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ANALYSIS OF OSCILLATORY DYNAMICS OF P53 NETWORK BASED 

ON REDUCED 2-D MODELS TO IDENTIFY THERAPEUTIC TARGETS 

FOR DEFICIENT P53 DYNAMICS 

 

ABSTRACT 
 

We propose a reduced 2-dimensional (2-D) oscillator model embedded inherently 

in the two-phase dynamics model and investigate the impact of p53 and its regulators 

on the decision of cell fate based on this reduced model. We show that the introduced 

2-D model is an excitable relaxation oscillator and modes of this oscillator has the 

central role in determining the cell fate. By using the proposed 2-D model, we show 

that obstacles in using p53 inhibitors, e.g. Mdm2, to activate apoptotic pathway as a 

cancer therapeutic strategy may rise from the structure underlying relaxation oscillator. 

So, alternative approaches are suggested: Via computational studies, we identify Wip1 

and P53DINP1 as targets of therapies for cancer caused by deficient p53 dynamics, 

which is in agreement with biological findings. We point out that most sensitive 

parameters correspond to well-known mutations of p53 network, such as ATM 

deficiency and Wip1 overexpression, indicating the novelty of the 2-D model. We also 

developed a novel canonical polynomial type 2-D relaxation oscillator model for p53 

network such that analytical conditions on the parameters underlying each mode of the 

oscillator, accordingly outcomes of cell fate, is given. With the help of a developed 

coupling framework, we investigate the intercellular synchronization properties of p53 

network using the proposed 2-D oscillator models and show that synchronization 

confers robustness against noise and genetic heterogeneity. We also developed a 

coupling framework between p53 network and circadian clock (CC) model. Using the 

framework, we show that CC has a positive effect on DNA damage response of the 

cell. A thorough understanding of the coupling between p53 network and CC is crucial 

in developing more effective therapy strategies for cancer, known as chronotherapy. 

The models and the frameworks proposed are considered as useful tools for 

mathematically exploring and understanding cell fate decision. 

 

Keywords: ATM deficiency, cancer, canonical model, circadian clock, oscillator, 

p53 network, synchronization, two-phase dynamics, Wip1 overexpression  
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HASARLI P53 DİNAMİKLERİ İÇİN TEDAVİSEL HEDEFLERİN 

BELİRLENMESİ AMACIYLA P53 AĞININ OSİLASYON 

DİNAMİKLERİNİN İNDİRGENMİŞ İKİ BOYUTLU OSİLATÖRLER 

YARDIMIYLA ANALİZİ 

 

ÖZ 
 

Bu çalışmada, p53 ağının iki-fazlı dinamiğinin içerisinde saklı olan indirgenmiş 2-

boyutlu (2-B) bir osilatör modeli sunulmuş, ayrıca p53 ve p53 düzenleyicilerinin hücre 

kaderine nasıl etki ettiği bu indirgenmiş modele dayalı olarak incelenmiştir. Bu iki 

boyutlu modelin bir gevşeme osilatörü olduğu ve bu osilatörün modlarının hücre 

kaderinin belirlenmesinde önemli bir role sahip olduğu gösterilmiştir. p53 

inhibitörlerinin, örneğin Mdm2, kanser tedavisi olarak apoptosis yolağını aktive etmek 

amacıyla kullanılmasının zorluklarının, bu tip bir osilatörün yapısından 

kaynaklanabileceği gösterilmiştir. Dolayısıyla, alternatif yaklaşımlara ihtiyaç vardır: 

Hesapsal çalışmaların yardımıyla, Wip1 ve P53DINP1’in hasarlı p53 dinamiklerinin 

yol açtığı kanserin tedavisi için hedef proteinler olabileceği gösterilmiş ve biyolojik 

veriler ile de teyit edilmiştir. Modelin hassas parametreleri p53 ağı içerisindeki bilinen 

mutasyonlara denk gelmektedir ve bu bilgi modelin özgün değerini artırmaktadır. 

Ayrıca, p53 ağı için polinom tipi kanonik bir gevşeme osilatörü geliştirilmiştir. Bu 

geliştirilen osilatör yardımıyla hücre kaderi çıktılarını belirleyen parametrelerin 

analitik koşulları belirlenebilmiştir. Geliştirilen etkileşim yapısı yardımıyla, p53 

ağının hücreler arası senkronizasyon özelliğinin gürültü ve genetik heterojenlik gibi 

bozucu etkilere karşı gürbüzlük sağladığı gösterilmiştir. Ayrıca p53 ağı ile sirkadiyen 

saatin (SS) etkileşimlerinin incelenebilmesi amacıyla bir etkileşim yapısı 

geliştirilmiştir ve bu sayede SS’in, hücrenin DNA kırığı cevabını destekleyici olduğu 

gösterilmiştir. Bu iki ağın etkileşimlerinin esaslı bir şekilde anlaşılabilmesi, 

kronoterapi gibi tedavilerin daha etkili hale getirilmesinde önemlidir. Önerilen 

modellerin ve yapıların, hücrenin kaderinin nasıl belirlendiğinin matematiksel olarak 

anlaşılması ve araştırılmasında yararlı araçlar olduğu düşünülmektedir. 

 

Anahtar kelimeler: ATM bozukluğu, iki-fazlı dinamik, kanonik model, kanser, 

osilatör, p53 ağı, senkronizasyon, sirkadiyen saat, Wip1’in aşırı yüksek ifadesi  
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CHAPTER ONE  

INTRODUCTION 

 

Cell is a composition of interconnected systems that interact with each other 

directly or indirectly. Each of these systems processes information from the 

environment signals and act accordingly to realize its purpose. These systems in cells 

are called as gene regulatory networks (GRNs) or molecular regulatory networks. Very 

often, the biological function of these regulatory systems cannot be attributed to an 

individual gene or a product (Hartwell, Hopfield, Leibler, & Murray, 1999). In other 

words, the biological function of a GRN is intrinsic to the system, which can only be 

revealed if the system is investigated as a whole, i.e. via a holistic approach. 

 

 To understand GRNs in functioning level, a holistic approach that focuses on the 

complex interactions among the components of a biological process is needed rather 

than focusing on individuals in isolation. The difference between the holistic approach 

and the classical reductionist approach can be explained away by the radio metaphor 

given by Lazebnik (2002), which we engineers would relate. He suggests that a 

biologist who takes a  reductionist approach would not truly understand how a radio 

works and would not be able to identify the functional roles of modular parts (such as 

amplifier, transformer) of a radio, by cataloguing the components (such as capacitors, 

resistors) according to their shapes, colours, etc. or by removing a certain component 

at a time. Thus, a quantitative methodology similar to the formalism that engineers use 

for designing a radio is needed for understanding GRNs in functioning level. 

Mathematical approaches have been applied to biology to address this issue and to 

reveal structures that have functioning roles like the modular arrangements in a radio. 

This new formalism of studying biology using mathematical instruments has been 

called as systems biology (or computational biology, or mathematical biology) and 

advances in this area have demonstrated that there are functional modular 

arrangements in these GRNs, which can be precisely modelled by mathematical 

models that can make predictions about the system dynamics (Alon, 2006; Tyson, 

Chen, & Novak, 2003).  
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One strategy to approach biology in systems level is to develop mathematical 

models describing the interactions between the components of a biological system. 

The interactions described very often come from several different wet lab experiments 

or by deduction (Marino, Hogue, Ray, & Kirschner, 2008). By developing a 

mathematical model, a computational analogue of a biological process is extracted, so 

that in silico experiments that are hard to realize in wet lab settings can be employed 

to understand the biological system better. Also, mathematical models reveal insights 

that cannot be derived from purely intuitive linguistic reasoning from experimental 

data (Miles MacLeod & Nersessian, 2015). With the analysis of the mathematical 

models, new emergent behaviors can be examined before going to wet lab and 

hypotheses to be tested in wet lab settings can be generated.  

 

Mathematical models also provide mechanistic insights revealing how the 

information in a biological process is managed.  Most of the time, complete biological 

knowledge about how the system functions and the interactions between the 

components are missing (Chou & Voit, 2009). Thus, the analysis of the mathematical 

models derived from the currently known interactions of a biological system can 

predict the missing nodes or point out the essential interactions that underlie the 

functioning of the process. Essential interactions may guide experimentalists to focus 

on the right structure, thus avoiding the structures that do not have a profound effect 

on the system. Since realizing a biological experiment is a time-consuming activity, 

the clues about essential interactions revealed by mathematical models may speed up 

the investigation of biological processes. This is especially vital for the diseases that 

await more efficient and effective cure strategies (e.g. cancer).  

 

Translating from descriptions of biological interactions of a system to a 

mathematical model is a daunting task. Firstly, most of the time not all of the reactions 

of a biological process are known. Secondly, even the list of reactions are known, as 

this list gets longer, the interplay between the reactions become so complex that when 

an ordinary differential equation model is produced automatically from this list of 

reactions, the model does not work as expected (Soliman & Heiner, 2010). Thus, in 

developing a mathematical model, usually there is an expert view on which reactions 
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to include or on how to add some artificial parameters by approximations that are 

justified by the structure of the system (Lillacci & Khammash, 2009). In addition, large 

models include so many variables failing to identify the essential elements and to 

enhance the qualitative or mechanistic understanding of the system that a human mind 

can grasp. These large quantitative models with superfluous details are hard to handle, 

and analyses are usually restricted to simulations. Thus, it is inevitable to trade away 

detailed explanations by abstractions, approximations, or idealizations for the sake of 

mechanistic explanations.   

 

Even a simple biological system contains many processes that act together and 

impossible to de-convolute (Voit & Chou, 2010). Thus, biological systems are overly 

complex and have redundant components (Nurse, 2008). To understand the biological 

systems in a qualitative mechanistic manner, sometimes we need to switch to a higher 

level where we do not need to involve every detail of molecule interactions, but instead 

think some chains of interactions as a signal that sends information to downstream 

systems (Bray, 1995) and include only essential parts (Sunnåker, Cedersund, & 

Jirstrand, 2011). Two approaches can be adopted in this manner. Complicated models 

can be simplified by making a reduction in model variables and parameters; or 

canonical models can be developed directly from the known topological structure of 

the interactions. These reduced models have been found more useful in providing 

information in comparison to the large models (Voit & Chou, 2010) due to the 

mechanistic explanations about overall system behaviour that these reduced models 

can provide (Brigandt, 2013; Craver, 2006). For instance, mathematical models such 

as Lotka-Volterra models (Lotka, 1910; Volterra, 1927), Goodwin model (Goodwin, 

1965), and Fitzhugh-Nagumo model (FitzHugh, 1961) have been found very useful in 

this context. These approaches reveal valid predictions due the virtue of the modularity 

in biology, which allows for both investigations in molecular level and functional 

level. 

 

Several methods have been proposed on how to reduce a higher dimensional 

mathematical model of a biological process, with the aim of gaining intuitive 

understanding in the functioning level (Erdrich & Ralf Steuer, 2015; Jonathan R. Karr, 
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2015; Shodhan Rao, 2013; Soliman & Heiner, 2010). Most common techniques are 

quasi-steady state approximations and the singular perturbation method (Rao, Schaft, 

Eunen, Bakker, & Jayawardhana, 2013). Automatic reduction methods are also 

proposed, mostly depending on the sensitivity of the parameters found by the global 

and local stability analyses. However, these automatic reduction methods are not 

reliable as the complexity increases, thus does not guarantee a reliable solution and 

have no standards.  

 

In that spirit, the aim of this thesis is not to reproduce the exact numerical results of 

an experimental data or give a model for detailed interactions of a biological system, 

but rather to describe distinct dynamical behaviors of a biological system in a 

qualitative manner, namely p53 network, from a systems theory perspective. Besides, 

experimental studies in p53 network do not allow for such an approach due to the 

technological constraints in single cell studies. Nevertheless, the experimental studies 

that have been published so far allow for examining the behaviors in a qualitative (or 

mechanistic) sense, which one can justify using mathematical instruments by 

investigating the functional arrangements in the system. Thus, we rather ask the 

questions of what are the critical structures underlying these complex dynamics of p53 

network and why the structure of the system is constructed in this way. The answer to 

that question is vital, because once an underlying structure for a specific function is 

understood, it is likely to reveal the design of other systems in which it reappears, even 

though the constituent elements of these systems are completely different (Alon, 2003; 

Rosenfeld, Elowitz, & Alon, 2002; Nurse, 2008). 

 

In Chapter 2 of this thesis, we identify the 6-dimensional oscillator subsystem 

responsible for the three distinct behaviours of p53 network (low state, oscillations, 

and high state) in 17-dimensional two-phase dynamics model by (Zhang, Liu, & 

Wang, 2011). We show that this oscillator subsystem controls p53 dynamics and cell 

fate decision. Thus, a new modularity aspect emerges, in which p53 network is 

considered as a collective system that consists of an oscillator module and other 

modules that control this oscillator module to contribute to cell fate decision. 
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In Chapter 3, we reduce 17-dimensional two-phase dynamics model into a 2-

dimensional (2-D) nonlinear oscillator model and interpret the three different 

behaviors of p53 dynamics from this oscillator perspective. We found that the 

oscillator is a relaxation type oscillator, which is abundantly found in biological 

systems, thus increasing the validity of the model.  

 

In Chapter 4, we analyse the introduced 2-D nonlinear oscillator model with the 

aim of understanding two-phase dynamics better. The analysis on the introduced 2-D 

nonlinear oscillator model made corrections on the interpretation of the 17-

dimensional model and developed a fruitful understanding of the two-phase 

mechanism. For instance, Mdm2 is known to be a p53 inhibitor. However, we have 

revealed that abundance of Mdm2 may increase the amplitude of p53 oscillations. The 

interpretation of this result is in agreement with wet lab results (Manfredi, 2010). Thus, 

we speculate that this counter-intuitive results may be one of the reasons for the 

complexity of cancer. We identify P53DINP1 as an accumulating protein that triggers 

the transition from oscillatory dynamics to a high state. We show that the role of PTEN 

feedback loop is to drive the concentration of p53 to higher levels in apoptosis.  

 

We also explain the mechanism and the parameters that change characteristics of 

oscillations without using mathematical terms to a biologist such that he or she will be 

able to be guided by intuition without having to consult any numerical methods. Thus, 

he/she can generate his/her own hypothesis about p53 network dynamics regarding the 

relaxation oscillator perspective.     

 

In Chapter 5, we show that deficient p53 dynamics can be posed as a two 

dimensional phase space problem using the reduced 2-D oscillator model. The 

approach of posing deficient p53 dynamics as a phase space problem is a novel 

mechanistic explanation to those cancer types caused by deficient p53 network 

dynamics. Using this introduced approach, we demonstrate that deficient p53 

dynamics may result from the known mutations such as ATM deficiency, Wip1 

overexpression, Mdm2 overexpression and Mdm2 downregulation. We show that 

these mutations drastically change the phase space of this oscillator and the healthy 
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state can be regained by some intervention strategies that we propose. Some of the 

proposed strategies are in agreement with biological findings and some of them need 

further experimental validations. Moreover, the effectiveness of Wip1 is emphasized 

regarding intervention strategies, which is consistent with biological findings that 

recently have proposed Wip1 as a novel target for cancer treatment. The proposed 

medical strategies for intervention of deficient p53 dynamics could clearly be seen by 

the analysis using the introduced phase space approach. However, derivation of these 

strategies from 17-dimensional two-phase model is cumbersome and sometimes 

intractable. Thus, we emphasize the need for low-dimensional mathematical 

explanatory models in cancer treatment.  

 

We further discuss that the identified oscillator in p53 network may increase the 

complexity of cancer since the structure of this oscillator gives results that may seem 

confusing when studied via classical reductionist approach. Thus, the analysis of the 

model emphasizes the need for the holistic approach in biology, specifically in cancer.  

It must be noted that mathematical models in systems biology are never complete. The 

models are as good as they can provide new predictions and new hypotheses about the 

working of the system, which can be tested in wet lab settings. As new findings are 

revealed from p53 network experiments, the proposed 2-D mathematical model can be 

extended and used modularly.  

 

It might also be noted that abstract explanatory models (e.g. 2-D oscillator model 

in our case) are accepted to be more useful in terms of control and manipulation (e.g. 

medical purposes) since the mechanistic explanations of these models provide 

information about how the system will behave in different circumstances. Due to the 

large-scale property (the proposed 2-D model  is reduced from a 17-dimensional model 

and preserves its dynamics), the reduced model reduces the risk of neglecting the 

pathways that control overall dynamics, in comparison with the small connected 

models that focuses on one aspect of the biological network (Craver, 2006; Miles 

MacLeod & Nersessian, 2015).  
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In Chapter 6, we develop a novel 2-dimensional canonical model for two-phase 

dynamics of p53 network based on the knowledge gained from reducing the two-phase 

dynamics model and the biological evidence. The proposed canonical model is a 

relaxation oscillator that is abundantly found in biological systems. The importance of 

the proposed canonical model is that the analytical conditions underlying each 

behavior of p53 network are derived, which would be impossible to carry out in 2-D 

reduced oscillator model from previous chapters. This canonical model, too, is useful 

in posing those cancer types resulting from deficient p53 network dynamics as a phase 

space problem, as the previous 2-D model. The canonical model that allows for 

parametric local stability analysis is very useful in studying it in the context of 

nonlinear system dynamics, and not only study it via simulation tools. We also derive 

the role of timescale separation property in construction of relaxation oscillations as a 

closed form analytical expression. Although timescale separation is known to be vital 

for relaxation oscillations, to the best of our knowledge in the literature there is no 

analytical condition on the timescale separation for the existence of oscillations in a 

relaxation oscillator model without exhaustive assumptions.  

  

In Chapter 7, we introduce a novel coupling framework for the investigation of the 

synchronization properties of the introduced two 2-D oscillator models. We show that 

synchronization aids cells in sustaining the p53 oscillations under disruptive 

conditions, such as noise and genetic heterogeneity. With numerically solving the 

coupled population of oscillators, we demonstrate that synchronization via coupling 

confers robustness against noise and genetic heterogeneity. Even, the coupling may 

help cells that cannot oscillate due to disruptive conditions to oscillate again. 

 

 In Chapter 8, we provide a novel framework for interaction between circadian 

clock and p53 network by integrating the relevant studies in the literature. Circadian 

clock is known to be an oscillator, which have a positive effect on DNA damage 

response of p53 network in wet lab experiments. With the provided framework, we 

show in mathematical terms that circadian clock can increase the amplitude of 

oscillations and mediate an easier initiation of apoptosis, thus helping p53 network 

with DNA damage response. This study here can be considered as the first steps of the 
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systems-level approach to the interaction between circadian clock and p53 network, 

which, to the best of our knowledge, has not been studied in the literature with 

mathematical models. A thorough understanding of the interaction between these 

systems will be helpful in improving the chronotherapy strategy for cancer patients. 

Also, we show that the interplay between p53 network and circadian clock can be 

studied as coupling of oscillators using the proposed framework, which would be very 

intriguing to study in the context of nonlinear systems theory as a future study.  

 

In Chapter 9, we review the studies by highlighting the importance of key findings, 

proposed frameworks, and proposed models. We also give future directions based on 

the studies done in this thesis.      
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CHAPTER TWO  

ISOLATION OF CORE OSCILLATOR SUBSYSTEM IN P53 NETWORK 

USING TWO-PHASE DYNAMICS MODEL 

 

p53 network is a critical system that is studied thoroughly since the majority of 

human tumors occur due to the defects in this network (IARC TP53 Database, 2017). 

The gene in the center of this network is called as TP53 or P53, and the product of that 

gene is the protein p531. p53 network is responsible for the DNA damage response of 

the cell. DNA damage occurs due to various reasons in the cell, such as hypoxia, 

telomere erosion, heat shock, ultraviolet (UV) radiation, and ionizing gamma 

irradiation (Murray-Zmijewski, Slee, & Lu, 2008). The understanding of how p53 

network responds to these signals is important since cancer therapies, such as 

radiotherapy and chemotherapy, use this network to suppress tumour growth via 

apoptosis (programmed cell death). In this section and throughout this thesis, the 

primary consideration will be p53 network’s response to ionizing gamma irradiation 

that causes Double Strand Breaks (DSBs) in DNA.  

 

When DSBs occur in DNA, the cell stops growing to avoid passing damaged DNA 

to daughter cells while it tries to fix DSBs. If the damage is irreparable, then the cell 

initiate programmed cell death, so called apoptosis. If the damage is repaired, then the 

cell returns to normal cell cycle progression (i.e. the cell keeps growing until it 

divides). Thus, with the help of apoptosis, the cells with irreparable DNA damage are 

continuously removed from the organism.  

2.1 Observation of Oscillations in p53 Network 

The first evidence of p53 network exhibiting oscillatory dynamics has been shown 

by giving gamma irradiation to a cell population (Bar-Or, et al., 2000). In this 

experiment, p53 concentration performed damped oscillations, which was obtained by 

                                                  –––––––––––––––––––                                                 
1 Usually the code names that start with capital letter represent the genes, whilst the code names that 

start with lower represent the gene products (i.e. protein). For example, P53 (also known as TP53) is 
the name of the gene, while p53 is the protein produced as a product of gene P53. Throughout the thesis, 
we use (P)53 gene with P being capital, but (p)53 dynamics with p being lower case, since the term 
“dynamics” is associated with concentration levels. Also common use is p53 network, not P53 network.  
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averaging over cell population. However, single cell studies have shown that it is 

actually an oscillation, which looks like damped oscillation due to shifts in 

synchronicity when averaged over a population of cells (Batchelor, Loewer, & Lahav, 

2009; Lahav, et al., 2004).  

 

p53 concentration shows a number of pulses, when the cell is exposed to gamma 

irradiation. As the level of gamma irradiation increases, the number of DSBs in DNA 

increases, and the time it takes to repair these DSBs also increases. Since p53 

concentration oscillates until the repairing process finishes, there is a correlation 

between the number of pulses and the severity of DNA damage. It has been shown by 

experimental studies that the number of pulses, but not the amplitude and the period, 

depends on the level of gamma irradiation (Lahav, et al., 2004). These pulses have 

been called as “digital pulses.” 

 

An Ordinary Differential Equation (ODE) model is suggested by Bar-Or et al. 

(2000) to replicate damped oscillations, which considers the interaction between p53 

and Mdm2 that is a protein which inhibits p53 activity. Even before the confirmation 

of sustained oscillations by Geva-Zatorsky et al. (2006), a mathematical model have 

been proposed by Tiana, Jensen, & Sneppen (2002) that replicates sustained 

oscillations. After the observation of digital pulses in p53 network, there have been a 

number of approaches that model this phenomenon. Tyson, Chen, & Novak (2003)  

proposed a mathematical model that shows oscillations, which depends on the p53 and 

Mdm2 interaction and Monk (2003) proposed a mathematical model that depends on 

the p53 and Mdm2 interaction together with a stiff time delay.  Ciliberto, Novák, & 

Tyson (2005) suggested a mathematical model in which p53 concentration shows a 

series of pulses in a limit cycle such that the number of pulses depends on the 

irradiation level. Ma et al. (2005) proposed a model in which a stochastic DNA repair 

module activates ATM that evokes p53 oscillations. However, these mentioned 

models were proposed before Batchelor, Mock, Bhan, Loewer, & Lahav (2008) 

showed that Wip1 feedback loop is indispensable for the oscillations, but p53-Mdm2 

interaction is dispensable. Thus, earlier models that depend on p53-Mdm2 interaction 

for oscillations are depreciated. However, the idea of modelling digital pulses as the 
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time spent in a limit cycle depending on the level of DNA damage, as Ciliberto et al. 

(2005) and Ma, et al., (2005) use in their models, is a practical method used by several 

modelers later (Sun & Cui, 2015). This practical method is also adopted by Zhang et 

al. (2011) in modeling two-phase dynamics of p53 network as will be detailed.  

2.2 Control of Cell Fate via Two-phase Dynamics 

The studies showed that oscillations of p53 concentration and sustained steady state 

of high p53 level2 cause different cell fate decisions (Batchelor, Loewer, & Lahav, 

2009; Batchelor, Loewer, Mock, & Lahav, 2011;  Batchelor, Mock et al., 2008; Lahav, 

2004; Lahav et al., 2004; Geva-Zatorsky et al., 2006; Purvis et al., 2012). Basal (low) 

p53 level indicates the normal growing conditions. Oscillation of p53 concentration is 

associated with cell cycle arrest (i.e. cell stops growing), whilst sustained high p53 

level is associated with apoptosis, thus p53 dynamics directly influences cell fate.  

(Zhang et al., 2011) proposed a 17-dimensional mathematical model that is able to 

replicate p53 dynamics controlling cell fate. In their model, they describe the cell fate 

decision as a two-phase dynamics under DNA damage caused by gamma irradiation. 

The model by Zhang et al. (2011) is numerically solved to demonstrate two-phase 

dynamics as in Figure 2.1 (The ordinary differential equations defining the models are 

solved by ode45 solver available in MATLAB3 numerical software environment). In 

the first phase, (active) p53 level oscillates giving a well-timed quanta of p53 until the 

damage is repaired. If the damage is not fixed in a certain amount of time (around in 

1500 minutes), then the cell enters the second phase initiating apoptosis.  In this second 

phase, p53 level rises to a steady state value higher enough to trigger caspase 

mechanism that is responsible for initiating apoptosis (Figure 2.1a). If the damage is 

fixed in a certain amount of time, then p53 level goes back to a basal steady state value 

without entering the second phase (Figure 2.1b). One hypothesis about the advantage 

of oscillations is that the oscillations in the first phase reduces the risk of having too 

much p53 and leading to premature cell death (Lahav, et al., 2004). The two-phase 

model by (Zhang et al., 2011) determines the cell fate depending on the duration -

                                                  –––––––––––––––––––                                                 
2 Sometimes the term “level” is used in place of “concentration” to emphasize the association with 

a qualitative distinct behavior. 
3 www.mathworks.com  

http://www.mathworks.com/
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accordingly severity- of DNA damage. The model successfully shows the oscillations 

of p53 level and the high p53 level in two distinct phases, so called two-phase 

dynamics. 

