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ABSTRACT

The prepared thesis is composed of a numerical simulation of a two-dimensional
circular reflector antenna system by method of moments that defines the solution of
the scattering problem of a two-dimensional reflector antenna system, which is
designed by using a perfect conductor whose thickness is neglected. We have used
the Method of Moments by discretisizing the integral equations. We do this by
choosing the proper basis and testing functions for both E and H polarizations. By
using complex source method (Oguzer, 1995), we have obtained accurate simulation
for this system investigated. The method is computed by the help of two boundary
conditions, namely the total tangential electric field on the metallic surface vanishes
and the value of the current tends to be zero on the slot part of the system.

Although in the early times, this method has been used for the problems in small
size of geometries in the literature, we had a chance to solve even more larger
geometries with the same method such as we take 15 times the wavelength and
obtained acceptable approximations regularized for both E and H polarizations. The
main advantage of this method is that it has provided us to obtain feasible results by
converting the problem into a set of matrix equations instead of solving high-order
integral equations.



OZET

Hazirlamus oldugumuz tez, kalinh@: ihmal edilmis bir milkkemmel iletkenden
olusan iki boyutlu dairesel yansitici anten sistemini tamimlayan ve Moment
Metodunu kullanan numerik bir ¢6ziimden olugmaktadir. Her iki polarizasyonda (E
ve H Polarizasyonlari) elde etmis oldufumuz integral denklemlerini Moment
Metodunu kullanmak suretiyle uygun secilmis baz fonksiyonlar: ile genigletip, test
fonksiyonlar1 yardimiyla bilinmeyen indiiksiyon akimin: elde ettik. Karmagik kaynak
metodunun (Oguzer, 1995) Moment methodu ile entegre edilmesi gergek ¢oziime
daha yakin sonuglar edinmemizi sagladi. Temelde metal ve slot adimt verdigimiz iki
boliimden olugan sistemimizde Moment Metodunu isletirken simir sartlan olarak
metal yiizey tizerindeki toplam tegetsel elektrik alanin ve slot kisimdaki akimm sifir
olmas1 durumlarim kullandik.

Moment metodu, daha Once de literatiirde kiiglik Olgiide geometriler igin
kullanilmig olsa da biz aym metodu Karmagik Kaynak Methodu ile birlikte
uygulayarak daha bilyikk geometrilerde dahi makul sonuclar elde etme firsatim
bulduk. Kullanmig oldufumuz yontemin avantaji ise yliksek dereceli integral
denklemleri ¢6zmek yerine problemi matris denklem setine doniigtiirerek gergege
yakin sonuglar elde etmemizi saglamis olmasidir.
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CHAPTER ONE
INTRODUCTION

Antennas can be broadly classified according to their function as transmitting
antennas, and as receiving antennas. Although the requirements, or mode of
operation, are markedly different, a single antenna is used for transmitting and
receiving signals simultaneously. Many of the properties of an antenna, such as its
directional characteristics, apply equally to both modes of operation, this being a
result of the reciprocity theorem.

1.1 Reciprocity Theorem

Reciprocity is an antenna's ability to transfer energy from the atmosphere to its
receiver with the same efficiency with which it transfers energy from the transmitter
into the atmosphere. Antennas form the link between transmitting and receiving
equipment and the space propagation path.

A number of important consequences result from the reciprocity theorem. All
practical antennas have directional patterns, that is they transmit more energy in
some directions than others, and they receive more energy when pointing in some
directions than others. The reciprocity theorem requires that the directional pattern
for an antenna operating in the transmit mode is the same as that when operating in
the receiving mode. Also there's another requirement for the reciprocity theorem is

that the antenna impedance should be the same for both modes of operation.

1.2 Application Areas of Reflector Antennas

Reflectors antennas are widely used in satellite communication systems to
enhance the gain of the antennas. The reflector provides a focusing mechanism
which concentrates the energy in a given direction. The most commonly used form
of reflector has a circular aperture.



1.2.1 System Requirements

Reflector antennas should have the following requirements in order to operate
efficiently:

- high directivity: for a reflector antenna to be highly directive, it must change the
normally spherical wavefront into a plane wavefront. Many highly directive
microwave antennas produce a plane wavefront by using a reflector to focus the
radiated energy.

- low side-lobe levels: side-lobes present the undesired radiation regions in the
radiation pattern and their is low for properly designed reflector antennas systems.

- minimum propagation losses: Losses in the antenna will reduce the power
available for the feeder. Receiver feeder losses will further reduce the power, so that
the received power amount reaching the receiver is less than that received by the
antenna. However, it can be said to be an advantage, that is, the atmospheric

propagation losses are minimum for the reflector antennas.

1.2.2 Fiber Optic Systems versus Reflector Antennas

There is another type of communication system which is developing rapidly
within the technology, namely fiber optic systems. The operating principle of this
new system is not so difficult to understand. At the sending end there is a transmitter
that serves as the origin for information being sent into the fiber line. The transmitter
converts electronic signals from copper wire into corresponding light signals and
passes them through the fiber cable. From there, the light conforms to the law of
internal reflection, where the light exceeds the critical angle of incidence, it cannot
escape the glass tube and is reflected down the core of the tube. On the receiving end
of the transmission, there is a receiver that converts light back into electronic signals
interpreted by the computer.

This type of systems introduces some advantages like they have:
- no electromagnetic interference

- wide bandwidth

- low loss which allows long links without repeater



- Resistance to noise as the transmission uses light rather than an electrical signal,
outside noise does not effect the signal

- Security as no other communication link can be connected to it externally

Against all these advantages, reflector antenna systems also have acceptable
advantages over fiber optics such as:

- low attenuation losses

- low cost of installation and maintenance

- easier to build

- not fragile

- ability to satisfy the most advantages of fiber optics by the proper design

Overall these advantages of both systems, it can be seen that although fiber optics
is a newer and reliable system with respect to the latter, reflector antenna systems

still have better specifications compared to fiber optics.

