converted into angular displacements of joints over time. Spatio­

temporal analysis is rhythm­based parameters including cadence and stride length.

Clinical motion analysis laboratories equipped with many cameras and force plates

are considered a gold standard of human gait analysis because of high accuracy;

however, they are expensive, have limited moving area, and need lengthy setup

duration (Cuesta­Vargas et al., 2010; Zhang et al., 2017). Moreover, kinetic analysis

is limited to only those steps that are applied on a force plate. To overcome these

challenges, many researchers has presented wearable gait monitoring systems with

the recent developments in sensor technology (Bilro et al., 2011; Low et al., 2020;

Gonçalves et al., 2021). They particularly have been used inertial measurement units

and force sensors owing to easy placement on the human body, low­cost, and

lightweight.

IMUs are particularly used for joint angle estimation (Majumder & Deen, 2020;

Jeon & Lee, 2018). Two IMUs are placed on the upper and lower leg to measure the

Euler angles of each segment consist of joint. Euler angles can be calculated using

only accelerometer and only gyroscope. To improve the accuracy, fusion algorithms

are popularly used. Moreover, machine learning methods are popular for joint angle

prediction (Coker et al., 2021; Lim et al., 2020).

Force sensors are used to design smart insoles (Tan et al., 2015; Cho, 2017;

Manupibul et al., 2014). These insoles have the ability to gather information about
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ground reaction forces. Particularly, they can be beneficial to detect gait

abnormalities. Many researchers presented smart insole designs using a variety of

sensors including force­sensitive resistors (FSRs) and also IMUs (Mustufa et al.,

2015; Lin et al., 2016).

1.3 Activity Recognition

Human activity recognition (HAR) purposes detection of activities performed in

daily life. However, It is challenging since daily activities are complex and highly

diverse. For this purpose; a variety of sensors and camera can be popularly used.

In the literature, human activities are categorized as basic and complex. There are

different comments about these concepts. A researcher explains that basic activities

are repetitive motions such as walking, writing, and sitting. Complex activities rely

on a variety of non­repetitive hand movements such as smoking (Shoaib et al., 2016).

Another researcher categorizes activities as stationary (e.g. sitting and standing),

simple (e.g. ascending and descending stairs), and complex (e.g. cooking and

cleaning) (Bharti et al., 2018). In this thesis, we have combined given these

definitions and commented that basic activities are repetitive activities and not

include any hand gestures, whereas complex activities are repetitive or non­repetitive

motions including hand gestures. According to our definition, walking, running, and

jumping for basic activities, whereas smoking, writing, and drinking coffee for

complex activities can be given as examples.

Activity monitoring is popularly performed using various wearable devices such

as smart clothes, smartphones, and so on. They can be placed, mounted, or attached

on various parts of the human body. Ideal sensor position for activity recognition is

still a debated topic. Researchers have been used various body points for this purpose.

An accelerometer mounted on the waist provides applicable information about various

activities such as sitting, walking, scrubbing, and vacuuming (Karantonis et al., 2006).

Accelerometers placed on various body points including chest, thigh, and trunk is useful

3



for recognition of many activities such as walking, running, and working on a personal

computer (Olguın & Pentland, 2006). Moreover, an accelerometer placed on necklace

has been used to identify ascending and descending stairs (Pirttikangas et al., 2006).

The studies on activity recognition are popularly performed using various traditional

and modern machine learning methods. Among the most popular traditional machine

learning techniques are support vector machine (SVM), k­nearest neighbor (kNN), and

artificial neural network (ANN) (Jobanputra et al., 2019; Kaghyan & Sarukhanyan,

2012; Mehr et al., 2016). The common aspects of these machine learning methods

are the lack of feature extraction capability. These methods require explicit human

intervention in the form of feature extraction for training. However, it is known that

manual feature extraction technique limits generalization capability since it is based

on human experience and domain of knowledge. Furthermore, this process causes

time­consuming. Recently, deep learning (DL) branch of modern machine learning

has become a popular choice as a powerful tool for activity recognition (Wang et al.,

2019; Ronao & Cho, 2016). DL extracts features automatically through hierarchical

architectures and offers superior performance. It does not need specialized knowledge

and expertise.

There are numerous studies on human activity recognition using machine learning.

In particular, many researchers have used public benchmark datasets including

OPPORTUNITY, UCI­HAR, and WISDM for their studies (Chavarriaga et al., 2013;

Anguita et al., 2013; Weiss, 2019). OPPORTUNITY dataset was built from collected

data from a special environment equipped with sensors. It has 17 different activities

including opening a dishwasher, toggle switch, etc. Total four subjects were attended

data collection processes. For this purpose, a variety of sensors were placed on the

objects, environment, and the human body. UCI­HAR dataset was recorded from 30

subjects aged 19­48 years. A smartphone with a built­in inertial sensor was mounted

around their waist and subjects performed gait­based six activities including walking,

stair descent, and stair ascend. WISDM dataset was collected with a smartphone,

which is placed on front leg pockets. 36 subjects were attended data collection

processes. The datasets were collected and recorded for standing, sitting, walking,

4



upstairs, downstairs, and jogging. Researchers have been done performance

comparisons for activity recognition in terms of different metrics such as recall,

precision, and accuracy between traditional and modern machine learning methods.

The results show that deep learning neural network outperforms to traditional

machine learning methods (Wan et al., 2020; Zebin et al., 2016; Chikhaoui &

Gouineau, 2017 ).

1.4 Wearable Devices

Advance development in sensor and connectivity technologies enables the design

of various wearable devices including smartwatches, smartphones, smart insoles, and

smart clothes for continuous motion monitoring. Popular sensors used in these

devices are accelerometer, gyroscope, force­sensitive resistor, global position system,

and electromyography. Using outputs of these sensors and data processing methods,

motion­based information such as walking speed, joint angles, stride length, and

ground reaction forces can be derived.

Smartphones are equipped with a variety sensors including IMU and global position

system. These devices also include internal memory and battery required for the design

of HAR system. Sensor data acquired from these devices enables to identify many daily

activities (Guo et al., 2016; Hassan et al., 2018). Smartphones suffer from integration

on the human body in particular. Moreover, the arbitrary orientation of smartphones

needs coordinate transformation to achieve HAR (Sun et al., 2010).

Smartwatches include integrated sensors that provide acceleration and gyroscope

information transfer via a connectivity type to a personal computer or a smartphone.

Their disadvantages can be placed on limited locations of the human body including

the wrist or ankle. However, they are worn even when at home and during nighttime in

comparison to smartphones. There are various studies using smartwatches to classify

daily activities (Chernbumroong et al., 2013; Mortazavi et al., 2015).
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Smart insoles are equipped with sensors inside insoles or base of shoes (Xu et al.,

2012; Wang et al., 2015). They can measure force information applied by foot during

movement. These devices get easier data collection processes for outdoor

applications. Various sensors such as a force­sensitive resistor, pressure sensor,

gyroscope, and accelerometer are used for insoles. These systems can be particularly

useful for the recognition of gait­based activities.

Smart clothes are convenient to acquire information by placing many sensors.

They allow long­term monitoring due to easy wearing and comfort (Adaskevicius,

2014). There are various types of smart clothes for different applications. Smart

t­shirts can monitor sleeping and cardiac status with heart rate and electrocardiogram

sensors. Sensing gloves and smart trousers equipped with inertial sensor and

goniometers can evaluate rehabilitation processes of stroke patients. There are also a

variety of smart clothes inform about body position and breathing. Smart clothes

bring sensors into contact with various parts of the human body. However, this

interaction may affect adversely comfort.

1.5 Thesis Motivation

Motion analysis helps professionals assessment of health problems including falling,

depression, and immobility. Continuously monitoring provides valuable information

for early detection and prevention of progressive irreversible deformities. Video­based

systems are gold standard because of high accuracy. However; they have expensive

equipment, a limited moving area, and are convenient for indoor use. Moreover, they

affect privacy life adversely and suffer from ethical implications. To overcome these

challenges, we have focused on the design of various wearable devices, which are low­

cost, lightweight, easy attachable/detachable, and convenient for outdoor applications.

To evaluate the performance of designed wearable systems, we have presented

various applications of gait analysis and activity recognition. These are i) prediction

of knee and ankle joint angles using smart garment with fusion techniques and
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comparing the obtained results with a video­based reference system, ii) to evaluate

ideal sensor positions on the human body for activity recognition, iii) performance

comparison of various deep learning neural networks for activity recognition, and iv)

to compare neural network performance using different sensor modalities including

smart insole and IMU sensor outputs for activity recognition.

1.6 Thesis Outline

Chapter 2 offers theoretical background about methods used in experiments.

Chapter 3 introduces the equipment including smart garment and designed wireless

sensors used in experiments.

Chapter 4 presents some mathematical methods for joint angle estimation and

obtained results were compared with respect to reference device.

Chapter 5 determines weights of sensor positions for activity recognition.

Chapter 6 presents a study about basic and complex activity recognition using deep

learning neural networks and inertial measurement unit data.

Chapter 7 presents a study about recognition of gait­based activities using deep

learning neural network and sensor data including foot contact states and inertial

measurement unit data.

Chapter 8 presents outcomes about all study.
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CHAPTER TWO

THEORETICAL BACKGROUND

In this chapter, theoretical information shall be given about the techniques used

in experiments. For this purpose; information about orientation estimation techniques

using inertial measurement sensor, sensor fusion techniques, and mainly applied

neural network types for activity recognition were presented. Moreover, a piece of

short information has been given for data processing methods.

2.1 Inertial Measurement Unit

Inertial measurement units are an electronic device capable of measuring a specific

force and angular rate with respect to a reference frame (Ribeiro & Santos, 2017). They

mainly encapsulate accelerometer, gyroscope, and sometimes magnetometer in order

to generate information about entire movement.

Nowadays, many of IMUs are based on microelectromechanical system (MEMS)

technology. MEMS components as shown in Figure 2.1 are small, lightweight,

low­cost, and consume low power. Moreover, they present high accuracy (Renkoski,

2008). These sensors are used in many fields such as aerospace, structural

monitoring, or consumer electronics (Janson, 2005; Sekiya et al., 2016).

Figure 2.1 MEMS IMU
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Accelerometer measures linear acceleration along x, y, and z­axis in terms of g or

m/s2 corresponding to applied force. Gyroscope is a sensor type that measures angular

velocity in x, y, and z­axis in terms of rad/s or degree/s. Using outputs of these

sensors, to make angle prediction is also possible.

2.2 Orientation Estimation using Acceleration and Gyroscope Outputs

Orientation is described as rotations in x, y, and z­axis. Rotation around x­axis,

y­axis, and z­axis can be defined as roll (ϕ), pitch (θ), and yaw (ψ). Both linear

accelerations (ax, ay, and az) and angular rates (ωx, ωy, and ωz) can be used for

calculation of rotation angles.

Figure 2.2 Orientation angles

Accelerometers are used for estimation of pitch and roll angles (Luczak et al., 2006).

Yaw angle can not be calculated since the linear acceleration around z­axis is fix during

rotation (Promrit et al., 2018). Equation 2.1 and Equation 2.2 present the formula for

calculation of roll and pitch angles, respectively.

ϕAcc = arctan(−ax
az

) (2.1)

θAcc = arctan(
−ay√
a2x + a2z

) (2.2)
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Gyroscope can be used to estimate the pitch, roll, and yaw angles (Wang et al.,

2010). These estimations can be performed with a simple integration in respect to time

a shown in Equation 2.3, Equation 2.4, and Equation 2.5.

