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EMPLOYING THE FRACTIONAL AUTOCORRELATION AND CROSS – 

CORRELATION OPERATIONS IN TARGET DETECTION AND RANGE 

ESTIMATION USING POLYPHASE PULSE COMPRESSION 

WAVEFORMS 

 

ABSTRACT 

 

Radars are mostly used for detection and ranging of a target. The transmitted 

signal is generally a sinusoidal waveform. However, it is known that linear 

frequency modulated (LFM) signals are commonly employed in radars to perform 

pulse compression. Beside the LFM signal, step LFM and polyphase coded signals 

such as, Frank, P1, P2, P3 and P4 codes are also used for a similar purpose. Since the 

instantenous frequency of the LFM signal is changing in time linearly, it has a linear 

support region on the time-frequency plane. Using this property of the LFM, we can 

detect it using the Radon – ambiguity transform as suggested in some previous 

works. It was also proposed and shown that LFM signals can be detected using the 

fractional autocorrelation function. Using the similarity of ambiguity functions of 

polyphase coded signals with the LFM ambiguity function we suggested to detect 

these codes applying the fractional autocorrelation function. In this thesis, we show 

that fractional autocorrelation also works for the detection and ranging applications 

of these codes via simulations using the MATLAB numeric analysis software 

package. 

 

In radars, estimation of a target’s position can also be accomplished using cross – 

correlation of the received and transmitted waveforms. We suggested using 

fractional cross – correlation for estimating the delay of the received waveform when 

the transmitted signal is the LFM, step LFM or polyphase codes. We compare the 

performance of conventional and fractional cross – correlations through various 

simulations. 

 

Keywords : Fourier transform, Fractional Fourier transform, fractional 

autocorrelation, fractional cross – correlation, ambiguity function, polyphase codes, 
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ÇOK FAZLI DARBE SIKIŞTIRMA DALGA ŞEKİLLERİNİ KULLANARAK 

KESİRLİ OTOKORELASYON VE ÇAPRAZ KORELASYON 

İŞLEMLERİNİN HEDEF TESPİTİ VE MESAFE KESTİRİMİNDE 

UYGULANMASI 

 

ÖZ 

 

Radarlar genellikle hedef tesbiti ve hedef uzaklığının belirlenmesi için kullanılır. 

Gönderilen sinyal genellikle sinusoidal bir sinyaldir. Fakat, radarlarda darbe 

sıkıştırmaya yatkın olan doğrusal frekans modulasyon (DFM) sinyali de gönderilen 

sinyal olarak sıklıkla kullanılır. DFM sinyali yanında basamaklı DFM ve çok fazlı 

kodlamalı sinyaller olarak adlandırılan Frank, P1, P2, P3 ve P4 sinyalleri de benzer 

amaçla kullanılabilir. DFM sinyalinin anlık frekansı zamanla değiştiği için zaman – 

frekans düzleminde doğrusal bir izdüşümü oluşturur. DFM’nin bu özelliğinden 

yararlanıp Radon – Belirsizlik Fonksiyonu kullanılarak DFM sinyalinin tesbiti 

yapılabilir. Fakat, DFM’yi kesirli otokorelasyon fonksiyonunu kullanan bir yöntemle 

de tesbit edebileceğimiz yakın zamanda önerilmiştir. Basamaklı DFM ve çok fazlı 

kodlamalı sinyallerin DFM’ye benzeyen özelliğini kullanarak, bu sinyalleri de kesirli 

otokorelasyon yöntemiyle tesbit edebileceğimizi MATLAB numerik analiz yazılım 

paketi üzerinde yaptığımız simülasyonlarla gösteriyoruz.   

 

Radarlarda hedefin yerinin tespitini gönderilen ve algılanan sinyallerin çapraz 

korelasyonu yardımıyla yapabiliriz. Biz, DFM, basamaklı DFM ve çok fazlı 

kodlamalı sinyalleri kullanarak hedefin yerinin tespitini kesirli çapraz korelasyon ile 

yapabileceğimiz yeni bir yöntem öneriyoruz. Klasik ve kesirli çapraz korelasyon 

yöntemlerinin performanslarını çeşitli simülasyon örnekleri aracılığıyla yapıyoruz. 

 

Anahtar sözcükler : Fourier dönüşümü, kesirli Fourier dönüşümü, kesirli 

otokorelasyon, kesirli çapraz korelasyon, belirsizlik fonksiyonu, çok faz kodlamalı 

sinyaller, DFM sinyali, basamaklı DFM sinyali, Frank kodu, P1 kodu, P2 kodu, P3 

kodu, P4 kodu. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Introduction 

 

Radars are used in many areas of our daily lives. Basicly, a radar is an electronic 

system used for detection and range determination of targets. However, modern 

radars go beyond this scope and they can also classify or identify targets, and even 

produce the images of target objects. Radars usually transmit a signal and receive 

back a reflected signal that is corrupted by noise. By processing the received signal 

the existence of a target can be determined. After the detection of the target, its range 

and velocity properties can be estimated. 

 

One of the most commonly employed methods for detection is the matched filter 

which optimally maximizes the output signal to noise ratio (SNR). The output of the 

matched filter can be computed using cross – correlation of the received signal and 

the delayed replica of the transmitted signal. If the input signal were the same with 

the transmitted signal, then the output of the matched filter would be the 

autocorrelation function (Mahafza, 2000).  

 

Linear frequency modulated (LFM) signals are one of the oldest and most useful 

pulse compression waveforms due to their high range resolution and tolerance to 

Doppler for ease in receiver processing. Radon – Wigner transform (RWT) detects 

lines in the Wigner time – frequency plane by computing the line integrals for a set 

of angles and positional offsets in the transform (Kay & Boudreaux – Bartels, 1985), 

(Li, 1987), (Wood & Barry, 1994). Radon – ambiguity transform (RAT) is another 

method that detects unknown LFM signals by computing a series of line integrals 

through the origin of the ambiguity plane (Wang, et. al. 1998). Since the LFM has an 

ambiguity function, which is a line passing through the origin of the ambiguity plane, 

only those line integrals are computed. Detection of LFM signals can be performed 

more efficiently using fractional autocorrelation (Akay & Boudreaux – Bartels, 

2001). The other pulse compression signals used in radars, step LFM and polyphase-
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coded signals such as, Frank, P1, P2, P3 and P4, can also be detected using the RAT 

(Jennison, 2003).  

 

In this thesis, we investigate the performance of a detector that is implemented 

using the fractional autocorrelation function for detection of LFM, step LFM and 

polyphase-coded signals. The fractional Fourier transform (FrFT) which is the 

generalization of the classical Fourier transform (FT) was developed in recent years 

(Almeida, 1994). Properties of the FrFT were derived and its relationship with time – 

frequency representations were established. A fast approximate discrete FrFT 

algorithm was also developed (Özaktaş, et. al., 1996). The FrFT was alternatively 

defined via unitary and Hermitian fractional operators (Akay & Boudreaux – Bartels, 

1998) following the concepts of unitary equivalence (Baraniuk & Jones, 1995) and 

covariant and invariant transforms (Sayeed & Jones, 1996). Fractional cross – 

correlation and autocorrelation functions which are the generalizations of classical 

cross – correlation and autocorrelation functions were defined using the unitary 

fractional operator. A detection statistic which is based on fractional autocorrelation 

was also proposed for detection of LFM signals (Akay & Boudreaux – Bartels, 

2001). In this thesis, we extend the work of Akay and Boudreaux – Bartels for 

detection of other pulse compression radar waveforms; step LFM signals and 

polyphase coded signals. Performance of this detector is also investigated. 

Furthermore, we utilize fractional cross – correlation for range estimation. 

 

In Chapter 2, a theoretical study of the FrFT is provided. After providing a brief 

introduction to the FT and the Fourier series, definitions of classical cross – 

correlation and autocorrelation are given. The FrFT which is the generalization of the 

classical FT is formulated and its fundamental properties are listed briefly. 

Definitions of fractional cross – correlation and fractional autocorrelation are derived 

using the fractional operators. Some alternative definitions of fractional cross – 

correlation and autocorrelation are also formulated. 

 

In Chapter 3, principles of a radar system are introduced, and a simple optimal 

detection scenario is formulated. The matched filter and the radar ambiguity function 
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are also introduced. The concept of pulse compression and LFM, step LFM, 

polyphase coded signals such as Frank, P1, P2, P3 and P4 codes, are described and 

their ambiguity function plots are illustrated. 

 

In Chapter 4, using fractional autocorrelation a detection statistic is formulated for 

the detection of pulse compression waveforms defined in Chapter 3. Performance of 

this detector is investigated through simulations at different SNR values and at 

different signal pulse durations. 

 

In Chapter 5, range estimation is performed by estimating the delay parameter 

using fractional cross – correlation. Performance of fractional cross – correlation is 

compared with its conventional counterpart. 

 

Finally, our conclusions are given in Chapter 6. 
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CHAPTER TWO 

 

FUNDAMENTALS OF THE FRACTIONAL FOURIER TRANSFORM AND 

FRACTIONAL CORRELATION 

 

In this chapter, fundamentals of the fractional Fourier transform and fractional 

correlation is given. In Sections 1 and 2, the Fourier representation of periodic 

signals and finite energy signals along with autocorrelation are discussed. In Section 

3, the fractional Fourier transform is studied. Then, in last section, definitions of 

fractional cross – correlation and fractional autocorrelation functions are introduced 

using the unitary fractional shift operator.  

 

2.1 Frequency Analysis of Continuous - Time Signals 

 

We can represent a signal in different forms using transform techniques by which 

the interesting properties of signals could be displayed explicitly. Fourier analysis is 

the basic tool for signals whose frequency content does not change in time. For 

signals whose frequency content changes with time (such as biomedical signals, 

speech signals, etc.), the classical Fourier analysis is not adequate. Hence, other 

tranforms such as the short-time Fourier transform and the Wigner distribution are 

defined for analysis of so – called nonstationary signals (Cohen, 1995), (Qian & 

Chen, 1996), (Poularikas, 2000). 

 

Using the Fourier transform, a time domain signal can be represented in frequency 

domain. This signal representation basically involves the decomposition of the time 

domain signal onto sinusoidal (or complex exponential) basis functions. With this 

decomposition, the time domain signal is represented with respect to its frequency 

content. 
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2.1.1 Fourier Series for Continuous – Time Periodic Signals 

 

The basic mathematical representation of periodic signals is the Fourier series. It 

represents any well behaving periodic signal as a linear weighted sum of 

harmonically related sinusoids or complex exponentials. Jean Baptiste Joseph 

Fourier, a French mathematician, used such trigonometric series expansions in 

describing the phenomenon of heat conduction and temperature distribution through 

solid bodies. His techniques find application in a variety of problems encompassing 

many different fields including optics, system theory, and electromagnetics (Proakis 

& Manolakis, 1996). 

 

A linear combination of harmonically related complex exponentials of the form 

0( ) exp( 2 ) (2.1)k
k

s t a j kf tπ
∞

= −∞

= ∑

is a periodic signal with fundamental period 
0

1
PT

f
= . Hence, we can think of the 

exponential signals  

0exp( 2 ) 0, 1, 2,... , (2.2)j kf t kπ = ± ± 
 

as the basic “building blocks” from which we can construct periodic signals of 

various types by proper choice of the fundamental frequency, 0f , and the 

coefficients { }ka . The fundamental period, PT , of ( )s t  is determined by 0f  and the 

coefficients, { }ka , specify the shape of the waveform. 

 

The Fourier series coefficients can be calculated by the following integral 

equation; 

0
1 ( ) exp( 2 ) . (2.3)

P

k
P T

a s t j kf t dt
T

π= −∫
 

Note that the integration is performed within only one period of the periodic 

signal ( )s t . The only conditions for the periodic signal ( )s t  to have a valid Fourier 
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series representation are the Dirichlet conditions. They can be stated as follows 

(Proakis & Manolakis, 1996): 

• The signal ( )s t  has a finite number of discontinuities in any period, 

• The signal ( )s t  contains a finite number of maxima and minima within any 

period, 

• The signal ( )s t  is absolutely integrable in any period. 

 

2.1.2 Fourier Transform for Continuous Time Aperiodic Signals 

 

An aperiodic signal ( )s t  with finite duration can be represented using the Fourier 

transform (FT) as 

( ) ( ) exp( 2 ) . (2.4)S f s t j ft dtπ
∞

−∞

= −∫
( )S f  is a function of the continuous frequency variable, f . The Fourier transform 

facilitates the frequency analysis of continuous-time aperiodic signals. 

 

The inverse FT is given by the following integration; 

( ) ( ) exp( 2 ) . (2.5)s t S f j ft dfπ
∞

−∞

= ∫
 

2.2 Correlation of Continuous – Time Deterministic Signals 

 

The objective in the computation of correlation between two signals is to measure 

the degree to which these two signals are similar and thus to extract some 

information that depends to a large extent on the application. Correlation of signals is 

often utilized in applications of radar, sonar, and digital communications (Proakis & 

Manolakis, 1996). In radar applications, correlation is mostly used to detect the 

presence of a target and to extract its range information. 

 

Cross – correlation of two time domain signals ( )s t  and ( )h t  is defined as 

(Poularikas, 2000) 
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*( ) ( ) ( ) ( ) (2.6)s t h t s h t dτ τ τ
∞

−∞

= −∫� �

where τ  is called the time shift or lag. 

For the special case of ( ) ( )h t s t= , we have the autocorrelation of ( )s t  given as 

*( ) ( ) ( ) ( ) ( ) (2.7)sR t s t s t s s t dτ τ τ
∞

−∞

= = −∫�

where ( )sR t  is employed to represent the autocorrelation of ( )s t . 

