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SYNTHESIS OF PROBING WAVEFORMS SATISFYING
SPECTRO-TEMPORAL CONSTRAINTS

ABSTRACT

In this thesis, several algorithms are proposed for designing radar transmit
sequences satisfying temporal correlation and spectral stopband constraints.

Unimodular constant modulus sequences are specifically focused on.

Studies in the literature have been mostly interested in minimizing certain
performance metrics such as integrated sidelobe level (ISL) and weighted integrated
sidelobe level (WISL). Additionally, shaping the spectrum of the transmit waveform
to avoid certain frequencies is one of the desired tasks in cognitive radars. Therefore,
various algorithms have been proposed in the literature for designing sequences having

low ISL or WISL values and, at the same time, satisfying some spectral constraints.

In this thesis, we first utilize the genetic algorithm (GA) for designing a sequence

by minimizing ISL in the frequency domain.

Secondly, a new algorithm called FWISL (frequency domain WISL) is proposed to
design unimodular sequences utilizing the majorization minimization (MM) method
for directly minimizing the WISL metric in the frequency domain. FWISL is the first
frequency domain employment of the MM method for minimizing WISL.

Thirdly, we develop four more algorithms, named SMISLN (stopband MISL-new),
SWPISL (stopband WPISL), SMWISL (stopband MWISL), and SFWISL (stopband
FWISL), by directly minimizing ISL or WISL using the MM method in order to design
unimodular sequences with suppressed power in arbitrary spectral bands and, at the
same time, possessing reduced autocorrelation sidelobes. Numerical examples show
that our newly proposed methods outperform some already existing methods in the
literature with regard to computation time, converge in less number of iterations, and

achieve better suppression in stopbands.

Keywords: Unimodular sequences, integrated sidelobe level, majorization-

minimization, spectral stopband constraints
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SPEKTRAL VE ZAMANSAL KISITLARI SAGLAYAN GONDERIM
DALGALARININ SENTEZLENMESI

0z

Bu tez calismasinda zamansal ilinti ve spektral sonlimleme bandi kisitlarini
saglayan radar gonderim sinyallerinin optimal olarak sentezlenmesi i¢in ¢esitli
algoritmalar dnerilmistir. Ozel olarak bu tezin ilgilendigi diziler ise bir birimsel sabit

genlikli dizilerdir.

Literatiirdeki caligmalar, dizilerin 6z ilinti fonksiyonunun tiimlesik yankulak
seviyesi (TYS) ve agirliklandirilmis tiimlesik yankulak seviyesi (ATYS) gibi
performans metriklerini eniyilemek iizerine yogunlasmistir. Bununla birlikte, belirli
frekanslardan kacinmak i¢in goOnderilen dalga big¢iminin  spektrumunun
uyarlanabilmesi biligsel radarlarin istenilen 6zelliklerinden birisidir. Bu nedenle,
diisiik TYS veya ATYS degerlerine sahipken ayn1 zamanda bir takim spektral kisitlar

da saglayan diziler tasarlamak i¢in bazi algoritmalar literatiirde 6nerilmistir.

Bu tez ¢alismasinda, ilk olarak, TYS degerini frekans boyutunda eniyileyerek bir

dizi tasarlamak icin genetik algoritma (GA) kullanilmistir.

Ikinci olarak, biiyiikliik enkii¢iiltmesi (BE) metodunu kullanarak frekans boyutunda
ATYS’yi dogrudan eniyilemek i¢in FWISL isimli yeni bir algoritma onerilmistir. Bu
algoritma ATY S yi eniyileyen BE metodunun frekans boyutundaki ilk uygulamasidir.

Ugiincii olarak, belirli spektral bantlardaki giicii séniimlenmis ve ayn1 zamanda
diisiik 6zilinti yankulak seviyesine sahip bir birimsel sabit genlikli diziler {iretmek i¢in,
TYS veya ATYS’yi biyiiklik enkiigiiltmesi metodunu kullanarak dogrudan
eniyileyen SMISLN (stopband MISL-New), SWPISL (stopband WPISL), SMWISL
(stopband MWISL), ve SFWISL (stopband FWISL) isminde dort yeni algoritma
Onerilmistir. Sayisal Ornekler Onerilen metotlarin hesaplama siiresi bakimindan
literatiirde halihazirda var olan algoritmalardan {istiin olduklarini, daha az 6zyineleme
sayist ile yakinsadiklarini ve sonlimleme bantlarinda daha iyi bastirma sagladiklarini

gostermistir.



Anahtar Kelimeler: Bir birimsel diziler, tiimlesik yankulak seviyesi, biiytikliik

enkiiciiltmesi, spektral soniimleme bandi kisitlart
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CHAPTER ONE
INTRODUCTION

The aim of active sensing applications (including radar, sonar, communications,
and medical imaging) is the transmission of a probing signal, reception of its reflected
waveform, and to obtain information of interest by processing this received signal

(Roberts, He, Li, & Stoica, 2010).

One of the active sensing systems is called RADAR which is derived from RAdio
Detection And Ranging. Main tasks of a radar system can be inferred from its name.
These are detection of a target and determining its range. The range is determined by
measuring the round-trip delay of the transmitted waveform. Direction and velocity of
the target can also be found out as by-products of this process (Levanon & Mozeson,

2004).

Christian Hiilsmeyer accomplished the first radar experiment using his
telemobiloscope to detect ships in fog by utilizing the radio waves in 1904 (He, Li, &
Stoica, 2012). During the two world wars there were several developments on radar
and sonar. Later on, this research field spread into different fields such as weather

monitoring, flight control, and underwater sensing (He et al., 2012).

There are two critical elements which greatly affect the performance of a radar
system; transmit waveform and receive filter. Receive filter is employed to extract the
information of interest using the return of the transmit waveform which has to be
designed properly to obtain accurate estimates of parameters of interest (Skolnik,
2008). In order to increase the efficiency and performance of active sensing
applications, transmit waveforms are synthesized according to some performance
criteria. In that respect, better range and Doppler resolution are two fundamental

requirements that should be met as much as possible by transmit waveforms.

The aim of this thesis is developing algorithms for designing transmit sequences
satisfying some temporal correlation and spectral stopband constraints. For the same
purpose, several algorithms have already been proposed in the literature to design

unimodular sequences for radar and communication systems (He, Stoica, & Li, 2010;



Petrolati, Angeletti, & Toso, 2012; Song, Babu, & Palomar, 2015b, 2015a, 2016b,
20164a; Stoica, He, & Li, 2009; Zhao, Song, Babu, & Palomar, 2016). After a sequence
is designed, some metrics can be used in order to measure its goodness in terms of its
autocorrelation sequence. Some of those metrics are integrated sidelobe level (ISL),
peak sidelobe level (PSL), weighted-integrated sidelobe level (WISL), merit factor
(MF), etc (Levanon & Mozeson, 2004; Roberts et al., 2010). Selection of a metric

depends on the application.

In designing a sequence, above metrics can be employed as constraints towards
minimizing autocorrelation sidelobes with the aim of reducing clutter from interfering
targets. Autocorrelation mainlobe, on the other hand, could be considered as an
important parameter for separating closely spaced targets. As stated in (Levanon &
Mozeson, 2004), designing radar signals amounts to finding signals that yield a
matched-filter response conforming to a given application. Thus, determining the
metric to be employed depends mostly on the application. For example, the level of
interference expected from a point target is characterized by the peak sidelobe level
ratio (PSLR) of the matched filter output. However, the matched filter integrated
sidelobe level ratio (ISLR) characterizes interference from volume or surface clutter.
Additionally, radar signals having matched filter responses that exhibit a narrow
mainlobe (the peak) and low sidelobes are required when one wants to detect and

distinguish closely separated targets (Levanon & Mozeson, 2004).

In this thesis, we first utilize genetic algorithm (GA) (Capraro, Bradaric, Capraro,
& Lue, 2008; Lellouch, Mishra, & Inggs, 2015, 2016; Martone, Ranney, & Sherbondy,
2016; Smith-Martinez, Agah, & Stiles, 2013; G. Sun, Wang, Zhang, Tao, & Zhou,
2016; Weile & Michielssen, 1997) to design a unimodular constant modulus sequence
by minimizing the metric of ISL in the frequency domain. Unimodular sequences
having large MF values are desired in applications where a transmit sequence with
large MF ensures that the received waveform is not obscured by correlated multipath
and clutter interference (Stoica et al., 2009). Unimodular constant modulus sequences
with desirable autocorrelation function properties are widely used in radar and
communication systems. Studies in the literature have focused on minimizing the

metric of ISL (Song et al., 2015b, 2015a; Stoica et al., 2009). Our proposed method



utilizing GA is initialized by either a random sequence or the Golomb sequence (Zhang
& Golomb, 1993) (See Appendix 1) whose autocorrelation is known to have good
properties. By this way, radar transmit signals with minimum ISL are designed using
GA. Finally, performance of GA based design is compared against the already existing
cyclic algorithm-new (CAN) and monotonic minimizer for integrated sidelobe level
(MISL) algorithms. Our simulations indicate that minimization of ISL using GA
produces better results than the CAN algorithm. Hence, GA could alternatively be used

to design radar transmit sequences by minimizing ISL in the frequency domain.

Secondly, we propose a new algorithm to design unimodular sequences utilizing
the majorization minimization (MM) method for directly minimizing the WISL in the
frequency domain. Some control over the autocorrelation lags of the designed
sequence is provided by WISL. Hence, minimizing WISL becomes crucial in
applications where we want to reduce the interference arising from some known
multipath or clutter (Stoica et al., 2009). Therefore, in this thesis we propose a new
algorithm named frequency domain WISL (FWISL) to design unimodular constant
modulus sequences by minimizing the metric of WISL. As the first frequency domain
application of the MM method for minimizing WISL, FWISL utilizes the fast Fourier
transform (FFT), and thus, decreases the computation time. In our method, after
proposing a function majorizing the frequency domain representation of the WISL
metric, a closed-form solution of the minimization problem is derived as an iterative
algorithm. Additionally, we provide an acceleration scheme to allow fast convergence

of the newly designed algorithm.

Numerical examples show that FWISL not only outperforms existing cyclic
algorithms such as CA-pruned (CAP) (Stoica et al., 2009) and weighted-CAN
(WeCAN) (Stoica et al., 2009) in terms of computation time, but also converges in
less number of iterations than the time domain implementation of MM-based
algorithms. Furthermore, the new algorithm allows design of long sequences in a

computationally efficient manner and achieves high merit factors (MFs).

Thirdly, we propose new algorithms to design unimodular sequences with
suppressed power in some spectral bands and, at the same time, having low ISL and

WISL values. Shaping the spectrum of the transmit waveform in order to avoid certain



frequencies is one of the desired tasks in cognitive radars. Additionally, one may want
to design unimodular sequences with low autocorrelation sidelobes. In the literature,
various algorithms have been proposed for designing sequences having low ISL values
and, at the same time, satisfying some spectral constraints. SCAN and WeSCAN
algorithms were proposed (He et al., 2010) for that purpose as extensions of the CAN
(Stoica et al., 2009) and weighted CAN (WeCAN) (Stoica et al., 2009) algorithms,
respectively. SCAN was proposed to design unimodular sequences with suppressed
power in arbitrary spectral bands and having low ISL values as well. WeSCAN was
proposed to design sequences having low WISL values. However, CAN and WeCAN
algorithms minimize some approximations of ISL and WISL metrics, respectively,
instead of minimizing the exact ISL and WISL metrics themselves. In the literature,
MM-based methods were also proposed to minimize the exact ISL, directly (Song et
al., 2015a, 2015b). Spectral-MISL algorithm, which is based on the MM method, was
proposed to design unimodular sequences by minimizing ISL and restricting of power

in certain pre-specified frequency bands (Song et al., 2015a).

In this thesis, we propose to use the MM-based algorithms to design unimodular
sequences with their power suppressed in arbitrary spectral bands and having low ISL
or WISL values. Numerical examples show that our proposed methods outperform
SCAN and WeSCAN algorithms in terms of computation time, converge in less

number of iterations, and achieve lower ISL, WISL, and stopband power values.

A summary of the algorithms designed by cyclic methods and the MM method are
given in Table 1.1. The new algorithms proposed in this thesis are also indicated in the
same table by boldfaced italic fonts. In the ensuing chapters, after developing those
algorithms we perform their numerical simulation examples employing different

parameter values and compare their performances.



Table 1.1 Algorithms for designing unimodular sequences (New algorithms developed in this thesis

are indicated by boldfaced italic fonts)

Employed Metric
: ISL WISL Stopband-ISL  Stopband-WISL
Methodology Domain
(D) - - - -
Cyclic Algorithms | &
F
(Approximately =
Equivalent Metrics) | & CAN WeCAN SCAN WeSCAN
&
2
=
WPISL SWPISL
2 WPISL B ISL. SWPISL
i= SMWISL
MM-Based Methods
& spectral-MISL
s MISL FWISL SFWISL
=3 SMISLN
£

The rest of the thesis is organized as follows. In Chapter One, some brief

information and basic concepts of radar signal processing are given.

In Chapter Two, background information on already existing algorithms for
designing radar waveforms is provided. Review of cyclic algorithms and MM-based

methods are given in Sections 2.1 and 2.2, respectively.

In Chapter Three, first GA is explained briefly. Then, GA is utilized to design
sequences by minimizing ISL in the frequency domain. At the end of the chapter,

numerical examples are presented.

In Chapter Four, we propose a new frequency domain sequence design algorithm,
FWISL (see Table 1.1), which minimizes the WISL metric using the MM method in
the frequency domain. Then, an accelerated version of the proposed algorithm is

developed. We also present some numerical examples.



In Chapter Five, we focus on designing waveforms satisfying simultaneous
temporal correlation and spectral stopband constraints. We develop two algorithms
named SMISLN and SWPISL (see Table 1.1) for designing waveforms with minimum
ISL and spectral stopband constraints. Numerical examples for the proposed

algorithms are also presented.

In Chapter Six, we develop three other algorithms, SMWISL, SWPISL, and
SFWISL (see Table 1.1), for designing waveforms satisfying simultaneous temporal
WISL and spectral stopband constraints. Numerical examples are also presented at the

end of the chapter.

Finally, the thesis is concluded in Chapter Seven by a general discussion of the

results obtained for the newly proposed algorithms.
1.1 History of Designing Radar Transmit Sequences

Many transmit signal waveforms with nice properties have been proposed in the
radar literature. Unmodulated pulse, linear frequency-modulated pulse, and coherent
train of identical unmodulated pulses can be mentioned as the most fundamental ones
(Levanon & Mozeson, 2004). Since the unmodulated pulse has high sidelobes in the
frequency domain, its use of frequency band is inefficient. In addition, it has poor
range and Doppler resolution. By means of pulse compression better range resolution
can be obtained. Similarly, by employing a coherent pulse train better Doppler

resolution is achieved.

In radars, improving the range resolution can be accomplished by decreasing the
width of the probing pulse and increasing the transmitted energy (Stoica, Li, & Xue,
2008). However, this necessitates use of large peak power levels which cannot be
handled by most systems. Therefore, a technique termed as pulse compression is
employed to overcome the large peak power requirement. In this method, a modulated
subpulse train which has smaller peak power than a single pulse is transmitted.

