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EVALUATION OF EFFECTS OF THE DRUG TREATMENTS ON 

BIOLOGICAL NETWORKS 

 

 

ABSTRACT 

 

     Developing a computational method can assist to figure out the expected results of 

a drug treatment and observe cell behaviors before doing the wet-lab experiments. This 

thesis aims to calculate the effects of a drug treatment with bioinformatics methods to 

better understand the cellular response of a patient even before s/he undertakes a drug 

treatment for lymphoma. This computational method consists of fundamental 

scientific domains such as biology, computer science, mathematics, and engineering. 

This calculation can be performed over a variety of biological networks to numerically 

interpret the changes of a drug treatment which are represented by gene expression 

data. The affected biological networks are constructed by integrating the KEGG 

signaling networks and gene expression data of 14 separate drugs treated on lymphoma 

cancer cells. Our studies on signaling networks showed that the highest influenced 

proteins are not drug targets; some other proteins, which are in the periphery parts of 

the networks, have changed importantly because of the drug treatments. Additionally, 

statistically significant proteins are generally located at the center of the signaling 

networks and highly connected to other proteins in the subsequent levels. We 

confirmed some proteins, which were mostly influenced by the drug treatment and 

having cancer related cellular activities based on a literature validation. In addition, 

similarities between drugs were observed according to statistically significant 

intersection of proteins, and these results were confirmed by similar studies. 

 

Keywords: KEGG signaling pathways, cellular response, drug treatment, gene 

expression data, lymphoma cells, bioinformatics 
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İLAÇ TEDAVİLERİNİN BİYOLOJİK AĞLARA ETKİSİNİN 

DEĞERLENDİRİLMESİ 

 

 

ÖZ 

 

     Hesaplamalı bir yöntemin geliştirilmesi ilaç tedavisinden beklenecek sonuçları 

bulmaya ve laboratuvar deneyleri öncesinde hücrenin davranışlarını gözlemlemeye 

yardımcı olabilir. Bu tez bir hastanın lenfoma tedavisi için ilaç tedavisi almadan önce 

hastanın hücresel tepkisini daha iyi anlamak için biyoenformatik yöntemlerle ilaç 

tedavisinin etkilerini hesaplamayı amaçlar. Bu hesaplamalı biyoenformatik yöntemler, 

biyoloji, bilgisayar bilimleri, matematik ve mühendislik gibi temel bilimsel alanlardan 

oluşur. Bu hesaplama, gen ekspresyon verileri ile temsil edilen bir ilaç tedavisinin 

etkilerini nicel olarak değerlendirmek için çeşitli biyolojik ağlar üzerinde 

gerçekleştirilmiştir. Bu etkilenen biyolojik ağlar, KEGG sinyal ağları ve lenfoma 

hücrelerinde uygulanan 14 farklı ilacın gen ekspresyon verileri birleştirilerek 

oluşturulmuştur. Bu sinyalizasyon ağlarının analizi sonuçlarımız, en çok etkilenen 

proteinlerin verilen ilaçların doğrudan protein hedefleri değil, ağın dış kısımlarındaki 

diğer proteinler olduğunu göstermiştir. Ek olarak, istatistiksel açıdan önemli proteinler 

genel olarak sinyal ağlarının merkezinde bulunmuş ve bu proteinlerin birbirlerine fazla 

sayıda bağ ile bağlı olduğu görülmüştür. Yaygın olarak birkaç ilacın tedavisi sonrası 

etkilenen ve istatistiksel olarak anlamlı olan bazı proteinlerin, kanserle ilişkili hücresel 

aktiviteleri olduğu literatürde de doğrulanmıştır. Aynı zamanda ilaçlar arası 

benzerlikler, istatistiksel açıdan önemli proteinlerin ortaklığına göre gözlemlenmiştir 

ve çıkan sonuçlar yapılan benzer çalışmalar ile doğrulanmıştır. 

 

Anahtar Kelimeler: KEGG sinyal yolakları, hücre davranışları, ilaç tedavisi, gen 

ekspresyon verileri, lenfoma hücreleri, biyoenformatik 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Motivation 

 

     Microarray experiments freely can be accessible for whole genomes of several 

organisms during the last years. Such datasets includes in the cell about the molecular 

level attitude of genes under different situations like drug treatment. The analysis of 

microarray experiments creates gene expression profiles. Classic microarray 

experiments detect the drug targets that are supposed to be a response from the cell in 

the gene level (Kerr & Churchill, 2007).But the drug targets cannot give an exactly 

view of the cellular response. We need to find new algorithms to solve that problem  

(Isik, Ersahin,  Atalay, Aykanat & Cetin, 2012). 

 

     Biological pathways are collections units of proteins that cooperatively do a defined 

metabolic duty. Pathway-based analysis is very new view about understanding huge 

amount of gene expressions in the signaling and metabolic levels data. Biological 

Pathway represent the attitude of group of genes as a reply to an external signal (Pas, 

Hemert, Hulsegge, Rebel & Smits,2008).Graphical topology like tree networks of cell 

signaling networks and gene expression profiles may help to understand drug 

treatment effects in the cell attitude in the metabolic level (Zhang, Gao, Liu, Zhao & 

Che, 2009). 

 

     Microarrays are the summary for searching the genetic structure of each patient.    

Microarray experiments are very complex and must be accompanied by data analysis 

components. This technology offers the opportunity to obtain the exact state of gene 

expression and to detect genes and pathways that, are affected by the drug treatment 

(Isik, Ersahin, Atalay, Aykanat & Cetin, 2012). Figure 1.1 shows the drug-protein 

interaction in a signaling pathway. Clustering is one of the most important step of the 

microarray analysis (Shapiro & Tamayo, 2003). Clustering is done for organizing the 

samples into many clusters such that cluster samples with huge similarity belong to 

same cluster (Bellaachia, Portnoy, Chen & Elkahloun, 2002). Clustering of gene 
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profiles is done for disclosing the effect of drug treatment on genes. These proteins 

can act as target for researchers to discover drugs that can be very useful in drug 

treatment of the disease (Li & Ong, 2004). The highest influenced proteins are not 

drug targets; on the other proteins which is in the faraway parts of the networks have 

changed importantly because of the drug treatments. 

      

 

Figure 1.1 Drug-Protein interaction in a signaling pathway 

 

1.2 Problem Definition 

 

     The objective of this thesis is to prediction of drug treatment impacts on the 

signaling pathways. The specific questions addressed in this study are summarized in 

the following. 

 How to use the free databases? 

 Which method will be used for getting initial scores for proteins? 

 How drug targets are identified? 

 How the cycles were eliminated in pathways? 

 Is the analysis of only the drug targets enough for providing a completely 

comprehension of the molecular response of the cell? 
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 How does a score flow algorithm visualize response of the cell the effects of 

drugs on the biological network? 

 How are the correctness of the results validated? 

 What is the relation between the level and the effected proteins? 

 What is the similarity rate used for detecting the similarity percentage of the 

drugs? 

 

1.3 Organization of the Thesis 

 

     Chapter 2 covers a literature review. Chapter 3 explains the materials and methods 

which were used in the thesis. Chapter 4 describes results of the thesis. Chapter 5 is 

the conclusion part and also offers recommendations for future improvements about 

this work. 
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CHAPTER TWO 

LITERATURE REVIEW 

      

2.1 From DNA to Protein 

 

     DNA carries heritable information in the cell. Genes code information of one or 

more proteins. An organism as a whole, we need to understand the role and function 

of DNA in every cell of an organism (Alberts, Johnson, Lewis, Raff, Roberts, & 

Walter, 2002). 