ϕGyro = ϕGyro0 + ωϕ∆t (2.3)

θGyro = θGyro0 + ωθ∆t (2.4)

ψGyro = ψGyro0 + ωψ∆t (2.5)

2.3 Sensor Fusion

Accelerometers offer good performance for orientation calculation during

long­term, but they can affect adversely from noise in short­term. However,

gyroscopes present good performance for short­term, but they have drift problem for

long­term (Kok et al., 2017). To overcome these challenges, popular fusion

techniques including complimentary filter and extended Kalman filter (EKF) are used.

2.3.1 Complementary Filter

The complementary filter is a simple and popular technique to fuse gyroscope and

acceleration data (Higgins, 1975). It is useful to obtain orientation angles such as

pitch and roll combining the strength point of one sensor and the weak point of

another sensor. Accelerometer presents better performance for slow moving signals.

On the other hand, gyroscope offers better performance for fast moving signals. With

this purpose, complementary filter combines them using a low­pass filter for the

accelerometer and a high­pass filter for the gyroscope. Orientation angles can be

fused using Equation 2.6.

θcomplimentary = (1− α) ∗ θAcc + α ∗ θGyro (2.6)
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where θAcc is pitch or roll estimated from accelerometer, θGyro is pitch or roll estimated

from gyroscope, α is coefficient between 0 and 1.

2.3.2 Extended Kalman Filter

EKF is a type of Kalman Filter used to model a non­linear dynamic system that

suffers from noise or environment (Keatmanee et al., 2013). Kalman Filters predict

the state of the system in the past, present, and future. Their operation principle is to

find the optimal probability of the hypothesis of the predicted state due to hypothesis of

previous state. Then, hypothesis of current state is corrected to have the best estimation

using the sensor data for each time step.

EKF linearizes a nonlinear function using Jacobian matrix about a current

estimate. The rest of the process is to apply standard Kalman Filter. The most

important part of the EKF application is model building using mathematical

knowledge to construct a nonlinear transition function for the unknown parameter in

each prediction state. There are two models including state and measurement for

EKF, respectively given in Equation 2.7 and Equation 2.8.

xk = f(xk−1, uk−1) + wk−1 (2.7)

zk = h(xk) + vk (2.8)

where f is the function of the previous state, xk−1 is previous state, uk−1 is control

input, xk is current state, h is the measurement function of current state, xk is current

state, and zk is measurement. wk−1 and vk are Gaussian noises for process model with

covariance Q and measurement model with covariance R, respectively.

EKF equations are based on two parts consist of prediction and correction state,

which derived from state and measurement model. At the correction state, Kalman

gain (Kk) is calculated with x̂−k and P−
k which are obtained from state transition

model and defined by user, respectively. When covariance R approaches to 0,
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measurement variable outcomes better results than state model. When P−
k approaches

to 0, state model presents more trustable result. Estimated data is updated using Kk

value. Moreover, error covariance and all parameter is updated for each iteration and

estimated values become more accurate.

Extended Kalman Filter linearizes nonlinear model using Jacobian matrix, which is

first­order partial derivative of a vector function with respect to a vector. These are

given in Equation 2.9 and Equation 2.10.

Fk−1 =
∂f

∂x
|x̂+k−1,uk−1

(2.9)

Hk =
∂h

∂x
|x̂−k (2.10)

Filter algorithm is given in Equation 2.11, Equation 2.12, Equation 2.13, Equation

2.14, Equation 2.15, and Equation 2.16 (Valade et al., 2017).

Predicted state estimate:

x̂−k = f(x̂+k−1, uk−1) (2.11)

Predicted error covariance:

P−
k = Fk−1P

+
k−1F

T
k−1 +Q (2.12)

Measurement residual:

ỹk = zk − h(x̂−k ) (2.13)

Kalman gain:

Kk = P−
k H

T
k (R +HkP

−
k H

T
k )

−1 (2.14)

Updated state estimate:

x̂+k = x̂−k +Kkỹ (2.15)

Updated error covariance:

P+
k = (I −KkHk)P

−
k (2.16)
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The hat operator,̂ is used to define an estimate of a variable. In other words, x̂ points

out an estimate of x. x. The superscripts − and + expresses for predicted and updated

estimates, respectively.

2.4 Neural Networks

Neural networks are mathematical model represents the central nervous system

(Kuo, 2016). They play a key role in the design of intelligent systems with the

specifications such as classification, prediction, and optimization. Many disciplines

apply them to solve various engineering problems in the field of health, sport science,

automotive, etc.

2.4.1 Biological Neuron

The human brain contains billions of neurons. Each neuron makes a connection to

a large number of neighbor neurons for information exchange (Suzuki, 2013). A

biological neuron comprises many dendrites, a soma (cell body), an axon, and many

synapses as shown in Figure 2.3. Each dendrite is connected to a large number of

neighbor neurons. They apply a multiplication operation by its own weight value to

incoming information. Soma processes input signals and determines whether the

neuron produces an electrical stimulation. Axon takes the processed information and

transmits it to relevant cells. Synapses provide a connection between axons and other

neuron dendrites.

Figure 2.3 Biological neuron and components (Wikimedia, n.d.)
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2.4.2 Artificial Neuron

An artificial neuron is a mathematical model that represents the capabilities of a

biological neuron. It takes signals and multiplies them separately by weight values

(dendrites). Then, multiplied outputs are summed and passed through a nonlinear

function to produce output (soma). Finally, the output layer (axon) gives an output for

neighbor neurons or is taken as the final output value if there is no connection.

Artificial neurons have four basic components, namely weights, bias, summation

Figure 2.4 Artificial neuron and components (Satya Ganesh, 2020)

function, and activation function as shown in Figure 2.4. The values of input vector

can be considered as X = [X1, X2, X3, ....., Xn]. Each input is multiplied with

relevant weight factor W = [W1,W2,W3, .....,Wn]. Bias value (b) is used to adjust

shift activation function to either left or right. It can be a positive or negative value.

Activation function determines the output of network mapping a value range between

0 to 1 or ­1 to 1 etc. The mathematical representation of a neuron is given in Equation

2.17.

y = f(ATW + θ) (2.17)

2.4.3 Activation Functions

Activation functions are used to limit neuron outputs. The most popular types used

in neural networks are nonlinear functions including log­sigmoid, hyperbolic tangent

sigmoid, rectified linear unit (RELU), and softmax activation functions.
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Log­Sigmoid activation function converts input values between −∞ and +∞ into

range of 0 and 1 (Hagan et al., 1997). The mathematical formula for this function is

shown in Equation 2.18. It is particularly used in multilayer perceptron neural networks

(MLP NNs) since this transfer function is differentiable.

y =
1

1 + e−x
(2.18)

which x is equal to ATW + θ.

Hyperbolic tangent sigmoid function maps output range from−1 to 1 (Hagan et al.,

1997). It has greater range than log­sigmoid activation. Its advantage is that negative

inputs can be mapped negative values and zero inputs will be mapped near zero. The

mathematical formula is given in Equation 2.19.

f(x) =
2

1 + e−2x
− 1 (2.19)

Both log­sigmoid and hyperbolic tangent sigmoid function are used in feed­forward

neural networks.

RELU is popular activation function used in deep learning neural networks. It is

linear for all positive values, and zero for all negative values (Lin & Shen, 2018).

Mathematically, it is defined as Equation 2.20.

y = max(0, x) (2.20)

Softmax activation function returns a probability distribution using cross­entropy

method for target classes in classification problems (Nwankpa et al., 2018).
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2.4.4 Artificial Neural Networks

2.4.4.1 Multilayer Perceptron Neural Networks

MLP NNs are a type of feed forward neural networks (Nielsen, 2015). They

consist of three stages; namely input layer, one or more hidden layers, and output

layer as shown in Figure 2.5. Input layer is an entry point and receives raw or

processed features. Hidden layers transfer the incoming information by processing

from input layer to output layer. Output layer performs prediction or classification

task. The information in MLP NNs only moves into forward direction. A neuron can

not make a cycle itself. Each layer is connected to the previous layer.

Figure 2.5 MLP NN architecture

MLP NNs are used to solve supervised learning problems. They train neural

network model depending on a known set of input­output relations and learn

dependencies between those inputs and outputs. Training process aims to minimize

error by adjusting the hyperparameters. Backpropagation algorithm is always used to

make weight and bias adjustments relative to the error (Leung & Haykin, 1991).

Network performance can be evaluated in a variety of terms such as mean squared

error (MSE) or accuracy.
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2.4.5 Deep Learning Neural Networks

2.4.5.1 Convolutional Neural Networks

Convolutional neural network is a type of deep learning neural network that can

automatically extract the features from hierarchical architectures (Albawi et al., 2017;

Jolly et al., 2018). It is particularly used for image classification. The overall

structure of this network as shown in Figure 2.6 comprises of six layers as

convolutional, pooling, flattened, fully­connected, classification layers, and activation

functions (RELU, softmax, etc.).

Figure 2.6 CNN architecture

Convolutional layers are used to extract feature maps from the input dataset using

one or more filters. Each filter with n­dimension makes convolution operation by

sliding with determined strides on the input dataset and a feature map is created

corresponding to each filter.

Pooling layers are used to reduce the dimensions of feature maps generated by

convolutional layers. It allows to reveal dominant characteristics using n­dimension

filters, which slides on each channel of feature maps with determined strides. This

process also significantly decreases computational power of neural network. The

most common approach for pooling is maximum method.

Flatten layer converts the two or more pooled feature maps into a single size vector.

Fully connected layer is a type of feed­forward layer. Each neuron in the layer has

connection to each neuron in previous layer. Classification layer produces final class
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type using incoming class score probabilities from softmax activation function.

RELU is especially used in deep learning. It accepts negative values as 0 and keep

positive values without changing.

2.4.5.2 Long­Short Term Neural Networks

Long Short­Term Memory (LSTM) networks were introduced by Hochreiter and

Schmidhuber in 1997 (Hochreiter & Schmidhuber, 1997). They are a type of recurrent

neural network (RNN) capable of learning long­term dependencies.

RNNs have a context layer different from feed­forward neural networks. This

context layer keeps unit outputs for an amount of time. They have a basic structure to

process cycling inputs and this operation principle can cause exploding and vanishing

problems when the influence of a given cycle input in context layer decays or rises up

exponentially. Unlike RNN, LSTM units have a special structure to regulate past

information flow to overcome exploding and vanishing problems (Pascanu et al.,

2013; Bengio et al., 1994). Each LSTM unit has a memory and three gates as input,

forget, and output. The input gate decides whether information needs to be passed.

The forget gate chooses the information that should be forgotten from the previous

states. The output gate determines information to be passed.

LSTM NNs have five layers consist of input layer, one or more LSTM layers,

fully­connected layers, one softmax activation function, and one classification layer

(Sherstinsky, 2020). LSTM layers have many particular memory cells, which include

gates such as input, forget, and output. Fully­connected layer is a feed­forward

network that uses the extracted features by LSTM layers. The softmax activation

function makes probability distribution for class labels and classification layer

decides the final class. The architecture of LSTM NN is given in Figure 2.7.
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Figure 2.7 LSTM NN architecture

2.4.5.3 Convolutional Long­Short Term Neural Networks

Convolutional Long­Short Term Neural Networks (ConvLSTM NN) is a hybrid

model, which combines the feature extraction part of CNN and LSTM NN, as seen in

Figure 2.8 (Tsironi et al., 2016). In CNN part, feature maps are extracted using

convolutional and pooling layers. These maps are given as input for LSTM NN that

models the temporal dynamics of the extracted features. The outputs of LSTM NN

passing through one or more fully­connected layers, softmax activation function, and

classification layer produce class label.

2.4.6 Hyperparameters

Hyperparameters are the variables which define the network structure and controls

training algorithm. Choosing appropriate values of hyperparameters play a key role in

the success of neural network performance (Smith, 2018; Claesen & De Moor, 2015).