However, it has the same transmitted energy as the single pulse.

Linear frequency modulation is one of the pulse compression techniques providing

better range resolution than the unmodulated pulse (Levanon & Mozeson, 2004). A



chirp waveform is a linear frequency modulated (LFM) pulse which is widely used in
radar applications (He et al., 2012). A chirp signal can be defined as (He et al., 2012;
Levanon & Mozeson, 2004)

S(t)=—— e 0<i<T, (1.1)

NG

where k = i? is called the chirp rate with 7 representing the pulse duration and B

denoting the bandwidth of the pulse.

Phase coding is another technique of pulse compression. Several phase codes can

be derived using chirp signals (He et al., 2012; Levanon & Mozeson, 2004) . (Barker,

1953) proposed a set of binary codes where phases of the sequence elements, ¢, , are
in the range ¢, e {-z, 7}, n=1,...,N and N represents sequence length. Barker

sequences have optimal peak to side-peak ratio (PSPR). However, there is a limitation
on the length of Barker code. The known longest Barker code is of length N =13 and
it is believed that no Barker code exist for N >13 (Levanon & Mozeson, 2004). In
order to overcome this problem, scientists have proposed several different methods for

synthesizing longer sequences.

Various analytical and computational methods for synthesizing longer sequences
have been proposed (He et al., 2012; Levanon & Mozeson, 2004). Some of those
sequences have closed-form expressions such as Frank code (Frank, 1963), polyphase
P codes (P1, P2, P3, P4) (B. L. Lewis & Kretschmer, 1981; Bernard L. Lewis &
Kretschmer, 1982), Px code (Rapajic & Kennedy, 1998), Chu code (Chu, 1972), and
Golomb code (Zhang & Golomb, 1993). Golomb, Frank, P1, Chu, and P4 codes are
named “constant amplitude with zero autocorrelation” (CAZAC) sequences (Roberts
et al., 2010). Phase codes with zero periodic autocorrelation sidelobes are called
perfect sequences (Levanon & Mozeson, 2004). In (Roberts et al., 2010), perfect
waveforms are referred to as CAZAC sequences (see Appendix 1 for the closed-form

expressions of Golomb, Frank, and P4 sequences).



(Levanon & Mozeson, 2004) states that, although sidelobes of periodic
autocorrelation of a phase coded sequence can be zero, it is not possible to synthesize
a phase coded sequence with zero aperiodic correlation sidelobes. Therefore, in
contrast to CAZAC sequences, it is more challenging to design a sequence with low

ISL of aperiodic autocorrelation (Roberts et al., 2010).

In addition to those fixed sequences, some computational methods such as
evolutionary algorithms (Kocabas & Atalar, 2003), heuristic search (Wang, 2008), and
stochastic optimization (Borwein & Ferguson, 2005) have also been exploited to
generate sequences with desirable properties. Since computational complexity of those
techniques increases with the length of the designed sequence, some alternative
minimization methods such as cyclic algorithms (He et al., 2012; Roberts et al., 2010;
Stoica et al., 2009; Stoica & Selen, 2004) and MM techniques (Song et al., 2015a,
2016b; Stoica & Selen, 2004; Zhao et al., 2016) have also been proposed.

While cyclic algorithms such as CAN and WeCAN are based on expressing the ISL
and WISL metrics, respectively, in the frequency domain, CA-pruned (CAP) is based
on expressing the WISL metric in the time domain. WeCAN+CAP was also proposed
as a concatenation of WeCAN and CAP algorithms. CAN minimizes a quadratic (with
respect to the designed sequence) approximation of ISL as opposed to exact ISL which
is a quartic (fourth degree) function of the designed sequence. Similarly, WeCAN and
CAP minimize quadratic approximations of WISL as opposed to exact WISL which is
quartic with respect to the designed sequence (He et al., 2012; Jian, Stoica, & Xiayu,
2008; Roberts et al., 2010; Stoica et al., 2009; Stoica, Li, Zhu, & Guo, 2007; Stoica,
Li, & Zhu, 2008). MM-based techniques have been proposed (Song et al., 2015a,
2016b) for direct minimization of ISL and WISL metrics and for minimization of a
unified metric named “weighted peak or integrated sidelobe level” (WPISL) (Zhao et
al., 2016). Those MM-based methods perform minimization of the aforementioned

metrics directly in the time domain.

On the other hand, adaptation of the spectrum of transmit waveform in order to
avoid certain frequencies is one of the main tasks in cognitive radars (Haykin, 2006;
He et al., 2010). Transmitted waveforms should avoid utilizing some of the frequency

bands that are allocated for specific applications. Therefore, transmit waveforms



should be designed so that they have low spectral power in the reserved frequency

bands (He et al., 2010; Lindenfeld, 2004).

Since sequences with low autocorrelation sidelobes are widely used in
communication and radar systems, in addition to having nulls in specific frequency
bands of the power spectrum, it may also be desired to have low ISL or WISL values
for the transmitted waveforms. Besides, transmitted sequences are usually designed as
unimodular (constant modulus) waveforms. There are a few studies in the literature
for designing unimodular transmit waveforms satisfying simultaneous temporal
correlation and spectral stopband constraint (He et al., 2010; Song et al., 2015a). In

this thesis, we also address the same problem using different methods.

In (He et al., 2010), the SCAN algorithm was proposed to design unimodular
sequences with their spectral power suppressed in arbitrary frequency bands and
having low ISL values, respectively. SCAN is an extension of the CAN algorithm
which aims designing sequences with low ISL. Similarly, WeSCAN was proposed as
an extension of the WeCAN algorithm which aims designing sequences with low
WISL (Stoica et al., 2009). On the other hand, the MM method is employed in (Song
et al., 2015a) to design unimodular constant modulus sequences with low ISL and
constrained spectral power in certain frequency bands. The developed algorithm was
named spectral-MISL (spectral-monotonic minimizer for integrated sidelobe level)
(He et al., 2010). However, no algorithms have been proposed for designing transmit
waveforms with low WISL and constrained spectra using the MM method. Although,
both (He et al., 2010) and (Song et al., 2015a) are interested in designing sequences
with low ISL and having some spectral constraints, there are differences between them.
These differences arise not only from the employed methods for solving the problem
but also from the problem statements as explained in the following sections. In the
problem statement of spectral-MISL algorithm, the spectral constraint is given so that

it should be lower than a pre-specified threshold value.

In this thesis, we develop alternative algorithms to design unimodular sequences
with their spectral power suppressed in arbitrary frequency bands and having low ISL

(or low WISL) using the MM method. We employ the MM method both in time and



frequency domains for solving the transmit waveform design problem introduced in

(He et al., 2010).

Notation: In this thesis, boldface lowercase and uppercase letters represent vectors

and matrices, respectively. ||-|| denotes Euclidean norm for vectors and Frobenius
. H T .l .

norm for matrices. [ .| and [.] represent Hermitian and transpose operations,

respectively, and ()* denotes conjugate of complex numbers. © indicates Hadamard

product.

Simulations.: All the simulations in this thesis are performed via MATLAB 2017a
software on a PC with 17-4500U CPU having 12-GB memory and 1.8-GHz processor
speed. We run the simulated recursive algorithms until the employed stopping criterion

is reached.

10



CHAPTER TWO
BACKGROUND AND EXISTING METHODS

In order to synthesize transmit sequences, some performance measures that are
based on the autocorrelation function of the sequence should be taken into

consideration.

Engineers and scientists have long been working on the design of sequences with
low autocorrelation sidelobes. Those sequences are widely employed in radar and
communication systems. In communication systems, they are used for synchronization
purposes and in radar systems they are mostly utilized as transmit waveforms because
of their improved detection performance especially for weak targets (He et al., 2012;
Kocabas & Atalar, 2003; Song et al., 2015a, 2015b; Zhao et al., 2016). Those transmit
sequences are usually designed as unimodular (i.e. having a constant modulus of unity)
waveforms due to such practical considerations as limitations of sequence generating
hardware components including analog-to-digital converters (ADCs) (He et al., 2012,

2010; Rowe, Stoica, & Li, 2014; Zhao et al., 2016).
Let {)cn}nN:1 denote a complex unimodular constant modulus sequence satisfying

lx,|=1, n=1L..,N (2.1)

T .
and vector X be represented as X=[x, ... x| .Let C, cC" be the domain of x

such that C, = {x eC"||x, =1 forn=1,...,N } The autocorrelation function of

{xn}nNzl is defined as (Song et al., 2015a, 2016b; Stoica et al., 2009; Zhao et al., 2016)

N
re= Y XX, =r,, k=0,..N-I, (2.2)

n=k+1

where ()* denotes complex conjugation. Goodness of synthesized sequences can be

measured using the metric of integrated sidelobe level (ISL) which can be defined as

(Song et al., 2015a, 2016b; Stoica et al., 2009; Zhao et al., 2016)

11



ISL = fw. (2.3)
k=1

Some researchers also utilize merit factor (MF) as an alternative metric to measure
goodness of any designed sequence. It is inversely proportional to ISL and can be
defined as (Song et al., 2015a; Stoica et al., 2009)

I 0|2 N
e 2(0SL)
> nf 2B

k=—(N-1)
k=0

MF =

(2.4)

Unimodular sequences having large MF values are desired in applications of radar
where a transmit sequence with large MF ensures that the received waveform is not

obscured by correlated multipath and clutter interference (Stoica et al., 2009).

In addition to above mentioned metrics, weighted ISL (WISL) is employed in
(Stoica et al., 2009) to suppress not all but some of the autocorrelation lags of a
designed sequence. It is defined as
|2

WISL = fwk I (2.5)
k=1

where w, represents the real-valued, nonnegative (w, >0) weight of the k" lag of

the autocorrelation function. Thus, some control over the autocorrelation lags of the
designed sequence is provided by WISL. Minimizing WISL becomes crucial in
applications where we want to reduce the interference arising from some known
multipath or clutter (Stoica et al., 2009). Similar to MF in (2.4), modified merit factor
(MMF) can be defined (Stoica et al., 2009) in terms of WISL as

2 2
|r0| N

MMF = - ,
225: w, Irk |2 2(WISL)

(2.6)
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2.1 Cyclic Algorithms for Minimizing Approximately Equivalent Metrics
2.1.1 CAN - Minimization of Approximate ISL

Unimodular constant modulus sequence design with minimum ISL can be

formulated as follows

minimize ISL
X 2.7)
subject to x|=1n=1,.,N.

CAN algorithm is based on the minimization of ISL in the frequency domain. Using
the well-known Wiener-Khintchine property (Proakis & Manolakis, 2006), the Fourier

transform (FT) of the autocorrelation function can be expressed as

2 N-1

= > re’™ 20(w) (2.8)

k=—(N-1)

where ®@(w) is the energy density spectrum (Proakis & Manolakis, 2006; Stoica & R.
L. Moses, 2005) of {)cn}nN:l and, due to periodicity of the FT, w €[0,27]. Using ®(w),

ISL in (2.3) is alternatively expressed in (Roberts et al., 2010; Stoica et al., 2009; Zhao
etal., 2016) as

1 2N 2
ISL=—- O(w )-N 2.9
4N;[ (@,)-N] (2.9)
2N
where {a)p} s defined as
e
o == =0,...,2N -1 (2.10)
, 2Np’ p=0,..., . .

Then, the ISL metric in (2.9) can also be written as follows

N

—jo,n
> e

n=1

1 2v 2 ?
ISL—WZ{ N} . (2.11)

p=l

Thus, in order to minimize ISL, one can minimize the following quantity

13



N

—Jjoyn
S

n=1

%{ N} . (2.12)

Minimization of the above quantity is challenging because it is a quartic (fourth
degree) function of {xﬂ}nN:l. Therefore, an almost equivalent formulation instead of
(2.12) is proposed to be used (Stoica et al., 2009). In that respect, minimization of an
approximate ISL metric is expressed as (Stoica et al., 2009)

2

N | N ‘ '
minimize ) |} x,e """ - JNe"| . (2.13)

XV p=1|n=1

Minimizing the ISL metric in (2.12) is not exactly equal to the minimization of

the ISL-related metric in (2.13). However, they are “almost equivalent” in the sense
that if the metric in (2.12) takes on a small value for a certain x,, than the metric in
(2.13) also takes a small value at the same x, (Stoica et al., 2009). Additionally, if the

global minimum of the exact ISL metric in (2.12) is sufficiently small, then the
sequences obtained by minimizing (2.12) and (2.13) are close to each other. It is also
stated in (Stoica et al., 2009) that minimization of the exact metric in (2.12) is often

much slower than that of the ISL-related metric in (2.13).

The expression in (2.13) to be minimized can be more compactly written as

2

HF;]’VX—VH (2.14)
where F,, isthe2N x2N DFT matrix
1 af{
Fil=—0o| ¢ |, a=le’™ ... &/ (2.15)
2N hN i p [ ]
2N

and 2N x1 vectors X and v are defined as

X=[x ... x, 0 ... 0], (2.16)

14



v=%[e-/‘% Lo, (2.17)

FFT of the vector X is calculated as

f=F'xX. (2.18)
Denoting the elements of the vector f via f=[f; ... f,,] ,then, one has
y,=arg(f,), p=L....2N. (2.19)

Similarly, the inverse Fourier transform of v is given as

g=F,, V. (2.20)
Again, denoting the elements of the vector gas g=[g, ... g, N]T , then finally, the
designed sequence X, is obtained as

xnze"arg(g"), n=1,...,N. (2.21)

As an example, a transmit sequence of length N =1000 is designed by the CAN
algorithm. The algorithm is initialized by Golomb sequence. Correlation level (dB) of
the Golomb sequence and the sequence designed by CAN are illustrated in Figure 2.1
and Figure 2.2, respectively. Correlation level of a sequence is defined (Song et al.,

2015a, 2015b; Stoica et al., 2009; Zhao et al., 2016) as

Correlation Level = 20 log, ||r—k|, k=-(N-1),....N-1. (2.22)
Ty
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Golomb Sequence N=1000

Correlation Level (dB)
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Figure 2.1 Correlation level of the Golomb sequence (in dB)

CAN Initialized by Golomb Sequence N=1000

A
o
T
1

Correlation Level (dB)

-70

-80 :
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Figure 2.2 Correlation level of the transmit sequence designed by the CAN algorithm (in dB)

16



2.1.2 SCAN

The SCAN algorithm was proposed in (He et al., 2010) as an extension of CAN

algorithm for accommodating additional spectral constraints. The frequency stopbands

. N
of a unimodular sequence, {x,} _, , can be expressed as

Q={Jfinrfo2) (2.23)

where (f,,,f,,) and N, represent the stopband edge frequencies and the number of

stopbands, respectively. If we denote the number of DFT bins by N, which is taken to

be large enough in order to densely cover the corresponding frequency band Q, the
(k,1 )th element of the Nx N DFT matrix, F/, is given as

= CXp

K¢ ], = N

(—j%), k,1=0,...,N -1, (2.24)

1 N . : :
where — ensures that F is unitary. We construct a matrix, S , using columns of F

JN

corresponding to the stopband frequency bands, Q. Then, the following quantity is

minimized to suppress the frequency stopbands

S .
O(NfN)xl

T
where || . ||2 denotes the norm square of a vector and 05y = [0 0] .

