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SYNTHESIS OF PROBING WAVEFORMS SATISFYING                         

SPECTRO-TEMPORAL CONSTRAINTS 

ABSTRACT 

In this thesis, several algorithms are proposed for designing radar transmit 

sequences satisfying temporal correlation and spectral stopband constraints. 

Unimodular constant modulus sequences are specifically focused on. 

Studies in the literature have been mostly interested in minimizing certain 

performance metrics such as integrated sidelobe level (ISL) and weighted integrated 

sidelobe level (WISL). Additionally, shaping the spectrum of the transmit waveform 

to avoid certain frequencies is one of the desired tasks in cognitive radars. Therefore, 

various algorithms have been proposed in the literature for designing sequences having 

low ISL or WISL values and, at the same time, satisfying some spectral constraints.  

In this thesis, we first utilize the genetic algorithm (GA) for designing a sequence 

by minimizing ISL in the frequency domain.  

Secondly, a new algorithm called FWISL (frequency domain WISL) is proposed to 

design unimodular sequences utilizing the majorization minimization (MM) method 

for directly minimizing the WISL metric in the frequency domain. FWISL is the first 

frequency domain employment of the MM method for minimizing WISL. 

Thirdly, we develop four more algorithms, named SMISLN (stopband MISL-new), 

SWPISL (stopband WPISL), SMWISL (stopband MWISL), and SFWISL (stopband 

FWISL), by directly minimizing ISL or WISL using the MM method in order to design 

unimodular sequences with suppressed power in arbitrary spectral bands and, at the 

same time, possessing reduced autocorrelation sidelobes. Numerical examples show 

that our newly proposed methods outperform some already existing methods in the 

literature with regard to computation time, converge in less number of iterations, and 

achieve better suppression in stopbands. 

Keywords: Unimodular sequences, integrated sidelobe level, majorization-

minimization, spectral stopband constraints 
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SPEKTRAL VE ZAMANSAL KISITLARI SAĞLAYAN GÖNDERİM 

DALGALARININ SENTEZLENMESİ  

ÖZ 

 

Bu tez çalışmasında zamansal ilinti ve spektral sönümleme bandı kısıtlarını 

sağlayan radar gönderim sinyallerinin optimal olarak sentezlenmesi için çeşitli 

algoritmalar önerilmiştir. Özel olarak bu tezin ilgilendiği diziler ise bir birimsel sabit 

genlikli dizilerdir.  

Literatürdeki çalışmalar, dizilerin öz ilinti fonksiyonunun tümleşik yankulak 

seviyesi (TYS) ve ağırlıklandırılmış tümleşik yankulak seviyesi (ATYS) gibi 

performans metriklerini eniyilemek üzerine yoğunlaşmıştır. Bununla birlikte, belirli 

frekanslardan kaçınmak için gönderilen dalga biçiminin spektrumunun 

uyarlanabilmesi bilişsel radarların istenilen özelliklerinden birisidir. Bu nedenle, 

düşük TYS veya ATYS değerlerine sahipken aynı zamanda bir takım spektral kısıtları 

da sağlayan diziler tasarlamak için bazı algoritmalar literatürde önerilmiştir.    

Bu tez çalışmasında, ilk olarak, TYS değerini frekans boyutunda eniyileyerek bir 

dizi tasarlamak için genetik algoritma (GA) kullanılmıştır.  

İkinci olarak, büyüklük enküçültmesi (BE) metodunu kullanarak frekans boyutunda 

ATYS’yi doğrudan eniyilemek için FWISL isimli yeni bir algoritma önerilmiştir. Bu 

algoritma ATYS’yi eniyileyen BE metodunun frekans boyutundaki ilk uygulamasıdır.  

Üçüncü olarak, belirli spektral bantlardaki gücü sönümlenmiş ve aynı zamanda 

düşük özilinti yankulak seviyesine sahip bir birimsel sabit genlikli diziler üretmek için, 

TYS veya ATYS’yi büyüklük enküçültmesi metodunu kullanarak doğrudan 

eniyileyen SMISLN (stopband MISL-New), SWPISL (stopband WPISL), SMWISL 

(stopband MWISL), ve SFWISL (stopband FWISL) isminde dört yeni algoritma 

önerilmiştir. Sayısal örnekler önerilen metotların hesaplama süresi bakımından 

literatürde halihazırda var olan algoritmalardan üstün olduklarını, daha az özyineleme 

sayısı ile yakınsadıklarını ve sönümleme bantlarında daha iyi bastırma sağladıklarını 

göstermiştir.  
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CHAPTER ONE 

 INTRODUCTION 

The aim of active sensing applications (including radar, sonar, communications, 

and medical imaging) is the transmission of a probing signal, reception of its reflected 

waveform, and to obtain information of interest by processing this received signal 

(Roberts, He, Li, & Stoica, 2010).  

One of the active sensing systems is called RADAR which is derived from RAdio 

Detection And Ranging. Main tasks of a radar system can be inferred from its name. 

These are detection of a target and determining its range. The range is determined by 

measuring the round-trip delay of the transmitted waveform. Direction and velocity of 

the target can also be found out as by-products of this process (Levanon & Mozeson, 

2004).  

Christian Hülsmeyer accomplished the first radar experiment using his 

telemobiloscope to detect ships in fog by utilizing the radio waves in 1904 (He, Li, & 

Stoica, 2012). During the two world wars there were several developments on radar 

and sonar. Later on, this research field spread into different fields such as weather 

monitoring, flight control, and underwater sensing (He et al., 2012).  

There are two critical elements which greatly affect the performance of a radar 

system; transmit waveform and receive filter. Receive filter is employed to extract the 

information of interest using the return of the transmit waveform which has to be 

designed properly to obtain accurate estimates of parameters of interest (Skolnik, 

2008). In order to increase the efficiency and performance of active sensing 

applications, transmit waveforms are synthesized according to some performance 

criteria. In that respect, better range and Doppler resolution are two fundamental 

requirements that should be met as much as possible by transmit waveforms. 

The aim of this thesis is developing algorithms for designing transmit sequences 

satisfying some temporal correlation and spectral stopband constraints. For the same 

purpose, several algorithms have already been proposed in the literature to design 

unimodular sequences for radar and communication systems (He, Stoica, & Li, 2010; 
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Petrolati, Angeletti, & Toso, 2012; Song, Babu, & Palomar, 2015b, 2015a, 2016b, 

2016a; Stoica, He, & Li, 2009; Zhao, Song, Babu, & Palomar, 2016). After a sequence 

is designed, some metrics can be used in order to measure its goodness in terms of its 

autocorrelation sequence. Some of those metrics are integrated sidelobe level (ISL), 

peak sidelobe level (PSL), weighted-integrated sidelobe level (WISL), merit factor 

(MF), etc (Levanon & Mozeson, 2004; Roberts et al., 2010). Selection of a metric 

depends on the application. 

In designing a sequence, above metrics can be employed as constraints towards 

minimizing autocorrelation sidelobes with the aim of reducing clutter from interfering 

targets. Autocorrelation mainlobe, on the other hand, could be considered as an 

important parameter for separating closely spaced targets. As stated in (Levanon & 

Mozeson, 2004), designing radar signals amounts to finding signals that yield a 

matched-filter response conforming to a given application. Thus, determining the 

metric to be employed depends mostly on the application. For example, the level of 

interference expected from a point target is characterized by the peak sidelobe level 

ratio (PSLR) of the matched filter output. However, the matched filter integrated 

sidelobe level ratio (ISLR) characterizes interference from volume or surface clutter. 

Additionally, radar signals having matched filter responses that exhibit a narrow 

mainlobe (the peak) and low sidelobes are required when one wants to detect and 

distinguish closely separated targets (Levanon & Mozeson, 2004).  

In this thesis, we first utilize genetic algorithm (GA) (Capraro, Bradaric, Capraro, 

& Lue, 2008; Lellouch, Mishra, & Inggs, 2015, 2016; Martone, Ranney, & Sherbondy, 

2016; Smith-Martinez, Agah, & Stiles, 2013; G. Sun, Wang, Zhang, Tao, & Zhou, 

2016; Weile & Michielssen, 1997) to design a unimodular constant modulus sequence 

by minimizing the metric of ISL in the frequency domain. Unimodular sequences 

having large MF values are desired in applications where a transmit sequence with 

large MF ensures that the received waveform is not obscured by correlated multipath 

and clutter interference (Stoica et al., 2009). Unimodular constant modulus sequences 

with desirable autocorrelation function properties are widely used in radar and 

communication systems. Studies in the literature have focused on minimizing the 

metric of ISL (Song et al., 2015b, 2015a; Stoica et al., 2009). Our proposed method 



3 
 

utilizing GA is initialized by either a random sequence or the Golomb sequence (Zhang 

& Golomb, 1993) (See Appendix 1) whose autocorrelation is known to have good 

properties. By this way, radar transmit signals with minimum ISL are designed using 

GA. Finally, performance of GA based design is compared against the already existing 

cyclic algorithm-new (CAN) and monotonic minimizer for integrated sidelobe level 

(MISL) algorithms. Our simulations indicate that minimization of ISL using GA 

produces better results than the CAN algorithm. Hence, GA could alternatively be used 

to design radar transmit sequences by minimizing ISL in the frequency domain. 

Secondly, we propose a new algorithm to design unimodular sequences utilizing 

the majorization minimization (MM) method for directly minimizing the WISL in the 

frequency domain. Some control over the autocorrelation lags of the designed 

sequence is provided by WISL. Hence, minimizing WISL becomes crucial in 

applications where we want to reduce the interference arising from some known 

multipath or clutter (Stoica et al., 2009). Therefore, in this thesis we propose a new 

algorithm named frequency domain WISL (FWISL) to design unimodular constant 

modulus sequences by minimizing the metric of WISL. As the first frequency domain 

application of the MM method for minimizing WISL, FWISL utilizes the fast Fourier 

transform (FFT), and thus, decreases the computation time. In our method, after 

proposing a function majorizing the frequency domain representation of the WISL 

metric, a closed-form solution of the minimization problem is derived as an iterative 

algorithm. Additionally, we provide an acceleration scheme to allow fast convergence 

of the newly designed algorithm. 

Numerical examples show that FWISL not only outperforms existing cyclic 

algorithms such as CA-pruned (CAP) (Stoica et al., 2009) and weighted-CAN 

(WeCAN)  (Stoica et al., 2009) in terms of computation time, but also converges in 

less number of iterations than the time domain implementation of MM-based 

algorithms. Furthermore, the new algorithm allows design of long sequences in a 

computationally efficient manner and achieves high merit factors (MFs). 

Thirdly, we propose new algorithms to design unimodular sequences with 

suppressed power in some spectral bands and, at the same time, having low ISL and 

WISL values. Shaping the spectrum of the transmit waveform in order to avoid certain 
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frequencies is one of the desired tasks in cognitive radars. Additionally, one may want 

to design unimodular sequences with low autocorrelation sidelobes. In the literature, 

various algorithms have been proposed for designing sequences having low ISL values 

and, at the same time, satisfying some spectral constraints. SCAN and WeSCAN 

algorithms were proposed (He et al., 2010) for that purpose as extensions of the CAN 

(Stoica et al., 2009) and weighted CAN (WeCAN) (Stoica et al., 2009) algorithms, 

respectively. SCAN was proposed to design unimodular sequences with suppressed 

power in arbitrary spectral bands and having low ISL values as well. WeSCAN was 

proposed to design sequences having low WISL values. However, CAN and WeCAN 

algorithms minimize some approximations of ISL and WISL metrics, respectively, 

instead of minimizing the exact ISL and WISL metrics themselves. In the literature, 

MM-based methods were also proposed to minimize the exact ISL, directly (Song et 

al., 2015a, 2015b). Spectral-MISL algorithm, which is based on the MM method, was 

proposed to design unimodular sequences by minimizing ISL and restricting of power 

in certain pre-specified frequency bands (Song et al., 2015a).  

In this thesis, we propose to use the MM-based algorithms to design unimodular 

sequences with their power suppressed in arbitrary spectral bands and having low ISL 

or WISL values. Numerical examples show that our proposed methods outperform 

SCAN and WeSCAN algorithms in terms of computation time, converge in less 

number of iterations, and achieve lower ISL, WISL, and stopband power values.  

A summary of the algorithms designed by cyclic methods and the MM method are 

given in Table 1.1. The new algorithms proposed in this thesis are also indicated in the 

same table by boldfaced italic fonts. In the ensuing chapters, after developing those 

algorithms we perform their numerical simulation examples employing different 

parameter values and compare their performances.  
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Table 1.1 Algorithms for designing unimodular sequences  (New algorithms developed in this thesis 

are indicated by boldfaced italic fonts)  

  

Employed Metric 

  ISL WISL Stopband-ISL Stopband-WISL 
Methodology Domain 

Cyclic Algorithms 

(Approximately 

Equivalent Metrics) 

T
im

e -  -  - -  
Fr

eq
ue

nc
y 

CAN  WeCAN  SCAN  WeSCAN 

MM-Based Methods 

T
im

e WPISL 
WPISL  

MWISL 
SWPISL 

SWPISL 

SMWISL 

Fr
eq

ue
nc

y 

MISL FWISL 
spectral-MISL  

SMISLN 
SFWISL 

 

The rest of the thesis is organized as follows. In Chapter One, some brief 

information and basic concepts of radar signal processing are given.  

In Chapter Two, background information on already existing algorithms for 

designing radar waveforms is provided. Review of cyclic algorithms and MM-based 

methods are given in Sections 2.1 and 2.2, respectively. 

In Chapter Three, first GA is explained briefly. Then, GA is utilized to design 

sequences by minimizing ISL in the frequency domain. At the end of the chapter, 

numerical examples are presented. 

 In Chapter Four, we propose a new frequency domain sequence design algorithm, 

FWISL (see Table 1.1), which minimizes the WISL metric using the MM method in 

the frequency domain. Then, an accelerated version of the proposed algorithm is 

developed. We also present some numerical examples. 
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In Chapter Five, we focus on designing waveforms satisfying simultaneous 

temporal correlation and spectral stopband constraints. We develop two algorithms 

named SMISLN and SWPISL (see Table 1.1) for designing waveforms with minimum 

ISL and spectral stopband constraints. Numerical examples for the proposed 

algorithms are also presented.  

In Chapter Six, we develop three other algorithms, SMWISL, SWPISL, and 

SFWISL (see Table 1.1), for designing waveforms satisfying simultaneous temporal 

WISL and spectral stopband constraints. Numerical examples are also presented at the 

end of the chapter. 

Finally, the thesis is concluded in Chapter Seven by a general discussion of the 

results obtained for the newly proposed algorithms. 

1.1  History of Designing Radar Transmit Sequences   

Many transmit signal waveforms with nice properties have been proposed in the 

radar literature. Unmodulated pulse, linear frequency-modulated pulse, and coherent 

train of identical unmodulated pulses can be mentioned as the most fundamental ones 

(Levanon & Mozeson, 2004). Since the unmodulated pulse has high sidelobes in the 

frequency domain, its use of frequency band is inefficient. In addition, it has poor 

range and Doppler resolution. By means of pulse compression better range resolution 

can be obtained. Similarly, by employing a coherent pulse train better Doppler 

resolution is achieved.    

In radars, improving the range resolution can be accomplished by decreasing the 

width of the probing pulse and increasing the transmitted energy (Stoica, Li, & Xue, 

2008).  However, this necessitates use of large peak power levels which cannot be 

handled by most systems. Therefore, a technique termed as pulse compression is 

employed to overcome the large peak power requirement. In this method, a modulated 

subpulse train which has smaller peak power than a single pulse is transmitted. 

However, it has the same transmitted energy as the single pulse.  

Linear frequency modulation is one of the pulse compression techniques providing 

better range resolution than the unmodulated pulse (Levanon & Mozeson, 2004). A 
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chirp waveform is a linear frequency modulated (LFM) pulse which is widely used in 

radar applications (He et al., 2012). A chirp signal can be defined as (He et al., 2012; 

Levanon & Mozeson, 2004)  

 
21

( ) , 0 ,j kts t e t T
T

     (1.1) 

where 
B

k
T

   is called the chirp rate with T  representing the pulse duration and B

denoting the bandwidth of the pulse. 