Otherwise, it may cause underfitting or overfitting that can affect adversely network

performance. Some critical hyperparameters are learning rate, number of hidden

layers, neuron number in hidden layers, momentum coefficient, optimization

algorithm, number of epochs, and batch size.

19



Figure 2.8 Convolutional LSTM NN architecture

The learning rate determines the rate at which a network updates its parameters.

Low learning rate decelerates the training process but converges smoothly. High

learning rate accelerates learning process, however it may not converge. The batch

size is the number of subsamples dedicated to the network where the parameter

update takes place. The epoch number refers to the number of times that all training

data is presented to the network during the learning process. As long as training

performance improves, the number of epochs may increase unless validation accuracy

decreases. Momentum coefficient determines the direction of next step to prevent

oscillations using information belong to the previous steps.
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2.5 Data Segmentation

Data segmentationworksmainly in partitioning data and dividing them into different

classes based on cluster form. (Nitzberg et al., 1993). Figure 2.9 describes how sliding

window are applied to segment the collected data. Window size is set to θ seconds and

size of overlapping is set to δ (0 ≤ δ ≤ θ). In case δ is equal to zero, segmentation is

performed for non­overlapping. Otherwise, it is overlapping.

Figure 2.9 Data segmentation (Bersch et al., 2014)

2.6 Data Augmentation

Data augmentation is a method used for increasing the amount of data by adding

slightly modified copies of existing data or created newly synthetic data from available

data (Pawara et al., 2017). It helps to augment the diversity of dataset without need an

effort to collect more data in order to help improve accuracy and prevent the overfitting

of machine learning model. There are various methods such as data flip, data rotation,

adding gaussian noise to data, and data crop to increase the size of the data.

2.7 Evaluation Metrics

There are various metrics to evaluate the algorithm performance. In this thesis;

accuracy, recall (sensivity), precision, and Fscore were used for evaluation. The

mathematical definitions of them is given in Equation 2.21, Equation 2.22, Equation

2.23, and Equation 2.24.

Recall(Sensivity) =
TP

TP + FN
(2.21)
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Figure 2.10 Data augmentation (Ahmad et al., 2017)

Precision =
TP

TP + FP
(2.22)

Accuracy =
TP + TN

TP + TN + FP + FN
(2.23)

Fscore = 2 ∗ Recall ∗ Precision
Recall + Precision

(2.24)

which TP is true positive, TN is true negative, FP is false positive, and FN is false

negative.
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CHAPTER THREE

EXPERIMENTAL SETUP

In this chapter; a smart garment, wearable wireless IMU sensors, and wireless smart

insoles designed for our experiments are introduced.

3.1 Smart Garment

A smart garment was designed to predict and record knee and ankle joint angles in

daily activities. The design process consists of two main steps as textile and

electronic parts. Textile part of the design has two components including a tight and a

Figure 3.1 Placements of IMU sensors sewn on velcro
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belt. They were equipped with IMU sensors, wire connections, an electronic board

and some accessories. IMU sensors were positioned on lower and upper parts of

relevant joints along the same line of the tight. They were sewn on Velcro instead of

sewing directly on tight to adjust the location for different users as shown in

Figure 3.1 and connected to electronic board via wires.

Electronic board was designed to collect and record incoming IMU sensor data.

Main components used in the design are a microcontroller (Mbed NXP LPC1768), six

IMUs (MPU6050), a memory module and a battery unit. Microcontroller collects and

records raw accelerometer and gyroscope data with 50Hz sampling rate in memory

card. It communicates with sensor through I2C bus and memory module through SPI

bus.

Circuit design of the electronic board was performed in Autodesk EAGLE PCB. Its

schematic part is given in Figure 3.2. Software implementation was done on MBED

online compiler with C/C++ programming language.

To cover electronic components on tight and provide aesthetic appearance, a cloth

line was placed throughout the middle of the front part of legs. One side of cloth line

was sewn on tight fabric for durability and Velcro was sewn inside of the other side

of cloth line to mount IMU sensors at any desired points on tight. It provides easy

attachment/detachment feature for electronic components. This feature also enables

the garment washable as a conventional textile product. In addition to tight, a belt with

a kangaroo pocket was designed to place the electronic board. The pocket provides

aesthetic appearance like cloth line. Moreover, it is quite useful to improve comfort

and mobility of user. Final design of smart garment can be seen in Figure 3.3.

3.2 Wireless Sensor Network

A wireless sensor network (WSN) was purposed to collect and record data from

wearable IMU sensors and smart insoles equipped with force­sensitive resistors during

24



Figure 3.2 Schematic circuit of electronic board

various daily activities. The network consists of a master and many slave devices.

Figure 3.4 shows block diagram of the designed WSN system.

The master device establishes and manages a wireless network, as well as records

incoming signals from the slave devices. Raspberry Pi Zero Wireless was the chosen

master device due to its small size, low­cost, and internal Wi­Fi module. It supports

Linux Operating System with readily available programmable tools required to operate

the master device.

The master device generates a network to which slave nodes whose MAC

addresses are registered can connect and are assigned static IP addresses as shown in

Figure 3.5. It manages all slave devices by broadcasting various commands.
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Figure 3.3 Smart garment (Personal archive, 2018)

Master­slave communication employs User Datagram Protocol (UDP). Software

implementation of master device was performed using Phyton script.

The software on the master device (Python script) also accepts interactively various

management commands which can be submitted via a web interface in Figure 3.6 that

runs on the same wireless network. Management commands range from broadcasting

option to viewing connected devices on the network.

Slave devices connect to the network created by master device via Wi­Fi

communication and send sensor data to the master. For the slave devices, NodeMCU

Wi­Fi development modules were selected. It has a sufficiently small size and low

cost. Furthermore, NodeMCU allows the utilization of built­in microcontroller of the
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Figure 3.4 Block diagram of wireless sensor networks

Wi­Fi module, dispensing with the need for external microcontroller. NodeMCU

development module has analogue input, SPI and I2C bus interface and it makes

communication easily with the sensors.

The slave level acquisition frequency was configured as 40Hz. Slave devices run

for 6 hours on a full charge with lithium polymer batteries. When the switch is in OFF

mode, external power can be connected to charge the battery via the micro USB on the

integrated circuit. Charging does not require batteries to be removed from its slot.

When the battery switch set to ON mode, the slave devices connect to the sensor

network and await commands from the master device; this command is broadcast to all

slaves. The master device periodically broadcasts counter to the slave devices, which

prompt the slaves to collect and return sensor data. These broadcasts also serve to

synchronize slave devices. Slave devices add data counter and checksum to each sensor

data. Master device collects and after verifying the data records it in a file. Each sensor
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Figure 3.5 Python script assigning static IP address to slave devices

Figure 3.6 Software management tool of master device

data is saved in a separate file defined by the global name specified by the user and the

IP assigned to the slave devices.
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Figure 3.7 The design of wireless IMU slave device

Communication protocol between master and slave devices was chosen as IEEE

802.11n. The protocol has advantages such as high data rate and longer distance at

indoor and outdoor when compared with 802.11 b/g.

3.2.1 IMU Sensor Design

IMU Slave device consists of ESP8266 development board, IMU sensor

(MPU6050), a battery, and a charge unit. The development board makes

communication with IMU sensors via I2C bus and send incoming data to master

device. The components are protected by a box to prevent hardware problems and

isolate the circuit from users. The enclosure box has attached elastic rope and stopper

to allow the user to comfortably mount and secure the sensor on the human body.

Figure 3.7 shows the hardware design of the IMU slave devices.
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3.2.2 Smart Insole Design

Wireless smart insoles were designed to collect foot contact states during activities.

The electronic parts of the insole consist of FSRs, a small­size and low­capacity battery,

and an development board supporting Wi­Fi communication. Four piece FSRs were

used in each insole design. These sensors were placed on heel, medial forefoot (MF),

lateral forefoot (LF), and toe area of the foot by examiningmany studies in the literature

(Tee et al., 2017; Muñoz­Organero et al., 2017; Lin et al., 2016). FSRs transmit their

outputs via analogue interface to the development board, which processes the incoming

FSR outputs and transfer the master device via Wi­Fi connectivity.

We have used a memory foam sole in the insole design. It has advantages

including flexibility, cushioning, and moisture absorption. This type of sole helps to

reduce shocks and vibration and prevents perspiration as well as providing optimal

walking comfort. The designed smart insole can be seen in Figure 3.8.

Figure 3.8 The designed smart insole and position of FSRs
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CHAPTER FOUR

JOINT ANGLE ESTIMATION USING VARIOUS FUSION TECHNIQUES

AND COMPARISON OF OBTAINED RESULTS WITH A REFERENCE

SYSTEM

Joint angles reveal useful information for diagnosis and treatment of some

diseases. They are always collected with camera­based systems in private rooms.

However, these systems have disadvantages including expensive equipment, limited

movement area and only indoor use. To overcome these issues, a smart garment is

presented to collect knee and ankle joint angles of both legs. With this purpose, IMU

sensors were placed into garment and obtained raw data was converted into joint

angles using various estimation techniques including complementary and extended

Kalman filter. Volunteers participated in experiments performed activities including

level walking and sit­down/stand­up activities. A comparison was done between

calculated joint angles by designed system and measured joint angles by Kinect

Sensor.

4.1 Method

There are camera and sensor­based systems that can estimate joint angles using

various data processing techniques. The most reliable systems are based on the

camera. However, they have disadvantages such as expensive and convenient for

only indoor use. To overcome these challenges, we have focused on the smart

garment design introduced in Chapter 3.

The smart garment was designed to estimate knee and ankle joint angles. For this

purpose; two IMU sensors justified each other were placed on lower and upper parts

of the relevant joint. Joint angles are calculated by subtracting angles from each other

obtained by these sensors. For our system; since the knee and ankle joints are

sequential, a total of three sensors, one common, were used for our system as seen

from Figure 4.1.
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Figure 4.1 IMU sensor positions for knee and ankle joint angle estimation (Seel et al., 2014)

There are various methods to estimate joint angles. Three­axis acceleration and

three­axis angular rate values generated by IMU sensors are separately used to convert

into angle values in terms of degree utilizing mathematical formulas as explained in

Chapter 2. Moreover, sensor fusion techniques including complementary and extended

Kalman filter are also used to improve the estimated results. In this study, we have

focused on these four techniques to calculate joint angles and evaluate results. To verify

obtained results from our smart garment, Kinect v2 sensor given in Figure 4.2 was

chosen as a reference device. It is a compact system, consisting of two cameras, namely

an RGB camera and an infrared camera, which serve as depth sensors. Features of

Kinect v2 sensor are presented in Table 4.1.

Kinect sensor tracks movements of the human extremities by computing the

position of various skeleton joints based on the depth information and triangulation. It

determines the origin as hip center for tracking algorithm. Using the respective

32



Figure 4.2 Kinect v2 sensor

Table 4.1 The summarized features of kinect v2 sensor

IR camera resolution 512 x 424 pixels
RGB camera resolution 1920 x 1080 pixels
Field of view 70 x 60 degrees
Frame rate 30 frames per second
Operative measuring range from 0.5 to 4.5m

functions provided by Kinect SDK, position of 20 points as shown in Figure 4.3 can

be obtained.

Five subjects (3 males and 2 females) fromDokuz Eylul University with age ranging

from 20 to 35 (mean 30±3.6), height 160­192 cm (mean 175±3.4) and body mass 52­

85 kg (mean 70±3.2) participated to data collection process. They performed daily

activities consist of walking on the ground and sit­down/stand­up. Each one made a

practice for approximately 2 minutes to acquire reliable data sets. Subjects have neither

injury nor gait abnormality.