 

At this point, we would like to mention some useful properties of the 

autocorrelation function. Firstly, the autocorrelation function attains its maximum 

when the time lag is equal to zero. Secondly, according to Wiener-Khinchin theorem, 

the power spectrum of a signal can be obtained as the FT of its auto – correlation 

function. That is; 

2( ) ( ) exp( 2 ) . (2.8)sS f R j f dτ π τ τ= −∫
 

2.3 The Fractional Fourier Transform – A Generalization of Fourier Transform 

 

The fractional Fourier transform (FrFT), which is the generalization of the 

classical FT was introduced around 1980s in quantum mechanics (Namias, 1980), 

(McBride and Kerr, 1987). Recently, it has been studied by some signal processing 

researchers. The transform, its useful properties and its relationship with the Wigner 

distribution, the ambiguity function and other quadratic time – frequency 

representations were excessively studied in Almeida’s paper (Almedia, 1994). After 

Almedia’s work, the FrFT drew the attention of some researchers working on time – 

frequency representations. Özaktaş and his collegues used the FrFT in optimal noise 

filtering (Özaktaş et. al., 1997) and they also developed a fast approximate discrete 

FrFT algorithm (Özaktaş et. al., 1996), (Özaktaş et. al., 2000). Akay and Boudreaux 

– Bartels then defined the FrFT in terms of the unitary and Hermitian fractional 

operators and formulated the fractional convolution and correlation operations (Akay 

& Boudreaux – Bartels, 2001). 
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The fractional Fourier transform generalizes the classical FT with an angle 

parameter φ 1. When the angle parameter 0φ = , the FrFT reduces to the identity 

transform and we get back the signal itself. When 
2
πφ = , the FrFT simplifies to the 

classical FT operation. For any other values of the angle φ , we essentially obtain a 

different signal representation with respect to the fractional domains of the time – 

frequency plane. The FrFT can also be interpreted as a rotation in the time – 

frequency plane and it is related with most of the time – frequency representations 

(Almeida, 1994).  

 

The FT, perhaps the most frequently used tool in signal processing, gives us 

information about the spectral content of a signal. However, when the signal has a 

frequency content that is changing with time, we often use time – frequency 

representations such as the short time Fourier transform and the Wigner distribution. 

Researchers developed numerous other time – frequency distribution functions 

beside these two well – known representations (Cohen, 1995).  

 

In time – frequency representations, one normally uses a plane with two 

orthogonal axes, horizontal axis corresponding to time and vertical axis 

corresponding to frequency. If we consider the signal ( )s t  as represented along the 

time axis, its Fourier transform ( )S f  is represented along the frequency axis (see 

Figure 2.1(a)). Thus, the classical FT can be thought as an operator which rotates the 

signal in the counterclockwise direction by an angle of 
2
π  on the time – frequency 

plane. 

 

Analogously, the FrFT can be considered as an operator that rotates the signal on 

the time – frequency plane by an angle φ . At this angle we have another 

                                                 
1 Some researchers use an order parameter “ a ” instead of the angle parameter. Both can be used 

equivalently since they can be related as 
2

a πφ = . We prefer to use the angle parameter φ  in this 

thesis. 
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representation of the signal and we have a new domain, which we call the fractional 

domain, " "r , as shown in Figure 2.1(b). This can also be thought as the 

counterclockwise rotation of the signal by an angle φ . Notice that for all possible 

values of 1the angle φ , we have a different representation of the signal. This new 

representation is termed the fractional Fourier transformed signal. 

 

 

 

 

 

 

 

 

 

 

 

                       (a) 

 

 

 

 

 

 

 

 

 

 

                      (b) 
Figure 2.1: (a) Time, frequency and (b) fractional domains. 

 

Mathematically, the FrFT of a signal ( )s t  is defined as (Almeida, 1994) 

1

2 2

( )( ) ( ) ( ) ( , )

1- cot exp( cot ) ( )exp( cot - 2 csc ) , ,

( ), (2 )

(- ), (2 1) . (2.9)

s r S r s t K t r dt

j j r s t j t j tr dt n n

s r n

s r n

φ φ φ

φ π φ π φ π φ φ π

φ π

φ π

∞

−∞

= =

 ≠ ∈ Ζ
= =

 = +


∫

∫

F

 

Here, φF is the FrFT operator associated with φ , ( )S rφ  is the fractional Fourier 

transformed signal, ( , )K t rφ  is the transformation kernel and n  is an integer. 

 

                                                 
1 From now on, the integral limit values accepted -∞ and +∞ if not specified otherwise. 

t

f

2
π

F
φF

f

t

φ

r
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The transformation kernel is defined as, 

2 21 cot exp[ ( ) cot 2 csc ],

( , ) ( ), (2 )

( ), (2 1) . (2.10)

j j t r j rt n

K t r t r n

t r n

φ

φ π φ π φ φ π

δ φ π

δ φ π

 − + − ≠


= − =

 + = +


 

Many properties of the FrFT are derived from the kernel defined in (2.10).  

 

When 0φ = , the FrFT reduces to the identity transform, since in this case the 

kernel ( , )K t rφ  becomes the impulse function 2 ( , ') ( ')nK t t t tπ δ= − . Thus, we obtain 

the identity transform as, 

( )0 0( ) ( ) ( ') ( ') ' ( ). (2.11)s t S t s t t t dt s tδ= = − =∫F

When 
2
πφ = , the FrFT reduces to the classical FT, since the kernel in this case 

becomes an exponential function as / 2 2 ( , ) exp( 2 )nK t f j tfπ π π+ = − . Thus, this special 

case of the FrFT is obtained as the classical FT; 

2 2( ) ( ) ( ) exp( 2 ) ( ). (2.12)s f S f s t j tf dt S f
π π

π
 

= = − = 
 

∫F

For odd integer multiples of π , the kernel becomes 2 ( , ') ( ')nK t t t tπ π δ+ = + . Hence, 

for φ π= , the FrFT simply becomes an axis reversal transformation. That is; 

( ) ( ) ( ) ( ') ( ') ' ( ). (2.13)s t S t s t t t dt s tπ π δ= = + = −∫F

For 3 2
2

nπφ π= + , the FrFT simplifies to the inverse conventional FT. In this case 

the kernel becomes 3 / 2 2 ( , ) exp( 2 )nK t f j tfπ π π+ =  and the FrFT is given by 

3 3
2 2( ) ( ) ( ) exp( 2 ) ( ). (2.14)s f S f s t j tf dt S f
π π

π
 

= = = − 
 

∫F

 

For nφ π≠ , the FrFT, as given in (2.9), can be calculated in four steps shown in 

Figure 2.2 (Akay, 2000): 

• A product by a chirp (complex exponentials with linear frequency 

modulation) signal in the input domain t , 
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• A classical Fourier transform with its argument scaled as 
sin

r
φ

, 

• Another product by a chirp signal in the output domain r , 

• A product by the complex amplitude factor 1 cotj φ− . 

 

Thus, in summary, computing the FrFT of the signal ( )s t  corresponds to 

expressing it in terms of an orthonormal basis formed by chirps, i.e. complex 

exponentials with linear frequency modulation. 

 

 

 

 

 

 

 

 
 

Figure 2.2: FrFT calculation steps. 

 

Since chirps have constant magnitude, this immediately allows us to make a rather 

general statement about the existence of the transform. In fact, if ( )s t  is in the space 

of square integrable functions, or is a generalized function, its product by a chirp is 

also square integrable, or is a generalized function, respectively. Therefore, the FrFT 

exists under the same conditions as with the classical FT (Almeida, 1994).  

 

2.3.1 Fundamental Properties of the Fractional Fourier Transform  

 

Fundamental properties of the FrFT as derived in (Almeida 1994) are summarized 

below; 

( , ) ( , ) (Symmetry) (2.15)K t r K r tφ φ=
*

( , ) ( , ) (Self-reciprocity) (2.16)K t r K t rφ φ−  =  
 

( )s t

Fourier 

Transform 

sin
rt

φ
→  

2exp( cot )j tπ φ 2exp( cot )j rπ φ

1 cotj φ−  

( ) ( )s rφF  
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1 2 1 2

2

*

*

( , ) ( , ) (Periodicity) (2.17)

( , ) ( , ) (Axis reversal) (2.18)

( , ') ( ', ) ' ( , ) (Additivity) (2.19)

( , )[ ( , ')] ( ') (Completeness) (2.20)

( , )[ ( ', )]

nK t r K t r n

K t r K t r

K t t K t r dt K t r

K t r K t r dt r r

K t r K t r dr

φ π φ

φ φ

φ φ φ φ

φ φ

φ φ

δ

+

+

= ∈

− = −

=

= −

=

∫

∫

Z

( ') (Orthonormality). (2.21)t tδ −∫
 

Proofs of these properties can be performed using the transformation kernel in 

(2.10). As a result of the property given in (2.19), the FrFT has the additivity 

property which is expressed as (Almeida, 1994) 

( ){ }( ) ( )1 2 1 2( ') ( ) ( ). (2.22)s r r s rφ φ φ φ+=F F F
 

As a result of the completeness and orthonormality properties in (2.20) and (2.21), 

the FrFT is a unitary transformation. Using the self – reciprocity property in (2.16) 

and the orthonormality property in (2.21), it can be shown that the inverse of the 

FrFT with an angle φ  corresponds to an FrFT with angle -φ  (Almeida, 1994) 

( ) ( ) ( , ) . (2.23)s t S r K t r drφ φ−= ∫
Using the operator theory notation the inverse FrFT can be written as 

{ }( ) ( )( ){ }( )( ) ( ) ( ) ( ). (2.24)s t S r t s r tφ φ φ φ− −= =F F F
Due to its unitarity, the FrFT preserves inner products and satisfies a relation similar 

to Parseval’s relation of the classical FT (Almeida, 1994). For two signals 1( )s t  and 

2 ( )s t , 

* *
1 2 1 2( ) ( ) ( )[ ( )] . (2.25)s t s t dt S r S r drφ φ=∫ ∫

Thus, we can conclude that the FrFT is an energy preserving transformation. That is; 

22( ) ( ) . (2.26)s t dt S r drφ=∫ ∫  
 

Any further properties of the FrFT can be found in (Akay, 2000). 
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2.4 Fractional Operators and Fractional Correlation Functions 

 

2.4.1 Hermitian Time, Hermitian Frequency and Unitary Time, Unitary 

Frequency Operators 

 

A signal can be represented in many forms if we express it with respect to sets of 

complete and orthogonal bases spanning the vector space that the signal belongs to. 

Hermitian operators have been used in quantum mechanics to derive expansion 

functions in order to represent signals with respect to different physical variables 

(Cohen, 1995). Hermitian operators later have been adopted by the signal processing 

community. For the fundamental physical variables of time, t , and frequency, f , the 

Hermitian time, T , and Hermitian frequency, F , operators are defined as (Baraniuk 

& Jones, 1995), (Sayeed & Jones, 1996) 

( ) ( ) ( ), (2.27)s t ts t=T

( ) 1( ) ( ). (2.28)
2

ds t s t
j dtπ

=F

 

An important property of Hermitian operators is that the eigenfunctions of 

Hermitian operators form a complete and orthogonal basis set for the underlying 

vector space. Thus, any Hermitian operator naturally defines a signal representation 

as a signal expansion onto its eigenfunctions. 

 

The eigenfunctions of T are impulse functions, ( , ') ( ')u t t t tδ= −T , and the signal 

representation defined by them is simply the identity transform, 

( ') ( ) ( ') ( '). (2.29)S t s t t t dt s tδ= − =∫T

 

Similarly, the eigenfunctions of F  are complex exponentials, 

( , ) exp( 2 )u t f j ftπ=F  and the signal representation defined by them is the classical 

FT, 

( ) ( ) exp( 2 ) . (2.30)S f s t j ft dtπ= −∫F
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Unitary operators can also be used to define signal transforms. They can be 

obtained by exponentiating Hermitian operators. Thus, eigenfunctions of unitary 

operators also form complete and orthogonal basis functions for the signal space. 

The unitary operator representations of time, Tτ, and frequency, Fν, are defined as 

( )( ) ( ), (2.31)s t s tτ τ= −T

( ) ( ) ( ) exp( 2 ). (2.32)s t s t j tν πν=F
 

Using, Stone’s theorem (Sayeed & Jones, 1996) the relations between the unitary 

and Hermitian time and frequency operators are expressed as, 

exp( j2 ) and exp( j2 ). (2.33)τ ν= − πτ = πνF TT F
 

As a result of these equivalency relations, we can say that time and frequency 

variables are duals of each other. 

 

2.4.2 Hermitian and Unitary Fractional Operators 

 

The unitary frequency – shift operator, νF  is unitarily equivalent to the unitary 

time – shift operator, τT , as demonstrated by the relationship (Baraniuk & Jones, 

1995), (Sayeed & Jones, 1996) 

2 2 . (2.34)
π π

ν ν

−
= F FF T

Here, 2
π

F  is the classical FT operator. To derive the time domain definition of the 

unitary frequency – shift operator, νF , according to (2.34), we first go to frequency 

domain using the operator 2
π

F , then translate (shift) the frequency domain signal 

using Tν. The final inverse FT operator, 2
π

−F , takes the translated frequency domain 

signal back to the time domain. This unitary equivalence property can be generalized 

to other variables and corresponding operators (Baraniuk & Jones, 1995). 

 



15 

 

The unitary fractional – shift operator, φ
ρR , of the fractional variable, r , 

associated with angle φ , measured counterclockwise from the time axis, can be 

defined similar to (2.34) (Akay, 2000), 

. (2.35)φ φ φ
ρ ρ

−= F FR T
 

Here, φF  and φ−F are the forward and inverse FrFT operators, respectively. Using 

(2.35) the explicit formulation of the unitary fractional – shift operator is obtained as 

(Akay, 2000) 

( )
2

( ) ( cos )exp[ 2 ( )cos sin 2 sin ] (2.36)
2

s t s t j j tφ
ρ

ρρ φ π φ φ π ρ φ= − − +R

with ρ ∈ . φ
ρR  describes a shift of the signal support by a radial distance ρ  along 

the arbitrary orientation φ  of the time – frequency plane. 

