

DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

SEMI-SUPERVISED LEARNING FOR IMAGE

SEGMENTATION

by

Gökhan TIĞILSEL

February, 2016

İZMİR

SEMI-SUPERVISED LEARNING FOR IMAGE

SEGMENTATION

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Master of Science of

Electrical and Electronics Engineering

by

Gökhan TIĞILSEL

February, 2016

İZMİR

iii

ACKNOWLEDGMENTS

I wish to express my special thanks to my supervisor Asst. Prof. Dr. Güleser

Kalaycı Demir, whose support, knowledge and insight throughout all stages of my

work were of enormous benefit and value.

I would like to thank my colleagues Aykut Yanık, Kemal Büyükabalı, Mehmet

Erişir, Hakan Yılmaz, Mahir Ulutaş and Altay Erakman, for their encouragement and

generous support over the years.

This thesis is dedicated to my wife, my daughter, my sister and to my dear

parents.

Gökhan TIĞILSEL

iv

SEMI-SUPERVISED LEARNING FOR IMAGE SEGMENTATION

ABSTRACT

In this thesis, a new approach to semi-supervised image segmentation is proposed,

by implementing Unconstraint Least Square Importance Fitting (ULSIF) algorithm.

ULSIF estimates importance value without determining probability distribution

functions of the labeled and test class seperately. Different methods based on color or

texture features are applied on semi-supervised image segmentation problems and

similarities and differences between these methods have been explored. The

performance of ULSIF based segmentation is compared with the state of art method

one-class SVM in terms of segmentation accuracy and run time. According to the

results, both color and texture based semi-supervised one-class ULSIF gave better

results than one-class SVM does.

Additionally, ULSIF algorithm is implemented as a two-class image segmentation

method. In two class image segmentation methods, features of the foreground and

background areas are used together during the learning stages. Results of supervised

two-class ULSIF is compared with SVM and neural networks. According to the

results, two-class SVM gave better results than two-class ULSIF and neural networks

do.

Keywords : Semi-supervised learning, image segmentation, ULSIF, one class SVM.

v

GÖRÜNTÜ BÖLÜTLEME UYGULAMALARI İÇİN

YARI-EĞİTİCİLİ ÖĞRENME

ÖZ

 Bu tez çalışmasında, Unconstraint Least Square Importance Fitting (ULSIF)

algoritmasını kullanan, yeni bir yarı-eğiticili öğrenme metodu önerilmiştir. ULSIF

algoritması önem değerini doğrudan hesaplabilmektedir, bunun için test sınıflarına

ait olasılık dağılım fonksiyonlarını ayrı ayrı hesaplamaya ihtiyaç duymamaktadır.

Görüntü bölütleme problemi üzerinde renk ve örüntü özelliklerini kullanan farklı

yarı-eğiticili öğrenme metodları kullanılmış, bu metodların benzerlikleri ve farkları

incelenmiştir. ULSIF algoritmasının bölütleme performansı, yaygın olarak

bilinmekte olan tek-sınıflı SVM metoduyla, tutarlılık ve çalışma süresi bakımından

karşılaştırılmıştır. Sonuç olarak, tek-sınıflı ULSIF metodu hem renk hem de örüntü

tabanlı görüntü bölütleme probleminde tek-sınıflı SVM’den daha iyi performans

göstermiştir.

Ayrıca, ULSIF algoritması iki-sınıflı görüntü bölütleme metodu olarak da

uyarlanmıştır. İki-sınıflı görüntü bölütleme metodlarında, öğrenme işlemi sırasında

hem önplan hem de arkaplan özellikleri birlikte kullanılmıştır. İki-sınıflı ULSIF

görüntü bölütleme metodunun çıktıları, iki-sınıflı SVM ve yapay zeka algoritmaları

ile kıyaslanmıştır. Sonuç olarak, iki-sınıflı SVM algoritması iki-sınıflı ULSIF ve

yapay zeka algoritmalarına göre daha iyi performans göstermiştir.

Anahtar Kelimeler : Yarı-eğiticili öğrenme, görüntü bölütleme, ULSIF, tek sınıflı

SVM.

vi

CONTENTS

Page

THESIS EXAMINATION RESULT FORM.. ii

ACKNOWLEDGEMENTS ... iii

ABSTRACT ... iv

ÖZ ... v

LIST OF FIGURES .. viii

LIST OF TABLES .. x

CHAPTER ONE - INTRODUCTION .. 1

CHAPTER TWO – FEATURE EXTRACTION ... 4

2.1 Features ... 4

2.1.1 Color Feature Set .. 4

2.1.2 Texture Feature Set ... 5

CHAPTER THREE – IMAGE SEGMENTATION GRAPHICAL USER

INTERFACE IMPLEMENTATION .. 8

3.1 Image Segmentation GUI Implementation ... 8

3.1.1 Selecting Input Image and Displaying in GUI 9

3.1.2 Extracting Texture Features of Input Image 9

3.1.3 Selecting Labeled Foreground and Background Pixels 10

3.1.4 Extracting Features of User Labeled Pixels 11

3.2 Proposed Segmentation Methods According to Feature Set 11

CHAPTER FOUR – IMAGE SEGMENTATION ALGORITHMS 14

4.1 Segmentation Methods ... 14

4.1.1 ULSIF ... 14

4.1.2 Support Vector Machines for Image Segmentation 16

4.1.2.1 Two-Class SVM .. 16

vii

4.1.2.2 One-Class SVM (OSVM) ... 17

4.1.3 Neural Networks for Image Segmentation 19

4.2 Implementation of Image Segmentation Algorithms 22

4.2.1 Semi-Supervised Methods .. 22

4.2.1.1 Semi-Supervised C_ULSIF ... 22

4.2.1.2 Semi-Supervised T_ULSIF ... 24

4.2.1.3 Semi-Supervised C_OSVM .. 25

4.2.1.4 Semi-Supervised T_OSVM .. 25

4.2.2 Supervised Methods .. 26

4.2.2.1 Supervised C2_ULSIF .. 26

4.2.2.2 Supervised T2_ULSIF .. 31

4.2.2.3 Supervised C2_SVM ... 31

4.2.2.4 Supervised T2_SVM ... 32

4.2.2.5 Supervised C2_NN .. 32

4.2.2.6 Supervised T2_NN .. 33

CHAPTER FIVE – TEST AND RESULTS .. 38

5.1 Performance of Semi-Supervised One-Class Segmentation Methods

Using Color Feature Set ... 38

5.2 Performance of Supervised Two-Class Segmentation Methods Using

Color Feature Set .. 40

5.3 Performance of Semi-Supervised One-Class Segmentation Methods

Using Texture Feature Set .. 43

5.4 Performance of Supervised Two-Class Segmentation Methods Using

Texture Feature Set ... 48

CHAPTER SIX – CONCLUSION ... 51

REFERENCES ... 52

viii

LIST OF FIGURES

Page

Figure 2.1 Image examples which contain texture information 5

Figure 2.2 GLCM directions and neighborhood region 6

Figure 3.1 Image segmentation tool GUI menu .. 8

Figure 3.2 Input image selection and displaying in GUI 9

Figure 3.3 Extracting full image texture features by block processing 9

Figure 3.4 Extracting texture feature with mxn pixel neighborhood region 10

Figure 3.5 Selection foreground pixels on the image by mouse cursor 10

Figure 3.6 Flowchart of selecting foreground or background pixels 10

Figure 3.7 Extracting labeled foreground and background features 12

Figure 3.8 Categorization of proposed algorithms ... 12

Figure 4.1 SVM examples .. 16

Figure 4.2 SVM optimal hyperplane .. 16

Figure 4.3 Representation of human neuron system ... 20

Figure 4.4 Single layer feedforward neural network diagrams 21

Figure 4.5 (a) Multilayer feedforward neural network example with its weights

 (b) Proposed pattern recognition network in this thesis 21

Figure 4.6 Flowchart of semi-supervised C_ULSIF algorithm 23

Figure 4.7 Flowchart of semi-supervised T_ULSIF algorithm 24

Figure 4.8 Flowchart of semi-supervised C_OSVM algorithm 27

Figure 4.9 Flowchart of semi-supervised T_OSVM algorithm 28

Figure 4.10 Flowchart of supervised C2_ULSIF algorithm 29

Figure 4.11 Flowchart of supervised T2_ULSIF algorithm 30

Figure 4.12 Flowchart of supervised C2_SVM algorithm 34

Figure 4.13 Flowchart of supervised T2_SVM algorithm 35

Figure 4.14 Flowchart of supervised C2_NN algorithm 36

Figure 4.15 Flowchart of supervised T2_NN algorithm 37

Figure 5.1 Semi-supervised color segmentation results for sea-star 38

Figure 5.2 Semi-supervised color segmentation results for flower 39

Figure 5.3 Semi-supervised color segmentation results for church 39

ix

Figure 5.4 Supervised color segmentation results for sea-star 41

Figure 5.5 Supervised color segmentation results for flower 41

Figure 5.6 Supervised color segmentation results for church 42

Figure 5.7 Semi-supervised texture segmentation results while choosing

parameter b for ULSIF and outlier fraction parameter for OSVM .. 43

Figure 5.8 Semi-supervised texture segmentation results while choosing size of

 texture blocks ... 45

Figure 5.9 Semi-supervised texture segmentation results while testing 20x20

sized overlapping texture blocks ... 46

Figure 5.10 Semi-supervised texture segmentation results while testing 20x20

sized non-overlapping texture blocks .. 46

Figure 5.11 Supervised texture segmentation results while testing 20x20 sized

overlapping texture blocks ... 48

Figure 5.12 Supervised texture segmentation results while testing 20x20 sized

overlapping texture blocks, for different labeled regions 50

x

LIST OF TABLES

Page

Table 2.1 Hue angle and its representative color .. 4

Table 2.2 Haralick feature definition and formulas ... 7

Table 5.1 Performance of semi-supervised methods using color feature set 40

Table 5.2 Performance of supervised methods using color feature set 42

Table 5.3 Performance of semi-supervised methods while choosing parameter b

for ULSIF and outlier fraction parameter for OSVM ... 44

Table 5.4 Performance of semi-supervised methods with 20x20 sized

overlapping texture blocks ... 47

Table 5.5 Performance of semi-supervised methods with 20x20 sized non-

overlapping texture blocks ... 47

Table 5.6 Performance of supervised methods in Figure 5.11 49

Table 5.7 Performance of supervised methods in Figure 5.12 50

1

CHAPTER ONE

INTRODUCTION

Image segmentation has an important role in computer vision, machine learning,

image enhancement, medical image processing, video understanding, video tracking,

and etc. Kapur, Grimson, Wells, & Kikinis (1996) worked on segmentation of brain

tissue from magnetic resonance images. Mikic, Cosman, Kogut, & Triverdi (2000)

presented an algorithm for segmentation of traffic scenes that distinguishes moving

objects from their moving cast shadows. Needham & Boyle (2001) presented a

framework that tracks the movements of sports (specifically football) players, from a

single fixed camera, on an indoor court. Stringa, & Regazzoni (2002) proposed a

system which aims to detect the presence of abandoned objects in a guarded

environment.