1.3 Parabolic Reflector Antennas

The most widely used reflector antenna systems are the ones that uses parabolic
reflectors. This is the type seen in many home installations for the reception of TV
signals. The term parabolic comes from which the circular aperture configuration is

referred to as a paraboloidal reflector.

The main property of the paraboloidal reflector is its focusing property, normally
associated with light, where parallel rays illuminating the reflector converge on a
single point known as the focus, and conversely, rays originating at the focus are
reflected as a parallel beam of light.

Light is a particular example of an electromagnetic wave, and the same properties
apply to electromagnetic waves in general. The geometric properties of the
paraboloidal reflector of interest are most easily demonstrated by means of the
parabola, which is the curve traced by the reflector on any plane normal to the
aperture plane. With reflector-type antennas, the feeder connecting the feed horn to

the transmit/receive equipment must be kept as short as possible to minimize losses.



This is particularly important with large earth stations where the transmit power is

large and very low receiver noise is required.

In order to meet the proper requirements, parabolic reflector antennas should have
some specifications including the requirements for the reflector antennas, these are:

- high gain: parabolic reflectors enhance the gain of the antenna, that is the
measure of how much power in dB an antenna will radiate in a certain direction with
respect to that which would be radiated by a reference antenna such as an isotropic
dipole.

- narrow beamwidth: Beamwidth is the angular separation between the half-power
points on an antenna's radiation pattern which is the diagram indicating the intensity
of radiation from a transmitting antenna or the response of a receiving antenna as a

function of direction. It shows how the gain of an antenna varies with direction.

1.4 Two-Dimensional Reflector Antennas and their simulation techniques

2D reflector antennas are one type of reflector antennas whose length is too long
in one dimension and therefore beamwidth belong to that dimension is narrower than
the other dimension’s beamwidth so these kinds of reflector antennas are used for
navigation and scanning purposes. Mostly known example for its usage is in
transponders used for aircrafts which determine the position of the vehicle (plane in
this case). It’s also used in GPS (Global Positioning System) works for military and
civillian applications especially manipulated by the U.S.A.

Conditions for two dimensional curved structures can also simulate a two
dimensional reflector antenna system with its directive feeder. One of the widely
used technique for this solution is high frequency ray approaches like Physical and
Geometrical theory of diffraction. On the other hand, one of the earliest study by
MoM is performed in (Hansen, 1960) and solved moderate size geometries by using
different approaches in literature. Moreover, an approximate solution is also
presented for E-polarized wave about the scattering problem from a concentrially
loaded slit cylinder (Mohammadian,1976). Later, a very stable MoM solution even
for a narrow slit cases is formulated (Mautz et al., 1988-1989). Although this is



performed for both polarizations and only for small and medium size geometries, it is

also valid for cavity resonances with a high Q factor.

In addition to that, the same problem of the curved and PEC (Perfect Electrical
Conductor) strip scattering, is also studied by method of regularization and especially
semi-inversion by using Riemann-Hillbert Technique is used (Hashimoto, 1963),
(Nosich, 1999). The circularly curved 2D surface illuminated by a directive feed
antenna can also simulate the 2D reflector antenna system. Moreover, an accurate
simulation of this kind of 2D antenna system is also performed (Oguzer, 1995).
Although this solution is needed some special functions like Legendre polynomials
and special defined functions, it finally gives very accurate reference data.

An approximate solution is needed for this kind of 2D reflector antenna systems.
A popular alternative for this is the Method of Moments (Harrington et al., 1967-
1968). In this method, the integral equation is derived from boundary conditions and
then it is discretized by using basis functions and tested by the same type of functions
to reduce error in residue in the light of Galerkin’s procedure. Finally, it is reduced to
an algebraic matrix equation and solved numerically. This gives the approximate

surface current density.

1.5 Aim of this work

Aim of this thesis is to find the unknown induced current and electric field of 2D
scatter antenna system which is made of perfect electrical conductor whose thickness
is neglected. We defined the problem in the matrix form and use the uniqueness
theorem on the boundary conditions by specifying tangential components of the
electric field over the surface of the antenna. Also we have modelled the parabolic
reflector antenna as a circular reflector since it is valid when we take the edge angle
so small. Moreover, to get more realistic results, we have used “Complex Source
Method” (Oguzer, 1995) for the line source used in the given problem. As a
summary we’ve used the Method of Moments (MoM) by discretisizing the integral
equations and convert them to a set of equations which can be solved numerically,

namely matrix equations. Furthermore, this kind of combination is not presented in



literature before and we have a chance to check for appropriate results with exact
reference data (Oguzer, 1995).

The following is the brief explanation about what has been mentioned in next

chapters:

In Chapter 2, the derivation of the integral equations for both (E and H)
polarizations are explained, starting with definition of the Maxwell’s Equations,
Uniqueness Theorem, Dirichlett (for E Polarization) and Neumann (for H
Polarization) Boundary conditions and then as a result, obtaining the two integral

equations, denoted as follows:

fFemee(r- ;.’")d,'= _E (for E Polarization) (1.1)
M

621,1 . _Ean_ JTM (;.)Z_;;Tdr. (for H Polarization) (12)
where G° = ——i—.H % (k'; - ;']) (1.3)

The Method of Moments (MoM) is explained in Chapter 3 basically. In Chapter 4,
the formulation of the problem solved with the MoM is defined. The numerical
results obtained by using the specified method is shown in Chapter 5 with detailed
explanations. After all, the aim of preparing this thesis and the comments are

explained as a conclusion in Chapter 6.