Both Kinect sensor and IMU sensors on smart garment recorded the data

simultaneously. Sampling rates were adjusted to 30Hz for both devices. Figure 4.4

shows an example from captured images during experiments.

4.2 Results

To examine the performance of our designed system, Microsoft Kinect sensor was

taken as a reference platform. Since experiments are done in the limited moving area

and indoor, daily activities including walking on the ground and sit­down/stand­up
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Figure 4.3 Joint angles measured by kinect v2 sensor (Stack overflow, 2018)

were chosen for test processes. Subjects, which wear the smart garment, were

performed these activities in view angle of the Kinect sensor. All data collection

processes were simultaneously performed by both systems.

Kinect sensor transfer obtained data to computer via USB. Then, functions provided

in the Kinect SDK are used to calculate joint angles.

Using IMU sensor data, we have applied four techniques to calculate joint angles.

Firstly, joint angles were obtained using only accelerometer outputs. Secondly, only

gyroscope outputs, namely angular rates, were used to calculate joint angles. Thirdly,

calculated joint angles by accelerometer and gyroscope outputs were combined using

complimentary filter. Finally, produced angles by accelerometer and gyroscope outputs

were fused using Extended Kalman filter.

Figure 4.5 shows a comparison of estimated joint angles for the right knee joint using
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Figure 4.4 An image captured by kinect v2 during experiment (Personal archive, 2018)

Table 4.2 Absolute error rates of smart garment when only accelerometer outputs were used for joint
angle prediction and kinect sensor taken as reference

Knee Angle Ankle Angle
Activity Types Right Leg
Sit­down/Stand­up 2.08% 0.5%
Walking on the ground 4.19% 2.17%

Left Leg
Sit­down/Stand­up 2.21% 0.34%
Walking on the ground 4.08% 2.19%

only acceleration and only angular rates with provided knee joint angle by the reference

device during sit­down/stand­up activity. The results show that accelerometer affected

adversely from noise for short­term and gyroscope has drift problem for long­term.

To overcome these challenges, fusing algorithms were used. Figure 4.6 presents

a comparison during sit­down/stand­up activity between joint angles provided by the

complementary filter, extended Kalman filter, and reference device. The results show

that fusing techniques remove noise and drift problems and increase accuracy.

To make a more clear comparison, accuracy performance of smart garment for

each method with respect to reference system was presented in Table 4.2, Table 4.3,

Table 4.4, and Table 4.5. Performance analyses were separately offered for each leg,

each activity type, and each technique.

The results show that the best results were obtained using Kalman Filter for each
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Figure 4.5 Knee joint angles provided by only acceleration signals, only angular rates, and reference
device

Table 4.3 Absolute error rates of smart garment when only gyroscope outputs were used for joint angle
prediction and kinect sensor taken as reference

Knee Angle Ankle Angle
Activity Types Right Leg
Sit­down/Stand­up 2.91% 0.55%
Walking on the ground 4.25% 2.25%

Left Leg
Sit­down/Stand­up 2.35% 0.49%
Walking on the ground 4.28% 2.42%

Table 4.4 Absolute error rates of smart garment when complementary filter was used for joint angle
prediction and kinect sensor taken as reference

Knee Angle Ankle Angle
Activity Types Right Leg
Sit­down/Stand­up 1.3% 0.33%
Walking on the ground 2.14% 1.37%

Left Leg
Sit­down/Stand­up 1.12% 0.27%
Walking on the ground 2.24% 1.54%
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Figure 4.6 Knee joint angles provided by complementary filter, extended kalman filter, and reference
device

Table 4.5 Absolute error rates of smart garment when EKF was used for joint angle prediction and kinect
sensor taken as reference

Knee Angle Ankle Angle
Activity Types Right Leg
Sit­down/Stand­up 1.02% 0.25%
Walking on the ground 1.08% 0.89%

Left Leg
Sit­down/Stand­up 0.97% 0.22%
Walking on the ground 1.41% 1.03%

activity type. The accuracy for this method changes from 95.9% to 99.75%. To fuse

accelerometer and gyroscope outputs improves the performance. To use only

accelerometer or only gyroscope output has poor performance when compared with

fusion algorithms. Moreover results present that predicted joint angles during

Sit­down/Stand­up activity is higher accuracy when compared with walking on

ground.
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CHAPTER FIVE

EVALUATION OF SENSOR POSITIONS ON HUMAN BODY FOR

ACTIVITY RECOGNITION USING ARTIFICIAL NEURAL NETWORKS

AND ACCELEROMETER DATA

Sensor position is an important challenge that affects the performance of activity

recognition. For this purpose; a total of four wireless IMU sensors were placed on the

various parts of the human body including the chest, arm, shoulder, and leg.

Accelerometer data were collected and recorded for various activities including

walking, running, jumping, and sit down/stand up. Then, the obtained dataset from

each sensor was fed into MLP NNs separately or fusing each other to evaluate sensor

positions.

5.1 Method

Total four wearable wireless IMU sensors introduced in Chapter 3 were used to

collect and record 3­axis acceleration information. These sensors were placed on the

chest, arm, leg, and shoulder area of the human body as shown in Figure 5.1.

A total of twenty healthy people (12 male and 8 female) with ages from 24 to 30,

height from 158cm to 192cm, and weight from 48kg to 98kg attended data collection

processes. Each user was informed about the purpose of the study and asked to perform

four activity types. These activities and its abbreviations are given in Table 5.1.

Table 5.1 Activities and abbreviations

Type Abbreviation

Activities

Walking on flat ground WG
Running RN
Jumping JP
Sit down/Stand up SS

The sampling frequency of IMU sensors was configured as 40Hz. Each individual

performed activities for a total of four minutes as one minute for each activity. A total
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Figure 5.1 IMU sensor positions on the human body (Personal archive, 2020)

of 192000 acceleration data for each axis was obtained.

Recorded accelerometer outputs were noisy. To remove it, a low­pass filter was

applied to the obtained dataset. Then, the magnitude of acceleration was calculated

using the given formula in Equation 5.1 and added as a new feature to the current

feature set including x, y, and z­axis values of the accelerometer.

| a |=
√
a2x + a2y + a2z (5.1)

The obtained dataset was normalized to eliminate the dominant characteristics of large

values over small values before neural network training and test. For this purpose,

min­max normalization was applied to features and the data range was scaled between

0 and 1.

All recorded data from all volunteers were divided into frames using 1.5­sec window

sizes with 50% overlapping. The window­size was chosen due to the average cycle

duration of activities. The frames were divided into two parts as 70% training and 30%
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Table 5.2 Network names and input combinations

Network Name Input Set

Single sensor

N1 Chest
N2 Shoulder
N3 Leg
N4 Arm

Two­sensors

N5 Chest­Leg
N6 Chest­Arm
N7 Chest­Shoulder
N8 Leg­Shoulder
N9 Leg­Arm
N10 Shoulder­Arm

Three­sensors

N11 Chest­Shoulder­Leg
N12 Leg­Shoulder­Arm
N13 Leg­Arm­Chest
N14 Shoulder­Arm­Chest

All sensors N15 Shoulder­Arm­Chest­Leg

test.

To evaluate sensor positions for human activity recognition, a total of 15 different

input sets were obtained using single or multiple sensor combinations. These

combinations and neural network names corresponding to the input dataset are given

in Table 5.2.

All input datasets were separately fed into MLP NNs for recognition of activities

including walking on flat ground, running, jumping, and sit down­stand up. All

hyperparameters including the number of the hidden layers, the neuron number in

hidden layers, learning rate, optimization algorithm were determined by fine­tuning to

have the best results.

Neural network applications and data processes were conducted on MATLAB

2018b. Network performances were evaluated in terms of precision, recall, and

accuracy.
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5.2 Results

To evaluate sensor positions for activity recognition, fifteen eural network models

were proposed. Each input set was fed into MLP NNs to recognize the activity types

including walking on flat ground, running, jumping, and sit down/stand up. A total of

6396 frames as 4477 frames for training and 1919 frames for the test was used. Each

proposed neural network were trained and tested to have the best results by adjusting

hyperparameters via fine­tuning.

Firstly, each sensor output of placed on various areas on the human body separately

was fed into the proposed four MLPNNs. Table 5.3, Table 5.4, Table 5.5, and Table 5.6

presents the obtained results in terms of recall and precision. Each network has the

best recognition results for sit down/stand up activities with respect to both recall and

precision. In terms of accuracy; N1, N2, and N3 presents same results around %94.

However, N4 consists of sensor outputs on shoulder has 89.8% success rate and offer

the poorest results than other three networks.

Secondly, six different input sets were created with the dual combinations of sensors

placed on the human body. Each input set was separately fed intoMLPNNs. Table 5.7,

Table 5.8, Table 5.9, and Table 5.10 present test results of the proposed models. Each

network has the best recognition performance for sit­down/stand­up like MLP NNs

consist of single­sensor inputs. N5, N6, N7, N8, N9, and N10 have accuracy rates

at 95.67%, 94.9%, 95.45%, 95.65%, 94.0%, and 94.0%, respectively. The network

results show that dual combinations of sensor outputs offer better results than single

sensor outputs.

Table 5.3 MLP neural network performance for inputs which provided by IMU sensor on chest

Actual Outputs
N1 WG RN JP SS Precision

Predicted
Class

WG 94.8% 2.7% 2.2% 1.2% 93.9%
RN 2.1% 95.0% 0.7% 0.6% 96.5%
JP 2.8% 2.3% 94.1% 3.1% 91.9%
SS 0.3% 0.0% 3.0% 95.1% 96.6%

Recall 94.8% 95.0% 94.1% 95.1%
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Table 5.4 MLP neural network performance for inputs which provided by IMU sensor on shoulder

Actual Outputs
N2 WG RN JP SS Precision

Predicted
Class

WG 93.9% 4.2% 1.8% 2.1% 92.0%
RN 3.5% 92.7% 2.5% 1.9% 92.1%
JP 1.7% 2.3% 94.5% 1.6% 93.4%
SS 0.9% 0.8% 1.3% 94.4% 96.9%

Recall 93.9% 92.7% 94.5% 94.4%

Table 5.5 MLP neural network performance for inputs which provided by IMU sensor on leg

Actual Outputs
N3 WG RN JP SS Precision

Predicted
Class

WG 95.5% 1.4% 2.7% 1.2% 94.7%
RN 3.1% 93.6% 2.9% 1.4% 92.6%
JP 1.3% 4.4% 92.8% 0.5% 93.7%
SS 0.1% 0.6% 1.6% 96.9% 97.6%

Recall 95.5% 93.6% 92.8% 96.9%

Table 5.6 MLP neural network performance for inputs which provided by IMU sensor on arm

Actual Outputs
N4 WG RN JP SS Precision

Predicted
Class

WG 89.4% 5.7% 4.9% 4.0% 85.9%
RN 4.2% 88.1% 3.7% 2.1% 89.8%
JP 3.0% 4.6% 88.3% 0.5% 91.5%
SS 3.4% 1.6% 3.1% 93.4% 92.0%

Recall 89.4% 88.1% 88.3% 93.4%

Table 5.7 MLP neural network performance for inputs which provided by IMU sensors on chest and leg

Actual Outputs
N5 WG RN JP SS Precision

Predicted
Class

WG 96.4% 2.3% 1.4% 1.4% 94.9%
RN 2.0% 96.1% 3.2% 2.2% 92.8%
JP 1.4% 1.5% 94.9% 1.1% 95.9%
SS 0.2% 0.1% 0.5% 95.3% 99.1%

Recall 96.4% 96.1% 94.9% 95.3%

Thirdly, four different input sets were created with triple combinations of sensors

placed on the human body. Each input set was fed into MLP NNs. Obtained results

are presented in Table 5.13, Table 5.14, Table 5.15, and Table 5.16. Sit­down/Stand­up

activity is the most recognizable activity in terms of precision and recall like neural

networks networks consist of single sensor outputs and dual combinations of sensor
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Table 5.8 MLP neural network performance for inputs which provided by IMU sensors on chest and arm