 

The unitary fractional – shift operator, φ
ρR , can alternatively be expressed using 

the unitary time – shift operator, τT , and the unitary frequency – shift operator, νF , 

via 

( ) 2
sin cos( ) exp( cos sin )( )( ). (2.37)s t j s tφ

ρ ρ φ ρ φπρ φ φ= −R F T
 

Just as the FrFT simplifies to the identity transform for 0φ =  and to the classical 

FT for 
2
πφ = , the unitary fractional shift operator, φ

ρR , also reduces to the unitary 

time – shift operator, τT , in (2.31) and to the unitary frequency – shift operator, νF , 

in (2.32) for 0φ =  and 
2
πφ = , respectively (Akay, 2000). 

 

Applying Stone’s theorem and the concept of duality along with the unitary 

fractional shift operator φ
ρR , the Hermitian fractional – shift operator, φR , is derived 

as (Akay, 2000) 

cos sin . (2.38)φ φ φ= +R T F
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Note that similar to the unitary fractional shift operator, for the special cases of 

0φ =  and 
2
πφ = , the Hermitian fractional operator, φR , also reduces to the 

Hermitian time and frequency operators, respectively. 

 

2.4.3 Fractional Cross – Correlation and Fractional Autocorrelation 

 

In Section 2.2, we defined the cross – correlation and autocorrelation functions, 

which are frequently used in linear time – invariant  (LTI) system applications of 

signal processing. The classical FT is a useful tool in this context, since the LTI 

correlation simply corresponds to a multiplication in the frequency domain.  

 

Because the FrFT is a generalization of the classical FT into arbitrary orientations 

of the time – frequency plane, a generalization of correlation also exists and it is 

derived by the fractional operator theory methods summarized in Section 2.4.2. 

Using the unitary fractional shift operator φ
ρR , the fractional cross – correlation and 

fractional autocorrelation operations can be defined (Akay, 2000). 

 

Fractional cross – correlation of functions ( )s t  and ( )h t  associated with angle φ is 

obtained by computing the inner product of the signal ( )s t  with the fractionally 

shifted version of the function ( )h t  as 

( )
2

*

( ) ,

exp( 2 cos sin ) ( ) ( cos )exp( 2 sin ) . (2.39)
2

s h s h

j s h j d

φ
φ ρρ

ρπ φ φ β β ρ φ πβρ φ β

=

= − −∫

R�

 

Here ,〈 〉  defines the inner product operator, ρ  is the fractional lag variable and 

φ�  represents the fractional correlation operation. The subscript φ  indicates that 

cross – correlation of ( )s t  and ( )h t  is computed at the fractional domain angle φ  of 

the time – frequency plane. Note that for 0φ = , the fractional cross – correlation 

simplifies to the LTI cross – correlation operation given in (2.6). 
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Fractional autocorrelation is similarly calculated by replacing ( )h t  in (2.39) with 

( )s t  as, 

( )
2

*

( ) ,

exp( 2 cos sin ) ( ) ( cos )exp( 2 sin ) . (2.40)
2

s s s s

j s s j d

φ
φ ρρ

ρπ φ φ β β ρ φ πβρ φ β

=

= − −∫

R�

 

Fractional autocorrelation similarly generalizes the LTI autocorrelation for the 

arbitrary angle φ . 

 

Formulations of fractional cross – correlation and fractional autocorrelation given 

by (2.39) and (2.40) are rather difficult to calculate by computer. To derive 

computationally efficient algorithms that approximate these fractional functions, 

alternative and equivalent formulations of fractional cross – and autocorrelations are 

used (Akay, 2000).  

 

The first alternative equivalent formulation of fractional cross – correlation in 

terms of FrFT signals can be given as, 

( ) ( )( )*
0( ) ( )[ ( )] . (2.41)s h S H d S Hφ φ φ φ

φ ρ β β ρ β ρ= − =∫� �

 

The second alternative formulation is expressed as, 

 

( )
*

2 2 2( ) ( ) ( ) ( ). (2.42)s h S u H u
π π πφ φ

φ ρ ρ
−

+ +       =            
F�

 

In this form, to compute fractional cross – correlation at angle φ , first the FrFT of 

the signal ( )s t  is calculated at angle 
2
πφ + . The result is multiplied with the 

conjugate of the FrFT of the signal ( )h t  calculated at angle 
2
πφ + . Finally, a 

conventional inverse FT is taken. The formulation given in (2.42) helps us to define a 

discrete – time approximation of fractional cross – correlation based on fast Fourier 

transform (FFT) and the discrete FrFT algorithms. 
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Analogously, an alternative formulation of fractional autocorrelation is given as, 

( ) *
0( ) ( )[ ( )] ( )( ). (2.43)s s S S d S Sφ φ φ φ

φ ρ β β ρ β ρ= − =∫� �

 

This equation can also be written as, 

( )
2

2 2( ) ( ) ( ). (2.44)s s S u
π π φ

φ ρ ρ
−

+    =      
F�

 

In this form, one FrFT with angle 
2
πφ +  and a conventional inverse FT are used 

together to compute fractional autocorrelation at angle φ . The formulation given in 

(2.44) helps us to define a discrete – time approximation of fractional autocorrelation 

based on the FFT and fast discrete FrFT algorithms.  

 

By computing the FT of both sides of (2.44), we can also write 

( )
2

2 2( ) ( ) ( ) . (2.45)s s u S u
π π φ

φ ρ
+ 

= 
 
F �

 

This equation can be considered as the fractional generalization of the 

autocorrelation theorem of the classical FT given in (2.8). 
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CHAPTER THREE 

 

RADAR BASICS, RADAR SIGNALS AND PULSE COMPRESSION 

 

In this chapter, principles of radars are introduced briefly. In the first section, a 

basic radar scenario is given and detection of radar signals using ordinary techniques 

are presented. In Section 2, the matched filter and the radar ambiguity function are 

studied. In the last section, the pulse compression techniques and the linear 

frequency modulated (LFM), step LFM, Frank coded and polyphase coded signals 

(P1, P2, P3 and P4) are discussed. 

 

3.1 Principles of Radars 

 

3.1.1 Radar Basics 

 

The word radar, first used by the US Navy in 1940, is derived from radio 

detection and ranging, thus conveying these two purposes of detection and location. 

Modern radar goes further and is developed to classify or identify targets, and even 

to produce images of objects, for example mapping the ground from a satellite 

(Kingsley & Quegan, 1992). 

 

The radar scenario involves a transmitter and a receiver, which are usually 

positioned at the same location, a target at range R , and a signal that travels the 

round – trip between the radar and the target. The target sometimes has a velocity 

relative to the radar (see Figure 3.1).  
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Figure 3.1: A basic radar scene. 

 

The transmitted signal is usually an electromagnetic signal (but an acoustic one is 

also a possibility). The signal can be described by a carrier sine wave at frequency 

cf  with modulation of one or more of its parameters – amplitude, phase, and 

frequency (Levanon, 1988). 

 

The changes observed in the returned signal can provide information about the 

target position and sometimes its character. In simple terms, the delay of the returned 

signal yields information on the range. The frequency shift (Doppler) yields 

information on the range rate (velocity). The antenna pointing direction yielding 

maximum return strength (or other criteria) provides the azimuth and elevation of the 

target relative to the radar. From the progress of some of these parameters with time, 

the target’s trajectory can be estimated (Levanon, 1988). 

 

How well can a radar measure the range is decided by the range accuracy and the 

range resolution. The range accuracy indicates the uncertainty in a measurement of 

the absolute distance to an object, whereas the range resolution tells us how far apart 

two targets have to be before we can see that there are indeed two targets rather than 

one larger one. For the range resolution, the time delay between the echoes from two 

objects must be greater than the pulse duration, T . Radar systems are normally 

designed to operate between a minimum range minR  and maximum range maxR . The 

distance between minR  and maxR  is divided into M  range bins (gates), and the width 

of each bin, denoted as R∆ , corresponds to range resolution; 

Trasmitter 

Receiver 

 

TARGET 

R
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max min . (3.1)R RR
M
−

∆ =

 

Targets separated by at least R∆  will be completely resolved in range. Consider 

two targets located at ranges 1R  and 2R , corresponding to time delays 1t  and 2t , 

respectively. Denoting the difference between those two ranges as R∆ , we have 

2 1
2 1

( ) (3.2)
2 2

t t tR R R c c− ∆
∆ = − = =

where c  represents the speed of light. Since the time delay between the two targets 

must be greater than the pulse duration, T , then (Mahafza, 2000) 

(3.3)
2 2

cT cR
B

∆ = =

where B  is the bandwidth of the signal which is equal to 1/T . 

 

In general, radar users and designers alike seek to minimize R∆  in order to 

enhance the radar performance. As suggested by (3.3), in order to achieve fine range 

resolution one must minimize the pulse width. However, this will reduce the average 

transmitted power and increase the operation bandwidth. Achieving fine range 

resolution while maintaining adequate average transmitted power can be 

accomplished by using pulse compression techniques, which will be explained later 

in this chapter. 

 

For the range accuracy of a system the crucial factor is the bandwidth occupied by 

the radar. In practice, the pulse shape and the bandwidth are related in simple pulse 

radars. Short pulses take up more bandwidth, B , of the radio spectrum than long 

pulses. It is important to be aware that the bandwidth of radar does not have to be 

limited. As an example, suppose we develop a system that transmits long pulses 

during which we sweep the frequency of the oscillator deliberately to increase the 

bandwidth. Such radar schemes are common and are known as chirp systems when 

the frequency sweep during a pulse is linear. By careful processing, chirp radars 

achieve high range accuracy. 
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The other factor determining the accuracy of the range measurement is the signal 

to noise ratio (SNR), due to the effect that noise has on corrupting the shape of the 

pulse (Kingsley & Quegan, 1992). 

 

3.1.2 Radar Detection Basics 

 

The radar return signal is always corrupted by noise. The detection circuit is 

supposed to determine the existence of a target being confused by noise. Once a 

target has been detected, properties such as its range and velocity are likely to be of 

interest. 

 

The block diagram of a simple detection circuit is seen in Figure 3.2. It consists of 

a narrow band – pass filter, usually at the intermediate frequency (IF), followed by 

an envelope detector (which typically has a linear or square-law characteristic). The 

last stage is usually a threshold circuit, in which the output of the envelope detector 

is compared to a predetermined threshold. Whenever the envelope surpasses the 

threshold, the existence of a target is assumed at the corresponding delay. Whenever 

a noise peak is mistaken for a target, then there will be a false alarm. We can also 

miss one of the targets if the level of that target is below the threshold. Lowering the 

threshold will increase the probability of detection, but at a cost of increasing also 

the probability of false alarms. If the SNR were higher, which implies higher signal 

peaks, the smaller target return would have also crossed the threshold, and the 

probability of detection would have increased. Thus, there is a threefold dependency 

between the SNR, probability of detection and probability of false alarms (Levanon, 

1988). 

 

 

 

 
Figure 3.2: Block diagram of a basic radar detector. 

Bandpass 

filter 

Envelope 

detector 

Threshold 

stage 
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The mathematical analysis of the detection circuit in Figure 3.2 can be performed 

using Neyman – Pearson approach of statistical signal processing. Analysis starts 

with an input signal consisting of a sinusoid corrupted by additive white Gaussian 

noise (AWGN). We seek two probability density functions (PDFs) of the envelope; 

one when only the noise is present and one when both signal and noise are present. 

These two PDFs and a selected threshold yield the probability of detection DP , and 

the probability of false alarm, FAP  (Kay, 1998). 

 

3.2 Matched Filter and the Radar Ambiguity Function 

 

3.2.1 Matched Filter 

 

The most unique characteristic of the matched filter is that it produces the 

maximum achievable instantaneous SNR at its output when a signal and additive 

white noise are present at the input. The noise does not need to be Gaussian. The 

peak instantaneous SNR at the receiver output can be achieved by matching the radar 

receiver transfer function to the received signal. In practice, it is sometimes difficult 

to achieve perfect matched filtering. Due to mismatching, degradation in the output 

SNR occurs (Mahafza, 2000). 

 

Consider a signal, ( )is t , with finite duration. Denote the pulse width by T  and 

assume that a matched filter receiver is utilized. The received signal, ( )x t , after the 

round trip is the delayed version of ( )is t  with additive white noise, 

1( ) ( ) ( ) (3.4)i ix t s t t n tα= − +
where 

α  is a constant usually known as the attenuation factor, 

1t  is the unknown time delay proportional to target range, 

( )in t  is the input white noise. 
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Since the input noise is white, its corresponding autocorrelation and power 

spectral density (PSD) functions are given, respectively, by 

0( ) ( ), (3.5)
2in

NR t tδ=

( ) , (3.6)
2i

o
n

NS f =

 

where 
2

oN  is a constant representing the noise power. Denote the signal component 

and the noise component of the filter output as ( )os t  and ( )on t , respectively. We can 
compute the matched filter output as 

1( ) ( ) ( ) (3.7)o oy t s t t n tα= − +
with 

( ) ( ) ( ) (3.8)o is t s t h t= ∗

( ) ( ) ( ). (3.9)o in t n t h t= ∗
 

The symbol “*” indicates the convolution operation, and ( )h t  is the filter impulse 

response (the filter is assumed to be LTI). 