CHAPTER TWO
DERIVATION OF THE INTEGRAL EQUATIONS

FOR BOTH POLARIZATIONS

2.1 Maxwell’s Equations

We already know that if a quantity have magnitude and direction, it is said to be a
vector quantity. Generally, electric and magnetic fields are also vector quantities that
all their relations and variations, including currents are manipulated by physical laws
which are called Maxwell’s equations. These equations can be written either in
differential or integral form. Before denoting the Maxwell’s equations, the following

four quantities have to be known:

E =Electric field intensity (volts/meter)
H =Magnetic field intensity (amperes/meter)

D =Electric flux density (coulombs/meter square)

!
Il

Magnetic flux density (webers/meter square)

i

= Current density (amperes/meter square)

; = Charge density (coulomb/meter cube)

=+ _ BB(r)
Vx E(r) = P 2.1)
Vx H(r) = ag ) +J(r) 2.2)
Ve D(r) = p(r) 2.3)
VeB(r)=0 2.4

Note that all the quantities with an arrow are vector quantities.
pear g
oo
9



For sinusoidal time depencence:
0 . .2 . .
— — jw where j° =-1 and w is a real variable.

Applying this conversion, we can obtain the Maxwell’s equations for time
harmonic fields:

Vx E(t) =- jwB(r) 2.5)
Vx H(r) = jwD(r) + J (r) 2.6)
Ve D(r) = p(r) Q2.7
VeB(r)=0 (2.8)

Additionally, there’s one more equation which is called continuity equation in
time harmonic fields, that is:

Vx J(r) = —jwp(r) 2.9)
where J (;) is known as the distribution of the electric current density.

There are also integral forms of Maxwell’s equations, denoted as:

ﬁ rj 0B(r) o35 (2.10)
q’ﬁ odl = cj[aD(’)+.7(r’)]-as @.11)
@-ds_cﬁvoav 2.12)
Beds=0 (2.13)
Iz

s

10



2.2 Boundary Conditions

Along boundaries where the media involved exhibit discontinuities in electrical
properties, or there exist sources along these boundaries, the tangential Electric field
vectors are continuous and the tangential magnetic field vectors are discontinuous.

These behaviors across the boundaries are governed by boundary conditions.

At points of discontinuity, the behaviour of the field vectors across discontinuous
boundaries must be handled by examining the field vectors themselves. The
dependence of the field vectors on the electrical properties of the media along
boundaries of discontinuity is always manifested. Maxwell's equations in integral
form provide the most convenient formulation for derivation of the boundary

conditions.

2.3 Uniqueness Theorem and Edge Condition

There are four main statements that are explained in brief as follows:
i) nx(E2-E1)=0 (2.14)

The expression above states that the tangential components of the electric field
across an interface between two media with no impressed magnetic current densities

along the boundary of the interface are continuous.
ii) nx(H2—H1)=0 2.15)

Our second statement shows that the tangential components of the magnetic field
across an interface between two media, neither of which is a perfect conductor, are

continuous.

11



iii) ne(Dz2—D1)=0 (2.16)

The third statement above express that the normal components of the electric flux
density across an interface between two media, both of which are inperfect electric
conductors and where there are no sources are continuous, and this relation also

holds if either or both media possess finite conductivity.
iv) ne(B: - B1)=0 @2.17)

This expression states that the normal components of the magnetic flux density

across an interface between two media where there are no sources, are continuous.

Uniqueness theorem states that if a field is created by two sources namely J; and

M; in a lossy region, is unique if one of the following criterias are specified:

a) within the region if the tangential components of the electric field,
b) within the region if the tangential components magnetic field,
c) the former over part of the boundary and latter over the rest of the boundary.

As the dissipation approaches zero, the field can be considered as the limit of the
corresponding fields in that lossy medium. Therefore we use the uniqueness theorem
on the boundary conditions by specifying tangential components of Electric field

over the surface of the antenna.

In order to obtain a unique solution, the Helmholtz’ equation has to be satisfied in

every point for the field Z(E, ﬁ) )

Vg+k’p=p (where ¢ is the vector field) (2.18)

12



There are three important cases which satisfies unique solution of J(E, J_Li) :

i) nxE is specified on the surface S.
ii) nx H is specified on the surface S.

iii) nxE is specified on a part of the surface and nxH is specified on the rest of
the surface S.

Clearly, in a problem that is composed of a two dimensional geometry with a
smooth and closed surface but has a wedge type singular point, based on a
differential equation, uniqueness might not obtain unless an additional requirement
involving the region is included (Ziolkowski, 1987). We can show that the edge

condition provides this requirement by using two discrete vector fields, denoted as
(Z; and Z; , respectively. These both solutions satisfy the Helmholtz’ equation which

is:
Vg, +k’p, =p (2.19)

We have assumed that the source ; generate an incident plane wave ¢,

-

Bouwkamp has remarked that %2— is an acceptable solution for the problem. By

Z

using this remark, we can obviously write the Helmholz’ equation as follows:

v2 902 1299, _Op (2.20)
0z 0z Oz

This means that the original incidence wave has been replaced by —jke?

-

Therefore %2— and 2151 are solutions of the same problem, and they could coincide if

uniqueness were to hold under the stated boundary conditions.

13



In order to show that enforcing edge condition removes this coincidence, we
assume two solutions exist for the problem of interest, can be choosen namely Za
and 3,, ,and Z= Za —Zb resolves that Vza =0 on the surface S. Additionally 5 is
also equals to zero on the closed contour (path) of the problem. This comes from
applying Green’s first theorem to 3 However, it can be only applied to a region

where Z has no singularity, and the remedy is to close the contour C with a small

circle C' where it is centered on the edge with a radius r.
S 2 55
[[#v?6+|gradd| yas = fo=Lac @.21)
S C

If we take the limit of the right side of the equation multiplied by the radius r,

while r is approaching to zero, we will see that 3 has to be proportional to r'sin(ve)
where v>0.5 in order to make it equal to zero. By this way we can obtain a unique
solution. That is the effect of the edge condition to the uniqueness.

As a result we can see that the in order to obtain uniqueness, the field has to be
proportional with the edge parameters.