 

 

Figure 2.1 p53* (active p53) level exhibiting two-phase dynamics according to the model by (Zhang, 

Liu, & Wang, 2011). a) Two-phase dynamics is observed if nc is kept as 20 for a long time (i.e. 1500 

minutes). b) The second phase (apoptosis) is not observed, only the first phase is observed if nc falls to 

zero before 1500 minutes  

 

The model proposed by (Zhang et al., 2011) is interesting from the systems theory 

perspective, since it is capable of showing an equilibrium at a low level, oscillations, 

and an equilibrium at a high level. In addition, the high level of p53* (active p53) in 

the second phase, which indicates apoptosis, is higher than the maximum peaks of 

oscillations (Figure 2.1a). This fine distinction between the peaks of p53* oscillations 

in the first phase and constant high level of p53* in the second phase is thought to 

guarantee a more reliable decision of cell fate.  Although model simulations are 

provided in the publication by (Zhang et al., 2011), the analytical explanations of how 

the model performs these three distinct behaviors, what are the determinants that are 

responsible for transient oscillatory regime, and how p53* goes to a level higher than 

the peaks of oscillations are missing due to the simple fact that the model they propose 

is a multidimensional model with several variables. Thus, the analysis of the model is 

restricted to only simulations, which can only give answers to limited questions. For 

example, showing a few pulses of p53* via a numerical simulation is not enough to 

show that there is actually an oscillation. It may be an oscillation with a very slow 

damping that may be unnoticed. In the coming sections, we extract the oscillator 

a) b) 
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subsystem and reduce it to two dimensions to show that it actually oscillates by using 

Poincaré -Bendixson Theorem.   

2.3 Investigation of Two-phase Dynamics Model by Zhang et al. (2011) 

In this section, the two-phase dynamics model by Zhang et al. (2011) is investigated 

to identify the subsystems in p53 network. Identifying subsystems will help the 

reduction process, and the extraction of essential modules. For this purpose, we 

illustrate the 17-dimensional two-phase model as a block diagram in 

MATLAB/Simulink environment, providing a systems-theoretical framework based 

on the differential equations as in Figure 2.2 (See Appendix-1 for two-phase model 

equations). 

 

The block diagram of the 17-dimensional two-phase model is shown in Figure 2.2a. 

With the aid of the arrows, the state variables that subsystems share can easily be seen. 

Normally in biological areas, a model is sketched as a directed graph, where arrows 

indicate the activation of the process (See Figure 2.2b). However, in our illustration in 

Figure 2.2a, the arrows indicate the transfer of a state variable from one subsystem to 

the other.  

 

To review the two-phase dynamics model by Zhang et al. (2011) in a concise way, 

we divide it into meaningful modular subsystems as in Figure 2.2a by inspection. Each 

subsystem numbered from 2 to 9 corresponds to a set of differential equations whilst 

repair subsystem numbered as 1 is a stochastic system. The subsystems we identify 

are 1) Repair subsystem, 2) ATM sensor subsystem (Equations A.1-A.3 in Appendix-

1), 3) p53 subsystem (Equations A.4-A.7), 4) Wip1 subsystem (Equation A.17), 5) 

P53DINP1 subsystem (Equations A.15 and A.18), 6) PTEN subsystem (Equations 

A.11-A.14 and A.19), 7) Mdm2 subsystem (Equations A.8-A.10), 8) p21 subsystem 

(Equation A.20), 9-) Caspase subsystem (Equations A.21-A.23).  

 

Moreover, three feedback loops can be identified by investigating the sharing of 

variables in the system in Figure 2.2a, which are also identified by Zhang et al. (2011): 

1) ATM-p53-Wip1 feedback loop (Wip1 feedback loop) with the name of feedback 
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variable and as constituted by ATM sensor subsystem, p53 subsystem and Wip1 

subsystem, 2) p53-PTEN-Akt-Mdm2 feedback loop (PTEN feedback loop) as 

constituted by P53DINP1 subsystem, PTEN subsystem and Mdm2 subsystem, and 3) 

the feedback loop between p53 subsystem and Mdm2 subsystem (p53-Mdm2 feedback 

loop).  Differently from the paper by Zhang et al. (2011), the full two-phase model will 

be reviewed in light of these subsystems that we identified with modular perspective 

by emphasizing the key points that will be helpful for discussions in the next chapters.  

 

 

Figure 2.2 Representations of 17-dimensional two-phase model by Zhang et al. (2011). a) Our 

representation with subsystems in Matlab/Simulink. b) Schematic representation by Zhang et al. (2011) 

a) 

b) 
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1) Repair subsystem: Given the gamma radiation to the p53 network, random 

number of double-strand breaks (DSBs) is formed based on the radiation dose 

(Stewart, 2001; Ma et al., 2005). Initial number of DSBs obeys a Poisson distribution 

whose average is proportional to the radiation dose. After the DSBs occur in DNA, 

repair molecules try to fix them by forming a DSB-repair protein complex (DSBCs). 

Repair mechanism in the paper by Zhang et al. (2011) is based on the 2-lesion kinetic 

model by Ma et al. (2005). In 2-lesion kinetic model, damage in DNA is repaired by 

as low as 20 repair molecules, and the  the number of DSBs is reduced as they are 

repaired by repair molecules by a stochastic simulation (as shown in Figure 2.3a,b) 

while the model equations (A.1-A.23 in Appendix 1) are solved numerically at the 

same time. The parameter nc indicates the number of (DSBCs) DSB-repair protein 

complexes. Since the number of repair proteins are 20, the number of DSBCs (i.e. nc) 

at any time cannot exceed 20 (Figure 2.3a). Thus, in a full repair activity, i.e. all repair 

molecules are assigned to a DSB, maximum of 20 DSBCs may exist. When a repair 

molecule finishes repairing a DSB, it is assigned to another DSB so that all DSBs can 

be repaired. For analytical purposes, in the next sessions we avoid nc taking random 

values. Instead, we assume two values of nc for simplicity: 20 DSBCs (nc = 20) for 

damage, zero DSBC (nc = 0) for no damage. Figure 2.3a shows our approximation to 

a simulated stochastic repair system. Although (Zhang, Liu, & Wang, 2011) shares a 

pseudocode based on a Monte Carlo simulation for the stochastic repair system, we 

replicate the simulations based on Gillespie Algorithm that is a type of Monte Carlo 

simulation, which is known to provide an exact stochastic simulation of biochemical 

processes (Gillespie, 1977). The Matlab code employing Gillespie Algorithm for the 

stochastic simulation of 2-lesion kinetic model is provided in Appendix-2. 
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Figure 2.3 Stochastic repair subsystem is simulated by employing Gillespie Algorithm. The initial 

number of 300 DSBs in DNA is assumed. a) The change of nc (the number of DSBCs) is illustrated, 

which can be approximated by a step-like change b) The change of remaining DSBs and the repaired 

DSBs are illustrated 

 

2) ATM sensor subsystem: ATM sensor subsystem consists of phosphorylated 

monomer (active) ATM*, inactive monomer ATM and inactive dimer ATM2. ATM is 

activated by nc, the number of DSBCs.  The activation of ATM by DSBCs is 

characterized by nc-dependent ATM activation rate, and inhibition of ATM by Wip1 

is represented in the deactivation rate of ATM (See Equations A.1-A.3 in Appendix 

1).  

 

3) p53 subsystem: p53 subsystem consists of inactive p53 and active 

(phosphorylated) p53*.  ATM* (active (phosphorylated) ATM) activates P53 by two 

ways: (i) Phosphorylating p53 to disassociate it from its inhibitor, Mdm2, and (ii) 

Degrading Mdm2 by phosphorylating Mdm2. As shown in Figure 2.2a, ATM* enters 

both p53 subsystem and Mdm2 subsystem. In two-phase model, p53* is categorized 

into p53arrester and p53killer. p53arrester is a form of p53* which are phosphorylated 

on ser15/20 by ATM*, while p53killer is a form of p53* which is phosphorylated on 

ser46 in addition to ser15/20. Phosphorylation on the region ser15/20 of p53 induces 

cell cycle arrest while phosphorylation on the region ser46 in addition to ser15/20 

induces apoptosis. Phosphorylation on the region ser15/20 is mediated by ATM*, 

whilst phosphorylation on ser46 is mediated by P53DINP1. Total concentration of 

p53* is the sum of the concentrations of p53arrester and p53killer in the environment. 

In the 17-dimensional two-phase model, concentration of p53killer and p53* are 

Approximation 

a) b) 
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determined by Equations A.15 and A.6 respectively, whilst concentration of 

p53arrester is simply the difference between p53* and p53killer as indicated by 

Equation A.16. 

 

4) p21 subsystem: Concentration of p21 level is in direct correlation with 

p53arrester level. The oscillation of p53arrester level reflects on p21 level and cell 

cycle is arrested to avoid passing of damaged DNA to daughter cells.  Oscillations of 

p21 level is assumed as the indicator of cell cycle arrest. 

 

5) Wip1 subsystem: Wip1 is the target of p53arrester. Wip1 level increases by 

p53arrester, but not p53killer. Elevated Wip1 level greatly inhibits ATM* activity, 

even in the presence of DNA damage. Wip1 also enhances the P53DINP1 level. 

 

6) P53DINP1 subsystem: P53DINP1 module is activated by p53arrester, Wip1, 

and p53killer. p53arresters are turned into p53killers by P53DINP1 via 

phosphorylation on ser46. The oscillation in the network promotes the accumulation 

of P53DINP1. After P53DINP1 passes an intrinsic threshold value, its activity greatly 

effects the network: Concentration of p53arrester drops to such a low value that ATM-

p53-Wip1 feedback loop shuts off and oscillations stop. We will show that P53DINP1 

is an oscillation accumulation triggered protein and its role in triggering the second 

phase has not referred in the paper by Zhang et al. (2011). 

 

7) PTEN subsystem: PTEN subsystem becomes dominant in the second phase. 

In the second phase, p53killer level increases PTEN level. Enhanced PTEN level then 

deactivates Akt*, and decreasing of Akt* level also decreases Mdm2n level which in 

turn increases the constant high level of p53* in the second phase. PTEN feedback is 

important for elevating sustained p53* level to a higher value than the peaks of p53* 

level oscillation. There is a sequential predominance of Wip1 feedback and PTEN 

feedback loops. In the first phase, Wip1 feedback loop is dominant; in the second 

phase, Wip1 feedback loop shuts off and PTEN feedback loop becomes dominant.  
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8) Mdm2 subsystem: In the second phase, PTEN subsystem decreases Mdm2n 

level to drive p53* level to a higher steady state value than the peaks of p53* 

oscillation. The central role of Mdm2 subsystem is in the second phase, so in the first 

phase, Mdm2 subsystem dynamics can be ignored. It has been shown by Zhang et al. 

(2011) in their model and by Batchelor, Mock et al. (2008) in wet lab experiment that 

p53-Mdm2 feedback loop is not responsible for oscillations. It is thought to be for fine-

tuning the oscillations.  

 

9) Caspase subsystem: Caspase subsystem is activated by a high steady state 

level of p53killers. The peaks of p53killer oscillation in the first phase are not 

sufficient to activate caspase subsystem. The high steady state of Casp3 level is 

assumed to trigger apoptosis.   

2.4 Recognition of the Core Oscillator Subsystem in 17-dimensional Two-phase 

Model 

This section is devoted to the recognition of the core oscillator subsystem of 6-

dimensional via segregation of the subsystems, which underpins the oscillatory 

dynamics of 17-dimensional two-phase model . It should be first noted that ATM-p53-

Wip1 feedback loop (ATM sensor subsystem, p53 subsystem and Wip1 subsystem in 

Figure 2.2a) is responsible for the oscillations in the first phase, while p53-PTEN-

Mdm2 (p53 subsystem, PTEN subsystem and Mdm2 subsystem in Figure 2.2a) 

feedback loop becomes dominant in the second phase. Since there is a sequential 

predominance of feedback loops, to analyze the oscillations in the first phase, PTEN 

feedback loop can be ignored for the sake of simplicity as also suggested by Zhang et 

al. (2011).  

 

Focusing on the first phase, core oscillator subsystem of p53 network can be 

extracted by isolating Wip1 feedback loop from PTEN feedback loop. To do so, we 

keep the state variables, [p53killer]4 and [Mdm2n], that are passed from red blocks as 

constant (Figure 2.2a). The roles of [p53killer] and [Mdm2n] become important in the 

                                                  –––––––––––––––––––                                                 
4 Square brackets [ ] refers to the concentration of a protein. Sometimes, instead of using the term 

“concentration”, the term “level” is used. For example, p53 level or [p53]. 
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second phase. We set [Mdm2n] as constant at its prescribed initial value of 0.26 and 

[p53killer] at its prescribed initial value of zero. It is observed from our simulations 

that the small deviations in these two parameters do not change the qualitative behavior 

of the first phase dynamics (i.e. oscillations). It can be seen from Figure 2.2a that p21 

subsystem and caspase subsystem do not provide any feedback signal to the p53 

network, having no effect on qualitative p53 dynamics, so they can be ignored too. 

Table 2.1 presents the resulting isolated subsystem that is the core oscillator subsystem 

of 17-dimensional two-phase model.  

 

Table 2.1 Isolated oscillator subsystem in 17-dimensional model of two-phase dynamics (See (Zhang, 

Liu, & Wang, 2011) for parameter definitions and values) 

Equation 

number 
Equations 

1
 

[��� ] = . � ∗ [���] − [��� ]     

   

2
 

[���∗] =  � � + [ ���∗]  [���]    [���]+ � �  −    � + [��� ] [���∗ ]   [���∗]+ �    

3   
[�� ∗] = � � [���∗] [���∗]+ � [�� ] − � [�� ∗] − � [� ] [�� ∗]� +[�� ∗] 

4
 

  [�� ] = � − � [�� ] − � [� ] [�� ]� +[�� ] − � � [�� ] + � [�� ∗]  
5

 
[��� ] = � + � [�� � ] � +[�� � ]  − � [��� ]  

6
 

[� ] = [� ] − [� ] − [� ]  
7 [���] = ��� − [���  ] − [���∗]  

8
   =    +  [��� ∗][���∗]+ �    

9
 

 [p53*]  = [p53arrester] + [p53killer] 

 

Table 2.2 Parameters underlying the three modes of isolated core oscillator subsystem 

 
p53* dynamics nc Equation 9 in Table 1 

1. Low steady state of [p53*]  0 [p53*]  =  [p53arrester] + [p53killer] 

2. Oscillations of [p53*]  20 [p53*]  =  [p53arrester] + [p53killer] 

3. High steady state of [p53*]  20 [p53*] = [p53killer]; [p53arrester]=0; 

 

 

 

As depicted in Figure 2.4, the obtained 6-dimensional oscillator subsystem is able 

to show all of the three modes, namely the equilibrium at the low level of [p53*], the 

oscillation and the equilibrium at the high level of [p53*], depending on the value of 

nc and the [p53killer] and [p53arrester] as summarized in Table 2.2. It should be 
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noticed that, in 17-dimensional two-phase model, the value of nc, [p53arrester], and 

[p53killer] are controlled by other subsystems. Thus, we provide a modular 

perspective to the two-phase dynamics of p53 network. In this modular perspective, 

an oscillator is at the center of the p53 network and other subsystems influence this 

oscillator by various parameters as illustrated in Figure 2.5. 

 

In the high equilibrium case of 6-dimensional model (See Figure 2.4b), the high 

level is not as high as in Figure 2.1a, where we numerically solved the whole 17-

dimensional model. The reason is discarding of PTEN feedback loop whose function 

is to shift the high equilibrium to higher levels in two-phase model. However, we 

demonstrated that 6-dimensional model exhibits the same qualitative behaviors as 17-

dimensional two-phase model. 

 

 

Figure 2.4 The core oscillator subsystem in Table 2.1. a) The oscillator subsystem in 17-dimensional 

two-phase model is identified, isolated and illustrated in Matlab/Simulink. b) The identified oscillator 

subsystem is numerically solved for three different set of parameters indicated in Table 2.2, to 

demonstrate three modes of p53 dynamics 

a) 

b) 



21 

 

 

Figure 2.5 Representing p53 network from the modular perspective such that there is a core oscillator 

subsystem in the centre of the network and other subsystems manipulate the oscillator to control cell 

fate. a) Modular representation via Matlab/Simulink. b) Modular schematic representation  

Core p53 network 

Oscillator 
Oscillator 

Manipulating 

Subsystems 

DNA Damage 

Cell Fate 

a) b) 
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CHAPTER THREE  

DIMENSIONALITY REDUCTION AND ANALYSIS 

 

In 17-dimensional two-phase model of p53 network, different p53 dynamics result 

in different consequences: Oscillation of p53arrester level results in cell cycle arrest 

via stimulating p21 (Batchelor, Mock et al., 2008; Gartel & Radhakrishnan, 2005), 

high steady state of p53killer level results in apoptosis via stimulating caspase 

mechanism (Essmann, Engels, Totzke, Schulze-Osthoff, & Jänicke, 2004; Marchenko, 

Zaika, & Moll, 2000; Mihara, et al., 2003), and low level of p53 is the indicator of 

normal cell cycle progression (Michael & Oren, 2003). These consequences of the 

two-phase dynamics can be correlated to the p53 levels and a few other variables such 

as [ATM*] and [Wip1] only rather than a variety of highly possibly superfluous 

variables by getting rid of downstream elements, which is consistent with biological 

findings (Purvis et al., 2012). One of the main aims of this thesis is to introduce a 2-

dimensional (2-D) model that solely describes these modes of p53 dynamics in a 

compact and efficient way ignoring non-essential components. The idea behind this 

observation of the possibility of reducing 17-dimensional model into 2-D model relies 

on the fact that any continuous time integer dimensional dynamical system is, in some 

sense, qualitatively equivalent to an oscillatory 2-D dynamical system.  

3.1 Reduction to 2-dimensional Model 

Reduction of high order systems into low order ones is done to simplify complex 

systems for the purpose of easy analysis and understanding essential components of 

the systems. In a successful reduction, the simplified system displays the same 

qualitative behavior with a smaller number of state variables and parameters. This 

subsection introduces a reduced 2-D differential equations model of ATM and Wip1 

variables, which possesses the same qualitative behavior with that of 6-dimensional 

isolated oscillator subsystem described in Section 2.4. The obtained 2-D model is 

given in Table 3.1 and details of the reduction process are given in Appendix-3. In our 

2-D model, ATM directly signals to Wip1 via algebraic [p53*] equation (i.e. Equation 

3 of Table 3.1). With appropriate settings of parameters given in Table 2.2, this simple 

model of ATM and Wip1 successfully elucidates the three modes of p53 dynamics, 
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namely the modes of low [p53*] level, [p53*] oscillations, and high [p53*] level. (See 

Figure 3.1c-d for the time evolutions of [p53*], [ATM*] and [Wip1] in the three modes 

of the introduced 2-D model, and Figure 3.1a-b for those of the 6-dimensional model.) 

The reduced 2-D model successfully inherits the qualitative behavior of the two-phase 

dynamics of the Zhang’s model (Zhang et al., 2011) with an expense of the changes in 

the amplitude and frequency of the signals. It should be noted that the original 

amplitude and frequency might be reconstructed by scaling the time and range of the 

variables. However, this is not our concern here.  

 

The proposed simplification of the Zhang’s model down to the network of ATM 

and Wip1 variables is in agreement with the experimental work by (Shreeram et al., 

2006) in which they show that the mutual relationship between ATM and Wip1 plays 

an important role in tumorigenesis. In the 2-D model, we characterize [p53*] as with 

an algebraic equation in a way that it has a few but operationally well-defined 

parameters (See Equation 3 of Table 3.1). While [p53*] is inversely correlated with 

[Mdm2n], it is directly proportional to [ATM*] (i.e. phosphorylated ATM). Therefore, 

the ATM dynamics reflects on [p53*].  [p53*] oscillates whenever [ATM*] oscillates. 

When [ATM*] is in high or low steady state, [p53*] is at a high or low level, 

respectively. This is also consistent with the experimental observation that ATM is the 

main upstream signal of p53 dynamics and p53 pulses originate from recurrent 

initiation of ATM (Batchelor, Mock et al., 2008). The number of DSBCs (i.e. nc) is an 

external stimulus that starts the oscillations. 

 

Table 3.1 The introduced 2-dimensional oscillator model of two-phase dynamics 

Equation 

number
 Equations

 

1 
 

[�� ∗] = ka a    + [� ∗]  √ . ATM −[�� ∗](√ . ATM −[�� ∗]     + a a )  −  k a    +[ � ] [�� ∗][�� ∗] + a m   

2 [� ] = k w + k w [ � ] wi +[ � ]  − k w [ ]  
3 [p ∗]  = [ ] + [ ] = [� ∗] . − . [  ]   

 

Both models (the identified 6-dimensional oscillator subsystem and the introduced 

2-D oscillator) is able to show three qualitative behaviors: 1) low steady state of [p53*] 
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when there is no DSBC activity, 2) oscillations of [p53*] in case of DSBCs, 3) high 

steady state of [p53*] when p53arrester is zero and there is DSBC activity. In case of 

3), [p53*] consists of p53killers only, since p53arrester is zero. The models are 

compared in Figure 3.1. In Figure 3.1a, 6-dimensional oscillator model is numerically 

solved for the cases of nc = 20 and nc = 0. When nc is 20 indicating a high DSBC 

activity, [p53*] starts to oscillate. When nc is 0, [p53*] stays at a low steady state. In 

Figure 3.1b, 6-dimensional model is numerically simulated to demonstrate the case of 

apoptosis as a two-phase dynamics. When nc is 20, [p53*] starts to oscillate. After 750 

minutes passed, [p53arrester] is made zero in the solver algorithm to indicate that all 

p53* consists of p53killer. In this case, [p53*] value goes to a high steady state. It must 

be noted that the ratio of p53arrester and p53killer is controlled by P53DINP1 

subsystem in the 17-dimensional two-phase model. Here, these effects of P53DINP1 

subsystem is simulated by changing the ratio of p53arrester and p53killer at 

appropriate times by the algorithm.  Also, in apoptosis it must be noted that there is 

not a fine distinction between the high steady state of [p53*] and the peaks of 

oscillations (See Figure 3.1b,d) . This is due to the fact that, highest level of [p53*] in 

the second phase is determined by [Mdm2n] via PTEN  feedback loop. In this 

simulation, since we keep [Mdm2n] as constant, its effect on the highest level of p53* 

is not seen. 

  

In Figure 3.1c, the introduced 2-D oscillator model is numerically solved for the 

cases of nc = 20 and nc = 0. [p53*] oscillates when nc = 20. It must be noted that there 

are negligible inaccuracies in the amplitude and frequency of the signals because of 

the approximations done in the reduction process. The period of oscillations and the 

amplitudes can be fine-tuned by changing appropriate parameters. However, this is not 

the concern here. The reduced model successfully inherits the qualitative behaviour of 

the 17-dimensional model by Zhang et al. (2011).  In Figure 3.1d, 2-D model is 

numerically solved to demonstrate the case of apoptosis. It successfully shows the high 

equilibrium behaviour of [p53*] for appropriate parameter settings that would be set 

by other modules in p53 network, but here we set them by the algorithm (See Table 

2.2). 
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Figure 3.1 Comparison of reduced 2-D ATM-Wip1 oscillator and 6-dimensional identified oscillator 

subsystem for various nc values. a) 6-dimensional oscillator subsystem showing oscillations as well as 

recovery of low level [p53*] mode after DNA damage is repaired. b) 6-dimensional oscillator 

subsystem showing two-phase dynamics. c) 2-dimensional reduced oscillator model showing 

oscillations as well as recovery of low level [p53*] mode after DNA damage is repaired. d) 2-D reduced 

oscillator model showing two-phase dynamics 

 

 Analysis of Oscillations by Dynamic Route Approach 

In this subsection, firstly bistable dynamics of [ATM*] is analyzed by employing 

dynamic route approach to Equation 1 of Table 3 by quasi steady-state assumption for 

Wip1 variable and then oscillatory ATM-Wip1 interaction is demonstrated by using 

2-D phase portraits.  

 

As depicted in Figure 3.2, [ATM*] dynamics has one or two stable equilibrium 

points in a physiologically meaningful range (i.e. the set of nonnegative [ATM*] 

values) depending on the values of nc and [Wip1]. Characteristics of [ATM*] 

dynamics change as with the combined effect of Wip1 and nc (See Figure 3.2b). As nc 

a) b) 

c) d) 
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phosphorylates ATM and drives its concentration to a high steady state; Wip1 

dephosphorylates ATM* and drives its concentration to a low steady state even in the 

presence of DNA damage (i.e. the case of high nc value) (See Figure 3.2b). 

  

Dynamic route approach applied to [ATM*] dynamics for typical Wip1 values 

leading to different sets of equilibrium dynamics for [ATM*] can assist to show how 

oscillations are produced (See Figure 3.2a). Basal level of Wip1 is chosen as 0.2 and 

nc is 0 representing the situation before the damage. In this initial condition, [ATM*] 

has only one equilibrium point at zero which is asymptotically stable (See the bottom 

curve of the upper red dotted bunch of [ATM*] graphs in Figure 3.2b).  