Phase coding is another technique of pulse compression. Several phase codes can 

be derived using chirp signals (He et al., 2012; Levanon & Mozeson, 2004) . (Barker, 

1953) proposed a set of binary codes where phases of the sequence elements, n , are 

in the range  , , 1, ,n n N       and N  represents sequence length.  Barker 

sequences have optimal peak to side-peak ratio (PSPR). However, there is a limitation 

on the length of Barker code. The known longest Barker code is of length 13N   and 

it is believed that no Barker code exist for 13N   (Levanon & Mozeson, 2004). In 

order to overcome this problem, scientists have proposed several different methods for 

synthesizing longer sequences. 

Various analytical and computational methods for synthesizing longer sequences 

have been proposed  (He et al., 2012; Levanon & Mozeson, 2004). Some of those 

sequences have closed-form expressions such as Frank code (Frank, 1963), polyphase 

P codes (P1, P2, P3, P4) (B. L. Lewis & Kretschmer, 1981; Bernard L. Lewis & 

Kretschmer, 1982), Px code (Rapajic & Kennedy, 1998), Chu code (Chu, 1972), and 

Golomb code (Zhang & Golomb, 1993). Golomb, Frank, P1, Chu, and P4 codes are 

named “constant amplitude with zero autocorrelation” (CAZAC) sequences (Roberts 

et al., 2010). Phase codes with zero periodic autocorrelation sidelobes are called 

perfect sequences (Levanon & Mozeson, 2004). In (Roberts et al., 2010), perfect 

waveforms are referred to as CAZAC sequences (see Appendix 1 for the closed-form 

expressions of Golomb, Frank, and P4 sequences).  
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(Levanon & Mozeson, 2004) states that, although sidelobes of periodic 

autocorrelation of a phase coded sequence can be zero, it is not possible to synthesize 

a phase coded sequence with zero aperiodic correlation sidelobes. Therefore, in 

contrast to CAZAC sequences, it is more challenging to design a sequence with low 

ISL of aperiodic autocorrelation (Roberts et al., 2010).   

In addition to those fixed sequences, some computational methods such as 

evolutionary algorithms (Kocabaş & Atalar, 2003), heuristic search (Wang, 2008), and 

stochastic optimization (Borwein & Ferguson, 2005) have also been exploited to 

generate sequences with desirable properties. Since computational complexity of those 

techniques increases with the length of the designed sequence, some alternative 

minimization methods such as cyclic algorithms (He et al., 2012; Roberts et al., 2010; 

Stoica et al., 2009; Stoica & Selen, 2004) and MM techniques (Song et al., 2015a, 

2016b; Stoica & Selen, 2004; Zhao et al., 2016) have also been proposed.  

While cyclic algorithms such as CAN and WeCAN are based on expressing the ISL 

and WISL metrics, respectively, in the frequency domain, CA-pruned (CAP) is based 

on expressing the WISL metric in the time domain. WeCAN+CAP was also proposed 

as a concatenation of WeCAN and CAP algorithms. CAN minimizes a quadratic (with 

respect to the designed sequence) approximation of ISL as opposed to exact ISL which 

is a quartic (fourth degree) function of the designed sequence. Similarly, WeCAN and 

CAP minimize quadratic approximations of WISL as opposed to exact WISL which is 

quartic with respect to the designed sequence (He et al., 2012; Jian, Stoica, & Xiayu, 

2008; Roberts et al., 2010; Stoica et al., 2009; Stoica, Li, Zhu, & Guo, 2007; Stoica, 

Li, & Zhu, 2008). MM-based techniques have been proposed (Song et al., 2015a, 

2016b) for direct minimization of ISL and WISL metrics and for minimization of a 

unified metric named “weighted peak or integrated sidelobe level” (WPISL) (Zhao et 

al., 2016). Those MM-based methods perform minimization of the aforementioned 

metrics directly in the time domain. 

On the other hand, adaptation of the spectrum of transmit waveform in order to 

avoid certain frequencies is one of the main tasks in cognitive radars (Haykin, 2006; 

He et al., 2010). Transmitted waveforms should avoid utilizing some of the frequency 

bands that are allocated for specific applications. Therefore, transmit waveforms 
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should be designed so that they have low spectral power in the reserved frequency 

bands (He et al., 2010; Lindenfeld, 2004).  

Since sequences with low autocorrelation sidelobes are widely used in 

communication and radar systems, in addition to having nulls in specific frequency 

bands of the power spectrum, it may also be desired to have low ISL or WISL values 

for the transmitted waveforms. Besides, transmitted sequences are usually designed as 

unimodular (constant modulus) waveforms. There are a few studies in the literature 

for designing unimodular transmit waveforms satisfying simultaneous temporal 

correlation and spectral stopband constraint (He et al., 2010; Song et al., 2015a). In 

this thesis, we also address the same problem using different methods. 

In (He et al., 2010), the SCAN algorithm was proposed to design unimodular 

sequences with their spectral power suppressed in arbitrary frequency bands and 

having low ISL values, respectively. SCAN is an extension of the CAN algorithm 

which aims designing sequences with low ISL. Similarly, WeSCAN was proposed as 

an extension of the WeCAN algorithm which aims designing sequences with low 

WISL (Stoica et al., 2009). On the other hand, the MM method is employed in (Song 

et al., 2015a) to design unimodular constant modulus sequences with low ISL and 

constrained spectral power in certain frequency bands. The developed algorithm was 

named spectral-MISL (spectral-monotonic minimizer for integrated sidelobe level) 

(He et al., 2010). However, no algorithms have been proposed for designing transmit 

waveforms with low WISL and constrained spectra using the MM method. Although, 

both (He et al., 2010) and (Song et al., 2015a) are interested in designing sequences 

with low ISL and having some spectral constraints, there are differences between them. 

These differences arise not only from the employed methods for solving the problem 

but also from the problem statements as explained in the following sections. In the 

problem statement of spectral-MISL algorithm, the spectral constraint is given so that 

it should be lower than a pre-specified threshold value.  

In this thesis, we develop alternative algorithms to design unimodular sequences 

with their spectral power suppressed in arbitrary frequency bands and having low ISL 

(or low WISL) using the MM method. We employ the MM method both in time and 
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frequency domains for solving the transmit waveform design problem introduced in 

(He et al., 2010).  

Notation: In this thesis, boldface lowercase and uppercase letters represent vectors 

and matrices, respectively.   denotes Euclidean norm for vectors and Frobenius 

norm for matrices.   . 
H

 and   . 
T

 represent Hermitian and transpose operations, 

respectively, and  . 
 denotes conjugate of complex numbers.   indicates Hadamard 

product.      

Simulations: All the simulations in this thesis are performed via MATLAB 2017a 

software on a PC with i7-4500U CPU having 12-GB memory and 1.8-GHz processor 

speed. We run the simulated recursive algorithms until the employed stopping criterion 

is reached.  

 

Equation Section (Next) 
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CHAPTER TWO 

BACKGROUND AND EXISTING METHODS 

In order to synthesize transmit sequences, some performance measures that are 

based on the autocorrelation function of the sequence should be taken into 

consideration.  

Engineers and scientists have long been working on the design of sequences with 

low autocorrelation sidelobes. Those sequences are widely employed in radar and 

communication systems. In communication systems, they are used for synchronization 

purposes and in radar systems they are mostly utilized as transmit waveforms because 

of their improved detection performance especially for weak targets (He et al., 2012; 

Kocabaş & Atalar, 2003; Song et al., 2015a, 2015b; Zhao et al., 2016). Those transmit 

sequences are usually designed as unimodular (i.e. having a constant modulus of unity) 

waveforms due to such practical considerations as limitations of sequence generating 

hardware components including analog-to-digital converters (ADCs) (He et al., 2012, 

2010; Rowe, Stoica, & Li, 2014; Zhao et al., 2016). 

Let   1

N

n n
x


  denote a complex unimodular constant modulus sequence satisfying 

 1,      1, ,nx n N     (2.1) 

and vector x  be represented as  1

T

Nx xx  . Let N
oC    be the domain of x

such that  0 | | | 1 for 1, ,N
nC x n N   x   . The autocorrelation function of 

  1

N

n n
x


 is defined as (Song et al., 2015a, 2016b; Stoica et al., 2009; Zhao et al., 2016) 

 * *

1

, 0, , 1,
N

k n n k k
n k

r x x r k N 
 

       (2.2) 

where    denotes complex conjugation. Goodness of synthesized sequences can be 

measured using the metric of integrated sidelobe level (ISL) which can be defined as 

(Song et al., 2015a, 2016b; Stoica et al., 2009; Zhao et al., 2016)  
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1

2

1

ISL .
N

k
k

r




   (2.3) 

Some researchers also utilize merit factor (MF) as an alternative metric to measure 

goodness of any designed sequence. It is inversely proportional to ISL and can be 

defined as (Song et al., 2015a; Stoica et al., 2009) 

 

 

2 2
0

1
2

1
0

MF .
2(ISL)N

k
k N

k

r N

r


 


 


  (2.4) 

Unimodular sequences having large MF values are desired in applications of radar 

where a transmit sequence with large MF ensures that the received waveform is not 

obscured by correlated multipath and clutter interference (Stoica et al., 2009). 

In addition to above mentioned metrics, weighted ISL (WISL) is employed in 

(Stoica et al., 2009) to suppress not all but some of the autocorrelation lags of a 

designed sequence. It is defined as 

 
1

2

1

WISL
N

k k
k

w r




   (2.5) 

where kw  represents the real-valued, nonnegative ( 0kw  )  weight of the thk  lag of 

the autocorrelation function. Thus, some control over the autocorrelation lags of the 

designed sequence is provided by WISL. Minimizing WISL becomes crucial in 

applications where we want to reduce the interference arising from some known 

multipath or clutter (Stoica et al., 2009). Similar to MF in (2.4), modified merit factor 

(MMF) can be defined (Stoica et al., 2009) in terms of WISL as 

 
2 2

0
1 2

1

MMF .
2(WISL)2

N

k kk

r N

w r




 


  (2.6)   
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2.1  Cyclic Algorithms for Minimizing Approximately Equivalent Metrics 

2.1.1  CAN - Minimization of Approximate ISL 

Unimodular constant modulus sequence design with minimum ISL can be 

formulated as follows 

 
minimize       ISL

subject to      1, 1, , .nx n N 
x


  (2.7) 

CAN algorithm is based on the minimization of ISL in the frequency domain. Using 

the well-known Wiener-Khintchine property (Proakis & Manolakis, 2006), the Fourier 

transform (FT) of the autocorrelation function can be expressed as 

 
2 1

1 ( 1)

( )
N N

j n j k
n k

n k N

x e r e  


 

  

      (2.8)                                         

where ( )  is the energy density spectrum (Proakis & Manolakis, 2006; Stoica & R. 

L. Moses, 2005) of   1

N

n n
x


 and, due to periodicity of the FT,  0, 2  . Using ( ),  

ISL in (2.3) is alternatively expressed in (Roberts et al., 2010; Stoica et al., 2009; Zhao 

et al., 2016) as 

 
2 2

1

1
ISL ( )

4

N

p
p

N
N




       (2.9)                       

where  2

1

N

p p



 is defined as 

 
2

, 0, , 2 1.
2p p p N

N

      (2.10) 

Then, the ISL metric in (2.9) can also be written as follows 

 

222

1 1

1
ISL .

4
p

N N
j n

n
p n

x e N
N



 

 
  

  
     (2.11) 

Thus, in order to minimize ISL, one can minimize the following quantity                                       
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222

1 1

.p

N N
j n

n
p n

x e N

 

 
 

  
    (2.12) 

Minimization of the above quantity is challenging because it is a quartic (fourth 

degree) function of   1

N

n n
x


. Therefore, an almost equivalent formulation instead of 

(2.12) is proposed to be used (Stoica et al., 2009). In that respect, minimization of an 

approximate ISL metric is expressed as (Stoica et al., 2009)                                             

 

22

, 
1 1

minimize .p p

p

N N
j n j

n
p n

x e Ne 





 


x

  (2.13) 

       Minimizing the ISL metric in (2.12) is not exactly equal to the minimization of 

the ISL-related metric in (2.13). However, they are “almost equivalent” in the sense 

that if the metric in (2.12) takes on a small value for a certain nx , than the metric in 

(2.13) also takes a small value at the same nx  (Stoica et al., 2009). Additionally, if the 

global minimum of the exact ISL metric in (2.12) is sufficiently small, then the 

sequences obtained by minimizing (2.12) and (2.13) are close to each other. It is also 

stated in (Stoica et al., 2009) that minimization of the exact metric in (2.12) is often 

much slower than that of the ISL-related metric in (2.13). 

         The expression in (2.13) to be minimized can be more compactly written as                                                      

 
2

2
H
N F x v   (2.14) 

where  2
H
NF  is the 2 2N N  DFT matrix                                       

 
1

2
2

2

1
,

2
p p

H

j j NH H
N p

H
N

e e
N

  

 
       
  

a

F a

a

    (2.15) 

and 2 1N   vectors x  and v  are defined as                                                   

  1 0 0 ,
T

Nx xx     (2.16)                                                      
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 21
1

.
2

Njje e    v    (2.17) 

FFT of the vector x  is calculated as                                                      

 2 .H
Nf F x   (2.18) 

Denoting the elements of the vector f  via  1 2

T

Nf ff  , then, one has                                            

 arg( ), 1, , 2 .p pf p N      (2.19) 

Similarly, the inverse Fourier transform of v  is given as                                                                       

 2 .Ng F v   (2.20) 

Again, denoting the elements of the vector g as  1 2

T

Ng gg  , then finally, the 

designed sequence nx  is obtained as 

 arg( ) , 1, , .nj g
nx e n N     (2.21) 

As an example, a transmit sequence of length 1000N   is designed by the CAN 

algorithm. The algorithm is initialized by Golomb sequence. Correlation level (dB) of 

the Golomb sequence and the sequence designed by CAN are illustrated in Figure 2.1 

and Figure 2.2, respectively. Correlation level of a sequence is defined (Song et al., 

2015a, 2015b; Stoica et al., 2009; Zhao et al., 2016) as  

  10
0

Correlation Level 20 log ,    ( 1), , 1.kr k N N
r

        (2.22) 
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Figure 2.1 Correlation level of the Golomb sequence (in dB) 
 

 

Figure 2.2 Correlation level of the transmit sequence designed by the CAN algorithm (in dB) 
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2.1.2  SCAN 

The SCAN algorithm was proposed in (He et al., 2010) as an extension of CAN 

algorithm for accommodating additional spectral constraints. The frequency stopbands 

of a unimodular sequence, 
1

N
n n

x
 , can be expressed as 

 1 2
1

( , )
sN

k k
k

f f


    (2.23) 

where 1 2( , )k kf f  and sN  represent the stopband edge frequencies and the number of 

stopbands, respectively. If we denote the number of DFT bins by N , which is taken to 

be large enough in order to densely cover the corresponding frequency band  , the 

 th
,k l  element of the N N   DFT matrix, H

N
F  , is given as  

 
1 2

exp , , 0, , 1,H
N kl

kl
j k l N

NN

          
F 


  (2.24) 

where 
1

N
 ensures that 

N
F   is unitary. We construct a matrix,S , using columns of 

N
F   

corresponding to the stopband frequency bands,  . Then, the following quantity is 

minimized to suppress the frequency stopbands 

 

2

( ) 1

H

N N 

 
 
 

x
S

0 
  (2.25) 

where 
2

    denotes the norm square of a vector and 
( ) 1

0 0

T

N N

N N

 



 
 
  

0 



 .       

   Denoting the null space of HS  by ,G the equivalent minimization problem was 

proposed in (He et al., 2010) as 

 

2

1
,

, ˆminimize   ( )

subject to 1, 1, ,n

J

x n N

 

 
x α

x α x Gα


  (2.26) 
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where α  is an auxiliary vector of variables and 
( ) 1

ˆ
N N 

 
  
 

x
x

0 
 is of length 1.N   In 

(He et al., 2010), the CAN algorithm is used to suppress the sidelobes of the 

autocorrelation function of the designed waveform. The frequency domain 

representation of ISL in (2.11) can be written as (He et al., 2010)    

 
222 22 2

1 1

1 1
2 .