 

Let ( )hR t  denote the filter autocorrelation function. It follows that the output 

noise autocorrelation and PSD functions are given respectively, as 

( ) ( )* ( ) ( )* ( ) ( ) (3.10)
2 2o i

o o
n n h h h

N NR t R t R t t R t R tδ= = =

2 2( ) ( ) ( ) ( ) (3.11)
2o i

o
n n

NS f S f H f H f= =

 

where ( )H f  is the frequency response of the filter. The total average output noise 

power is equal to ( )
onR t  evaluated at 0t = . Namely, 

0

2(0) ( ) . (3.12)
2

o
n

NR h u du
∞

−∞

= ∫
The output signal power evaluated at time t  is 2

1( )os t tα − , and by using (3.8), we 

obtain 
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1 1( ) ( ) ( ) . (3.13)o is t t s t t u h u du
∞

−∞

− = − −∫
 

A general expression for the output SNR at time t  can be written as 
2

1( )
( ) . (3.14)

(0)
o

o

n

s t t
SNR t

R
α −

=

Substituting (3.12) and (3.13) into (3.14) we reach at 
2

2
1

2

( ) ( )
( ) . (3.15)

( )
2

i

o

s t t u h u du
SNR t

N h u du

α
∞

−∞

∞

−∞

− −

=
∫

∫
 

Using the Cauchy – Schwartz inequality in the numerator of (3.15), we have 

2 2 22 2
1 1

2

( ) ( ) 2 ( )
( ) . (3.16)

( )
2

i i

oo

s t t u du h u du s t t u du
SNR t

NN h u du

α α
∞ ∞ ∞

−∞ −∞ −∞
∞

−∞

− − − −
≤ =

∫ ∫ ∫

∫
 

Cauchy – Schwartz inequality tells us that the peak instantaneous SNR occurs 

when 

*
1( ) ( ). (3.17)i oh u s t t u= − −

 

Thus, the maximum instantaneous SNR is found as 

22
12 ( )

( ) . (3.18)
i o

o
o

s t t u du
SNR t

N

α
∞

−∞

− −
=

∫

 

Using the signal energy formulation  

22
1( ) , (3.19)i os t t u duα

∞

−∞

= − −∫E

 

We can write the output peak instantaneous SNR as 
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2( ) . (3.20)o
o

SNR t
N

=
E

 

Thus, the peak instantaneous SNR depends only on the signal energy and input 

noise power, and is independent of the waveform utilized by the radar. 

 

Finally, we can determine the impulse response of the matched filter via (3.17). If 

we desire the peak to occur at 0 1t t= , we get the noncausal matched filter impulse 

response, 

*( ) ( ). (3.21)nc ih t s t= −
 

Alternatively, the causal impulse response is given as 

*( ) ( ). (3.22)c ih t s T t= −
 

In this case, the peak occurs at 0 1t t T= + . The FTs of ( )nch t  and ( )ch t  are  

*( ) ( ), (3.23)nc iH f S f=

*( ) ( ) exp( 2 ) (3.24)c iH f S f j fTπ= −
 

with ( )iS f  representing the FT of ( )is t . The moduli of ( )H f  and ( )iS f  are 

identical. However, their phase responses are opposite of each other. 

 

The output of the matched filter, ( )y t , in (3.7) can be expressed by the 

convolution integral between the filter’s impulse response ( )h t  in (3.22) and the 

received signal ( )x t  in (3.4). Alternatively, the output ( )y t  can also be interpreted as 

the cross – correlation between ( )x t  and ( )is T t+ . That is, 

*( ) ( ) ( ) . (3.25)iy t x u s T t u du
∞

−∞

= − +∫
 

Therefore, the matched filter output can be computed using the cross – correlation 

of the received signal and an advanced replica of the transmitted waveform. If the 

received signal is the same as the transmitted signal, the output of the matched filter 
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would be the autocorrelation function of the received (or transmitted) signal 

(Mahafza, 2000). 

 

3.2.2 The Radar Ambiguity Function 

 

The radar ambiguity function represents the output of the matched filter, and it 

describes the interference caused by range and/or Doppler of a target when compared 

to a reference target of equal radar cross section. The ambiguity function evaluated at 

( , ) (0,0)τ ν =  is equal to the matched filter output that is matched perfectly to the 

signal reflected from the target of interest. Here, τ  is the time lag and ν  represents 

the frequency lag (Doppler shift). In other words, returns from the nominal target are 

located at the origin of the ambiguity function. Thus, the ambiguity function at 

nonzero τ  and ν  represents returns from some range and Doppler different from 

those for the nominal target. 

 

Radar designers normally use the radar ambiguity function as a means of studying 

different waveforms. It can provide insight about how different radar waveforms 

may be suitable for the various radar applications. It is also used to determine the 

range and Doppler resolutions for a specific radar waveform. The three – 

dimensional (3-D) plot of the ambiguity function versus the frequency and time lag 

is called the radar ambiguity diagram. The radar ambiguity function for signal ( )s t  is 

defined as its 2-D correlation function. More precisely, 

*( , ) ( ) ( ) exp( 2 ) . (3.26)sAF s t s t j t dtτ ν τ πν
∞

−∞

= − −∫
 

In this notation, the target of interest is located at ( , ) (0,0)τ ν = , and the ambiguity 

diagram is centered at the same point. Properties of the radar ambiguity function are 

(Mahafza, 2000): 
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1. The maximum value for the ambiguity function occurs at ( , ) (0,0)τ ν =  and is 

equal to E  where E  is the signal energy defined as 2( )s t dt
∞

−∞

= ∫E . Then, for 

the maximum of the ambiguity function we have 

{ }max ( , ) (0,0) . (3.27)s sAF AFτ ν = = E
 

Hence 

( , ) (0,0). (3.28)s sAF AFτ ν ≤
 

2. The ambiguity function is symmetric, 

( , ) ( , ). (3.29)s sAF AFτ ν τ ν= − −
 

3. The total volume under the ambiguity function is constant, 

2 2( , ) . (3.30)sAF d dτ ν τ ν =∫∫ E  

 

4. If the function ( )S f  is the FT of the signal ( )s t , then by using Parseval’s 

theorem we obtain 

*( , ) ( ) ( ) exp( 2 ) (3.31)sAF S f S f j f dfτ ν ν π τ= − −∫
 

which is the equivalent frequency domain formulation of the ambiguity function. 

 

3.3 Pulse Compression and Radar Signals 

 

For good detection radar needs a large peak signal power to average noise power 

ratio. The matched filter was the best of all possible filters and it produced the 

maximum output SNR. This maximum ratio depended on the total transmitted 

energy, as in (3.20), and not on the presence of any frequency modulation (FM) on 

the transmitted signal. Thus, for good detection many radars seek to transmit long – 

duration pulses to achieve high energy. On the other hand, for good range 

measurement accuracy radar needs short pulses. To meet these two conflicting 
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conditions, a concept called pulse compression was developed. It makes use of the 

fact that the bandwidth of a long – duration pulse can be made larger by use of FM. 

Large bandwidth implies narrow effective duration. With FM, a waveform can be 

designed to have both long duration and small effective duration (large bandwidth). 

Thus, by use of FM over long transmitted pulses and a matched filter, a system can 

simultaneously obtain good detection performance and highly accurate range 

measurements (Peebles, 1998). 

 

If a long duration pulse is frequency modulated, its spectrum can have a wider 

bandwidth than if no FM were present. Since increasing bandwidth corresponds to 

waveforms with decreased effective duration, the potential exists for a long – 

duration, large – bandwidth pulse to be converted to a short – duration, effective 

pulse. In effect, we seek to squeeze the long pulse into a short pulse. If energy can be 

conserved, we can even expect the shorter compressed pulse to increase in peak 

amplitude compared to amplitude of a long pulse. These effects can all be achieved 

by a signal processing technique called pulse compression.  

 

To visualize the process of pulse compression, imagine that a long pulse ( )s t  with 

duration T  has a linearly varying instantaneous frequency ( )if t . Its total frequency 

deviation over time T  is f∆  (Hz). This pulse is applied to a pulse compression filter 

that has a constant modulus transfer function but a phase with a linearly decreasing 

envelope delay. We may visualize the low frequencies that enter the filter first as 

being delayed more than those that enter later. If the slope is a match to the input 

signal’s FM, all the frequencies can be thought of as emerging at the same time and 

piling up in the output. Thus, the response can be larger in amplitude. However, 

because the input’s bandwidth is large, these frequencies can pile up for only a short 

time and the output quickly decreases from the peak in relation to the reciprocal of 

the bandwidth. Duration of the main response is smaller than T  by the factor 1
fT∆

 

and fT∆ is called the time – bandwidth product or the pulse compression ratio of 

( )s t . Similarly, peak power is larger by a factor of fT∆ . Outside the region of main 
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response, undesired responses called sidelobes occur for a time duration T  on each 

side of the main response (Peebles, 1998). 

 

Various types of modulations used in pulse compression are called codes. Some 

of the better – known codes include (Lewis, Kretschmer & Shelton, 1986): 

• Barker binary phase 

• Pseudorandom binary phase 

• Random binary phase 

• Step linear frequency modulation 

• Linear frequency modulation 

• Nonlinear frequency modulation 

• Step-frequency-derived polyphase (Frank and P1 codes) 

• Butler-matrix-derived polyphase (P2 code) 

• Linear-frequency derived polyphase (P3 and P4 codes) 

• Huffman codes 

• Complementary codes 

 

In this thesis, we used linear frequency modulation, step linear frequency 

modulation, Frank, P1, P2, P3 and P4 codes in our simulations. 

 

3.3.1 Linear FM (Chirp) Signal  

 

The linear frequency modulated (LFM) or chirp waveform is one of the oldest and 

most useful radar pulse compression waveforms due to its high range resolution 

(determined by the waveform bandwidth) and its tolerance to Doppler for ease in 

receiver processing. In this signal, the frequency varies linearly with time in the 

transmitted pulse. The pulse compression of the linear frequency modulated signal is 

equal to the product of the transmitted pulse length and the transmitted bandwidth; 

fT∆ . The values of fT∆  of over 10000 are achievable, although many systems use 

time – bandwidth products of less than a hundred or two. 
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The LFM pulse can be defined as, 

2( ) ( ) exp 2 ( ) (3.32)
2o o

ts t Arect j f t t
T

µπ φ = + +  
where A , T , of  and µ  are positive constants and oφ  is an arbitrary phase angle. An 

example of the LFM signal created in discrete form with chirp rate 0.5µ = , 

amplitude 1A =  and pulse duration 1T sµ=  is sketched in Figure 3.3. The constant 

µ  is related to the frequency sweep f∆  and the pulse duration T  via 

22 ( / ). (3.33)f rad s
T
πµ ∆

=

The instantaneous angular frequency change ( )if t  due to FM is 

2
0 0

1 ( ) 1( ) 2 ( ) , . (3.34)
2 2 2 2 2i

d t d T Tf t f t t f t t
dt dt
θ µπ µ

π π
 = = + = + − ≤ ≤  

 

Pulse compression is performed by convolving the received signal with a filter 

matched to the transmitted LFM, yielding a compressed pulse of length 1
f∆

. Hence, 

the compression ratio, defined as the ratio of the transmitted pulse length to the 

compressed pulse length is, fT∆ . 

 

The ambiguity function (AF) defined in (3.26) which is repeated here as, 

*( , ) ( ) ( ) exp( 2 ) (3.35)sAF s t s t j t dtτ ν τ πν
∞

−∞

= − −∫
provides a measure of the similarity between a signal ( )s t  and its delayed (τ  

parameter) and Doppler shifted (ν  parameter) versions. The ambiguity function is 

commonly used to assess the range and Doppler resolution properties of a given 

waveform. For the LFM signal defined in (3.32), the AF can be shown to have its 

primary region of support concentrated along a ridge through the origin of the delay 

– Doppler (frequency lag) plane with slope µ . The contour plot of the AF magnitude 

of the LFM signal in Figure 3.3 is shown in Figure 3.4.  

 

Using the fact that the AF of any chirp is a line passing through the origin of the 

ambiguity plane with a slope equal to the sweep rate µ , a detection statistic for 
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detection (Wang, et. al, 1998) and sweep rate estimation of LFM signals was 

proposed (Akay & Boudreaux – Bartels, 2001).  

 

Figure 3.3: LFM signal waveform. 
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Figure 3.4: The contour plot of the ambiguity function of the LFM signal. 

 

3.3.2 Step Linear Frequency Modulation (Step LFM) Code 

 

The LFM is a continuous function of time over the pulse duration T . We can also 

build a pulse from subpulses using digital hardware. A signal of this kind is the step 

linear frequency modulation (LFM) code. The step LFM code, which is also known 

as step – chirp, provides an approximation of the chirp signal. The step – chirp 

waveform usually consists of a sequence of different tones or concatenated 

frequencies. The waveform duration T  is divided into M  equal – duration intervals 

and the waveform frequency is constant over each of these subpulses. The frequency 

of each subpulse differs from the adjacent subpulses by the frequency step size 

Mf
T

δ = . The total frequency excursion of the step LFM is M fδ , yielding a 

compression ratio of 2M . The change of the frequency step size is illustrated in 

Figure 3.5. The time domain waveform of the step LFM signal and the contour plot 

of its ambiguity function are sketched in Figure 3.6 and Figure 3.7, respectively. The 

duration and compression ratio are the same with the LFM signal in Figure 3.3. In 
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Figure 3.7, beside the main ridge at the center of the ambiguity function contour plot, 

there can also be seen parallel ridges. These parallel ridges are as a result of the 

energy spread which is a characteristic of all pulse compression codes other than the 

LFM signal. 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.5: Frequency steps of the step LFM signal. 

 
Figure 3.6: Step LFM signal waveform. 

f(t) 

T 

δf

Mδf 
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Figure 3.7: The contour plot of the step LFM ambiguity function. 

 

3.3.3 Frank Code 

 

The Frank polyphase coded waveform may be described and generalized by 

considering a hypothetically sampled step LFM waveform. In polyphase codes, a 

waveform of duration T  is divided into N  equal – length subpulses of duration 

1
TT
N

=  with each subpulse having one of M  possible phases. For the Frank code 

(Frank, 1963), the length N  of a codeword is equal to the square of M ; 

2. (3.36)N M=
The carrier frequency remains fixed and a constant phase value is assigned to each 

2M  subpulses. The compression ratio of the Frank code is given as 2M . A Frank 

code with unit energy is defined as 

[ ]{ } 21( ) exp 2 , , 1,..., . (3.37)
2o n
Ts t j f t t n M

T
π ϕ= + ≤ =
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The phase sequence nϕ  is defined in matrix form as (Lewis, Kretschmer & 

Shelton, 1986) 

2 ( 1)( 1), 1,..., for each 1,..., . (3.38)mn m n m M n M
M
πϕ = − − = =

For example, for 4M = , the phase matrix can be written as 

0 0 0 0

0 1 2 3
. (3.39)

20 2 4 6

0 3 6 9

mn
πϕ

 
 
 
 =  
 
 
  

An illustration of the phase increments is shown in Figure 3.8 for 4M = . 