 

When setting nc to 20 to represent the damage, [ATM*] characteristics change as: 

Equilibrium at zero becomes unstable and, under arbitrary small perturbation, [ATM*] 

goes up to the asymptotically stable equilibrium at the high steady state value (Figure 

3.2a.1). As [ATM*] goes into this high steady state, at the same time, in accordance 

with Equation 2 and 3 of Table 3, Wip1 increases. So, it pulls the curve of ATM* rate 

(i.e. d[ATM*]/dt) downward first creating a saddle point at an intermediate ATM* 

value (See Figure 3.2a.3) and then leading the zero equilibrium point of [ATM*] to 

become asymptotically stable (See Figure 3.2a.4). Zero value of [ATM*] relaxes 

[Wip1] to its rest state of k w /k w = . , and this ATM-Wip1 interaction 

repeats itself over again causing oscillations.  

 

There are discontinuous jumps of [ATM*] level when the characteristics change 

from (Figure 3.2a-3) to (Figure 3.2a-4) and (Figure 3.2a-2) to (Figure 3.2a-1). The 

discontinuous jump as transition from (Figure 3.2a-3) to (Figure 3.2a-4) occurs from 

the saddle node to stable steady state at zero, while from (Figure 3.2a-2) to (Figure 

3.2a-1) occurs from unstable steady state at zero to a high stable steady state located 

around 4.9. 
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Figure 3.2 Dynamic route approach is employed for explaining the oscillations of the introduced 2-

dimensional oscillator model  

 

3.3 Phase Space Analysis of the Introduced 2-dimensional Model 

In this subsection, we analyze the phase space of the 2-D model and show how 

different behaviors are determined by the organization of the nullclines in the phase 

space. Since these behaviors are directly related to the cell fate outcomes, providing a 

mechanistic insight to the interplay between ATM and Wip1 may contribute to the 

systems-level understanding of the damage response of the cell. The damage response 

of the cell is also used by intervention strategies of cancer. Thus, a better understanding 

of this mechanism will help developing better strategies. 

 

In the analysis of a system, equilibrium points are of great importance, however due 

to the complexity of the 2-D oscillator model, finding equilibrium points analytically 

is impossible (The degree of resulting polynomial describing the location of 

equilibrium points is more than 5, which is known to have no explicit solution). 

However, nullclines can be sketched and numerical approximated values for 

equilibrium points can be calculated and shown in a graph. 

 

The nullclines of a differential equation system are the set of points that make the 

equations zero. In this case, we have 2 differential equations and we need to look for 
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the curves that make these differential equations zero. By arranging 2-D oscillator 

model as in Equations (3.1) and (3.2). 

 

 
d[� ∗]dt  = k a [� ∗ ]  [� ∗] + j a    F [� ∗], n − [ ]  (3.1) 

 
d[ ]dt   = k w   G [p a��este�], [� ∗] − [ ]  (3.2) 

 

where the functions F and G are expressed as: 

 

F [� ∗], n  

=  k a [� ∗ ]  [� ∗] + j a
(ka a  nn  + jn [� ∗] √ . � − [� ∗](√ . � − [� ∗]     +  )  

−  kdeatm [� ∗][� ∗]  +  j a  ) 

 

(3.3) 

 

G [p a��este�], [A�M∗]  = k w + k w [ � ] j w + [ � ]   
(3.4) 

 

The reduced one-dimensional ATM equation expressed in (3.1) has one more 

nullcline, which is the separatrix, [ATM*] = 0. When [ATM*] is zero, it is clear that 

Equation (3.1) becomes zero.  

 

To show how the nullclines are organized in these three different behaviors, we 

sketch the nullclines in the phase space in case of (i) low stable equilibrium state of 

[p53*], (ii) oscillations of [p53*] and (iii) high stable equilibrium state of [p53*]. Next, 

we investigate the phase space. 

 

(i) Low stable equilibrium state of [p53*]: When nc is zero, indicating no DNA 

damage, the organization of nullclines in the phase space is shown in Figure 3.3. In 

this case, in the positive region, there is only one equilibrium point which is located at 

the intersection of nullclines [ATM*] = 0 and G-nullcline. The equilibrium point is 

stable. The stability of the equilibrium point is investigated by locally linearizing the 

2-D model at that point. Calculating the Jacobian matrix at that point, it is found that 

the eigenvalues are -0.05 and -0.6783, which indicates the equilibrium is stable. Thus, 

any initial condition in the positive quadrant goes to this point where [ATM*] is zero 
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and Wip1 is at basal level of around 0.2. There is also another equilibrium point that 

could be seen in Figure 3.3 when the figure is extended to the negative regions. 

However, we are only interested in the positive regions of the system. The nullcline 

[ATM*] = 0, which is an attracting separatrix for [Wip1] > 0, does not allow to transfer 

of the positive trajectories to the negative region as can be understood from the 

directional field. Since any initial condition that starts in the positive quadrant would 

end up in the steady state which is located at around ([ATM*], [Wip1]) = (0,0.2), we 

do not have to bother to investigate the equilibrium points in the negative regions. 

 

Figure 3.3 Representation of phase space of the introduced 2-D oscillator model, when nc = 0. In this 

case, the point ([Wip1],[ATM*])= (0.2,0) is the only stable steady state in the positive quadrant  

 

(ii) Oscillations of [p53*]: When there is high DSBC activity, (i.e. nc = 20), the 

organization of nullclines are shown in Figure 3.4. The F-nullcline goes upward and 

intersects with G-nullcline in the positive quadrant. The stability of the equilibrium 

point located at the intersection of the nullclines in the positive quadrant can be 

determined by calculating eigenvalues via Jacobian matrix at that point. The 

eigenvalues are found to be 0.0578 - 0.1110i and 0.0578 + 0.1110i, which indicates 

that the equilibrium point is unstable.  
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For 2-dimensional systems, the existence of oscillations can be proven by applying 

Poincare-Bendixson theorem. It is not easy to show that a system actually oscillates 

via simulation since the oscillations may contain a small damping property that cannot 

be spotted by eye. However, using Poincaré-Bendixson theorem, we can show that 

there is actually an oscillation. The theorem states that for 2-dimensional systems, if 

there is a bounded trapping region and if that region does not contain any stable fixed 

point, there is a limit cycle oscillation. 

 

To apply Poincaré-Bendixson theorem, first we have to show that there is a trapping 

region. The existence of trapping region can be inferred by looking at the directional 

field in the positive region.  The arrows indicate that the trajectories that start in the 

positive region cannot across to negative region due to the nullcline [ATM*] = 0. Also, 

when [ATM*] and [Wip1] values are large, the directional field again indicates that 

trajectories cannot escape to infinity since the arrows point towards inward. Thus, we 

conclude that there is a trapping region in the positive quadrant when nc is 20. Since, 

the equilibrium point in this trapping region is unstable, applying Poincaré-Bendixson 

theorem, we conclude that there is indeed a limit cycle oscillation. 

 

By examining a trajectory, one period of oscillation can be explained with the help 

of Figure 3.5. The starting point is chosen as (ATM*, Wip1) = (3,1). At the starting 

point, Wip1 is under F-nullcline and G-nullcline. So, both 
[� ]

 and 
[�� ∗]

 will be 

positive, as a result, [Wip1] and [ATM*] will increase. Also, the velocity vectors 

indicate the direction of the trace. When the point crosses F-nullcline at the Point 1, 

[ATM*] value will decrease since 
[�� ∗]

 will be negative. But, [Wip1] will increase 

since [Wip1] is above F-nullcline. Also, another notification here is that F-nullcline 

will behave like a wall till the knee, Point 2. This property is important for 

characterization of relaxation oscillations, where jumping behavior occurs. Point 2 

corresponds to Figure 3.2a-3 where dynamic route approach is applied. After Point 3, 

both 
[� ]

 and 
[�� ∗]

 will be negative. Both of them will increase. When Point 4 is 

crossed, dWip1/dt will go on being negative and [�� ∗]
 will be changed to from 
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negative to positive. When Point 5 is crossed, both 
[� ]

 and 
[�� ∗]

 will be positive. 

A new jump phenomenon too occurs, as trajectory goes from Point 5 to Point 1 starting 

the next period of oscillations. Note that, these explanations of oscillations via dynamic 

route approach or a phase space analysis does not give the proof for the oscillations, 

however just confirms it. The existence of oscillations are inferred by applying 

Poincaré-Bendixson theorem. The explanations are to give the mechanistic insights to 

the oscillations. 

 

Figure 3.4 Representation of phase space of the introduced 2-D oscillator model when nc = 20. In this 

case, F-nullcline shifts upward and intersect G-nullcline at an unstable steady state steady state  

 

Figure 3.5 Representation of critical transitions in oscillations in phase space of the introduced 2-D 

oscillator model 
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The jumps of [ATM*] value in the oscillations contribute to the fast dynamics of 

[ATM*], while [Wip1] variable constitutes the slow part of the system. The jumps and 

the characterization of oscillations by fast and slow parts are the indicator that the 

oscillations are of relaxation type.   

 

(iii) High steady state of [p53*]: When nc is 20 and all p53arresters are zero, the G-

nullcline moves downward as shown in Figure 3.6. This time the equilibrium point in 

the positive region is stable, since the eigenvalues are -0.05 and -0.4654. Thus, all 

trajectories that start in the positive quadrant goes towards this stable point, which has 

a stable steady state at a high [ATM*] value. This high [ATM*] value also indicate 

that [p53*] will be in a high level indicating apoptosis. 

 

The introduced 2-D oscillator model is able to exhibit not only the digital pulses 

but also low and high equilibrium states of [p53*] which is required for normal cell 

growth and for apoptosis, respectively. When [p53arrester] = 0, Wip1 feedback loop 

shuts off, the model dynamics is governed only by [ATM*] equation that has bistable 

characteristics. In this case, the value of nc determines whether [ATM*] will have a 

high or low stable equilibrium state value. If nc = 20 when Wip1 feedback loop shuts 

off, F- and G-nullclines intersect at the high stable equilibrium state of [ATM*] (Figure 

3.6). [ATM*] goes to high equilibrium state, so does [p53*] in accordance with the 

algebraic relation in Equation (3) of Table 3.1. Since p53arrester is forced to be zero, 

all [p53*] become [p53killer] ready to trigger apoptosis. 
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Figure 3.6 Organization of nullclines in the case of apoptosis due to nc = 20 and [p53arrester] = 0 

 

  2-D Model Exhibits Relaxation Type Oscillations 

Relaxation type oscillations are frequently seen in biology and known to give the 

organism robust oscillatory property. Examples include and not restricted to 

pacemaker cells in heart (Grudziński & Żebrowski, 2004), MAPK signaling 

(Kochańczyk et al., 2017), MPF activity in frog egg extracts (Tyson & Novak, 2015), 

and regulation of autophagy (Szymańska, Martin, MacKeigan, Hlavacek, & Lipniacki, 

2015). Relaxation oscillations are characterized by jump phenomenon and fast and 

slow parts in the periodic trajectory.  

 

Since Wip1 equation indicated in (3.2) has a slower dynamics providing a proper 

intrinsic time delay, [ATM*] is able to switch between these high and low steady states 

forming repeated pulses. Therefore, p53 network model owes its oscillations to the 

interaction between the bistable characteristic of fast ATM dynamics and intrinsic time 

delay of slow Wip1 negative feedback loop. Indeed, this topological structure of ATM-

Wip1 resembles a bistable frustrated unit model that is able to exhibit relaxation 

oscillations (Kaluza & Meyer-Ortmanns, 2010; Krishna, Semsey, & Jensen, 2009). 

The proposed model equations have considerable robustness since parametric 

uncertainty is allowed as long as [ATM] equation has bistability and Wip1 feedback 
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loop offers a proper time delay such that ATM has enough time to switch between 

stable nodes. A sufficient amount of relaxation time (i.e. time delay) is necessary for 

[ATM*] to reach its steady state on every pulse, therefore to exhibit higher oscillations. 

If the relaxation time is not sufficient, [ATM*] will switch back to zero value before 

reaching the high steady state, resulting in weaker oscillations. That is, the relaxation 

time determines the strength of the oscillations, which is a property of relaxation 

oscillators. 

   

Since the oscillatory response happens due to the transition from stable (See Figure 

3.3) to unstable (See Figure 3.4) intersection point of nullclines, the system gives a 

complete oscillatory response or no response at all and the external stimulus, nc, does 

not appreciably influence the amplitude of this relaxation oscillation (Figure 3.7). This 

is known as all-or-none phenomenon that is biologically an intriguing property of 

relaxation oscillators (FitzHugh, 1961; Van der Pol & Mark, 1928;). In fact, 

observations in wet lab experiments support the existence of a relaxation oscillator in 

p53 network. For example, (Lahav et al., 2004) states that “The fixed mean height and 

duration of p53 pulses do not depend on the amount of DNA damage” and (Geva-

Zatorsky et al., 2006) states that “The peak amplitude and timing did not depend on 

the dose of irradiation.” 

 

Figure 3.7 Dynamics of [ATM*] taking nc as bifurcation parameter. If nc is smaller than 6, [ATM*] 

stays at zero. If nc is greater than 6, [ATM*] level oscillates 

Low peaks of  
oscillations 

High peaks of  
oscillations 

Stable Equilibria 
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3.5 1-dimensional State Dependent Delay Differential Equation Model for 

ATM-Wip1 Interaction in p53 Network 

One of the characteristics of relaxation oscillators is that the relaxation time 

determines the frequency and amplitudes of oscillations. In ATM-Wip1 oscillator, 

Wip1 dynamics and [Mdm2n] both contribute to the relaxation time (See Equation 2 

and 3 of Table 3.1). [Mdm2n] contributes to relaxation time via Wip1 equation defined 

by (3.2). To investigate separately the contribution of these two determinants to the 

relaxation time and oscillations, we reduce the 2-D ATM-Wip1 oscillator model into 

1-dimensional (1-D) state-dependent delay (SDD) differential equation of [ATM*] by 

indicating the time delay contribution of Wip1 explicitly as τ and keeping [Mdm2n] as 

a parameter as shown in Table 3.2 (See (Kozyreff & Erneux, 2014) for general SDD 

differential equations).  Taking τ as bifurcation parameter for different [Mdm2n] 

values, Figure 3.8a shows that [Mdm2n] has positive effect on the amplitudes of 

[ATM*] oscillations regardless of τ. [ATM*] is known to have positive effect on cell 

cycle arrest after ionizing radiation (Samuel, Weber, & Funk, 2002). Thus, according 

to the proposed 2-D model, [Mdm2n] has positive effect on cell cycle arrest due to its 

enhancement on [ATM*] level oscillations.  

 

In Figure 3.8a τ (time delay by Wip1 equation) is taken as bifurcation parameter for 

[ATM*] variable. Oscillation starts at τ = 2 and τ = 3 for [Mdm2n] = 0.26 and 0.1, 

respectively. As time delay by Wip1 increases, the amplitude of oscillations increases 

and eventually saturates at the high stable equilibrium state of [ATM*] equation. Low 

Mdm2n level of 0.1 in the first phase has a potential to decrease amplitudes of 

oscillations in case of small time delay of Wip1 feedback loop. Therefore, enhanced 

level of [Mdm2n] is good for oscillations indicating it may have an antitumor activity. 

In Figure 3.8b, the same procedure in Figure 3.8a is applied for [p53*] variable 

(Equation 3 in Table 3.1). Low level of [Mdm2n] increases the amplitudes of [p53*] 

oscillations, only if intrinsic time delay provided by Wip1 exceeds 8 minutes.  
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Table 3.2 1-dimensional state dependent delay differential equation model of 2-dimensional oscillator 

Equation 

number 
Equations 

1 
[�� ∗] = ka a    + [� ∗] √ . ∗ ATM −[�� ∗](√ . ∗ ATM −[�� ∗]     + a a )  −  k a    +[� ] [�� ∗][�� ∗] + a m   

2 [p a��este�]  =  [� ∗] t − τ . − . [ ]   

3 [ ] =  wi k w + k w [ ] wi +[ ]   

 

Since Figure 3.8a and Figure 3.8b lack the frequency information, time evaluation 

for [ATM*] is sketched as in Figure 3.8c,d. 1-D SDD model (Table 3.2) is solved until 

4000 minutes to give time for transient effects to disappear. At τ = 3, the proposed 2-

D model exhibits oscillation only for [Mdm2n] = 0.26, not [Mdm2n] = 0.1. At τ = 5, 

the amplitude of oscillations at [Mdm2n] = 0.26 is bigger. At τ = 18, the amplitude of 

oscillation is at its maximum value of high steady state of [ATM*]. Since τ is relatively 

high, at both values of [Mdm2n], ATM dynamics (3.1) have enough time to reach its 

high steady state. As the time delay of Wip1 increases, the period of oscillations 

increases too. Also, it can be seen that [Mdm2n] has similar effect as τ. At τ = 5, for 

[Mdm2n] = 0.26, the period is around 28 minutes, and for [Mdm2n] = 0.1, the period 

is about 36 minutes. This increase in the period of oscillations are due to [Mdm2n]’s 

contribution to the relaxation time. Since after the relaxation regime finishes, the next 

pulse begins, the amount of relaxation time also is a determinant for the period of 

oscillations. This is one of the property of relaxation oscillations. We can generalize 

this finding to any p53 inhibitor. Thus, the complex effect of [Mdm2n] on the 

amplitudes and periods are due to the relaxation type of p53 network oscillator.  
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Figure 3.8 Numerical simulations of the introduced 1-D SDD Oscillator model in Table 3.2 to examine 

the effects of Mdm2n on amplitudes and frequencies via relaxation time   

 

 

As shown in Figure 3.8d, for [p53*], when [Mdm2n] = 0.1 and τ is 5, the oscillations 

are weak; however, when τ is 10, amplitude of [p53*] oscillations are enhanced. There 

is possibility that Mdm2n has enhancing effect on [p53*] oscillations when Wip1 delay 

is properly tuned.  So, the intrinsic time delay of Wip1 and the level of [Mdm2n] must 

be well adjusted as a trade-off between decreasing [ATM*], increasing [p53*], and 

period of oscillations. Thus, the effect of [Mdm2n] on [p53*] oscillations is rather 

complex. Depending on the value of τ, [Mdm2n] may enhance or weaken [p53*] 

oscillations due to the nonlinear algebraic Equation 3 in Table 3.1, although it seems 

to always have a amplification/saturation effect on [ATM*] that [p53*] depends on 

(Figure 3.8b).  For τ between 3 and 8, [p53*] oscillations are enhanced, for τ greater 

than 8, the oscillations are weakened by [Mdm2n]. For the parameters of the reduced 

ATM-Wip1 oscillator equations in Table 3.1, the intrinsic time delay of Wip1 is 

a) b) 

c) d) 
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around 4 minutes, so abundance of [Mdm2n] increases the amplitudes of [p53*] 

oscillations. Although [Mdm2n] is a negative regulator of p53, it has a positive effect 

on [p53*] oscillations thus on cell cycle arrest. Then, we conclude that Mdm2 is good 

for enhancing DNA damage response and hence considered as a tumor suppressor. 

 

After finding these counter-intuitive results mathematically, we look for the 

biological relevance of these results and find that these results correlate with the 

biological findings. In wet lab experiments, it has been shown that Mdm2 may exert 

effects that suppress cell proliferation (Manfredi, 2010) and mitotic progression 

(Manfredi, 2010; Brown, Thomas, & Deb, 1998; Dang et al., 2002). In addition, 

Manfredi (2010) showed that loss of Mdm2 enhanced tumor formation. This counter-

intuitive finding could be explained away by 2-D oscillator model that we proposed 

here. Our explanation is as this: Loss of Mdm2 results in weaker oscillations of p53* 

level which may enhance tumor formation due to the deficient cell cycle arrest. 

However, it must be noted that these referenced works did not aim to study p53 

oscillations, but study the cell cycle arrest. However, it is known that cell cycle arrest 

occurs due to p53 oscillations (Batchelor, Loewer, & Lahav, 2009; Batchelor, Mock 

et al., 2008; Lahav, et al., 2004).  
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CHAPTER FOUR  

DETERMINANTS OF TWO-PHASE DYNAMICS OF P53 NETWORK AS 

REVEALED BY THE INTRODUCED 2-D OSCILLATOR MODEL 

 

Zhang et al. (2011) argues that the first and second phase of the two-phase dynamics 

of 17-dimensional p53 network model becomes active depending on the relative 

strengths of Wip1 and PTEN feedback loops. In contrast to the study by Zhang et al. 

(2011), this chapter describes the phases based on a 2-D oscillator model excited by 

DSBCs as its two different qualitative modes in the following way. 1) Wip1 feedback 

loop, which feedbacks ATM to itself, is the source of oscillation, which appears in the 

first phase, as also explained in Zhang et al. (2011). 2) The second phase appears after 

the oscillation stops due to the extinction of p53arrester by the accumulated activity of 

P53DINP1 no matter what the relative strength of PTEN feedback loop over Wip1 

feedback loop is, opposing to the argument by Zhang et al. (2011). 3) The role of PTEN 

feedback loop is twofold: The activation of PTEN feedback loop in the first phase 

decreases the amplitudes of the oscillation but does not stop the oscillation while, in 

the second phase, it boosts up the level of equilibrium state of p53 to initiate apoptosis. 

4.1 P53DINP1 Acts as an Oscillation Accumulation Triggered Genetic Switch 

Since apoptosis is a decision, there must be a switching action, which requires an 

interaction with a switch. Here, we reveal functional importance of P53DINP1 as a 

switch, more specifically as an oscillation accumulation triggered genetic switch 

(OATGS) (He & Liu, 2014) in two-phase dynamics. To demonstrate the switching 

action of P53DINP1, we add the dynamics of P53DINP1 and p53killer to the isolated 

core oscillator subsystem defined in Table 2.1 (See Figure 4.1a). The resulting model 

is solved numerically as in Figure 4.1b,c. It can be seen that P53DINP1 activity 

increases as it accumulates over oscillations. When its activity becomes so high that it 

turns all p53arresters in the environment into p53killers, Wip1 feedback loop shuts off 

to stop oscillation due to the extinction of p53arresters. In this case, oscillator stops in 

the same conditions as in Figure 3.6, thus [ATM*] goes to the high steady state 

elevating [p53*] ([p53killers]) to high state, too. This analysis supports a potential 

cancer therapeutic approach by elevating [P53DINP1] to drive cell to apoptosis. The 
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apoptotic importance of P53DINP1 is stated in experimental findings (Okamura et al., 

2001) and is patented for the use of cancer therapeutic strategy (U.S. Patent No. 

7,371,835, 2008). From the modular perspective, P53DINP1 can be seen as a tool that 

stops the oscillator in the core of p53 network by accumulating over pulses. 

 

When P53DINP1 activity is included into core oscillator subsystem, effect of 

Mdm2 can be automatically seen in the first phase and  the second phase of p53 

dynamics as in Figure 4.1c. Low [Mdm2n] value of 0.1 decreases the amplitude of 

oscillations but increases the [p53*] (i.e. p53killer) at apoptosis. When [Mdm2n] is 

0.26, the amplitude of oscillations is bigger but [p53*] level in apoptosis is smaller. 

So, to maintain a strong oscillation in the first phase and higher sustained value at 

apoptosis, [Mdm2n] value must be degraded just after the oscillator stops by the 

extinction of p53arrester, which is maintained by P53DINP1 activity in 17-

dimensional two-phase model. This indicates that the ultimate function of PTEN 

feedback loop activated by P53DINP1 in the second phase is to drop [Mdm2n] value 

to a very low value in order to drive [p53*] level to a higher value than the peaks of 

[p53*] oscillation. Large distinction between the peaks of [p53*] oscillations in the 

first phase and constant high level of [p53*] in the second phase guarantees a more 

reliable decision of cell fate. 

 

When P53DINP1 stops the oscillator such that [p53*] level is in high state (Figure 

4.1b,c), the level of p53killer is not sufficient to trigger caspase mechanism for 

initiating apoptosis. Therefore, [Mdm2n] must be decreased in the second phase to 

elevate [p53killer] to the higher steady state. We emphasize the finding that switching 

to apoptosis and maintaining a proper high level to trigger apoptosis are two different 

things. The new finding here is very important in pointing out that stopping the 

oscillator to trigger apoptosis and providing sufficient [p53*] levels after the oscillator 

stops require two different actions and both are necessary and important. Thus, 

stopping the oscillator is the first critical step in initiating apoptosis.  
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Figure 4.1 P53DINP1 acts as an OATGS and the ultimate function of PTEN is to downgrade [Mdm2n] 

to low values in second phase  

 

 Function of PTEN Feedback Loop in Two-phase Dynamics 

In 17-dimensional two-phase model by Zhang et al. (2011), decreasing of [Mdm2n] 

is done by activation of PTEN feedback loop in the second phase. A clear distinction 

to be done here: The activation of PTEN feedback loop does not make the switching 

action from the first phase to the second phase, but it maintains a higher level of [p53*] 

by reducing [Mdm2n] in the second phase (See Figure 4.1c for the effects of decreasing 

of [Mdm2n]). In fact, as we revealed in Section 3.5, the strength of PTEN feedback has 

a negative effect on the first phase by weakening the oscillations, due to the relaxation 

time effect of Mdm2. Therefore, PTEN feedback must be activated just after the 

switching action is done by P53DINP1 in contrast to the claim of Zhang et al. (2011) 

b) a) 

c) 



42 

 

in which the level of PTEN (accordingly Mdm2n) determines whether p53 acts as a 

pulse generator or a switch in the second phase.  
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CHAPTER FİVE  

ANALYSIS OF VARIATIONS IN P53 NETWORK BY THE PROPOSED 2-

DIMENSIONAL OSCILLATOR MODEL AND REVEALING POSSIBLE 

THERAPEUTIC STRATEGIES FOR DEFICIENT P53 DYNAMICS 

 

It has been shown that sensitive parameters that change bifurcation points usually 

correspond to high frequency oncogenic mutations in reality (Chen, Yue, & Ouyang, 

2014). These parameters are sensitive parameters that change the phase space of the 

system. In our case, the intersection type of nullclines determines the characteristics 

of the phase space and any parameter that significantly changes the location of 

nullclines may correspond to an oncogenic mutation. Here we show that mutations, 

such as Wip1 overexpression, ATM deficiency, Mdm2 overexpression and Mdm2 

downregulation can be modelled by changing corresponding parameters in the 2-D 

system resulting in change of phase space and evaluate the 2-D model’s predictive 

power. In order to understand the mechanism of how Wip1 overexpression and ATM 

deficiency cause cancer, we use different parameter selections that characterizes these 

mutations in phase space of the model. The phase space analysis of mutations reveal 

cancer therapy strategies for these types of cancer.   