2.4 Obtaining the two integral equations: EFIE for both polarizations

In this section, derivation of the E-Field Integral Equation (EFIE) for E and H
polarizations are explained in detail. In order to start the derivation of the EFIE for
the E-Polarization, we need to use the boundary condition for the metal part of the

system, as follows:
Fon+FEmm =0 2.22)
therefore
Fon=—FEum (2.23)

14



We use the following equation which stands for the scattered E-field as the first
step.

E¥ =) A H? (kp)e™® (2.24)

By applying the following rule to the above equation,

VA +k*A =-uJ (2.25)
V2E. +k*E. =—(—jwp)d > (') (2.26)
v? +k2)g(|?—;'|) =L (-1 2.27)

where A is the auxiliary vector potential, and k¥ =. us , namely the wave

number.

e~ =L HO W -7, 228)

Here, H®is the second order Hankel function, and ¢(r-r')is the impulse

function. I; - ;'I can also be denoted as R in equation (2.28).

As the second step, we define the line source incident field (2.29) and use the
equation (2.30) which stands for the relation between the scattered E field and the

incident current in the z direction,

g7 =~ E2 g @ - (2.29)
E = jwp[e(r -7)J< () =—E"  (where C: contour) (2.30)
C

15



Since E¥ =—E!

[H® (kl? - ?")7“ (')dr'=—-E" (2.31)

C

[HE ®o - oI (ohdp'=-HP o - 5, 232)
C

Therefore we obtain the following EFIE for E-Polarization case.
K [J" GG, r)dr'=-E" (2.33)
C .

where K is assumed as “1”.

For the derivation of the EFIE for H-Polarization case, we use the following

integral equation:

A= [J(G(r,r)dr (2.34)
C

If we substitude the above integral to the following equality, we get:

H=VxA4 (2.35)
=Vx J’3¢ G, r)dr' (2.36)
C
= [Vx(J 4G, (237)
C

for simplicity we will use single G instead of G(;,;') in the remaining

calculations, and we can rewrite the inside of the integral as follows:

GV x J+VGx J 4 (2.38)

16



Since VxJ =0 our equation becomes the following;:
H.= [vGxJpdr (2.39)
C

H: = £I¢(?')(%)dr' (2.40)

—_—

Since E;c is equal to —%z—, we substitude the equation of H. into this

equality, we can get the following equation for E;c as follows:
s 0 - 0G
Esy =—— |Js(r)Y—dr' 241
s 6rcﬂ( )5 (241)

As we stated in the previous derivation which is for the EFIE, the boundary

condition that we have used was —L:;c + E: =0, therefore the following equation is

obtained, namely the EIFE for H-Polarization:

—in

oH: 8 ~ ~.0G

SO 9 GinEg 2.42
o org Ay (2:42)
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CHAPTER THREE
METHOD OF MOMENTS

The method of moments (MoM) is used to solve the EFIE for the unknown
currents on the surfaces of the radiating elements. The Method of Moments (MoM)
technique especially applies to electromagnetic radiation and scattering problems
(Harrington et al., 1967-1968). MoM has been applied since 1960’s, to virtually
every area of electromagnetics including radiation and/or scattering by perfectly
conducting and material bodies, such as thin wire antennas, aperture penetration,
printed circuit structures, etc. (Hansen, 1960). In electromagnetics a moment method
solution usually refers to a problem in which the MoM is used to solve a linear
integral equation for a current distribution representing a body. There are basically
two steps to follow in order to solve the problem with this method. The first step is to
derive and obtain the referred integral equation, generally as a statement of the
boundary conditions of the problem, or as a statement of the equivalence theorems
used. The second step is to solve the integral equation that has been obtained, by the
MoM. To be more clear, we can say that, the unknown current is expanded in terms
of an appropriate set of basis functions, If N terms are retained in the expansion for
the current, then there will be N number of weighted averages of the integral
equations are enforced. By this time MoM is used to transform the integral equations
into an order of N matrix for the N coefficients in the expansion of current. Once
these coefficients are found, it means that the current will be also known which
provides us to find most of the parameters of interest such as input impedance,
radiation pattern in a straightforward manner (Newman, 1991). In the MoM
technique, the Electric Field Integral Equation (EFIE) is typically used to
mathematically define the problem and is solved for the surface currents generated
on the objects of interest. These currents can then be used in radiation integrals to
calculate the fields scattered by the objects.



3.1 Definition of the moment

For a given antenna structure the conductors can be broken into "segments", and
the currents on the segments can then be determined. The "moment" is numerically
the size of the current times the vector describing the little segment (length and
orientation). One of them matches the currents at the ends of the segments. A set of
"basis functions" may be assumed into which the current distributions are

decomposed.

3.2 Method of Moments Procedure and Green’s function

The "method of moments" starts from deriving the currents on each segment by
using a coupling Green's function. This Green's function incorporates electrostatic
coupling between the moments. If the spatial change of the currents is known
accurately then one can compute the build up of charges at points on the structure.

There is some debate as to whether the electrostatic coupling is as accurately
calculated as is the direct current coupling; and it is usual to approximate antennas
having area by wire grid approximations, which also have to be chosen extremely
carefully. As one always is presented with a computed result for a simulation, even if
the model is in error, one can see that replacement of areas of metal by wire grids
requires physical insight into the processes involved, rather than blind application of
an algorithm.

The CPU time to set up and store the MoM matrix equation is proportional to N2
while its time to solve the MoM matrix equation is proportional to N°. As an
example, in one of our solution which is for the N=250 case, the computer needed
time to solve for the unknown current was about 62 hours where it needs only about
10 hours to solve for N=150. This obviously shows that the defined proportionality is
valid. The current distribution may then be integrated to find the total far field
(Newman, 1991).

Green's function is a kind of three dimensional version of the impulse response
function familiar in linear electronic circuit analysis. One sets up a structure for the
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space under consideration, specifying where the excitations can be and what the
boundary conditions are. One then excites the structure with a single little region of
excitation, with all the other possible excitations set to zero. The Green's function is
the response of all the other regions in the problem to this excitation. Since the
system is assumed linear, the principle of superposition applies and the total response
to an arbitrary set of excitations can be obtained for the problem by direct summation

or integration over all the excitations.