 

     Proteins are the most important molecules of life, joining in fundamentally every 

chemical and biological molecule and all activity in the life. They are creating 

materials for the cells, seeming in the structures inside the cell and within the cell 

membrane. They transport oxygen, they create tissue, they transfer DNA for the 

children and they make all the job in any living being (Cooper, 2000). 

 

2.1.1 Discovery and Structure of DNA 

 

     DNA (Deoxyribonucleic Acid) discovered by Gregor Mendel in 1865. Mendel 

noticed DNA with breeding experiments in peas, that the several phenotypes of the 

peas were inherited according to certain laws. Then we call that "Mendelian Laws" 

(Mendel, 1865). Friedrich Miescher was the first person who isolated DNA in 1869, 

but he did not understand the importance of his discovery. Wilhelm Johannsen 

expressed gene to define as a unit of heredity in 1909. From 1949 to 1953 the structure 

of DNA was understood. 

 

     DNA has four bases, associated by a sugar-phosphate backbone. Nucleotides are 

these bases. Nucleotides establish two component linearly composed strands, compose 

a double spiral. Two nucleotides respectively compose hydrogen bonds, which balance 

the double helix. The four nucleotides are Adenine, Thymine, Guanine and Cytosine. 

A and T can connect to each other by combining two hydrogen bonds. That's why, A 

and T are called to be supplementary. G and C are too supplementary: they combine 
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with three hydrogen. This supplementary strand is said complementary DNA (cDNA). 

When two proper cDNA strands bind to each other they install the double helix, 

referred above. The connecting of two complementary cDNA strands is named 

hybridization (Pray, 2008). DNA is shown with double helix form. Figure 2.1 shows 

the double helix form with its backbone and nucleotides. 

 

 

Figure 2.1 Double helix structure of the DNA 

 

     In 1957, Francis Crick discovered the flow of information from DNA to RNA to 

protein while Frederick Sanger, Allan Maxam and Walter Gilbert present the first 

methods on how to sequence DNA in 1977. This was very important for understanding 

the genetics of a living being. The next years many different function, structure and 

feature of DNA were understood. The first microarray technics were advanced in the 

1980’s. Scientists reported that “Here we report the results of an international 

collaboration to produce and make freely available a draft sequence of the human 

genome.” in 2001 (Lander et al. , 2001). 

 

     Since 1865 many more discoveries about DNA found, but to explain all of them 

would go outside the scope of this thesis.  
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2.1.2 Functional View on DNA : Genes and Genes Expression 

 

     Genes are a part of the DNA. A gene of a living being is a part of one of the living 

being's chromosomes. It has the hereditary information for one or more specific 

proteins of the organism (Cooper, 2000). 

 

     The flow of information from DNA to RNA to proteins is one of the fundamental 

principles of molecular biology. It is called as the "central dogma". The central dogma 

of molecular biology explains the two-step steps, transcription and translation. Every 

protein of the organism is coded in DNA. Transcription is the synthesis of an mRNA 

copy of a segment of DNA. RNA is synthesized by the enzyme RNA polymerase. In 

the translation stage, the mRNA is "decoded" to create a protein that has a specific 

series of amino acids by ribosomes. The flow of information from DNA to the proteins 

is shown in Figure 2.2. The abundance of translated mRNA is called the expression 

level of the gene (Zien, Schoelkopf, Tsuda, & Vert, 2004). 

 

 

Figure 2.2 The translation and transcription of a gene into a protein. First, the DNA is transcribed into 

the mRNA .Second, the mRNA is translated into the corresponding protein 

 

     Humans contain about 30000 genes. At any given time, for different cell groups, 

some of these genes are active, others are inactive. Researchers can find an answer to 

this question for a cell sample or tissue by examining gene expression profiling, a 

microarray analysis technique (Ahnert, Fink & Zinovyev, 2008). 
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     The genome of a living being consists of the set of all genes. These genes have a 

lot of biological functions. Understanding the function of a gene means that influences 

the gene reacts on and which might have effects on other genes. Such discoveries can 

be made by detecting differential expression of genes between certain conditions 

(Baldi & Hatfield, 2002). 

   

    Genes encode proteins and proteins dictate cell function. Therefore, the thousands 

of genes expressed in a particular cell determine what that cell can do. Moreover, each 

step in the flow of information from DNA to RNA to protein provides the cell with a 

potential control point for self-regulating its functions by adjusting the amount and 

type of proteins it manufactures. At any given time, the amount of a particular protein 

in a cell reflects the balance between that protein's synthetic and degradative 

biochemical pathways (Berg, Tymoczko & Stryer, 2002). On the synthetic side of this 

balance, recall that protein production starts at transcription (DNA to RNA) and 

continues with translation (RNA to protein). Thus, control of these processes plays a 

critical role in determining what proteins are present in a cell and in what amounts. In 

addition, the way in which a cell processes its RNA transcripts and newly made 

proteins also greatly influences protein levels (Alberts, Johnson, Lewis, Raff, Roberts, 

& Walter, 2002; Cooper, 2000 ; Wong, 2016) 

 

2.2 Microarray Data Analysis 

 

     General steps of microarray analysis is shown in the Figure 2.3. First step is 

isolation that means extraction of mRNA from cells. Then labelling with color 

(generally fluorescent) and hybridization are applied. Hybridization and washes are 

done under high stringency conditions for abstaining from possibility of cross-

hybridization between similar genes. The next stage is detection to generate array-

images using fluorescent microarray scanner. The basis of gene expression levels is 

that the quantification of fluorescence measured at each sequence-specific location is 

mean to the quantity of mRNA. These measurements are helpful to compare the gene 

expression with other genes in different conditions (healthy vs. and disease) (Pulverer, 

Noehammer, Vierlinger & Weinhaeusel , 2012) . 
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     Data extraction stage means the representation and extraction of data from images 

acquired from microarray experiments. Bioinformatics analysis is the last stage of the 

microarray analysis. That stage works on data normalization and statistical data 

analysis (Jain et al.,2002).  

 

 

Figure 2.3 General Principles of Microarray Data Analysis 

 

2.2.1 Data Extraction 

 

      Data extraction stage is shown in the Figure 2.4. Scanners are imaging microarrays. 

This is called quantitation, and is necessary for all microarray analyses. These image 

data must be confirmed with background correction. Background corrections are used 

for removing non-specific data that arises from non-specific hybridization, or coatings 

or other materials on the microarray analysis (Rickman, Herbert & Aggerbeck, 2003; 

Brown, Goodwin & Sorger, 2001; Wang, Ghosh & Guo, 2001).The mis-match 

adjustment can be used for removing non-specific hybridization like a secondary 

normalization process (Liu et al., 2002 ; Irizarry et al., 2003).                                               
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Figure 2.4 Steps of Data Extraction  

 

2.2.2 Bioinformatics Analysis 

 

      General approach for the bioinformatics process of microarray data is shown in the 

Figure 2.5.  Normalization is the step of removing “non-biological variability” from a 

dataset. Summarization converts the signal from all sequences into a single number 

(Yang et al., 2002). 
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Figure 2.5 General approach for the bioinformatics process of microarray data 

    

     Standard statistical processes are usually used for every gene in the microarray. 

Detecting genes which change in response to a drug, one would use a t-test to search 

for differential expression between drug-treated and non-drug treated samples.  