2

(2.25)

%/_/
N-N

Denoting the null space of S by G,the equivalent minimization problem was

proposed in (He et al., 2010) as

minimize J,(x,0) = ”f‘ - G“Hz
o (2.26)
x

subjectto |x,|=1, n=L...,.N

17



where o is an auxiliary vector of variables and X :{ } is of length N x1. In

0

(N-N)x1
(He et al., 2010), the CAN algorithm is used to suppress the sidelobes of the

autocorrelation function of the designed waveform. The frequency domain

representation of ISL in (2.11) can be written as (He et al., 2010)

\/2Napi

1 2¥ 5 2 2N > 17T
—Z[ —N} :NZ[‘api ——] (2.27)
AN 3 pi 2

2
The ISL metric above can be further simplified as N ‘Fﬁ,ir —%H which is a quartic

function of x,. Therefore, (Stoica et al., 2009) proposes to use a quadratic

approximation of the exact ISL metric. The “almost equivalent” approximation of the

ISL metric is given (Stoica et al., 2009) as
H— 2
NHF2Nx X vH (2.28)

where v is the auxiliary vector of variables defined in (2.17). Thus, using the quadratic
approximation of ISL, the CAN algorithm suppresses the correlation sidelobes by

solving the following problem

2
o . . H —
minimize J,(X,v)= NHFZNX - VH
X,V

subject to =1, n=1....N (2.29)

:L n=1,...,2N.

5

X

n

v

n

In (He et al., 2010), stopband and correlation constraints are combined and the

following optimization problem is posed

minimize J(x,a,v)=AJ,(x,0)+(1-1)J,(X,V)

=1, n=1...,N (2.30)
1

ﬁ’

subject to

X

n

Vv | =

n

n=1,....,2N

18



where A represents a relative weight parameter that is used to control the two penalty

functions J; and J,. The above problem can also be rewritten as

minimize J(x,0,v) = A[% - Gal +(1- )N [Fix - v

subjectto |x |=1, n=1...,N (2.31)

n

In order to solve the above optimization problem, only one variable of J(x,a,Vv) in

(2.31) is minimized at a time (He et al., 2010).

As an example, one can design a unimodular sequence of length N =100 having

two stopbands given as Q=[0.2,0.3)U[0.7,0.8) Hz in terms of normalized

frequency. The relative weight parameter, A, is taken as 4 =0.8. Normalized power
spectrum and correlation level of the sequence designed by the SCAN algorithm can

be seen in Figure 2.3.

-30 7

-40 | .

-50 7

_60 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (Hz)
(a)

Figure 2.3 (a) Normalized power spectrum, (b) correlation level (dB) of the sequence designed by

SCAN
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Figure 2.3 continues

2.1.3 WeCAN - Minimization of Approximate WISL

The WISL metric in (2.5) is alternatively expressed in (Stoica et al., 2009) as

N-1 5 3 1 2N 2
WISL = ; A ) [cp (@,)- yON} (2.32)
where {}/k}i:l are real valued coefficients with y, =y, . Autocorrelation lags can be

weighted by choosing {}/k}i:l appropriately. The relation between y, in (2.32) and

w, in (2.5) is given as y; =w, . (i)(a)p) in (2.32) 1s defined as

N-1

D)2 Y yne’t (2.33)

k=—(N-1)

and {wp}le is given as @, :j—;p, p=0,....,2N —1. The coefficients {}/k}iv_;l are
. -

chosen so that the matrix
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Yo Vi oo Vna

o (2.34)
]/O . T, . ]/1

yN—l 7/1 7/0

is positive semidefinite; that is II > 0. This condition can be satisfied by selecting 7,

as y,+A,;, =0 where A, is the minimum eigenvalue of the matrix I = y, 1T with

all its diagonal elements being zero (Stoica et al., 2009). Using the properties of the
discrete Fourier transform (DFT) and the definitions given in (2.8) and (2.33), we can

write the following equalities (Stoica et al., 2009)

DFT{.}

{rn} 2 o) =|X(0)

IDFT{.}
DFT{} _

) = O()=11(0)*|X (o)

IDFT{.}

‘2

(2.35)

where * represents the convolution operation. X (@) and IT(w) are defined as

follows
i (2.36)

Then, dD(wp) and the WISL metric can be written (Stoica et al., 2009) as

N N . -
D(0,)=>y, xxie T =51 ()R,

n=1 ni=1

i (2.37)
— ?/0 < “’Hl-[“' N 2
WISL—WPZ_;[XP %, N]
. . . T
where X, :[xlef"”" xe xNe”N“"} . Thus, the frequency domain

minimization problem to be solved can be expressed as
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7/(? N 2
minimize -—— X'IIx —N
x 4N ;[ P ] (2.38)

subject to =1, n=1,...,N.

xl’l

The WISL metric as given in (2.38) is a quartic function of unknowns, {xn}:;.
Instead, (Stoica et al., 2009) suggests an “almost equivalent” minimization problem in
which the following quadratic approximate function of {xn}:/:1 is minimized,

2N )
minimize ZHCXP -1, H
My =

subject to an”z =N,p=1,...,2N (2.39)
=1, n=1,...,N.

x?‘l

Here, C isan N x N matrix defined as the square root of the matrix II ,i.e., Il = C'C.

In order to express the matrix I as II=C'C, it must be a positive semidefinite

matrix.

We can also express (2.39) as follows,

o 2
mmgmze pr—np”

(2.40)
subject to an H2 =N
where f, = Cx, . In (Stoica et al., 2009), n, is found as
f
n, =N ﬂ . (2.41)
p

Let A be a matrix whose p™ row corresponds to the transpose of the vector f,. One

can evaluate A as

A=\V2N F) [z, z, ... z,],. (2.42)

where
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zk:[cklx1 vee CuXy 0Ll O]T (2.43)

(2nx1)
In (2.43), ¢, -corresponds to the (k,n)th element of C. One can express

2N
ZHCf( ,— M, H2 alternatively as
Pl

2N B 2 N )
Z;HCXP -n, H = ;”zk —F,\B,| (2.44)
p -

where B, = =1,...,N. For a specific element,x, , of

1
ﬁ[’hk UZNk]T’ k

{x}" , (2.44) becomes

n=1"

ul 2 u 2 . s . 2
Z|,kam _Vk| = Z |Iukxm| — X, Ve — B X, Ve +|vk|
k=1 k=1

N
= constant —2Re {(Z v, j X, }

k=1

(2.45)

where g, and v, are the corresponding elements of z, and F,,B,, respectively.

Finally, x, can be found as follows

— oIt
x, =e'’,

N
e

k=1

j (2.46)

Correlation level of a transmit signal with length N =100 designed by the WeCAN

algorithm can be seen in Figure 2.4. The algorithm is initialized by Golomb sequence.

The weighting factors y, are taken as

I, kefl,...,20}U{51,...,70
;/k:{ ! Joi } (2.47)

0, otherwise.

7, 1s selected as y, =13.1950 so that the matrix II in (2.34) is positive semidefinite.
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Figure 2.4 Correlation level of a transmit signal with length N =100 designed by WeCAN

2.1.4 WeSCAN (Weighted SCAN)

WeSCAN was proposed in (He et al., 2010) to control both the stopband and
correlation constraints. It is an extension of the WeCAN algorithm (Stoica et al., 2009)

and a modified version of SCAN. WISL metric in (2.37) can be written as
70 S H T 2
WISL =m;[xl, c’'cx,-N]J. (2.48)
Then one can also write the above WISL metric as

v [ N ) 2
wISL =22 % {Z‘\&Naf 7| - N}
4N p=1L k=1

, (2.49)
= ;/ONZ{Z‘afzk ‘2 _l}

p=lL k=1 2

where z, is given in (2.43).
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The exact WISL metric in (2.49) is a quartic function with respect to x,. Therefore,

(Stoica et al., 2009) proposed to use a quadratic approximation of the exact WISL

metric. The “almost equivalent” approximation of the WISL metric can be written (He
2
et al., 2010; Stoica et al., 2009) as y,N HF;]IVZ—AH which is minimized by solving the

following optimization problem proposed in (He et al., 2010; Stoica et al., 2009)

minimize J;(x.V) =N [z Al
subjectto |x,|=1, n=1...,N (2.50)
8, =1 p=1...2N.

In the expressions above, the following matrices are utilized

Z=[z, z,

Zy ]2N><N 2

. (2.51)

2NxN *

A=—x=[8, 8, ... 8,]

The optimization problem in (2.50) can also be written by using the cost functions J,

and J; in (2.26) and (2.50), respectively, as follows

miningize J(x,0,8)=A||x - Goz”2 +(1- /I)yONHngZ - AH2

subjectto |(x |=1, n=1,...,N (2.52)

n

5, =1 p=1...2N.

In order to solve the above optimization problem, only one variable of J(x,a,8) in

(2.52) is minimized at a time (He et al., 2010).

As an example, one can design a unimodular sequence of length N =100 having a
stopband given as Q =[0.2,0.3) Hz in terms of normalized frequency. The weighting

factors y, are taken as given in (2.47). The relative weight parameter, A, is taken as

A=08. The number of DFT points is selected as N =1000. Normalized power
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spectrum and correlation level of the sequence designed by the WeSCAN algorithm is
shown in Figure 2.5.

WeSCAN
10 T T T T T

_70 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (Hz)
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Figure 2.5 (a) Normalized power spectrum, (b) correlation level of the sequence designed by WeSCAN
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2.2 MM-Based Methods

The MM method is used to solve rather difficult optimization problems by
transforming them into simpler ones (Song et al., 2015a, 2016b; Zhao et al., 2016). In

this section, we briefly summarize the MM method.

Let f(x) denote a function to be minimized over 3 < C". Now, we can formulate

an optimization problem as (Song et al., 2015a, 2016b; Zhao et al., 2016)

minimize f(x)
2.53
subjectto x 7. (2:53)

We minimize a simpler function that majorizes f(X) instead of minimizing f(X) by

employing the MM method. In order to understand the principle of the MM method,
(0)

first of all, consider that the MM method starts from an initial point represented as X ‘

¥

and produces a sequence at the k" iteration which is represented as X . The sequence

update rule is given as follows (Song et al., 2015a, 2016b; Zhao et al., 2016)

(k+1)

€ argmin u(X, x(k)) (2.54)

xey,

X

(k)

where u(x,x*)) is the majorization function of f(x) at X" satisfying the following

expressions

u(x,x(k))zf(x) Vxey

(2.55)
u(X(k),X(k)) _ f(X(k)).

The updating procedure of the MM method is illustrated in Figure 2.6. The critical
point here is determining the majorization function. More details about the MM
method can be found in (Song et al., 2015a, 2016b; Stoica & Selen, 2004; Zhao et al.,
2016). In the following sections, existing algorithms from the literature derived by

using the MM method for direct minimization of ISL and WISL metrics are reviewed.
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Figure 2.6 The updating procedure of the MM method (Y. Sun, Babu, & Palomar, 2017)

2.2.1 MISL

In order to employ the MM method for direct minimization of ISL, the
minimization problem in (2.7) is first rewritten using the alternative expression of ISL

in (2.12) as (Song et al., 2015a)

2N

minimize a’xx"a —-NT
; ,,z;[ pxxa, =N ] (2.56)
subjectto [x, (=1, n=1...,N

. . T
where a, = [1 e’ ... e"w”(Nfl)} , p=L...,2N. Expanding the square in the
objective function, one obtains
2N

. . . 2
minimize Z[(afxxHap) —2Na1;xxHap +N2J
X
p=1

(2.57)
subject to |x”|=1, n=1,...,N.

2N
. 2 2 .
Due to Parseval’s relation, E ‘agx‘ =||X|| = N, the second term is a constant. After
p=l

ignoring the constant term in (2.57), the minimization problem can be expressed (Song

etal., 2015a) as
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. . . = 2
minimize ; (aﬁxxHaP ) (2.58)

=1, n=1,...,N.

subject to X,

Construction of majorization function for the ISL metric is started by using the

following lemma.

Lemma I (Song et al., 2015a): Let K and L be nxn Hermitian matrices such that

K = L. Then, for any point x, € C", the quadratic function x”Lx is majorized by

the following function xHKx+2Re[xH (L —K)x0]+x(’f (K-L)x, at x,.

The proof of Lemma 1 can be found in (Song et al., 2015a). Utilizing Lemma 1, a

function that majorizes the objective function can be found.

Defining A, = apaff and X =xx", the objective function in (2.58) can be written
2N 2 2N 2 u

as Z(afxxHap) =ZTr(XAp) . Since Tr(XAp)z[wac(X)] Vec(Ap) (Song et
p=1 p=1

al., 2015a), the problem in (2.58) can be expressed as follows

minimize | vec (X)]H z,vee(X)

x, X
subject to X =xx" (2.59)
=1, n=1,....N

x”l

where X, = 2ZN: Vec(A , )[vec(A , )}H and Vec(X) forms a column vector by stacking

p=1
all the columns of the matrix X. Now, one can apply Lemma 1 on the objective

function in (2.59). Lemma 1 can be applied with K=A4_ (ZI)I where A, (21) is
. . H . .. X(k)
the maximum eigenvalue of X, . Then, I:VGC(X)] Zlvec(X) 1s majorized at by

u, (X, X(k)) given as follows (Song et al., 2015a)
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max

u, (X, X(")) =1 (Zl)[vec(X)]H vee(X)

+2Re([vee(X)]" (£, = A, (Z)1)vee(XY)]  260)

max

max

+|:VCC(X(k))}H (Aax (21 —Zl)vec(X(")).

It can be clearly seen that [VGC(X)]H vee(X)=N? and A, (X,)=2N" as stated in

(Song et al., 2015a). Therefore, the first and third terms are constant in (2.60). After

ignoring the constant terms, one can rewrite (2.59) as follows

minimize Re([vec(X)]H (21 —2NZI)Vec(X(k)))

x, X

subject to X = xx” (2.61)
=1, n=1,...,NN.

x}'l

The objective function in (2.61) can also be written as
2N
> Tr(XYA, ) Tr(A,X)-24,, (£) Tr(XVX). (2.62)
p=1

Then, the minimization problem in (2.61) can be expressed as follows (Song et al.,

2015a)

2

2N ’ )
Fimi He® M af x| — 2 N2 [xH x®)

minimize pz_l a,x ‘ap x‘ ‘x X (2.63)

subject to |xn|=1, n=1,...,N.