3.3 Application areas

The Method of Moments (MoM) has been in use for many years for a wide
variety of applications. It is very commonly used to analyze antenna structures and a
number of different applications. It continues to be very popular, probably the most
popular modeling technique used in electromagnetics.

The MoM technique is a frequency domain technique. It will only analyze a single
frequency at a time, although most popular software codes allow the solution to

iterate over a number of frequencies.

In the technique of Method of Moments used for thin-wire structures for example,
the object is modelled as a structure of wires of differing radii. Conducting surfaces
are modelled as a grid of wires. The radius must be such that the total surface area of
the wires is the same as the total surface area of the true structure. Assumptions are
made about the form the currents take on each wire which might be, for example, a
polynomial with several unknown coefficients. In order to avoid ambiguity, the
length of each wire must be restricted to less than 0.25 wavelengths. In practise, this
length should be less than 0.1 wavelength. The solution for the coefficients on each
wire is the core of the technique. Since a matrix inversion is required to obtain all the
unknown coefficients, the maximum permissible number of segments of about 10000
is about the limit. This method has been used widely for HF antennas on aircraft,

antenna farms on ships, tanks and many other vehicles.



3.4 Working principle

The MoM technique requires that the entire structure to be modelled, be broken
down into wires and/or metal plates. Each wire is subdivided to a number of wire
segments which must be small compared to the frequency‘s wavelength (so that the
assumption of a constant value of current across that wire segment is valid). Each
metal plate is subdivided into a number of surface patches, which must be small
compared to the wavelength (again so the assumption of constant current is valid).

Once the model is defined, a source is imposed (a plane wave approaching, or a
voltage source on one of the wire segments). The MoM technique is to determine the
current on every wire segment and surface patch due to the source and all the other
currents (or the other wire segments and surface patches). Once these currents are
known, then the E field at any point in space is determined from the sum of all the
contributions from all the wire segments and surface patches.

3.5 Advantages

Every modeling technique has some strengths and some weaknesses. Some types
of models were a given technique will excel and some types of models were the same
technique will have difficulty (if it is even possible to use) performing rapidly and
accurately.

- MoM is a very versatile modeling technique. It is also a very intuitive technique,
so users can easily understand how to use it, and know what to expect from a given
model. Users can picture the RF currents on a structure and understand how they
would lead to a E/H field. A

- MoM models only the metal structure, and not the space around it. Therefore,
long wires are easily modeled using MoM.

- Since MoM is a frequency domain technique, it can solve problems very
quickly, if only one frequency is desired. If multiple frequencies are desired, then the
simulation will take longer, but still solutions are often available is a short amount of

time.
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- MoM allows discrete components to be inserted into a model by simply defining
the impedance desired on any given wire segment. This can be useful when
analyzing the effect of filter location, etc.

- MoM provides high accuracy if the proper considerations taken into account. In

most cases, the MoM is a direct numerical solution of the exact integral equation.

That enables one to inherent all phenomena of the problem in the integral
equation, therefore they are automatically included in the MoM solution. The main
requirement of the MoM that N, the number of terms must be retained in the
expansion for the current in order to obtain high accuracy which is proportional to
the electrical size of the body. If the number of terms arc fixed to a small number

where the size of the system is large, reasonable accuracy cannot be expected.

- MoM is capable of dealing with very complex structures: by using MoM, several
user-oriented computer codes can be written that can treat such complex geometries

as simple as a dipole or as complex as an airplane.

3.6 Disadvantages

Although MoM is very easy to use for wires and metal plates, it is very difficult to
use for dielectric and special magnetic materials.

- Special solution techniques do exist to allow dielectric in a MoM solution, but
these are not widely implemented and care must be taken when they are used.

- MoM assumes the current on a wire segment, or on a surface patch to be the
same throughout the conductor’s depth. Therefore, using MoM to determine the
effect of an aperture with fields both inside and outside is difficuit.

- MoM is a frequency domain technique, therefore, if a wide frequency range is
desired in the solution, the simulation must be run a number of times. If the
frequency step size is not sufficiently small, important effects (e.g. resonance) may
be over looked.

- For the mathematical point of view, MoM does not guarentee convergence and

accuracy, this means, making the number of divisions higher while decreasing the
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decreasing the size of the segments does not mean that the solution will be accurate
or converge.

3.7 Derivation of the method

In general, the MoM is a procedure for solving a linear operator equation by
transforming it into a system of simultaneous linear algebraic equations, commonly
matrix equation. The description that will be given in the following, largely follows
that originally presented in several studies. (Mautz et al., 1988-1989), (Newman,
1991).

The method of moments (MoM) solution procedure was first applied to
electromagnetic scattering problems by Harrington. Consider a linear operator

equation given by
AX =Y 3.1

where A represents the integral operator, Y is the known excitation function and
X is the unknown response function to be determined. Now, let X be represented by
a set of known functions, termed as basis functions or expansion functions (fj, f,

f3,...,) in the domain of A as a linear combination:
N
X= Za,, So(®) (3.2)
n=1

where a,’s are scalar constants to be determined. Substituting eq. (3.2) into eq.
(3.1), and using the linearity of A, we have

ZN:a,,Af,, (x)=Y (3.3)

n=1
where the equality is usually approximate. Let (w;, w2, W3,...) define a set of

testing functions in the range of A. Now, multiplying eq. (3.3) with each w; and
using the linearity property of the inner product, we obtain
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N
> a, <w,, 4f,(x) >=<w,,¥ > (form=1,2,...,N) (34

n=1

The set of linear equations represented by eq. (3.4) may be solved using simple
matrix methods to obtain the unknown coefficients ap.

