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for all their friendship, help and patience during my study.

Mert ŞEN
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OBJECT RECOGNITION FROM DEPTH CAMERA IMAGES

ABSTRACT

Object recognition from RGB-D images that provide additional depth information is

very important task in many real world robotics and computer vision applications. The

Convolutional Neural Networks (CNNs) have widely used in numerous applications espe-

cially RGB-D object recognition. However, CNNs have several restrictions even though

they have demonstrated outstanding performance on object recognition. Pooling layer of

CNNs causes to information loss in the stage of feature extraction. In addition to this,

CNN is very sensitive to environmental factors such as rotation and light intensity. Cap-

sule networks proposed by Hinton have been developed to avoid from these problems.

In the thesis, the performances of the Capsule networks are investigated on the RGB-D

dataset. Also a two-layer hierarchical structure is proposed in which the depth images

are used in the first layer and RGB images are used in the second layer. Two differ-

ent hierarchical structures that consist of CNN and capsule networks are designed. The

performances of the hierarchical CNN and capsule networks are evaluated on the Wash-

ington RGB-D dataset. According to the simulation results, the best performance has

been achieved with hierarchical CNN.

Keywords: Capsule network, hierarchical cnn, rgb-d image, object recognition
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DERİNLİK KAMERASI GÖRÜNTÜLERİNDEN NESNE TANIMA

ÖZ

Derinlik bilgisini sağlayan RGB-D görüntülerinden nesne tanıma, robotik ve bilgisa-

yarlı görü gibi uygulama alanlarında çok önemli bir görevdir. Evrişimli sinir ağları, özel-

likle RGB-D nesne tanıma uygulamalarında yaygın olarak kullanılmaktadır. Evrişimli

sinir ağları, nesne tanımada üstün performans göstermesine rağmen, belirli kısıtlara sahip-

tir. Evrişimli sinir ağlarında kullanılan örnekleme katmanı, öznitelik çıkarma aşamasında

bilgi kaybına neden olmaktadır. Buna ek olarak, evrişimli sinir ağları, dönme ve ışık

şiddeti gibi çevresel etkenlere karşı çok hassastır. Hinton tarafından önerilen kapsül

ağları, bu tarz problemlerden kaçınmak için geliştirilmiştir. Bu tezde, kapsül ağlarının,

RGB-D veri seti üzerindeki performansları incelenmiştir. Ayrıca, ilk katmanında de-

rinlik görüntüleri, ikinci katmanında RGB görüntüleri olan iki katmanlı hiyerarşik bir

yapı önerilmiştir. Evrişimli sinir ağları ve kapsül ağlarından oluşan iki farklı hiyerarşik

yapı tasarlanmıştır. Evrişimli sinir ağları ve kapsül ağlarının performansları, Washington

RGB-D veri seti üzerinde değerlendirilmiştir. Simülasyon sonuçlarına göre, en iyi perfor-

mans hiyerarşik evrişimli sinir ağı ile elde edilmiştir.

Anahtar kelimeler: Kapsül ağı, hiyerarşik cnn, rgb-d görüntü, nesne tanıma
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CHAPTER ONE

INTRODUCTION

Object recognition is a task used to identify any objects in images or videos. The

fundamental idea behind the object recognition is to extract features which are widely

known as shape, size and color and apply to the model database in order to verify the

object. Object recognition allows the machines to learn, identify and improve the visual

perception, which is the importance of this technique. In recent years, object recognition

from RGB-D images becomes hot topic since it plays crucial role in many real world

robotics and machine vision applications.

An RGB-D image is a combination of RGB and corresponding grayscale image. Depth

image is a single channel image whose pixels give distances between the image plane and

the corresponding object in RGB image. Usage of RGB and grayscale depth images

simultaneously makes the performance of object recognition better.

In recent years, many cameras that generate RGB and grayscale depth images have

been developed by means of advancing technology. In parallel with these improvements,

many researches including Convolutional Neural Networks which are widely used and

have proven success in image processing have been done progressively. In the literature,

different neural networks have been used to extract features from the images and these

features have been fused in various ways. Cheng et al., 2016, proposed to use Semi-

Supervised learning and deep CNNs to recognize the objects belonging to Washington

RGB-D dataset. Two deep CNNs have been implemented for RGB and depth images sep-

arately and only 5% labelled images of the dataset have been used for training process.

At the end of the training, all RGB and depth features extracted by the networks were ap-

plied to a classifier separately. The outputs of these classifiers contain the labels of images

which are applied to the inputs of both networks. The extracted features are used to cre-

ate fusion classifier. Eitel, Springenbeg, Spinello, Riedmiller & Burgard (2015) realized

Supervised Learning technique on Washington RGB-D dataset. They have used two pre-

trained deep CNNs in order to extract features from RGB and depth images. Afterwards,
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all extracted features were used as inputs of a fusion classifier. The key point of the study

is to encode the grayscale depth images as RGB image by the help of colourization meth-

ods. Besides, in order to use transfer learning, all images found in the dataset have been

resized using a new method proposed by (Eitel et al., 2015). Schwarz, Schulz & Behnke

(2015) develop a new appoach on Washington RGB-D dataset. They have worked on

categorization of all objects, instance recognition and pose estimation. The whole images

are masked in order to extract foreground. Furthermore, they have used two different pre-

trained CNNs to obtain features, and they are fed to a Support Vector Machine (SVM)

to evaluate the object category, type of instance and pose. In the work of Cheng, Zhao,

Huang & Tan (2014) use two different deep Convolutional neural networks as performed

in (Cheng et al., 2016). Both networks are configured as semi-supervised and unsuper-

vised learning. One of the main differences between the studies is the usage of multiple

Recursive Neural Networks (RNNs) for the learning of the features from RGB and depth

images. CNNs have learned the low level features while RNNs have obtained the high

level features. Using two different network topologies for feature extraction makes the

training process faster.

A novel method offered by Rahman, Tan, Xue & Lu (2017) states that three inde-

pendent CNNs have been designed for feature learning. One of these networks is used

for RGB images, the others are operated for depth images. In this technique, both net-

works encode the depth images as RGB image and use surface normals of that images.