Many segmentation algorithms have been applied on different problems, and

these algorithms can be divided into three main categories according to the learning

methods they use. These three learning methods are i) unsupervised learning, ii)

supervised learning, iii) semi-supervised learning.

i. The aim of unsupervised learning: is to understand hidden structure in the

unlabelled data and this type of learning method is closely related to statistical

density estimation. The most common and known unsupervised learning techniques

are k-means and self-organizing map (SOM).

ii. The goal of supervised learning is here to find a transfer function by using a

training set. This set consists of pairs (𝑥𝑖 ,𝑦𝑖), each 𝑥𝑖 is a sample (contains features),

and 𝑦𝑖 is called as class label. In the training set, we need to have samples from

different classes. For example in an image segmentation problem, we need to have

some labeled samples from foreground and background. Artificial neural networks,

decision tree learning, nearest neighbor algorithm, support vector machines (SVM),

and naïve bayes classifier are some common supervised learning techniques.

iii. Semi-supervised learning is a method between supervised and unsupervised

learning. A large set of unlabelled data with some (very few) labeled data is provided

for this kind of learning algorithms. To produce a considerable improvement in

2

learning accuracy, this type of algorithms does not use only labeled data, they also

use the unlabelled data for training. Obtaining supervised data has a cost of money,

time and effort. Because of that, semi-supervised learning algorithms offer some

advantages (Chapelle, Schölkopf, & Zien, 2006). For example, Supervised

hyperspectral image classification is a difficult problem because of the unbalance

between the high dimensionality of the data, aslo there is a limited availability of

labeled training samples.

Guillaumin, Verbeek, & Schmid (2010), introduced Multimodal semi-supervised

learning method for image categorization problem on a large image database. They

used image features and keywords of labeled images together. Multiple Kernel

Learning (MKL), least-squares regression (LSR), and SVM are used in their

problem.

Tuia, & Camps-Valls (2011) had bird's-eye view images of urban places with very

high resoultion. They proposed a semi-supervised method SVM using bagged

kernels.

Dopido, Jun Li, Marpu, & Plaza (2012) developed a new semi-supervised method

to analyse surface of the Earth by using images obtained from aeropace laboratories.

They used Multinomial Logistic Regression (MLR) and Probabilistic SVM as semi-

supervised segmentation methods.

By using both of the labeled foreground and labeled background pixels during

training step, Ensemble of Laplacian SVMs are used as a semi-supervised learning

method. This method performs less error-rate (with the percentage of mislabeled

pixels) compared to other algorithms such as Grabcut, Random Walker, and etc

(Jiazhen, Xinmeng, & Xuejuan, 2008).

Novelty selection method is adapted into a semi-supervised segmentation

algorithm which classifies unlabelled data by using the label of their nearest neighbor

3

in the representative set. This method performs faster segmentation with respect to

algorithms without novelty selection (Paiva, & Tasdizen, 2010).

Gaussian mixture model introduced for image segmentation as a semi-supervised

method. This method uses semi-supervised expectation maximization technique and

gives better classification rate (Martínez-Usó, Pla, & Sotoca, 2010).

In another previos work (Peng, Zhang, Zhang, & Yang, 2011), Iterated Region

Merging with Localized Graph Cuts (IRM-LGC) algorithm is introduced as a semi-

supervised method. In each iterations only local neighboring regions are labeled.

IRM-LGC gives better results with respect to other Grabcut algorithms.

All these algorithms above use both of the labeled foreground and labeled

background pixels in the training set. This thesis is aimed to introduce a new semi-

supervised image segmentation algorithm which is using only labeled one class

information.

Kanamori, Hido, & Sugiyama (2009), introduced Unconstrained Least-squares

Importance Fitting (ULSIF) algorithm which can be used as inlier based outlier

detector. We are going to integrate this method into semi-supervised image

segmentation problems directly. Our semi-supervised ULSIF based image

segmentation algorithm is going to use color or texture features of the labeled pixels.

Furthermore, semi-supervised ULSIF based image segmentation method can be

applied to supervised ULSIF by using features belong to the second class. Its

algorithm detail is explained in subsequent chapters.

Performance of color or texture based ULSIF methods are compared with each

other and also with the well known methods in the literature such as one-class SVM,

and Neural Networks.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Marti.AND..HSH.x0301;nez-Uso.AND..HSH.x0301;,%20A..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Marti.AND..HSH.x0301;nez-Uso.AND..HSH.x0301;,%20A..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Sotoca,%20J.M..QT.&newsearch=true

4

CHAPTER TWO

FEATURE EXTRACTION

2.1 Features

Hue-saturation-value (HSV) color set and Gray level co-occurrence matrix

(GLCM) Haralick feature set are decided to use in this thesis. Detailed explanation

about these features are given in the subsequent sections.

2.1.1 Color Feature Set

For image segmentation problems, it is preferred to use HSV color information as

feature. The algorithms using HSV colorspace as a feature set performs better

segmentation results with respect to other algorithms using RGB or LAB colorspace

(Sural, Gang Qian, & Pramanik, 2002). (Bora, Gupta, & Khan, 2015).

Hue-Saturation-Value color model is introduced by Alvy Ray Smith in 1978. In

this model:

Hue is defined between 0 to 360° for separating different colors. Saturation has a

range 0% to 100% and represents the amount of gray.Value takes the ratio between

0% to 100% and represents brightness or intensity of the color and Table2.2 shows

the relation between Hue Saturation and Value.

Table 2.1 Hue angle and its representative color (D’Silva, 2008).

5

2.1.2 Texture Feature Set

Rao (2009), explains texture in his lecture notes with the words “An image

obeying some statistical properties. Similar structures repeated over and over again.

Often has some degree of randomness … A texture is a set of texture elements or

texels occurring in some regular or repeated pattern.” Texture can give us

information about all pixels of the image or a selected region of it. Below Figure 2.4

gives texture image examples.

Several studies based on the texture features have been proposed to improve

segmentation results in the literature. Eleyan, & Demirel (2011), used GLCM

method to extract Haralick features while working on face recognition algorithm.

Then, Mohanaiah, Sathyanarayana, & Lokku 2013, used again GLCM method while

extracting texture features of cartoon images.

Figure 2.1 Image examples which contain texture information (Rao, & Chen, 2009).

GLCM is a statistical method which calculates spatial relationship of pixels, it

shows how often specific pixel values, pairs as (𝑖, 𝑗), are neighboring each other

(Eleyan & Demirel, 2011). By using GLCM, several statistical texture features have

been proposed in the literature (ref: Haralick, etc.).

After changing our image colorspace, from RGB to Gray-level, Ng is the number

of gray levels in the converted image.

6

Let 𝐺 is our square form GLCM and 𝑖 = {1,2, . . . ,𝑁𝑔), 𝑗 = {1,2, . . . ,𝑁𝑔). Then 𝐺

can be written as:

𝐺 = �
𝑝(1,1) ⋯ 𝑝�1,𝑁𝑔�
⋮ ⋱ ⋮

𝑝�𝑁𝑔, 1� ⋯ 𝑝�𝑁𝑔,𝑁𝑔�
� (2.1)

where p(i, j) for i = {1,2, … Ng} , j = {1,2, … Ng} is the number of cooccurance

value in the given dirction and in the neighborhood region of GLCM. This direction

and neighborhood region is shown in Figure 2.2.

Figure 2.2 GLCM directions and neighborhood region (Specify Offset Used in GLCM Calculation,

n.d.)

By using GLCM some statistical features can be extracted, and Haralick

introduced 14 different statistics, but generally not all of these texture features are

used at the same time, because of efficiency, complexity and run time issues.

Therefore, Contrast, Energy, and Homogeneity are choosen as texture features in this

thesis study.

Contrast measures the local variations in the gray-level co-occurrence matrix.

Returns a measure of the intensity contrast between a pixel and its neighbor over the

whole image. Contrast is 0 for a constant image.

Energy, provides the sum of squared elements in the GLCM. Also known as

uniformity or the angular second moment. Returns the sum of squared elements in

the GLCM. Energy is 1 for a constant image.

7

Homogeneity, measures the closeness of the distribution of elements in the

GLCM to the GLCM diagonal. Returns a value that measures the closeness of the

distribution of elements in the GLCM to the GLCM diagonal. Homogeneity is 1 for a

diagonal GLCM.

Mathematical formulas of the Haralick’s Contrast Energy and Homogeneity

features are given below in Table2.2.

Table 2.2 Haralick feature definitions and formulas

Statistic Formula

Contrast �|𝑖 − 𝑗|2𝑝(𝑖, 𝑗)
𝑖,𝑗

Energy �𝑝(𝑖, 𝑗)2
𝑖,𝑗

Homogeneity
�

𝑝(𝑖, 𝑗)
1 + |𝑖 − 𝑗|

𝑖,𝑗

8

CHAPTER THREE

IMAGE SEGMENTATION GRAPHICAL USER INTERFACE

IMPLEMENTATION

3.1 Image Segmentation GUI Implemetation

In this study, our aim is to apply semi-supervised learning techniques on image

segmentation problem. A new GUI has implemented which helps user to extract

input image features and to apply different semi-supervised or supervised image

segmentation algorithms on the same platform.

Figure 3.1 Image segmentation tool GUI menu

This GUI consists of vertically arranged three main panel; left section is an input

and output image display area, middle section is the feature extraction and

performance calculation area, and right side includes different segmentation

methods. An example snapshot of the developed GUI is given in Figure3.1.

9

3.1.1 Selecting Input Image and Displaying in GUI

If “Select input image from file” button is pressed, a Windows pop-up page is

appeared asking for an opening image. After selection, input image is shown on the

left panel of the GUI as Figure 3.2 shows.

Figure 3.2 Input image selection and displaying in GUI

3.1.2 Extracting Texture Features of Input Image

When “Extract full image texture” button is pressed, our algorithm starts

processing on 4x4 pixel blocks as shown in Figure3.3. This subprogram uses block

processing function of Matlab.

Figure 3.3 Extracting full image texture features by block processing

After selecting input image by using GUI function, we need to extract Text

Features of the original image. If we press “Extract full image texture” button, the

algorithm runs like in Figure 3.4 below.

10

Figure 3.4 Extracting texture features with mxn pixel neighborhood region

3.1.3 Selecting Labeled Foreground and Background Pixels

When “Select foreground pixels” or “Select background pixels” buttons are

pressed, on the original input image “+” icon will appear, which helps us to copy

pixel locations. Each continuous mouse line shown in Figure 3.5 is called as spline.

Figure 3.5 Selecting foreground pixels on the image by mouse cursor (The Berkeley Segmentation

Dataset, 2001).