The simplicity of the method lies in choosing the proper set of expansion and
testing functions to solve the problem at hand. Further, the method provides a most
accurate result if properly applied. While applying the method of moments to
complex practical problems, the solution region, in general, is divided into. Then,
one can define suitable basis and testing functions and develop a general algorithm to
solve the electromagnetic problem.

3.8 Choosing the basis and testing functions

As we stated earlier, selection of the basis and testing functions are very important
for our solution to be accurate and converge. Because improper selections result
singularities especially at the edges of the solutions, this comes from the vanishing of
the inner products of the left-hand-side and the excitation functions and the testing
functions. Therefore, special care must be taken for selecting the proper functions for
the specific problem. There are some several methods which are used depending on

the choice of the testing functions.

In the Point Matching method, Dirac Delta functions are used as testing functions,
denoted as:

wm(x) =;(x—xm) (3°5)
where xp’s are the suitable points between the specified interval, namely the
residual is forced to vanish at N different points in the specified region.

There’s another method that the testing functions are choosen as pulses, denoted

as:
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LXeR,

3.6
0,elsewhere (36)

and force the integral of the residual function to be zero over the different
subdomains of the interval. This method is called the Method of Collocation by

Subdomains.

In the given problem, we’ve used the same equation as basis and testing, which is
called Galerkin’s approach. In our system, the function that has been choosen are
pulse and triangle functions for E and H solutions, respectively.

3.9 Convergence of the MoM

Convergence problem of the MoM is one of the most important questions
concerning this method. The main issue of interest is that does the basis function
modeled for the unknown function really approaches to the exact unknown function
inself as N goes to infinity? Hopelessly, very little can be said about the convergence
of the MoM , in which weighting functions can be chosen differently from the basis
functions, therefore it makes us decide to use Galerkin’s method in our solution.
However, Galerkin’s method also requires that for good convergence, the operator
should be positive. But special attention has to be taken that convergence does not
directly means that the basis function converges to the unknown function. Because,
the choice of the feasible basis functions is very difficult, such as it requires a special
kind of art. Main ways of choosing the basis functions are as follows:

- taking the known properties of the unknown function f as much as possible. As
an example, if f is continuous, then it is desirable and mental to choose the basis
function also continuous. If f is zero at the boundaries, such as in our system, then
the basis functions that are used has to be also zero at the boundaries.

- Inner products has to be evaluated with a reasonable case, ie they mustn’t be

close to zero which causes the MoM matrix to be singular. Otherwise the results that
obtained would be unreasonable.
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CHAPTER FOUR
FORMULATION OF THE PROBLEM BY METHOD

OF MOMENTS

4.1 Brief definition of the system

Our system consists of two parts, which are the metallic part and the slot part. The
metallic part is in a shape of a circular arc of 20,, which is far from the center in the
amount of “a”. The directional point source has been placed in the middle of the

center and the arc and used as the feeder for the aperture.

4.2 Formulation for E-Polarization
Total Electric field is defined as the sum of incident and scattered Electric field,

namely E and E” respectively, which is equal to zero on the surface of the

scatterer. That is:

—sin —>sC

Eow =E +E =0 @.1)

Current on the reflector is maximum on the edges of the metal and the tangential
Electric field components tend to be zero on the surface of the system. We have
previously found the EFIE in Chapter 2, equation (2.33), that is:

-E" = [T ¢6G.rar (4.2)

7,(;) function can be rewritten as a series equation expanded with the basis

function which is pulse function that will be explained in the last part of this section.
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I =Y X,1,@) 4.3)

n=1

The 2D Green’s function can be written as follows:

J N .

In this study, the feed antenna’s radiation patterns also modelled by a Complex
source point method (Oguzer, 1995). If a line source located at the real position

7o can be converted to an imaginary position by adding a complex vector j bsoa

complex line source at re=ro+ jz then radiates the following directive beam field.

y—Fs

E}(H])=CH (k,

) (4.6)

=C. Y I, (kor ) H (kyr)e™ e | r > Ir. @4.7)
where r, = \/ro2 +2jr,beos f—b* (4.8)
and 0, = cos™ (L2298 Re(r)>0 4.9)

5

The b, B, and 6, parameters represent the complex source beamwidth and
direction.
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Complex source can be imagined as an aperture antenna having 2b aperture width.

So imaginary region cannot be cross the PEC reflector surface (Oguzer, 1995).

—E" =3 T, (ko7 ) HP (kya)e ™)
k

Let ¢, =J, (k,r ) H® (k,a)e >

If we substitude (4.11) into (4.10), we get the following,

Yot =YX, | L@X-D Y7, (@ HO (riare ™ ady

n=l p=—0

N ’ 0 0ap
YX,DaY g, (k) [£,@)e " dp
n=1 4 p=—c0 -,

where
1 Pnsi o
fi== [flphe " dp'
27 .
and

20,
@, =0, +T("—l)

N ) 0 ?,
-Yee* =3 X,-Da 3 I, @DHD (d) [£,0)edg' e
k s

n=l p=—

3 X, (- D2ar) 327, e B (ko) 7

n=l p=—0

(4.10)

@.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

4.17)
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Weighting (same as basis) function is added to the equation by inner product like

shown below:
N
> X, < for f(g,)>=<f,,8> where m=1,2,...,N (4.18)
n=1
= [, gde’ (4.19)
5 Jep S jar, 5 ® P
Y [w@etdp=3 X, YT, HP () fie (420)
k -8 n=1 p=—0
9@
where ¢'= I f.(@e"dp=2f"x 4.21)
-9

ap

As a result, we can obtain the tangential Ey calculation for the E-polarization:

- Y —jar. & A
E =Y e +3 X,(T0) Y, (k) HY (ko) 7 1} (422)
k

n=1 p=—0

If we write it in the matrix form, we have to convert the left and right hand sides
into [4,, ]and [B, ] matrices by the following operations:

[B,1= 3 wzJ, o7 D () @23)
and
U=~ 225 30, (@) B (aa)wy. 17 4.24)
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[X, ] can be found from the following matrix multiplication:

[x,1=[4,.]"B.] (Note that m=n) (4.25)
which is actually the unknown current on the surface of the metal part of the given
problem. After obtaining the current, we can find radiation pattern and directivity of

the reflector antenna system.