5.1 Wip1 Overexpression and Downregulation 

Wip1 overexpression is a mutation that is found in several types of cancers and has 

an oncogenic function (Bulavin et al., 2002; Castellino, et al., 2008; Fuku, Semba, 

Yutori, & Yokozaki, 2007;  Fumiko et al., 2003; Lowe et al., 2012; Rauta, et al., 2006)  

which is characterized by the high levels of Wip1 in cell. This situation can be 

embedded into the proposed 2-D model by modifying Equation (3.2) via increasing 

the Wip1 production rate by a constant, Kwip1 as shown in (5.1). As Kwip1 increases, 

the G-nullcline moves upward, changing the phase space of the system. The system 

loses its ability to oscillate (Figure 5.1a). Since oscillations are important for arresting 

cell cycle (Purvis et al., 2012), and defects in cell cycle arrest is the prerequisite of 

cancer (Green & Evan, 2002; Lowe et al., 2012; Xu & D., 1996), we speculate that 

Wip1 overexpression may cause cancer by removing cell’s ability to arrest cell cycle. 

This analysis also supports the biological experiments (Bulavin et al., 2002) (Lambros 
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et al., 2010) which confirm that Wip1 overexpression may cause tumorigenesis even 

if cell has normal functioning p53 (i.e. no mutation in p53). To recover healthy phase 

space, G-nullcline must be moved downward, which can be possible by degradation 

of Wip1. This suggestion is in agreement with (Richter et al., 2015) that shows Wip1 

overexpression can be recovered by Wip1 degradation.  

 

 

d[W�p ]dt = ���� ∗ k w + k w [p a��este�] j w + [p a��este�]  − k w [W�p ] (5.1) 

                         

 

Figure 5.1 The effect of mutations to the phase space of 2-dimensional oscillator. a) Wip1-

overexpression, Kwip1 in Equation (5.1) is 2. b) Wip1 nullity, Kwip1 in Equation (5.1) is 0.6, i.e. less than 

1. c) ATM deficiency, KATM in Equation (5.2) is 5. d) Degradation of Wip1 compensates ATM 

deficiency. Oscillatory response is recovered. Kwip1 in Equation (5.1) is 5 and KATM in Equation (5.2) 

is 0.6 

 

a) b) 

c) d) 
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It has been shown that loss of Wip1 function sensitizes cells to DNA-damage 

induced apoptosis (Kong, Jiang, & Mercer, 2009; Xia, Ongusaha, Lee, & Liou, 2009). 

By decreasing Wip1 activity via decreasing Kwip1 in (5.1), G-nullcline moves 

downward and intersects F-nullcline at a stable high steady state Figure 5.1b. Since 

the oscillator stops at a high steady state, cell may now trigger apoptosis. The ability 

to go apoptosis easily, makes cell resistant to tumor formation (Shreeram, et al., 2006a) 

(Wang, et al., 2015; Yi et al., 2015). The analysis here demonstrates mathematically 

that Wip1 is an attractive therapeutic target and agrees with biological findings 

(Belova, Demidov, Fornace, & Bulavin, 2005; Rayter et al., 2008; Saito-Ohara et al., 

2003; Tan et al., 2009; Yamaguchi et al., 2006; Yoda et al., 2008). This analysis partly 

explains the finding that depletion of Wip1 sensitizes cells to apoptosis in (Goloudina 

et al., 2012). 

5.2 ATM Deficiency 

ATM deficiency is an ATM mutation and characterized by insensitiveness to the 

damage. This mutation can be embedded into our 2-D model, by decreasing 

sensitiveness of ATM to nc, with a constant KATM as shown in Equation (5.5). By 

increasing KATM, the sensitiveness of ATM for the parameter nc can be decreased. As 

a result, F-nullcline moves downward changing the phase space and removing the 

system’s ability to oscillate and to arrest cell cycle (Figure 5.1c). In the literature, some 

studies demonstrate that mutation in ATM causes defective cell cycle checkpoint 

activation (Delia, Fontanella, Ferrario, Chessa, & Mizutani, 2003; Lavin & Kozlov, 

2007; Xu & Baltimore, 1996).  

 

 

d[A�M∗]dt = ka a   nn  +  ���� ∗ jn [A�M∗]  √ . ∗ A�M − [A�M∗](√ . ∗ A�M − [A�M∗]     +  jacatm)  
−  kdeatm   + [ W�p ] [A�M∗][A�M∗]  + j a  

(5.5) 

5.3 Degradation of Wip1 Rescues ATM Deficiency  

Another prediction can be obtained from the phase space perspective: the moving 

of G-nullcline downward can be compensated by moving F-nullcline downward too 

and can keep the qualitative property of the phase space. To move F-nullcline 
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downward, Wip1 activity must be reduced by increasing Kwip1 value in (5.1). As a 

result, the ability to oscillate is re-gained. In fact, (Darlington et al., 2012) showed in 

wet lab experiment that absence of Wip1 rescues ATM deficiency phenotypes in mice. 

Although, our 2-D model is not detailed to account for wet lab experiments, it is 

capable of pointing out mathematically that degradation of Wip1 may rescue ATM 

mutation, since nullclines are moved in the appropriate directions to recover the phase 

space. 

 Effect of Mdm2 Overexpression and Mdm2 Downregulation on Cell Fate 

Overexpression of Mdm2 exist in some tumors (Reifenberger, Liu, Ichimura, 

Schmidt, & Collins, 2003). We speculate that, the consequence of overexpression of 

Mdm2 does not originate from straightforward suppressor-effector relationship 

resulting in p53 downregulation. The effect of the overexpression of Mdm2 is 

modelled via the introduced 2-D oscillator as: Increasing of [Mdm2n] stops the 

oscillations and driving the trajectories towards a relatively high steady state as shown 

in Figure 5.2a. Since the oscillation stops due to a dysfunction of [Mdm2n], Mdm2n 

cannot be utilized further in the second phase of the p53 dynamics to elevate [p53*] to 

a higher level, resulting in a failed apoptosis. 

  

 

Figure 5.2 Downregulation and upregulation of Mdm2n changes the location of G-nullcline and affects 

the phase space of oscillator 

 

a) b) 



47 

 

In our 2-D oscillator model, downregulation of Mdm2n results in smaller amplitude 

oscillations (Figure 5.2b). According to our model, decreasing p53 inhibitor (e.g. 

Mdm2n) levels does not cause a sustained high level of [p53*] for triggering apoptosis. 

This feature of 2-D oscillator model implies that p53-Mdm2 interaction, although it is 

structurally and biologically well-understood (El-Deiry, 1998), would affect p53 

network in an unexpected way causing an additional level of complexity. The 

relaxation oscillator nature of the 2-D oscillator may be a source of confounding 

characteristics in p53 network that must be taken into account by experimentalists and 

it may be one of the reasons for why p53 network is becoming controversial, obsolete, 

and more confusing as new experiments are done (Bensussen & Díaz, 2012; 

Braithwaite & Prives., 2006).   

5.5 A New Concept: Cancer Therapy Strategies That Obey Two-phase 

Dynamics 

As we described previously, decreasing p53 inhibitors (e.g. Mdm2n) as a cancer 

therapeutic approach may have counter-intuitive consequences hard to predict in the 

absence of a deep understanding of the p53 network. Without the knowledge of the 

current phase of the oscillator, degrading p53 inhibitors may harm the cell. So, a better 

drug to drive a cell to apoptosis would be a combination of drugs, which first stops the 

oscillator and then try to degrade p53 inhibitors (There are available tools, for example 

(Hünten, Siemens, Kaller, & Hermeking, 2013)). It means that the drug development 

process should take two-phase dynamics into consideration. Therefore, a drug that 

targets the oscillator to regain its healthy phase space would be invaluable. Such a drug 

development approach proposed in this paper requires a systems-level understanding 

of p53 network, which employs computational studies. 

 

It must be noted that the model here is a framework since it is developed from 

several experiments which generates a conceptual understanding of p53 dynamics. The 

use of the model is for understanding the complexity of p53 dynamics, and for now its 

actual use in realistic conditions would be impractical. In this regard, the author 

emphasizes that the models in systems biology are as good as they can provide new 

predictions and new hypotheses about the working of the system, which can be tested 
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in wet lab settings. Thus, the model serves in that direction.  As new findings are 

revealed from p53 network experiments, the proposed 2-D mathematical model can be 

used as a guide for more realistic complex models.  

   

 It is known that a weak cell cycle arrest signal is the prerequisite of cancer (Xu & 

Baltimore, 1996). So, strengthening the [p53*] oscillations may be an effective way of 

preventing cancer. A possible way to strengthen the oscillations may be to synchronize 

p53 network oscillator by another oscillator that has effect on the high steady state of 

[ATM*]. A candidate for this may be the circadian clock rhythm. Circadian clock and 

the DNA damage response is coupled through ATM (Sancar et al., 2010) and it has 

been shown that cancer therapies work better if circadian rhythm is taken into account 

(Kang & Sancar, 2009). Since circadian rhythm is produced by an oscillator and DNA 

damage response model involves an oscillator model (as we have shown in this 

chapter), mathematically investigating the coupling of these two oscillators in 

therapies would be valuable and it may support the current wet lab experiments as well 

as making testable predictions for further experiments. In Chapter 8, we propose a 

mathematical coupling framework in this direction.  

5.6 Discussion 

 Wip1, which is one of the oscillating variable in the proposed model, is reported to 

exhibit non-oscillatory dynamics in U2OS cell line after IR exposure (Lu, et al., 2007) 

(Jonak, et al., 2016). In contrast, oscillatory dynamics of Wip1 is observed upon 

exposure of IR in some cell line studies (Batchelor, Mock, Bhan, Loewer, & Lahav, 

2008) (Lu, et al., 2007). In this regard, the model can be considered as a theoretical 

model for some particular cell lines that possess oscillatory Wip1 dynamics.  

Nevertheless, it should be noted that the models that have the ability to oscillate are 

likely to exhibit non-oscillatory behaviour by tuning certain parameters. However, the 

models that lack the ability to oscillate needs substantial changes to transform its 

dynamics into oscillations. So, considering the fact that both oscillatory and non-

oscillatory dynamics of Wip1 exist, oscillator models are more likely to point out also 

the mechanisms in non-oscillatory dynamics of Wip1. The search for parameter space 
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and mechanisms underlying the non-oscillatory dynamics of Wip1 can be studied as 

future studies. 

 

Hat, Kochańczyk, Bogdał, & Lipniacki (2016) shows that if Wip1 synthesis rate is 

too high, oscillations are ceased. In agreement with (Hat, Kochańczyk, Bogdał, & 

Lipniacki, 2016), we showed in Figure 3.8 that if Wip1 feedback loop is too fast (i.e. 

intrinsic time delay is too small), which can be the result of the increased synthesis 

rate of Wip1, the oscillations are ceased. Also, the studies done for Wip1 

overexpression in Figure 5.1a shows that high synthesis rate of Wip1 causes 

oscillations to stop.  

 

Wip1 feedback is shown to be indispensable for the oscillations, however Mdm2 

feedback is not sufficient to explain the oscillations, so questionable (Batchelor, Mock, 

Bhan, Loewer, & Lahav, 2008) (Sun & Cui, 2015). We just isolate the system from 

Mdm2 dynamics to show a resulting complex dynamics implying that Wip1 is 

indispensable, whereas Mdm2 is dispensable for the existence of oscillations, as with 

proposing a model under the isolation of Mdm2 dynamics. However, it should be noted 

that there are models that relies on p53-Mdm2 feedback loop and are capable of 

showing qualitative behaviours of p53 network (Leenders & Tuszynski, 2013) 

(Hunziker, Jensen, & Krishna, 2010). 
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CHAPTER SİX  

A NOVEL 2-DIMENSIONAL POLYNOMIAL TYPE CANONICAL 

RELAXATION OSCILLATOR MODEL FOR P53 NETWORK 

 

Although mathematical models are helpful in understanding how the system 

functions, most of the time comprehensive models to describe every detail of chemical 

processes is infeasible since biological processes in the cell is too complex and there 

are highly connected components whose interactions are not revealed yet or only 

known in the form of “repressing” and “enhancing”. Therefore, inevitably most of the 

time, mathematical models proposed in systems biology focuses on the motifs arising 

from the main topological structure of the network omitting some of the chemical 

reaction details. Nevertheless, this does not diminish the importance of mathematical 

models, since the topological structure determines the dynamics of a biological 

process. Moreover, models focusing on topology is more likely to find missing nodes 

or to reveal essential nodes of the system. 

 

As a biological process contains many components, so does the mathematical 

model of that biological process, which makes it hard to manage and understand. 

That’s why sometimes we need to further simplify the model just to grasp how the 

system functions, and analyze it easily (Hartwell, Hopfield, Leibler, & Murray, 1999). 

Besides, studying the simpler system helps to understand the more comprehensive 

model of that system. Especially, if there are experimental studies revealing the 

structure of the system, canonical models derived from this structure can provide an 

abstraction of the mechanism of the whole system. 

 

In this thesis, following a minimalist approach, we propose a 2-dimensional 

canonical relaxation oscillator model with polynomial terms only to describe the 

qualitative behavior of p53 dynamics. The model is based on the interaction between 

ATM and Wip1 variables which have been observed as the most essential elements of 

the p53 network in a series of works (Batchelor, Loewer et al., 2011;  Batchelor, Mock 

et al., 2008; Purvis, et al., 2012; Zhang et al., 2011).The simplicity of the proposed 2-

dimensional polynomial type canonical model also allows for mechanistic 



51 

 

understanding of p53 dynamics and of the qualitative changes caused by the model 

parameters together with their biological meanings. The model could provide 

researchers with an intuitive guidance without a need to consult any numerical method. 

Thus, in the perspective of relaxation oscillations, one can generate hypotheses about 

controlling p53 dynamics with the aim of developing therapeutic interventions.    

 

2-D canonical relaxation oscillator model could be more useful in comparison to 

the large scale models. Canonical models provide information about the overall system 

behaviors due to the mechanistic explanations that they provide (Voit & Chou, 2010). 

A few to mention, Lotka-Volterra (Lotka, 1910; Volterra, 1927), Goodwin (Goodwin, 

1965), and Fitzhugh-Nagumo (FitzHugh, 1961) canonical models have been found 

very useful in the contexts of ecology, biochemistry, and neurophysiology, 

respectively. The canonical approach reveals valid predictions by virtue of the 

modularity in biology, which allows for investigations both in molecular level and in 

functional level. 

 

The proposed canonical oscillator model is a relaxation type oscillator, which is 

abundantly found in biological systems, thus increasing the validity of the model. It 

may serve as a suitable model for describing relaxation oscillatory dynamics of p53 

network in particular and gene regulatory networks in general as does Fitzhugh-

Nagumo model for neurons. As with the other relaxation oscillators, such as 

pacemaker cells in heart (Grudziński & Żebrowski, 2004), MAPK signaling 

(Kochańczyk, et al., 2017), MPF activity in frog egg extracts (Tyson & Novak, 2015), 

regulation of autophagy (Szymańska et al. 2015), and van der Pol model in electronics 

(Van der Pol, 1926), the developed canonical relaxation oscillator is characterized by 

jump phenomenon and fast and slow dynamical parts in the periodic trajectory, 

yielding constant amplitude robust oscillatory property. The importance of the 

proposed canonical model from the mathematical perspective is that it allows for 

derivation of the analytical conditions underlying each qualitative behavior of p53 

network dynamics. The model allows deriving the role of timescale separation 

property in construction of relaxation oscillations by means of a closed form analytical 

expression. The model is especially useful in posing the mutation types caused by 



52 

 

deficient p53 network dynamics, e.g. ATM deficiency and Wip1 overexpression, as a 

phase space problem, thus providing a way of developing intervention strategies for 

these types of mutations causing cancer.  

6.1 Indispensability of ATM and Wip1 for Three Modes of p53 Dynamics  

It is known that p53 network regulates the DNA damage response of the cell 

(Murray-Zmijewski, Slee, & Lu, 2008). Studies show that p53 level is at low values 

under normal unstressed conditions (Michael & Oren, 2003). However, upon the 

exposure of gamma irradiation, double strand breaks (DSBs) in DNA occur and p53 

level starts to oscillate as pulses (Lahav et al., 2004). With the onset of p53 oscillation, 

cell cycle is arrested to avoid the proliferation of the damaged cell, and at the same 

time DNA damage is being repaired by repair molecules (Toettcher et al., 2009). After 

a few pulses if DNA damage is not repaired, then p53 level goes to the fixed high level 

and maintained at that level until apoptosis is triggered (Purvis, et al., 2012; Purvis & 

Lahav, 2013; Vousden & Lane, 2007). If the damage is repaired, then p53 level goes 

back to the low level and normal cell cycle progression is continued (Branzei & Foiani, 

2008). This mechanism of response give cell some flexibility such that only if attempts 

to repair fail, then the decision of apoptosis is given (Batchelor, Mock et al., 2008; 

Lahav et al., 2004; Purvis et al., 2012; Zhang, Brazhnik, & Tyson., 2007). A 17-

dimensional mathematical model is proposed in (Zhang et al., 2011) for describing the 

aforementioned flexibility of p53 dynamics showing three qualitative modes: low level 

(unstressed conditions), oscillations (cell cycle arrest) and a sustained high level 

(apoptosis).  

 

In p53 network, DSBs upon the exposure of gamma radiation are detected by Ataxia 

Telangiectasia Mutated (ATM) (Kurz & Lees-Miller, 2004; Pandita et al., 2000). 

When there are DSBs in DNA, repair molecules form a complex with DSBs (DSBCs) 

(Ma et al., 2005; Rothkamm, Krüger, Thompson, & Löbrich, 2003). The produced 

DSBCs activates ATM by phosphorylation. Experimental studies show that even at 

low IR doses, i.e. a few DSBs, ATM is rapidly activated and transformed to active 

ATM (ATM*), suggesting that ATM is highly sensitive to DSBs (Bakkenist & Kastan, 

2003). A positive feedback loop of ATM* allows for this rapid activation and gives 
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the property of switch-like behaviors of ATM. Mathematical models suggest that ATM 

has bistability property due to this auto-activation (i.e. positive feedback loop) (Ma et 

al., 2005; Mouri, Nacher, & Akutsu, 2009). According to this suggestion, ATM* level 

stays at a low steady state in the absence of DSBCs and switches to a high steady state 

in case of DSBCs. Activation of ATM is regarded as the first step of DNA damage 

response (Bakkenist & Kastan, 2003). 

 

One of the important roles of ATM is signaling the DNA damage to p53 (Batchelor, 

Loewer, Mock, & Lahav, 2011). After IR exposure, p53 activity is elevated due to the 

phosphorylation by ATM. p53 activation increases the expression of Wip1 (Wild-type 

p53-Induced Phosphatase 1), which is known to be an inhibitor of ATM*. Thus, this 

sequence of interactions form a negative feedback loop between ATM and Wip1 

(Shreeram, et al., 2006) (Figure 6.1a). Although other interactions exist, such as Wip1 

inhibition of p53, ATM inhibition of p53 inhibitor Mdm2 (Lahav et al., 2004) 

(Batchelor, Loewer, Mock, & Lahav, 2011), only feedback loop interaction between 

ATM and Wip1 dynamics has been reported to be indispensable for p53 oscillations 

(Batchelor, Loewer, Mock, & Lahav, 2011). In addition, there are experimental studies 

demonstrating that interplay between ATM and Wip1 is the key in regulation of cell 

cycle checkpoints and apoptosis (Darlington, et al., 2012; Shreeram, et al., 2006a, 

2006b; Xia, Ongusaha, Lee, & Liou, 2009). Also in mathematical models, the 

importance of ATM and Wip1 negative feedback loop in describing p53 network 

dynamics has been demonstrated (Batchelor, Mock, Bhan, Loewer, & Lahav, 2008; 

Zhang et al., 2011)  and in Chapter 2 and 3 of this thesis. Thus, in this chapter we only 

focus on the construction of p53 network dynamics by the topological structure of 

ATM and Wip1 interaction. 

 

The ATM and Wip1 proteins separately or together have been included in the 

models that attempt to simulate p53 oscillations. For example, Mouri, Nacher, & 

Akutsu (2009) suggested a model which shows the activation of ATM by DSBs. They 

mathematically reveal that ATM dynamics must possess the bistability property to 

account for the switch-like behaviours. Ma et al. (2005) proposed a model in which a 

bistable ATM sensor module switches p53-Mdm2 oscillator on or off. However, this 
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model does not include Wip1 feedback loop which is now known indispensable for 

oscillations (Batchelor, Mock et al., 2008). The studies show via wet lab experiments 

also that Mdm2 and p53 interaction is not responsible for oscillations (Batchelor, 

Mock et al., 2008). On the other hand, Zhang et al. (2011) proposed a comprehensive 

mathematical model, in which ATM switches p53 oscillations on or off. In their model, 

feedback loop interaction between ATM and Wip1 is indispensable for oscillations. 

Also via mathematical model, Zhang et al. (2011) describes the two-phase dynamics 

of p53, in which p53 is driven into high levels only after the oscillation phase when 

the DNA damage is unrepairable. In their model, distraction of Wip1 feedback loop is 

the key to change of dynamics of p53 network, i.e. the transition from oscillatory to 

fixed high level state. There are several other models that try to replicate the oscillatory 

dynamics of p53 (Sun & Cui, 2015). However, the models that keep ATM and Wip1 

interaction on the forefront and study the high and low states as well as oscillations are 

rare (Sun & Cui, 2015; Zhang et al., 2011). 

 

Focusing on the interaction between the bistable ATM characteristics and Wip1 

feedback loop, in this thesis, we propose a 2-dimensional canonical relaxation 

oscillator model that is able to replicate the three distinct qualitative behaviour of p53 

network: 1) rest state, 2) oscillations and 3) high steady state. For the sake of obtaining 

lower dimensional models, p53 may simply be hidden, so ATM* is directly linked to 

Wip1 activity (See Figure 6.1b). In the proposed model, ATM has been chosen as the 

representative variable of p53 dynamics, due to the direct proportional relation 

between p53 and ATM.  

 

Three qualitative modes of p53 dynamics can be represented by the constructed 

canonical model as follows. Low state of p53* is observed when there is no DSBC 

activity. In this case, ATM* stays at low level, so is p53* indicating normal cell cycle 

progression (Michael & Oren, 2003). Oscillations of p53* is observed when there is 

DSBC activity. In this case, ATM* level switches to a high steady state rapidly. ATM* 

increases the activity of Wip1 which in turn deactivates ATM* even in the presence 

of DSBC. As ATM* level falls, Wip1 activity (level) decreases also. With the decrease 

of inhibitory Wip1 activity, ATM is again activated by DSBCs if DSBCs still persist 
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in the environment. Thus, ATM repeatedly checks for the existence of DSBs 

(Batchelor, Mock et al., 2008). If ATM is activated by the existent DSBCs, Wip1 level 

is re-activated. As this sequence is repeated, ATM* and Wip1 oscillations are formed. 

Since p53 is on the feedback loop between ATM* and Wip1, we can further assume 

that p53* level oscillates too indicating cell cycle arrest. Indeed, this is in agreement 

with biological findings where it has been shown that p53 oscillations result from the 

recurrent initiation of ATM activity (Batchelor, Mock et al., 2008). High steady state 

of p53* indicating apoptosis is observed when there are DSBCs in the environment  

and at the same time Wip1 feedback loop is distracted (see Figure 6.1c). In this case, 

DSBCs activates ATM* and the increased ATM* level is stuck at a high level due to 

the absence of inhibitory Wip1 activity.  With the increased ATM* level, p53* level 

also stays at a high level indicating the initiation of apoptosis.  

 

 

Figure 6.1 Simple interaction diagram of ATM and Wip1 that shows three different behaviors.a) ATM-

p53-Wip1 interaction. b) p53 is hidden by considering ATM directly influences Wip1. c) When there 

is DSBC activity (i.e. high nc), distraction of Wip1 feedback loop is the indicator of apoptosis (a 

sustained high level of ATM*, accordingly a sustained high level of p53*)  

Distraction 
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6.2 2-dimensional Polynomial Type Canonical Relaxation Oscillator Model of 

p53 Network 

We propose a canonical relaxation oscillator model with polynomial terms only for 

p53 network as defined by the ordinary differential equations of two state variables in 

(6.1) and (6.2), under the constraint given in (6.3) which is able to replicate the three 

qualitative behaviors of p53 network. When relevant parameters of the model are 

adjusted properly, the model is able to show: 1) low equilibrium state 2) oscillations 

3) high equilibrium state. Although, the proposed model shows these behaviors 

distinctively, the model can be extended to higher dimensions with the introduction of 

new variables that manipulate those relevant parameters automatically. For example, 

an oscillation accumulation term (e.g. P53DINP1) can be added to the model, to make 

the switching from oscillations to high steady state if DSBs are not repaired after a few 

pulses. However, it is not the concern here. We focus on the emergence of these three 

distinct behaviors from the topological structure between the bistable ATM and Wip1 

feedback loop by proposing the following canonical model with polynomial terms that 

have the interpretability of known interactions between ATM and Wip1.  