Start Load original input
image

"Select
foreground /
background

pixel" button is
pressed

Get pixel locations into an
array while mouse stays

clicked and moved on the
original image

1

Save foreground
/ background

pixels" button
is pressed

Save all copied pixel
loacations into .mat

file
End

0

0

1

Figure 3.6 Flowchart of selecting foreground or background pixels

11

In this step, we have the locations of selected foreground and selected background

pixels in our hand. If we have moved the mouse cursor on the input image for n

times while labeling foreground pixels, this means we have n set of different sized

labeled pixel locations. Then these locations are stored in a file, and we need to

extract features of these entire labeled pixel sets.

3.1.4 Extracting Features of User Labeled Pixels’

At first labeled pixel locations are loaded from the stored files from previous

steps. Then input image color space is converted from RGB to HSV. The HSV

values of the labeled foreground or background locations are stored. Same operation

is repeated for each labeled pixel set.

Then original input image’s colorspace is converted from RGB to Gray, and

GLCM is calculated. By using statistical information of GLCM; Contrast, Energy

and Homogeneity features will be calculated for all labeled pixel set.

Finally; all of the Hue, Saturation, Value, Contrast, Energy and Homogeneity

features are stored.

All these feature extraction steps are shown in Figure 3.7.

3.2 Proposed Segmentation Methods According to Feature Set

Some images are rich with its color information, but some images are containing

more edge and texture information. According to the segmentation problem and the

input image properties, it is necessary to choose one of these feature sets, color or

texture. Both of these feature sets can be used in semi-supervised and supervised

image segmentation methods.

The proposed algorithms in this thesis can be categorized like in Figure 3.8 below.

Semi-supervised algorithms use only labeled foreground data and unlabelled data.

12

On the other hand, supervised algorithms use both of the labeled foreground and

labeled background data during learning stages.

All these methods given in Figure 3.8 are going to be tested on the same input

image, their optimal settings are going to be done, and the output performances will

be compared in Chapter 5 and in Chapter 6.

Start

Load input
image

Load foreground or
background pixels

Calculate
number of

extraction loop
from

foreground
pixel size

RGB to HSV
conversion

Extract Hue Saturation
and Value as foreground
or background features

All selected
foreground or

background pixel
groups processed

0

Save H S V features
into .mat file

1 Place the foreground or
background pixel in the center,

and calculate GLCM and Contrast
Energy and Homogeneity
information for this pixels

All selected
foreground or

background pixel
groups processed

0

Save extracted textural
features into .mat file

End

Figure 3.7 Extracting labeled foreground and background features

Figure 3.8 Categorization of proposed algorithms

13

We apply 10 different methods for image segmentation, and they use the features

below:

Semi-Supervised methods with color feature set:

 C_ULSIF is semi-supervised version of ULSIF algorithm which uses only

HSV color feature set of labeled foreground pixels

 C_OSVM is One Class SVM (semi-supervised version of SVM) algorithm

which uses only HSV color feature set of labeled foreground pixels

Semi-Supervised methods with texture feature set:

 T_ULSIF is semi-supervised version of ULSIF algorithm which uses GLCM

Haralick’s texture feature set of labeled foreground pixels

 T_OSVM is One Class SVM (semi-supervised version of SVM) algorithm

which uses GLCM Haralick’s texture feature set of labeled foreground pixels

Supervised methods with color feature set:

 C2_ULSIF is supervised version of ULSIF algorithm which uses HSV

color feature set of the labeled foreground and the labeled background pixels

 C2_SVM is SVM algorithm which uses HSV color feature set of the labeled

foreground and the labeled background pixels

 C2_NN is Artificial Neural Network which uses HSV color feature set of the

labeled foreground and the labeled background pixels

Supervised methods with color feature set:

 T2_ULSIF is supervised version of ULSIF algorithm which uses GLCM

Haralick’s texture feature set of the labeled foreground and the labeled background

pixels

 T2_SVM is SVM algorithm which uses GLCM Haralick’s texture feature set

of the labeled foreground and the labeled background pixels

 T2_NN is Artificial Neural Network which uses GLCM Haralick’s texture

feature set of the labeled foreground and the labeled background pixels

14

CHAPTER FOUR

IMAGE SEGMENTATION ALGORITHMS

4.1 Segmentation Methods

4.1.1 ULSIF

In this thesis, we aim to introduce Unconstrained Least-squares Importance

Fitting (ULSIF) algorithm as a semi-supervised method to an image segmentation

problem. We assume that labeled data and our original image is two different

probability density functions (pdf). And the ratio between these two pdf can give us

the similarity information between labeled pixels and unlabeled pixels.

Kanamori, Hido, & Sugiyama (2009), introduced ULSIF, which estimates the

ratio of two pdf without calculating explicity any pdf. They explain ULSIF in their

paper:

Importance can be explained as the ratio of two probability density functions.

ULSIF algorithm approach to the estimation of importance problem as least-squares

function fitting problem.

Let {𝑥𝑖𝑡𝑟}𝑖=1
𝑛𝑡𝑟 be our independent and identically distributed training samples with

distribution density 𝑝𝑡𝑟(𝑥), and {𝑥𝑗𝑡𝑒}𝑗=1
𝑛𝑡𝑒 be our independent and identically

distributed training samples with distribution density 𝑝𝑡𝑟(𝑥).

{𝑥𝑖𝑡𝑟}𝑖=1
𝑛𝑡𝑟 𝚤. 𝚤.𝑑.� 𝑝𝑡𝑟(𝑥) (4.1)

{𝑥𝑗𝑡𝑟}𝑗=1
𝑛𝑡𝑒 𝚤. 𝚤. 𝑑.� 𝑝𝑡𝑒(𝑥) (4.2)

Normally importance, the ratio between two probability distribution functions can

be formulated as:

𝑤(𝑥) = 𝑝𝑡𝑒(𝑥)
𝑝𝑡𝑟(𝑥) (4.3)

15

In ULSIF algorithm, importance is represented as the weighted sum of basis

functions as given in (4.4).

𝑤�(𝑥) = ∑ 𝛼𝑙𝜑𝑙(𝑥)𝑏
𝑙=1 (4.4)

In this equation 𝛼 = (𝛼1,𝛼2, … ,𝛼𝑏)𝑇are the parameters to be learned from

labeled features, and {𝜑𝑙(𝑥)}𝑙=1𝑏 are basis functions such:

𝜑𝑙(𝑥) ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐷 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑙 = 1,2, … , 𝑏. (4.5)

Although there are vaious possibilities, gaussian kernels are considered as the

basis functions in this thesis study.

Gaussian kernel model centered at the test samples {𝑥𝑗𝑡𝑟}𝑗=1
𝑛𝑡𝑒 is given below:

𝜑𝑙(𝑥) = 𝐾𝜎(𝑥, 𝑥𝑙𝑡𝑒), (4.6)

𝐾𝜎(𝑥, 𝑥′) = exp (−‖𝑥−𝑥′‖2

2𝜎2
) (4.7)

𝑤ℎ𝑒𝑟𝑒 𝜎 𝑖𝑠 𝑡ℎ𝑒 𝑘𝑒𝑟𝑛𝑒𝑙 𝑤𝑖𝑑𝑡ℎ. When 𝑛𝑡𝑒 is large, it is not offered to use all test

points {𝑥𝑗𝑡𝑟}𝑗=1
𝑛𝑡𝑒 as Gaussian centers, because this is computationally ineffective.

Because of that, it is suggested to use a subset of {𝑥𝑗𝑡𝑟}𝑗=1
𝑛𝑡𝑒 as Gaussian centers and

the equation takes form:

𝑤�(𝑥) = ∑ 𝛼𝑙𝐾𝜎(𝑥, 𝑐𝑙)𝑏
𝑙=1 , (4.8)

where 𝑐𝑙 is the randomly selected points from �𝑥𝑗𝑡𝑟�𝑗=1
𝑛𝑡𝑒 , and 𝑏 (≤ 𝑛𝑡𝑒) is the

number of basis functions.

ULSIF algorithm optimizes kernel width 𝜎 and regularization parameter 𝜆 by

using cross validation and grid search methods. For regularization steps, it is referred

to read Section 2.6, 4.3, Appendix D in Kanamori, T., Hido, S., & Sugiyama, M.

(2009).

Our work is a kind of outlier detection problem and we implement ULSIF

algorithm into our software to detect foreground pixels from entire image. If the

importance value of any pixel is close to one it means there is a high possibility it

16

belongs to foreground object. If importance value of the pixel is significantly

deviated from one, it means this pixel tends to be background.

 In our GUI we have 4 different ULSIF methods, each of them call same

ULSIF function. The difference between the methods is the feature size used in

training and test data, and the post processes applied after obtaining ULSIF output to

get a single binary output image.

4.1.2 Support Vector Machines for Image Segmentation

4.1.2.1 Two-Class SVM

Support vector machines concentrated on decision planes. These decision planes

separate objects belonging to different classes. Many classification problems are not

so easy to handle. For example in Figure 4.1 (a), separation of green and red samples

needs to have a smooth curve, and SVM have capability to handle this kind of tasks.

Figure 4.1 SVM examples (Support Vector Machines Introductory Overview, 2016).

SVM rearranges the input samples by using some mathematical functions (called

as kernel) into a linearly separable feature space. This process is known as mapping.

Figure 4.2 SVM optimal hyperplane (What is a SVM?, n.d.)

17

Let’s have a look how we find the optimal hyperplane:

Normally hyperplane definition can be given with the formula below:

𝑓(𝑥) = 𝑤0 + 𝑤𝑥𝑇 (4.12)

where 𝑤 is weight and 𝑤0is the bias.

Between all possible hyperplanes, we select one of them that satisfies:

|𝑤0 + 𝑤𝑥𝑇| = 1 (4.13)

where 𝑥 represents the training samples closest to the hyperplane. Training

samples, 𝑥, are called support vectors.

Now, we will calculate the distance between 𝑥 and the hyperplane (𝑤,𝑤0)

𝑑𝑖𝑠𝑡 = �𝑤0+𝑤𝑥𝑇�
‖𝑤‖

 (4.14)

For canonical hyperplane distance takes the value:

𝑑𝑖𝑠𝑡𝑠𝑢𝑝𝑝𝑜𝑟𝑡_𝑣𝑒𝑐𝑡𝑜𝑟𝑠 = 1
‖𝑤‖

 (4.15)

And the margin shown in Figure 4.2, is twice of that value:

𝑀 = 2
‖𝑤‖

 (4.16)

Finally, we want to maximize 𝑀, and this is equal to minimizing function 𝐿(𝑤)

by using Lagrange multipliers to find weight and bias values:

𝐿(𝑤) = 1
2
‖𝑤‖2 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖�𝑤𝑥𝑖

𝑇 + 𝑤0� ≥ 1 ∀𝑖𝑤,𝑤0
𝑚𝑖𝑛 (4.17)

where 𝑦𝑖 is the label of each training samples.