4 2

N N

p p
p p

N N N
N  

         
 a x a x   (2.27) 

The ISL metric above can be further simplified as 
2

2

2

1

2
H
NN F x  which is a quartic 

function of nx . Therefore, (Stoica et al., 2009) proposes to use a quadratic 

approximation of the exact ISL metric. The “almost equivalent” approximation of the 

ISL metric is given (Stoica et al., 2009)  as 

 
2

2
H
NN F x v   (2.28) 

where v  is the auxiliary vector of variables defined in (2.17). Thus, using the quadratic 

approximation of ISL, the CAN algorithm suppresses the correlation sidelobes by 

solving the following problem     

 

2

2 2
,

minimize  ( , )

subject to 1, 1, ,

1
            , 1, , 2 .

2

H
N

n

n

J N

x n N

v n N

 

 

 

x v
x v F x v





  (2.29) 

   In (He et al., 2010), stopband and correlation constraints are combined and the 

following optimization problem is posed 

 

1 2
, ,

,minimize   ( , , ) ( ) (1 ) ( , )

subject to 1, 1, ,

1
          , 1, , 2

2

n

n

J J J

x n N

v n N

   

 

 

x α v
x α v x α x v





  (2.30) 
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where   represents a relative weight parameter that is used to control the two penalty 

functions 1J  and 2J . The above problem can also be rewritten as 

 

22

2
, ,

ˆminimize   ( , , ) (1 )

subject to 1, 1, ,

1
           , 1, , 2 .

2

H
N

n

n

J N

x n N

v n N

     

 

 

x α v
x α v x Gα F x v





  (2.31) 

In order to solve the above optimization problem, only one variable of ( , , )J x α v  in 

(2.31) is minimized at a time (He et al., 2010).   

As an example, one can design a unimodular sequence of length 100N   having 

two stopbands given as    0.2, 0.3 0.7, 0.8    Hz in terms of normalized 

frequency. The relative weight parameter,  , is taken as 0.8  . Normalized power 

spectrum and correlation level of the sequence designed by the SCAN algorithm can 

be seen in Figure 2.3. 

 
(a) 

Figure 2.3 (a) Normalized power spectrum, (b) correlation level (dB) of the sequence designed by 

SCAN 
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(b) 

Figure 2.3 continues 

2.1.3  WeCAN - Minimization of Approximate WISL 

The WISL metric in (2.5) is alternatively expressed in (Stoica et al., 2009) as 

  
1 2 222

0
1 1

1
WISL

4

N N

k k p
k p

r N
N

  


 

          (2.32) 

where   1

1

N

k k
 


 are real valued coefficients with k k   . Autocorrelation lags can be 

weighted by choosing   1

1

N

k k
 


 appropriately. The relation between k  in (2.32) and 

kw  in (2.5) is given as 2
k kw  . ( )p  in (2.32) is defined as  

 
1

( 1)

( ) p

N
j k

p k k
k N

r e  




 

     (2.33) 

and   2

1

N

p p



 is given as 

2
,  0, , 2 1

2p p p N
N

     . The coefficients   1

1

N

k k
 


 are 

chosen so that the matrix  
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0 1 1

1 0

10

1 1 0

1
N

N

  
 


  





 
 
 
 
  

Π
 

  
  (2.34) 

is positive semidefinite; that is 0Π . This condition can be satisfied by selecting 0  

as m0 in 0    where min  is the minimum eigenvalue of the matrix 0Π Π  with 

all its diagonal elements being zero (Stoica et al., 2009). Using the properties of the 

discrete Fourier transform (DFT) and the definitions given in (2.8) and (2.33), we can 

write the following equalities (Stoica et al., 2009) 

 
   

     

DFT{.} 2

IDFT{.}

DFT{.} 2

IDFT{.}

( )

( )

k

k k

r X

r X

 

   

 

  




  (2.35) 

where    represents the convolution operation.  X   and    are defined as 

follows 

 

 

 

1

1

( 1)

,

.

N
j n

n
n

N
j k

k
k N

X x e

e







 








 



 




  (2.36) 

Then, ( )p  and the WISL metric can be written (Stoica et al., 2009) as 

 

 ( )*
0

1 1

2 2 2
0

1

 ( )

WISL = 
4

p

N N
j n n H

p n n n n p p
n n

N
H
p p

p

x x e

N
N

  



 


 



  

  





x Π x

x Πx


 



  

 
  (2.37) 

where 2

1 2 .p p p
Tj j jN

p Nx e x e x e       x  Thus, the frequency domain 

minimization problem to be solved can be expressed as 
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2 2 2
0

1

minimize
4

subject to   1,   1, , . 

N
H
p p

p

n

N
N

x n N




  

  


x

x Πx 
  (2.38) 

The WISL metric as given in (2.38) is a quartic function of unknowns,   1

N

n n
x


. 

Instead, (Stoica et al., 2009) suggests an “almost equivalent” minimization problem in 

which the following quadratic approximate function of   1

N

n n
x


 is minimized, 

 

2 2

, 
1

2
subject

minimiz

 to ,  1, , 2

 1,  1, , .

e
p

N

p p
p

p

n

N p N

x n N





  

  


x η

Cx η

η



  (2.39) 

Here, C  is an N N  matrix defined as the square root of the matrix Π , i.e., .TΠ C C  

In order to express the matrix Π  as TΠ C C , it must be a positive semidefinite 

matrix.      

        We can also express (2.39) as follows,                                                         

 

2

2

minimize

subject to

p
p p

p N





η
η

η

f
  (2.40) 

where p f Cx p  . In (Stoica et al., 2009), pη  is found as                                     

 p
p

p

Nη
f

f
.  (2.41) 

Let A  be a matrix whose pth row corresponds to the transpose of the vector pf . One 

can evaluate A  as                                                     

  2 1 2 2
2  H

N N N N
N


 A F z z z   (2.42) 

where         
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   1 1 2 1
0 0 .

T

k k kN N N
c x c x


z     (2.43) 

In (2.43), knc  corresponds to the  ,k n th element of C . One can express 

2 2

1

N

p
p

 ηCx p  alternatively as                                               

 
2 2 2

2
1 1

N N

p k N k
p k 

   ηCx z F β p    (2.44) 

where  1 2

1
, 1, ,

2

T

k k Nk k N
N

  β   . For a specific element, mx , of 

  1

N

n n
x


, (2.44) becomes 

 

 2 2 2

1 1

1

constant 2Re

N N

k m k k m k m k k m k k
k k

N

k k m
k

x v x x v x v v

v x

   



  

 

 



    

  
    

  

 


  (2.45) 

where k  and kv  are the corresponding elements of kz  and 2N kF β , respectively. 

Finally, mx can be found as follows 

 

1

,

arg .

mj
m

N

m k k
k

x e

v



 





   
 


  (2.46) 

Correlation level of a transmit signal with length 100N   designed by the WeCAN 

algorithm can be seen in Figure 2.4. The algorithm is initialized by Golomb sequence. 

The weighting factors k   are taken as 

 
   1, 1, , 20 51, ,70

0, otherwise.k

k


    
 


  (2.47) 

0  is selected as 0 13.1950   so that the matrix Π  in (2.34) is positive semidefinite.  
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Figure 2.4 Correlation level of a transmit signal with length 100N   designed by WeCAN 

2.1.4  WeSCAN (Weighted SCAN) 

     WeSCAN was proposed in (He et al., 2010) to control both the stopband and 

correlation constraints. It is an extension of the WeCAN algorithm (Stoica et al., 2009) 

and a modified version of SCAN. WISL metric in (2.37) can be written as 

 
2 2

0

1

WISL .
4 p p

N
H T

p
p

N
N




    C Cx x    (2.48) 

Then one can also write the above WISL metric as 

 

22 2
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1 1
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1 1
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N N
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p k

N N
H
p k

p k

N N
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



 

 

    

 
   

 

 

a z

a z

  (2.49) 

where kz  is given in (2.43).  
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     The exact WISL metric in (2.49) is a quartic function with respect to nx . Therefore, 

(Stoica et al., 2009) proposed to use a quadratic approximation of the exact WISL 

metric. The “almost equivalent” approximation of the WISL metric can be written (He 

et al., 2010; Stoica et al., 2009) as 
2

0 2
H
NN F Z Δ which is minimized by solving the 

following optimization problem proposed in (He et al., 2010; Stoica et al., 2009) 

 

2

3 0 2
, 

2

minimize    ( , )

subject to  1, 1, ,

      1, 1, , 2 .

p

H
N

n

p

J N

x n N

p N

 

 

 

x δ
x V F Z Δ

δ





  (2.50) 

In the expressions above, the following matrices are utilized 

 

 

 

1 2 2

1 2 2 2

,

1
.

2

N N N

T

N N NN









Z z z z

Δ δ δ δ




  (2.51) 

The optimization problem in (2.50) can also be written by using the cost functions 1J  

and 3J  in (2.26) and (2.50), respectively, as follows 

 

22

0 2
, ,

2

ˆminimize   ( , , ) (1 )

subject to 1, 1, ,

           1, 1, , 2 .

H
N

n

p

J N

x n N

p N

      

 

 

x α δ
x α δ x Gα F Z Δ

δ





  (2.52) 

In order to solve the above optimization problem, only one variable of ( , , )J x α δ  in 

(2.52) is minimized at a time (He et al., 2010).  

As an example, one can design a unimodular sequence of length 100N   having a 

stopband given as  0.2, 0.3   Hz in terms of normalized frequency. The weighting 

factors k  are taken as given in (2.47). The relative weight parameter,  , is taken as 

0.8  . The number of DFT points is selected as 1000N  . Normalized power 
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spectrum and correlation level of the sequence designed by the WeSCAN algorithm is 

shown in Figure 2.5.  

 
(a) 

 
(b) 

Figure 2.5 (a) Normalized power spectrum, (b) correlation level of the sequence designed by WeSCAN 

-100 -80 -60 -40 -20 0 20 40 60 80 100

k

-80

-70

-60

-50

-40

-30

-20

-10

0
WeSCAN



27 
 

2.2  MM-Based Methods 

The MM method is used to solve rather difficult optimization problems by 

transforming them into simpler ones (Song et al., 2015a, 2016b; Zhao et al., 2016). In 

this section, we briefly summarize the MM method. 

 Let ( )f x  denote a function to be minimized over nχ  . Now, we can formulate 

an optimization problem as (Song et al., 2015a, 2016b; Zhao et al., 2016) 

 
minimize    ( )

subject to  .

f


x

x χ
  (2.53) 

We minimize a simpler function that majorizes ( )f x  instead of minimizing ( )f x  by 

employing the MM method. In order to understand the principle of the MM method, 

first of all, consider that the MM method starts from an initial point represented as  0x  

and produces a sequence at the thk  iteration which is represented as  kx . The sequence 

update rule is given as follows (Song et al., 2015a, 2016b; Zhao et al., 2016) 

    1 arg min ( , ) k ku




x χ
x x x   (2.54) 

where  ( , )ku x x  is the majorization function of ( )f x  at  kx  satisfying the following 

expressions 

 
 

     

( , ) ( )  

( , ) ( ).

k

k k k

u f

u f

  



x x x x χ

x x x
  (2.55) 

The updating procedure of the MM method is illustrated in Figure 2.6. The critical 

point here is determining the majorization function. More details about the MM 

method can be found in (Song et al., 2015a, 2016b; Stoica & Selen, 2004; Zhao et al., 

2016). In the following sections, existing algorithms from the literature derived by 

using the MM method for direct minimization of ISL and WISL metrics are reviewed. 
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Figure 2.6 The updating procedure of the MM method (Y. Sun, Babu, & Palomar, 2017) 

 

  MISL 

In order to employ the MM method for direct minimization of ISL, the 

minimization problem in (2.7) is first rewritten using the alternative expression of ISL 

in (2.12) as (Song et al., 2015a) 

 

2 2

1

minimize   

subject to  1, 1, ,

N
H H
p p

p

n

N

x n N



  

 


x

a xx a


  (2.56) 

where  11  ,p p
T

j j N

p e e     a   1, ,2p N  . Expanding the square in the 

objective function, one obtains 

 
 

2 2 2

1

minimize 2

subject to 1, 1, , .

N
H H H H
p p p p

p

n

N N

x n N



    

 


x

a xx a a xx a


  (2.57) 

Due to Parseval’s relation,
2 2 2

1

N
H
p

p

N


  a x x , the second term is a constant. After 

ignoring the constant term in (2.57), the minimization problem can be expressed (Song 

et al., 2015a) as  
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 

2 2

1

minimize

subject to 1, 1, , .

N
H H
p p

p

nx n N



 


x

a xx a


  (2.58) 

Construction of majorization function for the ISL metric is started by using the 

following lemma.  

Lemma 1 (Song et al., 2015a): Let K  and L  be n n  Hermitian matrices such that 

K L . Then, for any point 0
nx  , the quadratic function Hx Lx  is majorized by 

the following function    0 0 02 ReH H H     x Kx x L K x x K L x  at 0x . 

The proof of Lemma 1 can be found in (Song et al., 2015a). Utilizing Lemma 1, a 

function that majorizes the objective function can be found.  

Defining H
p p pA a a  and HX xx , the objective function in (2.58) can be written 

as    
2 22 2

1 1

Tr .
N N

H H
p p p

p p 

 a xx a XA  Since      Tr vec vec
H

p p   XA X A  (Song et 

al., 2015a), the problem in (2.58) can be expressed as follows 

 

   1
,

minimize vec vec

subject to

1, 1, ,

H

n

H

x n N



  

 

x X

X xx

X Σ X


  (2.59) 

where    
2

1
1

vec vec
N H

p p
p

   Σ A A  and  vec X  forms a column vector by stacking 

all the columns of the matrix X . Now, one can apply Lemma 1 on the objective 

function in (2.59). Lemma 1 can be applied with  max 1K Σ I  where  max 1 Σ  is 

the maximum eigenvalue of 1Σ . Then,    1vec vec
H

  X Σ X  is majorized at  kX  by 

  1 , ku X X  given as follows (Song et al., 2015a)  
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1 max 1
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   
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X X Σ X X

X Σ Σ I X

X Σ I Σ X

  (2.60) 

It can be clearly seen that     2vec vec
H

N  X X  and   2
max 1 2N Σ  as stated in 

(Song et al., 2015a). Therefore, the first and third terms are constant in (2.60). After 

ignoring the constant terms, one can rewrite (2.59) as follows 

 

       2
1

,
minimize  Re vec 2 vec

subject to

1, 1, , .n

H

H kN

x n N



  
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x X
X Σ I X

X xx


  (2.61) 

The objective function in (2.61) can also be written as 

 
         

2
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1

Tr Tr 2 Tr .
N

k k
p p

p




 X A A X Σ X X   (2.62) 

Then, the minimization problem in (2.61) can be expressed as follows (Song et al., 

2015a)  
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x n N
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
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a x a x x x


  (2.63) 

Minimization problem in (2.63) can alternatively be written as 

 
        2minimize    Diag 2

subject to     1, 1, ,

H
k k kH H

n

N

x n N



 

x
x A p A x x x


  (2.64) 

where  1 2 2   NA a a a  and     2k kHp A x .  
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   In order to further simplify the optimization problem in (2.64), the second 

majorization is applied with          2
max Diag 2

H
k k k kH Hp N K AA A p A x x . 

Then, the majorizing function can be expressed as follows  

 

    

       
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,

2Re 2
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k k H H
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k k kH

H H
k k k k

u p
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   
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 

x x x AA x

x A x x x

x x x A x





  (2.65) 

After ignoring the constant terms in the majorizing function in (2.65), one has the 

following optimization problem  

 
     2minimize Re 2

subject to   1, 1, ,

H
k kH

n

N

x n N

  
 
 

x
x A x x x


  (2.66) 

where      maxDiag k k Hp A A p I A .  