 

The time domain plot of the Frank code and the contour plot of its ambiguity 

function are sketched in Figure 3.9 and Figure 3.10, respectively. The duration and 

compression ratio are the same with the LFM signal in Figure 3.3. In Figure 3.10, 

beside the main ridge at the center of the ambiguity function contour plot, there also 

exist parallel ridges. The number of parallel ridges is more than the one for the step 

LFM signal since there is more energy spread in the Frank code than the step LFM 

signal. The parallel lines seen in the ambiguity contour plot of the Frank code in 

Figure 3.10 are similar to the ones in the ambiguity contour plot of the step LFM 

signal. This is because the phase sequence of the Frank code is generated by 

sampling the phase of the step LFM signal. 
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Figure 3.8: Phase increments of Frank code for M=4. 

 
Figure 3.9: Time domain waveform of the Frank coded signal. 
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Figure 3.10: The contour plot of the Frank code ambiguity function. 

 

3.3.4 P1 Code 

 

The P1 codes are similar to the Frank codes in terms of the Doppler frequency 

tolerance and ease of implementation. In Figure 3.11(a), a Frank coded waveform is 

depicted, where kG  denotes the phase groups corresponding to the sampled phases 

of a step – chirp waveform. Each group consists of N  vectors beginning with a 

vector at a phase angle of 0o . The phase increments within thK  group, where 

0 1K N≤ ≤ − , are 

(360 ) / . (3.40)o
K K Nφ∆ =

 

Thus, 0G  consists of N  vectors at 0o , 1G  has vectors separated by 360 /o N , and 

so on, until at the center of the coded waveform the phase increments approach or 

become 180o , depending on whether N  is odd or even. For increments greater than 

180o , the phases are ambiguous with the result that the phasors of the phase group 

N KG −  are the conjugates of the phasors of the phase group KG . Thus, the vectors 
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have the same increments, but they rotate in opposite directions. As a result, the 

phase increments are small at both ends of the code and become progressively larger 

toward the center of the code, where the increments approach 180o  from opposite 

directions. 

 

The P1 code was derived using the previously described relationship between the 

Frank code phases and those of a sampled step – chirp waveform. The desired 

symmetry, having the DC or small incremental phase group at the center of the code, 

can be achieved by determining the phases, which result from placing the 

hypothetical synchronous oscillator at the band center of the step – chirp waveform. 

For an odd number of frequencies, the synchronous oscillator frequencies and the 

resulting phases are the same as in the Frank code, except that the phase groups are 

arranged as indicated in Figure 3.11(b). This rearrangement causes the P1 code to be 

more tolerant of precompression bandlimiting than the Frank code (Lewis, 

Kretschmer & Shelton, 1986). 

 

 

 

 

(a) 

 

 

 

(b) 
Figure 3.11: (a) Frank code phase group; (b) P1 code phase group. 

 

Similar to the Frank code signal in (3.37), a P1 code with unit energy can be 

described as  

[ ]{ } 21( ) exp 2 , , 1,..., (3.41)
2o n
Ts t j f t t n M

T
π ϕ= + ≤ =

where the phase sequence nϕ  is defined in matrix form. The thm  element of the thn  

group is given in degrees by (Lewis, Kretschmer & Shelton, 1986) 

G0 G1 G2 ... GN-1GN-2 ... 

t   → 

G0 G1 G2 ... GN-1GN-2 ... 

t   → 
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[ ][ ](2 1) ( 1) ( 1) , 1,...,

for each 1,..., . (3.42)

mn M n n M m m M
M

n M

πϕ = − − − + − =

=
 

The time domain waveform of the P1 code and the contour plot of its ambiguity 

function are sketched in Figure 3.12 and Figure 3.13, respectively. The duration and 

compression ratio are the same as with the LFM signal in Figure 3.3. In Figure 3.13, 

beside the main ridge at the center of the ambiguity function contour plot, there are 

also parallel ridges. The number of these parallel ridges is more than the one with the 

step LFM since there is more energy spread in P1 code as in the Frank code than the 

step LFM. However, compared to the Frank code, the number of these parallel ridges 

is still less in the P1 code. In Figure 3.13, we can see the similarity of parallel ridges 

of P1 with the step LFM since the phases of the P1 code are also generated from the 

phase samples of the step LFM signal. 

 

3.3.5 P2 Code 

 

The P2 code is valid for even M , and each group of the code is symmetric about 

the zero phase. For even M , the P2 code has the same phase increments within each 

phase group as the P1 code, except that the starting phases are different. 

 

A P2 code with unit energy is described as 

[ ]{ } 21( ) exp 2 , , 1,..., (3.43)
2o n
Ts t j f t t n M

T
π ϕ= + ≤ =

where the phase sequence nϕ  is defined in matrix form. The thm  element of the thn  

group is given in degrees by (Lewis, Kretschmer & Shelton, 1986); 

[ ][ ](2 1) 1 2 , 1,...,
2

for each 1,..., ( even). (3.44)

mn M n M m m M
M

n M M

πϕ = − − + − =

=
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The requirement for M  to be even in this code stems from the desire for low 

autocorrelation sidelobes. An odd value of M  results in high sidelobes. This code 

has the same frequency symmetry of the P1 code. 

 

The plot of the P2 code in time domain and the contour plot of its ambiguity 

function are sketched in Figure 3.14 and Figure 3.15, respectively. In Figure 3.15, 

the parallel ridges seen in the ambiguity contour plot of the P2 code show that 

similar energy spread occurs for this signal as in the Frank and P1 codes. The 

ambiguity contour plot is virtually similar to the contour plot of the P1 ambiguity 

plot in Figure 3.13. Since the phases of the P3 code is generated from the phase 

samples of the step LFM, the ambiguity contour plot also resembles the ambiguity 

plot of the step LFM shown in Figure 3.7. 

 

 
Figure 3.12: Time domain waveform of the P1 coded signal. 
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Figure 3.13: The contour plot of the P1 code ambiguity function. 

 
Figure 3.14: Time domain waveform of the P2 coded signal. 
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Figure 3.15: The contour plot of the P2 code ambiguity function. 

 

3.3.6 P3 Code 

 

The P3 code can be obtained using a linear FM waveform. The P3 code is more 

Doppler tolerant than the Frank, P1, and P2 codes. It is derived by converting a 

linear frequency modulated waveform to baseband by using a synchronous oscillator 

on one end of the frequency sweep and sampling the in – phase ( )I  and quadrature 

( )Q  components at the Nyquist rate (Lewis, Kretschmer & Shelton, 1986). 

 

A P3 code with unit energy is of the form 

[ ]{ } 21( ) exp 2 , , 1,..., (3.45)
2o n
Ts t j f t t n M

T
π ϕ= + ≤ =

where the phase sequence nϕ  is defined in vector form. The thn  element of the phase 

vector is given in degrees by (Lewis, Kretschmer & Shelton, 1986) 
2

2
2

( 1) , 1,..., . (3.46)n
n n M
M

πϕ −
= =
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The plot of the P3 code in time and the contour plot of its ambiguity function are 

sketched in Figure 3.16 and Figure 3.17, respectively. In Figure 3.17, similar to other 

polyphase signals, there can be seen parallel ridges in the ambiguity function of the 

P3 signal. However, the number of parallel ridges in the P3 code is much larger than 

in the P1 and P2 codes. Notice that the ambiguity contour plot of the P3 code is quite 

similar to the ambiguity plot of the Frank code. From Figure 3.17, we see that the 

parallel ridges are similar to the ones in the ambiguity contour plot sketched in 

Figure 3.4. The reason for this can be traced to the fact that the phase sequence of the 

P3 code is generated by sampling the phase of the LFM signal. 

 

3.3.7 P4 Code 

 

The P4 code is derived from the same waveform as the P3 code. However, in the 

P4 code, the local synchronous oscillator frequency value is different from the P3 

code (Lewis, Kretschmer & Shelton, 1986). 

 

A P4 code with unit energy can be described as 

[ ]{ } 21( ) exp 2 , , 1,..., (3.47)
2o n
Ts t j f t t n M

T
π ϕ= + ≤ =

where the phase sequence nϕ  is defined in vector form. The thn  element of the phase 

vector is given in degrees by (Lewis, Kretschmer & Shelton, 1986) 
2

2
2

( 1) ( 1), 1,..., . (3.48)n
n n n M
M

πϕ π−
= − − =

 

The time domain plot of the P4 code and the contour plot of its ambiguity 

function are sketched in Figure 3.18 and Figure 3.19, respectively. In Figure 3.19, 

parallel lines are visible in the ambiguity contour plot showing that energy spread 

also exists in the P4 signal. From Figure 3.19, we see that the parallel ridges are 

similar to the ones in the ambiguity contour plot sketched in Figure 3.4. This is 

because the phase sequence of the P4 code is generated by sampling the phase of the 

LFM signal, similar to the P3 code. 
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Figure 3.16: Time domain waveform of the P3 coded signal. 

 
Figure 3.17: The contour plot of the P3 code ambiguity function. 
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Figure 3.18: Time domain waveform of the P4 coded signal. 

 
Figure 3.19: The contour plot of the P4 code ambiguity function. 
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CHAPTER FOUR 

 

DETECTION OF POLYPHASE – CODED RADAR SIGNALS USING 

FRACTIONAL AUTOCORRELATION 

 

In this chapter, we utilize a detection statistic which is based on fractional 

autocorrelation for detection of LFM, step LFM and polyphase coded signals. In 

Section 1, we introduce the relation between the ambiguity function and fractional 

autocorrelation. Then, in Section 2, we present the definition of a detection statistic 

based on fractional autocorrelation, which is utilized for detection of LFM signals 

(Akay, & Boudreaux – Bartels, 2001). We also derive the performance of this 

detector. In Section 3, we extend the use of the detection statistic for detection of 

step LFM and polyphase – coded signals (Frank, P1, P2, P3, and P4 codes) and 

provide simulation examples. We would like to note that some of the results in this 

chapter are published before as conference papers (Akay & Erözden, 2004), 

(Erözden & Akay, 2004). 

 

4.1 Ambiguity Function and Fractional Autocorrelation Function 

 

The FrFT has been shown to be related with the Wigner distribution which is a 

frequently used time – frequency representation (Almeida, 1994), (Özaktaş, et. al, 

1994). Via fractional autocorrelation, it can also be related to the ambiguity function 

(AF) (Akay & Boudreaux – Bartels, 2001). The AF of a signal ( )s t  can be 

considered to be a 2-D joint correlation function of time lag, τ , and frequency lag, 

ν  (Cohen, 1995), (Hlawatsch & Boudreaux – Bartels, 1992). Definition of the AF of 

the signal ( )s t  can be derived using the unitary time – shift operator, Tτ, and the 

frequency – shift operator, Fν, (Baraniuk & Jones, 1995) as 

( )*

2 2 2 2

( , ) , exp 2 (4.1)
2 2sAF F T s F T s s t s t j t dtν τ ν τ
τ ττ ν πν

− −

   = = + − −   
   ∫

where ,< >  represents the inner product operation.  
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To obtain the relationship between the AF and fractional autocorrelation we 

change the integration dummy variable in (2.40) as ( )' cos / 2β β ρ φ = −   . Thus, 

we have 

( ) *cos cos( ) ( ' ) ( ' ) exp( 2 ' sin ) '. (4.2)
2 2

s s s s j dφ
ρ φ ρ φρ β β πβ ρ φ β= + − −∫�

 

Comparing (4.1) and (4.2), fractional autocorrelation can be related to the AF as 

( ) ( ) ( cos , sin ). (4.3)ss s AFφ ρ ρ φ ρ φ=�

 

By (4.3), we can conclude that fractional autocorrelation associated with the 

fractional domain at angle φ  can also be recovered by taking a slice of the AF at 

angle φ  on the ambiguity plane, as sketched in Figure 4.1. In particular, the cut 

along the time lag axis, 0φ = , corresponds to temporal autocorrelation of ( )s t . 

Similarly, the cut along the frequency lag (Doppler) axis, 
2
πφ = , can be considered 

as spectral autocorrelation of ( )s t . Thus, fractional autocorrelations of ( )s t , 

computed using (4.2), allow us to obtain radial cuts of the AF at angles other than 

0φ =  and 
2
πφ = .  

 
Figure 4.1: Fractional autocorrelation at angle φ is equal to the radial slice of the AF 

at angle φ on the ambiguity plane. 
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Using the property that the maximum of the AF occurs at ( , ) (0,0)τ ν = , we can 

conclude that fractional autocorrelation also has its maximum at the origin, 0ρ = ,  

( ) ( )( ) (0). (4.4)s s s sφ φρ ≤� �

 

The calculation of fractional autocorrelation can be accomplished efficiently using 

the alternative formulation in (2.44). This method uses the discrete – time 

approximation of the FrFT and the fast Fourier transform (FFT). The discrete FrFT 

algorithm proposed in (Özaktaş, et. al, 1996) has a computational load of 

( log )O N N  for a length N  discrete – time signal, making it comparable in 

efficiency to the fast Fourier transform (FFT) algorithm (Proakis & Monalakis, 

1996). Thus, utilizing the discrete FrFT proposed in (Özaktaş, et. al, 1996) along 

with the FFT, a discrete – time calculation of fractional autocorrelation can be 

realized without excessive computational overhead. Alternatively, we can use the AF 

as in the right side of (4.3) to calculate fractional autocorrelation. However, it is not 

computationally efficient (Akay & Boudreaux – Bartels, 2001). 

 

4.2 Detection Statistic for Detection of LFM and Polyphase – Coded Signals 

 

It has been shown that the optimum detector for LFM signals embedded in noise, 

with unknown chirp rate and initial frequency, computes the integral of the Wigner 

distribution of the received signal along all lines on time – frequency plane (Kay & 

Boudreaux – Bartels, 1985). The line that produces the maximum value corresponds 

to the maximum likelihood estimate of the linear instantaneous frequency of the 

LFM. Integration of the Wigner distribution of the received signal along all lines on 

time – frequency plane has been named the Radon – Wigner transform (RWT) 

(Wood & Barry, 1994), which turns the task of tracking straight lines on the time – 

frequency plane into locating maxima in a two – dimensional (initial frequency 

versus chirp rate) plane.  