The t-test would be done one by one for every gene on the microarray. Fold change is 

the most used method for differential expression (Chen-An, Yi-Ju & James, 2003). 

 

     Fold change is a measure describing how much expression level changes from an 

initial to a final value / condition. In the field of bioinformatics, fold changes are 

defined directly in terms of ratios. If the initial value is A and the final value is B, the 

fold change is defined as B/A. Note that this is different to the definition described 

above. In other words, a change from 30 to 60 is defined as a fold-change of 2. This is 

also referred to as a "2-fold increase". Similarly, a change from 30 to 15 is referred to 

as a "2-fold decrease". Log ratios are often used for analysis and visualization of fold 

changes. The log2 (log with base 2) is most commonly used conversion (Pingzhao, 

Celia & Joseph, 2009; Tusher, Tibshirani, Chu, 2001). For example, on a plot axis 
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showing log2-fold-changes, an 8-fold increase will be displayed on the axis as 3 (since 

2^3 = 8) (Mariani et al., 2003). 

 

The p-value is the probability value that a gene’s expression value is different 

between the two groups due to randomized data. A p-value of 0.05 signifies a 5% 

probability that the gene’s mean expression value in one condition is different than the 

mean in the other condition by chance alone (Tusher, Tibshirani, Chu, 2001). 

 

     If error of gene x is less than %5 up to random-input running then this gene is 

statistically significant. We can test this case for every genes in the sample so we can 

detect the genes which are statistically significant (Storey & Tibshirani, 2003). 

 

     2.2.2.1 Clustering 

 

     Clustering is the step of detecting the patterns in a dataset. That means "natural 

trends" of the data. It does not include any knowledge about biological hypothesis, 

samples or gene annotation (Smolkin & Debashis, 2003). Clustering methods are used 

for identifying patterns of gene expressions. It helps for understanding of the relations 

among gene expressions. These patterns can be found with the similarity or distance 

metrics among the gene expression profiles (Jelili et al.,2016). 

 

     Euclidean distance and Pearson’s correlation are the most used distance functions. 

Clustering method will be chosen up to the distance function. K-means clustering, 

Self-Organized Maps (SOM) and hierarchical clustering are the most used clustering 

techniques. 

 

     2.2.2.1.1 Hierarchical Clustering. Hierarchical clustering methods perform 

hierarchical decomposition of units in the data set using the distance values of the units 

of the data set to each other. During hierarchical decomposition, a tree diagram known 

as a dendrogram is used. The tree diagram provides visualization of clusters obtained 

by hierarchical clustering. The number of clusters is visually decided (Sibson, 1973; 

Defays, 1977).  
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     Agglomerative and divisive approaches are fairly the most used techniques. 

Agglomerative is a "bottom up" approach. Each observation starts in its own cluster 

and pairs of clusters are merged as one moves up the hierarchy. Divisive is a "top 

down" approach. All observations start in one cluster and splits are performed 

recursively as one moves down the hierarchy (Rokach & Oded, 2005). The two types 

of hierarchical clustering with dendrogram is shown in the Figure 2.6. 

 

 

Figure 2.6 Hierarchical Clustering Dendrogram with two types 

 

      Hierarchical clustering mainly includes two phases. At first a distance matrix, 

which has all the pairwise distances between the genes, is calculated for detecting 

dissimilarity estimates via distance metrics (Meelis & Jaak, 2008). Most used metrics 

for measuring distances are shown in the Table 2.1. So, we have results about the 

number of distance measures available and their influence in the clustering algorithm 

results. After in every step, a new distance matrix between the newly formed clusters 

and the other clusters are calculated again. 
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Table 2.1 Measuring Distances Formulas 

 

     The linkage criterion determines the distance between sets of observations as a 

function of the pairwise distances between observations (Székely & Rizzo, 2005). 

Some commonly used linkage criteria are shown in the Table 2.2. 

 

 

 

 

 

 

Methods for measuring distances Formula 

Euclidean distance 

 

Manhattan distance 

 

Pearson correlation distance 

 

Eisen cosine correlation distance 

 

Spearman correlation distance 

 

Kendall correlation distance 
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Table 2.2 Linkage Methods with Figures (Slideshare, 2012) 

      

     2.2.2.1.2 K-Means Clustering. The K-means clustering divides a data set consisting 

of N data objects into K sets which is given as the input parameter. The aim is to 

maximize the in-cluster similarities (Forgy, 1965). 

 

     The K-means is the most commonly used clustering algorithm, since its 

implementation is easy. Large-scale data can be clustered quickly and efficiently. "K" 

represents the number of fixed clusters and it is needed before starting the algorithm. 

Linkage Methods Figures 

Single Linkage 

 

Complete Linkage 

 

Average Linkage 

 

Centroid Linkage 

 

Ward Linkage 
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With the recursive partitioning scheme, the K-means algorithm reduces the sum of the 

distances to the cluster to which each data belongs. The K-means algorithm tries to 

find the K pieces that are the smallest to make the quadrature error (Sculley, 2010). A 

K-Means clustering sample is shown in the Figure 2.7. 

 

 

Figure 2.7 K-Means Clustering example 

 

     According to the working mechanism of the K-means algorithm, first, K objects 

are randomly selected to represent the center point or average of each bin. Other 

remaining objects are included in the closest similar clusters, taking into account the 

distances of the clusters to their mean values. Next, the average value of each cluster 

is calculated, new cluster centers are determined, and the center distances of the objects 

are examined again. The algorithm continues until there is no change in the cluster 

members (Celebi, Kingravi & Vela, 2012). How the K-means algorithm works is 

shown in the Figure 2.8. 

 

     The algorithm basically consists of 4 steps: 

1. Determination of cluster centers 

2. Clustering according to distances of data outside the center 

3. Determination of new centers according to the clustering (or shifting old centers to 

new centers) 

4. Repeat steps 2 and 3 until the stable state is reached. 
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Figure 2.8 How the K-Mean Clustering algorithm works? 

 

     2.2.2.1.3 Self-Organizing Map (SOM) Clustering. Self-organizing maps are a 

special form of artificial neural networks and use unattended training during their 

training. At first, the system trains itself and competitive learning is used. In the second 

case of mapping, the network works to correct the incoming new arrivals properly 

(Haykin, 1999). 

 

     Fundamentally, the operations based on the reduction of output to a lesser extent in 

multi-dimensional inputs. For simplifying the problem, dimension reduction processes 

are done. 

 

     SOM, which may be an example of structurally feed forward networks, behaves 

similarly to the k-means algorithm for very small amounts of neurons. With the 

increase of the number of SOM, the difference also arises (Liu & Weisberg, 2011 ; 

Yin,Huang & Nii 2006). A SOM clustering sample is shown in the Figure 2.9. 

 

Start 

Number of 

cluster K  

Centroid 

Distance objects to 

centroids 

Grouping based on 

minimum distance 

No object 

move group 

End 



 

 

17 

 

 

Figure 2.9 SOM (Self-organizing map) clustering example 

 

     2.2.2.1.4 Validation of Clustering. Validation of clustering results are very critical. 

Actually, the cluster validation methods are done for the partitioning that best match 

the microarray data. So it is a key tool in the interpretation of clustering results. In 

here, the most used three cluster validation methods were searched (Datta, 2003 ; Xu, 

Olman & Zu, 2002 ; Quackenbush, 2001). 