GoogleNet is used for feature learning of RGB images while CaffeNet is preferred for

depth images due to its straightforward structure. In the study of Mocanu & Clapon

(2018), object detection task has been performed on Sun RGB-D dataset via faster Re-

cursive Convolutional Neural Network (RCNN) with a Region Proposal Net (RPN). For

RGB and depth images, VGG has been used independently and then all extracted fea-

tures are concatenated. These features are the inputs of both RPN and fast RCNN. The

RPN contains convolutional and ReLU activation layers. This network is used to deter-

mine region of the object and estimate the object bounding. Besides, fast RCNN includes

max pooling layer used for determining Region of Interest (RoI). Wang, Lu, Chen & Wu

(2015) utilizes a fine-tuned convolutional neural network with images from ImageNet.

They have used two different Caffe models to learn features from Washington RGB-D
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dataset, extracted and concatenated features are applied to a linear SVM for classifica-

tion. All missing depth values are filled by computing the mean of depth values in 5 × 5

region before the stage of training. In the work of Wei, Zhiguo, Yang & Zhiwen (2015),

RGB-D object recognition has been performed using both convolutional neural network

and Fisher vector which measures the similarity between objects. The features of RGB

images have been extracted by VGG16 or VGG19, while the features of depth images are

obtained by means of Fisher kernel. Afterwards, all features are combined in order to form

the inputs of SVM used for classification. The critical point of the study is that RGB and

depth images of Washington RGB-D dataset are processed without segmentation masks.

Another way to extract features is to combine various network topologies. In the study

of Bui, Lech, Cheng, Neville & Burnett (2016), AlexNet, which is the most popular and

widely used architecture, and a RNN are connected in cascade form. The classification is

performed by RNN instead of fully-connected layers after AlexNet has extracted all fea-

tures from the images found in Washington RGB-D dataset. On the other hand, feature

extraction process do not need additional training time. In other work that uses Washing-

ton RGB-D dataset, Lai, Bo, Liefeng & Fox (2011a) propose Sparse Distance Learning to

combine RGB and depth images for object recognition. The principle of Sparse Distance

Learning is similar to artificial neural networks since the distance between an unknown

image and a known set of images has been computed. This approach is very useful for

instance recognition.

On the other hand, 2D and 3D Convolutional neural networks have been developed to

perform object recognition. Zia, Yüksel, Yüret & Yemez (2017) have designed a hybrid

2D/3D CNNs to learn features from RGB-D images. 3D architecture encodes spatial and

color information at the same time. For all RGB images, features have been obtained by

means of pre-trained VGGNet and they are used to train a SVM. On the other hand, a three

dimesional voxel whose height and width are the as original image is created for depth

images. All depth information have been located on the voxel with respect to the distance

computed using maximum and minimum depth values in the image. Furthermore, miss-

ing depth values are filled with interpolation method. Maturana & Scherer (2015) have

implemented a 3D CNN, which is called as VoxNet. The VoxNet transforms the point
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clouds coming from the RGB-D cameras into occupancy grid. After that, all images have

been applied to VoxNet and fully connected layers for classification. Caglayan & Can

(2018) exploits a volumetric demonstration with a 3D CNN. Due to noisy data coming

from the sensor, they have applied denoising techniques. After that volumetric represen-

tations are generated from raw depth images. 3D CNN with input volume representation

of 32× 32× 32 has two convolutional layers, pooling and fully connected layers in order

to make the generalization ability of the network better. In the training stage, both ran-

domly mirroring and shifting have been performed for data augmentation. Nishi, Kurogi

& Matsuo (2017) have investigated to classify the objects with respect to their size. The

pixels of RGB images are transformed in order to compute the center of the object using

appropriate depth pixels in 3D. In the topology of CNN, there are many convolution and

pooling layers to ensure invariance to scaling. They have used four categories such as

apple, bell pepper, orange and tomato from Washington RGB-D dataset. In addition to

this, each object is enlarged by a finite ratio which changes from 0.8 to 1.2 and rotated

between -10 and 10 degrees around z-axis.

The major problem dealing with large dataset and neural networks is directly related

with the computation power. Uetz & Behnke (2009) overcome the problem by using

NVIDIA CUDA (Compute Unified Device Architecture) technology to operate Locally-

connected Neural Pyramid (LCNP) for extracting features. Unlike the traditional CNN

structure, they have used Hierarchical structure and parallel computing allows the net-

work to process images different cores. One of the crucial aspect of LCNP is that the

network has no weight sharing among neurons. Therefore, object recognition task can be

performed faster and efficiently. In the study carried out by Asif, Bennamoun & Sohel

(2017), Washington RGB-D recognition and scene images have been analyzed via pre-

trained CNNs. The network has learned the features from the point clouds of the objects.

All features including RGB color, color gradients, surface normals and their orientations

are used for robotic grasping.

In the literature, different versions of CNNs have been proposed for object recogni-

tion from RGB and depth images. Even though they have presented high performance

on RGB-D images, CNNs have several disadvantages. CNNs require generally all points
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of view of an object for recognition precisely and they are also sensitive to light inten-

sity, occlusion and rotation. Furthermore, several layers of the network loses the spatial

information in the step of feature extraction. To cope with these troubles, Capsule Net-

works are proposed by Hinton (Sabour, 2017). A capsule is described as a small group

of neurons that encodes the spatial information. Each capsule has an activity vector that

represents the specific parameters of the object. The length of this vector is equal to the

probability of the object if it is present in the image. In addition, orientation of the vector

gives information about the pose of the object.

In this thesis, a hierarchical Convolutional neural network that consists of two layers

is proposed for object recognition from RGB and depth images. In this architecture, all

classes of the dataset have been classified with a CNN structure in order to determine the

object classes recognized with the best accuracy. After that, first layer of the hierarchical

structure contains the object classes whose accuracies are higher than 90%. The second

layer covers the remaining object classes. The depth images are used in the first layer and

the RGB images are used in the second layer. The aim of the hierarchical classification

is to decompose the classes to be classified easily and design a different classifier for the

object classes which is hard to classify. This technique is also performed with capsule

networks. The performance of the networks are evaluated on challenging Washington

RGB-D dataset. The compelling issues of this dataset can be summarized as intraclass

and interclass variations in Washington RGB-D dataset, various shape of cropped ver-

sions of both RGB and depth images, missing depth pixels due to sensor limitations,

deformations and occlusion. Moreover, the performances of the capsule networks have

been investigated on Washington RGB-D dataset.