 

Often the chirp rate is the only parameter of interest. Thus, LFM signals can be 

detected by locating maxima with respect to the chirp rate in many applications. In 
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other words, the chirp rates distinguish different LFM signals. Using this fact, for the 

detection of multi – LFM signals in noise a method which combines the AF and the 

Radon transform has been derived and called Radon – ambiguity transform (RAT) 

(Wang, et. al, 1998). Using the RAT, LFM signals can be detected by computing line 

integrals through the origin of the signal’s ambiguity function magnitude. The RAT 

reduces the detection of LFM signals to the location of maxima over chirp rates only. 

Beside LFM signals, the RAT detector can also be applied for the detection of step 

LFM, Frank, P1, P2, P3 and P4 codes (Jennison, 2003). The detection statistic used 

in (Wang, et. al, 1998) and (Jennison, 2003) is given as 

( ) ( , ) (4.5)sD m AF m dτ τ τ= ∫
where AFs denotes the AF of the received signal ( )s t . ( )D m  calculates a line 

integral of the magnitude of the AF along a radial line of slope m . When the 

detection statistic ( )D m  exceeds a threshold for a certain chirp rate value, then the 

algorithm decides that an LFM signal, with that particular chirp rate, is present in the 

received signal (Wang, et al, 1998). 

 

4.2.1 A Detection Statistic Based on Fractional Autocorrelation Function 

 

Using the relation between the AF and fractional autocorrelation, a detection 

statistic based on fractional autocorrelation for the detection of LFM signals is 

derived (Akay & Boudreaux – Bartels, 2001), (Akay, 2000). 

 

The integral of the AF magnitude along the radial line with angle φ can be 

expressed as 

( ) ( , ) ( cos sin ) (4.6)sL AF d dφ τ ν δ ν φ τ φ ν τ= −∫ ∫
where (.)δ  is the Dirac delta function. Using properties of the Dirac delta function, 

(4.6) can be written as, 

1( ) ( , tan ) . (4.7)
cos sL AF dφ τ τ φ τ

φ
= ∫
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Applying the change of variable 
~

cos
ττ

φ
= , produces 

~ ~ ~
( ) ( cos , sin ) , . (4.8)

2sL AF d πφ τ φ τ φ τ φ= <∫
 

Using the relation between fractional autocorrelation and the AF in (4.3), we 

obtain, 

( ) ( )( ) . (4.9)L s s dφφ ρ ρ�= ∫
 

If we let arctan( )mφ =  and ( ) (arctan( ))
v
L m L m= , the final detection statistic can 

be expressed as, 

arctan( )( ) ( )( ) . (4.10)
v

mL m s s dρ ρ= ∫ �

 

Integrating the magnitude of the fractional autocorrelation with angle 

arctan( )mφ =  of the received signal ( )s t  is equal to integrating the AF along a line 

with angle φ  going through the origin. 

 

Comparing the detection statistic in (4.5) with the detection statistic derived in 

(Akay & Boudreaux – Bartels, 2001) as given by (4.10), we can see that they are not 

completely identical. The two detection statistics can be related as (Akay & 

Boudreaux – Bartels, 2001) 

2( ) (arctan( )) 1 ( ). (4.11)
v
L m L m m D m= = +

 

For chirp rates 1
2

m ≤ , the ratio between the two detection statistics is bounded 

by 5
2

. However, the detection statistic in (4.10) is computationally more efficient 

than the one given in (4.5) since it does not require the calculation of the AF. 

 

In simulations, we used the detection statistic in (4.10) using a normalization 

factor in the denumerator as 
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arctan( )( )( )
( ) . (4.12)

( )

v ms s d
L m

s t dt

ρ ρ�
= ∫

∫
 

This normalization factor allows the detection statistic to be independent of the 

noise power. 

 

4.2.2 Performance of the Detection Statistic Based on Fractional Autocorrelation 

Function 

 

For a given detection statistic, we conclude that a signal is present (hypothesis 

1H ) if the statistic exceeds a certain threshold. If not, it is decided that no signal is 

present (hypothesis 0H ); that is, the signal contains only noise. The noise is assumed 

to be a zero – mean, complex, white Gaussian process with two – sided power 

spectral density (PSD) oN . Performance of a detection method can be characterized 

with the help of the performance SNR measure  

1 0

1
2

1 0

( ( ) | ) ( ( ) | )
( ) . (4.13)

1 var( ( ) | ) var( ( ) | )
2

v v

v v

E L m H E L m H
P SNR

L m H L m H

−
=

  +    

Here, ( ( ) | )
v

iE L m H  and var( ( ) | )
v

iL m H  denote the expected value and variance of 

( )
v
L m , respectively, for hypothesis iH , 0,1i = . Large ( )P SNR  values indicate that 

the average values of ( )
v
L m  for the two hypotheses are well separated, whereas a 

small variance for ( )
v
L m  results in improved detection (Wang, et. al., 1998). 

 

( )P SNR  for the matched filter detector is equal to 0/ NE , which is optimal 

among linear and nonlinear detectors (Wang, et. al., 1998). 

 

For the detector ( )
v
L m , the performance SNR is calculated to be (the proof is 

given in Appendix A.1) 
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EE
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  
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The performance SNR of the detector ( )D m  in (Wang, et. al., 1998) is the same 

as (4.14). The plot of the performance SNR can be seen in Figure 4.2. 
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Figure 4.2: Comparison of the performance SNR of the matched filter and 

( )
v
L m . 

 

Another common merit of performance is the output signal to noise ratio outSNR   

1

(4.15)
var( ( ) | )

out v
output signal powerSNR

L m H
=  

which is the ratio between the output signal power and the output noise power. For 

the detector ( )
v
L m , the outSNR  is calculated to be (the proof is given in Appendix 

A.1) 
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The outSNR  of ( )D m  in (Wang, et. al, 1998) is almost the same as (4.16) except 

that the multiplication term, 2cos φ  does not appear. In Figure 4.3, outSNR  of the 

matched filter is compared with the outSNR  of ( )
v
L m  for different φ  values. 
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Figure 4.3: SNRout of the matched filter and ( )
v
L m  for angles φ=π/3, π/4, π/6. 

 

4.3 Detection of LFM, Step LFM and Polyphase Codes 

 

In this section, the detection statistic, ( )
v
L m , given in (4.12) is digitally simulated 

for detection of LFM, step LFM and polyphase coded signals, namely, Frank, P1, P2, 

P3 and P4 codes which were described in Chapter 3. Digital computation of the 

detection statistic needs the digital computation of fractional autocorrelation in 
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(2.44). In computation of (2.44), one FrFT and one classical inverse FT are used. 

Hence, we need a digital computation of the FrFT. However, the discrete algorithm 

of the contionuous FrFT is not a purely discrete – time definition of the FrFT. Digital 

computation of the FrFT is an approximation of the continuous – time definition of 

the FrFT in (2.9) (Özaktaş, et al. 1996). In our simulations, we used the algorithm 

proposed in (Özaktaş, et al, 1996) to compute the FrFT digitally. We make sure that 

the conditions given in (Özaktaş, et al, 1996) are satisfied in order to obtain correct 

results. 

 

4.3.1 Simulation Example 1 

 

We examine the detection statistic, ( )
v
L m , given in (4.12) for each signal at 

different SNR values; 0 dB, -3 dB, -6 dB, -9 dB and -12 dB. Each signal is created 

digitally with 256 sample points having a sweep rate (chirp rate) of 0.5. We added 

zero – mean additive white Gaussian complex noise to each simulated signal. The 

complex noise is generated by two independent, zero – mean, random processes with 

a constant PSD equal to ON . The detection statistic of the LFM signal for different 

SNR values is plotted in Figure 4.4. It can be seen that the detection statistic can 

detect the signal by producing peaks at the correct sweep rate which is 0.5. As the 

SNR decreases the peak value of the detection statistic also decreases but the peak 

occurring at the correct sweep rate value would still be visible above a suitably 

chosen detection threshold. 

 

Similarly, the detection statistic of the step LFM is plotted in Figure 4.5. It also 

produces a peak at the correct sweep rate 0.5. However, the peak values occurred are 

not as high as in the LFM. The reason for this difference can be explained by 

comparing the AF plots of the LFM and step LFM signals given in Figures 3.4 and 

3.7, respectively. The AF of a pure LFM is concentrated as a single line, however the 

step LFM have parallel lines, which causing on the energy spread.  
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The detection statistics of the polyphase coded signals Frank, P1, P2, P3 and P4 

are plotted in Figure 4.6 through 4.10. Each of these detection statistics also 

produces a peak at the correct sweep rate as with the LFM and the step LFM plots. 

Similarly, the peak values occurred at the correct sweep rate are not as high as the 

peak values occurred in the detection statistics of the LFM signal. The reason for the 

decrease is explained by examining the AF plots of the polyphase codes given in 

Chapter 3. The AF plots of the polyphase codes have more parallel ridges than the 

step LFM which means more energy spread occurs for these signals. The comparison 

of the detection statistics for each simulated signal will be made at the next section. 
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Figure 4.4: Detection statistics for the LFM signal at different SNR values. 



57 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

Sweep Rate

D
et

ec
tio

n 
S

ta
tis

tic
s

0dB
-3dB
-6dB
-9dB
-12dB

 
Figure 4.5: Detection statistics for the step LFM signal at different SNR values. 
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Figure 4.6: Detection statistics for the Frank code at different SNR values. 
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Figure 4.7: Detection statistics for the P1 code at different SNR values. 
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Figure 4.8: Detection statistics for the P2 code at different SNR values. 
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Figure 4.9: Detection statistics for P3 code at different SNR values. 
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Figure 4.10: Detection statistics for the P4 code at different SNR values. 
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4.3.2 Simulation Example 2 

 

In this section, we compare the detection statistic of each signal at different SNR 

values, 0 dB, -3 dB, -6 dB, -9 dB and -12 dB. All the signals are created digitally 

using 256 sample points and each has a sweep rate of 0.5. We then added zero – 

mean additive white Gaussian complex noise to each signal. The power of the noise 

is specially arranged so that the specified SNR is produced. For comparison 

purposes, the detection statistic is normalized with the detection statistic of the LFM 

signal to set the peak value as 1. The detection statistics calculated at SNR = 0 dB 

are plotted in Figure 4.11. It can be seen that the peak value occurred at the correct 

sweep rate of 0.5, and the LFM signal has the highest peak amplitude value. Then, 

the detection statistic peaks for the step LFM, P4, P2, P1, Frank and P3 codes come 

in decreasing order. The difference in the amplitude of the peaks obtained from 

different signals can be explained by examining the AF plots given in Chapter 3. The 

energy of the signals, step LFM, Frank, P1, P2, P3 and P4, are distributed among 

parallel lines appearing in their AF representations. Since the AF of a pure LFM is 

concentrated as a single line, its detection statistic produces the highest peak value. 

Due to the energy spread seen in the AFs of the step LFM and the polyphase codes, 

the peak amplitude levels in their detection statistics are lower. 

 

The detection statistics calculated at SNR levels of -3 dB, -6 dB, -9 dB and -12 dB 

are plotted in Figures 4.12 through 4.15. In each plot, the similar characteristics can 

be observed. The peak values of the detection statistics for each signal type as a 

proportion of the LFM energy ε are listed in Tables 4.1 through 4.5 for different 

SNR values. 

 

Table 4.1 Peak values of detection statistics as a proportion of LFM energy, ε, (SNR = 0 dB). 

LFM Step LFM Frank P1 P2 P3 P4 

ε 0.913ε 0.613ε 0.720ε 0.766ε 0.607ε 0.768ε 
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Table 4.2 Peak values of detection statistics as a proportion of LFM energy, ε, (SNR = -3 dB). 

LFM Step LFM Frank P1 P2 P3 P4 

ε 0.955ε 0.623ε 0.753ε 0.776ε 0.622ε 0.778ε 

 

Table 4.3 Peak values of detection statistic as a proportion of LFM energy, ε, (SNR = -6 dB). 

LFM Step LFM Frank P1 P2 P3 P4 

ε 0.896ε 0.623ε 0.723ε 0.783ε 0.634ε 0.783ε 

 

Table 4.4 Peak values of detection statistic as a proportion of LFM energy, ε, (SNR = -9 dB). 

LFM Step LFM Frank P1 P2 P3 P4 

ε 0.952ε 0.723ε 0.792ε 0.795ε 0.729ε 0.830ε 

 

Table 4.5 Peak values of detection statistics as a proportion of LFM energy, ε, (SNR = -12 dB). 

LFM Step LFM Frank P1 P2 P3 P4 

ε 0.970ε 0.613ε 0.720ε 0.766ε 0.607ε 0.768ε 
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Figure 4.11: Detection statistics at SNR=0 dB. 
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Figure 4.12: Detection statistics at SNR=-3 dB. 
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Figure 4.13: Detection statistics at SNR=-6 dB. 
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Figure 4.14: Detection statistics at SNR=-9 dB. 
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Figure 4.15: Detection statistics at SNR=-12 dB. 

 

4.3.3 Use of Detection Statistic as a Sweep Rate Estimator  

 

In the above simulations, we observed that the detection statistic always makes a 

peak at the correct sweep rate. Hence, we can use the detection statistic also to 

estimate the sweep rate parameter of the signals via the maximum likelihood (ML) 

estimate defined as 
^

arg max ( ). (4.17)
v

m
m L m=

 

We find the peak value of the detection statistic, ( )
v
L m , and then we determine the 

sweep rate, m , for which this maximum is obtained.  

 

In simulations, the SNR value is changed between -12 dB and 0 dB with steps of 

3 dB. The signal length is 256 samples, and the sweep rate is set as 0.5m = . 1000 

Monte Carlo runs were carried out to estimate the sweep rate. 
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Figure 4.16 shows the performance of the estimator as a function of the SNR in 

estimating the sweep rate of the different signal types that we used. The presence of a 

threshold effect for low SNRs, which is typical of every nonlinear estimation 

algorithm, is evident in Figure 4.16. The mean square error (MSE) becomes a 

decreasing line after about SNR is at -6 dB. In Figure 4.17, the estimated sweep rates 

at different SNR values are plotted. The best performance is obtained for the LFM 

signal. Then, the other pulse compression signals come in decreasing order as the 

step LFM, P4, P2, P1, Frank and P3 code. 