Defining        22
H

k k kN  y A x x x , (2.66) can be rewritten as follows (Song 

et al., 2015a) 

 
minimize

subject to  1, 1, , .nx n N



 
x

x y


  (2.67) 

In (Song et al., 2015a, 2015b) the solution of (2.67) is given as follows  

  arg , 1, , .nj y
nx e n N     (2.68) 

 As an example, the MISL algorithm is initialized by Golomb sequence of length

1000N  . Correlation level (dB) of the sequence designed by MISL is plotted in 

Figure 2.7. 
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Figure 2.7 Correlation level of the transmit sequence designed by the MISL algorithm (in dB) 

  MWISL 

Autocorrelation function of the sequence   1

N

n n
x


 can be expressed alternatively as 

(Song et al., 2016b)  

  Tr , 0, , 1H
k kr k N  U xx    (2.69) 

where kU  is a Toeplitz matrix with its kth diagonal elements being 1 and other 

elements being 0. Then, the optimization problem for minimizing WISL in (2.5) can 

be rewritten (Song et al., 2016b) as  
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where k kw w   and 0 0w  . Since      Tr vec vec
H

k kU X X U , (2.70) can be 

written as (Song et al., 2016b)  

              

       
1

,
( 1)

1
minimize     vec vec vec vec

2

subject to      =

    1, 1, , .
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x X

X U U X

X xx


  (2.71) 

The above problem can alternatively be expressed as (Song et al., 2016b)  
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,

1
minimize vec vec

2

subject to   =

1, 1, ,

H

H

nx n N

  

 

x X
X E X

X xx


  (2.72) 

where  
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k k k
k N

w


 

   E U U   (2.73) 

Construction of the majorizing function for the WISL metric is started using 

Lemma 1. The objective function in (2.72) is a quadratic function of X . Then, one 

can apply Lemma 1 to    1vec vec
H

  X E X  with  max 1K E I  where  max 1 E is 

the maximum eigenvalue of 1E . It is given as 

    max 1 max | 1, , 1k kw N k k N    E   (Song et al., 2016b). Then, the 

majorizing function for the objective function is (Song et al., 2016b) found as 
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34 
 

Since      2 2vec vec
H H N   X X x x , the first term is a constant. Therefore, the 

majorized version of (2.72) can be written as follows (Song et al., 2016b)   
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
  (2.75) 

(2.75) can be expressed by using (2.73) as (Song et al., 2016b)  
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x X

U X U X

E X X

X xx



  (2.76) 

It can be seen from (2.69) that    ( )Tr ll
k kr U X . Then, (2.76) can be rewritten as  

 

     
1

( )
max 1

,
( 1)

minimize Re Tr Tr
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1, 1, , .

N
l l
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H

n

w r

x n N




 
 

  
     

 


x X

U X E X X

X xx


  (2.77) 

Defining a Hermitian Toeplitz matrix as 
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 
 

   
 
 
 

R U


 

  


  (2.78) 

the objective function in (2.77) is written as      ( )
1 max 1Re Tr Tr l  R X E X X . The 

first term can be expressed as  1Re Hx R x . Using the fact that  Re
2

H


b b
b for any 
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complex vector ,b  the first term of the objective function in (2.77) is equal to 1  .Hx R x

Therefore, the optimization problem in (2.77) can be rewritten as     

 
    ( ) ( )

1 max 1minimize

subject to  1, 1, , .

HH l l

nx n N



 
x

x R E x x x


  (2.79) 

The objective function in (2.79) is a quadratic function of x . Then, the majorization 

function of the objective function can be obtained by applying Lemma 1 with

    ( ) ( )
max 1 max 1

Hl l R E x x . However, in  (Song et al., 2016b) it is proposed to use 

some upper bound of     ( ) ( )
max 1 max 1

Hl l R E x x  for the purpose of computational 

efficiency and simplicity.  

Lemma 2 (Song et al., 2016b): Let T  be an N N  Hermitian Toeplitz matrix given as 
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1 0
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 
 

  

T
 

  
  (2.80) 

and 2
H
NF  be the 2 2N N  DFT matrix defined as 

 
2

2
2

,
, 0 , 2 1.

j kl
N

k l

H
N e k l N




      F   (2.81) 

Then, the following boundaries can be written,    
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   
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   

  

  

T

T

  (2.82) 

with 2
H
N F c and * *

0 1 1 1 10
T

N Nt t t t t     c .  

Since  max 1 0 E  (Song et al., 2016b), the following inequality can be written 

(Song et al., 2016b)  
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       ( ) ( )
max 1 max 1 max 1 .

Hl l
u     R R E x x   (2.83) 

Then, one can apply Lemma 1 to the objective function in (2.79) with uK I . Thus, 

the majorizing function of the objective function in (2.79) can be written as follows   
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    
 

 

x x E x x

x R E x x I x

x E I E x

  (2.84) 

Since H Nx x , the first term on the right hand side is constant. After ignoring 

constant terms, optimization problem can be reformulated using the majorizing 

function as follows  

 
         

1 max 1minimize  2 Re

subject to  1, 1, , .

H
l l lH

u

nx n N

    
 
 

x
x R E x x I x


  (2.85) 

Finally, after expressing the optimization problem in (2.85) as  

 
minimize

subject to  1, 1, ,nx n N



 
x

x y


  (2.86) 

where          
1 max 1

H
l l l

u    y R E x x I x , the closed form solution of the 

minimization problem in (2.86) is given as follows (Song et al., 2016b)  

  arg ,  1, , .nj y
nx e n N     (2.87) 

As a numerical example, correlation level of a transmit sequence with length 

100N   designed by the MWISL algorithm can be seen in Figure 2.8. The algorithm 

is initialized by Golomb sequence and the weighting factors are taken as in (2.47). 
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Figure 2.8 Correlation level of a transmit sequence designed by the MWISL algorithm (in dB) 

 

  WPISL 

In (Zhao et al., 2016), a unified metric named ‘‘weighted peak or the integrated 

sidelobe level’’ (WPISL) was proposed as follows 

 
1

1

WPISL
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   (2.88) 

where 2 p    and   1

1

N

k k
w




 are nonnegative weights. This metric encompasses the 

metrics of ISL, WISL, and PSL by assigning the values of p  and   1

1

N

k k
w




 

appropriately. Hence, it was termed as the unified metric. For example, if one lets 2p 

, then (2.88) becomes the WISL metric. If 2p   and   1

1
1

N

k k
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
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(2.88) reduces to the ISL metric. Finally, if p    and   1

1
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metric is recovered.  
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The optimization problem for finding a unimodular sequence which minimizes the 

metric of WPISL is given as follows  

 
minimize      WPISL

subject to     1, 1, , .nx n N 
x


  (2.89) 

Then, the problem can be rewritten by using (2.88) as 

 

1

1

minimize      

subject to     1, 1, , .

N
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k k
k

n

w r

x n N





 


x


  (2.90) 

In (Zhao et al., 2016), the MM method was proposed to solve the problem in (2.90). 

For this purpose, construction of majorizing function for WPISL metric is started by 

using the following lemma.  

Lemma 3 (Lemma 2 in (Song et al., 2015a), Lemma 10 in (Song et al., 2016b), 

Lemma 1 in (Song et al., 2016a)): Let ( )h x  be a scalar function of px , i.e. ( ) ph x x , 

where 2p  . The local majorizing function of ( )h x  at  0 0,x x  on the interval [0, )x  

is   2 2
0 0 0; ( 1) ph x x ax bx ax p x     . a  and b  in the local majorizing function are 

given as  1 2
0 0 0 0[ ( )] / ( ) 0p p pa x x px x x x x       and 1

0 02 0pb px ax   , 

respectively. In (Zhao et al., 2016), it is stated that monotonicity is maintained and 

infeasibility will not occur by using such a local majorizing function.    

Let the function ( )f x  denote the WPISL metric. Thus, one can define

1

1

( )
N

p

k k
k

f w r



x   where H

k kr  x U x  and N N
k

U  . In Lemma 3, x  corresponds to 

kr  and 0x  corresponds to   l
kr x  where  lx  represents the sequence at the l th 

iteration of the MM algorithm. Then, by using Lemma 1, we can write 

  
1

2

1

( ) constant
N

k k k k k
k

f w a r b r




  x   (2.91) 
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where ka  and kb  are calculated using the definition in Lemma 3. These parameters are 

different for each k  value like the upper limit, x . The upper limit for each k  value is 

calculated as follows (Zhao et al., 2016)  

 
 

1

1

1
, 0

0, 0.

p
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l
m m k
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w r w
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 

   (2.92) 

After employing Lemma 3 by considering k kw w  , 0 0w  , k kb b  , and 0 0b  , the 

result of the first majorization is expressed in (Zhao et al., 2016) as follows 
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where   
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and H
k k U U . As can be seen from (2.93), the second term of the majorizing function 

is quadratic but the first term is still quartic. Therefore, the second majorization is used 

applying Lemma 1.  

The first term of the majorizing function in (2.93), 

21 1
2

1 1

N N

k k k k k k
k k

Hw a r w a
 

 

  x U x , can be written as (Zhao et al., 2016)  
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1
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2

H
  X E X   (2.95) 

where HX xx and 
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with k ka a  and 0 0a  . After employing majorization using Lemma 1 with 

max 2( )K E I , the result is given in (Zhao et al., 2016) as  

          4

max 2 2 max 2

1
constant

2

H
l lH   E x x R E x x x   (2.97) 

where  

 
1 2( ) ( )
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( 1)

.
2

N pl l
k k k k

k N

p
w r r

 


 

 R U   (2.98) 

The expression in (2.97) majorizes the objective function in (2.93). Then, one can 

apply Lemma 1 on the second term in (2.97) with RK I  where R  is chosen such 

that max 2( )R  R  and the majorizing function of the second term is obtained as (Zhao 

et al., 2016)  

            
3 2 max 2

2
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 

       

   

x x x x x R E x x I x

x y x

  (2.99) 

Finally, the optimization problem to find the constant modulus unimodular sequence 

minimizing the WPISL metric can be written as follows 

 
minimize     Re

subject to    1, 1, ,

H

nx n N

   

 
x

y x


  (2.100) 

where 
       2

max 2
2

1
1 l l l

R R


 

 
   
 

E
y x x R x . Then, the closed form solution of the 

problem in (2.100) is given as follows 

  arg ,  1, , .nj y
nx e n N     (2.101) 

To provide a numerical example, correlation level of a transmit sequence with 

length 100N   obtained by the WPISL algorithm can be seen in Figure 2.9. The 
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algorithm is initialized by Golomb sequence and the weighting coefficients are taken 

as in (2.47). 

 

Figure 2.9 Correlation level of the transmit sequence designed by the WPISL algorithm (in dB) 

 

Equation Section (Next) 
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CHAPTER THREE 

DESIGN OF SEQUENCES WITH LOW AUTOCORRELATION SIDELOBES 

USING GENETIC ALGORITHMS 

In this chapter, we employ genetic algorithm (GA) to synthesize unimodular 

sequences with low ISL and compare the results against the CAN algorithm. Although 

the CAN algorithm minimizes an “almost equivalent” ISL metric which is quadratic 

in the sequence designed, GA is employed to minimize the exact metric of ISL which 

is quartic. Our simulation results demonstrate that minimization of ISL utilizing GA 

produces slightly better results than CAN (Bişkin & Akay, 2017).  

As mentioned in Section 1.1, computational methods such as GA are not efficient 

in terms of computation time for designing sequences. On the other hand, the methods 

given in Chapter 2 may converge to a local minimum and the corresponding algorithms 

might obtain a suboptimal solution instead of the optimal one. Thus, in this thesis, we 

employ GA not for designing sequences, but as a benchmark solution for the 

minimization problem in order to decipher how close the proposed algorithms in 

Chapter 2 are able to converge to the optimal global solution. Because of this, 

performance evaluation of GA in designing sequences is out of scope of this thesis.  

3.1  Genetic Algorithms 

In this section, the following exact quartic cost function is minimized using GA to 

obtain a sequence with minimum ISL 

 

222

1 1

.p

N N
j n

n
p n

x e N


 

 
 

  
    (3.1) 

GA is one of the global optimization algorithms developed by taking inspiration 

from biological mechanisms of natural selection. In biology, the most adaptable 

generations manage to stay alive after natural selection mechanisms ongoing through 

the years. In the same way, the most probable solution of an optimization problem 

eliminates the alternative solutions after execution of the GA for that problem. 
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Generally, GA is used when the analytic solution of the optimization problem 

cannot be found easily. Another advantage of GA is that it is less likely to converge to 

a local minimum. Therefore, GA is able to both provide performance improvement 

and solve complex optimization problems (Capraro et al., 2008; Lellouch et al., 2015, 

2016; Martone et al., 2016; Smith-Martinez et al., 2013; G. Sun et al., 2016; Weile & 

Michielssen, 1997). The basic concepts relevant to GA are explained as follows: 

Population: The set which may include the possible solutions of the problem. 

Individual: Each element in the population set is named as an individual. 

Generation: The process of reproduction of the individuals which are included in 

the population. 

Parents: Individuals which are used in the reproduction process. 

Child: An individual arising from two parents after reproduction process. 

Initialization: The process to create the initial population of the algorithm.  

Selection: The process of determining the appropriate parents in order to give a 

child. 

Crossover: Changing the chromosome of individuals from generations to 

generations (see Figure 3.1). 

 

Figure 3.1 An example of crossover 

Mutation: A random change which occurs in the chromosome of individuals (see 

Figure 3.2) 

 

Figure 3.2 An example of mutation 
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     As the first numerical example, GA is initialized with Golomb sequence of length 

100N   in order to minimize the exact cost function in (3.1). Correlation level (dB) 

of the sequence designed by GA can be seen in Figure 3.3.  

 

 

 

Figure 3.3 Correlation level (in dB) of the transmit sequence designed by GA 

 

3.2  Numerical Examples for Minimizing ISL 

For CAN and MISL algorithms, the stopping criterion is determined as 

   1 310k k  x x  in parallel to (Stoica et al., 2009). For GA, the stopping criterion 

is selected as the maximum number of generations. The population size, maximum 

number of generations, crossover, and mutation operations explained in the previous 

section are also presented as other inputs for GA. We decided the population size to 

be 150 and the maximum number of generations is assigned as 20000. We use both 

crossover and mutation operations in order to increase the diversity in the population. 
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5 % of the population is selected as elite individuals in each generation. They maintain 

their chromosomes without any mutation or crossover (Bişkin & Akay, 2017).  

Simulations were performed by employing two different initialization scenarios. In 

the first experiment, the initialization sequence 1 N
Tjje e    x   is formed by 

selecting phases  
1

N

p p



 as independent random variables uniformly distributed in the 

interval  ,  . Sequence lengths of and9, 25,  32,  64,   100N   were tried out.  

Experiments were repeated several times and performance of the algorithms was 

calculated by taking the average value of the output metrics for each simulation. Due 

to its long computation time, GA was repeated only 10 times as opposed to CAN and 

MISL which were repeated 100 times. Average MF values of the designed sequences 

using the three algorithms are presented in Table 3.1. MFs of designed sequences 

versus signal length can be seen in Figure 3.4. It can be understood from Figure 3.4 

that GA performs better than CAN in terms of MF for all the simulated sequence 

lengths. However, it performs slightly worse than MISL for larger sequence lengths. 

The reason for this is that GA parameters such as population size, maximum generation 

number, etc. are selected in order to speed up the algorithm. We have to note that 

computational complexity of GA increases with larger sequence lengths.   

 

Table 3.1 Average MF values (initialization by random sequence) 

Algorithm 
N 

9 25 32 64 100 

GA 35.1422 14.6810 13.5195 16.9899 16.8717 

CAN 17.7849 11.3143 11.6779 13.8035 14.8095 

MISL 20.9399 13.5751 14.4039 16.2363 17.7229 
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Figure 3.4 Average MF versus sequence length (initialization by random sequence) 

 

As a second experiment, the algorithms were initialized with Golomb sequence. 

Resulting MFs can be seen in Table 3.2. In Figure 3.5, MFs of the resulting designed 

sequences with respect to sequence length are plotted. 