This thesis is organized as follows: The general structure and limitations of CNNs are

studied in Chapter II. The topology of Capsule Networks, dynamic routing algorithm are

explained in Chapter III. Washington RGB-D object recognition dataset, preprocessing

steps and all simulation results are presented in Chapter IV and conclusions are given in

Chapter V.
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CHAPTER TWO

CONVOLUTIONAL NETS

2.1 Convolutional Neural Networks

Convolutional neural network is a feed-forward, multi-layer deep neural network to

analyze data. This type of networks show better performance than the classical methods

especially on object recognition. Convolutional neural networks have been originated

from a mathematical operation known as convolution defined as,

h[n] =
∞

∑
k=−∞

f (k)g(n− k) (2.1)

In the deep learning terminology, Eq.(2.1) states that h[n] is the output of the convolu-

tional layer, f (k) is the input data to be applied to neural network and g(n−k) is the filter

to extract features. CNNs can be used with different learning methods. In supervised

learning, all input and output data are always known. Algorithm predicts the output data

iteratively using training data. The learning process continues until desired performance

is achieved. In unsupervised learning, the network has unlabelled data. The learning pro-

cess highly depends on the distribution of the data. In semi-supervised learning, small

portion of the data is labelled. In the thesis, supervised learning has been performed.

During the thesis, the following parameters must be carefully adjusted to improve the

generalization performance of the network.

• Epoch is an integer number, which learning process operates on the set of train-

ing data. The value of this parameter can be selected with respect to the network

complexity,

• Batch is a parameter which describes the number of data applied to the input of the

network before updating of the internal weights of the network,

• Learning Rate is a hyper-parameter that defines the step size of an optimization

algorithm to approach the minimum value of a loss function. The parameter af-

fects the generalization performance of the network directly. It is no clear way to

6



determine the learning rate. However, large learning rates make the training phase

unstable. The illustration between loss and learning rate can be seen below.

Figure 2.1 Relationship between learning rate and loss (Gonçalves, 2016)

A CNN consists of convolutional and activation layers, pooling layers and fully con-

nected layers. The general structure of a CNN can be seen below. The operating principle

of a CNN can be summarized as follows,

Figure 2.2 General overview of a CNN (Baldominos et al., 2018)

1. When an image is applied to the network, all these layers perform convolution

operation for feature extraction,

2. All extracted features are transferred to activation and pooling layers,

3. Pooling layers reduce the dimension of the input data,

4. Down-sampled data are applied to fully-connected layers for training.

7



2.1.1 Convolutional & Activation Layers

A convolutional layer is applied to raw or pre-processed input data. The operation of

the layer is to slide a kernel over the whole image. The simple operation of the layer can

be seen in the following figure.

Figure 2.3 Convolution operation (Chatterjee, 2017)

The output of the convolutional layer can be computed as,

Out put Shape =
[W −K +2P

S

]
+1 (2.2)

where W is the input shape, K is the shape of the kernel, P is the parameter used to

determine whether the input data are zero-padded or not. Lastly, S is the stride number

which determines the step size of the kernel (Chatterjee, 2017).

Activation layer is used to add non-linearity to the neural network. There are many

different activation functions such as Sigmoid, Hyperbolic Tangent and ReLU (Rectified

Linear Unit). Mathematically,

fsigmoid(x) =
1

1+ e−x (2.3)

ftanh(x) =
ex− e−x

ex + e−x (2.4)

fReLU(x) = max(0,x) (2.5)

8



This layer solves the vanishing gradient problem which emerges from the selection of

the activation. The problem states that the output of the network produces a small change

even if big change occurs in the input of the network. In order to eliminate the very small

values of the gradient, ReLU is used as an activation function in the thesis. Besides, ReLU

makes the training process of the network faster.

2.1.2 Pooling Layer

Pooling layer performs downsampling operation to produce a summary of all sub-

region in an image. The layer reduces the spatial information of the input data to avoid

from computational cost. Average or Max Pooling in the following figure can be widely

used in the neural networks (Balodi, 2019).

Figure 2.4 Popular pooling techniques (Balodi, 2019)

Furthermore, pooling layers also control the overfitting problem. Overfitting is an

undesired phenomena in deep learning. Overfitting occurs when a neural network mem-

orizes all training data including noise. Thus, the generalization ability of the network

is influenced negatively. In addition to this, one of the most common situation is known

as underfitting. In this case, the neural network has bad training performance and it can

not generalize both training and test data. Graphical representation of both conditions is

given below.

9



Figure 2.5 Overfitting and underfitting (Patel, 2019)

To prevent overfitting, the amount of training data can be increased or regulariza-

tion and dropout methods are applied to the network for reducing model complexity.

In addition to this, early stopping can be performed in training step. In order to cope

with underfitting, number of features, epochs and the complexity of the model can be in-

creased (Patel, 2019). In the thesis, Image Data Generator defined in Keras library is used

to evaluate the classification performance of the network as data augmentation method.

The well-known data augmentation methods are flipping, rotation, scaling, cropping and

adding noise.

2.1.3 Fully Connected Layer

This layer determines which features are mostly correspond to a particular class. In

general, all features coming from the previous layers are applied to the input of MLP. An

example of MLP can be seen in the following figure.

Figure 2.6 A fully connected MLP with three layers
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2.2 Types of Convolutional Neural Networks

In the last decades, many different types of CNNs have been used to implement various

tasks. Each CNN has different topology and number of parameters, which affects the

performance of the neural network significantly. The popular topologies can be seen in

Table 2.1.