4.1.2.2 One-Class SVM (OSVM)

If we look at again the SVM method first, its objective function is:

 ‖w‖
2

2w,b,𝜉𝑖
min + C∑ 𝜉𝑖n

i=1 (4.18)

subject to

𝑦𝑖(𝑤𝑇∅(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1, … ,𝑛 (4.19)

18

 𝜉𝑖 ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1, … ,𝑛 (4.20)

where w is vector of coefficients,

b is constant,

 𝜉𝑖 is parameter of non-separable input,

 𝐶 is capacity constant, decides the smoothness,

 ∅(𝑥𝑖) is input mapping function to the feature space,

 𝑦𝑖 ∈ ±1 is the class labels,

 𝑥𝑖 Independent inputs.

Then, classification (decision function) rule for x is:

𝑓(𝑥) = 𝑠𝑔𝑛(∑ 𝛼𝑖𝑛
𝑖=1 𝑦𝑖𝐾(𝑥, 𝑥𝑖) + 𝑏) (4.21)

Here 𝛼𝑖 are the Lagrange multipliers, and 𝐾(𝑥, 𝑥𝑖) = 𝜙(𝑥)𝑇𝜙(𝑥𝑖) is the kernel

function. In the literature, the most popular choice for kernel function is the Gaussian

Radial Base Function, that is:

𝐾(𝑥, 𝑥′) = 𝑒𝑥𝑝(− ∥𝑥−𝑥′∥
2

2𝜎2
) (4.22)

where 𝜎 ∈ 𝑅 is a kernel parameter and ∥ 𝑥 − 𝑥′ ∥ is the dissimilarity measure.

One-Class SVM according to Schölkopf et al. (1999) has a quadratic

programming minimization function which is slightly different from the original

stated above:

 1
2𝑤,𝜉𝑖,𝜌

𝑚𝑖𝑛 ‖𝑤‖2 + 1
𝑣𝑛
∑ 𝜉𝑖 − 𝜌𝑛
𝑖=1 (4.23)

subject to:

�𝑤.∅(𝑥𝑖)� ≥ 𝜌 − 𝜉𝑖 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1, … ,𝑛 (4.24)

 𝜉𝑖 ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1, … , 𝑛 (4.25)

19

In this formula ν parameter characterizes the solution. First, it sets an upper bound

on the fraction of outliers (training examples regarded out-of-class) . Second, it is a

lower bound on the number of training examples used as Support Vector.

By using Lagrange multipliers and using a kernel function for the dot-product

calculations, the decision function or classification becomes:

𝑓(𝑥) = 𝑠𝑔𝑛((𝑤 ⋅ 𝜙(𝑥𝑖)) − 𝜌) = 𝑠𝑔𝑛(∑ 𝛼𝑖𝑛
𝑖=1 𝐾(𝑥, 𝑥𝑖) − 𝜌) (4.26)

This method thus creates a hyperplane characterized by w and ρ which has

maximal distance from the origin in feature space and separates all the data points

from the origin. Function returns +1 in a “small” region (capturing the training data

points) and −1 elsewhere.

4.1.3 Neural Networks for Image Segmentation

Neural networks stayed is a very popular alternative to other pattern recognition

algorithms even in more complex problems. Because if we have a complex problem

and higher dimensions, all other methods may need a dimension reduction as a pre-

process. However, multi layer neural networks can learn a complex transfer function

in high dimensional space without requiring any additional process for feature

extraction. This allow designer to concentrate more on training process and less

engineering on feature selection and extraction (LeCun & Bengio, 1995).

Labbe, Herault, & Chatelain (2009) propose a framework based on deep neural

networks in order to deal with high dimensional input problems such as image

classification on toy datasets and USPS character reconstruction. And their results

are promising.

Neural networks are inspired from human brain through there are still lots of

unknowns how brain is training itself. Typically, A neuron collects signals from

20

dendrites and sends electro - chemical signals (pulses) through a single wire called

axon. This axon dived into many braches; at the end of each branch it has a synapse.

During the learning process of neural networks, effectiveness of the synapses is

changed, by this way the influence of one neuron on another is changed (Stergiou &

Siganos, 2015). Similarity between human and artificial neuron system is given in

Figure 4.3.

Pattern recognition networks are feedforward networks and it consists of lager

number simple neurons (processing-units) and organized in layers. Every neuron in a

layer is connected to the other layers’ neurons and each connection has a different

weight. During the normal operation, data enters to the inputs, and passes through all

layers and neurons, and there is no feedback between these layers, this is why we call

it feedforward neural network (Boersma & Weenink, 2004).

Figure 4.3 Representation of human neuron system (Stergiou, & Siganos, 1997).

A single layer feedforward neural network example is given in Figure 4.4. And a

multi layer feedforward neural network example is given in Figure 4.5.

21

Figure 4.4 Single layer feedforward neural network diagrams (Feedforward neural network, n.d.).

(a)

(b)

Figure 4.5 (a) Multi layer feedforward neural network example with its weights (Application of

Neural Networks to Modeling and Control of Parallel Manipulators, Three-layer feedforward network

, n.d.), (b) Proposed pattern recognition network in this thesis

22

In this thesis pattern recognition network is used in Matlab as supervised image

segmentation tool. Proposed pattern recognition network is shown in Figure 4.5 (b).

It works with network training function that updates weight and bias values

according to the scaled conjugate gradient method (trainsgc) and uses the cross-

entropy performance method. C2_NN has 3 input layers (for H-S-V features),

T2_NN has 9 input layers (for energy, contrast and homogeneity). The number of

hidden layers is 10. And the output layer number 1 to get a binary pixel values.

4.2 Implementation of Image Segmentation Algorithms

4.2.1 Semi Supervised Methods

4.2.1.1 Semi-Supervised C_ULSIF

This method is using only one labeled class information. User label only

foreground pixels and program runs ULSIF algorithm as an outlier detection

function.

It calculates the importance value of each pixel. Higher importance value means

that pixel belongs to foreground and lower importance value means that pixel

belongs to background.

As we can see from the flow chart in Figure 4.6:

• Step1: Original image is loaded into the workspace, color space is changed

RGB to HSV, and all Hue Saturation and Value is sorted into x_nu matrix

• Step2: Extracted features are loaded in to the workspace, if user selected n

times different spline for labeling foreground, the first labeled pixel group’s HSV

information transferred into x_de matrix

• Step3: ULSIF function is called by the program and importance values of the

original image pixels are calculated and stored in wh_x_nu in a row vector format.

This row vector is reshaped with the size of input image. Then, this reshaped

importance image is converted to a binary image by Otsu (thresholding) method and

23

is stored into 𝑏𝑤𝑜𝑢𝑡{𝑖}, 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, 2, . . . ,𝑛 represents the used spline number for

training step.

• Step4: Algorithm returns to Step2, gets the features of next user selected

spline, performs the Step3 and stores the new binary output into the bwout{k}, and

this cycle is repeated till the latest foreground spline.

• Step5: All calculated binary images enter an OR operator, and finally we get

a single binary image. Indeed it is our final segmentation output.

𝑏𝑤𝑜𝑢𝑡 = 𝑶𝑹𝑖=1𝑛 (𝑏𝑤𝑜𝑢𝑡, 𝑏𝑤𝑜𝑢𝑡{𝑖}) (4.27)

• Step6: We can use this binary segmentation output as a mask, we can

multiply Hue Saturation and Value with this mask separately, and the HSV output

image will be converted into an RGB image again.

• Finally, we get a color output image and all background pixels have black

color, only foreground pixels have their own color.

start load input
image

rgb to hsv
conversion

load extracted hsv
features

sizefore = size of
hsv features

cfore
=

sizefore
















=

(:)
(:)
(:)

_
testdatav
testdatas
testdatah

nux

()foldbdexmeandexstddexnuxUlsifnuxwh ,),'_(,)''_(,_,___ =

{ }
{ }
{ }















=

cforeobjv
cforeobjs
cforeobjh

dex _

0

reshape wh_x_nu to the
size of original image

{ } ()nuxwhconversionwhiteblackcforebwout ___&=cfore=cfore+1

outfore
=

sizefore

1

{ }outforebwoutbwoutbwout ⊕=

0

















=
=
=

=
;*).1:,(:,)1:,(:,
;*).1:,(:,)1:,(:,
;*).1:,(:,)1:,(:,

bwouttestdatavtestdatav
bwouttestdatastestdatas
bwouttestdatahtestdatah

testdata

hsv to rgb
conversion

sssout
output imageend

ou
tfo

re
=o

ut
fo

re
+1

1

Figure 4.6 Flowchart of semi-supervised C_ULSIF algorithm

24

4.2.1.2 Semi-Supervised T_ULSIF

This method is very similar to C_ULSIF. It is using only one class labeled

features, instead of HSV color feature set texture features are taken into calculation.

x_nu includes contrast, energy and homogeneity as texture features of the original

input image, also x_de includes contrast, energy and homogeneity as texture features

of the labeled foreground pixels. Its flowchart is given in Figure 4.7.

Figure 4.7 Flowchart of semi-supervised T_ULSIF algorithm

start load input
image

rgb to hsv
conversion

sizefore = size of
texture features

cfore
=

sizefore
















=

y(:)homogeneit_
(:)_

(:)_
_

testdata
energytestdata
contrasttestdata

nux

()foldbdexmeandexstddexnuxUlsifnuxwh ,),'_(,)''_(,_,___ =

{ }
{ }
{ }



























=

}{hom_
}{_

}{_
_

cforeogeneityobj
cforeenergyobj

cforecontrastobj
cforeobjv
cforeobjs
cforeobjh

dex

0

reshape wh_x_nu to the
size of original image

{ } ()nuxwhconversionwhiteblackcforebwout ___&=cfore=cfore+1

outfore
=

sizefore

1

{ }outforebwoutbwoutbwout ⊕=

0

















=
=
=

=
;*).1:,(:,)1:,(:,
;*).1:,(:,)1:,(:,
;*).1:,(:,)1:,(:,

bwouttestdatavtestdatav
bwouttestdatastestdatas
bwouttestdatahtestdatah

testdata

hsv to rgb
conversion

sssout
output imageend

ou
tf

or
e=

ou
tf

or
e+

1

1

load original
image text feature

load extracted text
features
















=

(:)
(:)
(:)

testdatav
testdatas
testdatah

testdata

25

4.2.1.3 Semi-Supervised C_OSVM

This algorithm is a semi-supervised image segmentation method which uses only

labeled a few foreground pixels.

• The original input image is loaded into workspace, then its color space is

converted into HSV, and all pixel’s HSV features stored into x_nu matrix

• All of the user selected foreground splines’ features sorted in x_de1 and they

are labeled with value 1, these labels stored in a vector F

• “Fitcsvm” function is called to calculate optimal weight and bias of OSVM,

during the training step we assumed that 1% of the training samples are

misclassified (depends another class).

• “Predict” function is called with original image feature (x_nu). Score vector

is reshaped into the original image size (resizing), and a threshold is applied to get a

binary output image

• Finally this binary output is multiplied with the HSV values of the image

pixelwisely. And the resultant HSV image is converted in to RGB color space.

• Figure 4.8 shows the flowchart of the C_OSVM segmentation algorithm.

4.2.1.4 Semi-Supervised T_OSVM

This method is too similar with C_OSVM, the only difference is that, it uses

GLCM Haralick texture set as feature.