   

 ̇ = � − [  − + + + − ]   (6.1) 

 ̇ = � + −  (6.2) 

 − + <  (6.3) 

Above,  and  stand for ATM* and Wip1 levels, respectively, ̇  ≝  and  ̇  ≝ . 

The parameters , , , , , , �  and �  are positive constants whilst  is nonnegative. 

The parameter  is an external signal modelled as a constant whose value may change 

between 0 and 1 indicating the severity of the DNA damage. 

 

The right side of (6.1) is set as a third order polynomial, since bistability dynamics 

can be obtained by having at least 3 equilibrium points, two of which are 

asymptotically stable and the third is a repeller (Avcu et al., 2015, 2016). In this way, 

bistable dynamics of ATM is constructed by the minimalist approach followed in this 

thesis. Negative feedback loop to be provided by Wip1 can be obtained by introducing 
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the term −  in (6.1) and the term  in (6.2). The parameter  is used for 

modelling the cut off of Wip1 negative feedback loop as with setting it to zero (see 

Figure 6.1c). The positive values of  are for modelling the link between ATM and 

Wip1. To possess the desired p53 dynamics, the values of the model parameters must 

be chosen such that the constraint in (6.3) is satisfied. Throughout the analyses in the 

thesis,  >   is assumed with no loss of generality. 

 

Since the bistable ATM dynamics and Wip1 negative feedback loop constitute the 

backbone of p53 network dynamics as we show in Chapters 2 and 3, a biologically 

meaningful mathematical model must have these properties. Equation (6.1) provides 

the bistable property of ATM, whilst (6.2) provides the feedback loop property of 

Wip1. Due to the direct relation between ATM* and p53 dynamics,  can be 

considered as the representative variable of p53 dynamics as well. Figure 6.2 gives 

time evolution of  level demonstrating the aforementioned three distinct modes of 

p53 dynamics for the constant parameters ∗ ≝ { = ,  =  ,  =  ,  = ,  =  . ,  =  . , τ = , τ = }, and adjustable (mode design) parameters ∈ { , . } and ∈ { , }. Herein, the low equilibrium state mode is obtained when =  and = . , the oscillation when =  and = . , and high equilibrium 

state when =  and = . These selected values of the parameters will be used 

throughout the analyses, unless stated otherwise. 

 

The parameter  in (6.1) models the input / + , having a saturation 

property, where  is the number of DSBCs. As  increases, the term  goes to 1 

asymptotically. This assumption is fitted to the consideration of (Zhang, Liu, & Wang, 

2011) in modelling the activation of ATM by DSBCs. If there is no DSBC activity (  

= 0), indicating no DNA damage, then the parameter  becomes zero.  

 

In the introduced model, the variable  (ATM) is regulated negatively by  (Wip1), 

whilst y is regulated positively by . In addition,  has a self-activation property with 

the term “ ”, which stands for the auto-activation property of ATM. The term 

“− ” stands for degradation of ATM. Wip1 is known to reset ATM activity even 

in the presence of DNA damage (Shreeram, et al., 2006a). Thus, the term “– ” is 
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included in (6.1) for the strong inhibition property of Wip1 on ATM. On the other 

hand, the term “ − ” changes the location of the critical points of the parabola 

defined by factor ≝  − + + + −  in (6.1), so does dynamical 

properties of the model which is crucial in forming of oscillations as will be detailed 

in the following sections.  

 

Figure 6.2 The proposed canonical 2-D oscillator model defined by Equations (6.1) and  (6.2) is able 

to replicate three qualitative behaviours of p53 network, namely low state, oscillations and a (sustained) 

high state 

 

Equation (6.2) has a constant production rate of . The term “ ” stands for the 

activation of  by  and the term “− ” stands for the degradation of . Since  feeds 

back negatively to , this means  suppresses itself after a time delay by a feedback 

loop. 

  

Figure 6.2 gives time evolution of  level demonstrating the aforementioned three 

distinct behaviours of p53 dynamics. The parameters are chosen as  =  ,  = ,  =  ,  =  ,  =  . ,  =  . ,  =  . , � = � = . In the time 

intervals [0, 20] and [30, 50], there are no DSBs in DNA. Thus, the representative 

variable ATM is at rest state. In the time intervals [15, 30] and [50, 70] there is a high 

DSBC activity and Wip1 feedback loop is on as indicated by the parameters r = 1 and 
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m = 1.25, respectively. In this case, ATM level oscillates. When time is greater than 

70 a.u., r is still 1 but the parameter m is made zero to cut off  (Wip1) feedback loop. 

In this case, ATM level stops oscillating and goes to a fixed high level indicating the 

initiation of apoptosis. 

 

Since ATM* ( ) dynamics is known to be fast and Wip1 ( ) feedback is relatively 

slow, the proposed model must account for this time scale separation property. Indeed, 

the mechanism of the proposed model is suitable to be split into fast and slow dynamics 

for this timescale separation since the dynamics of  naturally tends to be faster than 

the dynamics of , due to the jumps in  dynamics as will be detailed in the following 

sections. We provide also time scaling parameters �  and � , for further tuning the 

periods of the oscillations. 

6.3 Analysis of Three Modes of the Model 

To demonstrate the three modes of the model, namely low and high equilibrium 

states, and oscillation, we employ a parametric local stability analysis in this section. 

We show which parameters are critical for the existence of any of these three 

dynamical behaviours and which ranges of these parameters ensure these behaviours. 

Since the proposed model is of 2-dimensional, graphical methods, namely the dynamic 

route and phase portrait, can be employed as the analysis and design tools. As will be 

seen, the analysis of the model is tractable due to the polynomial nature of the 

nonlinearities. 

 

In the analysis of a model, the location and the Lyapunov stability of equilibrium 

points are of great importance. The location of equilibriums of a 2-dimensional system 

given with Ordinary Differential Equations (ODEs) can be found by the intersection 

of nullclines that are defined as ̇ =  and ̇ =  in −  space. Stability information 

of these equilibria can be obtained from the local stability analysis that involves 

computation of eigenvalues of Jacobian matrix evaluated at those equilibria. There are 

three nullclines of the system. Equation (6.1) has two nullclines each of which makes ̇  zero. One of the nullclines of (6.1) is the vertical axis given in (6.4), and the other 
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nullcline is the set of points defined by (6.5). Equation (6.2) has one nullcline defined 

by (6.6).  

 :  =   (6.4) 

 

As stated, equilibria of the system are the points where ̇  and ̇  are both zero. 

Therefore, equilibrium points can be found from the intersection of (6.4) and (6.6) or 

(6.5) and (6.6). One of the equilibrium points is located at the intersection of (6.4) and 

(6.6), which is (0,z/n). At the intersection of (6.5) and (6.6), there can be one or two 

equilibrium points depending on the value of the parameter . Clearly, if  is zero, 

(6.5) reduces to a first order polynomial that intersects with (6.6) at only one point. If 

 is non-zero, then the parabola (6.5) and the line (6.6) intersect at two points. Thus, 

the system has 2 or 3 equilibria depending on the parameter  under the constraint in 

(6.3) and the condition ≠  whenever = .    

 

If  is zero, there is only one more equilibrium point of the system in addition to the 

equilibrium (0,z/n). In this case, (6.5) reduces to a constant function, = − , and 

the intersection point of (6.5) and (6.6) becomes − + , − , which is in the 

third quadrant. 

 

 For a non-zero , two more equilibrium points in addition to ,  can be found by 

equating the right hand sides of (6.5) and (6.6) and then solving for . A quadratic 

equation whose roots correspond to these equilibrium points is obtained as in (6.7).   

   

 − + − + − + =  (6.7) 

 

 :  = − − + + −     (6.5) 

 :  = +
 (6.6) 
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By using the root formula, two equilibrium points can be expressed as in Table 6.1. 

Stability of the equilibria can be determined from the Jacobian matrix evaluated at 

those points. Since the proposed model (6.1)-(6.2) is of 2-dimensional, the Jacobian 

matrix obtained as (6.8) in terms of model parameters is a 2x2 matrix, having two 

eigenvalues.  

 

Table 6.1 The equilibrium points of the proposed canonical system model 

The 

parameter,  

Equilibrium 

points at the 

intersection of 

(6.4) and (6.6) 

Equilibrium point(s) at the intersection of (6.5) and (6.6) 

<  

 
, /  

 components of the equilibrium points: 

,∗ = ( + − ) ±  √( + − ) − − +  
 

 components of the equilibrium points: 

,∗ = ,∗ +
 

 =   , /  − ( + ) , −  

 

For the 2-dimensional system, the stability of equilibrium points can be easily 

determined from the determinant and the trace of the Jacobian matrix without actually 

finding the eigenvalues.  If the determinant  of the Jacobian matrix is negative, 

then these two eigenvalues are opposite in sign, indicating that the equilibrium is a 

saddle point. If  >  , then the signs of the eigenvalues are both negative or 

positive depending on the sign of the trace. If >  and the trace is negative, 

then the eigenvalues are both negative, meaning that the equilibrium point is 

asymptotically stable, i.e. an attractor. If >  and the trace is positive then the 

eigenvalues are both positive, meaning that the equilibrium point is unstable, i.e. a 

repeller. Following this discussion, the stability analyses of the equilibrium points 

given in Table 6.1 will be carried out in Sections 6.3.1-6.3.7.  
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= [ /� /� ] [−( − + + + − ) − − + −− ]  (6.8) 

6.3.1 Normal Cell Cycle Progression: Low Equilibrium State 

In this subsection, we show how the proposed 2-dimensional canonical model 

replicate the low steady state of . When there is no DSBC activity in DNA, cell is in 

normal cell cycle progression (i.e. the parameter  is zero). Thus, Equations (6.1) and 

(6.2) becomes:  

 ̇ = �  −  +  (6.9) 

 ̇ = � + −  (6.10) 

 

The nullclines in this case obtained are: 

 

 :   =    (6.11) 

 :  = −  (6.12) 

 :  = +
 (6.13) 

 

The system defined by (6.9) and (6.10) has only two equilibrium points. One of 

them is located at the intersection of (6.11) and (6.13), whilst the other one is located 

at the intersection of (6.12) and (6.13). Solving (6.11) and (6.13), the equilibrium point 

is found as ,  =  , / . The location of another equilibrium point, ( , ), is at − + , −  which is not in the positive quadrant. The 

stability of the equilibrium points can be found from the Jacobian matrix (6.8) 

evaluated at those equilibrium points. Thus, Jacobian matrix evaluated at ( , ) = , /   is: 

 

 ( , ) = = [ /� /� ] [− + − ] (6.14) 



63 

 

whose determinant is: 

 ( , ) = = + � �  (6.15) 

 

Determinant in (6.15) is always positive since all parameters are positive. 

Therefore, we have to check the sign of the trace to determine the stability. The trace 

of (6.14) is: 

 ( , ) = = − + � − �   (6.16) 

 

which is always negative. So, it is concluded that the equilibrium point ( , ) = ,  always behaves as an attractor when  =   (i.e. no DSBC 

activity indicating normal cell cycle progression). 

 

Jacobian matrix evaluated at the second equilibrium point ( , ) =− + , −  is: 

 ( , )= = [ /� /� ] [ ( + )− ]  (6.17) 

 

whose determinant is obtained as: 

 

 det ( , , , )= = − + � �  (6.18) 

 

The determinant of Jacobian matrix evaluated at ( , ) (6.18) is always 

negative. No matter what the trace of the Jacobian is, it implies that ( , ) which 

is always located in the third quadrant is a saddle point.   

 

In conclusion, in the phase space, there is only one stable steady state which is 

located at , /  and one saddle equilibrium state located at − + , − . 

By looking at the organization of equilibrium points and velocity vector field as 

sketched in Figure 6.3, it is clear that all trajectories that start in the positive quadrant 

(i.e. biologically meaningful range) goes to the attractor , / . From biological 
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point of view, when  =   indicating no DSBC activity, representative variable 

ATM* goes to zero. Therefore, the proposed model is capable of replicating the rest 

state of p53 network when there is no damage, as demonstrated by the trajectories of 

the system in Figure 6.3.  

  

Figure 6.3 When there is no DSBC activity, indicated by  =  , there is only one stable steady state 

located at , /   

 

6.3.2  Cell Cycle Arrest: Oscillations 

In this subsection, we show how the proposed model is capable of replicating the 

known oscillations of p53 network. When there are DSBs in DNA, the number  of 

DSBCs raises from zero and the parameter  (i.e.  / + ) goes asymptotically 

to 1 as  increases. In this case, the oscillatory behaviour of p53 is known to be 

observed. Replacing the parameter r with its limit value of 1, the system of equations 

(6.1) and (6.2) become: 

 

 = �  − [ − + + +  − ]   (6.19) 

 = � + −  (6.20) 

 ,  

 − + , −  
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In addition to the newly imposed condition =  and the constraint in (3), we 

further assume the following conditions on the model parameters to obtain a limit cycle 

oscillation in the first quadrant. 

 > − − + + − −+  (6.21) 

 < < <  (6.22) 

  in (6.21) is the equilibrium point defined in (6.31), which is actually the 

intersection point of the nullcline  in (6.27) and the nullcline  in (6.28) such that 

it takes place in the first quadrant when the condition (6.3) is met and it is located on 

the left of the maximum point = +
  of the nullcline  when the condition (6.21) 

is met. The condition (6.22) together with the parameters  and , which are 

defined in (36) is imposed to ensure that the equilibrium point  is an unstable 

equilibrium point, so keeping the possibility of having oscillation within a trapping 

region in the first quadrant. 

 

6.3.3 Existence of a Trapping Region in the First Quadrant 

We will first show that, for all positive initial conditions and allowable range of 

parameters, i.e. the positive values of the parameters satisfying the condition in (6.3), 

the model defined in (6.1)-(6.3) with =  has a compact, i.e. closed and bounded, 

trapping region in the first quadrant. Such a trapping region can be defined as follows. 

 

 ℛ ≝ { ∈ | ̅; + ̅ } (6.23) 

 

where, ̅ which is defined in (6.24) is the right one of the intersection points of the 

nullcline  in (6.27) and the horizontal line =  . A typical ℛ is illustrated in Figure 

6.4. 
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 ̅ ≝ +  + √ + − − +
 

(6.24) 

 

 

Figure 6.4 Illustration of a possible closed bounded trapping region ℛ in the positive quadrant for =1 

 

To prove that ℛ is a trapping region, we will show that i) ̇  when = , + ̅, ii) ̇  when = ̅ and + ̅, iii) ̇  when ̅ 

and = , and iv) ̇  when ̅ and = + ̅. As will be seen from the 

following analysis, the trajectories not only point inward but also follow a counter-

clockwise direction on the boundaries of the trapping region ℛ. 

 

i) When =  and + ̅, (6.19) becomes ̇ = . On the other hand, (6.20) 

yields that ̇ =  � − =  fo� =  and ̇ <  � − =  for  <+ ̅. 

ii) When = ̅ and + ̅,  ̇ = �  −  − + + +  −    

̅ 

/  



67 

 

= �  −  − + + +  −    

                  = � ( − − ̅ − ̅ ) =  for =  and 

̇ = �  −  − + + +  −    

< �  −  − + + +  −    

                              = � ( − − ̅ − ̅ ) =  for < + ̅. 

 

The validity of the above derivations follow from that ̅ defined in (6.25) and ̅ in 

(6.24) which are the intersection points of the nullcline  in (6.27) with the line =  

are indeed the real roots of − + + +  − =  under the constraint 

of (6.3). 

 ̅ ≝ + − √ + − − +
 

(6.25) 

 

On the other hand, by (19), we get ̇ =  � + − = � ( + ̅ − ) > 

� + ̅ − + ̅ =  

. 

iii) When ̅ and = , we have ̇ =  for =  and  ̇ = �  −  − + + +  −    

= �  −  − + + +  −   

                  = � ( − − ̅ − ̅  ) >  for < < ̅ .  
This result is seen from that ̅ <  under the constraint in (6.3), >  and −̅ < .  
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Furthermore, ̇ = � ( − − ̅ − ̅  ) =  for = ̅ . On the other hand, ̇ = � + − = � =  for =  and  ̇ = � >  for <̅. 

 

iv) When ̅ and = + ̅, we have ̇ =  for =  and  ̇ = �  −  − + + +  −    

 = �  −  − + + +  + ̅ −   

= � (− − − b + + ̅ −   ) < 

� − (( + − ) ( + − ) + + ̅ − ) = 

� − (− + + − + + ̅ ) < 

� (− (− + + − + +  + )) <  

for < ̅ . The first inequality above follows from that − − b  has the 

minimum at 
+

. The second inequality is seen from the fact that ̅ >  +
 for ̅ defined in (6.24). The last inequality is a consequence of the condition in (6.21).   

On the other hand, ̇ = � + − − ̅ = � (− ̅) <  for =  and ̇ = � + −− ̅ < � ( ̅ − ̅) =  for < < ̅ while ̇ = � + − −̅ = � ( ̅ − ̅) =  for = ̅. 

 

Thus, it is concluded that there is a closed and bounded trapping region in the first 

quadrant. It is also seen by the results in i)-iv) that a) ̇ =  and ̇  for the points 

lying on the left vertical edge of ℛ, b) ̇  and ̇ >  for the points on the right 



69 

 

vertical edge, c) ̇  and ̇  for the points on the lower horizontal edge, and d) ̇  and ̇  for the points lying on the upper horizontal edge.  

 

6.3.4 Determining Locations and Stability Types of Equilibria by Using Nullclines 

and Jacobian 

Now, we will determine all equilibrium points of (6.19)-(6.20) under the constraint 

in (6.3) and provide their local stability analyses. Then, we will show that, under the 

parametric conditions in (6.21)-(6.22), the trapping region has indeed two equilibrium 

points; one of which is a repeller located in the interior of the trapping region such that 

all nearby trajectories escape away from it and the other equilibrium point is a saddle 

point ( , ) = ,  located at the lower left corner of the trapping region ℛ 

such that it attracts the trajectories initiated at the vertical axis = , and repels all 

other trajectories started within the trapping region. 

 

We investigate the general characteristics of the nullclines since their organization 

in the phase space is crucial for the characteristics of the system dynamics such as the 

location of equilibrium points and the directions of the trajectories. When = , the 

nullclines become: 

 : =   (6.26) 

 : = − − + + −
 (6.27) 

 : = +
 (6.28) 

 

Nullcline  is a second order polynomial (a parabola) that opens down since the 

coefficient – /  of the quadratic term is negative. It has one maximum point at  = + / . The nullcline  cuts the y-axis at − / , whilst  cuts the y-axis at / . As imposed by the constraint of (6.3), we restrict the choice of parameters such 

that /  is always smaller than − /  to allow just one nontrivial equilibrium 

point, namely an equilibrium other than the origin, in the first quadrant (see Figure 

6.5a,b) for all choices of parameters. yx cuts x axis at two points as can be found easily 

by the root formula which is shown in (6.29) and (6.30).  
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Figure 6.5 Possible nullcline organizations in the phase space. The parameter values are taken as  = ,  =  ,  =  ,  =  ,  =  . ,  =  . , � = � =  whilst m is taken differently in two 

cases a) The situation of , < (a+b)/2, and m is taken as 0.25. b) The situation of ,  

> (a+b)/2 , m is taken as 0.75 

 

 ′ ≝  + −  √ + − −  
 (6.29) 

−
 

/  

Maximum point  

:  ̇ =  

: ̇ =  

̇ = =  

+
 

,  ,
,   
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−
 

/  
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: ̇ =  
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 ′ ≝ + + √ + − −   
 (6.30) 

 ′ (6.30) is always positive, whilst ′ (6.29) is always negative, since constraint 

(6.3) also implies that the term “d-ab” must be positive. Figure 6.5 illustrates a possible 

organization of nullclines in x-y space. 

 

It will be shown in the sequel that, under the constraint in (3), there is always a 

unique (nontrivial) equilibrium point in the first quadrant such that it is either 

asymptotically stable, preventing oscillations, or unstable allowing oscillations in the 

first (biologically meaningful) quadrant.      

 

There are three equilibrium points when  is 1. One of the equilibrium points, , , is , /  which is at the intersection of (6.26) and (6.28) whilst the 

other two real equilibrium points, ,  and  , , are located at the 

intersections of (6.27) and (6.28), and found as: 

 , = ( + − ) ± √( + − ) − − +  
 

(6.31) 

 , = , +
 (6.32) 

Since we limit our model to the constraint in (6.3), − + < , there are two 

nontrivial equilibrium points; one, , , corresponding to the unique 

intersection point of (6.27) and (6.28) in the positive quadrant, and the other, , , in the third quadrant (see Figure 6.5).    

  

After finding the location of the equilibrium points, now we investigate the stability 

of the equilibrium points by computing the Jacobian matrix at those points. Since  is 

1, Jacobian matrix in (6.8) evaluated at ( , ) = ,  becomes: 

 ( , ) = = [  
 �   

� ]  
 [− + − − ] (6.33) 
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whose determinant is  

( , ) = = + − � �  (6.34) 

 

The determinant at the equilibrium point ( , ) is always negative, due to the 

constraint + − <  . Thus, we conclude that ( , ) is a saddle point.  

 

It is seen from the velocity vector field depicted in Figure 6.6 that the saddle 

equilibrium ( , ) attracts all trajectories starting at the vertical axis =  while 

repels all other trajectories starting in the trapping region ℛ, so still saving the 

possibility of having an oscillation in the resting region ℛ\{ , ∈ | = }. 
Herein, there needs a rigorous explanation on why the trajectories starting in the region ℛ\{ , ∈ | = } do not reach to the vertical axis = , so not to be attracted 

to the trivial equilibrium point. It is clear that the trajectories originated from or visiting 

Regions 1 and 4 depicted in Figure 6.6 never hit the vertical axis =  since ̇  is 

always nonnegative in Regions 1 and 4. On the other hand, the trajectories originated 

from or visiting Region 3 tend to the vertical axis =  since ̇  in Region 3. 

However, these trajectories never reach to the vertical axis due to the following fact: 

When the trajectories approach to the vertical axis = , the velocity ̇  in the  

horizontal direction tends to be linear in :  ̇ = � (−  − + + +  −  ) → ̇ = � (−  +  −  ). Then, the trajectories converge to exponential 

functions 
− + �−� −  which tend to zero, i.e. = , in an asymptotical 

sense, since +  − >  in Region 3 (Observe 
−   in Region 3 from 

Figure 6.4b and Figure 6.6). Such trajectories cannot settle down to zero in finite time, 

indeed, they reach to the nullcline  defined in (6.27) within a finite elapsed 

time and then enter Region 4, so change their direction now escaping away from the 

vertical axis = .  
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To calculate the Jacobian matrix at ,  and , , whose x- 

components are non-zero, Jacobian matrix in (6.8) can be rewritten as: 

 

 

,  = ,  , ,=  

= [  
 � � ]  

 [ | = − − +  −− ] 

(6.35) 

  

Since, by definition, | =  is zero and ≠  at ,  and , , then 

the Jacobian matrix in (6.35) reduces to: 

 

 

,  = ,  ,   ,=  = [ /� /� ] [− − +  −− ]   (6.36) 

 

The determinant of (6.36) becomes: 

 

 

det  ,  = ,  ,   ,=  

= � � − + + � �  

= � � − + − /   
(6.37) 

 

If we calculate determinant at ( , ) as in (6.37), it is seen that the 

determinant is always positive since  is positive and  > + − /
  as can be 

deduced from (6.31). If we calculate determinant at ( , ) as in (6.37), again it 

is seen that the determinant is always positive, since < + − /
 and < . 

Thus, both determinants of Jacobian matrix at ,  and ,  are 

positive and we need to check the trace to determine their types of stabilities. The trace 

equation of (6.37) is: 
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,  = ,  , ,=  = −� − a + b − �  

(6.38) 

 

It is seen that if ,  is greater than +
 (as illustrated in Figure 6.5a), then the 

trace (6.38) is always negative. Therefore, we conclude that if the condition >+
  holds, then ,  is definitely asymptotically stable. However, the reverse 

is not true. If < +
 (as illustrated in Figure 6.5b), then the trace can be negative 

or positive according to the values of the parameters � , �  and the degradation term 

of y, i.e. . It can be seen by employing the following algebraic manipulations that < +  is satisfied whenever the parameters meet the condition in (6.21):  

( + − ) + √( + − ) − − +  
 

= < +  ↔ 

> √ + − − − +  ↔ 

 

> − − + + − −+   
It is concluded that under condition in (6.21), ,  can be either an attractor 

or a repeller according to the choice of parameter values � , �  ,  and the location of 

the equilibrium.  

 

Since  is negative, the trace (6.38) is always negative. This result together with det  ,= >  implies that ,  is always an attractor (see Figure 6.5). 
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Now, we will present an additional parametric condition (i.e. the condition in 6.21) 

to ensure that the trapping region ℛ found contains a unique (nontrivial) unstable 

equilibrium point which is indeed a repeller. Since ,  is the unique 

equilibrium in this trapping region, its type of stability will be the determinant for the 

existence of a periodic solution. If ,  is asymptotically stable, then all 

trajectories that start inside the positive quadrant will be attracted to it; However, if ,  is a repeller, then there will be a periodic solution as demonstrated in 

Figure 6.7. 