Actual Outputs
N6 WG RN JP SS Precision

Predicted
Class

WG 94.8% 3.1% 3.9% 0.8% 92.3%
RN 1.6% 95.2% 1.9% 1.5% 95.0%
JP 2.4% 1.2% 93.1% 1.2% 95.0%
SS 1.2% 0.5% 1.1% 96.5% 97.1%

Recall 94.8% 95.2% 93.1% 96.5%

Table 5.9 MLP neural network performance for inputs which provided by IMU sensors on chest and
shoulder

Actual Outputs
N7 WG RN JP SS Precision

Predicted
Class

WG 95.1% 1.9% 0.9% 1.6% 95.5%
RN 3.2% 95.3% 2.6% 1.4% 92.9%
JP 1.4% 1.8% 96.0% 1.6% 95.2%
SS 0.3% 1.0% 0.5% 95.4% 98.1%

Recall 95.1% 95.3% 96.0% 95.4%

Table 5.10 MLP neural network performance for inputs which provided by IMU sensors on leg and
shoulder

Actual Outputs
N8 WG RN JP SS Precision

Predicted
Class

WG 94.9% 3.2% 2.9% 0.5% 93.4%
RN 1.7% 94.1% 1.4% 0.6% 96.2%
JP 3.1% 1.5% 95.5% 0.8% 94.6%
SS 0.3% 1.2% 0.2% 98.1% 98.2%

Recall 94.9% 94.1% 95.5% 98.1%

Table 5.11 MLP neural network performance for inputs which provided by IMU sensors on leg and arm

Actual Outputs
N9 WG RN JP SS Precision

Predicted
Class

WG 93.8% 1.1% 2.4% 1.3% 95.1%
RN 3.7% 92.9% 2.8% 2.1% 90.6%
JP 1.9% 4.7% 94.1% 1.4% 92.1%
SS 0.6% 1.3% 0.7% 95.2% 97.3%

Recall 93.8% 92.9% 94.1% 95.2%

outputs. We see that the network N11 that use shoulder, chest, and leg provided the

best accuracy with 97.27%. The accuracy is at least 95.35% for triple combinations of

sensor outputs.
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Table 5.12 MLP neural network performance for inputs which provided by IMU sensors on shoulder
and arm

Actual Outputs
N10 WG RN JP SS Precision

Predicted
Class

WG 93.7% 2.1% 1.9% 2.5% 93.5%
RN 3.3% 94.0% 3.2% 1.8% 91.8%
JP 2.1% 3.7% 93.8% 1.2% 93.0%
SS 0.9% 0.2% 1.1% 94.5% 97.7%

Recall 93.7% 94.0% 93.8% 94.5%

Table 5.13 MLP neural network performance for inputs which provided by IMU sensors on chest,
shoulder, and leg

Actual Outputs
N11 WG RN JP SS Precision

Predicted
Class

WG 97.1% 2.4% 1.6% 0.8% 94.3%
RN 1.0% 96.9% 0.8% 0.3% 97.8%
JP 1.2% 0.4% 96.4% 0.2% 98.1%
SS 0.7% 0.3% 1.2% 98.7% 97.8%

Recall 97.1% 96.9% 96.4% 98.7%

Table 5.14MLP neural network performance for inputs which provided by IMU sensors on leg, shoulder,
and arm

Actual Outputs
N12 WG RN JP SS Precision

Predicted
Class

WG 95.4% 2.4% 1.2% 1.7% 94.7%
RN 1.9% 95.7% 2.9% 1.1% 94.1%
JP 2.4% 1.2% 94.8% 1.3% 95.0%
SS 0.3% 0.7% 1.1% 95.9% 97.8%

Recall 95.4% 95.7% 94.8% 95.9%

Table 5.15 MLP neural network performance for inputs which provided by IMU sensors on leg, arm,
and chest

Actual Outputs
N13 WG RN JP SS Precision

Predicted
Class

WG 95.0% 0.9% 1.8% 0.8% 96.4%
RN 2.3% 95.4% 1.9% 1.2% 94.6%
JP 2.6% 2.3% 96.1% 3.1% 92.3%
SS 0.1% 1.4% 0.2% 94.9% 98.2%

Recall 95.0% 95.4% 96.1% 94.9%

Finally, all sensor outputs placed on the human body was combined and feature

number was maximized with totally 12 different inputs. These dataset was fed into
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Table 5.16 MLP neural network performance for inputs which provided by IMU sensors on shoulder,
arm, and chest

Actual Outputs
N14 WG RN JP SS Precision

Predicted
Class

WG 95.1% 1.8% 3.4% 0.4% 94.4%
RN 1.9% 96.4% 2.0% 2.1% 94.1%
JP 2.4% 1.2% 93.7% 1.3% 95.0%
SS 0.6% 0.6% 0.9% 96.2% 97.8%

Recall 95.1% 96.4% 93.7% 96.2%

MLP NNs. Table 5.17 presents the obtained results. It show that increment in the

feature numbers was affected adversely the accuracy. It has reduced around 2% and

has obtained as 95.2%.

Table 5.17 MLP NN performance when all sensor outputs are combined

Actual Outputs
N15 WG RN JP SS Precision

Predicted
Class

WG 95.0% 2.3% 0.8% 1.4% 95.4%
RN 4.3% 94.7% 2.2% 2.1% 91.6%
JP 0.6% 1.8% 95.2% 0.6% 96.9%
SS 0.1% 1.2% 1.8% 95.9% 96.8%

Recall 95.0% 94.7% 95.2% 95.9%
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Table 5.18 shows the average accuracy and Fscore values of all networks. N11

consisting of the chest, leg and shoulder sensor data presents the best results 97.27%

accuracy rate and 0.97 Fscore value.

Table 5.18 Evaluation of activity recognition performance for each neural network in terms of accuracy
and Fscore

Network Name Accuracy Fscore
N1 94.75% 0.947
N2 93.87% 0.937
N3 94.70% 0.946
N4 89.80% 0.898
N5 95.67% 0.956
N6 94.90% 0.948
N7 95.45% 0.954
N8 95.65% 0.956
N9 94.00% 0.938
N10 94.00% 0.940
N11 97.27% 0.970
N12 95.45% 0.954
N13 95.35% 0.953
N14 95.35% 0.953
N15 95.20% 0.951
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CHAPTER SIX

ACTIVITY RECOGNITION USING IMU SENSOR DATA AND DEEP

LEARNING NEURAL NETWORKS

In this chapter, basic and complex activity recognition was performed using

IMU sensor outputs and deep learning neural networks. For this purpose; wireless

IMU sensors were placed on arm, chest, shank, and thigh parts of human body.

Accelerometer and gyroscope sensor outputs were collected and recorded during

various types of activity including writing on paper and hand­washing. Determined

thirteen activities were divided into three categories as basic, complex, and all. The

data belong to each activity category were fed into three neural network types of deep

learning, namely CNN, LSTM NN and ConvLSTM NN. Then, the network

performances were separately examined for each category.

6.1 Method

To gather acceleration and gyroscope outputs, designed wearable wireless IMU

sensors introduced in Chapter 3 was used. IMU sensors were attached on the thigh,

shank, arm and chest parts of the human body as seen from Figure 6.1.

IMU sensor data was collected from 60 healthy users (37males and 23 females) with

age ranging from 20 to 40 (mean 25.9±3.8), height 160­195 cm (mean 179±3.0) and

weight 50­103 kg (mean 76.8±3.4). Each user was briefed on what the study is about

and was asked to perform a total of thirteen different activities, which is combination

of eight basic and five complex. Table 6.1 gives performed all activities and their

abbreviations.
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Figure 6.1 Placements of IMU slave devices on human body (Personal archive, 2020)

Table 6.1 Categories and activities

All Activities Abbreviation

Basic Activities

Walking on flat ground WG
Walking uphill WU
Walking downhill WD
Ascending stairs ASC
Descending stairs DES
Running RN
Jumping JP
Sit down ­ Stand up SS

Complex Activities

Cleaning table CT
Drink from cup DC
Open­close refrigerator OCR
Writing on paper WP
Hand washing HW

Figure 6.2 shows several pictures of the data collection moment for four different

activity types, which is descending stairs, writing on paper, walking downhill, and

running.

For each subject, 65­minutes of data were collected for thirteen different activities

by recording 5 minutes of data per activity. Before the actual activity, each sensor was

calibrated by gathering data while the subject is in a standing position. A capture of
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Figure 6.2 Data collection moment during some activities (Personal archive, 2020)

activity signals taken from thigh part of leg and arm during walking uphill and cleaning

table is given in Figure 6.3 and Figure 6.4, respectively.

Figure 6.3 A capture of raw acceleration and gyroscope data for walking uphill from thigh part of leg
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Figure 6.4 A capture of raw acceleration and gyroscope data for cleaning table from arm

During activities, incoming accelerometer signals from sensors were noisy. To

remove noise, moving average filter was used. The data range of accelerometer and

gyroscope signals was not at the same scale. To uniform data range, min­max

normalization was separately applied on each feature of the dataset. This is important

to prevent dominant characteristics of large values according to fewer values during

training. Then, the signals were divided into frames with non­overlapping sliding

windows. The main challenge was to find the correct window size. In the literature,

researchers have used different window sizes to segment data such as 1­second

window size without overlapping, 2­seconds window size with 1­second overlapping

and so on (Karantonis et al., 2006; Preece et al., 2008). The small window size affects

adversely computational cost, and wide window size may cause overfitting. In this

study, we determined window size as 1.5­seconds by observing the average period

duration of activities. Due to this selected window­size, we obtained total of 12000

frames for each activity and totally 156000 frames from all activities. Then, data

augmentation was performed by adding noise into frames and number of frames was

increased five times.

The produced frames were divided into two parts as 70% training and 30% testing.

Then, the frames belong to each category fed into three different deep learning neural

networks; CNN, LSTMNN, and ConvLSTMNN. Hyperparameters were calibrated to
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obtain the best network performances by fine­tuning.

Training and test processes of deep learning applications were performed on

graphical processor unit (GPU) to accelerate working time (Cheng et al., 2012; Kouris

& Koutsouris, 2011). The specifications of the chosen GPU are given in Table 6.2.

Processes were conducted in deep learning toolbox and Experiment Manager of

MATLAB 2020a.

Table 6.2 Specification of GPU in experiments

Parameters Value
Graphic Card Chip Geforce RTX2070 Super

Graphic Memory Capacity 8GB DDR6
Clock Frequency 1770MHz
Cuda Kernels 2560

Memory Bandwidth 448GB/sec
Memory Speed 14Gbps

6.2 Results

The recognition performances of the proposed models for the test frames are

evaluated in this section. We divided activities into three categories as basic,

complex, and all. The datasets belong to each category were separately applied to

CNN, LSTM NN, and ConvLSTM NN. To have the best performances from

networks, different architectures were constructed and the values of hyperparameters

were determined by fine­tuning. For each activity, 42000 and 18000 frames were

taken as training and test sets, respectively. Total frame numbers used in networks

changed depending on the number of activities in each category. The network

performances for the test frames will be discussed for each category.

6.2.1 Classification of Basic Activity Category

Basic activities consist of walking on flat ground, walking uphill, walking downhill,

ascending stairs, descending stairs, running, jumping, and sit down ­ stand up. These
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motions are gait­based and approximately periodic signals. The motion speed causes

minor changes in the duration of a period.