 

Table 3.2 MF values (initialization by Golomb sequence) 

Algorithm 
N 

9 25 32 64 100 

Golomb 5.3666 8.2047 9.1800 12.7733 15.8731 

GA 38.2296 20.3287 14.9499 47.9392 57.1046 

CAN 38.0151 25.0084 16.9131 46.6691 56.4701 

MISL 38.2296 25.6093 14.1476 47.9391 42.4780 
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Figure 3.5 MF versus sequence length (initialization by Golomb sequence) 

 

We can see that when algorithms are initialized by a sequence having good 

correlation properties (e.g. Golomb), their performance in terms of MF increases. As 

opposed to Figure 3.4, in Figure 3.5 MFs obtained by CAN, MISL, and GA are fairly 

close to each other. 

 

 

Equation Section (Next) 
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CHAPTER FOUR 

A NEW FREQUENCY DOMAIN SEQUENCE DESIGN ALGORITHM 

MINIMIZING WISL 

In this chapter, we are interested in designing unimodular sequences via minimizing 

WISL in (2.5) by way of formulating and implementing the MM method in the 

frequency domain. Although the already existing WeCAN algorithm is also 

formulated in the frequency domain, it does not minimize the exact WISL metric but 

an “almost equivalent” approximation of it. Therefore, we develop an algorithm for 

directly minimizing the quartic WISL metric in the frequency domain (Bişkin & Akay 

2018a). Our simulation results demonstrate that minimization in the frequency domain 

via the MM method converges to a stationary point in less number of iterations and 

CPU time (sec.) and can achieve lower WISL levels. 

4.1  FWISL 

To minimize the exact quartic frequency domain WISL metric in (2.38), we can 

start by constructing the majorizing function using Lemma 1 (Song et al., 2015a, 

2016b; Zhao et al., 2016). By this way, we find a function that majorizes the objective 

function in (2.38). First of all, we alternatively express the objective function in (2.38)  

as         

  
2 22 2 22
0 0

1 1

WISL
4 4

N N
H H
p p p

p p

N N
N N

 
 

         x Πx x A Π x     (4.1) 

where p p
Tj jN

p e e    a   and H
p p pA a a . In (4.1),   represents the Hadamard 

product. Thus, we can express the minimization problem in (2.38) as 

 
     

2 2
2

1

minimize 2

subject to  1,  1, , .

N
H H

p p
p

n

N N

x n N



 
  

 

  


x

x A Π x x A Π x 
  (4.2) 

Let us define 
p pM A Π   and HX xx . Then, we can rewrite the minimization 

problem in (4.2) as follows 
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   
2

,
1

2 2

1

minimize Tr 2 Tr

subject to   

1,  1, ,

N N

p p
p p

H

n

N

x n N

 

   



  

 
x X

M X M X

X xx   (4.3) 

where Tr(.)  denotes trace of a matrix. Since    TrH
p px A Π x M X  is identical 

to 
0

1
( )p


  in (2.37), it is a real-valued scalar. Considering the following equality 

          Tr vec vec vec vec ,
H H

p p p
      M X M X X M   (4.4) 

where  vec X  forms a column vector by stacking all the columns of the matrix X , 

we can express (4.3) as 

  

     
2

2
,

1

minimize vec vec 2 Tr

subject to   

1,   1, , .

N
H

p
p

H

n

N

x n N



  



  


x X

X Σ X M X

X xx   (4.5) 

In (4.5), we utilize the definition    
2

2
1

vec vec
N H

p p
p

    Σ M M . Now, we can apply 

Lemma 1 to    2[vec ] vecHX Σ X  with  max 2K Σ I  where  max 2 Σ  denotes the 

maximum eigenvalue of the matrix 2Σ . If we denote the matrix at the thk  iteration by

 kX ,    2[vec ] vecHX Σ X  is majorized at   vec kX  by the following function, 

 

           

        
        

max 2

2 max 2

max 2 2

vec , vec [vec ] vec

              2 Re [vec ] vec

       vec vec .

k H

kH

H
k k

u 







 

   

X X Σ X X

X Σ Σ I X

X Σ I Σ X

 (4.6) 

Since     2vec vec
H

N   X X , the first term in (4.6) is constant. The last term, on the 

other hand, does not depend on the independent variable, x , and therefore, it is 
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constant as well. Ignoring those constant terms, we can perform the following 

minimization problem instead, 

 

        
 

2 max 2
,

2

1

minimize 2 Re vec vec  

2 Tr

subject to    

1,  1, , .

H k

N

p
p

H

n

N

x n N









 



 

 




x X

X Σ Σ I X

M X

X xx

  (4.7) 

Using the equality in (4.4), the above problem can be further simplified as  

 

           
2 2

max 2
,

1 1

minimize 2 Tr Tr 2 Tr 2 Tr

subject to   

1,  1, ,

  

.

N N
k k

p p p
p p

H

n

N

x n N


 

 



  

 
x X

X M M X Σ X X M X

X xx (4.8) 

We can alternatively express the minimization problem in (4.8) as  

 

      
2 2

max 2
,

1

2

1

minimize 2 Tr 2

2

subject to   

1,  1, , .

N
k kH H

p p
p

N
H

p
p

H

n

N

x n N












  





x X
X M x M x Σ x x

x M x

X xx

  (4.9) 

The summation expression in the last term above can be written as

2 2 2

1 1 1

 
N N N

H H H
p p p

p p p  

   
    

   
  x M x x A Π x x Π A x  . Since 

2

1

2
N

p
p

N


A I , this term is 

constant and does not affect the minimization. Ignoring this term, we can rewrite (4.9) 

as 

 
          

2

max 2
1

minimize [ ] [ ]

subject to  1,  1, , .

N
k k k kH H H

p p
p

nx n N






 




 
 



x
x M x M x Σ x x x

  (4.10) 

The above minimization problem can be expressed more compactly as  
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   
      max 2

minimize Diag

[ ]

subject to  1,  1, , .

kH H

k k H

nx n N



  

x
x Π A m A

Σ x x x



  (4.11) 

Here,   Diag km  denotes the 2 2N N  diagonal matrix whose diagonal is formed by 

the elements of the 2 1N   vector        
1 2 2

Tk k k k
Nm m m   m  where

     [ ]k k kH
p pm  x M x . In (4.11), the matrix A  is defined as  1 2 2   |    |   |   N A a a a  

using pa  which, in turn, was defined following (4.1). Calculation of  k
pm  for all p  

values using      [ ]k k kH
p pm  x M x  is not computationally efficient. Therefore, we can 

modify this expression as            * *[ ]
Hk k k k kH

p p p pm         x A Π x x a Π x a   , 

where *
pa  corresponds to complex conjugation of all the elements of the vector pa . 

Let  kM  be a 2 2N N  matrix defined as 

      * *
Hk k k   

   M x A Π x A     (4.12) 

where *A  corresponds to complex conjugation of all the elements of the matrix A . 

Then, diagonal elements of  kM correspond to the elements of  km given above.  

Noting that the minimization problem in (4.11) is quadratic in x , we can apply a 

second majorization by choosing the matrix K  in Lemma 1 as 

    max Diag k HK Π A m A I . Now, after ignoring the constant terms, we can 

rewrite the problem as follows;  

 

   
     

       

max

max

minimize Re Diag

Diag      

subject to    1,  1, , .

kH H

H
k k

k kH

nx n N








   
 

  

x
x Π A m A

Σ x x

Π A m A I x




  (4.13) 
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The above minimization problem can simply be expressed as  

 
minimize Re

subject to   1,  1, ,

H

nx n N

  

  
x

x y
  (4.14) 

where 

 

         

       

max 2

max

Diag  

 Diag .

H
k k kH

k kH





    



y Π A m A Σ x x

Π A m A I x




  (4.15) 

Thus, finally, the closed form solution is found as (He et al., 2010; Zhao et al., 2016) 

  arg ,  1, , .nj y
nx e n N     (4.16) 

Since we obtained this solution by minimizing the WISL metric in the frequency 

domain using the MM method, we call the above derived algorithm FWISL (frequency 

domain WISL). The pseudocode of the developed algorithm is summarized in 

Algorithm 1 below.  

 

Algorithm 1: FWISL Algorithm 

1:   Set sequence length N  and weights   1

1
0

N

k k
w




 .  

      Set 0k   and initialize (0)x . 
2:   while stopping criteria   Tol 

3:          k k k
H

 x ΠM AxA   

4:          
1 2 2[ ]k k k k T

Nm m mm   

5:             max 2Diag [ ]k k kH H Π A m xy A Σ x  

      ( }
max Diag k H k Π A m A I x  

6:    arg , 1, , .nj y
nx e n N    

7:   1k k   
8:   end while 
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4.2  Simplifying Majorization for Efficient Computation  

Algorithm 1 above requires calculation of the maximum eigenvalue of the matrix 

   Diag k HΠ A m A  which is computationally demanding. Therefore, alternative 

majorization functions could be looked for to decrease computational cost. For this 

purpose, a different matrix for K  in Lemma 1 is sought. This alternative matrix can 

be found using a property (Song et al., 2016b) for Hermitian Toeplitz matrices. Since 

the matrix    Diag k HΠ A m A  is Hermitian Toeplitz (see Appendix 3), we can 

invoke Lemma 2 (see Section 2.2.2) (Song et al., 2016b) in finding a different matrix 

for K to allow fast computation.  

Thus, we let K  in Lemma 1 be equal to u I  instead of

  max ( Diag( ) )k H Π A m A I . u  is calculated as in (2.82) in Lemma 2 (see Section 

2.2.2). In our proposed algorithm, we use this alternative matrix to reduce 

computational cost. 

4.3  Numerical Examples for FWISL 

In our numerical examples, we design unimodular sequences under different 

scenarios. The weights,   1

1

N

k k
 


, of the correlation lags are selected as 

 
   1, 1, ,20 51, ,70

0, otherwise.k

k


    
 


  (4.17) 

To obtain a narrow autocorrelation mainlobe, correlation weights are chosen as 

1k   for small k  values (  1, , 20k   ) which are the lags near the origin. As 

opposed to WeCAN introduced in (Stoica et al., 2009), for our proposed algorithm 

FWISL-accelerated (FWISL-acc) (see Appendix 2 for the acceleration scheme), there 

are not any restrictions on the value of 0  to make the matrix Π  in (2.34) positive 

semidefinite. On the other hand, we have observed in our numerical experiments that 

the values in the interval 00 1   work sufficiently well towards providing a smaller 

number of iterations for our minimization algorithm. Accordingly, we assigned 
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 0

min

1



Π

  to make sure that 0  stays within the interval, (0,1] . We run the 

algorithm until the stopping criterion is reached. As in (Stoica et al., 2009), the 

stopping criterion is determined as ( 1) ( ) Tolk k  x x .  

Performance of the proposed algorithm, FWISL-acc, is compared against CAP 

(Stoica et al., 2009), WeCAN (Stoica et al., 2009), WeCAN+CAP (Stoica et al., 2009), 

MWISL-acc (Song et al., 2016b), and WPSIL-SQUAREM (Zhao et al., 2016) 

algorithms in terms of number of iterations, CPU time, MMF, and correlation level 

which is defined in (2.22). WPISL-SQUAREM (Zhao et al., 2016) and MWISL-acc 

(Song et al., 2016b) algorithms (which are both time domain MM methods), CAP, 

WeCAN, and WeCAN+CAP algorithms (Stoica et al., 2009), and our proposed 

frequency domain MM-based algorithm, FWISL-acc, in Algorithm 6 (see Appendix 

2), are implemented for the tolerance value of 13Tol 10 . 

In the first experiment, all the algorithms are initialized with Golomb sequence of 

length 100N  . The WISL metric versus the number of iterations for FWISL-acc, 

WPISL-SQUAREM, and MWISL-acc algorithms are shown in Figure 4.1. We can 

observe from Figure 4.1 that our proposed algorithm converges in a smaller number 

of iterations and attains a lower WISL value.  

Figure 4.2 displays WISL values of the algorithms versus CPU time (in sec.). As 

can be seen, FWISL-acc terminates in less CPU time by reaching the tolerance value 

of 13Tol 10 . Especially for WISL values below 1810 , FWISL-acc requires less CPU 

time, although for larger WISL values, WPISL-SQUAREM and MWISL-acc 

algorithms spend less time. We would like to note that we did not include the CAP and 

WeCAN algorithms in Figure 4.1 and Figure 4.2 because their performance curves 

stayed much farther away (in a negative sense) from those of the other algorithms 

obscuring their readability.  

Correlation level displays the relative strengths of autocorrelation sidelobes, kr , 

with respect to the zero-lag coefficient, 0r . Correlation level curves of the sequences 

designed by CAP, WeCAN, MWISL-acc, and FWISL-acc algorithms are plotted 
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together in Figure 4.3. Since the correlation level curve of WPISL-SQUAREM is very 

close to that of MWISL-acc, it is not included in Figure 4.3. It can be noticed that 

FWISL-acc is able to suppress autocorrelation sidelobes more at required lags. 

In Table 4.1, we list the required number of iterations and CPU time of all the 

simulated algorithms for 13Tol 10  along with the achieved MMF values. The 

average correlation levels in the suppressed autocorrelation lags,

   1, , 20 51, , 70k     , are also given in Table 4.1. 

As a second experiment, CAP, WeCAN, MWISL-acc, WPISL-SQUAREM, and 

FWISL-acc algorithms are initialized with Golomb sequence for 100, 140,  160N  , 

and 200 . Figure 4.4 displays the number of iterations versus sequence length and 

Figure 4.5 shows number of iterations and CPU time versus sequence length for

100,  140,  160N  , and 200.  In Figure 4.4 and Figure 4.5, WeCAN+CAP algorithm 

is initialized by the sequence obtained by the CAP algorithm as proposed in (Stoica et 

al., 2009). Figures show that FWISL-acc outperforms CAP, WeCAN, and 

WeCAN+CAP algorithms and also converges in a smaller number of iterations and 

terminates in less CPU time than other MM-based algorithms. As can be seen, the 

WeCAN+CAP algorithm performs better than the WeCAN algorithm in terms of CPU 

time, MMF, iteration number and is able to suppress autocorrelation sidelobes more at 

given lags. This shows the importance of the initial sequence on performance. 

However, our proposed algorithm FWISL-acc still outperforms WeCAN+CAP. We 

also initialized MM-based algorithms, MWISL-acc, WPISL-SQUAREM, and 

FWISL-acc, with the sequence obtained by the CAP algorithm for lengths 

100,  140,  160,  and 200N   in order to perform a fair comparison with the 

WeCAN+CAP algorithm. We named those concatenated algorithms as MWISL-

acc+CAP, WPISL-SQUAREM+CAP, and FWISL-acc+CAP, respectively. 

Comparison of the algorithms in terms of MMF versus sequence length is shown in 

Figure 4.6. When the algorithms are initialized by the sequence obtained by the CAP 

algorithm, they achieve better performance. Figure 4.7 displays the average level of 

the suppressed autocorrelation sidelobes at given lags versus sequence length. It can 

be seen that the FWISL-acc algorithm is able to suppress autocorrelation lags more at 
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the required lags. In Table 4.2, we list the required number of iterations, CPU time, 

and the achieved MMF values of the simulated algorithms for the case of initialization 

with the sequence obtained by CAP. The average correlation levels in the suppressed 

autocorrelation lags are also given in Table 4.2. 

As a last experiment, we employ the MM-based algorithms when the sequence 

length N  is varied from 100N   to 1000N  . Figure 4.8 displays number of 

iterations versus sequence length. As shown in Figure 4.8, our proposed algorithm 

converges in a smaller number of iterations. In Figure 4.9, CPU time versus sequence 

length is shown. It can be seen that FWISL-acc terminates in less CPU time by 

reaching the tolerance value. Figure 4.8 and Figure 4.9 indicate that FWISL-acc 

algorithm can be employed for designing long sequences as well. Performance of 

simulated algorithms in terms of MMF is compared in Figure 4.10 which displays that 

the sequence designed by the FWISL-acc algorithm has higher MMF even for long 

sequences. Finally, as can be seen in Figure 4.11, the FWISL-acc algorithm is able to 

suppress autocorrelation sidelobes more at the required lags. 