• The original input image is loaded into workspace, then its color space is

converted into HSV

• Original image’s all extracted texture features loaded form file and texture

features stored into x_nu matrix

• Texture feature of user selected foreground splines’ sorted in x_de1 and they

are labeled with value 1, these labels stored in a vector F

26

• “Fitcsvm” function is called to calculate optimal weight and bias of OSVM,

during the training step we assumed that 1% of the training samples are

misclassified (depends another class).

• “Predict” function is called with original image feature (x_nu). Score vector

is reshaped into the original image size (resizing), and a threshold is applied to get a

binary output image

• Finally binary output is multiplied with the HSV values of the original

image pixelwisely. The resultant HSV image is converted in to RGB color space.

• Figure 4.9 shows the flowchart of the T_OSVM segmentation algorithm.

4.2.2 Supervised Segmentation Methods

4.2.2.1 Supervised C2_ULSIF

This method uses labeled features of two classes. For example user select n times

different spline for background pixels and also n times different spline for

foreground pixels. C2_ULSIF uses only HSV color features.

• Program runs C_ULSIF algorithm (from Step1 to the end of Step4 explained

in 4.2.1.1.) for n different foreground spline, here the binary outputs generated for

each spline is stored into the matrix 𝑏𝑤𝑓{1}𝑡𝑜 𝑏𝑤𝑓{𝑛}

• Again, program runs C_ULSIF algorithm (from Step1 to the end of Step4

explained in 4.2.1.1.) for n different background spline, here the binary outputs

generated for each spline is stored into the matrix 𝑏𝑤𝑏{1}𝑡𝑜 𝑏𝑤𝑏{𝑛}

• Then each binary background matrix is subtracted pixel-wise

𝑏𝑤{1} = 𝑏𝑤𝑓{1} − 𝑏𝑤𝑏{1}
⋮

𝑏𝑤{𝑛} = 𝑏𝑤𝑓{𝑛} − 𝑏𝑤𝑏{𝑛}
 (4.28)

• Now program makes the same logical OR operation including all binary

outputs from

• Finally OR operation is performed between all binary outputs to get final

binary image

𝑏𝑤𝑜𝑢𝑡 = 𝑶𝑹𝑖=1𝑛 (𝑏𝑤𝑜𝑢𝑡, 𝑏𝑤{𝑖}) (4.29)

27

• Then program makes the same operations in C_ULSIF at Step 6 to show

color output image

Figure 4.10 shows the flow chart of C2_ULSIF algorithm for better

understanding.

start load input
image

rgb to hsv
conversion

load extracted hsv
features

sizefore = size of
hsv features

cfore
=

sizefore
















=

(:)
(:)
(:)

_
testdatav
testdatas
testdatah

nux

{ }
{ }
{ } 































=

cforeobjv
cforeobjs
cforeobjh

dexdex __0

w= reshape score to the
size of original image

:)))min(bwout(*(bwout)).(ones(size-bwoutbwout =

cfore=cfore+1

1

















=
=
=

=
;*).1:,(:,)1:,(:,
;*).1:,(:,)1:,(:,
;*).1:,(:,)1:,(:,

bwouttestdatavtestdatav
bwouttestdatastestdatas
bwouttestdatahtestdatah

testdata

hsv to rgb
conversion

sssout
output imageend

sizeF = size of
x_de

Creates ones vector
F with sizeF

,0.01)ction'OutlierFratrue,,e'Standardiz',auto'',e'KernelScal',F',de'fitcsvm(x_ SVMModel=

)x_nu'MModel,predict(SV score][~, =

wbwout
indiceswindicesw
indiceswindicesw

=
=⇒
=⇒

0}{1}{
1}{1}{





Figure 4.8 Flowchart of semi-supervised C_OSVM algorithm

28

Figure 4.9 Flowchart of semi-supervised T_OSVM algorithm

start load input
image

rgb to hsv
conversion

sizefore = size of
hsv features

cfore
=

sizefore
















=

(:)hom_
(:)_

(:)_
_

ogeneitytestdata
energytestdata
contrasttestdata

nux
































=

}{hom_
}{_

}{_
__

cforeogeneityobj
cforeenergyobj

cforecontrastobj
dexdex

0

w= reshape score to the
size of original image

:)))min(bwout(*(bwout)).(ones(size-bwoutbwout =

cfore=cfore+1

1

















=
=
=

=
;*).1:,(:,)1:,(:,
;*).1:,(:,)1:,(:,
;*).1:,(:,)1:,(:,

bwouttestdatavtestdatav
bwouttestdatastestdatas
bwouttestdatahtestdatah

testdata

hsv to rgb
conversion

sssout
output imageend

sizeF = size of
x_de

Creates ones vector
F with sizeF

,0.01)ction'OutlierFratrue,,e'Standardiz',auto'',e'KernelScal',F',de'fitcsvm(x_ SVMModel=

)x_nu'MModel,predict(SV score][~, =

wbwout
indiceswindicesw
indiceswindicesw

=
=⇒
=⇒

0}{1}{
1}{1}{





load extracted
foreground text features

load original image
text features
















=

(:)
(:)
(:)

testdatav
testdatas
testdatah

testdata

29

start load input
image

rgb to hsv
conversion

load extracted
foreground hsv features

sizefore = size of
foreground hsv features

cfore
=

sizefore
















=

(:)
(:)
(:)

_
testdatav
testdatas
testdatah

nux

()foldbdexmeandexstddexnuxUlsifnuxwh ,),'_(,)''_(,_,___ =

{ }
{ }
{ }















=

cforeobjv
cforeobjs
cforeobjh

dex _

0

reshape wh_x_nu to the
size of original image

{ } ()nuxwhconversionwhiteblackcforebwf ___&=cfore=cfore+1

1

cfore=1
sizefore = size of

foreground hsv features

load extracted
background hsv features

cfore
=

sizefore
()foldbdexmeandexstddexnuxUlsifnuxwh ,),'_(,)''_(,_,___ =

{ }
{ }
{ }















=

cforebckv
cforebcks
cforebckh

dex _

reshape wh_x_nu to the
size of original image

{ } ()nuxwhconversionwhiteblackcforebwb ___&=cfore=cfore+1

0

outfore
=

sizefore

{ }outforebwboutforebwfoutforebw −= }{}{

0

ou
tfo

re
=o

ut
fo

re
+1

1

















=
=
=

=
;*).1:,(:,)1:,(:,
;*).1:,(:,)1:,(:,
;*).1:,(:,)1:,(:,

bwouttestdatavtestdatav
bwouttestdatastestdatas
bwouttestdatahtestdatah

testdata

hsv to rgb
conversion

sssout
output imageend

outfore
=

sizefore

{ }outforebwoutforebwbwout ⊕= }{

0

1

outfore=1

1

Figure 4.10 Flowchart of supervised C2_ULSIF algorithm

30

 Figure 4.11 Flowchart of supervised T2_ULSIF algorithm

start load input
image

rgb to hsv
conversion

sizefore = size of
foreground text features

cfore
=

sizefore
















=

y(:)homogeneit_
(:)_

(:)_
_

testdata
energytestdata
contrasttestdata

nux

()foldbdexmeandexstddexnuxUlsifnuxwh ,),'_(,)''_(,_,___ =
















=

}{hom_
}{_

}{_
_

cforeogeneityobj
cforeenergyobj

cforecontrastobj
dex

0

reshape wh_x_nu to the
size of original image

{ } ()nuxwhconversionwhiteblackcforebwf ___&=cfore=cfore+1

1

load original
image text feature

load extracted
foreground text features

cfore=1
sizefore = size of

foreground text features

cfore
=

sizefore
()foldbdexmeandexstddexnuxUlsifnuxwh ,),'_(,)''_(,_,___ =
















=

}{hom_
}{_

}{_
_

cforeogeneitybck
cforeenergybck

cforecontrastbck
dex

reshape wh_x_nu to the
size of original image

{ } ()nuxwhconversionwhiteblackcforebwb ___&=

load extracted
background text features

cfore=cfore+1

0

outfore
=

sizefore

{ }outforebwboutforebwfoutforebw −= }{}{

0

ou
tfo

re=
ou

tfo
re+

1

1

















=
=
=

=
;*).1:,(:,)1:,(:,
;*).1:,(:,)1:,(:,
;*).1:,(:,)1:,(:,

bwouttestdatavtestdatav
bwouttestdatastestdatas
bwouttestdatahtestdatah

testdata

hsv to rgb
conversion

sssout
output imageend

outfore
=

sizefore

{ }outforebwoutforebwbwout ⊕= }{

0

1

outfore=1

1
















=

(:)
(:)
(:)

testdatav
testdatas
testdatah

testdata

31

4.2.2.2 Supervised T2_ULSIF

This method is very similar to C2_ULSIF. The only difference is that, T2_ULSIF

algorithm uses texture features of the labeled data and the original input image.

x_nu includes contrast, energy and homogeneity as texture features of the original

input image, also x_de includes contrast, energy and homogeneity as texture features

of the labeled foreground pixels.

All cycles explained in 4.2.2.1 for C2_ULSIF is completely same for T2_ULSIF.

Figure 4.11 shows the flow chart of T2_ULSIF algorithm for better

understanding.

4.2.2.3 Supervised C2_SVM

It is a supervised image segmentation algorithm which uses only HSV features

of the image. This algorithm needs labeled samples from both of the foreground and

background.

• The original input image is loaded into workspace, then its color space is

converted into HSV, and all pixel’s HSV features stored into x_nu matrix

• All of the user selected foreground splines’ features sorted in x_de1 and they

are labeled with value 1, these labels stored in a vector F

• All of the user selected background splines’ features sorted in x_de2 and

they are labeled with value 0, these labels stored in a vector B

• SVM training function is called to calculate optimal weight and bias, then

original image features x_nu and SVM classification function are called to label

entire image

• Score vector is reshaped into the original image size (resizing), and a

threshold is applied to get a binary output image

32

• Finally this binary output is multiplied with the HSV values of the image

pixelwisely. And the resultant HSV image is converted in to RGB color space.

• Figure 4.12 shows the flowchart of the segmentation algorithm.

4.2.2.4 Supervised T2_SVM

In Figure 4.13 the flow chart of the T2_SVM algorithm is shown. This method is

too similar to C2_SVM, the only difference is that, it uses only GLCM Haralick

texture features.

4.2.2.5 Supervised C2_NN

This algorithm is a kind of supervised image segmentation method, wich uses

neural network to find pixel classes. It uses only HSV color information during the

training and classification processes.

• Step1: Original input image is loaded and its colorspace is converted RGB to

HSV, then all pixels HSV information is stored in matrix x_nu.

• Step2: All extracted HSV information of the labeled foreground splines are

loaded and they are sorted end-to-end in the matrix x_de1.

• Step3: Is the same process like Step2. This time user selected background

splines’HSV information stored in x_de2.

• Step4: Create a pattern recognition neural network, and train it by using

x_de1, x_de2 and their labels.

• Step5: Simulate the weighted pattern recognition network on the entire image

(x_nu) to find all pixel classes.