Table 2.1 Number of model parameters of different convolutional nets

Model Model Parameter Depth

Xception 22.9M 126

VGG16 138.3M 23

VGG19 143.6M 26

InceptionV3 23.86M 159

MobileNet 4.2M 88

ResNet50 25.6M 168

The models in this table can be used for transfer learning which is an optimization

technique to save time and to perform better. Transfer learning has two stages. In the

pre-training stage, the network has been trained on a large dataset such as ImageNet, then

all parameters of the network have been already learned. In the fine-tuning, a new dataset

is applied to pre-trained network. If the dataset is very similar to one that used in pre-

training, feature extraction can be performed with same weights. After that, it is better

idea to train the fully-connected layers.

In the thesis, VGG16 has been used to perform the object recognition task and compare

the classification performance to the performance of Capsule network.

2.3 VGG16 Architecture

VGG16 is a convolutional neural network created by Oxford University. The input

shape of VGG16 is adjusted as 224 × 224 RGB image. In addition to this, the size of the

kernel used in the convolutional layer is 3×3. VGG16 has three fully-connected layers

and the first two layers have 4096 neurons. The neuron number of the last layer can be

determined with respect to the object classes of the dataset. The general overview of

VGG16 is depicted in the following figure.
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Figure 2.7 General structure of VGG16 (Thakur, 2019)

2.4 Limitations of Convolutional Neural Networks

Convolutional Neural Networks are very sensitive to the orientation of the object and

light intensity in the environment. Simple and complex spatial relationship between ob-

ject and environment can not be taken into the consideration. As seen in the following

figure, light intensity on the different perspectives of an object in the image decreases

the performance of the network (Pechyonkin, 2017). Therefore, more training data are

required to improve the performance. However, this situation causes high computational

cost, training time and powerful hardware.

Figure 2.8 Images with different orientations and light intensities (Pechyonkin, 2017)
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Figure 2.9 Disadvantage of a pooling layer (Thörnberg, 2015)

On the other hand, the major problem with CNNs is the pooling layers, since this

layer loses crucial information in the image. Figure 2.9 represents that the information

extracted from the image is reduced significantly when the dimension of the pooling layer

is increased.
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CHAPTER THREE

CAPSULE NETWORKS

3.1 Capsule Networks

Capsule networks show up to overcome the disadvantages of the convolutional neural

networks. A capsule can be described as a small group of neurons. Input and output of

a capsule are in the form of vector, which is opposed to artificial networks. Each capsule

has an activity vector marked with red and blue in the following figure. Pose, deformation

and velocity (also called as instantiation parameters) are indicated by this vector (Sabour,

2017).

Figure 3.1 Activity vector of a capsule (Rimal, 2018)

The length of the activity vector corresponds to the probability which the object exists

in the image and orientation of the vector points out the instantiation parameters. The

following table represents the differences between a capsule and a traditional neuron.

One of the crucial dissimilarities between these neurons is that capsule network performs

affine transformation before weighted sum (Pechyonkin, 2017).
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Table 3.1 Comparison of a capsule to a traditional neuron (Pechyonkin, 2017)

Operation Type Capsule Traditional Neuron

Input Shape vector(ui) scalar(xi)

Affine Transform ûj|i = Wijui -

Weighting & Sum sj = ∑i ci jûj|i a j = ∑i wixi

Non-linear Activation vj =
||sj||2

1+||sj||2
sj
||sj|| h j = f (a j)

Output Shape vector(v j) scalar(h j)

3.2 Operating Principle of Capsule Network

The study offered by Hinton, Krizhevsky and Wang (2011) defines the main concept

of the capsules by transforming auto-encoders. Each capsule learns how to recognize the

objects under different circumstances such as light intensity, translational change. It is

important to investigate operation of lower level capsule.

Figure 3.2 Basis of a capsule operation (Hinton et al., 2011)

The Figure 3.2 represents a deterministic and feed forward network with three cap-

sules. Each capsule has three recognition units and four generation units. Recognition

units can be considered as a hidden layer to calculate the probability of existence of the
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object (p), position of the object (x and y). Generation units compute the the contribution

of each capsule to an image to be transformed. This network contains different capsules

interacting at the last layer for shifted image. Both an image and amount of desired shift

(denoted as ∆x and ∆y) have been used as inputs of the network and the network gener-

ates a shifted image. x+∆x and y+∆y are the inputs of generation units. If a capsule

is not active, this means that there is no contribution to output image. When randomly-

shifted input, output images and amount of shift are applied, capsules learn how to find

the position of the object.

On the other hand, the pioneer study of internal operation of capsule networks per-

formed by Sabour, Frosst and Hinton (2017) can be explained visually as follows,

Figure 3.3 Internal operation of a capsule

• Matrix Multiplication of Input Vectors : The vectors u1, u2 and u3 coming from

a lower level layer are considered as input vectors. Length of these vectors encodes

the probability of detected objects whereas direction of the vectors encodes the

internal state of the object. Then these vectors are multiplied by a weight matrix

denoted as W in order to store important spatial and other relationships between

lower level features and higher level features. In fact, the estimated position of the

high level feature is found.

• Scalar Weighting of Input Vectors : In this case, lower level capsules send their

outputs to higher level capsules. The critical point is to determine which input of

the higher level capsule is connected to the lower level capsule. The weights c1,
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c2 and c3 are used for the connection between capsules and they are determined by

using routing algorithm.

• Sum of Weighted Input Vectors : This step is the same as in a traditional neuron.

Namely, it represents combination of vectors.

• Squash: Vector-to-Vector Non-linearity : This non-linear activation function

takes an input as a vector and squashes it without changing its direction. After the

squashing, the length can not exceed unity. To compute vector inputs and outputs

of a capsule, it can be written mathematically as,

vj =
||sj||2

1+ ||sj||2
sj

||sj||
(3.1)

where vj is the vector output of capsule j and sj is total input. The first term on the

right-side of the Eq.(3.1) performs additional squashing and the second term applies

unit scaling to input vector.