 

Figure 4.1 WISL versus the number of iterations 
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Figure 4.2 WISL versus CPU time 

 

Figure 4.3 Correlation levels of the sequences designed by WeCAN, MWISL-acc, and FWISL-acc 
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Figure 4.4 Number of iterations versus sequence length N 

 

Figure 4.5 CPU time versus sequence length N 
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Figure 4.6 MMF versus sequence length N 

 

Figure 4.7 Average correlation level in suppressed lags (dB) versus sequence length N 
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Figure 4.8 Number of iterations versus sequence length N 

 

Figure 4.9 CPU time versus sequence length N 
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Figure 4.10 MMF versus sequence length N 

 

 

 

Figure 4.11 Average correlation level in suppressed lags (dB) versus sequence length N 
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Equation Section (Next) 

 

 

 

 

Table 4.2 Required number of iterations, CPU time, MMF, and average correlation levels in suppressed 
lags ( 100,N  13Tol 10 , initialization by the sequence designed by CAP)  

 
 

MWISL-acc 
(Song et al., 

2016b) 

WPISL-
SQUAREM 
(Zhao et al., 

2016) 

FWISL-acc 
 

WeCAN+CAP 
(Stoica et al., 2009) 

Number of iterations 3261 3317 759 1808166 

CPU time (sec.) 
8.4462 18.9859 6.2371 41.0150 10   

MMF 
232.0930 10  231.9319 10  253.2794 10  201.2063 10  

Average correlation level 

 in suppressed lags (dB) 

-260.3808 -260.0628  -280.3609 -228,0404 
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CHAPTER FIVE 

DESIGNING SEQUENCES SATISFYING SIMULTANEOUS TEMPORAL 

ISL AND SPECTRAL STOPBAND CONSTRAINTS 

 

5.1  Sequence Design with ISL and Stopband Constraints 

The SCAN algorithm was proposed to design sequences minimizing the ISL metric 

and satisfying some stopband constraints (He et al., 2010). SCAN minimizes a 

quadratic ‘‘approximation’’ of ISL instead of the exact ISL metric which is quartic 

with respect to the designed sequence. In this chapter, we minimize the exact quartic 

ISL metric itself for designing sequences having some additional stopband constraints.  

In (He et al., 2010), the underlying optimization problem is given as follows 

 
minimize   ( ) SC (1 )ISL

subject to 1, 1, ,n

J

x n N

   

 
x

x


  (5.1) 

where SC represents the stopband constraint and [0,1]  is used to weight the metric 

of ISL and the stopband constraint. In order to solve the optimization problem in (5.1)

, a cyclic algorithm called SCAN was proposed in (He et al., 2010) (see Section 2.1.2).  

In this chapter, we use the MM method to solve the problem in (5.1). We call our 

newly proposed algorithms for designing unimodular sequences with minimum ISL 

and having stopband constraints as SMISLN (stopband MISL-new) and SWPISL 

(stopband WPISL). These algorithms are extension of the MISL (Song et al., 2015a, 

2015b) and WPISL (Zhao et al., 2016) algorithms, respectively. 

 

5.2  Stopband MISL-New (SMISLN) 

To design a unimodular waveform satisfying simultaneous temporal ISL and 

spectral stopband constraints we employ the MM method. In order to suppress the 

stopband frequencies, the quantity in (2.25) is minimized. 
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We first express the metric of ISL in the frequency domain and a modified version 

of the MISL method proposed in (Song et al., 2015a) is developed to minimize the 

autocorrelation sidelobes of the waveform. The optimization problem to minimize the 

metric of ISL in the frequency domain is given as (Song et al., 2015a, 2015b; Stoica 

et al., 2009)  

 

222

           1 1

1
       minimize

4

       subject  to 1, 1, ,

p

N N
j n

n
p n

n

x e N
N

x n N



 

 
 

  
 

 
x



  (5.2) 

where p  and x  are given in (2.10) and (2.16) (see Section 2.1.1), respectively. Let 

us define 
 2 11

1    , 1, ,2
2

p p
Tj j N

p e e p N
N

     a   . Then, (5.2) can be written 

as 

 

2 2

       
1

1
     minimize 2

4

     subject to 1, 1, , .

N
H H
p p

p

n

N N
N

x n N



  

 


x

a x x a


  (5.3) 

After expanding the square in the objective function, we obtain 

 
 

2 2 2 2

1

1
 minimize 2  4  

4

 subject to 1, 1, , .

N
H H H H
p p p p

p

n

N N N
N

x n N



    

 


x

a x x a a x x a


  (5.4) 

Due to Parseval’s relation,
2 2 2

1

N
H
p

p

N


  a x x , the second term in the above 

objective function is constant. Therefore, the following minimization problem can be 

solved to suppress the autocorrelation sidelobes of the waveform 

 
 

2 2

1

minimize

subject to 1, 1, , .

N
H H
p p

p

n

N

x n N



 


x

a x x a


  (5.5) 
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Combining the stopband and correlation constraints in (2.25) and (5.5) as in (5.1) leads 

to the following problem (Biskin & Akay, 2018b) 

 
 

2 22

1

ˆminimize (1 )  

subject to 1, 1, , .

N
H H H

p p
p

n

N

x n N

 


 

 


x

S x a x x a


  (5.6) 

We suggest to use the MM method to perform the minimization in (5.6). For this 

purpose, we apply Lemma 1 in Section 2.1.1 to our minimization problem term by 

term. 

First, let us define the function  
2 22

1
1

ˆ( ) (1 )  
N

H H H
p p

p

h N 


   x S x a x x a . The 

first majorization step is performed by applying Lemma 1 to the first term,

2
ˆ ˆ ˆH H HS x x SS x , with  max 3K Σ I  where 3

HΣ SS  and  max 3 Σ  is the 

maximum eigenvalue of 3Σ . The term, 3ˆ ˆHx Σ x , is majorized at ( )ˆ kx  by   1 ˆ ˆ, ku x x  

given below 

 

         

       

1 max 3 3 max 3

max 3 3

ˆ ˆ ˆ ˆ ˆ ˆ, 2Re

ˆ ˆ+ .

k kH H

H
k k

u  



    



x x Σ x x x Σ Σ I x

x Σ I Σ x
  (5.7) 

In (5.7),  ˆ kx  denotes the sequence obtained at the kth iteration of the algorithm. The 

first and last terms in (5.7) are constant. Thus, the function 1( )h x  is majorized as 

 

    

 
1 3 max 3

2 2

1

ˆ ˆ( ) 2 Re

(1 )  + constant.

kH

N
H H
p p

p

h

N

 




   

  

x x Σ Σ I x

a x x a
  (5.8)  

Now, we apply Lemma 1 to the second term,  
2 2

 

1

N
H H
p p

p
 a x x a , of 1( )h x . First, we 

rewrite  
2 2

1

 
N

H H
p p

p
 a x x a  in an alternative form. Defining H

p p pA a a   and  HX x x , 

we can write 
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    
2 22 2

1 1

 Tr
N N

H H
p p p

p p 

 a x x a XA   (5.9) 

where  Tr .  denotes trace of a matrix. Since      Tr vec vec
H

p p
   XA X A (Song 

et al., 2015a), we can express (5.9) as  

      
2 2

4
1

  vec vec
N HH H

p p
p

    a x x a X Σ X  (5.10) 

where  vec X  forms a column vector by stacking all the columns of the matrix X  

and    2

4 1
vec vec .

HN

p pp
   Σ A A  If we apply Lemma 1 to (5.10) with 

 max 4 ,K Σ  then,    4vec vec
H

  X Σ X  is majorized at  kX  by   2 , ku X X  given 

below 

 

        

        
        

2 max 4

4 max 4

max 4 4

, vec vec

2Re vec vec

vec vec .

Hk

H k

H
k k

u 





   

   

   

X X Σ X X

X Σ Σ I X

X Σ I Σ X

  (5.11) 

Since     2vec vec
H

N   X X , the first term is a constant. The last term depends only 

on  kX , but not on the unknown sequence samples in X . Hence, the last term is also 

constant. Then, 1( )h x  in (5.8) is majorized as 

 

    

        
1 3 max 3

4 max 4

ˆ ˆ( ) 2 Re

   2(1 ) Re vec vec

constant.

kH

H k

h

N

 

 

   

    



x x Σ Σ I x

X Σ Σ I X   (5.12) 

We can also express (5.12) as 
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    

         
1 3 max 3

2

max 4
1

ˆ ˆ( ) 2 Re

          +2(1 ) Tr Tr Tr constant.

kH

N
k k

p p
p

h

N

 

 


   
 

   
 


x x Σ Σ I x

X A A X Σ X X
  (5.13) 

The expression in (5.13) can be rewritten as follows 

 

    

   

1 3 max 3

2 2 22

1

ˆ ˆ( ) 2 Re

2(1 )  +constant.

kH

N
k kH H H

p p
p

h

N

 




   
 

   
 


x x Σ Σ I x

a x a x x x
  (5.14) 

The inequality in (5.14) can be expressed more compactly as 

                   

    

        
1 3 max 3

2 2 max 4

ˆ ˆ( ) 2 Re

+2(1 ) Diag( ) ( )

constant

kH

k k kH H H
N N

h

N

 

 

   

 



x x Σ Σ I x

x F m F Σ x x x   (5.15) 

where 2
H
NF  is 2 2N N  unitary DFT matrix. 2 NF  and the vector,  km , are defined, 

respectively, as  2 1 2 2 |  | |N NF a a a  and        
1 2 2[ ]k k k k T

Nm m mm   

with    ( ) ( ) .k kk H H
p p pm  a x x a  We apply the second majorization on the second term, 

        2 2 max 4Diag( ) ( )k k kH H H
N N x F m F Σ x x x ,  in (5.15) with ( )

2 2
k H

max N NmK F F  

(Song et al., 2015a), where  ( ) ( )
max max : 1, , 2k k

p
p

m m p N   . If we define

       
5 2 2 max 4Diag( ) ( ) ,k k kH H

N N  Σ F m F Σ x x then, 5
Hx Σ x  is majorized as 

                          

  
   

      

5 3

( ) ( )
max 2 2 5 max

( )
5

,

          2 Re

.

kH

kk H H H k
N N

H
k kk

max

u

m m

m



    

 

x Σ x x x

x F F x x Σ I x

x I Σ x

   (5.16) 

Since 2 2
H

N N F F I , the first and last terms are constants. Ignoring them, we can see that 

(5.15) is majorized as  
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    

   

1 3 max 3

( )
5 max

ˆ ˆ( ) 2 Re

 4 (1 )Re + constant.

kH

kH k

h

N m

 



   
    

x x Σ Σ I x

x Σ I x
  (5.17) 

After omitting the constant terms within the majorizing function in (5.17), we can 

finally express the optimization problem in (5.6) as follows 

                                      

    

   

3 max 3

( )
5 max

ˆ ˆminimize 2 Re

4 (1 ) Re

subject to 1, 1, ,

kH

kH k

n

N m

x n N

 



  
    

 

x
x Σ Σ I x

x Σ I x



  (5.18) 

which can also be rewritten as 

         ( )
3 max 3 5 maxˆ ˆminimize Re 2(1 )

subject to 1, 1, , .

k kH H k

n

N m

x n N

        
 

x
x Σ Σ I x x Σ I x


  (5.19) 

The above minimization problem can simply be expressed as 

 
   1 2ˆminimize   Re (1 )

subject to   1, 1, ,

H H

nx n N

    

 
x

x y x y


  (5.20) 

where  

 
    

   

1 3 max 3

( )
2 5 max

ˆ

2 .

k

kkN m

 

 

y Σ Σ I x

y Σ I x
  (5.21) 

Letting the first N  elements of 1y  and 2y  be denoted as  1 1N
y  and  2 1N

y , 

respectively, the closed form solution can be given as (Biskin & Akay, 2018b) 

 
 1 2arg (1 )

, 1, ,n n
j y y

nx e n N
   

     (5.22) 
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where 1n
y  denotes the nth element of the vector 1y . The sequence in (5.22) was 

obtained by simultaneously enforcing the ISL minimization and stopband constraints 

via the MM method. As an advantage, the above developed algorithm can minimize 

the stopband power in the frequency domain over an arbitrary number of frequency 

bins, similar to (He et al., 2010). We call this algorithm SMISLN (stopband MISL-

new). Its pseudocode is given in Algorithm 2 below. 

5.3  Stopband WPISL (SWPISL) 

In (Zhao et al., 2016), a unified metric named “weighted peak or the integrated 

sidelobe level (WPISL)” was proposed as follows 

 
1

1

WPISL
N

p

k k
k

w r




   (5.23) 

where 2 p    and   1

1

N

k l
w




 are nonnegative weights. This metric specializes into 

ISL, weighted ISL (WISL), or peak sidelobe level (PSL) depending on the values of 

p  and   1

1

N

k k
w




.  

Algorithm 2: SMISLN Algorithm 

1:   Set sequence length N , set 0k  , and initialize (0)x    

2:   while stopping criteria   Tol 

3:      ( ) ( )k kk H H
p p pm  a x x a , 1, ,2p N     

4:          
1 2 2[ ]k k k k T

Nm m mm    

5:  ( ) ( )
max max : 1, , 2k k

p pm m p N    

6:     
1 3 max 3 ˆ k y Σ Σ I x  

7:    ( )
2 5 max2 kkN m y Σ I x  

8:   
 1 2arg (1 )

, 1, ,n n
j y y

nx e n N
   

    

9:   1k k    

10:   end while   
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    In this chapter, we are interested in designing sequences satisfying simultaneous 

temporal ISL and spectral stopband constraints. If we let 2p   and   1

1
1

N

k k
w




 , then  

(5.23) reduces to the ISL metric in (2.3) and becomes 
1

2

1

.
N

k
k

r



  Therefore, the 

optimization problem to be solved for designing sequences satisfying both temporal 

correlation and spectral stopband constraints is given as 

 x
minimize SC (1 )ISL

subject to 1, 1, , .nx n N

  

  
  (5.24) 

By substituting the stopband and correlation constrains in (2.25) and (2.3), 

respectively, the optimization problem in (5.24) can be expressed as  

 

12 2

1

ˆminimize (1 )

subject to 1, 1, ,

N
H

k
k

n

N r

x n N

 




 

 


x

S x


  (5.25) 

where the sequence length N  is included in the first part of the objective function to 

obtain the exact signal energy in the frequency domain. We propose to use the MM 

method to perform the minimization in (5.25). For this purpose, majorization for the 

objective function is performed by applying the MM method term by term. We start 

by defining the function
12 2

2
1

ˆ( ) (1 )
N

H
k

k

h N r 




   x S x . The autocorrelation 

function in the second term can be written as H
k kr  x U x  where kU  is a Toeplitz 

matrix with only the kth diagonal elements as 1 and the others 0. For 2p   and 

  1

1
1

N

k k
w




 , we utilize the following definitions given in (Zhao et al., 2016) 

    
1

3
( 1)

0

vec vec ,
N

H

k k
k N

k



 
 



  E U U   (5.26) 

  
1

( )
3

( 1)
0

1
.