• Step6: Reshape the output vector into the size of original input image. This

reshaped output image will have double pixel values.

• Step7: Thresholding is applied to the pixel values

 If any pixel value is greater or equal to 0.75, it will be labeled as foreground

with binay value 1

 Else this pixel will be labeled as background with binary value 0.

33

• Step8 : The binary image is multiplied pixelwisely with the original image’s

HSV colors

• Step9: The labeled HSV color image is converted in to RGB colorspace and

stored in a Matlab file.

• Its flowchart is shown in Figure 4.14.

4.2.2.6 Supervised T2_NN

This algorithm is very similar to C2_NN. The only difference is it uses texture

features instead of HSV color features.

• Step1: Original input image is loaded and its colorspace is converted RGB to

HSV, also all image’s texture features are loaded into the worksapece and then stored

in matrix x_nu.

• Step2: All extracted texture feature of the labeled foreground splines are

loaded and they are sorted end-to-end in the matrix x_de1.

• Step3: Is the same process like Step2. This time user selected background

splines’ texture features stored in x_de2.

• All steps from Step4 to Step 9 are same with C2_NN.

• Its flowchart is shown in Figure 4.15.

34

start load input
image

rgb to hsv
conversion

load extracted
foregrond hsv features

sizefore = size of
hsv features

cfore
=

sizefore
















=

(:)
(:)
(:)

_
testdatav
testdatas
testdatah

nux

{ }
{ }
{ } 































=

cforeobjv
cforeobjs
cforeobjh

dexdex 1_1_0

w= reshape score to the
size of original image

:)))min(bwout(*(bwout)).(ones(size-bwoutbwout =

cfore=cfore+1

1

















=
=
=

=
;*).1:,(:,)1:,(:,
;*).1:,(:,)1:,(:,
;*).1:,(:,)1:,(:,

bwouttestdatavtestdatav
bwouttestdatastestdatas
bwouttestdatahtestdatah

testdata

hsv to rgb
conversion

sssout
output imageend

sizeF = size of
x_de1

Creates ones vector
F with sizeF

])B',[F'],x_de2',x_de1'svmtrain([SVMModel=

)x_nu',y(SVMModelsvmclassif score =

wbwout
indiceswindicesw
indiceswindicesw

=
=⇒
=⇒

0}{1}{
1}{1}{





load extracted
background hsv features

sizefore = size of
hsv features

cfore
=

sizefore

{ }
{ }
{ } 































=

cforebckv
cforebcks
cforebckh

dexdex 2_2_0

cfore=cfore+1

1

sizeF = size of
x_de2

Creates ones vector
B with sizeB

Figure 4.12 Flowchart of supervised C2_SVM algorithm

35

Figure 4.13 Flowchart of supervised T2_SVM algorithm

start load input
image

rgb to hsv
conversion

sizefore = size of
text features

cfore
=

sizefore
















=

(:)hom_
(:)_

(:)_
_

ogeneitytestdata
energytestdata
contrasttestdata

nux
































=

}{hom_
}{_

}{_
1_1_

cforeogeneityobj
cforeenergyobj

cforecontrastobj
dexdex

0

w= reshape score to the
size of original image

:)))min(bwout(*(bwout)).(ones(size-bwoutbwout =

cfore=cfore+1

1

















=
=
=

=
;*).1:,(:,)1:,(:,
;*).1:,(:,)1:,(:,
;*).1:,(:,)1:,(:,

bwouttestdatavtestdatav
bwouttestdatastestdatas
bwouttestdatahtestdatah

testdata

hsv to rgb
conversion

sssout
output imageend

sizeF = size of
x_de1

Creates ones vector
F with sizeF

])B',[F'],x_de2',x_de1'svmtrain([SVMModel=

)x_nu',y(SVMModelsvmclassif score =

wbwout
indiceswindicesw
indiceswindicesw

=
=⇒
=⇒

0}{1}{
1}{1}{





load extracted
foreground text features

load original image
text features

sizefore = size of
text features

cfore
=

sizefore
































=

}{hom_
}{_

}{_
2_2_

cforeogeneitybck
cforeenergybck

cforecontrastbck
dexdex

0

cfore=cfore+1

1

sizeB = size of
x_de2

Creates ones vector
B with sizeB

load extracted
background text features
















=

(:)
(:)
(:)

testdatav
testdatas
testdatah

testdata

36

start load input
image

rgb to hsv
conversion

load extracted
foregrond hsv features

sizefore = size of
hsv features

cfore
=

sizefore
















=

(:)
(:)
(:)

_
testdatav
testdatas
testdatah

nux

{ }
{ }
{ } 































=

cforeobjv
cforeobjs
cforeobjh

dexdex 1_1_0

classify= reshape outputs
to the size of original image

cfore=cfore+1

1

















=
=
=

=
;*).1:,(:,)1:,(:,
;*).1:,(:,)1:,(:,
;*).1:,(:,)1:,(:,

bwouttestdatavtestdatav
bwouttestdatastestdatas
bwouttestdatahtestdatah

testdata

hsv to rgb
conversion

sssout
output imageend

szp1 = size of
x_de1

t)p,, train(netnet
t,2)newpr(p, net

szp2)]zeros(1, szp1)ones(1, [t
p2] p1 [p

=
=
=
=

 x_nu)net, (sim outputs =

0}{75,0}{
1}{75,0}{

=⇒
=⇒≥

indicesclassifyindicesclassify
indicesclassifyindicesclassify



load extracted
background hsv features

sizefore = size of
hsv features

cfore
=

sizefore

{ }
{ }
{ } 































=

cforebckv
cforebcks
cforebckh

dexdex 2_2_0

cfore=cfore+1

1

szp2 = size of
x_de2 p2

=x
_d

e2

p1
=x

_d
e1

Figure 4.14 Flowchart of supervised C2_NN algorithm

37

Figure 4.15 Flowchart of supervised T2_NN algorithm

start load input
image

rgb to hsv
conversion

sizefore = size of
text features

cfore
=

sizefore
















=

(:)hom_
(:)_

(:)_
_

ogeneitytestdata
energytestdata
contrasttestdata

nux
































=

}{hom_
}{_

}{_
1_1_

cforeogeneityobj
cforeenergyobj

cforecontrastobj
dexdex

0

classify= reshape outputs
to the size of original image

:)))min(bwout(*(bwout)).(ones(size-bwoutbwout =

cfore=cfore+1

1

















=
=
=

=
;*).1:,(:,)1:,(:,
;*).1:,(:,)1:,(:,
;*).1:,(:,)1:,(:,

bwouttestdatavtestdatav
bwouttestdatastestdatas
bwouttestdatahtestdatah

testdata

hsv to rgb
conversion

sssout
output imageend

szp1 = size of
x_de1

t)p,, train(netnet
t,2)newpr(p, net

szp2)]zeros(1, szp1)ones(1, [t
p2] p1 [p

=
=
=
=

 x_nu)net, (sim outputs =

wbwout
indicesclassifyindicesclassify
indicesclassifyindicesclassify

=
=⇒
=⇒≥

0}{75,0}{
1}{75,0}{



sizefore = size of
text features

cfore
=

sizefore
































=

}{hom_
}{_

}{_
2_2_

cforeogeneitybck
cforeenergybck

cforecontrastbck
dexdex

0

cfore=cfore+1

1

szp2 = size of
x_de2 p2

=x
_d

e2

p1
=x

_d
e1

load extracted
foregrond text features

load original image
text features

load extracted
background text features
















=

(:)
(:)
(:)

testdatav
testdatas
testdatah

testdata

38

CHAPTER FIVE

TESTS AND RESULTS

In this chapter, we applied different methods explained in chapter 4 on the same

input image, and we compare their outputs performances of them. Color image

samples are taken from The Berkeley Segmentation Dataset, and texture samples are

taken from the Brodatz Texture Book.

There is an expected binary output image in our hand, and we count correctly

classified or misclassified pixel quantities. Six different performance parameters are

used in this thesis. True Positive Flag (TPF) is the proportion of foreground pixels

that were correctly identified. True Negative Flag (TNF) is proportion of background

pixels that were classified correctly. False Positive Flag (FPF) is proportion of

background pixels that were incorrectly classified as foreground. Flase Negative Flag

(FNF) is misclassified proportion of foreground pixels that were incorrectly

classified as background. Pper is proportion of the total number of pixels that were

correctly classified. Nper is just opposive of Pper. TIME is segmentation algorithm

runtime in terms of second.

5.1 Performance of Semi-Supervised One-Class Segmentation Methods Using

Color Feature Set

Semi-supervised C_ULSIF and C_OSVM methods are applied on seastar, flower

and church images.

Figure 5.1 Semi-supervised color segmentation results for sea star

39

Figure 5.2 Semi-supervised color segmentation results for flower

Figure 5.3 Semi-supervised color segmentation results for church

According to the performance results given in Table 5.1, average runtime of

C_ULSIF is just 200msec longer. Therefore, C_ULSIF has better average

segmentation performance because it has:

• Higher TPF, better segmentation performance on foregorund pixels

• Higher TNF, better segmentation performance on backgorund pixels

• Less FPF, means less mistake on bakground pixels

• Less FNF, means less mistake on foreground pixels

• Higher Pper, true classified pixel ratio on entire image is more

• Less Nper, wrong classified pixel ratio on entire image is less

40

Table 5.1 Performance of semi-supervised methods using color feature set

5.2 Performance of Supervised Two-Class Segmentation Methods Using Color

Feature Set

In this section, two-class supervised C2_ULSIF, C2_SVM and C2_NN methods

are applied on the same images in Section 5.1.

These methods are using background color features additioanlly, so they have an

extra labeling labor for supervisor, and also additional time for background feature

extraction.

Input Image
Performance
Measurements C_ULSIF C_OSVM
TIME(sec.) 3.3571 3.5059
FNF 0.0614 0.1666
FPF 0.0214 0.0580
Nper 0.0397 0.0445
Pper 0.9646 0.9591
TNF 0.9786 0.9420
TPF 0.9386 0.8334
TIME(sec.) 5.8752 3.5800
FNF 0.0915 0.0333
FPF 0.0724 0.0264
Nper 0.0480 0.0408
Pper 0.9591 0.9674
TNF 0.9276 0.9736
TPF 0.9085 0.9667
TIME(sec.) 2.5262 4.0300
FNF 0.0669 0.0988
FPF 0.0744 0.1099
Nper 0.0363 0.0537
Pper 0.9666 0.9502
TNF 0.9256 0.8901
TPF 0.9331 0.9012

Input Image Performance C_ULSIF C_OSVM
TIME(sec.) 3.9195 3.7053
FNF 0.0732 0.0996
FPF 0.0561 0.0648
Nper 0.0413 0.0464
Pper 0.9634 0.9589
TNF 0.9439 0.9352
TPF 0.9268 0.9004

Applied Image Segmentation Methods

AVERAGE
PERFORMANCES

Applied Image Segmentation Methods

Peformance Measurements
for Figure 5.1 Sea Star

Peformance Measurements
for Figure 5.2 Flower

Peformance Measurements
for Figure 5.3 Church

41

Figure 5.4 Supervised color segmentation results for sea-star

Figure 5.5 Supervised color segmentation results for flower

When segmentation performances are compared between Table 5.1 and Table 5.2

we can observe that TIME values are higher for two-class supervised methods, which

means longer runtime. On the other hand, TPF TNF and Pper values are higher for

two-class supervised methods which means better segmentation performance on

overall image. Although C2_ULSIF and C2_NN algorithms are slower, C2_SVM

algorithm is the fastest one between all supervised methods using color feature set.