 

We had found before that if < + / , then there is a range of parameter 

values that ,  is a repeller. We now aim to find this exact interval where  ,  is definitely a repeller and so enabling to occur oscillations. For this, we 

re-write (6.38) as a quadratic polynomial: 

 

,  = ,  , ,= = − � + � + − �  

 

The trace equation is parabola that opens down and has a maximum point at +/ . The roots of the trace equation are: 

, = + ± √ + − ��                                           
 

For the real roots, the following inequality is always satisfied: 

 < < < +   
 

The trace is always positive for the  values that satisfy < <  since 

it is a parabola that opens down (see   Figure 6.7c-d). In the other intervals (i.e. >
 and > ), the trace is negative. In addition, in case of imaginary roots, the 

trace is always negative as well (see Figure 6.7 and Figure 6.8). Thus the 

interval, < < , where   and  are real and positive numbers is the 

exact interval, in which ,  is a repeller (see Figure 6.7c).  It is concluded 
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that, together with the conditions in (6.3) and (6.21), the condition in (6.22), which can 

be given as follows, makes the equilibrium point ,  a repeller: 

< + − √ + − ��
< ( + − ) + √( + − ) − − +    

< + + √ + − ��
 

As the parameter  or 
��  gets bigger, the interval [ , ] gets smaller. This 

finding is crucial since it points out that a fine tuning of the parameter  (i.e. Wip1 

degradation term), and the time scale separation between the  and  dynamics 

specified by the ratio ��  are the keys for a larger space of parametric uncertainties that 

allow oscillations (see Figure 6.8). As ��  increases, the distinction between fast and 

slow dynamics disappear, since as �  gets bigger, fast ATM dynamics become slower. 

Consequently, the time scale separation and Wip1 degradation term are two important 

factors for oscillations: A profound difference between time scales is indispensable for 

robust oscillations and large  values will destroy the oscillations no matter what the 

other parameters are (see Figure 6.7).  

 

6.3.5 Demonstration of the Existence of a Periodic Solution inside the First 

Quadrant: An Application of Poincaré–Bendixson Theorem 

Poincaré–Bendixson theorem can be stated as “Given a differentiable real 

dynamical system defined on an open subset of the plane, then every non-empty 

compact �-limit set of an orbit, which contains only finitely many equilibrium points, 

is either i) an equilibrium point, ii) a periodic orbit, or iii) a connected set composed 

of a finite number of equilibrium points together with homoclinic and heteroclinic 

orbits connecting these” (Teschl, 2012). Let us first observe that the considered 

dynamical system given with (6.1) and (6.2) differentiable on any open subset 
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containing the constructed trapping region ℛ. Under the conditions in (6.3), (6.21) and 

(6.22), the trapping region ℛ has two equilibrium points, the one ,  placed 

at the interior of ℛ is a repeller and the second one , = ,  is a saddle 

point attracting the trajectories starting at the vertical axis =  while repelling all 

other trajectories starting in the trapping region ℛ. Thus, we can rule out the existence 

of homoclinic and/or heteroclinic orbits connecting these two equilibrium points. Let 

us now consider the trajectories initiated in the region ℛ\ {{ , ∈ | = } ∪, } . �-limit set of such a trajectory is necessarily compact since the 

trajectory is confined in the compact region ℛ. Then, by applying the Poincaré–

Bendixson theorem, we can conclude that there is actually a periodic solution inside 

the region ℛ\ {{ , ∈ | = } ∪ , }.   

 

A more intuitive reasoning of the trapping region would be as follows. When  = , , , , = , /  is always a saddle point. The lines =  and = /  are 

locally separatrices. Separatrix  =   is an attracting separatrix, whilst = /  is a 

repelling separatrix as shown by the directional field in Figure 6.6. The nullcline  =  prevents trajectories from passing to the left half plane. Therefore, we are sure that 

trajectories that start in the right half plane, will always stay in the right half plane. 

However, we still have to show that there is a trapping region in the positive quadrant. 

For this, we divide the right half plane into 4 regions whose boundaries are determined 

by the nullclines as shown in Figure 6.6. To show that the vector fields in these 4 

regions points inward, consider a trajectory with an initial condition in Region-1. The 

signs of ̇  and ̇ , ̇ >  and ̇ > , imply that this trajectory will eventually cut the 

nullcline  and will cross into Region-2. In Region-2, the signs of system equations 

are: ̇ <  and ̇ > . In this case, the trajectory will eventually cut the nullcline , 

and cross into Region-3. In Region-3, the sign combination,  ̇ <   and ̇ < , will 

eventually carry the trajectory to the Region-4. Region-4 is bounded by the saddle 

point , /  at the bottom. This property is important, since it states that once a 

trajectory crosses Region-4 it never goes below the separatrix = / . Thus, if there 

is a periodic solution, limit cycle is bounded by the separatrix = /  from the 
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bottom, preventing limit cycle to cross the negative region, x>0 and y<0, in the phase 

space and providing a biologically meaningful range of trajectories.  At last, once a 

trajectory is in Region-4, the sign combination, ̇ >  and ̇ < , imply that the 

direction of field is inward. Thus, the direction of field resulting from the organization 

of nullclines in the phase space shows that there is a trapping region in the positive 

quadrant.  

 

To support the idea that trajectories cannot escape to infinity, consider Equations ̇  (6.19) and ̇  (6.20) in the limit of very large x and y values in the positive quadrant. 

Then, Equations (6.19) and (6.20) become: 

 

 ̇ = −�   (6.39) 

 ̇ = � + −   (6.40) 

 

There is one steady state at , / . Jacobian matrice of the system of (6.39) and 

(6.40) at , /  is: 

 ,  = ,=  = [− −− ] [ /� /� ] (6.41) 

 

Clearly, determinant of (6.41) is always positive and the trace of (6.41) is always 

negative indicating that , /  acts like an attractor for large  and  values. 

Therefore,  and  values cannot escape to infinity. Consequently, with the local 

interpretation of the separatrices and investigation of the phase space in the limit of 

large x and y values, there is a trapping region in the positive quadrant.  

 

The trapping region implies that there is either an attractor or a periodic solution 

according to the Poincaré-Bendixson theorem. Since ,  is the only 

equilibrium in this trapping region, its type of stability will be the determinant for the 

existence of a stable steady state or a periodic solution. If ,  is stable, then 

all trajectories that start in the positive quadrant will be attracted to it, if ,  

is unstable, then there will be a periodic solution as demonstrated in Figure 6.7. 
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Figure 6.6 Direction field of the phase space of 2-D canonical oscillator model when  ,  is an 

unstable equilibrium point 
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Figure 6.7 Even if the condition  , , ,  < (a+b)/2 is satisfied, depending on the parameter settings 

the oscillations may not exist. a) The oscillations exist for parameter settings a = 5, b = 10, c = 15, d = 

70, m = 0.75, n = 0.8, z = 0.5, � = � =   b) The oscillations does not exist for parameter settings a = 

5, b = 10, c = 15, d = 70, m = 75, n = 80, z = 50, � = � = . c) The oscillations exist if  ,  falls 

between the roots of the trace equation. d) The oscillations do not exist if the trace equation has no real 

roots  

 

6.3.6 Relaxation Nature of the Oscillations 

In this subsection, we show that the proposed model features two main 

characteristics of relaxation oscillations, namely jump phenomenon and the existence 

of fast and slow dynamics, thus implying that it is a relaxation oscillator. Assuming 

there is a fine distinction between the time scales of Equations (6.1) and (6.2), we can 

analyse (6.1) and (6.2) separately at each time instant and identify the immediate effect 

of the change in one of the variables on the other for the aim of getting intuitive 

understanding of the mechanism of the oscillations. We investigate Equations (6.19) 

and (6.20) and rewrite them as in (6.42) and (6.43). As the variable  changes along 

the dynamics of the system, the term “ ” in (6.42) changes. However, for the sake of 

discussion, we investigate the change of the term “ − ” in (6.42) as the variable  
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changes. As “ − ” changes, it perturbs the location and changes the types of 

stability of critical points of (6.42).  

 

 

̇ = ≝ − � ≝ 

�  − [ − + + +  − ]  

(6.42) 

 ̇ = � + −  (6.43) 

 

Clearly x = 0 is one of the critical point of the (6.42), and the other 2 critical points 

are the roots of the polynomial  which can be found by the root formula as: 

 ′  ′ = + ± √( + ) − +  −  (6.44) 

As it can be seen from (6.44), if “ − ” is zero during any time of the oscillations, 

then the roots of the polynomial are,  and . As “ − ” changes during the working 

of the system, the location of the critical points of (6.44) are perturbed to ′ and ′. 
 

Investigating (6.43) separately from (6.42), (6.43) always have a stable equilibrium 

at  =  + / . The location of stable critical point depends on the variable 

. Thus, the sign of  is always positive, if we can show that  is always positive 

once it starts in the positive region. 

 

As the value of the “ − ” changes the location of critical points, the types of the 

critical points also change. The stability of the critical points can be investigated by 

locally linearizing (6.42) at critical points. Therefore, by taking the derivative of (6.42) 

and evaluating it at 3 critical points as in (6.45), (6.46) and (6.47), we get three 

equations that holds the stability information of those critical points. 

  

 | = =  − + −  (6.45) 
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 | = ′ =  − − +
 (6.46) 

 | = ′ =  − − +
 (6.47) 

 

Equation (6.44) states that there can be three different situations for roots: 1) one 

positive and negative root, 2) two positive roots or 3) two imaginary roots with positive 

real parts, depending on the value of “ − ”. However, there cannot be two negative 

real roots. For situation 1), + −  must be negative. Thus, it follows from the 

stability Equation (6.45) that zero is the stable node, ′ is the stable node since it is 

always greater than + /  (6.46) and ′ is unstable node since it is always smaller 

than + /  (6.47) (see Figure 6.8a). For the situation 2),  + −  must be 

positive and the term under square root must be non-negative. In this case, zero is 

stable node, ′ is stable node, and ′ is unstable node (see Figure 6.8b).  For the 

situation 3), + −  must be positive, and the term under square root must be 

negative. In this case, there is only one real root stably located at zero, and ′ and ′ 
are the complex numbers with positive real parts (Figure 6.8d). The location and the 

stability information of equilibrium points are summarized in Table 6.2.  

 

Table 6.2 The perturbation of the location of the critical points of  ̇  and stability information as the 

value of the term “ − ” changes 

 ′ ′ x=0 + − <  negative and stable positive and stable unstable < + − < +
 Positive and unstable Positive and stable stable 

+ < + −  Complex Complex stable 

 

Under the assumption that there is a fine time scale separation between (6.42) and 

(6.43) and that the term “ − ” changes such that all 3 possibilities in Table 6.2 

occur, the oscillations occur as follows. Starting with low value of Wip1 and high 

value of ATM as in Figure 6.8a, there is only one stable node. Thus,  values goes to 

this high value. As  increases  increases too, and “ − ” also increases. As “ −
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” increases, it pulls the ̇  curve downward as illustrated in Figure 6.8b, until zero 

becomes the only attractor as illustrated in Figure 6.8d. A jump phenomenon occurs at =  + /  as in Figure 6.8c, and  jumps to zero. As the value of  becomes zero, 

the value of y decreases. Thus “cy-d” term moves ̇  curve upward until there is one 

stable node at a high level as in Figure 6.8a. One more jump phenomenon occurs as 

zero turns to an unstable node (transition from Figure 6.8d to Figure 6.8a), and  values 

now jump to that high level. The jumps in trajectory corresponds to the fast parts, 

whilst moving of the ̇  curve downward or upward by Wip1 feedback corresponds to 

the slow parts in the periodic trajectory. 

 

The proposed model can be characterized by jump phenomenon and time scale 

separation in dynamics. In fact, we had shown by (6.42) that time scale separation is 

critical for the oscillations. Thus, the proposed model is an example of a relaxation 

oscillator. 

 

 

Figure 6.8 Dynamic route approach explaining how the oscillations occur in the canonical 2-D 

oscillator model 

 

′ = ′ = +
 

′ ′ a′ b′ 

a′ and b′ a�e comple� 

a) b) 

c) d) 
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6.3.7 Apoptosis: Stable Steady State Value at a High Level 

The high steady state of x value is established when there are DSBCs in DNA and 

at the same time Wip1 feedback loop is off. In this case, Wip1 is not influenced by 

ATM (i.e. x) anymore. Therefore, we take the parameter  as zero and system 

equations turns to (6.48) and (6.49). It should be noted that the case of  =   makes 

a similar effect to the one performed by P53DINP1 in Zhang’s model (Zhang et al., 

2011).  

 

 ̇ = �  −  − + + +  −    (6.48) 

 ̇ = � + −  (6.49) 

 

The nullclines in this case are: 

 

 :   =   (6.50) 

 :  = − − + + −
  (6.51) 

 :  =   (6.52) 

 

There are three equilibrium points. One of the equilibrium points is at the 

intersection between (6.50) and (6.52), which is , / ). The other two is at the 

intersections of (6.51) and (6.52) and the x-components of these two equilibriums are 

found as: 

 

   = ( + )  + √( + ) − − + >  
(6.53) 

   = ( + ) − √ + − − + <  
(6.54) 

 

The y components are: 

 =  = /  (6.55) 



85 

 

Since − + <  by the constraint (6.3), then  is always positive and  

is always negative. 

 

To find the stability types of these equilibrium points, we again evaluate the 

Jacobian matrix at those points. Using the Jacobian matrix in (6.8) and evaluating it at ( , )  =  ,  when  =   and  = , we found Jacobian matrix as: 

 

 ( , ) = , = = [ /� /� ] [− + − − ] (6.56) 

 

Since + − <  by the constraint (6.3), then determinant of (6.56) is always 

negative, the point , /  is a saddle point. Evaluating Jacobian matrix in (6.35) 

when  =   and  =  : 

 ,  = ,  , ,= , = = [ /� /� ] [− − +  −− ] (6.57) 

The determinant of 6.57: 

 det = , , = ,= , = = − � � ( − + ) (6.58) 

 

If we calculate the determinant (6.58) at ( , ), it is clear that determinant is 

always positive since  is positive and > +
.  Similarly, if we calculate 

determinant at ( , ), again determinant is always positive, since < +
 

and < . Thus, both determinants of Jacobian matrix at ,  and ,  are positive and we need to check the trace to determine their types of 

stabilities. The trace of (6.58) is: 
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,  = ,  , ,= , =
= − � − + − �  

(6.59) 

 

which is the same as (6.38), and the trace is always negative for both ( , ) and ( , ) indicating that they are stable attractors (see Figure 6.9). In this case, all 

the trajectories that start in the region ℛ\{{ , ∈ | = }} go to ( , ), 

whose x-component indicates the high level of representative x variable.    

 

 

Figure 6.9 Illustration of apoptosis in phase space using 2-D canonical oscillator model for the 

parameters a = 5, b = 10, c = 15, d = 70, m = 0, n = 0.8, z = 0.5, � = � =  and r = 1  

6.4 Discussion 

The proposed model is based on ATM and Wip1 interaction and now we evaluate 

our model’s predictive ability to characterize the known mutations of ATM and Wip1 

from the literature. Wip1 overexpression and ATM deficiency are two mutations that 
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causes cancer. Wip1 (product of PP1MD gene) overexpression is a type of cancer that 

is characterized by the high levels of Wip1 in the cell. This situation can be embedded 

into our model by increasing the Wip1 production rate  in (6.1) such that it violates 

the constraint (6.3). In this case, the proposed model loses its ability to oscillate. Thus, 

the cell becomes defective in producing oscillations, so leading to cell cycle arrest 

(Figure 6.10a).  

 

Since oscillations are important for arresting cell cycle (Purvis et al., 2012), and any 

defect in cell cycle arrest is the prerequisite of cancer (Green & Evan, 2002; Lowe, et 

al., 2012; Xu & Baltimore, 1996), we speculate that Wip1 overexpression may cause 

cancer by removing cell’s ability to arrest cell cycle. To recover the oscillations, the 

parameter  can be increased again so that constraint (6.3) can be satisfied (Figure 

6.10b).  This is in agreement with findings (Rayter et al., 2008; Richter, et al., 2015) 

that shows that Wip1 overexpression can be recovered by Wip1 degradation.  

 

ATM deficiency is a mutation and characterized by ATM that loses sensitiveness 

to the damage. This mutation can be studied by analyzing the parameter . In our 

model, parameter  ( = / + ) ) is a measurement of ATM’s detection level 

of DSBCs. We replace  by /  where >  with the aim of decreasing the ATM’s 

sensitiveness. This parametric change moves the  nullcline downward. Thus, the 

nullclines may not intersect at an oscillatory interval and the cell may be defective in 

oscillations. Indeed, some studies demonstrate that mutation in ATM causes defective 

cell cycle checkpoint activation (Delia et al., 2003; Lavin & Kozlov, 2007; Xu & 

Baltimore, 1996).  

 

Darlington et al. (2012) showed in wet lab experiment that absence of Wip1 rescues 

ATM deficiency phenotypes in mice. We model the absence of Wip1 by increasing 

the degradation parameter, . With the increase of n, the slope of  decreases and for 

a sufficiently large , it may have an intersection at a high level indicating initiation 

of apoptosis. Thus, we hypothesize that this rescue may be due to the initiation of 

apoptosis. Because, in ATM deficiency  nullcline moves downward, then this could 

be compensated by moving  nullcline downward too and making them cut through 
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interval of oscillation again. However, further wet lab experiments are needed to be 

conducted to validate this hypothesis.  

 

 

 

Figure 6.10 Characterization of mutations and recovery from mutations by 2-D canonical oscilllator 

model. a) Wip1 overexpression is characterized by the parameters  = ,  =  ,  =  , = , =  ,  =  . ,  =  . ,  =  . . The parameter z is increased from 0.5 to 2.1 to model the 

mutation Wip1 overexpression, in which case the constraint (6.3) is violated. b) Recovering the ability 

to oscillate in case of Wip1 overexpression by increasing the parameter n from 0.8 to 2.4. c) 

Characterization of ATM deficiency by the parameters  = . ,  =  ,  =  ,  =  ,  =,  =  . ,  =  . ,  =  . . d) recovering the ability to oscillate in case of ATM deficiency in c) 

by increasing the parameter  from 0.8 to 3.2  

a) b) 

c) 
d) 
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CHAPTER SEVEN  

SYNCHRONIZATION AND ENTRAINMENT PROPERTIES OF THE TWO 

PROPOSED OSCILLATOR MODELS 

 

Genome integrity, which is critical for proper functioning of cells, is constantly 

under the risk of damage due to the exposure of various stresses, such as hypoxia, 

Ionizing Radiation (IR), Ultra Violet light etc. (Murray-Zmijewski  et al., 2008). The 

most deleterious damage is Double Strand Breaks (DSBs) that are caused by Ionizing 

Radiation (IR). DNA Damage Response (DDR) mechanism that determines the cell 

fate exists in cells to prevent the risk of DSBs, which is controlled by p53 network. In 

single cells, studies have shown that cell fate determination upon DSBs caused by IR 

is controlled by p53 dynamics comprised of three different modes, namely low state, 

oscillations, and high state as we have discussed in previous chapters. So far, we have 

focused on the oscillatory dynamics of p53 in a single cell, which causes cell cycle 

arrest. Cell cycle arrest is important for its role of stopping cellular growth when there 

is DNA damage, so avoiding the risk of potential tumour formation.  

 

Any deficiency in oscillatory dynamics of p53 leaves cells unprotected towards 

DNA damage. An unrepaired DNA damage poses a risk of mutations that causes 

cancer (Lord & Ashworth, 2012). Thus, preservation of oscillations under various 

disruptive conditions, such as noise and genetic heterogeneity, is crucial in avoiding 

the risks associated with DNA damage. Thus, p53 network must be robust under such 

disruptive conditions. In fact, this is a principle of biological systems known as 

robustness, and not a peculiarity of p53 network only.  

 

 Mechanisms that contribute to the robustness of p53 network oscillations have 

been revealed in various studies. The studies show that additional positive and negative 

feedback loops in p53 network often contribute to the robustness of the network 

against parameter perturbations (Kim & Jackson, 2013). Several feedback loops also 

have been identified in p53 network, such as feedback loops mainly carried out by 

Mdm2, PTEN, Wip1, Ror-alfa, dapk1, c-Ha-Ras and DDR1 (Deguin-Chambon, 

Vacher, Jullien, May, & Bourdon, 2000; Doumont et al., 2005; Lahav et al., 2004; 
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Mayo, Dixon, Durden, Tonks, & Donner, 2002; Ongusaha et al., 2003). However, the 

negative feedback loop between ATM and Wip1 through p53 is the indispensable one 

among other feedback loops (Batchelor, Mock et al., 2008). Other feedback loops 

contribute to the robustness and fine-tuning of period.   

 

Another mechanism that may aid a biological oscillatory system to keep its 

oscillations under disruptive conditions is the coupling mechanism, which 

synchronizes the oscillations in a group of individual cells (Kim & Jackson, 2013). 

Studies in biological oscillatory systems have revealed that synchronization is a form 

of intercellular communication and implements a relevant biological function (Zhou, 

Zhang, Yuan, & Chen, 2008) .  

 

Synchronization has been observed in many biological oscillatory systems and, the 

advantages of the coupling leading to synchronization in sustaining the oscillations 

under disruptive conditions has been studied in various contexts, which have given 

fruitful understanding of those systems. For instance, wet lab experiments (Ko et al., 

2010; Liu et al., 2007) have shown that circadian rhythm in single cells are not robust 

to noise or genetic heterogeneity, whereas coupled cells are more robust, so giving a 

survival advantage. Also in calcium systems noise have been shown to aid oscillations 

(Li & Wang, 2007). In mathematical terms, it is shown that the synchronization 

mediated by coupling through a neurotransmitter in SupraChiasmatic Nucleus (SCN) 

cells play a key role in generating the robust circadian rhythm in mammals (Gonze, 

Bernard, Waltermann, Kramer, & Herzel, 2005; Marino, Hogue, Ray, & Kirschner, 

2008). Pacemaker cells in heart also synchronize to give a coherent rhythm (Krinsky 

& Kholopov, 1967).  

 

Although, synchronization properties have been investigated in other biological 

oscillatory systems in several studies, investigation of this property in p53 network is 

restricted to a few studies (Devi, Alam, & Singh, 2015; Kim & Jackson, 2013), 

probably due to a lack of low dimensional oscillator models (Note that in the previous 

chapters, we have provided two 2-dimensional oscillator models for p53 network 

which may boost such studies). In the study of (Devi, Alam, & Singh, 2015) 
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oscillations are due to p53-Mdm2 interaction. However, it is known that p53-Mdm2 

interaction is not responsible for the oscillations (Batchelor, Mock et al., 2008). Kim 

& Jackson (2013) studies the synchronization in p53 network using an 11-dimensional 

model which is modified from the model by (Batchelor, Loewer, Mock, & Lahav, 

2011).  

 

Herein, we study the synchronization in p53 network using two proposed 2-

dimensional models. First, we propose a novel coupling framework for p53 network 

for our models based on literature search. After that, we show the advantages of 

synchronization property in p53 network by employing various numerical simulations.   

7.1 A Novel Coupling Framework for Synchronization in p53 Network Using 

Low Dimensional Oscillator Models 

One of the goals of DNA Damage Response (DDR) is to communicate the damage 

to other cells (Jaiswal & Lindqvist, 2015). This mechanism is known as Radiation 

Inducer Bystander Effect (RIBE). RIBE can be described as the formation of DDR in 

non-irradiated cells by the effect of irradiated neighbor cells. Thus, non-irradiated cells 

exhibit the same responses as irradiated cells (Sedelnikova, et al., 2007). Furthermore, 

bystander effect is known to alter the dynamics in cells such as proliferation, apoptosis, 

cell cycle arrest; however there are many unanswered questions about its dynamics 

(Marín, et al., 2015). Although RIBE is an interaction between irradiated and non-

irradiated cells, there are other forms of RIBE between irradiated and irradiated cells 

as well (Mackonis, et al., 2007). The proteins p53 and ATM are known to be 

intracellular proteins that mediate the signal for RIBE, while molecules such as 

Reactive Oxygen Species and Nitric Oxide are known to be intercellular carriers of 

this signal (Burdak-Rothkamm & Prise, 2009; Ghosh, Ghosh, & Krishna, 2015; 

Jaiswal & Lindqvist, 2015; Rzeszowska-Wolny, Przybyszewski, & Widel, 2009).  

 

Since the proposed low dimensional oscillator models for p53 network consists of 

ATM and Wip1, ATM is chosen as the coupling variable.  We model the damage 

signal carried by intercellular molecules as a mean field (see (Gonze et al. 2005) and 

(Marino et al., 2008) for construction of mean field for synchronization). Thus, the 
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proposed coupling frameworks for two proposed oscillator models are constructed as 

follows.  The coupling framework for the Polynomial Type Canonical Relaxation 

Oscillator (PTCRO) model introduced in Chapter 6 is shown by (7.1) and (7.2), whilst 

the coupling framework for the Reduced Relaxation Oscillator (RRO) model 

introduced in Chapter 3 is shown by (7.3) and (7.4).  

  

̇ = � , (− [  ( − + ) + + − ]) +  ∑=  (7.1) 

̇ = � , + −  (7.2) 

 [� ∗] = ka a   nn  + jn [� ∗] √ . A�M − [� ∗](√ . A�M − [� ∗]     +  jacatm) 
−  kdeatm   + [ ] [� ∗][� ∗]  + j a   +  ∑[� ∗]=  

(7.3) 

 [ ] = k w + k w [ � ] j w + [ � ]  − k w [ ] 
(7.4) 

where the term  ∑ [� ∗]=  is an approximation to the mean field,  is the 

coupling strength and  is the number of cells in the population. Before diving into 

more complex cases, we show that the proposed coupling framework is handy for 

studying the synchronization property of p53 network. For this, we use two identical 

oscillators with different initial conditions for each oscillator models, i.e. =  .  