3.2.1 Routing-by-Agreement Technique

In addition to Eq.(3.1), total input is given by,

sj = ∑
i

cijûj|i, ûj|i = Wijui (3.2)

where ûj|i is the prediction vectors from capsules in the layer below, ui is the output of a

capsule in the layer below and Wij is the weight matrix. The coupling coefficients cij are

computed by the help of iterative dynamic routing process. The sum of the coefficients

equals to one and they are determined by a routing softmax whose initial values bi j are

the log probabilities that capsule i should be coupled to capsule j. The coefficients can be

found as,

ci j =
exp(bi j)

∑k exp(bik)
(3.3)

Note that ci j is a non-negative scalar and for each lower level capsule i, the number of

weights equals to the number of higher level capsules. On the other hand, the agreement

condition is described as scalar product,

ai j = vj.ûj|i (3.4)
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3.2.2 Routing Algorithm

The following figure shows the routing algorithm described by Hinton. Besides, op-

eration of each step in the algorithm can be examined step by step (Pechyonkin, 2017).

Figure 3.4 Routing algorithm (Sabour et al., 2017)

• Step 1 : Algorithm takes the number of routing iteration (r), number of lower layer

(l) and û is the outputs of all capsules in that layer.

• Step 2 : At the beginning, bi j is set to 0. The temporary coefficient bi j is iteratively

updated until the procedure is completed. Then, it is finally stored in ci j.

• Step 3 : Repeat the dynamic routing algorithm with respect to the iteration number.

• Step 4 : Compute the values of the vector ci for all lower level capsules using

Eq.(3.3). All coefficients ci j are equal in the first iteration since bi j = 0. It means

that algorithm shows maximum confusion and uncertainty. In other words, the

appropriate output of higher level capsule can not be determined by lower level

capsule.

• Step 5 : After all computations of ci j for lower layer capsules, a linear combination

of input vectors that are weighted by ci j is computed for higher level capsules. Then

sj is calculated by using Eq.(3.2).

• Step 6 : The vector computed in previous step is squashed for non-linearity. The

direction of the vector is not changed and its length is not bigger than 1. Then,

output vector vj is produced using Eq.(3.1) for all higher level capsules.

• Step 7 : This step examines each input and updates the corresponding weight bi j

for each higher level capsule j. The dot product looks at similarity between input
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to the capsule and output from the capsule. This similarity is evaluated by the dot

product.

3.2.3 Visual Representation of Updating Weights

Assume that there are two higher level capsules whose outputs are denoted as v1 and

v2. The red vectors represent input from one of the lower level capsules and the black

vectors represent all the remaining inputs from other lower level capsules in the following

figure.

Figure 3.5 Similarity measure between input and output of capsules (Pechyonkin, 2017)

The left figure shows that v̂1 and û1|1 are in opposite direction, which means that

they are not similar. Then, dot product is negative and c11 is decreased. The right figure

represents that v̂2 and û2|1 are in same direction, which means that they are similar. Then,

c12 is increased. The process is repeated for all higher level capsules.

3.3 CapsNet Architecture

Capsule network used in the thesis has a convolutional layer with 32 × 32 × 3 input

size for both RGB and depth images. Capsule networks have encoder and decoder parts

as shown in Figure 3.6 and Figure 3.7.

In the encoder part, the convolution layer used for feature extraction has 256 filters,

no padding and produces one-dimensional output. In addition to this, stride is selected as

1. Due to one dimensional output, there is no orientation. PrimaryCaps layer is another
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Figure 3.6 Encoder part of the capsule network (Sabour et al., 2017)

Figure 3.7 Decoder part of the capsule network (Sabour et al., 2017)

convolution layer that applies squashing. The number of primary capsule is selected as

16. Caps layer is used for classification and it calculates the classification losses. Note

that total loss is the sum of individual capsule loss. The critical point is that the routing

algorithm is performed between PrimaryCaps and Caps layers.

Decoder part uses the outputs of Caps layer to reconstruct the images. However,

reconstruction of all images has not been studied in the thesis.
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CHAPTER FOUR

APPLICATIONS & RESULTS

In this section, Washington RGB-D dataset and preprocessing steps are explained

briefly. In the preprocessing step, a new method which is proposed by Eitel et al. (2015)

has been used to resize the whole images in the dataset. In addition to this, interpolation

technique proposed by Thörnberg (2015) is used to fill the missing depth pixels. Through-

out the thesis, Python and its libraries (Keras and Tensorflow as backend) are used.

4.1 Washington RGB-D Dataset

A dataset is an organized set of information such as image, text or speech signals to be

processed by a computer. The dataset has mainly divided into three subsets. They can be

summarized as,

• Training Set uses the large portion of the whole dataset to train the neural network.

• Validation Set utilizes the small part of the dataset. It is generally created from the

training set by the help of cross validation. In this step, internal parameters of the

network are adjusted by using this set.

• Test Set contains unlabelled and unseen data which are used to evaluate the gener-

alization performance of the network.

In the thesis, Washington RGB-D dataset which provides RGB and depth images is

used.

A large-scale and hierarchical Washington RGB-D object dataset has been created

via Microsoft Kinect cameara by Lai, Bo, Liefeng anf Fox (2011b). The whole dataset

includes 300 distinct instances and they are organised as 51 object classes (categories).

All images taken from the camera synchronously have 640×480 resolution. The whole

dataset has RGB images, grayscale depth images, segmentation masks and location files

for cropping images. Segmentation masks are also used to remove background from the
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images to observe the evolution of the classification performance of the network. Object

recognition can be performed in two different ways:

1. Category Recognition : In this categorization, the neural network has 51 classes.

Some of the classes are shown in Figure 4.1. Each class consists of sub-classes of

the same object. A sub-class from each category is used as test set for the network.

2. Instance Recognition : In this situation, the neural network has 300 classes. This

means that each sub-class is considered as a new class. For example, apple cate-

gory has 5 different sub-classes (instances), hence red apple and yellow apple are

different classes that are shown in Figure 4.2.

Figure 4.1 Different classes from the dataset (Lai et al., 2011b)

Figure 4.2 Instances from Apple object class with segmentation mask (Lai et al., 2011b)

In the thesis, the cropped versions of all images have been used in order to avoid

from memory allocation problems. Besides, segmentation masks are applied to the depth

images in order to eliminate unwanted depth pixels. Since the whole dataset is too large,

it is downscaled. Before the downscaling operation, the sum of RGB and depth images is

440K approximately. The downscaled version of the dataset has 42k images separately.