 

     Connectivity captures the degree to which genes are linked in a cluster by 

monitoring whether neighboring genes are put into the same cluster (Handl, Knowles 

& Kell, 2005). The Silhouette Index (SI) reflects the density and separation of clusters 

(Rousseeuw, 1987). The Jaccard Index (JI) uses the intersection ratio between two 

gene expressions set (Jaccard, 1912).The Rand Index is used to calculate the accuracy. 

Then we can measure of agreement between two clustering partitions (Rand, 1971). 
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Table 2.3 Validation of Clustering Methods 

     

     2.2.2.2 Integration Analysis 

 

     Integration analysis includes gene and sample annotation. This process also 

mention the combination of microarray data (Yin, Jianrong, Caro & Yves , 2007). For 

example protein-protein interaction network or drug target and protein network is 

Validation Clustering 

Methods 

Formula Result 

Connectivity 
𝐶𝑜𝑛𝑛(𝑃) =  ∑ ∑ 𝑋𝑖𝑚𝑖(𝑗) 

𝑛

𝑗=1

𝑚

𝑖=1

 

The value must be from 

0 to Infinity and must be 

minimized. 

The Silhouette Index 
𝑠(𝑃) =  

1

𝑚
∑(𝑏𝑖

𝑚

𝑖=1

− 𝑎𝑖) / max  {𝑎𝑖, 𝑏𝑖} 

The result value vary 

from -1 to 1 and higher 

value means better 

clustering results.  

 

The Jaccard Index  

𝐽(𝑃1, 𝑃2) =  
𝑎

𝑎 + 𝑏 + 𝑐
 

The Jaccard Index 

score ranges from 0 to 

1 and higher value 

means better clustering 

results. 

The Rand Index  

𝑅𝑎𝑛𝑑(𝑃1, 𝑃2) =  
𝑎 + 𝑏

𝑚(𝑚 − 1)/2
 

 

The Rand Index ranges 

from 0 to 1, where a 

higher value indicates a 

higher accuracy. 

     P = {C1,C2,...,Ck} portion of Matrix (M) 

     ai = the average distance of gene I 

     bi = the minimum of the average distances of gene I 

     P1 and P2 = gene expression profiles 

     a  = The number of gene expression profile pairs that belong to the same cluster in P1 as well as in 

P2 

     b  = The number of gene expression profile pairs that belong to the same cluster in P1 but not in 

P2  

     c = The number of gene expression profile pairs that belong to the same cluster in P2 but not in P1 

     m = m is the number of genes 
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example of this process. Signaling pathway modeling for drug target detection in 

cancer is also example of this process. 

  

     2.2.2.2.1 Signaling Pathways. Cells are aware of what's happening around them, 

and they can reply in real time to a signal from the other cells and environment. That 

means cells can send and receive a lot of message via chemical signaling molecules. 

A cell signaling network or signaling pathway means that a group of proteins work 

together to control behavior as a response to chemical signals (Bu & Callaway, 

2011).  

 

     Researchers have been investigating the behavior of signaling networks with new 

algorithmic ways. New algorithms needs to detect genes which affected by drugs. This 

can be done with biologically-derived data set which are specifically affected by only 

applied drug treatment. So drug treatment will be analyzed using gene-level drug data 

rather than metabolic patient data.  Determination of cell signaling behavior is crucial 

for understanding the physiological response to a specific stimulus or drug treatment. 

Current approaches for large-scale data analysis do not effectively incorporate critical 

topological information provided by the signaling network (Isik, Ersahin, Atalay, 

Aykanat & Cetin, 2012). 

 

     Pathway-based analysis is a perspective that has emerged over the last few years to 

understand and examine gene expression profiling, which is an abundant amount of 

cellular signaling and metabolic levels. One of the most used signaling pathway is 

apoptosis mechanism in the cancer researches (Brune, Kenthen & Sandau, 1999 ; 

Huang et al.,2016). 

 

     2.2.2.2.1.1 Apoptosis. The cell death resulting from the activation of the system 

containing the self-destructing (suicide, suicide) program encoded in the genetic 

system. For this reason, the term "preprogrammed cell death" is also applied to the 

case of apoptosis. The most important purpose of the "suicide" program in most cells 

is to remove the cells that are damaged by impossible repairs from stress. Thus, future 

complications are avoided.  
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     In the case of apoptosis, cell membrane does not deteriorate. The cell is divided 

into small pieces that can be phagocytized first. The dead cell, which is divided into 

small pieces and rapidly phagocytized, does not cause an inflammatory reaction in the 

surrounding tissues (necrosis). In necrosis, the cell membrane breaks down, the 

substances released from the cell cause an inflammatory response, and the necrotic 

cells are melted by the enzymes produced by the phagocytes (Douglas, 2011). The 

signaling pathway of Apoptosis is shown in the Figure 2.10. 
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CHAPTER THREE 

MATERIAL AND METHODS 

 

3.1 DATA 

 

3.1.1 Gene Expression Data 

 

There are a lot of different methods to calculate cellular responses genomically.  

Microarray experiments aim to measure the mRNA levels of genes under certain 

conditions. After statistically different analyzes of the microarray experiments are 

performed, the expression levels of the genes are measured and the increase and 

decrease in the mRNA level compared to the control samples. The microarray 

experiments were used to observe the effects of 14 different drugs (Table 3.4) on 

lymphoma cancer cells (Bansal et al., 2014). 

 

     For each gene in our gene expression data set we have 3 separate samples for both 

drug-treated and control samples. Both the drug-treated and the control samples are 

represented as a single value by calculating the median within the values of 3 

individual values. After the calculation, each of the gene symbols converts to the 

corresponding gene identifiers. At the last stage, the medicines and control samples 

for each gene are given as inputs to calculate the scores separately. Table 3.1 and 

Figure 3.1 show simulations on how drug treatments and control sample values are 

computed. 
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Table 3.1 Pseudo code for the calculating fold change in gene expression 

   

 

Figure 3.1 Calculating After Drug and Control Sample Value 

 

Create Fold Change file both after drug and before drug.  

Input  : ProteinName  stored all protein names  with  After  Values  consists AValue1,Avalue2 

,Avalue3 and Before Values consists BValue1,BValue2,BValue3 

Initiliaziation : 

 for each vertex  name∈ ProteinName 

     id=GetProteinId(name) 

     Before_Drug(id)= Median(BValue1,BValue2,BValue3) 

      After_Drug(id)  = Median (AValue1,AValue2,Value3)  

Protein_ID_Unique = Protein_ID.Distinct() 

for each vertex  Id ∈ Protein_ID_Unique  

  Medyan_before = Median (Before_Drug(Id)) 

   Medyan_After = Median (After_Drug(Id))  

Output : 

      for each vertex x ∈ V do 

            WriteFile(ProteinID(x),ProteinName(x),Medyan_First(x))  

            WriteFile(ProteinID(x),ProteinName(x),Medyan_Last(x))  
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3.1.2 Pathway Data 

 

     Pathway Commons is collection of publicly available pathway data from multiple 

organisms (Cerami et ai.,2011). Pathway Commons provides a web-based interface 

that enables biologists to browse and search a comprehensive collection of pathways 

from multiple sources represented in a common language, a download site that 

provides integrated bulk sets of pathway information in standard or convenient formats 

and a web service that software developers can use to conveniently query and access 

all data. Pathways include biochemical reactions, complex assembly, transport and 

catalysis events and physical interactions involving drug and proteins. Biochemical 

reactions, complex assembly, transport and catalysis events and physical interactions 

represents with edge. Drugs and proteins shows with node. Drugs can be only source 

node but proteins can be target and source nodes (Cerami et al., 2011). The relation 

between a source node and target node is shown in the Figure 3.2. All edge relations 

covered in KEGG pathways are shown in the Table 3.2. The main purpose of our study 

is to detect changes in genes after drug treatment. For this reason, we select only the 

“interacts-with” and “consumption-controlled-by” edge types from Pathway 

Commons.  