2

N
k

k k
k N

k

r



 



R x U   (5.27) 
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The second term of the objective function in (5.25) is majorized by the following 

function (Zhao et al., 2016)  

                             4 2

3 max 3 3

1
, 2 Re constant

2
l H

R Ru         x x E x x y x   (5.28) 

where  max 3R  R  and 

 
       2

max 3
3 3

1
1 .l k l

R R


 

 
   
 

E
y x x R x   (5.29) 

Then, majorization is applied on the first term of the objective function in (5.25) for 

which the majorizing function is given in (5.7). Thus, the function 2 ( )h x  is majorized 

as  

 
    

  
2 3 max 3

3

ˆ ˆ( ) 2 Re

(1 ) , constant.

lH

l

h N

u

 



   

  

x x Σ Σ I x

x x
  (5.30) 

The first and second terms of   3 , lu x x  in (5.28) are constants. Therefore, the 

expression in (5.30) can be rewritten as follows 

 
    

2 3 max 3

3

ˆ ˆ( ) 2 Re

2(1 ) Re constant.

lH

H
R

h N 

 

   
    

x x Σ Σ I x

y x
  (5.31) 

Using the expression in (5.31), the optimization problem in (5.25) can be recast in 

terms of majorizing functions as 

 

    
3 max 3

3

ˆ ˆminimize  2 Re

2(1 ) Re

subject  to 1, 1, , .

lH

H
R

n

N

x n N

 

 

  
    

 

x
x Σ Σ I x

y x



  (5.32) 

Both terms in the objective function in (5.32) can be included within the  Re 

operation. After omitting constants terms, (5.32) can also be expressed as  
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    

3 max 3 3ˆ ˆminimize Re (1 )

subject to 1, 1, , .

lH H
R

n

N

x n N

       
 

x
x Σ Σ I x y x


  (5.33) 

Then, we have 

 
 1 3ˆminimize   Re (1 )

subject to   1, 1, ,

H H

nx n N

     

 
x

x y y x


  (5.34) 

where 

 
    

1 3 max 3

3 3

ˆ

.

l

R

N 



 

 

y Σ Σ I x

y y
  (5.35) 

Letting the first N  elements of 1y  and 3y  be denoted as  1 1N
y  and  3 1N

y , 

respectively, the closed form solution can be given as 

 
 1 3arg (1 )

, 1, ,n n
j y y

nx e n N
    

     (5.36) 

where 1n
y  denotes the nth element of the vector 1y . This algorithm minimizes the 

stopband power in the frequency domain employing an arbitrary number of frequency 

bins and reduces the ISL metric as well. We call this algorithm SWPISL (stopband 

WPISL). Its pseudocode is given in Algorithm 3 below.  
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5.4  Numerical Examples for Designing Sequences with ISL and Stopband 

Constraints 

     We design a unimodular sequence of length 100N   having two stopbands given 

as    0.2,0.3 0.7,0.8   Hz in terms of normalized frequency. In our simulations, 

relative weight parameter,  , is assigned as 0.8  . The number of employed DFT 

bins is selected as 1000N  . The algorithms are initialized by Golomb sequence 

(Zhang & Golomb, 1993). We run the algorithms until reaching the stopping point 

which is determined by the inequality, 
2( 1) ( ) Tolk k  x x , similar to the stopping 

Algorithm 3: SWPISL Algorithm 

1:  Set sequence length N  and weights, set 0l  , and initialize (0)x    

2:  while stopping criteria   Tol 

3:  
( )

2

1

l
H
N

N

 
  

 

x
f F

0
   

4:  
2

2

1

2 NN
 Fr f   

5:   1 2 1 10, , , ,0, , ,
T

N Nw w w w wc r   (see Appendix 4) 

6:  3 2 2 2

1
Diag( )

2
H H

N N NN
R F F c F  (see Appendix 4) 

7:      
1 3 max 3 ˆ lN  y Σ Σ I x  

8:  
       2

max 3
3 31 l l l

R
R





 

   
 

E
y x x R x  

9:  
 1 3arg (1 )

, 1, ,n n
j y y

nx e n N
    

     

10:  1l l    

11:  end while   
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criterion utilized in (He et al., 2010; Stoica et al., 2009). All MM-based algorithms are 

accelerated by employing an appropriate acceleration scheme (see Appendix 2).  

Performance of the proposed algorithms are compared against the SCAN (He et al., 

2010) algorithm in terms of number of iterations, computation time, the ISL value, and 

the level of suppression in spectral stopbands. The SCAN algorithm proposed in (He 

et al., 2010) and the MM-based algorithms, SMISLN-acc (accelerated SMISLN) and 

SWPISL-acc (accelerated SWPISL) proposed in this thesis, are run for the tolerance 

value of 3Tol 10 .  

Figure 5.1, Figure 5.2, and Figure 5.3 show the normalized power spectra and 

correlation levels of the sequences designed by SCAN, SMISLN-acc (accelerated 

SMISLN), and SWPISL-acc (accelerated SWPISL), respectively. The power spectra 

are normalized to make the average value of the spectra in passbands equal to 1 dB 

(He et al., 2010). In Figure 5.4, the normalized power spectra of sequences designed 

by the three algorithms are plotted together. We can see that the algorithms proposed 

in this thesis provide better suppression in spectral stopbands than SCAN. 

 

 
                                       (a)                                                                            (b) 

Figure 5.1 (a) Normalized power spectrum, (b) correlation level of the sequence designed by SCAN 
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(a)                                                                            (b) 

Figure 5.2 (a) Normalized power spectrum, (b) correlation level of the sequence designed by SMISLN-

acc 

 

 

 

                                         (a)                                                                            (b) 

Figure 5.3 (a) Normalized power spectrum, (b) correlation level of the sequence designed by SWPISL-

acc 
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Figure 5.4 Normalized power spectra of sequences designed by SCAN, SMISLN-acc, and SWPISL-acc 

 

Evolution of the objective function versus iteration number and CPU time (sec.) are 

presented in Figure 5.5 (a) and (b), respectively. Figure 5.5 indicates that the 

algorithms proposed in this study converge to a stationary point in a smaller number 

of iterations and CPU time (sec.) than SCAN. 
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(a) 

 

 
(b) 

Figure 5.5 Objective function (dB) versus (a) iteration number and (b) CPU time (sec) 
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Numerical results belonging to SCAN, SMISLN-acc, and SWPISL-acc. are 

presented in Table 5.1 where the stopband power and normalized average stopband 

power (NASP) are defined as follows  

 
2

ˆStopband Power H S x   (5.37) 

  2

10

1
ˆ ˆ ˆNASP 10log ( ) for  f f N

ks

k
N 

  x x F x   (5.38) 

where sN  denotes the total number of frequency bins in stopbands as indicated after 

(2.23). In Table 5.1, both NASP and stopband power are expressed in dB. As can be 

seen from Table 5.1, the algorithms proposed in this thesis converge faster than SCAN 

in terms of CPU time and the number of iterations and achieve lower power values in 

stopband frequencies.  

 

Table 5.1 Numerical results 

 

       

Equation Section (Next) 

 
SCAN SMISLN-acc SWPISL-acc 

Number of 

Iterations 2193 209 60 

Stopband Power 106.3978 38.6290 45.7964 

MF 3.1410 2.9317 3.1314 

CPU Time (sec.) 38.1869 18.5920 4.6206 

Stopband  

Frequencies (Hz.) 
0.2-0.3   0.7-0.8  0.2-0.3  0.7-0.8  0.2-0.3  0.7-0.8  

NASP (dB) -13.7339 -14.0198 -22.2054 -19.6748 -19.7315 -21.2712 
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CHAPTER SIX 

DESIGNING SEQUENCES SATISFYING SIMULTANEOUS TEMPORAL 

WISL AND SPECTRAL STOPBAND CONSTRAINTS 

In this chapter, we propose new algorithms for designing sequences having 

minimum WISL values and satisfying additional stopband constraints. In (He et al., 

2010), WeSCAN algorithm was proposed. This algorithm minimizes a quadratic 

“approximation” of WISL instead of the exact WISL metric which is quartic in the 

sequence, nx . Therefore, we are interested in designing sequences by minimizing the 

exact WISL metric together with a stopband constraint. 

6.1  Sequence Design with WISL and Stopband Constraints  

In (He et al., 2010), the optimization problem is given as  

 
minimize   ( ) (1 )WISL SC

subject to 1, 1, , .n

J

x n N

   

 
x

x


  (6.1) 

In order to solve the above optimization problem, (He et al., 2010) proposed to use a 

cyclic algorithm named WeSCAN (Weighted SCAN). WeSCAN (see Section 2.1.4) 

is an extension of the WeCAN algorithm proposed in (Stoica et al., 2009).  

     In this chapter, we propose to use the MM method to solve the problem in (6.1). 

The two algorithms that we propose for designing unimodular sequences having 

minimum WISL value and satisfying a stopband constraint are named SMWISL 

(stopband MWISL) and SWPISL (stopband WPISL). These algorithms are extensions 

of the MWISL (Song et al., 2016b) and WPISL (Zhao et al., 2016) algorithms, 

respectively.  

6.2  Stopband MWISL (SMWISL) 

Autocorrelation function can be expressed alternatively as (Song et al., 2016b) 

  Tr , 0, , 1H
k kr k N  U xx    (6.2) 
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where  Tr . represents trace of a matrix. Then, the metric of WISL can alternatively 

be written as  

  
1

2

( 1)

1
WISL Tr .

2

N

k k
k N

w


 

  U X   (6.3) 

Using the above WISL expression, we propose an algorithm for designing sequences 

having minimum WISL values and satisfying some stopband constraints. As pointed 

out in the previous chapters, to suppress the frequency stopbands, the criterion in (2.25) 

is minimized. When the stopband and correlation constraints given in (2.25) and (2.70)

, respectively, are combined, the following optimization problem can be written   

 
 

12 2

( 1)

1
ˆminimize  (1 ) Tr

2

subject to 1, 1, , .

N
H

k k
k N

n

N w

x n N

 


 

 

 


x

S x U X


  (6.4) 

We use the MM method to solve the above minimization problem by applying Lemma 

1 and Lemma 3 to (6.4) term by term. First of all, after applying the majorization steps 

on the second term of (6.4), the objective function can be rewritten as follows  

          2

1 max 1ˆ 2(1 ) Re

constant.

H
l l lH H

uN        
 



S x x R E x x I x
  (6.5) 

     The other majorization step is accomplished by applying Lemma 1 in Section 2.2.1 

on the first term. Then, the expression given in (6.5) is majorized by the majorizing 

function in (5.7) given below 

                     
1 1 max 1ˆ ˆ, 2(1 ) Re constant.

H
k l l lH

uu         
 

x x x R E x x I x  (6.6) 

After removing the constant terms, the optimization problem in (6.4) can be recast in 

terms of majorizing functions as follows  
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     
         

3 max 3

1 max 1

ˆ ˆminimize 2 Re

2(1 ) Re

subject to  1, 1, , .

kH

H
l l lH

u

n

N

x n N

 

  



     
 

 

x
x Σ Σ I x

x R E x x I x



  (6.7) 

It can also be expressed as  

 

    
         

3 max 3

1 max 1

ˆ ˆminimize Re

                     (1 ) ( )

subject to 1, 1, , .

kH

l l lH H
u

n

N

x n N

 

  



   

 

x
x Σ Σ I x

x R E x x I x



  (6.8) 

Then, we have 

 
    1 4ˆminimize   Re (1 )

subject to   1, 1, ,

H H

nx n N

  

 
x

x y x y


  (6.9) 

where 

 
    

         

1 3 max 3

4 1 max 1

ˆ

.

k

H
l l l

u

N 

 

 

  

y Σ Σ I x

y R E x x I x
  (6.10) 

Let the first N  elements of 1y  and 4y  be denoted as  1 1N
y  and  4 1N

y , respectively. 

Then, the closed-form solution is given by 

 
  1 4arg 1

, 1, ,n n
j y y

nx e n N
   

     (6.11) 

where 1n
y  denotes the nth element of the vector 1y . This algorithm minimizes the 

stopband power in the frequency domain employing an arbitrary number of frequency 

bins and reduces the WISL metric as well. We call this algorithm SMWISL (stopband 

MWISL). Its pseudocode is given in Algorithm 4 below.  
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6.3  Stopband WPISL (SWPISL) 

In order to modify the stopband WPISL algorithm in Section 5.3 for the 

minimization of WISL metric, one can simply set 2p   and choose   1

1

N

k k
w




 as 

nonnegative weights. Derivations between (5.25) and (5.36) would be the same, 

notwithstanding the values of 2p   and   1

1

N

k k
w




. Hence, the pseudocode in 

Algorithm 2 also applies here. 

6.4  Stopband FWISL (SFWISL) 

First, we express the WISL metric alternatively in the frequency domain as follows         

Algorithm 4: SMWISL Algorithm 

1:   Set sequence length N , and weights, set 0k  , and initialize (0)x    

2:   while stopping criteria   Tol 

3:   
( )

1

k

N

 
  

 

x
f F

0
,   

4:   
21

2
H

N
r F f   

5:  1 2 1 10, , , ,0, , ,
T

N Nw w w w wc r   

6:
1

Diag( )
2

H

N
R F Fc F   

7:     
1 3 max 3 ˆ kN   y Σ Σ I x  

8:          
4 1 max 1

H
l l l

u    y R E x x I x  

9:   
 1 4arg (1 )

, 1, ,n n
j Ny y

nx e n N
  

     

10:   1k k    

11:   end while   
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 

2 2 2
0

1

2 2 2
0

1

WISL
4

4

N
H
p p

p

N
H

p
p

N
N

N
N








   

   





x Πx

x A Π x

 


  (6.12) 

where H
p p pA a a  and 

2p p p
Tj j jN

p e e e     a . In (6.12),   represents the 

Hadamard product. Then, the spectral stopband and temporal correlation constrains in 

(2.25) and (6.12), respectively, are combined. Thus, we propose the following 

optimization problem   

 

2 2 2

1

2
0ˆminimize (1 )

subject to 1, 1, , .

4

N
H

p
p

n

p
H N

N
N

x n N

 


   

 


x

x Πx xS 




  (6.13) 

We use the MM method to solve the problem in (6.13) by applying Lemma 1 in 

Section 2.2.1 and Lemma 2 in Section 2.2.2 to our minimization problem term by term. 

First of all, as stated in Chapter Four, after employing the majorization steps on the 

second term of the objective function in (6.13), the objective function can be written 

as follows  

 

 
          

2

max

0

max

2

ˆ (1 ) 4Re ( Diag( ) )

( ) ( Diag( ) )

constan

4

t.

kH H H

k k k kH H

N
N

 







  

  


S x x Π A m A

Σ x x Π A m A x



   (6.14) 

Secondly, by applying Lemma 1 on the first term as stated in the previous chapters, 

the expression in (6.14) is majorized by using the majorizing function in (5.7) as 

follows 

         

     
 

          

3 max 3

max max

2
0

ˆ ˆ2 Re

(1 ) 4 Re ( Diag( ) )

    ( ) ( Diag( ) ) const

4

ant.

kH

kH H

k k k kH H

N

N 



 





  

  

x Σ Σ I x

x Π A m A

Σ x x Π A m A x





  (6.15) 
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After removing the constant terms, optimization problem in (6.13) can be proposed in 

terms of majorizing functions as follows  

 

     
 

          

3 max 3

max 2 ma

2
0

x

ˆ ˆminimize 2 Re

 (1 ) 4Re ( Diag( ) )

   ( ) ( Diag( ) )

subject to 1, 1, , .

4

kH

kH H

k k k kH H

n

N

x

N

n N

 



 





  

  
 

x
x Σ Σ I x

x Π A m A

Σ x x Π A m A x







 (6.16) 

The above problem can also be expressed as  

 

    
 

     

     

3 max 3

max 2

max

2
0

ˆ ˆminimize Re

 +(1 ) ( Diag( ) )

( )

 ( Diag( ) )

subject to 1, 1, .

2

,

kH

kH H

k k H

k kH

n

N

x n

N

N

 











 



 
 

x
x Σ Σ I x

x Π A m A

Σ x x

Π A m A x







 (6.17) 

Then, we have 

 
    1 5ˆminimize   Re (1 )

subject to   1, 1, ,

H H

nx n N

  

 
x

x y x y


  (6.18) 

where 

 

    

       
     

1 3 max 3

5 max 2

m

2

x

0

a

ˆ

( Diag( ) ) ( )

( Diag

2

( ) )

k

k k kH H

k kH

N

N









 

 



y Σ Σ I x

y Π A m A Σ x x

Π A m A I x





  (6.19) 

Let the first N  elements of 1y  and 5y  be  1 1N
y  and  5 1N

y , respectively. Then, the 

closed-form solution is given by 
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 1 5arg (1 )

, 1, , .n n
j y y

nx e n N
   

     (6.20) 

This algorithm minimizes the stopband power in the frequency domain employing an 

arbitrary number of frequency bins and reduces the WISL metric as well. We call this 

algorithm SFWISL (stopband FWISL). Its pseudocode is given in Algorithm 5 below.  