 

 
Figure 4.16: MSE for different SNR values. 
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Figure 4.17: Sweep rate estimation at different SNR values. 

 

Performance of the estimator for different sample size values, 64, 256 and 1024, 

and at different SNR values, 0, -3, -6, -9, -12 dB, is also simulated. 500 Monte Carlo 

runs were carried out to estimate the sweep rate and 500 grid points were taken for 

the sweep rate in the range of [0,1] .  

 

In Figure 4.18 through 4.27, the mean square error (MSE) and the estimated 

sweep rate are plotted for SNR values of 0, -3, -6, -9, -12 dB. It can be seen that as 

the sample size increases the MSE value of the estimator decreases linearly and the 

estimates of the sweep rate approach to the correct value. The best performance is 

attained with the LFM signal. Then, the step LFM, P4, P2, P1, Frank and P3 codes 

come in decreasing order. This performance loss for the polyphase signals can be 

attributed to the energy spread in their AF representations. 
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Figure 4.18: MSE for different sample sizes (SNR = 0 dB). 
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Figure 4.19: Estimated sweep rate for different sample sizes (SNR=0 dB). 
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Figure 4.20: MSE for different sample sizes (SNR = -3 dB). 
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Figure 4.21: Estimated sweep rate for different sample sizes (SNR=-3 dB). 
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Figure 4.22: MSE for different sample sizes (SNR = -6 dB). 
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Figure 4.23: Estimated sweep rate for different sample sizes (SNR=-6 dB). 
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Figure 4.24: MSE for different sample sizes (SNR = -9 dB). 
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Figure 4.25: Estimated sweep rate for different sample sizes (SNR=-9 dB). 
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Figure 4.26: MSE for different sample sizes (SNR = -12 dB). 
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Figure 4.27: Estimated sweep rate for different sample sizes (SNR=-12 dB). 

 

 



72 

 

4.4 Maximization of the Fractional Autocorrelation Function for the LFM 

Signals 

 

It is known that the AF of an LFM signal is a line which goes through the origin 

of the ambiguity plane. The maximum value of our detection statistic, ( )
v
L m , given 

in (4.12) usually occurs at the correct sweep rate of the LFM signal. This is because 

when the sweep rate of the LFM is matched to the calculation angle of the detection 

statistic, the detection statistic calculates the integral of the line passing through the 

origin of the AF plane. It is shown in Appendix A.3 that this peak value that occurs 

at the matched angle is dependent on the amplitude value A , time duration T , and 

the sweep rate, m , of the LFM signal in the ambiguity plane. This peak value is 

found in Appendix A.3 as 

( ) . (4.18)
2cos

v

o
ATL m m

φ
= =

  

The detection statistics in Figure 4.28 calculated for LFM signals having the same 

amplitude and time duration but different sweep rate values of 0.4, 0.6 and 0.8 show 

that as the angle increases the peak value of the detection statistic also increases 

slightly as a result of the cosφ  term in the denominator of (4.18). 
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Figure 4.28: Detection statistics for LFM signals at different sweep rates. 

 



 

74 

CHAPTER FIVE 

 

USE OF FRACTIONAL CROSS – CORRELATION IN RANGE 

ESTIMATION 

 
In this chapter, we extend the use of fractional cross – correlation in radar signal 

processing for range estimation employing the LFM and polyphase coded signals. 

Range estimation via fractional cross – correlation for the LFM signal is studied 

before (Akay, 2003). Here, we extend this work for polyphase coded signals. 

Through simulations, we compare the performance of fractional cross – correlation 

with the performance of the conventional LTI cross – correlation.  

 

5.1 Delay Estimation for One Target 

 

Calculation of fractional cross – correlation for a rectangular pulse at different 

angles is studied before (Akay, 2001). The use of fractional cross – correlation for 

delay estimation employing the LFM signal was proposed and a simulation example 

for only one realization was given (Akay, 2001), (Akay, 2003). Here, we extend 

these works for multiple realizations via Monte Carlo simulations. 

 

In the simulations, we created the LFM signal in (3.32) digitally. The sweep rate 

is taken as 0.5. The discrete sequence for the transmitted waveform is denoted as 

[ ]x k . The received signal sequence can be expressed as 

[ ] [ ] [ ] (5.1)y k x k D w kα= − +
 

where α  is an attenuation factor and D  represents the round – trip delay. The 

received signal is corrupted by additive white Gaussian noise (WGN) denoted by 

[ ]w k . For simplicity of analysis, we use the attenuation factor 1α = .  

 

In simulations, we generate [ ]w k  as complex white Gaussian noise with SNR 

values of -12 dB. The number of samples for discrete LFM signal is 512 and the 
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round trip delay is set as 100D = . 1000 Monte Carlo simulations are performed and 

the results are presented as the mean of individual simulations.  

 

In the following figures, the top subplots show the result of conventional cross – 

correlation, and the results obtained using fractional cross – correlation are plotted at 

the bottom subplots.  

 

The horizontal axis of fractional cross – correlation is normalized as 

sin[arctan( )]
k

µ
 in order to make the fractional axis, r , comparable with the time 

axis, t . The normalization factor is equal to sine of the arctangent of the sweep rate, 

µ . This is dictated by the angle parameter φ  of the fractional cross – correlation 

operation. This axis arrangement must be performed whenever a fractional cross – 

correlation is used to determine the amount of the time delay correctly. In calculation 

of fractional cross – correlation, selection of the angle parameter φ  is critical. To 

match the angle of fractional cross – correlation with the sweep rate of the LFM 

signal, we assigned the angle value as arctan( )φ µ= . 

 

In Figure 5.1, the simulation results are plotted for 12SNR dB= − . It is seen that 

the conventional cross – correlation produces a peak at the correct delay value of 

100. The peak is also visible at the correct delay value using the fractional cross – 

correlation but with a lower peak value.  

 

We expected that fractional cross – correlation should produce a higher peak 

value than the conventional cross – correlation since the angle parameter of the 

fractional cross – correlation matches with the sweep rate of the LFM signal. But 

since we estimate the sweep rate parameter before taking the fractional cross – 

correlation operation, performance loss as compared with the regular cross – 

correlation operation is occured. Similar results can be observed in the simulation 

examples performed using step LFM, Frank, P1, P2, P3 and P4 codes. This kind of 

estimation can be used in passive radar applications. 
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Figure 5.1: Comparison of conventional and fractional cross – correlations 

for LFM signal delay estimation (SNR = -12 dB). 

 

If we assume that we know the sweep rates of the transmitted and received signals 

, then there is no need to estimate the sweep rate parameter. Thus, if we perform this 

simulation for known sweep rate for both transmitted and received LFM signals, then 

performance of both operations are nearly similar. The simulation result for the LFM 

signal with sweep rate 0.5, 12SNR = −  and delay value of 100 is shown in Figure 

5.2. In simulations, 500 Monte Carlo runs were carried out. 

 

The fractional cross – correlation method is extended here to estimate the range 

information of a target by using the step LFM signal as the transmitted pulse. In 

Figure 5.3, the results obtained for 12SNR = −  dB are plotted using the conventional 

and fractional cross – correlation. Both methods correctly estimate the true range 

delay value but the conventional cross – correlation produces a visibly larger peak 

than the fractional cross – correlation. 
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In Figures 5.4 through 5.8 the simulations for SNR value of -12 dB with a delay 

value of 100D =  are performed using the Frank, P1, P2, P3 and P4 codes, 

respectively, as the transmitted pulse. It can be seen that fractional – cross 

correlation produces a peak at the correct range value, but the peak value found using 

the conventional cross – correlation is larger. 
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Figure 5.2: Comparison of conventional and fractional cross – correlations for 

LFM signal delay estimation with known sweep rate (SNR = -12 dB). 
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Figure 5.3: Comparison of conventional and fractional cross – 

correlations for step LFM signal delay estimation (SNR = -12 dB). 
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Figure 5.4: Comparison of conventional and fractional cross – correlations 

for the Frank code delay estimation (SNR = -12 dB). 
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Figure 5.5: Comparison of conventional and fractional cross – correlations 

for the P1 code delay estimation (SNR = -12 dB). 
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Figure 5.6: Comparison of conventional and fractional cross – correlations 

for the P2 code delay estimation (SNR = -12 dB). 
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Figure 5.7: Comparison of conventional and fractional cross – correlations 

for the P3 code delay estimation (SNR = -12 dB). 
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Figure 5.8: Comparison of conventional and fractional cross – correlations 

for the P4 code delay estimation (SNR = -12 dB). 
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5.2 Delay Estimation for Two Targets 

 

In this section, we simulated our algorithm for the case of two targets. We 

compare the delay estimation performance of convetional cross – correlation and 

fractional cross – correlation again for the LFM signal and the step LFM, Frank, P1, 

P2, P3 and P4 codes. The simulations are performed for two targets; one has a delay 

of 100 and the other 120. AWGN with -12 dB SNR is added to the signals which 

have 1024 samples. In simulations, 500 Monte Carlo runs are performed. The 

simulation results are plotted in Figures 5.9 through 5.15.  

 

It can be seen that both conventional and fractional cross – correlations can 

resolve the two targets at the correct delays, but similar to the one target case, 

conventional cross – correlation produces a higher peak value than fractional cross – 

correlation. In Figure 5.9, we can see that fractional and conventional cross – 

correlation algorithms produce nearly equal peak values for the LFM signal.  

 

However, for other codes, the peak values found using fractional cross – 

correlation are lower than the peaks of the conventional cross – correlations. This 

might be attributed to the fact that the polyphase codes and the step LFM signal 

suffer from energy spread as demonstrated by their ambiguity function plots. 
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Figure 5.9: Comparison of conventional and fractional cross – correlations 

using LFM signal for two targets. 

-500 -400 -300 -200 -100 0 100 200 300 400 500
0

5

10

15
Ordinary Cross-Correlation

Sample number, k

M
ag

ni
tu

de

-500 -400 -300 -200 -100 0 100 200 300 400 500
0

5

10

15
Fractional Cross-Correlation

Sample number, k

M
ag

ni
tu

de

 
Figure 5.10: Comparison of conventional and fractional cross – correlations 

using step LFM signal for two targets. 
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Figure 5.11: Comparison of conventional and fractional cross – correlations 

using Frank code for two targets. 
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Figure 5.12: Comparison of conventional and fractional cross – correlations 

using P1 code for two targets. 
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Figure 5.13: Comparison of conventional and fractional cross – correlations 

using P2 code for two targets. 
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Figure 5.14: Comparison of conventional and fractional cross – correlations 

using P3 code for two targets. 



85 

 

-500 -400 -300 -200 -100 0 100 200 300 400 500
0

5

10

15
Ordinary Cross-Correlation

Sample number, k

M
ag

ni
tu

de

-500 -400 -300 -200 -100 0 100 200 300 400 500
0

5

10

15
Fractional Cross-Correlation

Sample number, k

M
ag

ni
tu

de

 
Figure 5.15: Comparison of conventional and fractional cross – correlations 

using P4 code for two targets. 

 



 

86 

CHAPTER SIX 

 

CONCLUSIONS 

 

In this thesis, our aim was to investigate the performance of a detection statistic, 

based on fractional autocorrelation for detection of pulse compression waveforms. 

To obtaion good range and Doppler accuracy simultaneously, the pulse compression 

technique is used to ensure the requirements of large bandwidth and time duration. 

The most commonly used pulse compression waveform in radars is the linear 

frequency modulated (LFM) signal. The ambiguity function (AF) of any LFM signal 

is a line going through the origin of the ambiguity plane. The slope of the line is 

determined by the sweep rate of the LFM signal. This fact helped in proposing a 

detection statistic for detection and sweep rate parameter estimation of LFM signals 

(Akay & Boudreaux – Bartels, 2001). Since fractional autocorrelation corresponds to 

the cuts of the AF along radial lines going through the origin, we could integrate 

fractional autocorrelations at different angle values and search for a peak value. 

Observing a strong peak above a threshold level would indicate the presence of an 

LFM at the specific angle value for which the integration was carried out. The 

integration angle value corresponds to the slope of the AF of the LFM signal. 

Therefore, position of the peak directly provides an estimate of the sweep rate of the 

LFM signal.  

 

Motivated by the fact that the step LFM and the polyphase – coded signals have 

ambiguity functions involving lines in the ambiguity plane, we can expect to detect 

these signals using our detector and estimate the sweep rate parameter in the same 

manner as the LFM. 

 

Performance of the detector was investigated for different pulse compression 

waveforms at various SNR values. We observed that the detector produces a peak at 

the correct sweep rate as expected. By determining a suitable threshold value we 

were able to detect each of these signals. Performance comparison of the detector 

was also carried out using all the signals at the same SNR value. It is seen that the 
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highest peak value and the best performance is obtained for the LFM signal. This is 

because all the energy of the LFM signal is contained in only one linear  component 

that goes through the origin of the ambiguity plane. The peak values for other pulse 

compression signals are less than the LFM since some of the energy of these signals 

is spread to secondary lines which are parallel to the main component passing 

through the origin. The peak values from highest to lowest are ordered as the LFM 

signal, the step LFM signal, P4 code, P2 code, P1 code, Frank code and the P3 code.  

 

Performance of the detection statistic as a sweep rate estimator was also 

investigated at different SNR values. It was seen that as the SNR value increased the 

mean square error (MSE) of the estimator decreased. For various values of sample 

numbers the detection statistic also behaves expectedly. As the number of samples of 

the signal is increased the performance of the estimator also increases by producing 

smaller MSEs. 