  

 

   Figure 3.2 Source Node to Target Node 
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Table 3.2 Types of Binary Relation in KEGG pathways. Names, Descriptions and Inferred Binary 

Relations are showed in KEGG Pathways.In this project I use the bold rows.They are consumption-

controled-by and interacts-with 

Name Description 

Inferred Binary 

Relation(s) 

controls-state-change-of 

First protein controls a reaction that 

changes the state of the 

second protein. 

controls-transport-of 

First protein controls a reaction that 

changes the cellular location of the 

second protein. 

controls-phosphorylation-of 

First protein controls a reaction that 

changes the phosphorylation status 

of the second protein. 

controls-expression-of 

First protein controls a conversion 

that changes expression of the 

second protein. 

catalysis-precedes 

First protein controls a reaction 

whose output molecule is input to 

another reaction controled by the 

second protein. 

in-complex-with 

Proteins are members of the same 

complex. 

interacts-with 

Proteins are participants of the 

same Molecular Interaction. 

neighbor-of 

Proteins are participants or 

controlers of the same interaction. 

consumption-controled-by 

The small molecule is consumed by 

a reaction that is controled by a 

protein 

controls-production-of 

The protein controls a reaction of 

which the small molecule is an 

output. 

controls-transport-of-

chemical 

The protein controls a reaction that 

changes cellular location of the small 

molecule. 
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Table 3.2 continues 

chemical-affects 

Small molecules are input to a 

biochemical reaction. 

reacts-with 

Small molecules are input to a 

biochemical reaction. 

used-to-produce 

A reaction consumes a small 

molecule to produce another small 

molecule. 

     3.1.2.1 Gene Name to Identifier Conversion 

     Gene name to identifier conversion provides an efficient and reliable mechanism 

for conversion between identifier domains of interests. All tools in the DAVID 

Bioinformatics Resources aim to provide functional interpretation of large lists of 

genes derived from genomic studies (Dennis et al., 2003).  

     Gene name to identifier conversion was performed by using Pubmed-NCBI 

Database that contains correct identifiers for all Homo sapiens genes. Synonym is a 

symbol by which a gene has been alternatively known in the literature or databases, or 

which groups it into a known gene family. Synonyms are usually recorded along with 

the approved symbols as part of the gene entry to facilitate database searching. The 

HGNC Database, Ensembl Database, Entrez Gene Database, GeneCards Database and 

Online Mendelian Inheritance in MAN (OMIM) database are all contain both 

approved symbols and synonyms (Kristian, Ruth, Susan, Mathew & Elspeth, 2016). A 

sample for gene name to identifier conversion is shown in Table 3.3. 
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Table 3.3 Example for gene name to identifier conversion 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.3 Drug Targets 

 

     A drug target is a crucial part of any drug development program. A drug target can 

be a protein or enzyme. Drug targets function is changed, removed or corrupted after 

the drug treatment. Table 3.4 shows the top 20 drugs which connected with 

consumption-controlled-by edge type to target proteins. 

 

 

 

 

 

 

 

 

 

 

 

 

 

GeneID  Symbol           Synonyms              

1  A1BG          A1B|ABG|GAB|HYST2477  

2  A2M          A2MD|CPAMD5|FWP007|S863 

3  A2MP1 A2MP 

9  NAT1    AAC1|MNAT|NAT-1|NATI 

10  NAT2         AAC2|NAT-2|PNAT 

11  NATP          AACP|NATP1  

12  SERPINA3 AACT|ACT|GIG24|GIG25 

13  AADAC CES5A1|DAC 

15  AANAT DSPS|SNAT 

16  AARS  CMT2N|EIEE29  

17  AAVS1  AAV  

18  ABAT  GABA-AT|GABAT|NPD009 

Gene name - Identifier conversion 

Homosapiens 

Taxonomy ID:9606 

Genbank common name: human 
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Table 3.4 The details of drug name – drug target count Table. Total number of drug targets for most 20 

connected drugs count are listed in the “connected drugs”, respectively 

 

 

     For example, the known targets of “Aclacinomycin A” drug are TOP1, TOP2A, 

and TOP2B proteins. Drug targets were derived from screens using cell culture or 

whole organisms and phenotypic or molecular readouts. Discovery of the direct 

target(s) of a drug is often the most challenging and time-consuming step of the drug 

development process (Warren, 2011).  

 

     Search Tool Interactions of Chemical (STITCH) is a searchable database that 

integrates information about interactions of proteins and chemicals. Chemicals are 

linked to other chemicals and proteins by evidence derived from experiments, 

databases and the literature. Some text mining and similarity methods are used for 
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detecting relations between the chemicals or proteins. STITCH has  alot of interactions 

between small molecules and proteins within more than 1100 organisms (Sang, Hyun 

& Tae, 2011 ; Szklarczyk et al., 2016). 

 

     For this project, we have set drug targets for 14 different drugs from the STITCH 

database. These drugs have been treated with lymphoma cancer cells, the data set of 

each drug and the targets of these drugs are listed in Table 3.5. 

 

Table 3.5 Drugs – Stitch Target Table. Drug names and drug targets from the STITCH database in the 

lymphoma tissue are listed in the table 

Drugs Stitch Target 

Aclacinomycin A TOP2A;TOP1;TOP2B 

Blebbistatin MYH2;MYH9;MYLK;MYH14;RAC3;RAC1 

Camptothecin 

TOP1;TP53;CASP3;BAX;PARP1;JUN;CHEK1;RAD51;ABC

G2;ANXA5;CDK1;ABCB1;FASLG;MAPK8;RECQL;BCL2;

E2F1;HIF1A;HSPA4;ATF3 

Mitomycin C 

TP53;TOP1;RAD51;BRCA2;BRCA1;NQO1;CASP3;CASP8; 

XRCC2;MX1;PPP1R15A;CD80;FGF2;POR;ABCB1;STX1A; 

RAD51C;FSCN1 

Geldanamycin 

HSP90AA1;ERBB2;AKT1;HIF1A;HSPA4;PTK2;CDC37;HS

P90AB1;FKBP4;HSPA8;NR3C1;TP53;ZHX2;KDR;TEK;CF

TR;UNC45B;IL6;DDX58;CSK;PAFAH1B1 

Methotrexate 

DHFR;TYMS;ABCC3;SLC19A1;ATIC;ABCC11;ABCG2;FP

GS;GGH;CRP;QDPR;ABCC2;ABCB1;SLC22A6;ABCC4;M

THFR;SLC46A1;ABCC1;SLCO4C1;FOLR1;ALB;IL4;SLC2

2A8;SLCO1B1;SLCO1B3;SLCO1C1;AOX1;FASLG;SLC22

A7;PCNA;SLC22A11;SLCO1A2;MAT1A 

Monastrol KIF11;RAP1A 

H-7 Dihydrochloride PRKACA; PKIA 
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Table 3.5 continues 

Cycloheximide 

CASP3;TP53;CASP8;IL6;NFKBIA;HIF1A;TNF;FOS;IL1B;