 

 

6.5  Numerical Examples for Designing with WISL and Stopband Constraints 

We provide a numerical example in which we design a unimodular sequence of 

length 100N  . The frequency stopband is given as  0.2, 0.3   Hz in terms of 

normalized frequency. The relative weight parameter,  , is taken as 0.8  . The 

number of DFT bins is selected as 1000N  . The simulated algorithms are initialized 

with Golomb sequence (Zhang & Golomb, 1993). The tolerance value for the stopping 

Algorithm 5: SFWISL Algorithm 

1:   Set sequence length N , weights   1

1
0

N

k k
w




 ,  select 0 ,  

       set 0k  , and initialize (0 )x  

2:   while stopping criteria   Tol 

3:      ( )k kH
p pm  x M x , 1, ,2p N   

4:          
1 2 2[ ]k k k k T

Nm m mm   

5:        
1 3 max 3 ˆ kN  y Σ Σ I x  

5:    
          

5

max 2 max

2
0 ( Diag( ) )

    ( ) ( )

2
k H

k k k kH H

N

m




 

y Π A m A

Σ x x Π AA x





 

6:   
 1 5arg (1 )

, 1, ,n n
j y y

nx e n N
  

    

7:   1k k   

8:   end while 

 



87 
 

criterion is determined as 4Tol 10 . The weights,   1

1

N

k k
 


, of the correlation lags are 

selected as 

 
   1, 1, ,20 51, ,70

0, otherwise.k

k


    
 


  (6.21) 

Performance of the proposed algorithms are compared against the WeSCAN (He et 

al., 2010) algorithm in terms of number of iterations, computation time, the value of 

the WISL metric, and the level of suppression in spectral stopbands. 

Figure 6.1, Figure 6.2, Figure 6.3, and Figure 6.4 show the normalized power 

spectra and correlation levels of the sequences designed by WeSCAN, SMWISL-acc 

(accelerated SMWISL), SWPISL-acc (accelerated SWPISL), and SFWISL-acc 

(accelerated SFWISL), respectively. The power spectra are normalized to make the 

average value of the spectra in passbands equal to 1 dB (He et al., 2010). In Figure 6.5, 

the normalized power spectra of the sequences designed by those four algorithms are 

plotted together. We can see that the algorithms proposed in this thesis provide better 

suppression in stopbands than SCAN. 

 

 

                                         (a)                                                                            (b) 

Figure 6.1 (a) Normalized power spectrum, (b) correlation level of the sequence designed by WeSCAN 
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                                        (a)                                                                              (b) 

Figure 6.2 (a) Normalized power spectrum, (b) correlation level of the sequence designed by     

SMWISL-acc 

 

                                         (a)                                                                             (b) 

Figure 6.3 (a) Normalized power spectrum, (b) correlation level of the sequence designed by      

SWPISL-acc 

 

 
                                         (a)                                                                             (b) 

Figure 6.4 (a) Normalized power spectrum, (b) correlation level of the sequence designed by      

SFWISL-acc 
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Figure 6.5 Normalized power spectra of sequences designed by WeSCAN, SMWISL-acc, SWPISL-

acc, and SFWISL-acc 

 

Evolution of the objective function versus iteration number and CPU time (sec.) is 

shown in Figure 6.6 (a) and (b), respectively. As can be seen from Figure 6.6, the 

proposed algorithms in this thesis, SMWISL-acc, SWPISL-acc, SFWISL-acc, 

converge to a stationary point in a smaller number of iterations and less CPU time 

(sec.) than WeSCAN and achieve lower power levels in stopband frequencies.  



90 
 

 

(a) 

 

(b) 

Figure 6.6 Objective function (dB) versus (a) iteration number and (b) CPU time (sec.)  

 

Numerical results belonging to WeSCAN, SMWISLN-acc, SWPISL-acc, and 

SFWISL-acc are displayed in Table 6.1. In Table 6.1, both NASP and stopband power 
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are presented in dB. As can be seen from Table 6.1, the algorithms proposed in this 

thesis converge faster than WeSCAN in terms of CPU time and number of iterations 

and achieve lower power values in stopband frequencies.  

Table 6.1 Numerical results 

 

 

 

 

 

 

 

 

 

 

 

 

 
WeSCAN SMWISL-acc SWPISL-acc SFWISL-acc 

Number of Iterations 17216 1963 3662 1669 

Stopband Power 8.2512 5.5623 6.8357 6.5650 

MMF 9.6570 10.5835 10.7801 10.7291 

CPU Time (sec.) 408.8024 36.6301 62.1615 32.8279 

Stopband Frequencies 0.2-0.3 Hz 0.2-0.3 Hz 0.2-0.3 Hz 0.2-0.3 Hz 

NASP (dB) -27.2538 -30.9146 -30.7757 -30.4878 
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CHAPTER SEVEN 

CONCLUSIONS 

In this thesis, we focus on developing algorithms to design transmit sequences 

satisfying temporal correlation and spectral stopband constraints. For this purpose, 

several algorithms are proposed for designing unimodular sequences for radar and 

communication systems. We believe that the proposed algorithms provide good 

alternatives to the ones already existing in the literature. 

In Chapter Three, we have proposed to use GA in order to design unimodular 

constant modulus sequences attaining minimum ISL values. We compared 

performance of GA against that of the CAN and MISL algorithms in terms of MF. The 

already existing CAN algorithm was proposed for designing sequences with good 

correlation properties by minimizing an approximate quadratic ISL-related metric 

instead of the exact quartic ISL metric itself. Therefore, one of our aims in this thesis 

is to minimize the original quartic metric of ISL using GA and compare its 

performance against CAN. In (Song et al., 2015a), MISL was also proposed to 

minimize the original quartic metric of ISL. Although, the evaluation time required for 

termination of CAN and MISL are shorter than GA, GA performs slightly better than 

CAN and MISL in terms of resulting MF. The difference between those two algorithms 

on minimizing the ISL-related metric in (2.13) and the exact ISL metric in (2.12) 

become more evident when they are initialized by random sequences. In short, we can 

state that sequences designed by minimizing the exact metric of ISL using GA possess 

higher MFs than those designed by the CAN and MISL algorithm. However, execution 

time of CAN and MISL are shorter than GA. Since we employed GA as a benchmark 

method towards finding the global optimum solution of the design problem, one can 

infer from the results in Chapter 3 that the CAN and MISL algorithms converge near 

the global minimum. However, we must emphasize that the design parameters of GA 

were not optimized for the larger sequence lengths because of its long execution time. 

Hence, we cannot state confidently whether the CAN and MISL algorithms reach the 

optimum solution or not.     
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In Chapter Four, we have proposed an alternative algorithm shortly named as 

FWISL for designing unimodular sequences by minimizing the WISL metric in the 

frequency domain. We have applied the MM method in two stages and a closed-form 

expression has been obtained. A computationally efficient version of FWISL (FWISL-

acc) is also proposed by employing an acceleration scheme. Performance of the 

proposed algorithm is compared against CAP, WeCAN, WeCAN+CAP, MWISL-acc, 

and WPISL-SQUAREM algorithms. Our results indicate that the proposed algorithm, 

FWISL-acc, terminates in lower number of iterations and in less CPU time, and attains 

smaller WISL (or larger MMF) values than other algorithms. Performance of the 

algorithm can be further improved when it is initialized by the sequence designed by 

the CAP algorithm. Numerical results show that our proposed algorithm allows design 

of long sequences in lower number of iterations, less CPU time, and with larger MMF 

values.  

In Chapter Five, we have proposed alternative algorithms for designing unimodular 

sequences satisfying simultaneous temporal correlation and spectral stopband 

constraints. These algorithms are split into two categories. In the first part, we 

developed new algorithms to design sequences with low ISL and having stopband 

constraints. We have modified the MISL and WPISL algorithms in order to use them 

with stopband constraints. Then, we have employed the MM method with both 

temporal and spectral constraints. By this way, SMISLN and SWPISL algorithms are 

proposed as alternative algorithms to SCAN. The results show that the new algorithms 

converge to stationary points faster than SCAN and achieve lower stopband powers.  

In Chapter Six, we have developed new algorithms to design sequences with low 

WISL values and having stopband constraints. For this purpose, we have modified the 

MWISL and WPISL algorithms in order to use them with stopband constraints and 

named the new algorithms as SMWISL and SWPISL, respectively. The SMWISL and 

SWPISL algorithms are proposed as alternatives to WeSCAN. We also modified the 

FWISL algorithm and proposed the SFWISL algorithm. Simulation results show that 

performance of SFWISL is better than other algorithms in terms of iteration number, 

CPU time and stopband power.    
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We would like to stress that performances of the algorithms proposed in this thesis 

are evaluated numerically in terms of CPU time, number of iterations, MFs or MMFs 

of designed sequences, stopband power, and NASP. Although, a theoretical 

computational complexity analysis could also be carried out, it would require a 

thorough study of local rate of convergence analysis approach (Bertsekas, 1999). 

Therefore, it is left out as the topic of a future study. 

As a final remark, in light of the obtained results, we believe that the developed 

algorithms in this thesis can be good alternatives to the ones already existing in the 

literature. 
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APPENDICES 

APPENDIX 1: CAZAC Sequences 

By sampling the chirp signal in (1.1) at time intervals /sT n B  for 

1, , , ( )n N N BT   the following sequence can be obtained (neglecting the 

multiplicative term, 1/  ) 

 

2 2

( ) , 1, , .
B n nj j
T B N

n sx s nT e e n N
 

 
 
        (A.1) 

The sequence   1

N

n n
x


 has perfect periodic autocorrelation for even values of N . 

Waveforms with perfect periodic autocorrelations are named as constant amplitude 

with zero autocorrelation (CAZAC) sequences. Periodic autocorrelation sidelobes of 

CAZAC sequences are zero (Roberts et al., 2010).  

Golomb sequence is constructed for odd values of N and is defined as follows 

(Roberts et al., 2010) 

 
( 1)

[ ] , 1, , .
n n

j
Nx n e n N

 

     (A.2) 

Frank code is also a CAZAC sequence and is only defined for square lengths,

2 ,N K  as (Roberts et al., 2010) 

  
( 1)( 1)

2
( 1) , , 1, , .

m p
j

Kx m K p e m p K
  

       (A.3) 

Another CAZAC sequence, P4, is defined for any length N  and is given as (Roberts 

et al., 2010) 

 
2 1

( 1)
2[ ] , 1,..., .

n N
j n

Nc n e n N
     

     (A.4) 
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APPENDIX 2: Acceleration Scheme 

By using an acceleration scheme, MM-based iterative methods are allowed to 

converge faster (Song et al., 2015a, 2015b, 2016b; Zhao et al., 2016). The acceleration 

scheme that can be used in our MM-based proposed methods is the so-called squared 

iterative method (SQUAREM) which is originally proposed in (Varadhan & Roland, 

2008) to accelerate expectation-maximization (EM) algorithm and applied to MM 

methods in (Song et al., 2015a, 2015b, 2016b; Wu, Babu, & Palomar, 2017; Zhao et 

al., 2016). As an example, following a similar acceleration scheme, the accelerated 

version of FWISL in Algorithm 3 is given in Algorithm 6 below.  

Let  FWISL P  represent the nonlinear fixed-point iteration map of the FWISL 

algorithm as expressed below 

  ( 1) ( )
FWISL

k k x P x   (A.5) 

corresponding to the mapping in (4.16). SQUAREM may violate the descent property 

(Song et al., 2015a, 2016b; Wu et al., 2017; Zhao et al., 2016) of the original MM 

algorithm. For this reason, a backtracking based strategy is adopted which halves the 

distance between   and 1  in Algorithm 6 below until the descent property is 

satisfied. Therefore, ( )
3WISL( ) WISL( )kx x  is guaranteed while 1    because 

( )
2WISL( ) WISL( )kx x  due to the descent property of the original MM algorithm.  
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Algorithm 6: FWISL-acc Algorithm 

1:   Set sequence length N , weights   1

1
0

N

k k
w




 , select 0 ,  

       set 0k   and initialize (0)x    

2:   while stopping criteria   Tol 

3:    ( )
1 FWISL

kx F x    

4:    2 FWISL 1x F x   

5:   ( )
1

k r x x   

6:   2 1  v x x r  

7:   /   r v   

8:   
( ) 2arg( 2 )

3

kje    x r vx  

9:   while ( )
3WISL( ) WISL( )kx x  

10:      ( 1) / 2    

11:       
( ) 2arg( 2 )

3

kje    x r vx  

12:   end while 

13:   ( 1)k x x  

14:   1k k    

15:   end while   
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APPENDIX 3: Proof of Hermitian Toeplitz Matrix 

We prove that    Diag k HΠ A m A  is Hermitian Toeplitz. Let B  denote a 

N N  Hermitian Toeplitz matrix and ( , )m nB  be its t( , ) hm n  element. Then, to be 

Hermitian Toeplitz the matrix B  must satisfy the following equalities:  

 (i)  *( , ) ( , )m n n mB B  (Hermitian condition), 

 (ii)  ( , ) ( , )m n k lB B  if m n k l    (Toeplitz condition). 

Firstly, Π  is clearly Hermitian Toeplitz as can be seen from (2.34). Since the 

Hadamard product of two Hermitian Toeplitz matrices is also Hermitian Toeplitz, to 

complete the proof, it is sufficient to show that   Diag k HA m A  is Hermitian 

Toeplitz. Then, we can proceed by writing the following equation 

               

( )
1 1

( )
2 2

1 2 2

( )
2 2

Diag    |    |    |   .

k H

k H
k H

N

k H
N N

m

m

m

   
   
    
   
   
      

a

a
A m A a a a

a

 
  (A.6) 

Performing the matrix product in (A.6), we obtain 

 
   ( ) ( ) ( )

1 1 1 2 2 2 2 2 2

( ) ( ) ( )
1 1 2 2 2 2 .

Diag k H k H k H k H
N N N

k k k
N N

m m m

m m m

  

  

A m A a a a a a a

A A A
  (A.7) 

In writing (A.7), we used the definition, H
p p pA a a , which was given following (4.1) 

in terms of 2p p p
Tj j jN

p e e e     a . Thus, the t( , ) hm n  element of the matrix 

pA  is given as 
( )( , ) pj n m

p m n e  A . Then, the following equalities are satisfied: 

 (i) 
( ) *( , ) ( , )pj n m

p pm n e n m  A A , 

 (ii) 
( ) ( )( , ) ( , )p pj n m j l k

p pm n e k l e      A A  if m n k l   .  
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Therefore, it can be seen that the matrix pA  for 1, , 2p N  , and thus, the expression 

given in (A.7) is Hermitian Toeplitz. Thus, finally,    Diag k HΠ A m A  is 

Hermitian Toeplitz. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



105 
 

APPENDIX 4: Computation of the Matrix R  

Lemma 4 (Song et al., 2016b): Let T  be an N N  Hermitian Toeplitz matrix given 
as   

 

10

1 0

1

1

11

1

.

N

N

t t t

t t

t

t t t

 







 
 
 
 
 

  

T
 

  
  (A.8) 

T  can be represented as  :,1: :,1:

1
Diag

2
H

N NN
T A Ac A  where :,1:NA  is the first N 

columns of  2 2N N  FFT matrix and 0 1 1 1 10
T

N N Nt t t t t 
     c   . Notice that A  

is not unitary.  

Let the lth element of the vector c  be lc . Then, lc  can be given as follows (Zhao 

et al., 2016) 

   ( ) ( )

2

0,

1, ,

1, 2 1

0

1

, .

Hk k
l l l

N l

l N

c w l N

c l N N











  

  

x U x 



  (A.9) 

Since the lth lag of the autocorrelation function of the sequence at the kth iteration is 

 ( ) ( ) ( )( )
Hk k k

l lr x x U x  and r is given as follows 

                       ( ) ( ) ( ) ( ) ( )
0 1 1 1 1    0    ,

T
k k k k k

N Nr r r r r 
 

   r x x x x x         (A.10) 

 then, the vector c  can be written as   

 c w r   (A.11) 

where  1 1 1 10 0
T

N Nw w w w w    and   represents the Hadamard product. 

Then, the vector c  in Algorithm 3 can be written as follows 

  1 2 1 10 0 .
T

N Nw w w w wc r    (A.12) 
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Since the matrix R  is Hermitian Toeplitz, it can be written using Lemma 4 as follows  

  :,1: :,1:

1
Diag .

2
H

N NN
R A Ac A   (A.13) 

 

 

 