Minimization problem in (2.63) can alternatively be written as

minimize x" (ADiag (p(k) ) AT 2N (x(k) )H )x

(2.64)
subject to |xn|=l, n=1....N

2
where A=[a, a, ... a,,] and p® :‘AHx(k) :
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In order to further simplify the optimization problem in (2.64), the second
majorization is applied with K =pY) AA" » ADiag(p(k))AH —2N2x(k)(x(k) )H :
Then, the majorizing function can be expressed as follows

u, (x, x(k)) = pM x AA"x
~ H
+2Re(xH (A—ZNzx(k) (x“‘)) )x(k)) (2.65)
H H ~
+ (x(k)) (2N2x(k) (x(k)) - A) x,

After ignoring the constant terms in the majorizing function in (2.65), one has the

following optimization problem

A5 H
minimize RG(XH (A _ 2N xW (x(k) ) ) xj

(2.66)
subject to |xn| =l,n=1L....N

where A = A(Diag(p(k))—p(k) I)AH :

max

~ H
Defining y = —(A—2N 2x (%) (x(k)) )x(k) , (2.66) can be rewritten as follows (Song

et al., 2015a)

minimize ||X - y||
X

(2.67)
subjectto |x (=1, n=1,...,N.
In (Song et al., 2015a, 2015b) the solution of (2.67) is given as follows
X, =™ p=1...N. (2.68)

As an example, the MISL algorithm is initialized by Golomb sequence of length
N =1000. Correlation level (dB) of the sequence designed by MISL is plotted in
Figure 2.7.
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MISL Initialized by Golomb Sequence N=1000
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Figure 2.7 Correlation level of the transmit sequence designed by the MISL algorithm (in dB)

2.2.2 MWISL

Autocorrelation function of the sequence {x, }:’zl can be expressed alternatively as

(Song et al., 2016b)
r=Tr(Uxx"), k=0,..,N-1 (2.69)

where U, is a Toeplitz matrix with its A diagonal elements being 1 and other

elements being 0. Then, the optimization problem for minimizing WISL in (2.5) can

be rewritten (Song et al., 2016b) as

. 1 & 2
minimize — w, |Tr(U, X
x,X k——%;—l) k ‘ ( k )‘
subject to  X=xx" (2.70)
x,|=1 n=1...,N
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where w, =w, and w,=0. Since Tr(U,X)=vec(X)" vec(U,), (2.70) can be

written as (Song et al., 2016b)

N-1
minimize 1 > ow, [VCC(X)JH vec(U, )[ vec(U, )JH vec(X)
X k=—(N-1)
subjectto  X=xx" (2.71)
x,|=1, n=1,...,N.

The above problem can alternatively be expressed as (Song et al., 2016b)

minxi&nize %I:VGC (X)]H E vec(X)

subjectto X=xx" (2.72)
x,|=1 n=1L...,N
where
N-1 H
E = Y wvec(U,)[vec(U,)] . (2.73)
k=—(N-1)

Construction of the majorizing function for the WISL metric is started using

Lemma 1. The objective function in (2.72) is a quadratic function of X . Then, one

can apply Lemma 1 to I:VCC(X)]HEIVCC(X) with K=4_, (E,)I where 4 (E,)is

max max

the maximum eigenvalue of E, . It is given as

A (B ) =max, {w, (N=k)|k=1..,N-1} (Song et al, 2016b). Then, the

max

majorizing function for the objective function is (Song et al., 2016b) found as

u, (X, X(’)) :%/’t (El)[vec(X)]H vee(X)

max

max

+Re([vee(X)]" (B, = A (E))vee(X7)) - 274

—}-%[VGC(XU))}H (/1 (EI)I_El)VeC(X(I)).

max
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Since [Vec(X)]H vee(X) = (xH x)2 = N°, the first term is a constant. Therefore, the

majorized version of (2.72) can be written as follows (Song et al., 2016b)

minimize Re([vec(X)]H (E1 — e (E, )I) VCC(X(I)))

x, X !
subjectto  X=xx" (2.75)
=1, n=1,...,N.

x?‘l

(2.75) can be expressed by using (2.73) as (Song et al., 2016b)

minimize f kae[Tr(U_kX(”)Tr(UkX)]

x, X A
— Ao () Tr(XOX) (2.76)

subject to X=xx"

=1, n=1,...,N.

X

n

It can be seen from (2.69) that Tr (Uf X ) = 1Y Then, (2.76) can be rewritten as

N-1
minirxnize Re[Tr( z Wk’”(,i)UkXD—/lmax(El)Tr(X“)X)

X k=—(N-1)
subject to  X=xx" (2.77)
=1, n=1,...,N.

x}’l

Defining a Hermitian Toeplitz matrix as

- 1 -
0 W1’”-(1) e WN-1”1(-1)\/
W wi!) 0 :
R =Y wru = " _ _ o | @78
k=—(N-1) : .. .. wr,
_walr]f,lL wlrl(l) 0 |

the objective function in (2.77) is written as Re[ Tr (R X) |- 4,,, (E, ) Tr(X" )X) . The

b+b"
for any

first term can be expressed as Re (xH R1X) . Using the fact that Re(b) =
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complex vector b, the first term of the objective function in (2.77) is equal to xR x .

Therefore, the optimization problem in (2.77) can be rewritten as

minimize x” (R1 — A (B )X (x(” )H )x

(2.79)
subject to |xn|:1, n=1,...,N.

The objective function in (2.79) is a quadratic function of x. Then, the majorization

function of the objective function can be obtained by applying Lemma 1 with

O (x0)! - .
Ao (R1 — Ao (B )X (x ) ) . However, in (Song et al., 2016b) it is proposed to use

mi

fust

some upper bound of A4, (Rl — Aoax (E}) x? (x(l ) )H) for the purpose of computational

efficiency and simplicity.

Lemma 2 (Song et al., 2016b): Let T be an N x N Hermitian Toeplitz matrix given as

t, 4T WAL,
t ot :
T=| 1T D i (2.80)
. Z»l
tN*l tl tO
and F)}, be the 2V x 2N DFT matrix defined as
u -2k
[EL ] =e™, 0<ki<2N-1. (2.81)
Then, the following boundaries can be written,
A (T)<l(maxy +max s, ):/1
max T\l T2 ey T U (2.82)
1 . : '
Aiin (T) 2 E(E}lgﬂzi + g}ig:uzi—l) =4
£ * T
with g=Fyeand e=[4, 4 .. 6, 0 6, ... 4].

Since A (El) >0 (Song et al., 2016b), the following inequality can be written

(Song et al., 2016b)
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u 7 'max

A > (Rl)zﬂmax(Rl—xlmax(El)x“)(x(”)H). (2.83)

Then, one can apply Lemma 1 to the objective function in (2.79) with K =4 I.. Thus,

the majorizing function of the objective function in (2.79) can be written as follows

max

+2Re(XH(R1—/1 (El)x(l)(x(l))H—/lul)x(l)j (2.84)

H(x0)" (A (E)T-E, )5

max

Since X"xX=N , the first term on the right hand side is constant. After ignoring
constant terms, optimization problem can be reformulated using the majorizing

function as follows

minimize 2Re (XH (R1 ~ e (B ) x" (x(l) )H — /’LHI) x(l)j
n=1,.

x (2.85)
subject to [x =1, .., N.
Finally, after expressing the optimization problem in (2.85) as
minimize ||x — y||
* (2.86)

subject to |xn|:1, n=1,...,N

m;

H
where y=—|R, -4 __ (El)x(l)(x(l)) —/Iul)x(l), the closed form solution of the

minimization problem in (2.86) is given as follows (Song et al., 2016b)
x =™ p=1.. N (2.87)

As a numerical example, correlation level of a transmit sequence with length
N =100 designed by the MWISL algorithm can be seen in Figure 2.8. The algorithm

is initialized by Golomb sequence and the weighting factors are taken as in (2.47).
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Figure 2.8 Correlation level of a transmit sequence designed by the MWISL algorithm (in dB)

2.2.3 WPISL

In (Zhao et al., 2016), a unified metric named ‘‘weighted peak or the integrated
sidelobe level”” (WPISL) was proposed as follows

WPISL = EW,{ ] (2.88)
k=1

where 2 < p <400 and {wk} " are nonnegative weights. This metric encompasses the

k=1

N-1
k=1

metrics of ISL, WISL, and PSL by assigning the values of p and {w,}
appropriately. Hence, it was termed as the unified metric. For example, if one lets p =2

, then (2.88) becomes the WISL metric. If p =2 and {w, }kN; =1 are substituted, then

(2.88) reduces to the ISL metric. Finally, if p — +o and {wk}j: =1, then the PSL

metric is recovered.
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The optimization problem for finding a unimodular sequence which minimizes the

metric of WPISL is given as follows

minimize  WPISL
X (2.89)
subjectto  |x |=1 n=1...,N.

Then, the problem can be rewritten by using (2.88) as

N-1
. . . p
minimize kZ::, W |rk | (2.90)

subjectto  |x,|=1 n=1,...,N.

In (Zhao et al., 2016), the MM method was proposed to solve the problem in (2.90).
For this purpose, construction of majorizing function for WPISL metric is started by

using the following lemma.

Lemma 3 (Lemma 2 in (Song et al., 2015a), Lemma 10 in (Song et al., 2016b),

Lemma 1 in (Song et al., 2016a)): Let /(x) be a scalar function of x”, i.e. A(x)=x",
where p > 2. The local majorizing function of 4(x) at x, € [O,)_c) on the interval [0, X)
is h (x; xo) =ax’ +bx+ax; —(p—1)x. a and b in the local majorizing function are
given as a=[x"-x} - px!"(x-x)]/(¥-x,)>>20 and b= px)" -2ax,<0,
respectively. In (Zhao et al., 2016), it is stated that monotonicity is maintained and
infeasibility will not occur by using such a local majorizing function.

Let the function f(x) denote the WPISL metric. Thus, one can define

N-1
f(x) = w, |1 ” where r, =x"U.x andU, e R¥" . In Lemma 3, x corresponds to
k k k
k=1

|| and x, corresponds to /"

rk(x('))‘ where x") represents the sequence at the

iteration of the MM algorithm. Then, by using Lemma 1, we can write

f(x)< NZ?W,{ (a,{|rk|2 +bk|rk|+constant) (2.91)
k=1
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where a, and b, are calculated using the definition in Lemma 3. These parameters are

different for each & value like the upper limit, x . The upper limit for each £ value is

calculated as follows (Zhao et al., 2016)

(2.92)

After employing Lemma 3 by considering w , =w,, w, =0, b, =b,, and b, =0, the

result of the first majorization is expressed in (Zhao et al., 2016) as follows

N-1 1
f®<D wa, |rk|2 +5xHBx+constant (2.93)
k=1
where
N-1 7O
B= > wbh &, (2.94)
k=—(N-1) ‘Kk ‘

and U_, = U} . As can be seen from (2.93), the second term of the majorizing function

is quadratic but the first term is still quartic. Therefore, the second majorization is used

applying Lemma 1.

The first term of the majorizing function in  (2.93),

N-1

By N-1
Zwkaklnl = Zwkak

k=1 k=1

2
, can be written as (Zhao et al., 2016)

XHUkX

1
E[Vec(X)]H E,vec(X) (2.95)
where X =xx" and
N-1 H
E,= > wayvec(U,)[vec(U,)], (2.96)
k=—(N-1)
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with a, =a , and q,=0. After employing majorization using Lemma 1 with

K =4, (E,)I, the result is given in (Zhao et al., 2016) as

max

%ﬂmax (E, )”X”4 +x7 (R2 — Anax (E, )x(l) (x(l) )H ) x +constant  (2.97)

where

S o2 m
R,= Y S O U, (2.98)
k=—(N-1)
The expression in (2.97) majorizes the objective function in (2.93). Then, one can

apply Lemma 1 on the second term in (2.97) with K = A,I where A, is chosen such

that 4, 2 4__ (R,) and the majorizing function of the second term is obtained as (Zhao

max

etal., 2016)

u, (x, x(l)) < 2. x"x+2Re [XH (R2 A (E5 ) x" (x(l) )H — ﬂRI) x") } constant

pust

(2.99)
=e ||x||2 -2, Re [yﬂx} + constant.

Finally, the optimization problem to find the constant modulus unimodular sequence

minimizing the WPISL metric can be written as follows

minimize —Re|y”x
x v (2.100)
subjectto |x, |=1, n=1,...,N

0

A (E
where y = (1 + %2) ’ ] x) - %sz(') . Then, the closed form solution of the
R R
problem in (2.100) is given as follows

,n=1..,N. (2.101)

To provide a numerical example, correlation level of a transmit sequence with

length N =100 obtained by the WPISL algorithm can be seen in Figure 2.9. The
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algorithm is initialized by Golomb sequence and the weighting coefficients are taken

as in (2.47).
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Figure 2.9 Correlation level of the transmit sequence designed by the WPISL algorithm (in dB)
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CHAPTER THREE
DESIGN OF SEQUENCES WITH LOW AUTOCORRELATION SIDELOBES
USING GENETIC ALGORITHMS

In this chapter, we employ genetic algorithm (GA) to synthesize unimodular
sequences with low ISL and compare the results against the CAN algorithm. Although
the CAN algorithm minimizes an “almost equivalent” ISL metric which is quadratic
in the sequence designed, GA is employed to minimize the exact metric of ISL which
is quartic. Our simulation results demonstrate that minimization of ISL utilizing GA

produces slightly better results than CAN (Biskin & Akay, 2017).

As mentioned in Section 1.1, computational methods such as GA are not efficient
in terms of computation time for designing sequences. On the other hand, the methods
given in Chapter 2 may converge to a local minimum and the corresponding algorithms
might obtain a suboptimal solution instead of the optimal one. Thus, in this thesis, we
employ GA not for designing sequences, but as a benchmark solution for the
minimization problem in order to decipher how close the proposed algorithms in
Chapter 2 are able to converge to the optimal global solution. Because of this,

performance evaluation of GA in designing sequences is out of scope of this thesis.
3.1 Genetic Algorithms

In this section, the following exact quartic cost function is minimized using GA to

obtain a sequence with minimum ISL

.

p=l

N

7ja)pn
> e

n=1

—N} . (3.1)

GA is one of the global optimization algorithms developed by taking inspiration
from biological mechanisms of natural selection. In biology, the most adaptable
generations manage to stay alive after natural selection mechanisms ongoing through
the years. In the same way, the most probable solution of an optimization problem

eliminates the alternative solutions after execution of the GA for that problem.
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Generally, GA is used when the analytic solution of the optimization problem
cannot be found easily. Another advantage of GA is that it is less likely to converge to
a local minimum. Therefore, GA is able to both provide performance improvement
and solve complex optimization problems (Capraro et al., 2008; Lellouch et al., 2015,
2016; Martone et al., 2016; Smith-Martinez et al., 2013; G. Sun et al., 2016; Weile &

Michielssen, 1997). The basic concepts relevant to GA are explained as follows:
Population: The set which may include the possible solutions of the problem.
Individual: Each element in the population set is named as an individual.

Generation: The process of reproduction of the individuals which are included in

the population.
Parents: Individuals which are used in the reproduction process.
Child: An individual arising from two parents after reproduction process.
Initialization: The process to create the initial population of the algorithm.

Selection: The process of determining the appropriate parents in order to give a

child.

Crossover: Changing the chromosome of individuals from generations to

generations (see Figure 3.1).