This study focuses on the category recognition with downscaled dataset. Training and test
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sets are constructed by extracting an instance from each category (300 - 51 = 249). This

process is as: Each class has different instances like in Figure 4.2 and the name of these

instances is given as Apple 1, Apple 2, ... so on. Then, one of these instances is chosen as

test class, the others are used as train set. This is also valid for all object classes. Shortly,

training set has approximately 35k images, the remaining images are evaluated as test set.

Performances of all networks have been evaluated via confusion matrix.

Confusion matrix is a simple table used to describe the performance of a classifier or

network over test data whose true values are known. For binary classification, confusion

matrix can be written as,

Table 4.1 An example of confusion matrix for binary classification

Prediction (Class = 0) Prediction (Class = 1)
Target (Class = 0) True Positive (TP) False Negative (FN)
Target (Class = 1) False Positive (FP) True Negative (TN)

Mathematical formulas for confusion matrix can be given as follows.

Sensitivity = True Positive Rate =
T P

T P+FN
(4.1)

Speci f icity = True Negative Rate =
T N

T N +FP
(4.2)

PPV = Positive Predictive Value =
T P

T P+FP
(4.3)

NPV = Negative Predictive Value =
T N

T N +FN
(4.4)

The overall accuracy of the classifier is computed as,

Accuracy =
T P+T N

T P+T N +FP+FN
(4.5)

On the other hand, Washington RGB-D dataset is challenging dataset, because cropped

images have different dimensions. Therefore, all images must be resized with respect to

the input shape of the networks by keeping their aspect ratio constant. In addition, it is

hard to discriminate the objects from grayscale depth images since shapes of the objects

in different categories are very similar to each other.
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4.2 Preprocessing Steps

All RGB and grayscale images of the dataset have been preprocessed in order to im-

prove the performance of the neural network.

4.2.1 Resizing Images

Due to the different dimensions of the cropped images, it is obligatory to resize RGB

and depth images according to the input shape of the Capsule and Convolutional neural

networks. In the thesis, the input shape of Capsule networks is 32×32, whereas the input

size of CNNs is adjusted as 150 ×150. This operation has been performed for RGB and

depth images. The critical point of resizing depth images is to encode grayscale depth

images as RGB images. The main aim is to preserve the shape of the object as shown in

below figure.

(a) Depth Image (b) RGB Image

Figure 4.3 Resizing images with original aspect ratio (Eitel et al., 2015)

This process can be explained in detail as,

1. Specify the input shape of the network,

2. Find the longest edge of the cropped image and compute the ratio between the

longest edge and desired dimesion,

3. Using this ratio, resize the shortest edge of the image,

4. Split RGB images into separate color channels,
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5. Extend the borders of the longest edge of the image in the direction of the shortest

edge,

6. Merge the channels to create final image.

The flowchart of this operation has been used to resize training and test images for

both capsule and convolutional neural networks.

Figure 4.4 Flowchart of the resizing operation for depth images

4.2.2 Encoding Depth Images into RGB

This step is applied only for grayscale depth images. In order to encode them into

RGB, jet colormap is used. The result of the colorization technique can be seen below.

4.2.3 Interpolating Missing Depth Pixels

RGB images with their backgrounds have been used to fill the missing depth values by

interpolation. When performing the interpolation, the Euclidean distance among neigh-
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(a) Grayscale Depth Image (b) Coloured Depth Image

Figure 4.5 Difference between grayscale and coloured depth images

bour RGB pixels is computed in order to find appropriate depth pixel (Thörnberg, 2015).

Euclidean distance is defined as,

d =
√
(x2− x1)2 +(y2− y1)2 (4.6)

The general procedure of this interpolation can be expressed in detail as,

1. Find the minimum depth value of original depth image and subtract the value from

the whole images,

2. Normalize the depth image and set missing depth values in borders of the image to

maximum depth value,

3. Determine the location of the missing pixel,

4. Search non-missing pixel values around the missing pixel in left, right, up and down

directions. At the end of searching, these points form a rectangular matrix,

5. Convert the matrix into a vector by neglecting missing depth values and create a

new vector to store non-missing depth values,

6. Find the RGB pixel values in each element of the vector and missing depth pixel,

7. Compute the Euclidean distances between RGB pixel value of missing depth image

and each element of the vector,

8. Find the smallest distance and take the location of that RGB pixel. The value of this

location corresponds to the pixel value of the missing depth.
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Figure 4.6 An example of masked and interpolated sample

This technique is one of the best interpolation methods, but it requires high computa-

tional cost. The flowchart of this operation can be seen below.

Figure 4.7 Flowchart of filling deficient depth values

4.3 Performance of VGG16

In the thesis, VGG16 architecture is used and the neurons in the last layer have been

changed from 1000 to 51 since Washington RGB-D dataset has 51 distinct object classes.

Additionally,the input shape of VGG16 has been changed from 224× 224 to 150× 150 in

27



order to prevent memory problem. After reconfiguration of VGG16, the model summary

can be given in the following table. The table represents the output of each layer after

reconfiguring VGG16.

Table 4.2 Base structure of VGG16 after reconfiguration

On the other hand, the topology given above does not include the fully connected layers

to be trained for Washington RGB-D dataset. The fully connected layers and change in

the number of parameters can be depicted in the following table.
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Table 4.3 Fully-connected layers of VGG16 after reconfiguration

4.3.1 Simulation Results of VGG16

Different versions of simulations have been tested on Washington RGB-D dataset by

using VGG16 and all obtained results are given in tabular form.

Table 4.4 VGG16 simulation results on Washington RGB-D dataset

Image Type Background Removal Fusion Data Augmentation Test Accuracy (%)

Coloured Depth Yes No No 82.4

RGB Yes No No 55.24

RGB No No No 75.88

RGB No No Yes 78.24

RGB & Coloured Depth No & Yes Yes No 83.33

In this table, depth images have been masked with segmentation masks to increase the

accuracy of the object recognition. According to the results, the neural network shows

better performance on RGB images without segmentation masks. In addition to this,

horizontal flipping has been just performed on RGB images as data augmentation method.