ALB;GAPDH;ICAM1;INS;BTG2;ESR1;NGF;GREB1;IL1A;

PTGS2;RPL3;FN1;IGF1;CCND1;CDKN1A;VEGFA;MAPK

8;ATF4;CDH1;CSF2;RGS2;TFRC;CD4;FGF2;IL2;CYP1A1;

CTGF;CCL5;APOLD1;EIF4EBP1;ALOX5;AR;POMC;PDG

FB;GCG;PGR;CD44;LYZ;BDNF;FTH1;HMOX1;SLC2A1;D

DIT3;SOCS3;CXCL10;KNG1;PLAT;CFTR;SGK1;BRCA1;

GNRH1;SERPINE1;POLI;SLC3A2;PXN;NOS3;IGFBP1;IL1

0;IGFBP3;EDN1;XBP1;HTT;PENK;IL11;BMP2;CXCL9;C5

AR1;LEP;RRN3;PTPN13;TGFBI;JMJD6;PTHLH;F2R;MET;

EPO;IGFBP5 

Etoposide 

CASP3;TOP2B;TP53;CASP8;BAX;BCL2L1;CASP2;CDKN

1A;TOP2A;FASLG;CYP3A4;PARP1;AKT1;BAK1;ABCG2;

CASP9;PTEN;APAF1;CASP7;ABCC3;ABCB1;H2AFX;AB

CC1;ABCC2;CASP6;MAPK8;FAS;DCK;HIPK2;RB1;MCL1

;LMNB1;TOP1;CYCS;TNFSF10;BCL2L11;ATM;BCR;TOP

3A;AFF1;TNFRSF10B;CDK2;HRAS;TNFRSF10A;JUN;ER

CC1;ABCC6;GSTP1;HSPA4;IGF1;BIRC5;HIF1A;FOS;BDN

F;TXNIP;MMP1;GDF15;PTGS2;JAK2;EGR1;MMP2;UGT1

A1;PEBP 

Trichostatin A 

HDAC1;HDAC2;HDAC9;HDAC8;HDAC7;HDAC6;HDAC3

; 

HIST1H4C;HIST1H4F;HIST1H4B;HIST2H3PS2;HIST2H4A

; 

HIST2H4B;H3F3A;HIST1H4E;HIST1H4A;HIST4H4;HIST1

H4K;HIST1H4L;HIST1H4J;HIST1H4I;HIST1H4D;HIST1H4

H;H3F3B;HDAC4;LCOR;HDAC10;ESR1;CCND1;HDAC11

;HDAC5;PGR;TNFRSF10B;CCND2;AR;B2M;CIITA;MLH1

;PPARG;ABCC10;ERBB2;VEGFA;CDKN2C;FOXP3 

Vincristine TP53;CASP3;CYP3A4;CYP3A5;BUB1B;PTGS2;MIXL1 
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Table 3.5 continues 

Doxorubicin 

hydrochloride 

ABCB1;TP53;CASP3;ABCC1;TOP2A;NOS3;BIRC5;CASP9

;ATM;AKT1;PARP1;CASP8;PTEN;VEGFA;CDK1;SOD2;C

HEK1;JUN;PCNA;HIF1A;PTGS2;CASP7;THBS1;ABCG2;

MAPK8;MYCN;NOS1;RELA;GSR;PLAU;HIPK2;BIK;GDF

15;LGALS3;CLU;MAPK14;BIRC3;ERBB2;TOP2B;FASLG;

BAX;CDKN1A;GADD45A;RAB6C;TNFRSF10A;RRM2B;

ABCC3;TNFRSF10B;RALBP1;MTOR;DNMT1;MDM4;KA

T2B;FOS;CSF2;CBR3;POR;TNF;BCL6;NPPA;CFLAR;ABC

C2;MAP3K5;KDR;ABCB11;CYP3A4;ABCC6;NQO1;CDC2

5A;CBR1;IGFBP3;PRODH2;TNNT2;SLC22A16;JAK2;AR;

FTL;FTH1;HMOX1;EGR1;FAS;CAPN6;IL10;TRAF1;BECN

1;WT1;NOS2;BCL2L1;CYP2B6;CD274;ATF3;TWIST1;H2

AFX;AKR1A1;KLF4;PDGFB;CD2AP;SPHK1;SLC6A6;NC

L;ABCC10;MDM2;EGFR;JAK1;BHLHE40;BCL2;AKR1C3; 

Rapamycin 

MTOR;FKBP1A;RPS6KB1;EIF4EBP1;RPTOR;RPS6;FKBP

3;EIF4E;RHEB;AKT1;IRS1;CCND1;AKT2;HIF1A;VEGFA;

CDK2;IL2;CDKN1B;EEF2;JUN;CCND3;IL10;RB1;RYR1;C

YP3A4;ABCB1;PDCD4;RPS6KB2;EIF4G1;FKBP2;FKBP4;

RPS6KA1;PTEN;FKBP5;RICTOR;IL2RA;CDK4;MAPK8;P

PIA;FKBP1B;CD28;INS;EIF4B;IGF1;ULK1;HTT;DDIT4;S

MG1;FOXP3;CD4;EGFR;PPP2R4;STAT3;TGFB1;CASP3;H

SP90AA1;PPARG;SQSTM1;LEP;IRS2;GSK3B;NOS3;PRK

DC;ATIC;BAX;FBXW7;MYC;GZMB;ULK2;RAC1;RAC3;

BIRC5;PCNA;ERBB3;IL6;IL12B;IL3;STAT1;CASP8;CD86;

CDK1;IL7;EIF2AK4;RRN3;EIF4EBP2;MMP9;CSN1S1;NG

F;FN1;CCND2;S100A4;AKT1S1;F3;CD44;KCNA1;BDNF;C

CR7;CXCL12;CCR5;POLI;HMOX1;TBX21;TLR4;MAP3K5

;PDGFRB;CCL2;CYP3A5;TGFBI;IGFBP3;NPM1;VEGFC;I

GFBP1;SMAD2;PROM1;SOCS3;SERPINE1;SMUG1;SLC2

A1;EEF1A1;PLAT;CD36;LMNA;GFAP;RPL30;SELE;LDL

R;ODC1;LDLR 
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3.2 Pre-Processing of Pathways  

 

3.2.1 BFS (Breadth-First Search) 

 

     Breadth First Traversal (or Search) for a graph is similar to Breadth First Traversal 

of a tree. The only catch here is, unlike trees, graphs may contain cycles. To avoid 

processing a node more than once, we use a Boolean visited array. In this problem all 

vertex are in alphabetical order so we don’t need to have any Boolean visited array 

control. For simplicity, it is assumed that all vertices are reachable from the starting 

vertex ("Breadth First Traversal for a Graph," n.d.). A BFS example for 

Aclacinomycin A drug before the algorithm is shown in the Figure 3.3. 

 

 

Figure 3.3 BFS Example for AclacinomycinA drug 
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3.2.2 Levelize a KEGG Pathway with BFS 

 

Levelize a Kegg Pathway starts with finding out start point, this is the specified drug. 

Starting point means also level 1.Level 1 contains only drugs. Level 2 contains proteins 

which target of specified drug. Then levelization process continues till no protein left. 

An example levelization for “Aclacinomycin A” is shown in Figure 3.4. Briefly, each 

drug has its own network. The network is made up of protein networks which are larger 

than drug targets while drug targets are lower than the children (Szklarczyk et al., 2016 

; "Breadth First Traversal for a Graph," n.d.). The algorithm is shown in the Table 3.6. 