1 1 (0|0 1 0 r; 0o | 1 (o1
0 0 |11 1 0 1 |0(1Q0
Figure 3.1 An example of crossover

Mutation: A random change which occurs in the chromosome of individuals (see

Figure 3.2)

1tJof1|@Jofofafof=>[1]o][1]@]ofof1]0

Figure 3.2 An example of mutation
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As the first numerical example, GA is initialized with Golomb sequence of length
N =100 in order to minimize the exact cost function in (3.1). Correlation level (dB)

of the sequence designed by GA can be seen in Figure 3.3.

0 GA Initialized by Golomb Sequence N=100

Correlation Level dB
A
o

_80 Il Il Il 1 1 1 1 1 1
-100  -80 -60 -40 -20 0 20 40 60 80 100

Figure 3.3 Correlation level (in dB) of the transmit sequence designed by GA

3.2 Numerical Examples for Minimizing ISL

For CAN and MISL algorithms, the stopping criterion is determined as
Hx(k+1) —x®

<107 in parallel to (Stoica et al., 2009). For GA, the stopping criterion

is selected as the maximum number of generations. The population size, maximum
number of generations, crossover, and mutation operations explained in the previous
section are also presented as other inputs for GA. We decided the population size to
be 150 and the maximum number of generations is assigned as 20000. We use both

crossover and mutation operations in order to increase the diversity in the population.
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5 % of the population is selected as elite individuals in each generation. They maintain

their chromosomes without any mutation or crossover (Biskin & Akay, 2017).

Simulations were performed by employing two different initialization scenarios. In

. . T
the first experiment, the initialization sequence x :[e”" e"/"“’} is formed by
selecting phases {(pp} | as independent random variables uniformly distributed in the
.

interval [—7[,7[]. Sequence lengths of N =09, 25, 32, 64, and 100 were tried out.

Experiments were repeated several times and performance of the algorithms was
calculated by taking the average value of the output metrics for each simulation. Due
to its long computation time, GA was repeated only 10 times as opposed to CAN and
MISL which were repeated 100 times. Average MF values of the designed sequences
using the three algorithms are presented in Table 3.1. MFs of designed sequences
versus signal length can be seen in Figure 3.4. It can be understood from Figure 3.4
that GA performs better than CAN in terms of MF for all the simulated sequence
lengths. However, it performs slightly worse than MISL for larger sequence lengths.
The reason for this is that GA parameters such as population size, maximum generation
number, etc. are selected in order to speed up the algorithm. We have to note that

computational complexity of GA increases with larger sequence lengths.

Table 3.1 Average MF values (initialization by random sequence)

N
Algorithm
9 25 32 64 100
GA 35.1422 14.6810 13.5195 16.9899 16.8717
CAN 17.7849 113143 11.6779 13.8035 14.8095
MISL 20.9399 13.5751 14.4039 16.2363 17.7229
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Figure 3.4 Average MF versus sequence length (initialization by random sequence)

As a second experiment, the algorithms were initialized with Golomb sequence.
Resulting MFs can be seen in Table 3.2. In Figure 3.5, MFs of the resulting designed

sequences with respect to sequence length are plotted.

Table 3.2 MF values (initialization by Golomb sequence)

N
Algorithm
9 25 32 64 100
Golomb 5.3666 8.2047 9.1800  12.7733  15.8731
GA 38.2296  20.3287 14.9499 479392  57.1046
CAN 38.0151 25.0084 169131 46.6691 56.4701
MISL 38.2296  25.6093  14.1476 479391 42.4780
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Figure 3.5 MF versus sequence length (initialization by Golomb sequence)

We can see that when algorithms are initialized by a sequence having good
correlation properties (e.g. Golomb), their performance in terms of MF increases. As
opposed to Figure 3.4, in Figure 3.5 MFs obtained by CAN, MISL, and GA are fairly

close to each other.
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CHAPTER FOUR
A NEW FREQUENCY DOMAIN SEQUENCE DESIGN ALGORITHM
MINIMIZING WISL

In this chapter, we are interested in designing unimodular sequences via minimizing
WISL in (2.5) by way of formulating and implementing the MM method in the
frequency domain. Although the already existing WeCAN algorithm is also
formulated in the frequency domain, it does not minimize the exact WISL metric but
an “almost equivalent” approximation of it. Therefore, we develop an algorithm for
directly minimizing the quartic WISL metric in the frequency domain (Bigkin & Akay
2018a). Our simulation results demonstrate that minimization in the frequency domain
via the MM method converges to a stationary point in less number of iterations and

CPU time (sec.) and can achieve lower WISL levels.
4.1 FWISL

To minimize the exact quartic frequency domain WISL metric in (2.38), we can
start by constructing the majorizing function using Lemma 1 (Song et al., 2015a,
2016b; Zhao et al., 2016). By this way, we find a function that majorizes the objective

function in (2.38). First of all, we alternatively express the objective function in (2.38)

as
2 2N 2 2N
Yo <Hye 2 _ 7o H 2
WISL = — X'Ix —N| =" x'(A OI)x—-N 4.1
where a = [ejw” e T and A =a a’.In(4.1), O represents the Hadamard

product. Thus, we can express the minimization problem in (2.38) as

minimize g[(xﬂ(APOH)X)2+2N(XH(A,,®H)X)+ Nz} )

subject to =1, n=1,..,N.

xn

Let us define M, 2A ,on and X =xx". Then, we can rewrite the minimization

problem in (4.2) as follows
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2N 2 2N
minimize | Tr(M,X)[ -2~ Tr(M,X)

x,X

p=l p=1
subjectto X = xx”’ 4.3)
x,|=1, n=1,...,.N

where Tr(.) denotes trace of a matrix. Since x” (A , OH)X = Tr(M pX) is identical

to in)(a)p) in (2.37), it is a real-valued scalar. Considering the following equality
Yo

H

Tr(MpX) = [VCC(MF )] vee(X) = [VGC(X)]H VGC(Mp), (4.4)

where vec(X) forms a column vector by stacking all the columns of the matrix X,
we can express (4.3) as

minimize I:VCC(X):IH z,vee(X)- ZNiv: Tr(MpX)

x, X =

subject to X = xx” 4.5)
=1, n=1,...,N.

x}’l

2N H
In (4.5), we utilize the definition X, = ZVGC(M » )I:Vec(Mp ):I . Now, we can apply
p=l1

Lemma 1 to [vec(X)]” Z,vec(X) with K =21 (X,)I where 1 (X,) denotes the

max

maximum eigenvalue of the matrix X, . If we denote the matrix at the k" iteration by

X¥ | [vec (X)1" £,vec(X) is majorized at VGC(X(k)) by the following function,

(X, )[vee(X)]" vee(X)

max

u(vec(X),vec(X("))):
+2Ref[vee(X)I" (Z, = Ay, (E,)1)vee(XV)} (4.6)

max

+[vec(X“‘) )}H (A (Z5)T-X, )vec(X(") )

Since I:VGC(X)]H VeC(X) = N?, the first term in (4.6) is constant. The last term, on the

other hand, does not depend on the independent variable, x, and therefore, it is
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constant as well. Ignoring those constant terms, we can perform the following

minimization problem instead,

minxi’r)}qize 2Re{[vec(X)]H (2, = A (%, )I)Vec(X("))}

2N
~2NY Tr(M,X) @)
p=1
subjectto X = xx”

=L, n=1,..,N.

x?‘l
Using the equality in (4.4), the above problem can be further simplified as

max

minimize 22ZN:Tr(X(k)Mp)Tr(MpX)—2i (zz)Tr(X(")X)—zszN: Tr(M,X)

p=l p=l1
subject to X = xx” (4.8)
x|=1,n=1...,N.

We can alternatively express the minimization problem in (4.8) as

2N
minxi’glize 22Tr(X(k)Mp)xHMpx—2/1 (ZZ)XHX(k)z

max

p=1
2N .
—ZNZ:‘X M x (4.9)
=
subjectto X =xx"
=1L, n=1,...,N.

xl’l

The summation expression in the last term above can be written as
2N 2N 2N 2N
ZXHMPXZXH ZAPOH =x" H@ZAP . Since )" A, =2NMI, this term is
p=l p=1 p=1 p=1
constant and does not affect the minimization. Ignoring this term, we can rewrite (4.9)

as

2N
minimize x” {sz ([x(k)]HMpx(k))_z (Ez)x(k)[x(k)]H}
p=1

max
X

X
(4.10)

subject to =1, n=1,...,N.

xl’l

The above minimization problem can be expressed more compactly as
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minimize x”’ (H ©) (ADiag {m(k) } A" )

max

) (Ez)x(k)[x(k)]H)X 4.11)

subjectto |x (=1, n=1,...,N.

n

Here, Diag {m(k)} denotes the 2N x2N diagonal matrix whose diagonal is formed by

T
the elements of the 2Nx1 vector m(k)z[ml(k) m . mgljv)} where

m) :[x(k)]HMpx(k). In (4.11), the matrix A is defined as A =[a, |a, |... |a,, ]

p

)

using a , which, in turn, was defined following (4.1). Calculation of mg‘ for all p

values using mE,k) = [x(k) "M px(k) is not computationally efficient. Therefore, we can
modify this expression as m!" =[x"1" (A, 0m)x" = [x(k) o} a;]H H[x(k) o} a;} ,
where a’ corresponds to complex conjugation of all the elements of the vector a .

Let M*) bea 2N x2N matrix defined as

M® £[x® QA*}H n[x oA’ (4.12)

where A" corresponds to complex conjugation of all the elements of the matrix A .

Then, diagonal elements of M) correspond to the elements of m*’ given above.

Noting that the minimization problem in (4.11) is quadratic in X, we can apply a

second majorization by choosing the matrix K in Lemma 1 as
K=1_, (H O (ADiag{m(k) } A" ))I . Now, after ignoring the constant terms, we can

rewrite the problem as follows;

minimize Re [xH (n o (ADiag {m} A" )
H

— A (Z) x) [x(k) }

max

A (H@(ADiag{m(k)}AH))I)x(k)}

=1, n=1,...,N.

(4.13)

subject to |x,
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The above minimization problem can simply be expressed as

minimize Re| x"y
x (Y] (4.14)

subject to =l,n=1..N

x}’l

where

y:(HQ(ADiag{m(k)}AH)—ﬂ (Ez)x(k) [X(k)]H

max

(110 ADiag{m")} AH))I)X(H. (4.15)

Thus, finally, the closed form solution is found as (He et al., 2010; Zhao et al., 2016)

x =e ") 1 . N. (4.16)

Since we obtained this solution by minimizing the WISL metric in the frequency
domain using the MM method, we call the above derived algorithm FWISL (frequency
domain WISL). The pseudocode of the developed algorithm is summarized in

Algorithm 1 below.

Algorithm 1: FWISL Algorithm

N-1

1: Set sequence length N and weights {wk ZO} et

Set k =0 and initialize x*.
2: while stopping criteria > Tol
H
3 MY =(x"oa") n(x"oa)
4 mY=[m® m oMW

5.y ={n@(ADiag{m(")}AH)_/1 (£,)x

- /?“max (H ©) (ADiag {m(k) } A ))I} x*!

6: xn:efjarg(’v”), n=1,...,N.

k=k+1
8: end while

=
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4.2 Simplifying Majorization for Efficient Computation

Algorithm 1 above requires calculation of the maximum eigenvalue of the matrix
no (ADiag {m(") } A" ) which is computationally demanding. Therefore, alternative
majorization functions could be looked for to decrease computational cost. For this

purpose, a different matrix for K in Lemma 1 is sought. This alternative matrix can

be found using a property (Song et al., 2016b) for Hermitian Toeplitz matrices. Since
the matrix II @(ADiag{m(k)}AH ) is Hermitian Toeplitz (see Appendix 3), we can

invoke Lemma 2 (see Section 2.2.2) (Song et al., 2016b) in finding a different matrix

for Kto allow fast computation.

Thus, we let K in Lemma 1 be equal to AI instead of
Ao (H ©) (ADiag(m(k) )AH))I . A, is calculated as in (2.82) in Lemma 2 (see Section

2.2.2). In our proposed algorithm, we use this alternative matrix to reduce

computational cost.
4.3 Numerical Examples for FWISL

In our numerical examples, we design unimodular sequences under different
. . N-1 .
scenarios. The weights, { Vi } o > of the correlation lags are selected as

(4.17)

B ke{l,...,20}u{51,...,70}
= 0, otherwise.

To obtain a narrow autocorrelation mainlobe, correlation weights are chosen as

7, =1 for small k values (ke {l,...,20}) which are the lags near the origin. As

opposed to WeCAN introduced in (Stoica et al., 2009), for our proposed algorithm
FWISL-accelerated (FWISL-acc) (see Appendix 2 for the acceleration scheme), there

are not any restrictions on the value of y, to make the matrix II in (2.34) positive

semidefinite. On the other hand, we have observed in our numerical experiments that

the values in the interval 0 < y, <1 work sufficiently well towards providing a smaller

number of iterations for our minimization algorithm. Accordingly, we assigned

53



_
A (10

algorithm until the stopping criterion is reached. As in (Stoica et al., 2009), the

Vo= to make sure that y, stays within the interval, (0,1]. We run the

stopping criterion is determined as Hx(k”) - x(k)H <Tol.

Performance of the proposed algorithm, FWISL-acc, is compared against CAP
(Stoica et al., 2009), WeCAN (Stoica et al., 2009), WeCAN+CAP (Stoica et al., 2009),
MWISL-acc (Song et al., 2016b), and WPSIL-SQUAREM (Zhao et al., 2016)
algorithms in terms of number of iterations, CPU time, MMF, and correlation level
which is defined in (2.22). WPISL-SQUAREM (Zhao et al., 2016) and MWISL-acc
(Song et al., 2016b) algorithms (which are both time domain MM methods), CAP,
WeCAN, and WeCAN+CAP algorithms (Stoica et al., 2009), and our proposed
frequency domain MM-based algorithm, FWISL-acc, in Algorithm 6 (see Appendix

2), are implemented for the tolerance value of Tol=107".

In the first experiment, all the algorithms are initialized with Golomb sequence of
length N =100. The WISL metric versus the number of iterations for FWISL-acc,
WPISL-SQUAREM, and MWISL-acc algorithms are shown in Figure 4.1. We can
observe from Figure 4.1 that our proposed algorithm converges in a smaller number

of iterations and attains a lower WISL value.

Figure 4.2 displays WISL values of the algorithms versus CPU time (in sec.). As
can be seen, FWISL-acc terminates in less CPU time by reaching the tolerance value
of Tol =107" . Especially for WISL values below 10™"* , FWISL-acc requires less CPU
time, although for larger WISL values, WPISL-SQUAREM and MWISL-acc
algorithms spend less time. We would like to note that we did not include the CAP and
WeCAN algorithms in Figure 4.1 and Figure 4.2 because their performance curves
stayed much farther away (in a negative sense) from those of the other algorithms

obscuring their readability.