In fusion technique, RGB and depth images are applied to separate VGG16 networks

to extract the features, which improves the performance of the network. After that, all

features are concatenated in a unique vector and classified. In the study performed by

Eitel et al. (2015), the accuracies of CNNs whose input shape is 227×227×3 are 84.1%

and 83.8% for RGB and depth images, respectively. In our architecture of VGG16, the

accuracy of coloured depth images is 82.4% by using preprocessing images and changing
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the input shape from 224×224×3 to 150×150×3. Besides, the training and validation

performances of the simulated networks can be seen in the following figures.

(a) Training and Validation Accuracy (b) Training and Validation Losses

Figure 4.8 Performance of VGG16 on coloured depth images

(a) Training and Validation Accuracy (b) Training and Validation Losses

Figure 4.9 Performance of VGG16 on non-masked RGB images

(a) Training and Validation Accuracy (b) Training and Validation Losses

Figure 4.10 Performance of VGG16 on non-masked, augmented RGB images

When computing the test accuracy of the convolutional neural networks, weights which

are saved at the best validation accuracy are used. All confusion matrices are given in

Appendix 1 - Appendix 3. The result for depth images states that the neural network does
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not classify round objects. On the other hand, data augmentation on non-masked RGB

images improves the performance of the network.

On the other hand, 20 sub-classes of Washington RGB-D dataset which are selected

with containing dissimilar classes are simulated to compare the performance of VGG16 to

CapsNet. The main aim of the simulation is to compare the performance of both networks

when the dataset does not include similar objects. All simulation results can be seen in

the following table.

Table 4.5 VGG16 simulation results on 20 classes of Washington RGB-D dataset

Image Type Background Removal Fusion Data Augmentation Test Accuracy (%)

Coloured Depth Yes No No 95.8

RGB Yes No No 88.94

According to Table 4.4 and Table 4.5, fewer object classes improve the performance of

VGG16. The confusion matrix of VGG16 on coloured depth images can be seen below.

Figure 4.11 Confusion matrix of 20 classes on coloured depth images for VGG16
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4.4 Performance of CapsNet

The input-output connection of the capsule network constructed for RGB-D dataset

can be seen in the following table.

Table 4.6 Capsule network for Washington RGB-D dataset

4.4.1 Simulation Results of CapsNet

Different simulations have been performed on Washington RGB-D dataset. Besides,

the performance of the capsule networks has been evaluated by changing the number of

convolution layers and primary capsules. All simulations are realized on Google Colab-

oratory which provides Tesla K80 GPU. The training and validation performance of the

simulated networks can be seen in the following figures.

(a) Training and Validation Accuracy (b) Training and Validation Losses

Figure 4.12 Performance of CapsNet on coloured depth images
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(a) Training and Validation Accuracy (b) Training and Validation Losses

Figure 4.13 Performance of CapsNet on non-masked RGB images

Table 4.7 CapsNet simulation results on Washington RGB-D dataset

Image Type Background Removal Conv Layer # Data Augmentation Primary Caps # Test Accuracy (%)

Coloured Depth Yes 1 No 16 70.72

Coloured Depth Yes 2 No 64 70.9

RGB Yes 1 No 16 58.92

RGB No 1 No 16 65.29

Grayscale Depth Yes 2 No 64 67.95

As seen in Table 4.7, RGB images with background represent better performance.

Furthermore, coloured depth images have better accuracy according to grayscale depth

images. According to confusion matrices in Appendix 4 and Appendix 5, it is hard to

discriminate the similar objects from each other for capsule networks.

(a) RGB image without mask (b) RGB image with mask

Figure 4.14 Background removal on RGB images (Lai et al., 2011b)

As seen in simulation results given in Table 4.4 and Table 4.7, both VGG16 and Cap-

sNet show better performance on RGB images without mask. The important change in

the performances of the architectures is that background images have been treated as fea-

tures to recognize objects. The rise of the performance of VGG16 on non-masked RGB

images is much higher than that of CapsNet due to its topology.
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As performed for VGG16, the same 20 sub-classes of Washington RGB-D dataset

which are selected with containing dissimilar classes are simulated to compare the perfor-

mance of CapsNet to VGG16. All simulation results can be seen in the following table.

Table 4.8 CapsNet simulation results on 20 classes of Washington RGB-D dataset

Image Type Background Removal Fusion Data Augmentation Test Accuracy (%)

Coloured Depth Yes No No 94.13

RGB Yes No No 80.97

According to Table 4.7 and Table 4.8, fewer object classes improve the performance

of CapsNet. In addition to this, the recognition performance of CapsNet converges to the

performance of VGG16 for both RGB and depth images when the dataset contains non-

identical object classes. The confusion matrix of CapsNet on coloured depth images can

be seen below.

Figure 4.15 Confusion matrix of 20 classes on coloured depth images for CapsNet

4.5 Proposed Hierarchical Structure

On the other hand, a hierarchical structure has been implemented instead of fusion

operation. In this type of simulation, the confusion matrices which correspond to the
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coloured depth and non-masked, no data augmented RGB images respectively in Table

4.4 are analysed in order to construct the hierarchical structure. For both type of images,

the first layer of the hierarchical structure includes the object classes whose accuracy is

greater than 90%. The remaining object classes are considered as the second layer of the

structure. The critical point is that each layer of the hierarchical structure has different

number of object categories. The training and validation performances of the hierarchical

structure can be seen in the following figures.