Figure 7.1 demonstrates the synchronization of two identical PTCRO models 

(Equations (7.1) and (7.2)) with arbitrary different initial conditions for different 

coupling strengths.  In no coupling case, the oscillators do not synchronize. As the 

coupling strength increases, the two oscillators synchronize. 
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Figure 7.1 The simulation of coupling of the two PTCRO models for different coupling strengths and 

different initial conditions 

 

Figure 7.2 demonstrates the synchronization of the two identical RRO models with 

arbitrary different initial conditions via the proposed coupling framework. In no 

coupling case, the oscillators do not synchronize. However, as the coupling strength 

increases, the oscillators synchronize. Thus, we conclude the proposed coupling 

framework is handy for studying the synchronization properties of p53 network as 

demonstrated by Figure 7.1 and Figure 7.2. 
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Figure 7.2 The simulation of coupling of the two RRO models for different coupling strengths and 

different initial conditions is shown 

 

 Coupling Confers Robustness against Noise 

Noise is unavoidable in biological systems. Since the period of oscillation is crucial 

for reliable cell fate decisions, the coupling would help cells to maintain their periods 

under noise. For this, we design an in silico experiment. We consider the coupling of 

two identical PTCRO models for p53 network (Equations (7.1) and (7.2)): PTCRO-1 

and PTCRO-2. We add noise to PTCRO-1 such that it loses its ability to oscillate in 

case of no coupling. When the two oscillators are coupled, PTCRO-1 regains its ability 

to oscillate and the two oscillators synchronizes (see Figure 7.3). We choose the noise �  as normal distribution with mean of 1 and standard deviation of 1. The PTCRO-1 

loses its ability to oscillate under such noise, while the period of the PTCRO -2 (the 

oscillator without noise) is about 9 hours as can be seen in Figure 7.3. Coupling these 
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two oscillator with a coupling strength of 2 rescues the noisy oscillator and its ability 

to oscillate is regained. 

   

 

Figure 7.3 Coupling confers robustness against noise. The oscillator that lost its ability under noise is 

rescued by the help of another oscillator via coupling and the two oscillators synchronize. Coupling 

strength is 2 

 

The experiment is modified for the RRO models for p53 network (Equations (7.3) 

and (7.4)). Two identical oscillators, RRO-1 and RRO -2, are used. We add noise to 

RRO-1 such that its frequency of oscillations changes drastically in case of no 

coupling. For this purpose, we choose the noise �  as normal distribution with mean 

of 0.25 and standard deviation of 0.25. As can be seen in Figure 7.4, RRO-1 oscillates 

at a frequency at about four times of RRO-2’s. When these oscillators are coupled with 

coupling strength of 0.1, these two oscillators synchronize.  

 

For the coupling of the RRO model cases under noise, we could not find a 

parametric range where RRO-1 loses its ability to oscillate and coupling with RRO-2 

rescues it. However, it must be noted that we are using a linear coupling as a mean 

field. Under more complex coupling conditions, this case can be searched as a future 

study. Nevertheless, the synchronization reduces the side effect of noise, which is the 

high frequency of RRO-1. 



96 

 

 

Figure 7.4 Coupling confers robustness against noise by synchronization. The RRO-1 oscillates at a 

higher frequency. Via coupling, the two oscillators synchronizes. Coupling strength is 0.1 

 

 Coupling Confers Robustness against Genetic Heterogeneity 

In realistic systems, no two oscillations can have identical periods. The same is true 

for p53 network oscillations in cell. Every cell have different kinetic parameters due 

to genetic heterogeneity or environmental conditions. In this subsection, we show that 

coupling confers robustness against genetic heterogeneity by making cells with 

different periods oscillate in a common period. For this, we design an in silico 

experiment for the PTCRO model and the RRO model cases.  

 

For the coupling experiment of PTCRO models (Equations (7.1) and (7.2)), we 

create 50 different parameter sets by randomly perturbing parameters as   =   +  ∗  � , where � is a random number 

drawn from a uniform distribution on the open interval (0,1) and selecting those 

parameters which results in oscillations. The variability of oscillations due to 

perturbation of parameters models the genetic heterogeneity resulting in different 
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period of oscillations. The constructed random parameter sets are given in Appendix-

4. The period of the oscillations range from 3 hours to 17.6 hours. The mean of the 

periods are 6.14 whilst the standard deviation is 2.96. Note that the standard deviation 

of periods in our case is more than the standard deviation used in another coupling 

study done in mammalian circadian rhythm, which is 0.25 by (Locke, Westermark, 

Kramer, & Herzel, 2008).   

 

50 different PTCRO models of Equations (7.1) and (7.2) without coupling and with 

coupling is numerically solved. We see that the coupling creates a uniform period, thus 

giving coherent oscillations of p53 network as in Figure 7.5.   

 

 

Figure 7.5 50 different PTCRO models with coupling and without coupling are numerically solved. In 

the uncoupled case, the period of oscillations are very different. When coupled, the oscillators 

synchronize  

 

The same experiment is repeated for the RRO case. This time, we scaled Equations 

(7.3) and (7.4) with random timescales calculated with the formula = + �, where � is the random number drawn from the uniform distribution on the open 
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interval of (0,1). 50 RRO models with different periods without coupling are 

numerically solved. After coupling, 50 oscillators synchronizes. 

 

Figure 7.6 50 different RRO models with coupling and without coupling is numerically solved. In the 

uncoupled case, the period of oscillations are very different. When coupled, the oscillators synchronize 

 

7.4  Future Study 

Further study should be carried out to investigate the coupling and synchronization 

properties of p53 network. It must be noted that the current wet lab data is not sufficient 

to validate the coupling studies with experimental results, so logical reasoning is 

required (Kim & Jackson, 2013). It is known that non-irradiated cells are effected by 

irradiated neighbour cells, known as Radiation Inducer Bystander Effect (as we 

mentioned above) or Type 1 effect. This bystander effect is also seen in irradiated cells 

known as Type 2 and Type 3 effects (Mackonis et al., 2007). Type 2 effect is the 

increased cell survival when nearby cells receive a lethal dose whilst Type 3 effect 

causes an increase in cell survival when cells receive a high dose of radiation while 

nearby cells receive a low dose. It would be very interesting to investigate these 

bystander effects in the context of coupling of oscillators. Since radiation is used in 

radiotherapy, studies in this direction would be of great importance for developing 

more effective curing strategies.  
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CHAPTER EİGHT  

A MATHEMATICAL FRAMEWORK FOR COUPLING OF P53 NETWORK 

AND CIRCADIAN CLOCK 

 

In Chapter 1, a new modularity perspective of two-phase dynamics was introduced, 

where p53 network was considered as a collective system that has an oscillator in the 

center. According to this suggestion, several subsystems manipulate this oscillator to 

make an effect on outcomes of cell fate, namely normal cell cycle progression, cell 

cycle arrest, and apoptosis. We also showed that since there is a relaxation oscillator 

subsystem in p53 network, the interplay between proteins and this oscillator may be 

controversial (e.g. Mdm2). Thus, we suggest that to study the effects of a protein, a 

pathway, or another network on p53 network, three qualitative p53 network dynamics 

(low level, oscillations, and a sustained high level) must be investigated as well, for 

reliable results. However, the experiments that take into account the mentioned three 

qualitative behavior of p53 dynamics is restricted to only a few studies (Batchelor, 

Loewer, Mock, & Lahav, 2011; Lahav et al., 2004; Purvis et al., 2012), and those 

studies do not consider the circadian clock.  

 

In Section 5.5, we discussed that the oscillations may be strengthened by increasing 

the amplitudes of ATM oscillation by another subsystem that have positive effect on 

the high stable steady state of ATM, since ATM oscillations occurred due to switching 

between the high stable steady state and the low steady state of ATM, as we had shown. 

In this chapter, we investigate whether one candidate system that provides such an 

interaction is circadian clock, holding on to the established information that circadian 

clock plays an important role in determining the strengths of cellular responses to DNA 

damage checkpoints (i.e. cell cycle arrest) and apoptosis (Sancar et al., 2010).  In our 

case, we interpret the strengthening of cellular response to DNA damage as the 

increased amplitude of oscillations, the increased level of active p53 in apoptosis, and 

the easier initiation of apoptosis. In light of these interpretations, in this chapter we 

propose a framework confirming the positive effect of circadian clock on DNA 

damage response of the cell. The proposed framework can be seen as the first step of 

a systems-level approach for managing the tolerability of cancer therapy, which is 
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influenced up to several folds due to circadian effect (Ortiz-Tudela, Mteyrek, Ballesta, 

Innominato, & Lévi, 2013), in chronotherapy5. 

 

In the literature, there are some studies revealing the pathways that p53 network 

and circadian clock effect each other through, as will be reviewed in the next section. 

However, this information is not enough for the validation of a comprehensive 

modeling of interaction between circadian clock and p53 network under DNA damage 

in terms of dynamical behaviors. For the validation of such a modeling approach, 

experiments that investigate both the circadian clock and p53 dynamics (low steady 

state, oscillations, and high stable steady state) together are needed. However, to the 

best of our knowledge such experiments do not exist. Nevertheless, it is known that 

circadian clock has a positive effect on DNA damage response of the cell. Considering 

this body of information in the literature, in this chapter we realize an experiment to 

show how circadian clock might effect p53 dynamics, considering both circadian clock 

and p53 dynamics in silico by making some idealizations. We observe that, in the 

proposed framework, for some set of parameters circadian clock leads to increased 

amplitude of oscillations, increased level of p53 in apoptosis, and easier initiation of 

apoptosis.  

 

The organization of this chapter is as follows. In Section 8.1, we review circadian 

clock in the context of systems biology. In Section 8.2, we collect as much information 

as possible about the interactions between circadian clock and p53 network from the 

literature and provide a plausible coupling framework for the study of circadian and 

p53 network coupling. With the realization of experiments in silico, we show that 

circadian clock have positive effect on DNA damage response.   

8.1 Circadian Clock 

Circadian clock is a self-sustaining oscillatory mechanism with the period of about 

24 hours (Halberg, Halberg, Barnum, & Bittner J.J., 1959), which aligns biological 

rhythm of an organism with daily environmental changes (e.g. light and dark, 

                                                  –––––––––––––––––––                                                 
5 Chronotherapy is the scheduling of drug delivery to a patient by considering circadian effect or 

other rhythmic hormones in an individual to maximize the effectiveness of the therapy. 
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temperature) (Sancar et al., 2010). The alignment with the environmental change and 

physiological functions of organism gives survival advantages (Beaver et al., 2002; 

Gaddameedhi, Reardon, Ye, Ozturk, & Sancar, 2012; Dodd et al., 2005; Sharma, 2003; 

Woelfle, Ouyang, Phanvijhitsiri, & Johnson, 2004). In humans, disruption of the 

circadian clock has been associated with many types of diseases including depression 

(Kripke, Elliott, Welsh, & Youngstedt, 2015), metabolic diseases (diabetes and 

obesity) (Marcheva, et al., 2010), and cancer (Hastings, Reddy, & Maywood, 2003; 

Sahar & Sassone-Corsi, 2009).  Although circadian clock is autonomous and self-

sustaining with a free-running rhythm, it is under the influence of the environmental 

inputs, and synchronizes to the environment, so called entrainment. The most obvious 

environmental cue that circadian clock entrains is the sun light (Hirschie Johnson, 

Elliott, & Foster, 2003). 

 

Circadian clock is a time tracking system in organisms that synchronizes the 

organism to the environmental changes with a period of about 24 hours. The circadian 

clock works autonomously, i.e. it is self-sustaining. This means circadian clock is able 

to persist even in the absence of external cues (i.e. constant darkness).  The period of 

the circadian rhythm in constant conditions is called free running rhythm and free 

running rhythm may not be 24 hours due to heterogeneity of the biochemical rates. 

Thus, circadian clock has developed an entrainment mechanism to overcome this 

problem. The circadian rhythm entrains (synchronizes) to the light and dark cycles of 

the environment. Even if it is shifted, the circadian rhythm will be reset in the next 

day. 

 

Circadian clock structure consists of interlocked transcription-translation feedback 

loops (TTFLs) (Ko & Takahashi, 2006; Kim & Forger, 2012) as illustrated in Figure 

8.1. According to this directed graph in Figure 8.1, the circadian clock model consists 

of a core negative feedback loop and an additional negative feedback loop (the 

Negative Negative Feedback Structure). Per1, Per2, Cry1, and Cry2 are repressors. 

These repressors inactivate the activators BMALs and CLOCK/NPAS2 (CLK) via a 

core negative feedback loop. In addition, these activators also inactivate their own 

transcription expression by inducing the Rev-erbs through the secondary negative 
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feedback loop. Although the expression on these loops have very large changes, the 

circadian rhythm is still about 24 hours, meaning it is robust (Dibner et al., 2009 ). 

 

Figure 8.1 Interaction diagram of circadian clock through two negative feedback loops. The figure is 

taken from (Kim & Forger, 2012) 

 

The mathematical models proposed so far has been used to understand how 

circadian system keeps its period and how it entrains to the environmental changes. 

We divide the mathematical models used in the literature into three groups: (1) 

Detailed biochemical models, (2) Limit cycle models and variants, (3) Phase 

oscillators. We will review the literature about mathematical models of circadian 

clocks according to this division. 

 

Detailed biochemical models: These models are the detailed biochemical models 

that try to take every biochemical process (phosphorylation, Michaelis-Menten 

kinetics, etc.) and interacting proteins into account. The number of variables of the 

models range from 7 to 181 (Becker-Weimann, Wolf, Herzel, & Kramer, 2004; Forger 

& Peskin, 2003; Kim & Forger, 2012; Leloup & Goldbeter, 2003). Since these models 

can be full of details, they lack the intuitive understanding of the topological structure 

a human mind can grasp. The topological structure in mammalian and non-mammalian 

circadian rhythms are the same, with only a difference that instead of CLK protein, 

non-mammalians possess Timeless protein (Tim). The first molecular circadian 

models in literature has been proposed for Drosophila by (Leloup & Goldbeter, 1998), 

which consists of 16 variables. Similar kinetic models are used for mammalians 

(Leloup & Goldbeter, 2004; Relógio et al., 2011) and Neurospora (Sriram & 

Gopinathan, 2004). 
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Limit cycle models and variants: Since circadian clock is a robust timekeeper, the 

oscillations must come from a stable limit cycle oscillation. The candidate for such an 

oscillation is the 3 dimensional Goodwin model (Goodwin, 1965), which is originally 

posed to model oscillatory dynamics in enzymatic control processes. The model is a 

minimal model based on a delayed feedback loop, which resembles the simplified 

mechanism of circadian clock. The variants of Goodwin model has also been proposed 

since Goodwin model does not oscillate as it is supposed to do in the first original 

paper due to numerical artefacts. That is why (Griffith, 1968) corrected the model 

increasing the nonlinearity of the first equation with the variable n (see Figure 8.2). 

There are parameter sets that lead to oscillation only if > . Goodwin models and 

their variants have been widely used to focus on topological structure rather than 

detailed biochemical processes to gain intuitive understanding. Although Goodwin 

model variables does not have a one-to-one link between circadian clock molecular 

mechanisms, they provide a basic description of circadian oscillator.  

 

 

Figure 8.2 Interaction diagram of variables in Goodwin model (Goodwin, 1965). Goodwin model is 

later corrected by (Griffith, 1968) 

 

Phase oscillators: Other widely used oscillators are phase oscillators. Since 

circadian oscillations are robust with respect to circadian period, in ideal conditions a 

phase oscillator can be used for modelling. Although phase oscillators are simple, all 

the main ingredients of a circadian clock such as 24 hour period, stability rate, 

frequency fluctuations with variance, and other noise effects can be embedded into the 

model so that frequency analysis, phase shifts with stochastic processes can be studied 

(Rougemont & Naef, 2008). Another advantage of using a phase oscillator is that, 

unlike Goodwin variants or detailed biochemical models, parameters corresponding to 

Griffith model 1968 Goodwin model 1965 = � + −  = −  = −  

= � + −  = −  = −  
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period, amplitude, and phase shifts can be set accurately and separately. Disadvantage 

of using phase oscillators may be that the link between the biochemical process rates 

and parameters in phase oscillators are not clear. On the other hand, in ODE models 

which parameters are responsible for the stability, the frequency, or other properties is 

very hard to determine. An example of a phase oscillator is given in equations (3.1) 

and (3.2) by Granada & Herzel (2009). Equation (3.1) models the amplitude of 

oscillations whilst the second equation (3.2) models the phase. Thus, the solution 

is  � . The equilibrium of the first equation is  =  . The parameter  in (3.1) 

controls the greediness of the system, when it is perturbed the transient time that the 

amplitude will converge to 1 again is determined by this variable. To change the 

oscillatory dynamics from sinusoidal to spiky, authors add a nonlinear term as � cos � . 

 

 =  � −  (3.1) 

 � = � =  � cos ��  (3.2) 

8.2 A Mathematical Framework for Interaction between P53 Network and 

Circadian Clock   

Circadian clock and p53 network are two periodic regulatory mechanisms that can 

work independently of one another. However, these two systems interface and 

coupling is inevitable. There are evidences showing that circadian and p53 network 

has bidirectional coupling. It has been shown that p53 protein modulates circadian 

behavior by binding Per2 promoter, which BMAL1/Clock binds to promote Per2 

expression. Thus, p53 blocks BMAL1/Clock binding to the Per2 promoter, leading to 

repression of Per2 expression (Beaver et al., 2002). We suggest that this interaction 

may be a key regulatory link between p53 network and circadian clock. 

  

There is an inverse relationship between p53 and Per2. That is why P53-/- mice have 

a shorter period length (22.8, for WT 23.3) (Beaver et al., 2002), since per2 

concentration reaches high level faster. This demonstrates that there is a signal from 

p53 network via p53 protein to circadian clock. In addition, circadian clock sends a 
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signal to p53 network, as well, since it is established that under DSBs, ATM-Per acts 

via Chk2 on p53-ser20 phosphorylation (Caspari, 2000). This phosphorylation 

prevents the degradation of p53 by Mdm2. Also it has been shown by Gery et al. (2006) 

that Per1 may be required for the activation of ATM and overexpression of Per1 

sensitized human cancer cells to DNA damage-induced apoptosis. Thus, this body of 

information reveals that circadian clock and p53 network has bidirectional binding. 

The schematic representation of idealized interplay between p53 network and 

circadian clock can be illustrated as in Figure 8.3. A model can be produced from this 

schematic diagram by elaborating on the interactions in the blocks. The added blocks 

of circadian clock to p53 network constitutes a negative feedback loop. Thus, there are 

two negative feedback loops in this proposed framework: Wip1 feedback loop and 

p53-BMAL/CLK-Per1/2 feedback loop.  

 

 

Figure 8.3 Schematic representation of a plausible coupling framework of p53 network and circadian 

clock 

 

The effect of these two negative feedback loops on the frequency of oscillations of 

each network would provide information about how these networks keep or tune their 

oscillations, since it is known that coupling of oscillators usually quenches each other 

(Kamal, Sharma, & Shrimali, 2015). However, to study the coupling of these systems 

by combining two models via a coupling parameter blindly, whose parameters are 
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tuned for different purposes from different studies, is very unlikely that it will be 

informative. This is because mathematical models contain parameters estimated for an 

isolated experimental data but these parameters constitute only one set of parameter 

values in infinitely many possible set of parameters. Therefore, parameter estimation 

of combining two mathematical models from different experimental design areas 

would require the experimental data in which both these systems dynamics in terms of 

qualitative modes of oscillators (low steady state, oscillations, high steady state) are 

under investigation. However, to the best of our knowledge, such experiments do not 

exist.  After the publication of such experiments, a more comprehensive modelling for 

coupling between these systems in terms of oscillator dynamics can be generated and 

validated.  

 

We further simplify the framework by using 2-D oscillator model that we proposed 

(see Figure 8.4). This simplification provides the advantage of less parameters. Also, 

the simplified framework in Figure 8.4 allows for the investigation of coupling 

between these parameters in the context of coupling of oscillators. The coupling of 

oscillators is extensively studied in engineering and physics, but the lack of a low 

dimensional oscillator model made it less attractive for researchers. After the 

publication of this framework, we believe there will be more studies on the interaction 

between these two systems. 

 

 

Figure 8.4 A coupling framework for p53 network and circadian clock oscillators as can be studied in 

the context of oscillator coupling 
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Figure 8.4 shows coupled oscillators, namely p53 network and circadian clock 

oscillators. The study of the coupling of these two systems is another challenge, since 

coupled oscillators exhibit some emergent dynamics such as amplitude death and 

oscillation death (Kamal, Sharma, & Shrimali, 2015). (In this thesis, we do not go into 

such deep analysis. We just provide a framework for further studies. Nevertheless, we 

study the framework to show the positive effect of circadian clock.) However, in 

healthy cells, it is known that p53 network is able to oscillate under circadian coupling. 

This means that p53 network and circadian clock are coupled under some conditions 

that they are both able to oscillate. Investigating these conditions would reveal 

valuable information about the design principles of these oscillators. 

 

 It is known that Per1 concentration is a representative signal of circadian clock, 

which is high at night and low during the day. Thus, the signal that goes out of Per1/2 

to ATM sensor subsystem is known to oscillate. Since this signal is an observed signal, 

under some idealizations, we can model it as a sinusoidal signal and give it as an input 

to the 2-D oscillator model, and get results by looking from p53 network viewpoint 

(see Figure 8.5a,b). Since our aim is to find how p53 dynamics change under the 

circadian clock effect, this simplification here serves our aim. 

 

 

 

Figure 8.5 A simpler framework for studying the coupling from the perspective of p53 network. a) 

Circadian clock provides a sinusoidal signal to p53 network. b) Sinusoidal enhancing effect of circadian 

clock on p53 network through ATM 
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By giving a periodical input as circadian input to the ATM-Wip1 system, we 

numerically solve the proposed 2-D oscillator model in Table 3.1 for nc = 20 

throughout the simulation indicating a high DSBC activity, and sketch the solution in 

Figure 8.6. When it is mid-day (around 1000 minutes in Figure 8.6), the strength of 

oscillations (i.e. the amplitudes) increases to give a stronger cell cycle arrest signal. 

This strategy may exist for avoiding the risk of tumour formation in mid-day during 

which the sunlight has the most damaging effect. 

 

Figure 8.6 Per level is increased at night and decreased in day light. When Per is decreased and there 

is DNA damage, ATM-Wip1 oscillates indicating cell cycle arrest. If DNA damage is not repaired until 

night, then circadian system forces cell to apoptosis. The circadian signal is modelled as: .  + . �
 

 

As can be seen in Figure 8.6, during the mid-night if there is still DSBC activity 

going on, circadian clock increases the highest level of p53 in apoptosis to ensure the 

easier initiation of apoptosis. Note that, in this simulation, Wip1 feedback loop is still 

on, and Mdm2n effect is not included. In Chapter 1 and 2, the apoptosis was initiated 

by distracting Wip1 feedback loop to stop p53 network oscillator and by decreasing 

Mdm2n level after the distraction. Herein, we show that p53 network oscillator can be 

stopped by a strong circadian signal, even if Wip1 feedback loop is on. The simulation 

result indicates that a strong circadian signal can mediate a higher sustained p53 level, 

Apoptosis Cell Cycle Arrest 

day night night day 

Increase in  

the high level Increase in  
amplitudes 
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thus an easier initiation of apoptosis especially during night hours. This prediction here 

seems logical, however it needs to be proven by wet lab experiments. 

  

Circadian system forces cells to initiate apoptosis during night hours (see Figure 

8.6). Although some mathematical models rely on an integration term to apoptosis (He 

& Liu, 2014; Li et al., 2011; Zhang et al. 2011), herein under strong influence of 

circadian clock, p53 network may initiate apoptosis, thus an accumulating term may 

not be needed. This is especially important for cancer patients that cannot initiate 

apoptosis due to a deficiency in integration blocks (e.g. P53DINP1).  Thus, with this 

coupling study, we show that a periodic input, like circadian rhythm, would force the 

oscillator to stop and initiate apoptosis (Figure 8.6). 
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CHAPTER NİNE  

CONCLUSION 

 

This thesis develops two reduced oscillator models of 2-dimension for p53 

dynamics by identifying an oscillator subsystem in p53 network and analyze them with 

the aim of uncovering the mechanisms that aid p53 network dynamics or implement a 

biological function.  

 

To explore the oscillatory dynamics of p53 network, in Chapter 2 we re-

conceptualize p53 network as a system that contains an oscillator in it (Figure 2.5). 

Holding on to that perspective, in Chapter 3 we introduced a 2-dimensional 

explanatory oscillator model by reducing the known 17-dimensional two-phase 

dynamics of p53 network (Table 3.1). The resulting model is a nonlinear relaxation 

oscillator that is capable of showing qualitative p53 dynamics (stable steady state at a 

low level, oscillatory regime, and a stable steady state at a high level) (Figure 3.1). 

This reduction also provided many novel fruitful understandings and new perspectives 

into two-phase dynamics of p53 network. With the help of the introduced 2-D model, 

it was possible (i) to think p53 network as a modular system whose core module 

consists of an excitable oscillator (Figure 2.5), (ii) to show that oscillations are of 

relaxation type (Figure 3.2, Sections 3.2, 3.3, and 3.4), (iii) to pose outcomes of cell 

fate as a phase space problem, which in turn brings a new perspective to understanding 

some situations that may lead to cancer (Chapter 5).  

 

We applied local stability analysis and graphical methods on the explanatory 2-

dimensional (2-D) model that was obtained by reducing two-phase dynamics model. 