Correlation level displays the relative strengths of autocorrelation sidelobes, 7, ,

with respect to the zero-lag coefficient, 7,. Correlation level curves of the sequences

designed by CAP, WeCAN, MWISL-acc, and FWISL-acc algorithms are plotted
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together in Figure 4.3. Since the correlation level curve of WPISL-SQUAREM is very
close to that of MWISL-acc, it is not included in Figure 4.3. It can be noticed that

FWISL-acc is able to suppress autocorrelation sidelobes more at required lags.

In Table 4.1, we list the required number of iterations and CPU time of all the
simulated algorithms for Tol=10"" along with the achieved MMF values. The
average correlation levels in the suppressed autocorrelation lags,

ke{l,..,20}U{51,...,70}, are also given in Table 4.1.

As a second experiment, CAP, WeCAN, MWISL-acc, WPISL-SQUAREM, and
FWISL-acc algorithms are initialized with Golomb sequence for N =100, 140, 160,

and 200 . Figure 4.4 displays the number of iterations versus sequence length and
Figure 4.5 shows number of iterations and CPU time versus sequence length for

N =100, 140, 160, and 200. In Figure 4.4 and Figure 4.5, WeCAN+CAP algorithm

is initialized by the sequence obtained by the CAP algorithm as proposed in (Stoica et
al., 2009). Figures show that FWISL-acc outperforms CAP, WeCAN, and
WeCAN+CAP algorithms and also converges in a smaller number of iterations and
terminates in less CPU time than other MM-based algorithms. As can be seen, the
WeCAN+CAP algorithm performs better than the WeCAN algorithm in terms of CPU
time, MMF, iteration number and is able to suppress autocorrelation sidelobes more at
given lags. This shows the importance of the initial sequence on performance.
However, our proposed algorithm FWISL-acc still outperforms WeCAN+CAP. We
also initialized MM-based algorithms, MWISL-acc, WPISL-SQUAREM, and
FWISL-acc, with the sequence obtained by the CAP algorithm for lengths
N =100, 140, 160, and 200 in order to perform a fair comparison with the

WeCAN+CAP algorithm. We named those concatenated algorithms as MWISL-
acc+CAP, WPISL-SQUAREM+CAP, and FWISL-acc+CAP, respectively.

Comparison of the algorithms in terms of MMF versus sequence length is shown in
Figure 4.6. When the algorithms are initialized by the sequence obtained by the CAP
algorithm, they achieve better performance. Figure 4.7 displays the average level of
the suppressed autocorrelation sidelobes at given lags versus sequence length. It can

be seen that the FWISL-acc algorithm is able to suppress autocorrelation lags more at
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the required lags. In Table 4.2, we list the required number of iterations, CPU time,
and the achieved MMF values of the simulated algorithms for the case of initialization
with the sequence obtained by CAP. The average correlation levels in the suppressed

autocorrelation lags are also given in Table 4.2.

As a last experiment, we employ the MM-based algorithms when the sequence
length N 1is varied from N =100 to N =1000. Figure 4.8 displays number of
iterations versus sequence length. As shown in Figure 4.8, our proposed algorithm
converges in a smaller number of iterations. In Figure 4.9, CPU time versus sequence
length is shown. It can be seen that FWISL-acc terminates in less CPU time by
reaching the tolerance value. Figure 4.8 and Figure 4.9 indicate that FWISL-acc
algorithm can be employed for designing long sequences as well. Performance of
simulated algorithms in terms of MMF is compared in Figure 4.10 which displays that
the sequence designed by the FWISL-acc algorithm has higher MMF even for long
sequences. Finally, as can be seen in Figure 4.11, the FWISL-acc algorithm is able to

suppress autocorrelation sidelobes more at the required lags.
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Table 4.2 Required number of iterations, CPU time, MMF, and average correlation levels in suppressed
lags (N =100, Tol =107", initialization by the sequence designed by CAP)

MWISL-acc WPISL- FWISL-acc WeCAN+CAP
(Song et al., SQUAREM (Stoica et al., 2009)
2016b) (Zhao et al.,
2016)

Number of iterations 3261 3317 759 1808166
. 8.4462 18.9859 6.2371 4

CPU time (sec.) 1015010
23 23 25 20

MMF 2.0930x10 1.9319x10 3.2794x10 1.2063x10

Average correlation level

in suppressed lags (dB)

-260.3808

-260.0628

-280.3609

228,0404
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CHAPTER FIVE
DESIGNING SEQUENCES SATISFYING SIMULTANEOUS TEMPORAL
ISL AND SPECTRAL STOPBAND CONSTRAINTS

5.1 Sequence Design with ISL and Stopband Constraints

The SCAN algorithm was proposed to design sequences minimizing the ISL metric
and satisfying some stopband constraints (He et al., 2010). SCAN minimizes a
quadratic ‘‘approximation’’ of ISL instead of the exact ISL metric which is quartic
with respect to the designed sequence. In this chapter, we minimize the exact quartic

ISL metric itself for designing sequences having some additional stopband constraints.
In (He et al., 2010), the underlying optimization problem is given as follows

minimize J(x)=ASC+(1-A4)ISL

(5.1)
subject to |xn| =1, n=1...,.N

where SC represents the stopband constraint and 4 €[0,1] is used to weight the metric

of ISL and the stopband constraint. In order to solve the optimization problem in (5.1)

, a cyclic algorithm called SCAN was proposed in (He et al., 2010) (see Section 2.1.2).

In this chapter, we use the MM method to solve the problem in (5.1). We call our
newly proposed algorithms for designing unimodular sequences with minimum ISL
and having stopband constraints as SMISLN (stopband MISL-new) and SWPISL
(stopband WPISL). These algorithms are extension of the MISL (Song et al., 2015a,
2015b) and WPISL (Zhao et al., 2016) algorithms, respectively.

5.2 Stopband MISL-New (SMISLN)

To design a unimodular waveform satisfying simultaneous temporal ISL and
spectral stopband constraints we employ the MM method. In order to suppress the

stopband frequencies, the quantity in (2.25) is minimized.
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We first express the metric of ISL in the frequency domain and a modified version
of the MISL method proposed in (Song et al., 2015a) is developed to minimize the
autocorrelation sidelobes of the waveform. The optimization problem to minimize the
metric of ISL in the frequency domain is given as (Song et al., 2015a, 2015b; Stoica
et al., 2009)

minimize =~ — xe " =N
N AN <\ |5 (5.2)
subject to x,|=1 n=L...,N

where @, and X are given in (2.10) and (2.16) (see Section 2.1.1), respectively. Let

jo, jo,N-) " .
1l e”... e , p=L...,2N . Then, (5.2) can be written

1
us define a, =—
P 2N

as

2N )
minimize — Y |2Na“’xx"a - N
8 N;[ JX¥'a, =N ] (5.3)
=1, n=1,...,N.

subject to  |x,

After expanding the square in the objective function, we obtain

e 1 ZN[ He <H . \? 2 He <H 2}
minimize — 2Na’xx"a )| —4N‘a’xXx"'a +N
x 4N; ( P P) P pP (54)
subject to x,|=1, n=1,...,N.

2N
2 2
. H— — .
Due to Parseval’s relation, E ‘ap X‘ =||X|| =N, the second term in the above
p=l

objective function is constant. Therefore, the following minimization problem can be

solved to suppress the autocorrelation sidelobes of the waveform

L N Hy<tg Y
minimize ;(%XX ap) (5.5)

subject to |xn|=1, n=1,...,N.
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Combining the stopband and correlation constraints in (2.25) and (5.5) as in (5.1) leads

to the following problem (Biskin & Akay, 2018b)

minimize EHSHIA( ’ +(1- ﬂ)NZZN: (agi iHap )2
X p:l

(5.6)

subject to =1, n=1,...,N.

xn

We suggest to use the MM method to perform the minimization in (5.6). For this
purpose, we apply Lemma 1 in Section 2.1.1 to our minimization problem term by

term.

First, let us define the function /,(X)= /1HSH X

2 2N e —p1 2

+(l—ﬂ,)NZl(apxx ap) . The
=

first majorization step is performed by applying Lemma 1 to the first term,

2 A A .
=x"SS"%, with K=4__ -

HSH&

(X;)I where X,=SS" and 4, (Z;) is the

. . r i N o A A A~k
maximum eigenvalue of X,. The term, XXX, is majorized at X'© by u, (X, % ))

given below

In (5.7), ' denotes the sequence obtained at the £ iteration of the algorithm. The

first and last terms in (5.7) are constant. Thus, the function 4 (x) is majorized as

h(x) < ZZRe[ﬁH ():3 A (23)1)5‘(1{)]

2N 5 (5.8)
+(1- l)NZ(a’;i x"a, ) + constant.
p=1

2N 2
Now, we apply Lemma 1 to the second term, Z(agi iHap) , of h(x). First, we
p=l1

2N
. H— —H 2, . . _ H v = —H
rewrite Z a,XX'a, ) in an alternative form. Defining Ap =aa, and X=XX",
p=l

we can write
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S (a"x %", ) =3 Tr(RA, ) (5.9)

where Tr(.) denotes trace of a matrix. Since Tr()_(Ap ) = [Vec()_()]ﬁ Vec(Ap ) (Song

et al., 2015a), we can express (5.9) as
Z(agi iHap)2 =[Vec()_()JH Z4vec()_() (5.10)

where Vec( ) forms a column vector by stacking all the columns of the matrix X
and X, = Z::VI VeC(AP)[VeC(Ap )}H If we apply Lemma 1 to (5.10) with

K=4..(%,), then, [Vec()_()]ﬁ Z4vec()_() is majorized at X by u, ()_(, )_((k)) given

below

Since [Vec ()_()]H vec ()_() = N, the first term is a constant. The last term depends only

on )ék), but not on the unknown sequence samples in X . Hence, the last term is also
constant. Then, 4, (x) in (5.8) is majorized as
Iy (x) <2ARe| & (£, = A, (2)1)%" |

+2(1—ﬂ)NRe{[Vec(X)}H ():4—,1max (z, )I)vec( )} (5.12)

+ constant.

We can also express (5.12) as
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(%) S22 Re[ 8 (£, = 4,,, (£,)1) 5" ]

max

W ~ o (5.13)
+2(1- ﬁ)N{z Tr(XYA, ) Tr(A,X) - 4, (Z,) Tr(X(k)X)} + constant.
p=1
The expression in (5.13) can be rewritten as follows
() €22 Re[ R (£, = A, (Z,)1)" |
2N (5.14)

O ol - =

H—
apx

2
} +constant.

+2(1 —/I)N{z

p=1

The inequality in (5.14) can be expressed more compactly as

() < 2ARe| X (B = A, (Z,) D)3 |

+2(1- H)NX" (FZNDiag(m(“)FfN—zm (g)ﬂ“(x‘“)”)x (5.15)

+constant
where F, is 2N x2N unitary DFT matrix. F,, and the vector, m(k), are defined,
respectively, as K, =[ a |a, |...| azN] and m"“ :[ml(k) mgk) mgljv)]r

with m{"” =a’] ¥ (xM)a ,- We apply the second majorization on the second term,

L0 40

T s max

iH(FzNDiag(m(k))ng—ﬂ, ax(;)i“”(i‘“)*’)i in (5.15) with K=m®

P

(Song et al., 2015a), where mr(fa)x=max{m”‘):p=l,...,2N}. If we define
p

%, = K, Diagm")E%, -2, (£,)X@*)", then, X" £.X is majorized as

max

X"Lx<u, (%)
= m&X"F, B\ X+ 2Re| X (L, -m1)x" | (5.16)

max max

+(x )H (mB1-x)x".

Since F,,F,, =1, the first and last terms are constants. Ignoring them, we can see that

(5.15) is majorized as
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max

+4N(1-A)Re [i” (=, -m2 1)z ]+ constant.

max

(%) < 2ARe[ & (£, = 2, (£,) )& ]
(5.17)

After omitting the constant terms within the majorizing function in (5.17), we can

finally express the optimization problem in (5.6) as follows

minimize 24 Re [f(H (23 A (23)1)5(@)}

m
X

+4N(l—/1)Re[i” (z,-m®) I)i(k)] (5.18)

max

subject to |xn|=1, n=1,....N

which can also be rewritten as

minimize Re| A%" (= Ay, (2)1) XY +20- HN(X" (2, - m 1) X" )} 5.19)
subject to |xn|=l, n=1,...,N.

The above minimization problem can simply be expressed as

minimize Re[f(H (Ay,)+x" ((1—/1))’2)}

(5.20)
subject to

X

n

=1, n=1,...,.N

where

yl = (23 _ﬂ“max (23)1)&(1{)
¥, =2N(Z-miD1)x".

max

(5.21)

Letting the first N elements of y, and y, be denoted as (yl)le and (yz)

Nx1?

respectively, the closed form solution can be given as (Biskin & Akay, 2018b)

—jarg( Ay, +(1-2)y, )
=e

X, = , n=1...,.N (5.22)
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where y, ~ denotes the n' element of the vector y,. The sequence in (5.22) was

obtained by simultaneously enforcing the ISL minimization and stopband constraints
via the MM method. As an advantage, the above developed algorithm can minimize
the stopband power in the frequency domain over an arbitrary number of frequency
bins, similar to (He et al., 2010). We call this algorithm SMISLN (stopband MISL-

new). Its pseudocode is given in Algorithm 2 below.

Algorithm 2: SMISLN Algorithm

1: Set sequence length N, set k = 0, and initialize x'

2: while stopping criteria > Tol

30 m® =a"x"x""a,, p=1...,2N

P P
4w —pl ) Y

5: m® =maxp{m;k) :p=1,...,2N}

max

[*)

L= (s A (Z)T)XY

max

7y, =2N(Z,-mE1)x"

max

—jarg( Ay, +(1-2)
8: x =e’ (n, 2=, n=1..,N

n

-

9: k=k+1
10: end while

5.3 Stopband WPISL (SWPISL)

In (Zhao et al., 2016), a unified metric named “weighted peak or the integrated
sidelobe level (WPISL)” was proposed as follows

WPISL = EW,{ ] (5.23)
k=1

where 2< p <+o0 and {w,}

., arenonnegative weights. This metric specializes into

ISL, weighted ISL (WISL), or peak sidelobe level (PSL) depending on the values of

N-1
k

p and {wk} L
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In this chapter, we are interested in designing sequences satisfying simultaneous
temporal ISL and spectral stopband constraints. If we let p =2 and {wk }A]: =1, then

N-1
(5.23) reduces to the ISL metric in (2.3) and becomes Z|rk|2 Therefore, the
k=1

optimization problem to be solved for designing sequences satisfying both temporal

correlation and spectral stopband constraints is given as

minimize ASC+(1-A)ISL
* (5.24)
subject to |xn|:1, n=1,...,N.