(a) Training and Validation Accuracy (b) Training and Validation Losses

Figure 4.16 Performance of first layer of VGG16 on coloured depth images

(a) Training and Validation Accuracy (b) Training and Validation Losses

Figure 4.17 Performance of second layer of VGG16 on coloured depth images

As seen in below and above figures, the first layer of the hierarchical VGG16 has better

performance than the other layer on coloured depth images.
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(a) Training and Validation Accuracy (b) Training and Validation Losses

Figure 4.18 Performance of first layer of VGG16 on non-masked RGB images

(a) Training and Validation Accuracy (b) Training and Validation Losses

Figure 4.19 Performance of second layer of VGG16 on non-masked RGB images

Table 4.9 Simulation results for hierarchical VGG16 structure

Hierarchical Structure for Non-masked RGB Images

Layer # Test Image # Correctly Classified # Misclassified # Class # Test Accuracy (%)

First Layer 4770 4228 522 34 89.1

Second Layer 2263 1735 528 17 76.7

Total 7033 5963 1050 51 84.79

Hierarchical Structure for coloured depth Images

Layer # Test Image # Correctly Classified # Misclassified # Class # Test Accuracy (%)

First Layer 3478 3413 65 25 98.13

Second Layer 3555 2536 1019 26 71.33

Total 7033 5949 1084 51 84.59

As seen in above table, our hierarchical structure outperforms for RGB and depth

images, separately. This hierarchical topology shows better performance with respect to
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the results given in Table 4.4. Furthermore, confusion matrices of this structure can be

seen in Appendices 6-9. In this hierarchical topology, the first layer consists of coloured

depth images of object classes whose accuracies are higher than 90%. In addition, the

second layer includes the remaining nonmasked RGB object classes. This procedure is

valid for CapsNet and VGG16. All results of the hierarchical structure can be seen below.

Table 4.10 Simulation results for hierarchical VGG16 structure

Hierarchical Structure for VGG16

Layer # Test Image # Correctly Classified # Misclassified # Class # Test Accuracy (%)

First Layer - Depth 3478 3413 65 25 98.13

Second Layer - RGB 3555 2832 723 26 79.67

Total 7033 6245 788 51 88.8

Table 4.11 Simulation results for hierarchical CapsNet structure

Hierarchical Structure for CapsNet

Layer # Test Image # Correctly Classified # Misclassified # Class # Test Accuracy (%)

First Layer - Depth 3220 3148 72 23 97.76

Second Layer - RGB 3813 2447 1366 28 64.18

Total 7033 5595 1438 51 79.55

As seen in above results, the proposed hierarchical structure improves the performance

of both networks when combining non-masked RGB images with coloured depth images.

According to the results, the best performance has been achieved with the hierarchical

VGG16..

37



CHAPTER FIVE

CONCLUSION

In this thesis, the object recognition performance of capsule networks has been eval-

uated on a dataset includes RGB and grayscale depth images. Two different capsule

networks have been implemented in order to classify objects using Washington RGB-D

dataset. The most important aspect between capsule network and convolutional neural

networks is that capsule networks have used dynamic routing algorithms instead of pool-

ing layers in order to preserve spatial relationship among features. The general architec-

ture of the capsule network used in the thesis has at least one or two convolution layers

with 16 primary capsules. Furthermore, VGG16 with an input shape of 150 × 150 and

five convolution blocks have been constructed for performance comparison. For both net-

works, preprocessing step has played in a crucial role. The Washington RGB-D dataset

is quite challenging since all images have different size. The resize operation has been

performed by keeping the aspect ratio of the images constant. Due to noisy data coming

from the sensor, all depth images have deficient pixels. Interpolation method proposed

by Thörnberg (2015) used for this operation exploits RGB pixels to determine the values

of non-missing depth pixels. After that, all grayscale depth images are coloured by jet

colormap.

Simulation results have shown that both capsule and convolutional neural networks

shows better performance when segmentation masks have not been applied to RGB im-

ages. Besides, when horizontal flipping is applied to RGB images for data augmentation,

the performance of CNNs improves slightly. CNN has better performance than capsule

network on both RGB and depth images. When the number of class is increased, the

performance of the capsule network affects adversely. The generalization ability of the

capsule network can not exceed the performance of CNNs. In addition to this, it is hard

to discriminate similar objects for capsule network. When the number of classes is de-

creased and the dataset does not include similar objects, the performance of the capsule

network approaches to the performance of CNNs.
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The performance of the networks are directly associated with their topologies. As seen

in the results, capsule network have only one convolution layer and 16 primary capsules

while VGG16 has 5 convolutional layers and it is pre-trained with ImageNet. Normally,

VGG16 has 65.2M parameters when it is used as fine-tuned, but capsule network with a

convolutional layer has 41.5M parameters. Training time of capsule network takes only 5

hours on Google Colab, however it takes 13 hours approximately for VGG16 on GeForce

GTX 780.

In the proposed technique, combination of non-masked RGB and colured depth images

has been performed by means of a hierarchical architecture instead of fusion. This hier-

archical topology has been implemented for VGG16 and capsule network. It is clear that

hierarchical architectures of both networks make the generalization performance better.

While the performance of the hierarchical capsule network is promising and the perfor-

mance of the hierarchical VGG16 is comparable to the results given in the literature.

In this thesis, a hierarchical structure that consists of two layers has been proposed.
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APPENDICES

Appendix 1: Performance of VGG16 for coloured depth images

Figure A.1 Confusion matrix of VGG16 for coloured depth images
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Appendix 2: Performance of VGG16 for nonmasked RGB images

Figure A.2 Confusion matrix of VGG16 for nonmasked RGB images
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Appendix 3: Performance of VGG16 for augmented RGB images

Figure A.3 Confusion matrix of VGG16 for nonmasked, augmented RGB images
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Appendix 4: Performance of CapsNet for coloured depth images

Figure A.4 Confusion matrix of CapsNet for coloured depth images
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Appendix 5: Performance of CapsNet for nonmasked RGB images

Figure A.5 Confusion matrix of CapsNet for nonmasked RGB images
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Appendix 6: Performance of 1st layer of Hierarchical VGG16 for RGB images

Figure A.6 Performance of 1st layer of Hierarchical VGG16 for nonmasked RGB images
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Appendix 7: Performance of 2nd layer of Hierarchical VGG16 for RGB images

Figure A.7 Performance of 2st layer of Hierarchical VGG16 for nonmasked RGB images
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Appendix 8: Performance of 1st layer of Hierarchical VGG16 for depth images

Figure A.8 Performance of 1st layer of Hierarchical VGG16 for coloured depth images
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Appendix 9: Performance of 2nd layer of Hierarchical VGG16 for depth images

Figure A.9 Performance of 2st layer of Hierarchical VGG16 for coloured depth images
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