For the E-Solution we have used pulse function as the basis and testing functions.

nd+1) J’

]
i wlra

Figure 4.1 Analytical Representation of the pulse function

b1=0 n=1,2,3,..., N+1
by=h?/2
bs=(h/2).2 A=h=W/N
bs=(h%/2).3

0<b<W

. f(y’) = pulse function
bn=(b’/2).(N-1)
bn=(h%/2).N fi(y’) = fourier transform of pulse function

Fourier transform of this function will be as follows, for £ = 0and k£ =0 cases:

X
Ga+5)

1 o
Fn =5~ | nw +1)e b (4.26)
b,

30



W2
=%(x/(h2 £ 7 1) (4.27)

h 2
(bn +7)

o =ae | AW +Deab (4.28)
2

b’l

= h____“/hz"'l (4.29)

2z

4.3 Formulation for H-Polarization
We begin the formulation by first rewriting the HFIE function, that is:

oH
on

? - 0G ,,
=% JJ¢ ()= dr (4.30)

where H: = HP(

?—?sl) =3, (k7 )HP (ko r)e ™ 4.31)

As it can be seen from the above equation, complex source has been used like in
the E-Polarization calculations, for better accuracy for the result of the induced

current.

ag{n kY J ko ) HP (o1 )e™? (4.32)
k

Again, as in E-polarization 7¢ can be written in terms of the expansion function
which is triangle function, wyp(@’), which is explained in the last part of this section,

as follows:

N-1

Js@) =2 X, w,(9) (4.33)

n=l
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" N-1 P2 a 6 - __’ ,
Ef=-Y X, [w(o )55 G>ra do (4.34)

n=1 ?n

3, (kP YHP (kr)e" ™ 7 > 7

where G(r,r') =1 " R R L. (4.35)
, .
Z:J,,'(k0 r)H,(, )'(kr')e"'(""”'),r <r

If we substitude eq.(4.35) into eq.(4.34), we obtain the following equation:

- - . N 9"1’ ) . o ) .
~EY T, (kg r) HO (ko Ve ==Y X,k | w,(9) DT, (ko™ H P (ko e adg!

n=l 8 p=—co

(4.36)

[B,1= Y w2'J, (kors ) H (kya) 4.37)

p=—o
and
Jkar <~ pp s @1 P
[ = == 2wid, (k@) H? (@) (438)
p=—

A remarkable difference of this formulation from the previous one, is that, we
used triangle function as the basis and testing function, instead of using pulse
function, since H-solution cannot converge as rapidly as E-solution. Although the
results are not as accurate as it is in E-polarization, choosing triangle function

enables us to obtain more accurate and convergent results for H-polarization.
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Figure 4. 2 Analytical Representation of the triangle function

Fourier transform of this function will be as follows:

2z

wh = L Irect(¢)e"jk¢d¢ (4.39)
2z
where rect(p) =Y wie’? (4.40)
k
Therefore,
' 1 Pl . Pne2 .
- _ - —JrKQ _ ~Jrp
W, = An Je do %J::e do “4.41)
where,
@, =—0, +A(n-1) 4.42)
O =0, +An 4.43)

Oz =—0, +A(n+1) (4.44)



After calculating (4.41), w* can be found as:

MOy —jitn (8 AN

wh=8 T M (4.45)
JR2A7
A A

Since ¢" 2 —¢ 2 = 2sin(kf;-) (4.46)

Hence our equation becomes:

JkO,,  — jkAn
wh =u———4sin2(k—é) (4.47)
Jk2AZ 2

We can use the following relation between the triangle and pulse function in order
to obtain the fourier transfrom of our triangle function:

o,

= rect,, (@) (4.48)
dp

=3 whe (4.49)
k

Finally, the fourier coefficients of our n™ basis (or testing) function, namely the
triangle function, denoted as f,," for k=20 and k=0 cases will be as follows,

respectively:
Jk8,, - jkAn
& e %e . 2 A
=——————4sin“| k— 4.50
72 Juo k*2A7% ( 2) (4.50)
A
k
5 o = (4.51)
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4.3 Radiation pattern and Directivity Formulations
It is denoted as @(¢p) and equals, (for instance, written for E Polarization):

#(p) = i I, (ko7 X5 )e?? +C i I, (k@GP YQ X, S e (4.52)

p=—0 n=1

where C = —J‘;—” (4.53)

Directivity (D) of the antenna can be found by the following formula:

27lp(p)

D= 2z
[léto) do

(4.54)

As a results of these calculations, the induced current, tangential total E fields, and
radiation patterns of the given system can be calculated by using computer programs,
and each result is shown in the next chapter.
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CHAPTER FIVE
NUMERICAL RESULTS

5.1 Overview

As a result of our study, acceptable results for the unknown induced current,
radiation patterns, total tangential electric fields are achieved by using the specified
method for the E and H solution of the system shown in Figure 5.1. We have taken
N, the number of divisions on the metallic part of the system, as 100 in comparisons,
and 150 for the solution of the same problem with a larger size. We also use 150
divisions when calculating the total tangential electric field for E-Polarization, and
100 for the H-Polarization as the computing time got very higher as we increase the
division number, especially in H-Polarization. Moreover, we have taken “a” as ten
times the wavelength for the comparisons and the calculations for the total electric
field, and 15 times the wavelength for the solution of the problem with the larger size
of geometry. Lastly, the aperture angle in the whole system is taken as 30 degrees for
all calculations in our study.