By substituting the stopband and correlation constrains in (2.25) and (2.3),

respectively, the optimization problem in (5.24) can be expressed as

|2

minimize AN HSH X
X

) N-1
+(1=-D |,
k=1

=1, n=1,...,.N

(5.25)

subjectto |x,

where the sequence length N is included in the first part of the objective function to
obtain the exact signal energy in the frequency domain. We propose to use the MM
method to perform the minimization in (5.25). For this purpose, majorization for the
objective function is performed by applying the MM method term by term. We start

by defining the function A, (x)=AN HSH X

|2 The autocorrelation

2 N-1
+1=-)Y |
k=1

function in the second term can be written as r, =x”U,x where U, is a Toeplitz

matrix with only the A" diagonal elements as 1 and the others 0. Forp=2 and

{w, }sz_ll =1, we utilize the following definitions given in (Zhao et al., 2016)

N-1

E, 2 vec(U_, )| vec(U_, )]H , (5.26)
k=—(N-1)
k#0
N-1 1
R, 2 > —r, (x*)u,. (5.27)
k=2v-1) 2
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The second term of the objective function in (5.25) is majorized by the following

function (Zhao et al., 2016)

u, (x, x) ) = %/’L (ED|X[ + A [X]” — 22 Re[yfx] +constant (5.28)

max

where A, 24 (R3) and
Y= 1+—/quax (E3)HX(I)HZ x®) —LR x). (5.29)
3 /1R /1R 3

Then, majorization is applied on the first term of the objective function in (5.25) for

which the majorizing function is given in (5.7). Thus, the function 4,(x) is majorized
as
iy (X) < 2AN Re| &” (E, = 4, (,)1)%" |

(5.30)
+ (1= A)u, (x, x ) + constant.

The first and second terms of u, (x, X(l)) in (5.28) are constants. Therefore, the

expression in (5.30) can be rewritten as follows

Iy () S 2ANRe| R (I, = Ay, () 1)1 |

m

(5.31)
-2(1-A)4, Re [yfx] + constant.

Using the expression in (5.31), the optimization problem in (5.25) can be recast in

terms of majorizing functions as

minimize 2/1NRe[f(H (25— A (23)1))2(')]

X

~2(1- )4, Re| y{'x | (5.32)

subject to |xn|:1, n=1,...,N.

Both terms in the objective function in (5.32) can be included within the Re(-)

operation. After omitting constants terms, (5.32) can also be expressed as
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minimize  Re| NAX" (E, = Ay, (2) )% = (1= DAy x|

max

x (5.33)
subject to |xn|=l, n=1,...,N.
Then, we have
minimize Re| X7 (dy,)-(1-2)y."x
i (%7 (2y,)-(-2)yy'x] 530
subject to |xn|=1, n=1,....N
where
YI =N(23 _ﬂ’max (EB)I)ﬁ(l) (535)

y; = /1Ry3'

Letting the first N elements of y, and y; be denoted as (yl)le and (yg)le,

respectively, the closed form solution can be given as

— jarg( A3, ~(1=A)3%, )

X =e , n=1L..,.N (5.36)

n

where y, ~ denotes the n'™ element of the vector y,. This algorithm minimizes the

stopband power in the frequency domain employing an arbitrary number of frequency
bins and reduces the ISL metric as well. We call this algorithm SWPISL (stopband
WPISL). Its pseudocode is given in Algorithm 3 below.
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Algorithm 3: SWPISL Algorithm

)

—

: Set sequence length N and weights, set / = 0, and initialize x"

2: while stopping criteria > Tol

)
3: f=F2’fV{X }
0N><1

1

4: r=—
2N

2
F,,[f]
50 ¢=ro[0,w,w,,....0,wywy_ W ]T (see Appendix 4)
1 ) )
6: R, = EFZ Diag(F) ¢)F (see Appendix 4)

70y, = N(Ey = Ay (E5)1)%"

8 v,=4, [H_ﬁm} iE3>Hx<I>H2]xw_R3x<f>

—jarg( Ay, ~(1-2)34, )

9: x, =e , n=1L..,N

10: [=7+1
11: end while

5.4 Numerical Examples for Designing Sequences with ISL and Stopband

Constraints

We design a unimodular sequence of length N =100 having two stopbands given
as Q= [0.2, 0.3) U[0.7,0.8) Hz in terms of normalized frequency. In our simulations,

relative weight parameter, A, is assigned as 4=0.8. The number of employed DFT
bins is selected as N =1000. The algorithms are initialized by Golomb sequence
(Zhang & Golomb, 1993). We run the algorithms until reaching the stopping point

2
x4 —x(k)H <Tol, similar to the stopping

which is determined by the inequality,
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criterion utilized in (He et al., 2010; Stoica et al., 2009). All MM-based algorithms are

accelerated by employing an appropriate acceleration scheme (see Appendix 2).

Performance of the proposed algorithms are compared against the SCAN (He et al.,
2010) algorithm in terms of number of iterations, computation time, the ISL value, and
the level of suppression in spectral stopbands. The SCAN algorithm proposed in (He
et al., 2010) and the MM-based algorithms, SMISLN-acc (accelerated SMISLN) and
SWPISL-acc (accelerated SWPISL) proposed in this thesis, are run for the tolerance
value of Tol=10"",

Figure 5.1, Figure 5.2, and Figure 5.3 show the normalized power spectra and
correlation levels of the sequences designed by SCAN, SMISLN-acc (accelerated
SMISLN), and SWPISL-acc (accelerated SWPISL), respectively. The power spectra
are normalized to make the average value of the spectra in passbands equal to 1 dB
(He et al., 2010). In Figure 5.4, the normalized power spectra of sequences designed
by the three algorithms are plotted together. We can see that the algorithms proposed
in this thesis provide better suppression in spectral stopbands than SCAN.
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Figure 5.1 (a) Normalized power spectrum, (b) correlation level of the sequence designed by SCAN
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Figure 5.2 (a) Normalized power spectrum, (b) correlation level of the sequence designed by SMISLN-
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Figure 5.3 (a) Normalized power spectrum, (b) correlation level of the sequence designed by SWPISL-

acc
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Figure 5.4 Normalized power spectra of sequences designed by SCAN, SMISLN-acc, and SWPISL-acc

Evolution of the objective function versus iteration number and CPU time (sec.) are
presented in Figure 5.5 (a) and (b), respectively. Figure 5.5 indicates that the
algorithms proposed in this study converge to a stationary point in a smaller number

of iterations and CPU time (sec.) than SCAN.
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Figure 5.5 Objective function (dB) versus (a) iteration number and (b) CPU time (sec)
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Numerical results belonging to SCAN, SMISLN-acc, and SWPISL-acc. are
presented in Table 5.1 where the stopband power and normalized average stopband

power (NASP) are defined as follows

Stopband Power = HSH f(”z (5.37)

NASP =Niz(101og10

s keQ

%0 ) for %, =F;3 (5.38)

where N denotes the total number of frequency bins in stopbands as indicated after

(2.23). In Table 5.1, both NASP and stopband power are expressed in dB. As can be
seen from Table 5.1, the algorithms proposed in this thesis converge faster than SCAN
in terms of CPU time and the number of iterations and achieve lower power values in

stopband frequencies.

Table 5.1 Numerical results

SCAN SMISLN-acc SWPISL-acc
Number of
Iterations 2193 209 60
Stopband Power 106.3978 38.6290 45.7964
MF 3.1410 2.9317 3.1314
CPU Time (sec.) 38.1869 18.5920 4.6206
Stopband

0.2-0.3 0.7-0.8 0.2-0.3 0.7-0.8 0.2-0.3 0.7-0.8
Frequencies (Hz.)

NASP (dB) -13.7339 -14.0198 -22.2054 -19.6748 -19.7315 -21.2712
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CHAPTER SIX
DESIGNING SEQUENCES SATISFYING SIMULTANEOUS TEMPORAL
WISL AND SPECTRAL STOPBAND CONSTRAINTS

In this chapter, we propose new algorithms for designing sequences having
minimum WISL values and satisfying additional stopband constraints. In (He et al.,
2010), WeSCAN algorithm was proposed. This algorithm minimizes a quadratic
“approximation” of WISL instead of the exact WISL metric which is quartic in the

sequence, x, . Therefore, we are interested in designing sequences by minimizing the

exact WISL metric together with a stopband constraint.
6.1 Sequence Design with WISL and Stopband Constraints
In (He et al., 2010), the optimization problem is given as

minimize J(x)=(1-A)WISL + ASC
¥ (6.1)

x|=1 n=1,...,N.

n

subject to

In order to solve the above optimization problem, (He et al., 2010) proposed to use a
cyclic algorithm named WeSCAN (Weighted SCAN). WeSCAN (see Section 2.1.4)
is an extension of the WeCAN algorithm proposed in (Stoica et al., 2009).

In this chapter, we propose to use the MM method to solve the problem in (6.1).
The two algorithms that we propose for designing unimodular sequences having
minimum WISL value and satisfying a stopband constraint are named SMWISL
(stopband MWISL) and SWPISL (stopband WPISL). These algorithms are extensions
of the MWISL (Song et al., 2016b) and WPISL (Zhao et al., 2016) algorithms,

respectively.
6.2 Stopband MWISL (SMWISL)

Autocorrelation function can be expressed alternatively as (Song et al., 2016b)

r,=Tr(Uxx"), k=0,..,N-1 (6.2)
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where Tr(.) represents trace of a matrix. Then, the metric of WISL can alternatively

be written as

1 & 2
WISL= = > w,[Tr(U,X)[. (6.3)

k=—(N-1)

Using the above WISL expression, we propose an algorithm for designing sequences
having minimum WISL values and satisfying some stopband constraints. As pointed
out in the previous chapters, to suppress the frequency stopbands, the criterion in (2.25)
1s minimized. When the stopband and correlation constraints given in (2.25) and (2.70)

, respectively, are combined, the following optimization problem can be written

| gl 2
minimize AN[S“K[ +(1- 1)~ w, [Tt (U X
: H 2k_%:_l) ([Tr(UX) (6.4)
subjectto |x =1, n=1,...,N.

We use the MM method to solve the above minimization problem by applying Lemma
1 and Lemma 3 to (6.4) term by term. First of all, after applying the majorization steps

on the second term of (6.4), the objective function can be rewritten as follows

/1NHs”f;

: +2(1—/1)Re(xH (RI A (B))x () —%I)X“)) 6.5)

+constant.

The other majorization step is accomplished by applying Lemma 1 in Section 2.2.1
on the first term. Then, the expression given in (6.5) is majorized by the majorizing

function in (5.7) given below
H
u, (%,3%)+201-2) Re(xH (Rl A (B)x (x1) - /1”1) x(l)) + constant. (6.6)

After removing the constant terms, the optimization problem in (6.4) can be recast in

terms of majorizing functions as follows
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minimize 2AN Re(f&H (23 — A (23)1)3((k))
12(1- A)Re(xH (R1 A (B (x) —Zul)x(l)) 6.7)
=1, n=1,...,N.

subject to |x,

It can also be expressed as

minimize Re(/INf(H (23 -1

max
X

(Z)1)x"

max

+1-2)x" (R, =4 (El)x(’)(x(l))H—AMI)X(I)) (6.8)

subject to x,|=1 n=1,...,N.

Then, we have

minimize Re(iH (Ay,)+x" ((l—ﬁ,)y4)) ©9)
subject to |xn|=l, n=1,...,N .

where

Y, =N(E-2

max

(z)Dx"

mq u

(6.10)
v, = (Rl A (E)X (x) -2 1)x<'>.

Let the first N elements of y, and y, be denoted as (y1 ) vy and (y4 ) v > TESpectively.
Then, the closed-form solution is given by
Xn — e—jarg(iyln +(1-ﬂ))’4n)’ n= 1’ e N (6.1 1)

where y, ~ denotes the n'™ element of the vector y,. This algorithm minimizes the

stopband power in the frequency domain employing an arbitrary number of frequency
bins and reduces the WISL metric as well. We call this algorithm SMWISL (stopband
MWISL). Its pseudocode is given in Algorithm 4 below.
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Algorithm 4: SMWISL Algorithm

1: Set sequence length N , and weights, set k = 0, and initialize x*

2: while stopping criteria > Tol

(k)
3 f :F{X }
0N><1

4 r=——F"|ff
2N

5: c:r®[0,wl,wz,...,O,wN,wal,wl]T
6-R—LFHDia (Fe)F
' 2N 8

70y, =N (E5 = Ay (Z5)1)3Y

max

max u

8: Y, = _(Rl -4 (El)X(l) (X(l) )H -1 I)X([)

jarg( ANy, +(1-A)y, )

9: x,=e , n=L...,N

10: k=k+1
11: end while

6.3 Stopband WPISL (SWPISL)

In order to modify the stoppband WPISL algorithm in Section 5.3 for the

minimization of WISL metric, one can simply set p=2 and choose {w, }1]:11 as

nonnegative weights. Derivations between (5.25) and (5.36) would be the same,

notwithstanding the values of p=2 and {wk}Nfl. Hence, the pseudocode in

k=1

Algorithm 2 also applies here.
6.4 Stopband FWISL (SFWISL)

First, we express the WISL metric alternatively in the frequency domain as follows
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2 2N

V4 N - 2
WISL = ﬁ;[xf nx, - N |

. X (6.12)
7o H
= x (A O)x—-N
4N;|: ( p ) :|
A —aa” [ o e, Ne, "
where A =aa and a, —[e ... € ] . In (6.12), © represents the

Hadamard product. Then, the spectral stopband and temporal correlation constrains in
(2.25) and (6.12), respectively, are combined. Thus, we propose the following

optimization problem

minimize ANHSH?(
X

2+(1—/1)7—3§[i”11i -NT
AN =L (6.13)

=1, n=1,...,N.

subjectto |x,

We use the MM method to solve the problem in (6.13) by applying Lemma 1 in
Section 2.2.1 and Lemma 2 in Section 2.2.2 to our minimization problem term by term.
First of all, as stated in Chapter Four, after employing the majorization steps on the
second term of the objective function in (6.13), the objective function can be written
as follows

2
AN[s"[ +a —z)Z—;Vme[xH (Mo (ADiagm™)A")

A (E)XI Y -2, (H © (ADiag(m" )AH))) x(ﬂ (6.14)

+ constant.

Secondly, by applying Lemma 1 on the first term as stated in the previous chapters,
the expression in (6.14) is majorized by using the majorizing function in (5.7) as

follows
2ANRe (K" (2= Ay, ()1)3Y)
2
— 7/_ H : (F)\ A H
+( /1)4]"\[4Re[x (Mo (ADiagm")A") (6.15)

— A (Z) x4 (H O (ADiag(m"“)A" ))) x*) J + constant.

max
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After removing the constant terms, optimization problem in (6.13) can be proposed in

terms of majorizing functions as follows

minimize 22N Re(R" (A, (Z,)1)3")

X

2
+( —l)i/—jov4Re[xH (Mo (ADiag(m')A")

(6.16)
e (2) X ) 2, (MO (ADiag(ml))A"))) x“‘)]
subject to |x,|=1 n=L...,N.
The above problem can also be expressed as
minimize Re{/lNﬁH (2 = A () 1) 5™
2
Yo [ H ] (k) A H
+(1-A4)=—=| x" (II®© (ADiag(m"")A
(1-A)22| x" (o (ADiag(m)A")
— Do (Z5) X (x)” (6.17)

— Ainax (H O (ADiag(m")A” ))) x® }}

subject to =1, n=1,...,N.

xl’l
Then, we have

minimize Re(x” (Ay,)+x” ((1-4
mize Re(x"(Zy,)+x" ((1-2)y;)) 615
subject to |xn|=l, n=1,...,N

where

yl :N(E3 _/1 ax (23)1)5‘(]()

m

(2,)xx " (6.19)

max

2
b4 . :
y, = ﬁ(n O (ADiag(m" A" ) - 4

= Ao (H O (ADiag(m"“)A” ))I)x(")

Let the first N elements of y, and y, be (yl) v, and (y5 ) v » Tespectively. Then, the

closed-form solution is given by
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x, =) g N (6.20)
This algorithm minimizes the stopband power in the frequency domain employing an
arbitrary number of frequency bins and reduces the WISL metric as well. We call this

algorithm SFWISL (stopband FWISL). Its pseudocode is given in Algorithm 5 below.