42

Figure 5.6 Supervised color segmentation results for church

Table 5.2 Performance of supervised methods using color feature set

Input Image
Performance
Measurements C2_ULSIF C2_SVM C2_NN
TIME(sec.) 6.6486 0.6039 4.5601
FNF 0.0752 0.0544 0.0641
FPF 0.0262 0.0190 0.0223
Nper 0.0276 0.0155 0.0183
Pper 0.9744 0.9869 0.9842
TNF 0.9738 0.9810 0.9777
TPF 0.9248 0.9456 0.9359
TIME(sec.) 8.8835 0.8844 0.9434
FNF 0.0958 0.0128 0.0722
FPF 0.0759 0.0101 0.0572
Nper 0.0582 0.0324 0.0496
Pper 0.9444 0.9731 0.9578
TNF 0.9241 0.9899 0.9428
TPF 0.9042 0.9872 0.9278
TIME(sec.) 7.2739 0.6204 1.0203
FNF 0.0119 0.0074 0.0084
FPF 0.0132 0.0082 0.0093
Nper 0.0112 0.0056 0.0052
Pper 0.9902 0.9957 0.9961
TNF 0.9868 0.9918 0.9907
TPF 0.9881 0.9926 0.9916

Input Image Performance C2_ULSIF C2_SVM C2_NN
TIME(sec.) 7.6020 0.7029 2.1746
FNF 0.0610 0.0249 0.0482
FPF 0.0384 0.0124 0.0296
Nper 0.0323 0.0178 0.0244
Pper 0.9696 0.9852 0.9794
TNF 0.9616 0.9876 0.9704
TPF 0.9390 0.9751 0.9518

Applied Image Segmentation Methods

AVERAGE
PERFORMANCES

Applied Image Segmentation Methods

Peformance Measurements
for Figure 5.4

Peformance Measurements
for Figure 5.5

Peformance Measurements
for Figure 5.6

43

Semi-supervised and supervised color segmentation methods have some critical

settings which effect output performance direclty. For example b is kernel number of

ULSIF, outlier fraction ratio of OSVM, and hidden layer numbers in NN. Finding

optimal values of these parameters are explained in sections 5.3 and 5.4.

5.3 Performance of Semi-Supervised One-Class Segmentation Methods Using

Texture Feature Set

Input image which consists of 4 different 128x128 pixel sub-images, with

different texture information, is tested on different algorithms.

Figure 5.7 Semi-Supervised texture segmentation results while choosing parameter b for ULSIF

and outlier fraction parameter for OSVM

44

Table 5.3 Performance of semi-supervised methods while choosing parameter b for ULSIF and outlier

fraction parameter for OSVM

According to the output images in Figure 5.7 and performance results in Table

5.3, increasing number of kernels in ULSIF has positive effect but when b is greater

than 50 this becomes a disatvantage. Because of that we selected b=50 as an optimal

setting for all semi-supervised or supervised methods using ULSIF.

When outlier fraction ratio is %1 OSVM gives better performance. Giving lower

fraction ratio is reducing the segmentation performance since it reduces Pper and

increase runtime.

For one-class semi-supervised texture segmentation, T_ULSIF has better

performance than T_OSVM, with higher TPF-TNF- Pper and lower FPF-FNF-Nper.

Input Image
Performance
Measurements T_ULSIF Input Image

Performance
Measurements T_OSVM

TIME(sec.) 150.0100 TIME(sec.) 108.4740
TPF 0.8442 TPF 0.7867
FPF 0.0519 FPF 0.0711
TNF 0.9481 TNF 0.9289
FNF 0.1558 FNF 0.2133
pper 0.8466 pper 0.8562
nper 0.1584 nper 0.1479
TIME(sec.) 406.8200 TIME(sec.) 110.3820
TPF 0.6575 TPF 0.5237
FPF 0.1142 FPF 0.1588
TNF 0.8858 TNF 0.8412
FNF 0.3425 FNF 0.4763
pper 0.8632 pper 0.8086
nper 0.1457 nper 0.1954
TIME(sec.) 754.4240
TPF 0.7844
FPF 0.0719
TNF 0.9281
FNF 0.2156
pper 0.8706
nper 0.1371

Peformance Measurements
for Figure 5.7 f

Applied Image Segmentation Methods

Peformance Measurements
for Figure 5.7 d

Peformance Measurements
for Figure 5.7 e

Applied Image Segmentation Methods

Peformance Measurements
for Figure 5.7 g

Peformance Measurements
for Figure 5.7 h

45

Figure 5.8 Semi-supervised texture segmentation results while choosing size of texture blocks

During the texture extraction stage blocproc fucntion is used. At the beginning

10x10 block size is chosen and the center point of the block is moved 1 pixel right or

down to produce overlapping blocks on original input image while calculating

GLCM. In addition, 16 different neighborhoods are chosen for 𝐷 = {1,2,3,4} to all

directions shown in Figure 2.2.

Then we decided to increase block size to 20x20. According to the output images

in Figure 5.7, Figure 5.8, Figure 5.9 and in Table5.4 ; after increasing block size,

T_ULSIF and T_OSVM have performed better segmentation results. Bacause of

that we decided to use 20x20 block size as standard for all texture extraction stages.

Also, effect of using non-overlapping 20x20 sized blocks (by shifting center point

of the block 20 pixel right or down in each stage) is tested. According to the

segmentation outputs in Figure 5.10 and Table 5.5, this has reduced the performance

of T_ULSIF and T_OSVM. There is no advantage of usign non-overlapping blocks,

so using 20x20 overlapping blocks is prefered.

46

Figure 5.9 Semi-supervised texture segmentation results while testing 20x20 sized overlapping

texture blocks

Figure 5.10 Semi-supervised texture segmentation results while testing 20x20 sized non-

overlapping texture blocks

47

Table 5.4 Performance of semi-supervised methods with 20x20 sized overlapping texture blocks

Table 5.5 Performance of semi-supervised methods with 20x20 sized non-overlapping texture blocks

Input Image
Performance
Measurements T_ULSIF T_OSVM
TIME(sec.) 328.8060 166.9590
TPF 0.6346 0.5064
FPF 0.1218 0.1645
TNF 0.8782 0.8355
FNF 0.3654 0.4936
pper 0.9065 0.8772
nper 0.0951 0.1239
TIME(sec.) 514.7270 229.4570
TPF 0.9370 0.4508
FPF 0.0210 0.1831
TNF 0.9790 0.8169
FNF 0.0630 0.5492
pper 0.9844 0.8653
nper 0.0159 0.1399

Peformance Measurements
for Figure 5.8

Peformance Measurements
for Figure 5.9

Applied Image Segmentation Methods

Input Image
Performance
Measurements T_ULSIF T_OSVM
TIME(sec.) 0.2110 0.7845
TPF 0.2403 0.7371
FPF 0.2532 0.0876
TNF 0.7468 0.9124
FNF 0.7597 0.2629
pper 0.8103 0.8958
nper 0.1901 0.1049

Peformance Measurements
for Figure 5.10

Applied Image Segmentation Methods

48

5.4 Performance of Supervised Two-Class Segmentation Methods Using Texture

Feature Set

In this section two-class supervised texture segmentation methods are used. One

texture region in Figure 5.11(b) is labeled as foregorund, and three different regions

in Figure 5.11 (c) (d) (e) are labeled as background.

Figure 5.11 Supervised texture segmentation results while testing 20x20 overlapping texture blocks

According to output images in Figure 5.11 and Table 5.6, C2_ULSIF and

C2_SVM have very close and better performance than C2_NN. The only

disadvantage of C2_ULSIF is that it is the slowest supervised texture segmentation

algorithm between these three methods. Also, we can observe that the more hidden

layer number in Neural Network, the better segmentation performance.

Table 5.6 Performance of supervised methods in Figure 5.11

49

In Figure 5.12 we selected another texture region for foreground labeling. This

time, according to Table 5.7, C2_ULSIF has lower performance than other two

alternative methods and C2_SVM is the best performer again.

Input Image Method
elapsedTime 126.0909
TPF 0.9293
FPF 0.0236
TNF 0.9764
FNF 0.0707
pper 0.9826
nper 0.0179
elapsedTime 0.484
TPF 0.9506
FPF 0.0165
TNF 0.9835
FNF 0.0494
pper 0.9878
nper 0.0125
elapsedTime 33,522
TPF 0.8799
FPF 0.04
TNF 0.96
FNF 0.1201
pper 0.967
nper 0.0334
elapsedTime 35,933
TPF 0.9102
FPF 0.0299
TNF 0.9701
FNF 0.0898
pper 0.9777
nper 0.0226

Peformance Measurements
for Figure 5.11 h T2_SVM

Peformance Measurements
for Figure 5.11 i

Peformance Measurements
for Figure 5.11 g

Peformance Measurements
for Figure 5.11 j

Performance
Measurements

T2_ULSIF

T2_NN 2 Hidden Layers

T2_NN 10 Hidden Layers

50

Figure 5.12 Supervised texture segmentation results while testing 20x20 sized overlapping texture

blocks, for different labeled region

Table 5.7 Performance of supervised methods in Figure 5.12

Input Image Method
elapsedTime 241.2920
TPF 0.5961
FPF 0.1346
TNF 0.8654
FNF 0.4039
pper 0.8999
nper 0.1018
elapsedTime 16,164
TPF 0.9313
FPF 0.0229
TNF 0.9771
FNF 0.0687
pper 0.9665
nper 0.0338
elapsedTime 56,042
TPF 0.9031
FPF 0.0323
TNF 0.9677
FNF 0.0969
pper 0.9648
nper 0.0354

Performance
Measurements

Peformance Measurements
for Figure 5.12 e T2_ULSIF

Peformance Measurements
for Figure 5.12 f T2_SVM

Peformance Measurements
for Figure 5.12 g T2_NN 10 Hidden Layers

51

CHAPTER SIX

CONCLUSION

In this thesis, a new approach to semi-supervised segmentation is proposed, by

implementing Unconstraint Least Square Importance Fitting (ULSIF) algorithm.

ULSIF is an algoritm based on importance estiomantion which is used for anomaly

and outlier detection problems.

For semi-supervised methods, only color or texture features of one-class is used.