 

Table 3.6 Pseudo code for levelize a KEGG pathway with BFS Algorithm 

Input :Directed graph G stored in-adjacency and out-adjacency list format. 

outAdj(x):out-adjacency list of node x. 

 Initialization  : 

     for each vertex x ∈ V do 

 if in-degree(x) = 0 then  

   color(x)=Black 

   d(x)=0 

   ENQUEUE(0,x) 

 else 

   color(x)=White 

Levelization     : 

     While  Q <> ∅ 

 x  =  DEQUEUE(Q) 

 for  each  vertex y ∈ outAdj(x) do 

  if color(y) = White then 

  color(y) = Black 

  d(y) = d(x)+1 

  Vd(y)= Vd(y) U{y} 

   ENQUEUE(Q,y) 

return {V0,V1,V2,..Vl-1} 
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Figure 3.4 The levelization network for AclacinomycinA drug. The red edges and nodes were removed 

for abstaining from the cycles in the original pathway 
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3.2.3 Generate Drug Network 

 

     After BFS levelization , i used a recursive procedure for deletion of unused edges 

and nodes. So , the cycles were removed in the BFS tree (Szklarczyk et al., 2016 ; 

"Breadth First Traversal for a Graph," n.d. ; Cline et al. ,2007). This process is shown 

in the Table 3.7. In Figure 3.4, red nodes and edges were removed for abstaining from 

the cycles in the final drug tree. Final drug network for Aclacinomycin A drug is shown 

in the Figure 3.5. After the levelization and cycle deletion stages, the network 

information (total number of edges, nodes, levels, drug targets) for every drug in this 

project is listed in Table 3.8. 

 

Table 3.7 Pseudo code for Generate Drug Network up to water-flow method 

Create Drug Network for  getting drug network up to water-flow method 

Input :Directed graph G stored in-adjacency and out-adjacency list format. 

outAdj(x):out-adjacency list of node x.  

T{p} :Set of target nodes showing process in G levelization information V0,V1,V2,..Vl-1 obtained 

by running Network Levels-Obtained by BFS 

Initialization : 

  For each level = 0,1,2,..,l-1 do 

        For each vertex x { Vi do  

               For each vertex y { outAdj{x} doy 

       if  NodefromLevel(y)>level 

  Delete(xy) 

For each vertex x { V1 do  

          For each vertex y { outAdj{x} do  

 RecursiveTravel(y) 

RecursiveTravel  : 

  if outAdjExists(x) 

        For each vertex y { outAdj{x} do  

            RecursiveTravel(y) 

            WriteFile(xy) 

DrugNetworkOrganize : 

   SortAscending(FirstVertex) 

           For each vertex x { Vi do  

                 SortAscending(SecondVertex) 
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Table 3.8 The details of every drug network in this project. Total number of edges, nodes and drug 

targets are listed in the “# of Edges”, “# of Nodes” and “# of Drug Targets” columns. 

    Drug Name # of Edges # of Nodes # of Levels # of Drug Targets 

Aclacinomycin A 13979 4791 12 3 

Mitomycin C 251979 12955 8 18 

Rapamycin 81717 13003 7 128 

Doxorubicin 

hydrochloride 
118752 12875 7 108 

H-7 Dihydrochloride 59644 4430 11 2 

Geldanamycin 116033 12826 9 21 

Methotrexate 274265 13011 8 33 

Vincristine 263037 11558 11 7 

Blebbistatin 55838 5690 11 6 

Monastrol 94305 8039 11 2 

Camptothecin 148146 12991 7 20 

Trichostatin A 139873 11581 10 44 

Etoposide 131129 13034 8 63 

Cycloheximide 116875 12797 10 86 
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Figure 3.5 Drug Network for AclacinomycinA drug 
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3.3 Score Flow Algorithm 

 

The top-level of the vertex is drug. That means , level 1 is drug. Level 2 refers to 

target proteins that are related to drug. The proteins initial values are loaded from drugs 

micro array file. The edge value is the last value of the parent node divided by the 

number of edges of the parent node. Then acording to BFS algorithm children nodes 

connect with parent nodes with edge from the upper level. Parent nodes scores pass 

through the children nodes acording to arithmetic average value. The final values of 

the proteins are calculated from the values from the beginning added to all the values 

from all the edges which is connected to the protein ("Breadth First Traversal for a 

Graph," n.d. ; Sang, Hyun & Tae, 2011 ; Szklarczyk et al., 2016 ). The pseudo-code of 

this algorithm is given in Table 3.9.  

 

Table 3.9 Pseudo code for the Score Flow Algorithm 

Score: indicates initial score of each node provided by microarray file 

outScore: contains out-score of each node 

marray: indicates self-score of each node provided by microarray file 

outAdj(x): out-adjacency list of node x.   

ECount(x): Number of edges from x node  

All(x): List of all proteins in the network 

Levelization information V0,...,Vl-1 is obtained by running the BFS algorithm 

Initialization: 

  For each vertex x in All (x) do 

       If marray(x) contains then 

   Score(x) = marray (x) 

         outscore(x) = marray (x) 

       else 

  Score(x)=0 

  outscore(x) = 0 

Score Computation: 

  For each level = 0,...,l-1 do 

      For each vertex x in Vi do  

          For each vertex y in outAdj{x} do y 

    outscore(y) = outscore(y)+ outscore(x)/ECount(x)) 
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3.4 Statistical Significance of Output Scores Algorithm 

 

     First, the original score for each gene is calculated by dividing the final score by 

the initial score. This formula showed in the formula 4.1. 

 

reInitialScoFinalScoreoreOriginalSc                                   (4.1) 

 

     Then, the input scores of all the genes are taken and they are assigned randomly to 

all the genes. The final gene scores are calculated according to the score flow algorithm 

by using randomly derived initial scores. The random final score of each gene is 

calculated by dividing the final score obtained from the randomly generated score by 

the randomly generated initial score. This formula showed in the formula 4.2. 

 

       domScoreInitialRanlScoreRandomFinaeRandomScor               (4.2) 

 

If the random gene score is between 0.9 and 1.1 times the original score, the error 

for that gene is increased by one. The Formula of the error calculation is showed in the 

formula 4.3. 

 

1)()(

1.1)()(9.0)(





geneErrorgeneError

geneoreOriginalScgeneeRandomScorgeneoreOriginalSc
(4.3) 

 

     This calculation is repeated for 1000 times. Finally, for every gene an error is 

computed via p-value. The p-value shows the probability of having the final score of 

gene with a randomized initial data. If the p-value (i.e., error) of a gene x is less than 

0.05 by using random initial inputs, then the actual output score of the gene x is 

assumed to be statistically significant. Table 3.10 shows how the p-values are 

computed. 
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Table 3.10 Pseudo code for the calculating p-value of output score of each gene 

 

3.5 The Jaccard Index 

 

     First, the number of gene is calculated in the list of all statistically significant 

proteins for the two drug networks. Then the number of common gene is calculated in 

the list of all statistically significant proteins for the two drug networks. Then the 

number of union gene is calculated in the list of all statistically significant proteins for 

the two drug networks. Union gene set formula is showed in the formula 4.4. 

 

     )2,1(21 GeneSetGeneSetonInterSectiGeneSetGeneSetetUnionGeneS     (4.4) 

   

     The Jaccard index is found by dividing the number of elements in the intersection 

gene set by the number of elements in the union gene set. This formula showed in the 

formula 4.5. 