Algorithm 5: SFWISL Algorithm

1: Set sequence length N , weights {wk > 0}]\/71

o select y,,

set k =0, and initialize x'*

2: while stopping criteria > Tol

3 m =(x(k))HMpx(k),p=1,...,2N

p

g om ol )Y

5. ylzN(ZS—/ImaX(&)I)&(")

2

50y, = 27—;\[(11 O (ADiag(m)A")

A (2 )X &) — ) O (AAT) )xY

max

Jarg( 2y, +(1-2)y
6: x =¢e (o ) n=1...N

7. k=k+1
8: end while

6.5 Numerical Examples for Designing with WISL and Stopband Constraints

We provide a numerical example in which we design a unimodular sequence of

length N =100. The frequency stopband is given as (2 =[0.2,0.3) Hz in terms of

normalized frequency. The relative weight parameter, A, is taken as A4=0.8. The

number of DFT bins is selected as N =1000. The simulated algorithms are initialized

with Golomb sequence (Zhang & Golomb, 1993). The tolerance value for the stopping
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criterion is determined as Tol =107*. The weights, { }/k}kN:, of the correlation lags are

selected as

{1, kell,...,20} U{51,...,70}
Vi =

_ 6.21)
0, otherwise.

Performance of the proposed algorithms are compared against the WeSCAN (He et
al., 2010) algorithm in terms of number of iterations, computation time, the value of

the WISL metric, and the level of suppression in spectral stopbands.

Figure 6.1, Figure 6.2, Figure 6.3, and Figure 6.4 show the normalized power
spectra and correlation levels of the sequences designed by WeSCAN, SMWISL-acc
(accelerated SMWISL), SWPISL-acc (accelerated SWPISL), and SFWISL-acc
(accelerated SFWISL), respectively. The power spectra are normalized to make the
average value of the spectra in passbands equal to 1 dB (He et al., 2010). In Figure 6.5,
the normalized power spectra of the sequences designed by those four algorithms are
plotted together. We can see that the algorithms proposed in this thesis provide better
suppression in stopbands than SCAN.
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Figure 6.1 (a) Normalized power spectrum, (b) correlation level of the sequence designed by WeSCAN
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Figure 6.5 Normalized power spectra of sequences designed by WeSCAN, SMWISL-acc, SWPISL-
acc, and SFWISL-acc

Evolution of the objective function versus iteration number and CPU time (sec.) is
shown in Figure 6.6 (a) and (b), respectively. As can be seen from Figure 6.6, the
proposed algorithms in this thesis, SMWISL-acc, SWPISL-acc, SFWISL-acc,
converge to a stationary point in a smaller number of iterations and less CPU time

(sec.) than WeSCAN and achieve lower power levels in stopband frequencies.
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Figure 6.6 Objective function (dB) versus (a) iteration number and (b) CPU time (sec.)

Numerical results belonging to WeSCAN, SMWISLN-acc, SWPISL-acc, and
SFWISL-acc are displayed in Table 6.1. In Table 6.1, both NASP and stopband power
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are presented in dB. As can be seen from Table 6.1, the algorithms proposed in this
thesis converge faster than WeSCAN in terms of CPU time and number of iterations

and achieve lower power values in stopband frequencies.

Table 6.1 Numerical results

WeSCAN SMWISL-acc SWPISL-acc SFWISL-acc

Number of Iterations

17216 1963 3662 1669
Stopband Power 8.2512 5.5623 6.8357 6.5650
MMF 9.6570 10.5835 10.7801 10.7291
CPU Time (sec.) 408.8024  36.6301 62.1615 32.8279
Stopband Frequencies 0.2-0.3 Hz  0.2-0.3 Hz 0.2-0.3 Hz 0.2-0.3 Hz
NASP (dB) 272538 -30.9146  -30.7757  -30.4878
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CHAPTER SEVEN
CONCLUSIONS

In this thesis, we focus on developing algorithms to design transmit sequences
satisfying temporal correlation and spectral stopband constraints. For this purpose,
several algorithms are proposed for designing unimodular sequences for radar and
communication systems. We believe that the proposed algorithms provide good

alternatives to the ones already existing in the literature.

In Chapter Three, we have proposed to use GA in order to design unimodular
constant modulus sequences attaining minimum ISL values. We compared
performance of GA against that of the CAN and MISL algorithms in terms of MF. The
already existing CAN algorithm was proposed for designing sequences with good
correlation properties by minimizing an approximate quadratic ISL-related metric
instead of the exact quartic ISL metric itself. Therefore, one of our aims in this thesis
is to minimize the original quartic metric of ISL using GA and compare its
performance against CAN. In (Song et al., 2015a), MISL was also proposed to
minimize the original quartic metric of ISL. Although, the evaluation time required for
termination of CAN and MISL are shorter than GA, GA performs slightly better than
CAN and MISL in terms of resulting MF. The difference between those two algorithms
on minimizing the ISL-related metric in (2.13) and the exact ISL metric in (2.12)
become more evident when they are initialized by random sequences. In short, we can
state that sequences designed by minimizing the exact metric of ISL using GA possess
higher MFs than those designed by the CAN and MISL algorithm. However, execution
time of CAN and MISL are shorter than GA. Since we employed GA as a benchmark
method towards finding the global optimum solution of the design problem, one can
infer from the results in Chapter 3 that the CAN and MISL algorithms converge near
the global minimum. However, we must emphasize that the design parameters of GA
were not optimized for the larger sequence lengths because of its long execution time.
Hence, we cannot state confidently whether the CAN and MISL algorithms reach the

optimum solution or not.
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In Chapter Four, we have proposed an alternative algorithm shortly named as
FWISL for designing unimodular sequences by minimizing the WISL metric in the
frequency domain. We have applied the MM method in two stages and a closed-form
expression has been obtained. A computationally efficient version of FWISL (FWISL-
acc) is also proposed by employing an acceleration scheme. Performance of the
proposed algorithm is compared against CAP, WeCAN, WeCAN+CAP, MWISL-acc,
and WPISL-SQUAREM algorithms. Our results indicate that the proposed algorithm,
FWISL-acc, terminates in lower number of iterations and in less CPU time, and attains
smaller WISL (or larger MMF) values than other algorithms. Performance of the
algorithm can be further improved when it is initialized by the sequence designed by
the CAP algorithm. Numerical results show that our proposed algorithm allows design
of long sequences in lower number of iterations, less CPU time, and with larger MMF

values.

In Chapter Five, we have proposed alternative algorithms for designing unimodular
sequences satisfying simultaneous temporal correlation and spectral stopband
constraints. These algorithms are split into two categories. In the first part, we
developed new algorithms to design sequences with low ISL and having stopband
constraints. We have modified the MISL and WPISL algorithms in order to use them
with stopband constraints. Then, we have employed the MM method with both
temporal and spectral constraints. By this way, SMISLN and SWPISL algorithms are
proposed as alternative algorithms to SCAN. The results show that the new algorithms

converge to stationary points faster than SCAN and achieve lower stopband powers.

In Chapter Six, we have developed new algorithms to design sequences with low
WISL values and having stopband constraints. For this purpose, we have modified the
MWISL and WPISL algorithms in order to use them with stopband constraints and
named the new algorithms as SMWISL and SWPISL, respectively. The SMWISL and
SWPISL algorithms are proposed as alternatives to WeSCAN. We also modified the
FWISL algorithm and proposed the SFWISL algorithm. Simulation results show that
performance of SFWISL is better than other algorithms in terms of iteration number,

CPU time and stopband power.

93



We would like to stress that performances of the algorithms proposed in this thesis
are evaluated numerically in terms of CPU time, number of iterations, MFs or MMFs
of designed sequences, stopband power, and NASP. Although, a theoretical
computational complexity analysis could also be carried out, it would require a
thorough study of local rate of convergence analysis approach (Bertsekas, 1999).

Therefore, it is left out as the topic of a future study.

As a final remark, in light of the obtained results, we believe that the developed
algorithms in this thesis can be good alternatives to the ones already existing in the

literature.
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APPENDICES
APPENDIX 1: CAZAC Sequences

By sampling the chirp signal in (1.1) at time intervals 7 =n/B for

n=1,...,N,(N=BT) the following sequence can be obtained (neglecting the

multiplicative term, 1/ Jr )

By 2
XHIS(YZT;)Iej T(BJ = N mn=1L..,N. (A.1)

The sequence {xn}nN:1 has perfect periodic autocorrelation for even values of N .

Waveforms with perfect periodic autocorrelations are named as constant amplitude
with zero autocorrelation (CAZAC) sequences. Periodic autocorrelation sidelobes of

CAZAC sequences are zero (Roberts et al., 2010).

Golomb sequence is constructed for odd values of N and is defined as follows

(Roberts et al., 2010)

,ﬁn(n—l)

x[n]=e Y , n=L...,N. (A.2)

Frank code is also a CAZAC sequence and is only defined for square lengths,
N =K, as (Roberts et al., 2010)

in m=D(p=1)

x[(m-DK+p]=e”" K, mp=1,..,K (A.3)

Another CAZAC sequence, P4, is defined for any length N and is given as (Roberts
et al., 2010)

c[n]=e 2/ n=1,.,N. (A4)
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APPENDIX 2: Acceleration Scheme

By using an acceleration scheme, MM-based iterative methods are allowed to
converge faster (Song et al., 2015a, 2015b, 2016b; Zhao et al., 2016). The acceleration
scheme that can be used in our MM-based proposed methods is the so-called squared
iterative method (SQUAREM) which is originally proposed in (Varadhan & Roland,
2008) to accelerate expectation-maximization (EM) algorithm and applied to MM
methods in (Song et al., 2015a, 2015b, 2016b; Wu, Babu, & Palomar, 2017; Zhao et
al., 2016). As an example, following a similar acceleration scheme, the accelerated

version of FWISL in Algorithm 3 is given in Algorithm 6 below.

Let PFWISL(-) represent the nonlinear fixed-point iteration map of the FWISL

algorithm as expressed below
X0 =P (x@) (A.5)

corresponding to the mapping in (4.16). SQUAREM may violate the descent property
(Song et al., 2015a, 2016b; Wu et al., 2017; Zhao et al., 2016) of the original MM
algorithm. For this reason, a backtracking based strategy is adopted which halves the

distance between 6 and —1 in Algorithm 6 below until the descent property is

satisfied. Therefore, WISL(x,) < WISL(x*’) is guaranteed while § — —1 because

WISL(x,) < WISL(x*) due to the descent property of the original MM algorithm.
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Algorithm 6: FWISL-acc Algorithm

1: Set sequence length N, weights {w, > O}k]\:l1 , select y,,
set k =0 and initialize x

2: while stopping criteria > Tol
30 X =Fy (X(k))
4: X, =Foygr (Xl)
50 r=x, —x"
6: v=x,-Xx,-r
7. a=—|r|/|¥
8: X3 — ejarg(x(k)—ZaH—azv)
9: while WISL(x,) > WISL(x")
10:  a<«(a-1)/2

jarg(x ¥ —2ar+a’v
11: x,=e/™ 7 )
12: end while
13: x*=x
14: k=k+1
15: end while
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APPENDIX 3: Proof of Hermitian Toeplitz Matrix

We prove that HO(ADiag{m(k)}AH ) is Hermitian Toeplitz. Let B denote a

NxN Hermitian Toeplitz matrix and B(m,n) be its (m,n)” element. Then, to be

Hermitian Toeplitz the matrix B must satisfy the following equalities:
(i) B(m,n)=B (n,m) (Hermitian condition),
(1) B(m,n)=B(k,l) if m—n=k—I (Toeplitz condition).

Firstly, IT is clearly Hermitian Toeplitz as can be seen from (2.34). Since the

Hadamard product of two Hermitian Toeplitz matrices is also Hermitian Toeplitz, to

complete the proof, it is sufficient to show that ADiag{m(k)}AH is Hermitian

Toeplitz. Then, we can proceed by writing the following equation

b al

(k) H

: m a

AD1ag{m(k)}AH =[a, |a, |... [a,,] ? 2 (A.6)

(k) H

My || An

Performing the matrix product in (A.6), we obtain

ADiag{m(k)}AH =m®Paa’ +mPa,al +. +mla, al A7)

— 1K) (k) (k)
=m A +m, A, +...+my A, ,.

In writing (A.7), we used the definition, A =a pag , which was given following (4.1)

: 2] 20 iN o T .
in terms of a, = [e’ v e ”] . Thus, the (m,n)" element of the matrix

—-Jj(n-m)w,

A, isgivenas A (m,n)=e . Then, the following equalities are satisfied:

. —j(n-m)w, *
(1) Ap(man):e ! —Ap(n,m),

(i) A, (m,n)y=e’""" = A (k,)=e """ if m-n=k-1.
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Therefore, it can be seen that the matrix A, for p=1,...,2N, and thus, the expression
given in (A.7) is Hermitian Toeplitz. Thus, finally, IT© (ADiag {m(") } A" ) is

Hermitian Toeplitz.
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APPENDIX 4: Computation of the Matrix R

Lemma 4 (Song et al., 2016b): Let T be an N x N Hermitian Toeplitz matrix given
as

t, ...ty

B :
T= ) ) (A.8)

. tl

tN—l Z‘1 tl*

1 .
T can be represented as TzﬁAﬁ:NDlag(Ac)A:,hN where A, is the first N

T
columns of 2N x2N FFT matrix and €= [to t.ty, 02y, ...t;,fl] . Notice that A

1S not unitary.

Let the /™ element of the vector ¢ be c,. Then, ¢, can be given as follows (Zhao

et al., 2016)
0 1=0,N
¢ = w,((x("))H U,x“‘)) I=1,..,N-1 (A.9)
& I=N+1,...,.2N 1.

Since the /" lag of the autocorrelation function of the sequence at the £ iteration is

H
r(x") = (x(k)) Ux"“ and r is given as follows

r:[l”o(x(k)) I’l(X(k)) rN_l(x(")) 0r (x(")) i’l*(X(k))T, (A.10)

then, the vector ¢ can be written as

c=wOr (A.11)

where w=[0w, ... w,, 0w, ... w ]T and O represents the Hadamard product.

Then, the vector ¢ in Algorithm 3 can be written as follows

c=ro[0w w,...0 wy, w,, w] . (A.12)
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Since the matrix R is Hermitian Toeplitz, it can be written using Lemma 4 as follows

1 .
R=— A" Diag(Ac)A. . (A.13)
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