 

As a delay parameter estimator, performance of the fractional cross – correlation 

function was compared with the classical cross – correlation through simulations. It 

was seen that both methods can estimate the delay correctly. However, the peak 

amplitude value that occured at the correct delay value was higher for the classical 

cross – correlation operation. Since our method can estimate the sweep rate 

parameter of the received signal before calculating the fractional cross – correlation,  

we can also use this estimator in passive radar applications. 
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APPENDIX A 

 

MATHEMATICAL DERIVATIONS 

 

A.1  Performance of the Detection Statistic ( )
v
L m  

 

Performance of a detection statistic can be determined using two different criteria. 

One of them is the performance SNR measure which is formulated as 

1 0
1/ 2

1 0

( ) ( )
( ) , ( .1.1)

1 var( ) var( )
2

E H E H
P SNR A

H H

η η

η η

−
=

  +    
where η  denotes a detection statistic and 0H  and 1H  represents the noise only 

hypothesis and the signal plus noise hypothesis, respectively. The values ( )iE Hη  

and var( )iHη  denote the expected value and the variance of the detection statistic, 

η . 

 

The other merit of performance is the output signal to noise ratio (SNR). It is 

defined as 

1

, ( .1.2)
var( | )out

output signal powerSNR A
Hη

=

which is the ratio between the output signal power and the output noise power 

(Wang, et al., 1998). 

 

Using (A.1.1) and (A.1.2), we can determine the performance of our detection 

statistic given in (4.12) which is rewritten below; 

arctan( )( )( )
( ) . ( .1.3)

( )

v ms s d
L m A

s t dt

ρ ρ
= ∫

∫
�
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To calculate the performance of the detection statistic ( )
v
L m  using (A.1.1) and 

(A.1.2), we must first determine the expected value and variance values. The 

quantities, which must be calculated, are 

0

1

0

1

( ( ); ), ( .1.4)

( ( ); ), ( .1.5)

var( ( ); ), ( .1.6)

var( ( ); ). ( .1.7)

v

v

v

v

E L m H A

E L m H A

L m H A

L m H A
 

These quantities can be calculated more easily using the relationship given in 

(4.11) as, 

2( ) 1 ( ). ( .1.8)
v
L m m D m A= +

 

The expected value of the detection statistic ( )
v
L m  for hypothesis 0H  can be 

calculated as 

( ) ( )2 2
0 0 0

2 0
0

( ); 1 ( ); 1 ( );

1 ( ) , ( .1.9)
cos( )

v
E L m H E m D m H m E D m H

Nm N A
φ

  = + = + 
 

= + =

where 2 11
cos

m
φ

+ =  (Akay, 2000) and 1 0( ( ); )E D m H N=  which is the constant 

power spectral density of additive white Gaussian noise (Wang, et. al., 1998). 

 

For hypothesis 1H , the expected value of ( )
v
L m  is found as 

 

( ) ( )2 2
1 1 1

2 0
0

( ); 1 ( ); 1 ( );

1 ( ) , ( .1.10)
cos( )

v
E L m H E m D m H m E D m H

Nm N A
φ

  = + = + 
 

+
= + + =

E
E

where E  is the energy of the signal. 0N  is the constant power spectral density of 

additive white Gaussian noise and 1 0( ( ); )E D m H N= +E  (Wang, et. al., 1998). 
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Variance values of the detection statistic ( )
v
L m  for hypothesis 0H  and 1H  are also 

derived below. 

( ) ( ) ( )

( )

2
2 2

0 0 0

2
2 2 0

0 2

var ( ); var 1 ( ); 1 var ( );

1 , ( .1.11)
cos ( )

v
L m H m D m H m D m H

Nm N A
φ

  = + = + 
 

= + =

where ( ) 2
0 0var ( );D m H N=  (Wang et. al., 1998). 

 

( ) ( ) ( )

( )

2
2 2

1 1 1

2 2
2 2 0 0

0 0 2

var ( ); var 1 ( ); 1 var ( );

(2 )1 (2 ) , ( .1.12)
cos ( )

v
L m H m D m H m D m H

N Nm N N A
φ

  = + = + 
 

+
= + + =

E
E

where 2 2
1 0 0var( ( ); ) (2 )D m H N N= +E  (Wang et. al., 1998). 

 

Using the results in (A.1.9) through (A.1.12) with (A.1.1) and (A.1.2), the 

performance SNR and the output SNR of our detection statistic given in (A.1.8) can 

be found as 

1 222
0 00 0

2

cos
( ) , ( .1.13)

21
2 cos

P SNR A
N NN N

φ

φ

= =
+  + 
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   
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2
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2

0 0
2

00

cos

cos . ( .1.14)22 2 11
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φ
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A.2  Calculation of Fractional Autocorrelation for the LFM Signal 

 

The fractional autocorrelation function of a signal ( )s t  at an angle φ  is calculated 

as 

( ) { }
( ) ( ) { }

2( ) exp cos sin

cos exp 2 sin , ( .2.1)

s s j

s s j dt A

φ ρ πρ φ φ

β β ρ φ πβρ φ∗

=

− −∫

�

 

which was also given in (2.40). 

 

Thus, to calculate fractional autocorrelation of a signal ( )s t , we first shift it by 

cosρ φ  and conjugate the result and then multiply these two signals. Finally, the 

integration in (A.2.1) is carried out. 

 

Here, we use an LFM signal denoted by ( )s t . An LFM (chirp) signal is defined 

as, 
2

0( ) exp 2 , . ( .2.2)
2 2
om t t Ts t A j f t rect t A

T
π

     = + ≤    
    

 

 

If we delay this LFM signal by an amount of cosρ φ , we obtain, 

2

0
( cos )( cos ) exp 2 ( cos )

2

cos , cos . ( .2.3)
2

om ts t A j f t

t Trect t A
T

ρ φρ φ π ρ φ

ρ φ ρ φ

  − − = − +  
   

−  − ≤ 
 

 

After taking the complex conjugate of (A.2.3) and performing some 

simplifications, we finally reach at 

2 2 2

0 0

( cos )

cosexp 2 2 cos cos
2 2

cos , cos . ( .2.4)
2

o o
o

s t

m t mA j f t j f j jm t j

t Trect t A
T

ρ φ

ρ φπ π ρ φ ρ φ

ρ φ ρ φ

∗ − =

 
− + − + − 

 
−  − ≤ 

 
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The envelope of these two signals ( )s t  and ( cos )s t ρ φ−  can be seen in Figure 

A.1 and Figure A.2, respectively. 

 

            s(β) 
 

 

 

 

                           -T/2                              T/2                β 

Figure A.1: The envelope of s(β). 

 

                       s(β - ρcosφ) 
 

 

 

 

 

                            -T/2+ρcosφ               T/2 + ρcosφ                 β 

Figure A.2: The envelope of s(β-ρcosφ). 

 

We can now calculate fractional autocorrelation for the chirp signal using (A.2.1). 

We have to consider the following four cases for the calculations: 

 

Case I: s(β) and s(β-ρcosφ) do not overlap: T/2+ρcosφ < -T/2 OR ρcosφ < -T 

Case II: s(β) and s(β-ρcosφ) overlap: -T/2 ≤ T/2+ρcosφ ≤ T/2 OR -T ≤ ρcosφ ≤ 0 

Case III: s(β) and s(β-ρcosφ) overlap: -T/2 ≤ -T/2+ρcosφ ≤ T/2 OR 0 ≤ ρcosφ ≤ T 

Case IV: s(β) and s(β-ρcosφ) do not overlap: T/2 < -T/2+ρcosφ OR ρcosφ > T 

 

Calculations are need to be performed only for Case II and Case III, since Case I 

and Case IV result in zero due to nonoverlapping rectangular regions. 
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For Case II: 

The limits are given as  

-T/2≤ T/2+ρcosφ ≤ T/2. 

For ρ; -T/cosφ ≤ ρ ≤ 0 (the delay is negative), 

For β; -T/2 ≤ β ≤ T/2+ρcosφ. 

 

For Case III: 

The limits are given as 

-T/2 ≤ T/2+ρcosφ ≤ T/2. 

For ρ, 0 ≤ ρ ≤ T/cosφ (the delay is positive), 

For β, -T/2 +ρcosφ ≤ β ≤ T/2. 

 

Using (A.2.1), (A.2.2) and (A.2.4), we can calculate fractional autocorrelation of 

the LFM signal. Then, using this function and the limits above given for Case II and 

Case III, we can compute the desired fractional autocorrelations. 

( ) { }

{ }

2
2

0

2 2 2

0 0

( ) exp cos sin exp 2
2

cosexp 2 2 cos cos
2 2

cos exp 2 sin . ( .2.5)

o

o o
o

ms s j A j f j rect
T

m mA j f j f j jm j

rect j d A
T

φ
β βρ πρ φ φ π β

β ρ φπ β π ρ φ βρ φ

β ρ φ πβρ φ β

   = +   
  

 
− + − + − 

 
−  − 

 

∫�

 

After cancelling some terms and taking the terms independent of β  outside of the 

integral; we reach at, 

( ) { }

{ } { }

2 2
2 2

0
cos( ) exp cos sin exp 2 cos
2

cosexp cos exp 2 sin . ( .2.6)

o

o

ms s A j j f j

jm j rect rect d A
T T

φ
ρ φρ πρ φ φ π ρ φ

β β ρ φβρ φ πβρ φ β

 
= − 

 
−   −    

   ∫

�

 

Now we can evaluate fractional autocorrelation for Cases II and III given above 

and we can use these results in the calculation of the peak value of the detection 

statistic. 
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A.3  Evaluation of the Peak Amplitude Value of the Detection Statistic 

 

The detection statistic formula is given as 

( )arctan( )( )
( ) . ( .3.1)

( )

v ms s d
L m A

s t dt

ρ ρ
= ∫

∫
�

 

When we evaluate this statistic at the angle matched with the sweep rate of the 

LFM signal, that is at 0m m= , it produces a peak given as ( )
v

oL m m= . Since 0m  is 

the sweep rate of the LFM signal, it can be related to φ  by  

0
sin = 2 tan  = 2  ( ). ( .3.2)
cos

m Aφπ φ π
φ

 

Here, φ  is the angle of the line that the support of the LFM signal make with the 

time axis in the time – frequency plane. 

 

Using the limits of β  and ρ  given for Case II and Case III, and the sweep rate 

0m  in the detection statistic, we can find the maximum value of ( )
v
L m  as 

( )arctan( )( )
( ) . ( .3.3)

( )
o

v m
o

s s d
L m m A

s t dt

ρ ρ
= = ∫

∫
�

 

To find this value, we need to calculate the absolute value of the fractional 

autocorrelation function in (A.2.6) at the angle 0arctan( )mφ = . Using (A.2.6) with 

0m  replaced by sin2 tan 2 ( )
cos

φπ φ π
φ

=  and taking the absolute value, we obtain 

 

( )

{ }2

( )

sin cosexp 2 cos exp 2 sin .
cos

( .3.4)

s s

A j j rect rect d
T T

A

φ ρ

φ β β ρ φπ βρ φ πβρ φ β
φ

=

  −   −     
    

∫

�
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After canceling the cosine terms we have 

( )

{ } { }2

( )

cosexp 2 sin exp 2 sin .

( .3.5)

s s

A j j rect rect d
T T

A

φ ρ

β β ρ φπ φβρ πβρ φ β

=

−   −    
   ∫

�

 

If we look at (A.3.5) carefully, we can see that the exponential terms in the 

integral are in the same form but have different signs. Hence, they also cancel each 

other. Finally, we are left with only the rectangular functions in the integral; 

( ) 2 cos( ) . ( .3.6)s s A rect rect d A
T Tφ
β β ρ φρ β−   =    

   ∫�

 

Now we can use (A.3.6) in (A.3.1) to calculate the peak amplitude value of the 

detection statistic. Using the limits for β  at Case II we can evaluate this integral; 

( )
/ 2 cos

2

/ 2

2 2

cos( )

cos ( ) ( cos ). ( .3.7)
2 2

T

T

s s A rect rect d
T T

T TA A T A

ρ φ

φ
β β ρ φρ β

ρ φ ρ φ

+

−

−   =    
   

= + − − = +

∫�

 

Using (A.3.7) in (A.3.3) and the limits for ρ  given in Case II, we can calculate 

the peak amplitude value of the detection statistic as 
00 2

22

/ cos / cos

2
2

cos( cos )
2

( )
( )

2cos . ( .3.8)
2cos

v
T T

o

A TA T d
L m m

AT
s t dt

TA
AT A

AT

φ φ

ρρ φρ φ ρ

φ
φ

− −
∞

−∞

 
++  

 
= = =

= =

∫

∫

 

Thus, the maximum value of the detection statistic is found as 
2cos

AT
φ

 for Case II. 
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We can perform the same calculations for Case III using the limits given for Case 

III. (A.3.6) also holds for Case III, and the absolute value of the fractional 

autocorrelation for Case III is found as 

( )
/ 2

2

/ 2 cos

2 2

cos( )

( cos ) ( cos ). ( .3.9)
2 2

T

T

s s A rect rect d
T T

T TA A T A

φ
ρ φ

β β ρ φρ β

ρ φ ρ φ

− +

−   =    
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= − − + = −

∫�

 

Using (A.3.9) in (A.3.3) and considering the limits for ρ  in Case III, we can 

compute the peak amplitude value of the detection statistic as 
/ cos/ cos 2

22

0 0

2
2

cos( cos )
2

( )
( )

2cos . ( .3.10)
2cos

TT

v

o

A TA T d
L m m

AT
s t dt

TA
AT A
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φφ ρρ φρ φ ρ

φ
φ

∞

−∞

 
−−  

 = = =

= =

∫

∫

 

This shows that we obtain the same result both for Case II and Case III. 

 

We can conclude that for both cases the detection statistic yields a peak amplitude 

value at the same level as given in (A.3.8) and (A.3.10). This peak level is dependent 

on the signal amplitude A  and duration of the signal, T , directly. Cosine of the 

angle, φ , that the LFM signal makes with the time axis in the time – frequency 

plane, is inversely proportional with the peak level. 

 

Consequently, for two chirp signals with the same amplitude and duration in time, 

the one that has a larger angle value produces a larger peak value for the detection 

statistic since cosφ  decreases as φ  goes from 0  to / 2π . 