Firstly, CNN was applied for the classification of basic activities. The best network

performance was obtained from architecture; consists of three convolutional layers,

three RELU activation functions, three pooling layers, three fully­connected layers,

one softmax activation function, and one classification layer. In the first

convolutional layer, 96 kernels with 3×3 size were applied to the input frameset. The

output of the convolutional layer went through the RELU activation function for

non­linearity. In the pooling layer, 2x2 maximum pool filters reduced the dimension

of extracted frames from the convolutional layer. 128 kernels with 3x3 size and 2x2

maximum filters for second convolutional and pooling layers and, 256 kernels with

3x3 size and 2x2 maximum filters for third convolutional and pooling layers were

used for feature extraction. Sliding steps of filters were adjusted as one and two in

convolutional layers and pooling layers, respectively. The extracted information was

taken as input for neural network with three fully­connected layers. The number of

neurons in layers were determined as 128, 192, and 8, respectively. The output of the

last fully­connected layer by passing through softmax activation function fed into

classification layer for decision. The other important hyperparameters as well as size

and numbers of filters are learning rate, weight optimization algorithm, and

mini­batch size for the network performance. These parameters were determined as

0.008, adaptive moment optimization, and 64, respectively.

Table 6.3 Confusion matrix obtained from CNN for classification of basic activities

Target Class
WG WU WD ASC DES RN JP SS Precision

Predicted
Class

WG 91.0% 1.5% 2.4% 1.2% 3.0% 1.5% 0.8% 0.2% 89.5%
WU 2.7% 90.2% 3.6% 2.5% 2.0% 1.2% 0.7% 0.3% 87.4%
WD 2.0% 2.2% 90.4% 2.0% 1.2% 1.3% 0.3% 1.4% 89.6%
ASC 2.2% 2.4% 1.2% 91.0% 4.7% 2.0% 1.0% 0.3% 86.8%
DES 1.9% 3.0% 1.9% 2.8% 88.0% 1.9% 0.2% 1.7% 86.7%
RN 0.2% 0.3% 0.2% 0.1% 0.7% 90.1% 4.8% 0.7% 92.7%
JP 0.0% 0.4% 0.2% 0.0% 0.0% 1.9% 92.0% 0.9% 96.4%
SS 0.0% 0.0% 0.1% 0.4% 0.4% 0.1% 0.2% 94.5% 98.7%

Recall 91.0% 90.2% 90.4% 91.0% 88.0% 90.1% 92.0% 94.5%

Secondly, LSTM NN was applied for classification. The neurons in layer have
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particular memory units to remember information for a longer time. The most

successful network performance was obtained from architecture with three LSTM

layers, three fully­connected layer, one softmax activation function, and one

classification layer. The neuron numbers in LSTM layers were taken as 128, 192 and

256, respectively. The output of the last LSTM layer fed into the fully­connected

layer with 64, 96, and 8 neurons, respectively. Softmax activation function

determined the probabilistic distribution of potential outcomes. Classification layer

decided on an activity label using income information from activation function. The

other hyperparameters; weight optimization algorithm, learning rate, and mini­batch

size were set to adaptive moment estimation, 0.007, and 128, respectively.

Table 6.4 Confusion matrix obtained from LSTM NN for classification of basic activities

Target Class
WG WU WD ASC DES RN JP SS Precision

Predicted
Class

WG 90.5% 2.2% 1.4% 2.6% 0.8% 1.2% 1.4% 0.5% 89.9%
WU 2.8% 90.1% 2.9% 1.9% 2.2% 1.0% 1.7% 0.1% 87.7%
WD 2.4% 1.4% 89.0% 2.1% 1.8% 1.6% 1.2% 1.4% 88.2%
ASC 1.4% 2.7% 2.7% 90.9% 3.3% 1.3% 2.8% 2.3% 84.6%
DES 2.0% 1.9% 2.5% 1.4% 90.7% 1.4% 0.2% 2.7% 88.2%
RN 0.3% 0.8% 0.8% 0.5% 0.8% 91.5% 1.7% 1.7% 93.2%
JP 0.2% 0.4% 0.3% 0.6% 0.3% 1.1% 90.3% 1.8% 95.0%
SS 0.4% 0.5% 0.4% 0.0% 0.1% 0.9% 0.7% 94.5% 96.7%

Recall 90.5% 90.1% 89.0% 90.9% 90.7% 91.5% 90.3% 94.5%

Thirdly, ConvLSTM NN was applied for classification. In this neural network,

convolutional and pooling layers of CNN was added to LSTM layers for feature

extraction. Extracted features from CNN layers were used as input for LSTM layers.

The architecture of feature extraction layers, filter sizes, and numbers used in CNN

was not changed. The number of neurons was determined as 64 and 96 in LSTM

layers. The outputs of last LSTM layer fed into the fully­connected layer with 8

neurons. The classification results were obtained with passing through softmax

activation function of the fully­connected layer. Hyperparameters were tuned to

stochastic gradient descent algorithm, 0.03, 64, and 0.8 for weight optimizer, learning

rate, mini­batch size, and momentum coefficient, respectively.

The classification performance of each neural network based on eight defined

activity types is given in Table 6.3, Table 6.4, and Table 6.5. ConvLSTM improves
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Table 6.5 Confusion matrix obtained from ConvLSTM NN for classification of basic activities

Target Class
WG WU WD ASC DES RN JP SS Precision

Predicted
Class

WG 96.0% 1.2% 1.8% 1.5% 1.4% 0.7% 0.5% 0.8% 92.3%
WU 0.8% 94.0% 0.8% 2.2% 1.9% 2.6% 1.8% 0.3% 90.0%
WD 0.9% 0.8% 93.7% 1.7% 1.4% 1.2% 1.1% 0.2% 92.7%
ASC 0.8% 1.9% 2.2% 92.5% 2.0% 1.8% 2.1% 0.5% 89.1%
DES 1.2% 1.5% 0.4% 1.2% 91.9% 1.0% 1.5% 0.4% 92.7%
RN 0.2% 0.4% 0.6% 0.3% 0.4% 92.3% 0.3% 0.3% 97.3%
JP 0.1% 0.0% 0.5% 0.4% 0.6% 0.2% 92.5% 0.6% 97.4%
SS 0.0% 0.2% 0.0% 0.2% 0.4% 0.2% 0.2% 96.9% 98.7%

Recall 96.0% 94.0% 93.7% 92.5% 91.9% 92.3% 92.5% 96.9%

the recognition of each activity between 0.5% and 5.5% with respect to the other two

networks. In Figure 6.5, the comparison of classification accuracy is given for all

three networks. This shows that LSTM NN and CNN have almost the same average

performances for basic activity recognition. However, ConvLSTM NN outperforms

other two networks and gives 93.7% average classification accuracy.

Figure 6.5 Performance comparison of neural networks in term of accuracy for basic activities

6.2.2 Classification of Complex Activity Category

Complex activities consist of cleaning table, drink from cup, open­close refrigerator,

hand washing, and writing on paper. These activities are based on hand gesture.

Firstly, CNN was used for classification. The network has presented the best
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performance with the same CNN architecture that was used for the classification of

basic activities. The only difference in this CNN comes from hyperparameter settings.

The number of kernels was decreased to 64, 96, and 192 for convolutional layers and,

kernel sizes were fixed as 3x3. In pooling layers, 2x2 maximum pooling was used for

sub­sampling. The sliding steps were adjusted as one stride for kernels and two strides

for maximum pooling. The extracted features fed into the neural network with three

fully­connected layers. The neuron numbers of fully­connected layers were adjusted

as 64, 96, and 5, respectively. Optimization algorithm, learning rate, and mini­batch

size were chosen as adaptive moment estimation, 0.01, and 64, respectively.

Table 6.6 Confusion matrix obtained from CNN for classification of complex activities

Target Class
CT DC OCR WP HW Precision

Predicted
Class

CT 90.1% 2.5% 3.1% 1.4% 2.1% 90.8%
DC 2.1% 91.5% 2.5% 2.3% 3.0% 90.2%
OCR 2.3% 2.2% 90.9% 2.1% 2.7% 90.7%
WP 1.8% 1.8% 1.0% 92.0% 2.3% 93.0%
HW 3.7% 2.0% 2.5% 2.2% 89.9% 89.6%
Recall 90.1% 91.5% 90.9% 92.0% 89.9%

Secondly, LSTM NN was used for classification. The most successful results were

obtained from architecture consists of three LSTM layers, two fully­connected layers,

softmax activation function, and classification layer. The neuron numbers in LSTM

layers were determined for 128, 256, and 96. The output in LSTM layers fed into

fully­connected layer with 32 and 5 neurons, respectively. The other parameters were

determined as adaptive moment estimation, 0.001, and 64 for optimizer, learning rate,

and mini­batch size, respectively.

Table 6.7 Confusion matrix obtained from LSTM NN for classification of complex activities

Target Class
CT DC OCR WP HW Precision

Predicted
Class

CT 94.7% 1.6% 2.0% 2.1% 2.0% 92.4%
DC 0.8% 95.0% 2.3% 2.4% 0.9% 93.6%
OCR 2.5% 1.2% 91.5% 1.2% 0.9% 94.0%
WP 0.7% 1.2% 1.2% 93.7% 1.1% 95.7%
HW 1.3% 1.0% 3.0% 0.6% 95.1% 94.1%
Recall 94.7% 95.0% 91.5% 93.7% 95.1%
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Thirdly, ConvLSTMNNwas used for classification. The extracted features in CNN

fed into LSTM. The kernel sizes and number of kernels has the same hyperparameter

settings used in feature extraction layer of CNN architecture. LSTM were adjusted

as two layers, and the neuron numbers in LSTM layers were determined as 128 and

128. The last output of LSTM fed into fully connected layer with 5 neurons. The best

results were obtained with adaptive moment estimation, 0.009 learning rate, and 128

mini­batch size.

Table 6.8 Confusion matrix obtained from ConvLSTM NN for classification of complex activities

Target Class
CT DC OCR WP HW Precision

Predicted
Class

CT 90.3% 3.5% 2.2% 2.3% 1.0% 90.9%
DC 1.7% 91.0% 3.4% 4.1% 1.3% 89.6%
OCR 3.9% 1.7% 89.7% 1.9% 2.0% 90.4%
WP 1.8% 1.6% 2.3% 89.9% 3.7% 90.5%
HW 2.3% 2.2% 2.4% 1.8% 92.0% 91.3%
Recall 90.3% 91.0% 89.7% 89.9% 92.0%

The classification performance of neural networks was separately given for each

activity type in Table 6.6, Table 6.7, and Table 6.8. ConvLSTM NN gives better

performance between 0.6% and 6.2% than the other two networks for each activity.

Figure 6.6 shows average classification performance for all networks. ConvLSTM

gives the best performance with an average success rate of 94.0%. CNN and LSTM

NN have approximately same average classification performance as 90.8% and

90.5%, respectively.

6.2.3 Classification of All Activity Category

All activity category consists of both basic and complex activities.

Firstly, CNN was applied for classification. The best results were obtained from

the architecture, which made up of three convolutional layers, three RELU activation

functions, three pooling layers, four fully­connected layers, one softmax activation,

and one classification layer. Kernel sizes were set to 3x3, 4x4, and 3x3, and number
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Figure 6.6 Performance comparison of neural networks in term of accuracy for complex activities

of kernels was adjusted as 128, 192, and 256 for convolutional layers. Activation

functions were applied to the outputs of all convolutional layers for non­linearity.