The analysis of the introduced 2-D reduced oscillator model revealed a set of 

determinants of p53 network (Chapter 4), confirmed some known biological findings, 

and provided predictions to be validated as explained in the sequel. 

  

We showed that Mdm2n (nuclear Mdm2 protein), known as the main negative 

regulator of p53, have different effects on the first and second phases of the p53 

dynamics. Decreasing of [Mdm2n] (i.e. the concentration of Mdm2n protein) results in 
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a smaller amplitude of p53 level oscillations (the first phase), whereas it causes an 

increase in the high steady state level of p53 in apoptosis (the second phase). So, for 

oscillation with sufficient size of amplitudes, Mdm2n level should not be decreased. 

However, in apoptosis (i.e. second phase) where a higher level of p53 is needed, 

decreasing of Mdm2n level has a positive effect (Section 3.5, Figure 3.8, and Figure 

4.1). 

 

We found that the oscillations in p53 network is due to an underlying oscillator that 

is of relaxation type, which means p53 network has more complex dynamics than a 

simple static feedforward model of suppressor-effector interaction (Sections 3.2, 3.3, 

3.4). 

 

We found out that Wip1 and P53DINP1 regulators have profound effects on the 

cell fate due to their certain roles in the oscillator. Wip1 dynamics is observed to have 

a strong effect on the frequency and amplitude of oscillations and P53DINP1 is 

understood to be an Oscillation Accumulation Triggered Genetic Switch (OATGS) 

(He & Liu, 2014) which shuts off Wip1 feedback loop to provide sustained level of 

[p53*] (active p53 protein) to drive the cell to apoptosis. These findings may pave the 

way for some alternative approaches towards developing new therapeutic drugs 

(Chapter 4).  

 

The presented work contributes to the systems-level understanding of p53 network, 

providing a better interpretation of wet lab experiments and suggests specific targets, 

namely Wip1 and P53DINP1, for curing strategies of cancer to be investigated further 

with drug developers (Chapter 4).   

 

We showed that mutations such as Wip1 overexpression and ATM deficiency 

drastically change the phase space of the reduced 2-D oscillator model of p53 network 

and result in malfunctioning of the oscillator. We showed mathematically that the 

oscillatory phase space can be recovered. Thus, apoptosis can be initiated, in the types 

of cancer cell caused by Wip1 overexpression or ATM deficiency as with suppression 

of Wip1 overexpression and degradation of Wip1, respectively. Therefore, it is 
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observed that such a phase space analysis of Wip1 and ATM dynamics provides a tool 

to manipulate the cancer cells pharmacologically (Sections 5.1, 5.2, and 5.3; Figure 

5.1). 

 

We identified that decreasing p53 inhibitors, e.g. Mdm2, to activate p53 function 

to initiate apoptosis for possible medical purposes (e.g. as a cancer therapeutic 

approach), may have a serious side effect: It may result in weak oscillations of p53 

causing problems in arresting cell cycle, which may cause cancer. We speculate that 

this may be one of the reasons for the complexity of p53 network (Section 5.4, Figure 

5.2). 

 

We suggest that the oscillator constituting the core subsystem of p53 network may 

be considered as a potential cancer therapeutic target to control cell fate (Section 5.5). 

We showed that, in two-phase dynamics model, cell fate can be determined by 

modulating this 2-D oscillator. By using the developed reduced 2-D oscillator model, 

we were able to pose some cancer types as a phase space problem, which is a new kind 

of mechanistic explanation to those cancer types that result from deficient cell cycle 

arrest (Chapter 5). 

  

We showed that complexity of cancer may be due to a relaxation type oscillator 

embedded in p53 network. For instance, we revealed an interesting phenomenon about 

p53 inhibitors: the abundance of p53 inhibitors (e.g. Mdm2n) may increase the 

amplitudes of p53 oscillations due to the relaxation type oscillator having p53 in its 

feedback loop (Sections 5.4 and 5.5). This may be one of the reason for the complexity 

of p53 network. To qualitatively manipulate the p53 network, e.g. to drive the cell to 

apoptosis, one has to manipulate this core oscillator as a first step. Any other 

intervention strategies that do not address the working of the oscillator may give 

controversial results. Further research employing similar system level approaches on 

p53 network may lead to development of novel therapeutic strategies. Another 

potential significance of the introduced 2-D oscillator model for p53 network is the 

possibility of modelling and studying the couplings between p53 network and other 

oscillators such as circadian network (as done to some extent in Chapter 8).  
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Taken as a whole, the presented work in Chapters 2, 3, 4, and 5 contributes to the 

systems-level understanding of p53 network dynamics, providing a better 

interpretation of wet lab experiments. Proposing such a comprehensive 2-D oscillator 

model for p53 network that controls the cell fate is valuable for measuring the 

significance of the feedback loops, regulators, and uncovering the essential working 

principles underlying the two-phase dynamics. 

  

In Chapter 6, we proposed a 2-dimensional canonical relaxation oscillator model 

with polynomial terms for p53 network dynamics. This oscillator is a new oscillator 

for biological systems. The proposed simple model is rich in dynamics and valuable 

for intuitive understanding of p53 dynamics.  

 

By using the proposed canonical model, we stressed the importance of Wip1 

degradation term (Section 6.3.2) and showed in mathematical terms that this parameter 

is critical for recovering the cell’s ability to oscillate in case of mutations such as ATM 

deficiency and Wip1 overexpression (Section 6.4). The results obtained by the 

introduced model emphasizes the importance of ATM and Wip1 in p53 dynamics. Due 

to its simplicity, the model has the potential of being used in further analytical studies 

of p53 network in the context of nonlinear systems theory.  

 

The analyses on the canonical model revealed that the production rate of Wip1 and 

sensitivity of ATM to DNA damage are critical parameters that are related to cancer 

(Section 6.4). Wip1 feedback loop is important for different behaviours of p53 

dynamics. Thus, Wip1 feedback loop may be a control element for adjusting P53 

dynamics. This perspective is important since it hypothesizes that cancer treatment 

strategies might use Wip1 feedback loop as a target to control mutated cells, 

encouraging experimentalists to go in this direction.  

 

We showed that the proposed canonical oscillator model is a relaxation oscillator 

(Section 6.3.6). We give an analytical range on the parameters that result in 

oscillations. This analytical range also includes the time-scale separation property. The 
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findings emphasize the importance of time scale separation in the dynamics of 

relaxation oscillations (Section 6.3.2). 

 

We developed a novel coupling framework based on a literature search to 

investigate the synchronization properties of p53 network by using the two proposed 

oscillators of 2-dimension (Section 7.1). By using the developed framework, we 

realized in silico experiments with the aim of revealing the advantages of coupling 

properties. Results show that the coupling makes cells robust against noise (Section 

7.2) and genetic heterogeneity (Section 7.3). By using the developed framework, 

future work should extend these studies to investigate the bystander effects in cells 

(e.g. Radiation Induced Bystander Effect). 

 

We developed a coupling framework for circadian clock and p53 network based on 

literature search (Section 8.2). We showed that the circadian clock may favor the DNA 

damage response in some time intervals through the day. For example, circadian clock 

may favor the DNA damage response during the day-light to minimize the effects of 

irradiations to the cells. To prevent possible tumor formations, the circadian clock may 

ease the initiation of apoptosis. The understanding of the analytical conditions in which 

circadian clock has positive effect on DNA damage response is very crucial for 

chronotherapy. Finding a drug that can enhance the DNA damage response is very 

hard and requires commitment of hard work of companies and several researchers. 

Instead, why don’t we use the natural enhancer that is already built in organism and 

look for those clues? Chapter 8 of this thesis provides such a framework to be used in 

the context of control and coupling of oscillators to be used in further research. The 

mathematical approaches to these two networks will pave the way for more effective 

scheduling in chronotherapy. 
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APPENDICES 

 

Appendix-1: Two-phase Model by Zhang et al. (2011) 

 
[� ] = . [� ] −  [� ] (A.6) 

 

[� ∗] =  +  [ � ∗] [� ]    [� ] +   −    + [� ∗ ]   [� ∗] +  

(A.7) 

 [� ] = � − [�  ] − [� ∗] (A.8) 

 = + [� ∗][� ∗] +  (A.9) 

 = ∗ [� ∗] [� ∗] +    (A.10) 

   
[ ∗] = [ ] − [ ∗] − [ ] [ ∗]+ [ ∗] (A.11) 

  [ ] = − [ ] − [ ] [ ]+ [ ] − [ ]+  [ ∗] (A.12) 

 [ ] =  + [ ∗](  + [ ∗] ) − k [ ]  
+ [ ](  + [ ])−  k [Akt∗] [ ]  + [ ]  

(A.13) 

 [ ] = k [Akt∗] [ ]  + [ ]− [ ](  + [ ]) − [ ]+  [ ] − k [ ] 
(A.14) 

  
[ ] = [ ] − [ ] − [ ]   (A.15) 

 
[� ∗]   =    ∗ [ ] ∗ [�  ][�  ] + −  ∗ [� ∗][� ∗] +  (A.16) 

 [� ] = � − [� ∗] (A.17) 

 
[ ] = [ ][ ] +  +   [ ] [ ][ ] +  (A.18) 

 
= −  

 
(A.19) 
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[ ] = ∗ [ ] ∗ [ �]+ [ �] − ∗ [ ]
∗ [ ]+ [ ] 

(A.20) 

 [ ] = [ ∗] − [ ] (A.21) 

 
[ ] = + [ � ] + [ � ]  − [ ]  (A.22) 

 

[ ] = + [ ]+ [ ]+ [ ][ ] + − [ ] (A.23) 

 
[ ] =  +  [ ][ ]  +  −  [ ] (A.24) 

 
[ ] = + − [ ]+ [ ] − [ ] (A.25) 

 
[ � ] = + [ ]+ [ ] − [ � ] (A.26) 

 

[ ] = + [ � ][ ][ ] + − [ ]− [ ] (A.27) 

 

[ ] = + [ ]([ ] + ) − [ ]− [ ] (A.28) 
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Appendix-2: Gillespie Algorithm Implementation for 2-lesion Kinetic Model 

%Gillespie Algorithm Implementation of 2-Lesion Kinetic Model 

% References for 2-Lesion Kinetic Model  

% 1) Stewart, R. D. (2001). Two-lesion kinetic model of double-strand break  

% rejoining and cell killing. Radiation Research, 365-378. 

% 2) Ma, L., Wagner, J., Rice, J. J., Hu, W., Levine, A. J., 

% & Stolovitzky., G. A. (2005). A plausible model for the digital response  

% of p53 to DNA damage. Proceedings of the National Academy of Sciences of  

% the United States of America, 14266-14271. 

% 3)Zhang, X.-P., Liu, F., & Wang, W. (2011). Two-phase dynamics of p53 in  

% the DNA damage response. Proceedings of the National Academy of Sciences, 

% 8990-8995. 

% Author: Gökhan Demirk?ran 

% Electrical and Electronics Engineering / Yasar University 

% email: gokhan.demirkiran@yasar.edu.tr 

% Website:  gdemirkiran.yasar.edu.tr 

% 28 July 2017, last revision: 28 July 2017 

clc,clear 

   IRy=5; % IRy:=IR dose. Change it to 3 or 5 

                             meanValue=35*IRy;   

                          nrp= 20; nfrp=20;   %number of free repair proteins 

%                              nd0=poissrnd(meanValue);    

                             nd0=300; 

                             nd1=round(0.7*nd0) ; %Simple DSB repair, 0.7   

                             nd2=round(0.3*nd0) ; %Complex DSB repair, 0.3   

%  

   nc1=0;   % boolean state C, tamir DSB-Protein Complex    

   nc2=0;   % 

   nf1=0;   % boolean F state, Fixed. 

   nf2=0;   % 

   kfb1=2;  %Association rate of repair proteins in fast kinetics 

   kfb2=0.2;%Association rate of repair proteins in slow kinetics 

   

   krb1=0.5;%Dissociation rate of repair proteins in fast kinetics 

   krb2= 0.05;%Dissociation rate of repair proteins in slow kinetics 

   kcross= 0.001;%DSB binary mismatch rate 

   kfix1= 0.03;%DSB ligation rate in fast kinetics 

   kfix2= 0.003;%DSB ligation rate in slow kinetics 

  

RP=20; % maximum number of repair proteins available 

time = 0;   

nd=0;k=2;nf=0; 

% for k = 2:3000 

  

while (nf (k-1) < nd0) 

     pd1c1=(RP-nc1-nc2)*(kfb1 + kcross*(nd1 + nd2))*nd1; 

                       pc1d1=krb1*nc1; 
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                       pc1f1=kfix1*nc1; 

                       pc2d2=krb2*nc2; 

                       pd2c2=(RP-nc1-nc2)*(kfb2 + kcross*(nd1+nd2))*nd2; 

                       pc2f2=kfix2*nc2; 

              

  

% r=rand(1,4); 

a0_=[pd1c1 pc1d1 pc1f1 pc2d2 pd2c2 pc2f2]; 

% index=find(a0_ ~=inf ); 

a0=sum(a0_); 

r_=rand(1,6); 

%   taus=-log(r)./a0_; 

  taus=-log(r_)./a0_; 

%   index=find(taus ==-inf ); 

%   taus(index)=inf; 

  [tau , mu]=min(taus); 

  %    [tau mu]=min(taus); 

%    r=r_(2);t=k+1; 

%                             if r<p1 && nrp>0   % 0<r2p1 d1c1 

if  tau==inf  

    tau=1; 

end 

if mu ==1 && nrp>0 && nd1>0 

%                                      

                                        nrp = nrp-1; 

                                        nc1=nc1+1; 

                                        nd1=nd1-1; 

  

                                       

%                             elseif p1<r && r < p2 && nc1>0 %p1<r2p2 c1d1 

elseif mu==2 && nc1>0   

                                       nrp = nrp+1; 

                                       nc1=nc1-1; 

                                        nd1=nd1+1; 

                                         

%                             elseif p1+ p2 <r && r<p3 && nc1>0 % p2<r2p3 c1f1 

elseif mu==3 && nc1>0   

                                 %C1 den D1 e geçti 

                                      nrp = nrp+1; 

                                      nf1=nf1+1; 

                                     nc1=nc1-1; 

  

                                      

%                             elseif p1+p2+p3<r && r<p4 && nc2>0 % c2d2 

elseif mu==4 && nc2>0  

                                        % C1 den F1 e geçti 

                                          nrp = nrp+1; 

                                       nc2=nc2-1; 
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                                        nd2=nd2+1; 

                                    

%                             elseif p1+p2+p3+p4<r && r<p5 && nd2>0% d2c2 

elseif mu==5 && nd2>0  

                                    nrp = nrp+1; 

                                       nc2=nc2+1; 

                                         nd2=nd2-1; 

                                 

%                             elseif p1+p2+p3+p4+p5<r && r<p6 &nc2>0%c2f2 

elseif mu==6 && nc2>0  

                                 nrp = nrp+1; 

                                      nf2=nf2+1; 

                                     nc2=nc2-1; 

                                     disp('here') 

                                  

end  

  

  

                         nd(k)=nd1+nd2; 

                         nc(k)=nc1+nc2; 

                         nf(k)=nf1+nf2; 

%                         time(k+1)=time(k) + tau;  

                time(k)=time(k-1) + tau;  

      k = k + 1;                                 

end               

%% Figure 

figure 

plot(time,nc,'b'), hold on, grid on 

xlabel('minutes'),ylabel('n_c the number of DSBCs') 

  

figure 

plot(time,nd,'r.-','Linewidth',1), hold on, grid on 

plot(time,nf,'g:','Linewidth',2) 

xlabel('minutes'),%ylabel('the number') 

legend('the number of DSBs in DNA','the number of DSBs repaired') 
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Appendix-3: Reduction Process of 6-dimensional Oscillator Subsystem  

ATM sensor subsystem consists of two differential equations, as shown by 

equations S1 and S2, while S3 is an algebraic expression.  

 [� ] = . [� ] −  [� ] (S1) 

 [� ∗] =  + [ � ∗] [� ]   [� ] +  −   + [� ∗ ]  [� ∗] +  

(S2) 

 [� ] = � − ∗ [�  ] − [� ∗] (S3) 

Since ATM* is an active protein that effects downstream modules, we eliminate 

ATM2 by quasi-steady state assumption and keep ATM* as a variable. Thus, equating 

(S1) to zero, 
[�� ] = , then we can obtain [ATM2] as an algebraic expression as 

below:    [� ] =     . ∗ ∗ [� ]  

Then, putting [� ] expression into Equation (S3) to obtain: [� ] = � − ∗ . [� ] − [� ∗] 
[� ] + ∗ . ∗ ∗ [� ] = � − [� ∗] 

Where =   = . Replacing the values of  and  and after a few 

arrangements in the equation, we obtain [ATM] as in (S6): [� ] + ∗ [� ] = � − [� ∗]                                 (S4) ∗ [� ] ≅ � − [� ∗]                                             (S5) [� ] = √ . ∗ � − [� ∗]                                           (S6) 

 

Putting the Equation (S6) in appropriate places in Equation (S2), then Equations 

(S1)-(S3) turn into one reduced differential equation as below (S7). [� ∗] = 

   + [� ∗] √ . ∗ �� � �−[�� ∗](√ . ∗ �� � �−[�� ∗]     + )  −   ∗   +  [�� ∗][�� ∗] + �                      (S7) 
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After eliminating ATM sensor subsystem into one dimension, now we eliminate 

p53 subsystem completely writing it as an algebraic equation. p53 subsystem 

equations are written as below (S8) – (S10):  = [� ∗] [� ∗] +   (S8) d[p ∗]dt = ka [p ] − k [p ∗] − k [Mdm ] [p ∗]j + [p ∗] (S9) 

 
 d[p ]dt = k − k [p ] − k [Mdm ] [p ]j + [p ]− ka [p ] +  k [p ∗] (S10) 

         Equation (S8) is an algebraic expression while (S9) and (S10) are differential 

equations. Since p53* is the active protein, we want to write [p53*] as an algebraic 

equation by embedding (S8) and (S10) into (S9).   

The rational term 
[ ]5 +[ ]  in (S10) makes it hard to write [p53] as an 

algebraic expression. Thus, we eliminate this term by linearizing. = .  and 

[p53] changes between 0.4 and 1.4 in the oscillation phase. Thus, an appropriate 

elimination is: [ ]. + [ ] ≅ . ∗ [ ] + .   
Putting this linearized expression into Equation (S9) and then equating (S9) to 

zero, then [p53] becomes a function of [Mdm2n] and [p53*] as shown in Equation 

(S11): 

 [p a z ]  =  ksp  − kdp  [Mdm n]  .   + kdep  ∗[� ∗]kdp n  + kdp  [Mdm n]  . + kacp  A�M∗                                       

Replacing [p53] in Equation (S9) with p53linearized, (S9) becomes: d[p ∗]dt =  ka  A�M∗ [p l�nea��zed] −  k  [� ∗] −  k  [Mdm ] [� ∗]( j  + [� ∗]) 
To write (S9) as an algebraic equation with quasi-steady state assumption, we 

need to linearize the rational term [ ∗](  +[ ∗]) : [p ∗]. + [p ∗] ≅ . ∗ [p ∗] 
 

Replacing the linearized term, (S9) becomes: d[p ∗]dt =  ka  A�M∗ [p a z ] −  k  [p ∗] −  k  [Mdm ] . [p ∗] 
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Equating 
[ ∗] =  and after several simplifications linearized [p53*] equation 

is found as: [p ∗] = [A�M∗] . − . ∗ [Mdm ]                                                                     �   
Note that in the oscillator model, [p53*] consists of [p53arrester] since 

[p53killer] appears in the second phase. Thus Equation (S13) can also be written for 

[p53arrester]: 

 [p a��este�] = [A�M∗] . − . ∗ [Mdm ]                                                          �   
   So far, we have obtained [ATM*] dynamics as one dimensional differential 

(S7) as in Equation 1 of Table 3, [p53arrester] equation as an algebraic equation (S13) 

as in Equation 3 of Table 3.  We keep the Wip1 dynamics as in the 17-dimensional 

model of two-phase dynamics by (Zhang, Liu, & Wang, 2011) without changing it, 

which is the Equation 2 of Table 3 and shown below: d[ ]dt = k w + k w [ � ] + [ � ]  − k w [ ] 
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Appendix-4: 50 Different Parameter Sets for Canonical Model 

No a b c d m n z �  �  

1 5.0209 17.12 27.79 126.1 1.9378 0.955 0.9689 1.8657 1.6416 

2 5.0535 10.642 22.372 99.108 1.2959 1.0538 0.5301 1.0347 1.8762 

3 8.7593 10.839 17.838 138.66 2.2641 1.1356 0.6244 1.6531 1.5783 

4 9.1103 12.306 17.493 130.72 1.8097 1.2742 0.6398 1.3109 1.8913 

5 8.2067 12.652 25.14 135.31 2.0498 1.4931 0.9099 1.7331 1.4492 

6 5.6706 11.089 29.631 99.129 2.3581 1.5042 0.9812 1.9084 1.6169 

7 5.5745 10.999 16.195 75.366 1.6907 1.4969 0.8856 1.1036 1.7844 

8 6.4169 11.481 26.243 108.04 1.5568 1.0424 0.9725 1.269 1.4662 

9 5.3024 15.441 19.245 104.85 1.2763 1.1886 0.8707 1.0197 1.081 

10 9.2123 13.203 16.457 138.13 1.439 1.2103 0.5696 1.5723 1.0267 

11 5.9189 10.88 17.139 135.65 2.3805 1.5236 0.8279 1.6314 1.7493 

12 7.2253 10.689 15.021 132.81 2.1227 1.5568 0.6729 1.0928 1.5578 

13 5.0515 15.863 27.142 125.67 2.0571 1.2064 0.6549 1.9249 1.0387 

14 5.2968 19.503 24.189 128.15 1.8677 1.2867 0.7677 1.4982 1.4182 

15 5.3466 10.636 20.874 128 1.5263 1.4012 0.703 1.7573 1.2291 

16 9.8628 10.531 28.875 123.84 2.304 1.4156 0.8358 1.3264 1.1789 

17 8.4851 10.769 23.066 125.95 1.7307 1.269 0.6507 1.3919 1.8143 

18 7.1407 15.283 16.929 136.94 2.1734 1.3604 0.9142 1.0978 1.9888 

19 5.0812 12.731 20.776 121.36 1.5864 1.1525 0.6687 1.6537 1.3597 

20 7.1089 13.441 20.572 108.89 1.7636 1.4713 0.5115 1.9452 1.1387 

21 8.2516 11.69 20.461 111.75 2.07 1.1941 0.7524 1.4182 1.9613 

22 5.0151 17.634 28.197 131.7 1.4261 1.3127 0.6729 1.5713 1.9192 

23 6.9617 15.356 29.715 138.33 2.0306 1.1856 0.7252 1.4996 1.2341 

24 5.8301 11.86 26.428 94.577 1.7061 1.2836 0.5235 1.7615 1.5143 

25 7.8975 10.737 25.766 133.23 2.3792 0.8742 0.7135 1.3052 1.4573 

26 6.0818 13.974 29.208 138.39 1.8361 0.8353 0.9341 1.2738 1.4292 

27 5.5719 11.778 26.681 108.87 2.4673 1.4248 0.62 1.8025 1.6174 

28 6.8383 11.661 25.078 121.36 1.7059 0.9424 0.8664 1.2608 1.3351 

29 5.8388 17.214 15.002 121.4 2.0977 1.5446 0.8059 1.4089 1.453 

30 5.3446 17.84 25.828 110.95 2.019 1.2055 0.6046 1.0415 1.1061 

31 7.9395 13.235 28.649 139.83 1.3076 1.4879 0.8207 1.98 1.953 

32 5.4353 13.375 20.663 123.3 1.7794 1.1154 0.8753 1.357 1.5556 

33 5.3232 14.714 15.089 103.68 1.6175 0.9615 0.7052 1.8081 1.1067 

34 7.3545 11.069 29.768 119.32 2.1178 1.1811 0.9609 1.3665 1.131 

35 5.921 11.868 23.621 136.7 1.3123 0.9463 0.8032 1.3352 1.5205 

36 5.923 15.52 18.281 115.04 1.5717 0.9473 0.6165 1.4021 1.4503 

37 9.2254 10.327 26.125 117.87 1.5772 1.389 0.773 1.2926 1.456 

38 8.4171 10.746 25.425 134.71 1.989 0.8123 0.7816 1.3968 1.5504 

39 5.4594 13.896 21.802 95.995 1.2891 1.4556 0.8569 1.7038 1.7871 

40 7.8192 10.072 27.887 130.63 1.4354 1.0149 0.6757 1.0578 1.8924 



141 

 

41 7.3576 17.659 16.837 139.6 2.1269 1.5634 0.6312 1.0651 1.9401 

42 6.7013 13.336 28.884 138.98 2.3738 1.5457 0.627 1.0751 1.1369 

43 8.7309 12.818 21.682 128.92 1.2863 1.3213 0.684 1.6192 1.0259 

44 7.8115 11.771 16.074 124.96 2.2419 1.2606 0.8541 1.5298 1.2733 

45 6.4779 15.933 23.787 130.25 1.3619 0.8699 0.7971 1.3681 1.5901 

46 5.8083 11.208 17.098 91.068 2.2725 1.2668 0.753 1.7667 1.1483 

47 5.5116 11.126 23.337 84.206 1.5012 0.9302 0.5632 1.6161 1.8808 

48 5.1722 17.254 28.05 137.07 1.6459 1.4892 0.6163 1.5661 1.7827 

49 8.0961 10.481 19.835 129.93 1.5057 0.9452 0.8977 1.6292 1.305 

50 6.8875 10.022 18.605 119.65 1.6656 0.9891 0.83 1.2855 1.62 

 

 