Ratio of the labeled class’ probaility distribution function and the test data probality

distribution function is estimated, and this ratio is called importance. If the

importance value is greater, test sample is belonging to the labeled class. The

biggest advantage of using ULSIF is, there is no need to estimate probability

distribution functions of the labeled class and the test data seperately. It estimates

directly the ratio of them. Because of that feature, it is not needed to tune pdf

parameters which is important to set for multi-dimensional space. As we know, there

is no previous use of ULSIF for image segmentation in the literature. Because of that

different features are used to observe the performance of ULSIF, and hue, saturation

and value are used as color features, also energy, contrast and homogeneity are used

as texture features. The performance of ULSIF is compared with the state of art

method one-class SVM. According to the results, both color and texture based semi-

supervised one-class ULSIF gave better results than OSVM does.

Additionally, labeled features of two classes are used for supervised image

segmentation methods. For supervised two-class ULSIF, foreground importance and

background importances are estimated seperately. If foreground importance value of

a test data is greater than the background importance of that data, it means this test

data is belonging to the foreground, or vice versa. Results of supervised two-class

ULSIF is compared with SVM and Neural networks. Supervised two-class SVM is

the best method in supervised methods.

52

REFERENCES

Application of Neural Networks to Modeling and Control of Parallel

Manipulators Backpropogation. Three-layer feedforward network. (2008).

Retrieved August 24, 2015, from http://www.intechopen.com/books/parallel_

manipulators_new_developments/application_of_neural_networks_to_modelin

g_and_control_of_parallel_manipulators

Boersma, P., & Weenink, D. (2004). Feedforward neural networks. Retrieved

September 19, 2015, from http://www.fon.hum.uva.nl/praat/manual/Feed

forward_neural_networks_1__What_is_a_feedforward_ne.html

Bora, D.J., Gupta, A.K., & Khan, F.A. (2015). Comparing the Performance of

L*A*B* and HSV Color Spaces with Respect to Color Image Segmentation.

Cornell University Library, Computer Science, Computer Vision and Pattern

Recognition. Retrieved August 13, 2015, from http://arxiv.org/abs/1506.01472

Chapelle, O., Schölkopf, B., & Zien, A. (2006). Semi-supervised learning. The

MIT Press: Cambridge, Massachusetts London, England

Dopido, I., Jun Li, Marpu, P.R., & Plaza, A. (2013). Semisupervised Self-

Learning for Hyperspectral Image Classification. Geoscience and Remote

Sensing, IEEE Transactions, 51, 4032-4044.

D’Silva, P. (2008). A Little About Color: HSV vs. RGB. Retrived January 12,

2016, from http://www.kirupa.com/design/little_about_color_hsv_rgb.htm

Eleyan, A., & Demirel, H. (2011). Co-occurrence matrix and its statistical features

as a new approach for face recognition. Turkish Journal of Electrical

Engineering & Comp Science, 19, No.1

http://www.fon.hum.uva.nl/praat/manual/Feedforward_neural_networks_1__What_is_a_feedforward_ne.html
http://www.fon.hum.uva.nl/praat/manual/Feedforward_neural_networks_1__What_is_a_feedforward_ne.html

53

Feedforward neural network, (2015). Retrieved August 24, 2015, from https://en.

wikipedia.org/wiki/Feedforward_neural_network

Gray-Level Co-Occurrence Matrix (GLCM), (2015). Retrieved August 23, 2015,

from http://www.mathworks.com/help/images/gray-level-co-occurrence-

matrix-glcm.html

Guillaumin, M., Verbeek, J., & Schmid, C. (2010). Multimodal semi-supervised

learning for image classification. Computer Vision and Pattern Recognition

(CVPR), 2010 IEEE Conference, 902-909.

HSV (Hue, Saturation and Value), (2014). Retrieved August 23, 2015, from

http://www.tech-faq.com/hsv.html

Image texture, (2015). Retrieved August 23, 2015, from https://en.wikipedia.org/

wiki/Image_texture

Jiazhen, X., Xinmeng, C., & Xuejuan, H. (2008). Interactive image segmentation

by semi-supervised learning ensemble. International Symposium on Knowledge

Acquisition and Modeling, 645-648.

Kanamori, T., Hido, S., & Sugiyama, M. (2009). A least-squares approach to

direct importance estimation. Journal of Machine Learning Research, 10,

1391-1445

Kapur, T., Grimson, E., Wells, W., & Kikinis, R. (1996). Segmentation of brain

tissue from magnetic resonance images. Medical Image Analysis, 1, 109-127.

Labbe, B., Herault, R., & Chatelain, C. (2009). Learning deep neural networks for

high dimensional output problems. Machine Learning and Applications

(ICMLA) 2009 International Conference, 63-68.

https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Feedforward_neural_network
http://www.mathworks.com/help/images/gray-level-co-occurrence-matrix-glcm.html
http://www.mathworks.com/help/images/gray-level-co-occurrence-matrix-glcm.html
http://www.tech-faq.com/hsv.html
https://en.wikipedia.org/wiki/Image_texture
https://en.wikipedia.org/wiki/Image_texture

54

 LeCun, Y. & Bengio, Y. (1995). Pattern recognition and neural networks, The

Handbook of Brain Theory and Neural Networks. MIT Press. Retrieved

September 13, 2015 from http://yann.lecun.com/exdb/publis/pdf/lecun-bengio-

95b.pdf

Martínez-Usó, A., Pla, F., & Sotoca, J.M. (2010). A semi-supervised gaussian

mixture model for image segmentation, Pattern Recognition (ICPR). 20th

International Conference, 2941 – 2944.

Mikic, I., Cosman, P.C., Kogut, G.T., & Trivedi, M.M. (2000). Moving shadow

and object detection in traffic scenes. Pattern Recognition Proceedings 2000

15th International Conference, 1, 321-324.

Mohanaiah, P., Sathyanarayana, P., & GuruKumar, L. (2013). Image texture

feature extraction using GLCM approach. International Journal of Scientific

and Research Publications 2013, 3.

Multilayer Feedforward Neural Networks, (2015). Retrieved August 25, 2015,

from http://docs.roguewave.com/imsl/c/6.0/stat/default.htm?turl=multilayer

feedforwardneuralnetworks.htm

Needham, C.J., & Boyle, R.D. (2001). Tracking multiple sports players through

occlusion, congestion and scale. University of Leeds School of Computing

Research Report Series 2001, 07.

Paiva, A.R.C., & Tasdizen, T. (2010). Fast semi-supervised image segmentation

by novelty selection. Acoustics Speech and Signal Processing (ICASSP) IEEE

International Conference, 1054 – 1057.

Patternnet, (2015). Retrieved August 24, 2015, from http://www.mathworks.

com/help/nnet/ref/patternnet.html

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Marti.AND..HSH.x0301;nez-Uso.AND..HSH.x0301;,%20A..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Pla,%20F..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Sotoca,%20J.M..QT.&newsearch=true
http://docs.roguewave.com/imsl/c/6.0/stat/default.htm?turl=multilayerfeedforwardneuralnetworks.htm
http://docs.roguewave.com/imsl/c/6.0/stat/default.htm?turl=multilayerfeedforwardneuralnetworks.htm
http://www.mathworks.com/help/nnet/ref/patternnet.html
http://www.mathworks.com/help/nnet/ref/patternnet.html

55

Peng, B., Zhang, L., Zhang, D., & Yang, J. (2011). Image segmentation by

iterated region merging with localized graph cuts. Semi-Supervised Learning

for Visual Content Analysis and Understanding, 44, 10–11, 2527–2538.

Rao, R. P. N., & Chen, J.-H. (2009). Computer vision lecture 12 texture.

Retrieved August 23, 2015, from https://courses.cs.washington.edu/courses/

cse455/09wi/Lects/lect12.pdf

Specify Offset Used in GLCM Calculation, (2015). Retrieved January 21, 2015,

from http://www.mathworks.com/help/images/gray-level-co-occurrence-

matrix-glcm.html?requestedDomain=www.mathworks.com

Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., & Williamson, R.C.

(1999). Estimating the support of a high-dimensional distribution. Technical

report, Microsoft Research, MSR-TR-99-87.

Semi-supervised learning, (2015). Retrieved August 20, 2015, from https://en.

wikipedia.org/wiki/Semi-supervised_learning

Stergiou, C., & Siganos, S. (1997). Neural networks. Retrieved September 19,

2015, from http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report

.html

Stringa, E., & Regazzoni, C.S. (2000). Real-time video-shot detection for scene

surveillance applications. Image Processing, IEEE Transactions, 9, 69-79.

Support vector machine, (2015). Retrieved August 24, 2015, from https://en.

wikipedia.org/wiki/Support_vector_machine

Support Vector Machines (SVM) Introductory Overview. (2016). Retrieved

August 23, 2015, from http://www.statsoft.com/Textbook/Support-Vector-

Machines

http://www.sciencedirect.com/science/journal/00313203/44/10
https://courses.cs.washington.edu/courses/cse455/09wi/Lects/lect12.pdf
https://courses.cs.washington.edu/courses/cse455/09wi/Lects/lect12.pdf
https://en.wikipedia.org/wiki/Semi-supervised_learning
https://en.wikipedia.org/wiki/Semi-supervised_learning
http://www.doc.ic.ac.uk/%7End/surprise_96/journal/vol4/cs11/report.html
http://www.doc.ic.ac.uk/%7End/surprise_96/journal/vol4/cs11/report.html
https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Support_vector_machine
http://www.statsoft.com/Textbook/Support-Vector-Machines
http://www.statsoft.com/Textbook/Support-Vector-Machines

56

Sural, S., Gang Qian, & Pramanik, S. (2002). Segmentation and histogram

generation using the HSV color space for image retrieval. Image Processing

Proceedings International Conference 2002, 2, 589-592 .

The Berkeley Segmentation Dataset, (2001). Retrieved August 23, 2015, from

https://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/BSDS300-

images.tgz

Tuia, D., & Camps-Valls, G. (2011). Urban image classification with

semisupervised multiscale cluster kernels. Selected Topics in Applied Earth

Observations and Remote Sensing, 4, 65-74.

Vlasveld, R. (2013). Introduction to one-class support vector machines. Retreived

July 12, 2015, from http://rvlasveld.github.io/blog/2013/07/12/ introduction-to-

one-class-support-vector-machines/

What is a SVM? (2015). Retrieved August 23, 2015, from http://docs.opencv.org/

2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html

Zhu, X. (2007). Semi-supervised learning tutorial. The International Machine

Learning Society. Retreived September 25, 2015, from http://pages.cs.

wisc.edu/~jerryzhu/pub/sslicml07.pdf

http://rvlasveld.github.io/blog/2013/07/12/introduction-to-one-class-support-vector-machines/
http://rvlasveld.github.io/blog/2013/07/12/introduction-to-one-class-support-vector-machines/
http://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html
http://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html
http://pages.cs.wisc.edu/%7Ejerryzhu/pub/sslicml07.pdf
http://pages.cs.wisc.edu/%7Ejerryzhu/pub/sslicml07.pdf

	M.Sc. THESIS EXAMINATION RESULT FORM
	Asst. Prof. Dr. Güleser Kalaycı Demir

	Prof.Dr. Ayşe OKUR