Three maximum pooling filters with 3x3, 2x2, and 2x2 size were used to reduce the

dimension of features and choose dominant characteristic of extracted features from

convolutional layers. Sliding strides were tuned to one and two for each

convolutional layer and each pooling layer, respectively. The extracted frames fed

into neural network include four fully­connected layers. From the beginning to the

end of the network, there are 192, 256, 128, and 13 neurons in these layers. The other

hyperparameters such as learning rate, weight optimization algorithm, momentum

coefficient, and mini­batch size were taken as 0.005, stochastic gradient descent

momentum, 0.6, and 128, respectively.

Table 6.9 Confusion matrix obtained from CNN for classification of all activities

Target Class
WG WU WD ASC DES RN JP SS CT HW DC WP OCR Precision

Predicted
Class

WG 86.1% 4.0% 4.9% 2.1% 2.2% 1.9% 1.1% 1.0% 0.0% 0.0% 0.0% 0.0% 0.2% 83.2%
WU 3.2% 80.3% 5.2% 3.9% 2.3% 1.0% 0.9% 0.6% 0.2% 0.1% 0.2% 0.0% 0.2% 81.9%
WD 2.4% 3.6% 84.1% 4.1% 1.2% 3.1% 2.0% 1.0% 0.0% 0.0% 0.2% 0.2% 0.1% 82.4%
ASC 3.9% 3.5% 1.4% 86.1% 6.9% 2.1% 1.7% 0.9% 0.4% 0.1% 0.0% 0.1% 0.1% 80.3%
DES 2.8% 2.7% 2.8% 1.8% 84.7% 8.4% 0.8% 0.8% 0.0% 0.0% 0.3% 0.2% 0.3% 80.2%
RN 1.5% 3.7% 0.5% 0.2% 1.5% 82.8% 0.4% 2.7% 0.1% 0.1% 0.3% 0.4% 0.2% 87.7%
JP 0.0% 1.1% 0.2% 1.0% 0.8% 0.4% 92.8% 3.3% 0.5% 0.0% 0.7% 0.3% 0.5% 91.3%
SS 0.1% 0.7% 0.4% 0.4% 0.1% 0.0% 0.1% 89.1% 0.0% 0.0% 0.2% 0.0% 0.1% 97.7%
CT 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.1% 0.2% 80.2% 4.9% 5.1% 2.3% 2.5% 84.0%
HW 0.0% 0.1% 0.1% 0.0% 0.1% 0.1% 0.0% 0.0% 3.7% 87.0% 6.9% 2.4% 4.9% 82.6%
DC 0.0% 0.0% 0.1% 0.0% 0.2% 0.2% 0.0% 0.1% 4.1% 3.1% 80.1% 5.9% 4.2% 81.7%
WP 0.0% 0.2% 0.2% 0.1% 0.0% 0.0% 0.1% 0.0% 2.7% 1.8% 2.6% 83.9% 6.6% 85.4%
OCR 0.0% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0% 0.3% 8.1% 2.9% 3.4% 4.2% 80.1% 80.7%
Recall 86.1% 80.3% 84.1% 86.1% 84.7% 82.8% 92.8% 89.1% 80.2% 87.0% 80.1% 83.9% 80.1%
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Table 6.10 Confusion matrix obtained from LSTM NN for classification of all activities

Target Class
WG WU WD ASC DES RN JP SS CT HW DC WP OCR Precision

Predicted
Class

WG 88.2% 2.1% 4.2% 3.7% 3.2% 1.9% 1.3% 2.6% 0.3% 0.2% 0.4% 0.4% 0.3% 81.1%
WU 1.8% 87.3% 2.2% 3.1% 3.3% 2.5% 2.1% 2.0% 0.4% 0.1% 0.2% 0.3% 0.2% 82.7%
WD 2.4% 1.6% 86.9% 2.3% 2.1% 2.0% 2.4% 2.4% 0.1% 0.0% 0.2% 0.5% 0.4% 84.1%
ASC 2.3% 3.1% 1.6% 84.0% 4.6% 2.9% 1.5% 2.1% 0.2% 0.1% 0.0% 0.1% 0.1% 81.9%
DES 3.0% 2.2% 1.9% 3.2% 83.9% 1.2% 2.3% 2.7% 0.2% 0.0% 0.3% 0.7% 0.3% 82.3%
RN 2.1% 1.3% 1.2% 2.7% 1.7% 85.3% 2.3% 3.4% 0.4% 0.2% 0.3% 0.6% 0.7% 83.5%
JP 0.0% 1.2% 0.9% 0.3% 0.3% 1.3% 86.0% 3.3% 0.3% 0.1% 0.3% 0.3% 0.5% 91.6%
SS 0.1% 0.7% 1.4% 0.2% 0.4% 2.1% 1.3% 80.9% 0.3% 0.1% 0.2% 0.7% 0.7% 90.8%
CT 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.2% 0.4% 80.4% 2.2% 4.3% 1.3% 3.2% 87.1%
HW 0.0% 0.1% 0.3% 0.2% 0.0% 0.2% 0.3% 0.1% 4.1% 91.1% 5.9% 3.4% 2.9% 83.9%
DC 0.0% 0.1% 0.2% 0.1% 0.4% 0.2% 0.1% 0.0% 3.7% 3.2% 82.1% 3.6% 5.4% 82.8%
WP 0.1% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 3.5% 0.9% 2.8% 84.0% 4.3% 87.6%
OCR 0.0% 0.1% 0.1% 0.1% 0.0% 0.3% 0.2% 0.0% 6.1% 1.8% 3.0% 4.1% 81.0% 83.7%
Recall 88.2% 87.3% 86.9% 84.0% 83.9% 85.3% 86.0% 80.9% 80.4% 91.1% 82.1% 84.0% 81.0%

Table 6.11 Confusion matrix obtained from ConvLSTM NN for classification of all activities

Target Class
WG WU WD ASC DES RN JP SS CT HW DC WP OCR Precision

Predicted
Class

WG 90.4% 1.4% 1.6% 2.3% 3.5% 1.0% 0.8% 1.4% 1.0% 0.2% 0.1% 0.3% 0.2% 86.8%
WU 1.4% 90.2% 1.8% 2.8% 1.3% 0.9% 1.4% 2.3% 0.3% 0.1% 0.3% 0.2% 0.3% 87.3%
WD 1.3% 0.4% 91.2% 1.4% 2.2% 1.1% 0.3% 3.5% 0.2% 0.0% 0.4% 0.2% 0.1% 89.1%
ASC 2.4% 1.4% 1.3% 89.5% 2.1% 1.3% 2.0% 2.0% 0.8% 0.1% 0.2% 0.6% 0.2% 86.1%
DES 2.9% 1.9% 1.1% 2.0% 86.1% 1.2% 1.9% 2.9% 0.4% 0.0% 0.3% 0.2% 0.3% 85.1%
RN 0.3% 0.8% 1.4% 1.2% 1.4% 92.4% 1.5% 0.2% 0.4% 0.1% 0.2% 0.1% 0.5% 91.9%
JP 0.4% 1.0% 0.3% 0.2% 2.1% 0.4% 91.0% 0.4% 0.3% 0.1% 0.2% 0.2% 0.1% 94.1%
SS 0.1% 1.0% 0.6% 0.1% 1.0% 1.3% 0.6% 86.7% 0.2% 0.1% 0.7% 0.2% 0.2% 93.4%
CT 0.0% 1.2% 0.2% 0.0% 0.1% 0.1% 0.0% 0.1% 88.6% 0.3% 2.7% 1.8% 3.8% 89.6%
HW 0.2% 0.2% 0.1% 0.0% 0.0% 0.1% 0.1% 0.2% 1.5% 93.6% 3.2% 2.4% 2.7% 89.9%
DC 0.5% 0.1% 0.2% 0.2% 0.1% 0.0% 0.2% 0.1% 2.4% 0.8% 88.1% 2.5% 3.1% 89.6%
WP 0.1% 0.2% 0.1% 0.2% 0.1% 0.2% 0.0% 0.1% 2.0% 2.4% 1.6% 87.8% 2.1% 90.6%
OCR 0.2% 0.2% 0.1% 0.1% 0.0% 0.0% 0.2% 0.1% 1.9% 2.2% 2.0% 3.5% 86.4% 89.2%
Recall 90.4% 90.2% 91.2% 89.5% 86.1% 92.4% 91.0% 86.7% 88.6% 93.6% 88.1% 87.8% 86.4%

Secondly, LSTM NN was applied for classification. The architecture consists of

five LSTM layers, three fully connected layers, one softmax activation function, and

one classification layer. The neuron numbers used in LSTM layers are 256, 256, 324,

128, and, 128, respectively. Neuron numbers of fully connected layers set to 128, 64,

and 13. Learning rate, optimization algorithm, and mini­batch size was taken as 0.006,

adaptive moment estimation, and 128, respectively.

Thirdly, ConvLSTMNNwas applied for classification. The feature extraction layer

of CNN has been fully taken over with its own entire setup. LSTM layers have 96, 192

and, 128 neurons, respectively. The neuron numbers in fully connected layers were set

to 32 and 13. Weight optimization algorithm, learning rate, and mini­batch size were

set to adaptive moment estimation, 0.008, and 128, respectively.

Confusion matrices in Table 6.9, Table 6.10, and Table 6.11 shows the

classification performance of all the networks concerning to the defined architecture
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and hyperparameters. When the classification accuracies are examined, it can be seen

that ConvLSTM NN performs better than the other networks and gives an average of

89.3% success rate considering all activities. Figure 6.7 presents illustrative accuracy

performance comparison for all three networks. Here, general performance of the

networks for all activities is given.

Figure 6.7 Performance comparison of neural networks in term of accuracy for basic activities

6.2.4 Performance Analysis of ConvLSTM NN During A Sequential Daily Activity

To analyze neural network response during sequential daily activities, test data was

collected and recorded. The subject has performed in order of sit down ­ stand up

(SS), walking on the ground (WG), ascending stairs (ASC), running (RN), and cleaning

table (CT) activities during an average of 20­seconds. Recorded data were fed into

ConvLSTM NN. Figure 6.8 presents the predicted classes of neural network and target

classes.
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Figure 6.8 Response of ConvLSTM NN during sequential performed daily activities

The results show that neural networks may exhibit momentarily unexpected

responses during the transition from one activity to another activity. As can be seen in

Figure 6.8, neural networks misclassify at two transition points between classes. The

first error occurred at the time of transition from WG to ASC and the second error

occurred at the time of transition from ASC to RN. It has been interpreted that the

reason for these errors is that the data belonging to both class types form the relevant

frame. On the other hand, RN class errors are mistakes that occur in the performance

of neural networks.
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CHAPTER SEVEN

ACTIVITY RECOGNITION USING DIFFERENT SENSOR MODALITIES

AND DEEP LEARNING NEURAL NETWORKS

In Chapter 5, activity recognition performance of deep learning neural networks was

examined for different sensor inputs. For this purpose; an IMU sensor for each leg and

a smart insole for each foot were used in experiments. With these sensors placed on

the human body, subjects performed gait­based activities including ascending stairs and

running. Obtained data has been categorized into three parts including only IMU sensor

data, only smart insole data, and a combination of these sensor data. Each category

was fed into ConvLSTM NN to compare network performances for different sensor

modalities.

7.1 Method

In this study, totally four slave devices consist of two smart insoles and two IMU

sensors introduced in Chapter 3 were used. As seen from Figure 7.1, smart insoles were

placed on the shoe sole of each foot and IMU sensors were attached to the thigh part

of each leg. The sampling frequency of all devices was configured as 40Hz.