4 P(r.g)

Figure 5.1 Geometry of the System
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5.2 Radiation Pattern comparisons for the exact and numerical solutions

It can be seen from the following two figures that there are so small differences
between the exact and numerical results for the radiation patterns for both E and H
Polarization, however, between 60 and 90 degrees, results differ from each other
caused by the effect of the edge conditions which is not imposed in this study, and
the corresponding figures shown for the approximation for the radiation patterns for
both polarizations, namely Figure 5.2, and Figure 5.3. The parameter values for the
calculations are taken as equal as the ones used in the exact solutions for clear

observation.

1 0 T T T T T T T T
Blue:Exact Solution, Green:MoM Solution
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Figure 5.2 Radiation Pattern Results for E-Polarization

The difference between the exact solution and numerical solution becomes more
apparent as it can be seen from Figure 5.3, which is for H-Polarization solution as the
problem of convergence in the MoM which is mentioned in Chapter 3, exists even
more than it does in the solution for E-Polarization. That is, solution of H-
Polarization case converges slower than the solution of the E-Polarization. Moreover,

the effect of edge diffraction is stronger in H-Polarization since between 140 and 160
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degrees, the back-side-lobes get larger which causes this difference. However, it can
be said to be a still good approximation for a numerical simulation as we have
combined the MoM with the Complex Source Method by using a complex directive

line source for obtaining more realistic results.

0 u\ T T T T T T T T
Blue:Exact Solutions, Green:MoM Solutions

2y Y

_50 I 1 I ) i t I L
0 20 40 60 80 100 120 140 160 180

Angle

Radiation Pattern

Figure 5.3 Radiation Pattern Results for H-Polarization

5.3 Solution of the problem with a larger size

We have solved the same problem for larger size, such as 150 divisions, and we
saw that the amount of osscillations at the radiation pattern is increased which is
caused by the increment of the size of the problem geometry. This can be seen from
Figure 5.4 which is the radiation pattern for the E-Polarization case. The variation in
H Solution much more exists than it does in E Solution which is again caused by the
slower convergence of H Polarization case. That is, the effect of convergence
becomes more important when the size of the system geometry increases, especially
for H-Polarization. This can be clearly seen from the Figure 5.5, and can be

compared with the previous result.
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Figure 5.4 Radiation Pattern for E-Polarization for large size of geometry
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Figure 3.5 Radiation Pattern for H-Polarization for large size of geometry
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5.4 Effect of convergence on the results of the induced currents

One of the most important issue in MoM, which is the convergence, can also be

seen in the results of the induced current compared with the exact solution for both E

and H Polarization cases. However, we should point that although we didn’t impose

the edge condition in this problem, we got still feasible results for the unknown

induced current. As it can be seen from Figure 5.6, the numerical result with the
green color is even more realistic than the other obtained with an analytic method.

These results are shown below with the following two figures, namely Figure 5.6,

and Figure 5.7.
35 T T T
/'//‘x\‘
y N
N
30 / \
/ \

Blue:Exact Solutions, Green:MoM Solutions
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N:Number of divisions

Figure 5.6 Comparison of Current Solutions for E-Polarization
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Blue:Exact Results, Green:Numerical Results
5.5 T T T T T T T T T

Current
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N:Number of division

Figure 5.7 Comparison of Current Solutions for H-Polarization

5.5 Tangential Total Electric Fields

Tangential Ey components also ensures the boundary condition that the total
tangential E field tends to be zero on the metallic part of the system as it can be seen
clearly from the results that our system’s boundary conditions are ensured with the
obtained values on the surface of the metallic part, namely the total tangential
electric fields for both E and H polarizations vanish as the sum of the incident and
scattered Electric fields tends to be zero on the specified part of the antenna system.
Figures 5.8 and 5.9 are the numerical solutions that we have obtained by using the
induced current that we have found by MoM.
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Tangential total E field for E polarization
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Figure 5.8 Tangential Total E field for E-Polarization

Tangential Total E Field for H-Solution
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Figure 5.9 Tangential Total E field for H-Polarization



CHAPTER SIX
CONCLUSION

Scattering problem of an antenna system has been investigated before by using
several methods in electromagnetics. Our goal was to solve this problem with a
numerical method while trying to obtain more realistic results for a larger size of
geometry than the other applications done before in the literature for problems with
small geometries. Hopefully, we achieved our aim by getting even more realistic
results than we expected before. Although we didn’t consider the effect of edge
conditions in the scattering phenomena, which is another area of study in the
literature, we got even even better results than the exact solution that we compared
with. This is especially very remarkable in the results of the induced currents which

is mentioned in the previous chapter.

6.1 The importance of choosing proper functions

As we already stated in chapter 3 that by applying not suitable basis and testing
functions, singularities can be observed in the values of the induced current on the
system of interest. Therefore, testing functions has been choosen very carefully so
that the inner products of these functions at the both left and right hand side of the
main equation, not to get close to infinity in order to prevent singularities in the value
of current induced at the edges of the reflector. In order to prevent unreasonable
results, we have used friangle function as a basis and testing function in H-
Polarization solution in order to resolve at least a part of the convergence problem in
MoM which is already mentioned. However, we didn’t have to use that function for
the E-Polarization since it has no such problem with the convergence as the H-
Polarization case does. Hence, using pulse function for the E-Polarization solution

gives us sufficient results.
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6.2 Comments on the numerical solutions obtained

As it has been predicted before, current and radiation pattern values are converged
rapidly in E field solution compared to the H field solution. As we used the method
of moments as the numerical solution, easier matrix equation is solved instead of
solving multi-level integral equations. Therefore, as a result, numerically acceptable
solutions are obtained in combination of the complex source approach with MoM.
This method can be helpful for other studies in future since it’s simpler and more
convenient than the most of the other numerical solutions as it can be seen from the

solutions and results given in the thesis.

6.3 Future work

Our problem can be also solved again by choosing the entire domain basis and
testing functions. This makes the matrix size smaller, so it can be easier and faster to
solve. Moreover, another study can be also worked on, that the resonance regions of
the problem can be determined, and the weakness of MoM can be investigated in

these regions.
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