Force­sensitive resistors used in smart insole design are a type of sensor that

measures applied force based on physical pressure. These sensors have significant

advantages including low cost, simple use, and thin surface. They can measure

weight between 0.01kg to 10kg. However, applied force during performed activities

may cause saturation. To overcome this challenge, FSR outputs were converted into

foot contact states as “0” or “1” by using a threshold value. In other words, weight

measurements were accepted as “No contact” when is less than a threshold value,

otherwise accepted as “Contacted”. There are many similar types of FSRs that have

different­size surface areas. We have preferred using circular and small­size FSRs for

toe, LF, and MF areas while square and wider­size FSR is used for heel area in our

insole design. These sensors have the same specifications except for size.
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Figure 7.1 Placement of IMU sensors and smart insoles on the human body (Personal archive, 2021)

Total 40 healthy volunteers (30 males and 10 females) with age ranging from 20 to

32 (mean 26.4), height 163­195 cm (mean 178) and weight 50­103 kg (mean 78). Each

user was informed about aim of the study and was requested to realize gait­based eight

different activities given in Table 7.1.

Table 7.1 Performed gait­based activities

Type Abbreviation

Activities

Walking on flat ground WG
Walking uphill WU
Walking downhill WD
Ascending stairs ASC
Descending stairs DES
Running RN
Jumping JP
Sit down / Stand up SS

For each subject, total 40­minutes of data were recorded for eight different activities

by collecting 5minutes of data per activity. Accelerometer outputs are noisy. Amoving
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average filter was used to cancel out it. The data values of 3­axis accelerometer and

3­axis gyroscope outputs, and also foot contact states was not at the same range. To

uniform data range, min­max normalization was separately applied for each feature of

accelerometer and gyroscope. This is important during neural network training and

testing to eliminate the dominant characteristics of large values over small values.

All recorded data from all volunteers was divided into frames using 1.5sec non­

overlapping window sizes due to average cycle duration of activities. 8000 frames for

each activity and total 64000 frames were obtained. Then, frames are divided into two

sections as 70% training and 30% test. In other words, the data of 28 volunteers were

used for training and the data of 12 volunteers were used for test processes.

Processed data was separated into three categories as only foot contact state,

accelerometer and gyroscope outputs, and the combination of all data due to feature

type. Each category fed into ConvLSTM NN, respectively. A comparison of network

performances was done in terms of precision, recall, f­score, and accuracy for

different input set.

The most popular deep learning neural network types are convolutional neural

networks and long­short term memory neural networks. However, ConvLSTM NN

has presented superior performance compared to these two neural networks in both

the study performed in Chapter 4 and many studies in the literature (Ordóñez &

Roggen, 2016; Wan et al., 2020). Therefore, we have used the hybrid model

ConvLSTM NN. All hyperparameters were adjusted to have the best performance for

each input category by fine­tuning.

All data processes and deep learning applications were conducted in MATLAB

2020a. To speed up the process duration, we have used GPU. Its specifications are

NVIDIA RTX 2070 model, 8GB memory capacity and 14Gbps memory speed.
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7.2 Results

In this study, a wireless sensor network was established with smart insoles and

wearable IMU sensors. From 40­healthy people, datasets were collected and recorded

from sensors placed sole of each foot and thigh part of each leg during eight basic

activities including walking on flat ground, walking uphill, walking downhill,

ascending stairs, descending stairs, running, jumping, and sit down/stand up. The

obtained data sets were converted into foot contact state, acceleration, and angular

rate. Figure 7.2, Figure 7.3, and Figure 7.4 illustrate a part of activity signals which

are obtained from IMU sensor of left leg and FSRs of left foot during walking on flat

ground.

Figure 7.2 A part of acceleration data collected from thigh part of left leg during walking

Datasets were divided into three categories. The first category is based on only

smart insole outputs, the second category is based on only IMU sensor outputs, and

the third category is based on a combination of all sensor outputs. Each category was

divided into 70% training and 30% test. The dataset that belongs to each category was

fed into ConvLSTMNN to examine and compare the activity recognition performance.

To have the best results, hyperparameters were determined by fine­tuning. The values

of some hyperparameters that belong to architecture are given in Table 7.2.
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Figure 7.3 A part of gyroscope data collected from thigh part of left leg during walking

Figure 7.4 A part of foot contact states collected from sole of left foot during walking

The recognition performance of the neural networks for each category were

presented in Table 7.3, Table 7.4, and Table 7.5. The results show that the neural

network has the best performance for each activity when the input set is third

category, which consists of combination of both IMU sensor and smart insole outputs.

The sit­down/stand­up activity has the highest rate for each neural network in terms

of precision and recall. The average accuracy of neural networks is 90.1%, 88.6%,

and 93.4% for categories, respectively. Moreover, ConvLSTM NN with foot contact

state input set offers better performance around 1.5% than ConvLSTM NN with IMU
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Table 7.2 The values of some hyperparameters used in neural networks

Hyperparameter FCS AG All data
Number of Convolutional layers 2 96­64 3x3
Number of Kernel filters in CNN 2 128­64 3x3
Number of Kernel filters in CNN 3 128­96­64 2x2
Kernel sizes in CNN 2 96­64 3x3
Filter sizes in pooling layers 2 128­64 3x3
Number of Pooling Layers 3 128­96­64 2x2
Number of LSTM Layers 2 128­64 3x3
Number of FC Layers 3 128­96­64 2x2

sensor dataset.

Table 7.3 The classification performance of ConvLSTM NN when input set is only foot contact states

Target Class
WG WU WD ASC DES RN JP SS Precision

Predicted
Class

WG 86.4% 4.5% 2.9% 2.8% 3.3% 1.3% 0.9% 0.6% 84.1%
WU 4.6% 85.4% 4.6% 2.9% 2.8% 1.8% 0.6% 0.4% 82.8%
WD 3.7% 2.9% 87.4% 4.1% 3.2% 1.7% 1.2% 1.3% 82.8%
ASC 2.9% 3.6% 2.1% 85.0% 4.2% 2.2% 1.0% 1.3% 83.1%
DES 2.2% 3.2% 2.5% 4.7% 85.8% 2.1% 0.2% 1.2% 84.2%
RN 0.2% 0.3% 0.2% 0.1% 0.5% 90.5% 1.9% 0.5% 96.1%
JP 0.0% 0.1% 0.2% 0.0% 0.0% 0.3% 93.0% 1.2% 98.1%
SS 0.0% 0.0% 0.1% 0.4% 0.2% 0.1% 1.2% 93.5% 97.9%

Recall 86.4% 85.4% 87.4% 85.0% 85.8% 90.5% 93.0% 93.5%

Table 7.4 The classification performance of ConvLSTM NN when input set is accelerometer and
gyroscope outputs

Target Class
WG WU WD ASC DES RN JP SS Precision

Predicted
Class

WG 88.5% 1.9% 1.8% 2.6% 2.9% 1.1% 1.0% 0.4% 88.3%
WU 2.3% 89.2% 2.5% 2.9% 2.2% 0.9% 1.3% 0.2% 88.3%
WD 2.5% 2.2% 88.3% 1.5% 2.7% 0.9% 1.4% 1.5% 87.4%
ASC 2.2% 2.8% 3.1% 85.6% 3.3% 0.7% 1.4% 0.8% 85.7%
DES 2.8% 1.5% 2.1% 6.7% 87.9% 0.9% 0.2% 0.2% 85.9%
RN 1.3% 1.3% 0.9% 0.3% 0.4% 93.4% 1.9% 1.7% 92.3%
JP 0.4% 0.5% 0.7% 0.4% 0.3% 0.8% 92.3% 0.5% 96.2%
SS 0.0% 0.6% 0.6% 0.0% 0.3% 1.3% 0.5% 94.7% 96.6%

Recall 88.5% 89.2% 88.3% 85.6% 87.9% 93.4% 92.3% 94.7%

Table 7.6 shows Fscore values of neural networks for each category. Combination

of all dataset has better performance in terms of Fscore with 0.958 than other two

categories.
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Table 7.5 The classification performance of ConvLSTM NN when input set is combination of all data

Target Class
WG WU WD ASC DES RN JP SS Precision

Predicted
Class

WG 93.0% 0.9% 2.3% 1.0% 2.3% 0.2% 0.9% 0.1% 92.4%
WU 1.3% 94.2% 1.9% 3.1% 1.7% 0.9% 1.2% 0.4% 90.0%
WD 1.4% 0.7% 92.3% 2.7% 2.4% 1.0% 1.1% 1.1% 92.7%
ASC 1.7% 2.8% 2.7% 91.4% 2.6% 1.4% 1.3% 0.2% 87.8%
DES 1.8% 0.7% 0.3% 0.8% 89.1% 1.1% 0.4% 0.5% 94.1%
RN 0.5% 0.3% 0.1% 0.2% 0.5% 95.0% 0.5% 0.5% 97.3%
JP 0.3% 0.1% 0.3% 0.6% 0.7% 0.2% 94.0% 0.2% 97.5%
SS 0.0% 0.3% 0.1% 0.2% 0.7% 0.2% 0.6% 97.0% 97.9%

Recall 93.0% 94.2% 92.3% 91.4% 89.1% 95.0% 94.0% 97.0%

Table 7.6 Fscore comparison of neural network performances for each input category

FCS AG All data
F­score 0.947 0.939 0.958
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CHAPTER EIGHT

CONCLUSION

8.1 Conclusion and Future Works

In this study, we have focused on the design of various wearable systems for motion

analysis and their applications. The wearable systems consist of the smart garment,

wireless IMU sensors and smart insoles. Applications are joint angle prediction for

gait analysis and activity recognition.

Firstly, a smart garment for gait analysis has been presented. This garment was

designed as similar as possible to conventional textile clothing to provide washability

and maximum comfort to user. These features make the garment feasible for collecting

relevant joint angles in daily activities and outdoor conditions. Wearing the garment is

quite easy and there is no need any preparation time. Furthermore, presented garment

is low­cost and suitable for mass production. The results demonstrated that the present

system can be used to collect knee and ankle joint angles during walking on the ground

and sit­down/stand­up activities.

Secondly, wearable wireless IMU sensors were designed to increase comfort and

portability, and also reduce the duration of the data collection process. The designed

monitoring system has superior advantages such as being low­cost, lightweight, and

easy placement on various points of the human body. The sensors were placed on

different body parts of the human body including the shoulder, chest, leg, and arm to

find optimal sensor location for activity recognition. The results show that obtained

sensor outputs from the immobile position, namely chest, presented the best

performance for the neural network. Moreover, sensor outputs obtained arm part has

affected network performance adversely for gait­based activities even if all outputs

were combined.

Thirdly, activity recognition performance of various deep learning neural networks

including CNN, LSTM, and ConvLSTM NN was examined for thirteen activities
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including writing on a paper, hand­washing, and walking. Activities were categorized

as basic, complex, and all. These categories were fed into three neural network types.

The results show that ConvLSTM NN has presented the best results for each

category. We can make a comment that a hybrid algorithm that combines CNN and

LSTM NN outperforms with respect to the activity recognition results than others.

Moreover, the results presented that basic activities consist of gait­based motions are

more recognizable with available sensor positions for neural networks.

Finally, we have designed a wireless smart insole. It is a low­cost, lightweight, and

compact solution. Our design has no visible wire. Moreover, it provides walking

comfort with memory foam soles for users. A smart insole was placed on the sole of

each foot and an IMU sensor was attached to each leg. We have collected the data for

basic activities. These inputs were separately fed into ConvLSTM NN. The results

have shown that provided data by smart insole and provided data by IMU sensors

offer similar results. Considering the easier use and performance of the designed

smart insole, it is seen that it may be sufficient for gait­based activities. Moreover,

increasing the data feature by combining these sensor outputs has improved the

results.

As a future work, we are planning to make a study about sport activity recognition

such as playing football, basketball, tennis, etc. using different sensor modalities and

deep learning. Moreover, a public benchmark dataset by expanding available dataset

in respect to activity types and sample size can be presented.
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