All(x): List of all proteins in the network  

FinalScore: contains final score of each node 

InitialScore: contains initial score of each node 

OriginalScore : contains  (FinalScore /  InitialScore )of each node 

RanFinalScore: contains random final score of each node changes in every iteration 

obtained by random-input running. 

RanInitialScore: contains random initial score of each node changes in every iteration. 

RandomScore :  contains  ( RanFinalScore /   RanInitialScore ) of each node 

Error :  contains error of each node 

Initialization: 

  For each vertex x in All (x) do 

        OriginalScore (x) =   FinalScore(x) /  InitialScore(x) 

Random-Input Running: 

  For each iteration = 0,...,1000 do 

        For each vertex x in All (x) do 

      RandomScore (x) =    RanFinalScore (x) /   RanInitialScore (x) 

          if Original Score (x)*0.9 < Random Score (x) <1.1*Original Score (x) 

   Error(x)=Error(x)+1 
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     ountonGeneSetCInterSectietCountUnionGeneSIndexTheJaccard     (4.5) 

 

     The reason for calculating the Jaccard index between two drugs is to calculate the 

similarity rate of these two drugs. The Jaccard Index score can range from 0 to 1 and 

higher score means better similarity results. 

 

Table 3.11 Pseudo code for the calculating the jaccard index between drug1 and drug2 

 

 

 

 

 

All (Drug1) : List of all statistically significant proteins in the Drug1 network 

All (Drug2) : List of all statistically significant proteins in the Drug2 network 

Ct(Drug1) : Contains number of proteins in the Drug1 network 

Ct(Drug2) : Contains number of proteins in the Drug2 network 

Ct_Union(Drug1,Drug2) : Contains number of proteins in the Union Drug1 and 

Drug2 network 

Ct_Intersection(Drug1,Drug2) : Contains number of proteins in the Intersection 

Drug1 and Drug2 network. 

JI(Drug1,Drug2) : Contains intersection ratio between Drug1 and Drug2 

Initialization : 

    For each vertex x in  All (Drug1)  do 

        Ct(Drug1) =   Ct (Drug1) +1 

        For each vertex y in All(Drug2) do 

             If  x == y  

               Ct_Intersection(Drug1,Drug2) = Ct_Intersection(Drug1,Drug2) +1 

    For each vertex y in All(Drug2) do 

         Ct (Drug2) =  Ct (Drug2) +1  

Output : 

    Ct_Union (Drug1,Drug2)=Ct(Drug1)+Ct(Drug2)-Ct_Intersection(Drug1,Drug2)  

    JI(Drug1,Drug2) = Ct_ Association (Drug1,Drug2) / Ct_Union(Drug1,Drug2) 
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3.6 Implementation 

 

3.6.1 Gene Expression Data with Gene Identifier 

 

     Gene expression data extraction process is the conversion process which we used 

to calculate gene expression data to provide as the initial input of the algorithm. Hence, 

for each of 14 drugs, a 24-hour drug-treated data were given on columns Y, Z and AA; 

and 24-hour control sample (DMSO) data on columns AB, AC and AD. We then 

calculate the median values separately for drug-treated values and control samples. 

Gene expression file before processing is shown in Table 3.12. 

  

Table 3.12 Gene Expression File before processing 

 

 

      

 

 

 

 

 

 

 

 

 

 

 

      

 

 

     The last step of the gene expression data is coded in C# language in .Net IDE and 

the final gene expression file is generated. Gene names are converted to Gene Identifier 

with the help of homo_sapiens.gene_info file from Pubmed-NCBI 

Y Z AA AB AC AD 

TH001_AP_1004

27_01C_C07 

TH001_AP_1004

27_01C_C08 

TH001_AP_1004

27_01C_C09 

TH001_A

P_100427

_01C_A06 

TH001_A

P_100427

_01C_A12 

TH001_A

P_100427

_01C_D04 

Aclacinomycin A Aclacinomycin A Aclacinomycin A DMSO DMSO DMSO 

24 24 24 24 24 24 

IC20 IC20 IC20 0.01 0.01 0.01 

5.21 5.19 5.31 4.98 4.77 5.3 

4.82 4.7 4.59 4.6 4.59 4.53 

4.87 5.15 5.1 5.01 4.64 5.07 

5.48 5.11 5.46 5.42 5.11 5.46 

4.17 3.87 4.32 4.1 4 4.09 

4.25 4.3 4.19 4.2 4.21 4.12 

4.19 4.3 4.39 4.22 4.14 4.44 

7.18 7.25 7.11 7.12 6.52 7.28 

4.22 4.48 4.45 4.54 4.66 4.62 

4.4 4.35 4.25 4.02 4.13 4.12 

4.82 5.23 4.69 4.91 4.81 5.2 

6.33 6.81 6.49 6.65 6.18 6.58 
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(https://www.ncbi.nlm.nih.gov/pubmed/). Then drug-treated and control samples for 

each gene are given as inputs to calculate the scores separately. 

 

3.6.2 Pathway Data up to Drug Target, Score Calculation and Statistical  

Significance Codes 

 

     Pathway Commons contains free pathway database and KEGG pathways can be 

obtained from www.pathwaycommons.org website. A pathway includes two elements: 

a node and a connection edge. The source node represents a protein or drug; the target 

node represents a protein alone. The connection represents the biological relationship 

or type of reaction between the source and target nodes. We focused on the "interacts-

with" and "consumption-controlled-by" connections on the KEGG pathways, because 

they are the only bridges that includes drug-protein interaction information. The 

connection types and their total counts in Pathway Commons specific to KEGG 

pathways are shown in Table 3.13. 

 

Table 3.13 Pathway Commons Connection Type Coverage 

Connection Type Count 

consumption-controlled-by 20721 

used-to-produce 11212 

reacts-with 1632 

chemical-affects 62806 

interacts-with 1912848 

neighbor-of 2443172 

in-complex-with 110622 

controls-state-change-of 76856 

catalysis-precedes 71313 

controls-production-of 21440 

controls-transport-of-chemical 3000 

controls-transport-of 4293 

controls-phosphorylation-of 11890 

controls-expression-of 149738 

Total 4901543 
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     The known drug targets information were obtained from the STITCH database. We 

only used "interacts-with" connections, because they focuses on protein-protein 

interaction relationship. Pseudo codes for Pathway up to drug target, Score Calculation 

and Random-Input Running for detecting the statistically significant genes are shown 

in Table 3.14. This algorithm was coded in Eclipse environment with the Java 

programming language. 
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Table 3.14 Pathway Data up to Drug Target, Score Calculation and Random-Input Running for                        

detecting the statistically significant genes pseudo codes 

   

 

 

Hashtable <String, String[]> graph : Save the whole relations between genes up to Kegg Pathways 

Hashtable <String, Double> output_score : Save the final score for a gene 

Hashtable <String, Double> score  : Save the first score for a gene 

Hashtable <String, String> adjacency_matrix : Save the relations between the proteins 

Hashtable <String, String[]> marray : Save the microarray file values in a gene 

Hashtable <Integer, Vector<String>> bfs_level: Save the proteins in the level 

Hashtable <String, Double> rate : Save the percentage between final and initial score in a gene 

Hashtable <String, Integer> error_count : Save the error of a gene,Initial value is 0 for all genes 

All(drug): List of all drugs and the drug targets. 

All_Genes(drug) : List of all genes up to specified drug 

Initialization : 

graph = Get_All_Kegg_Pathway() ; // All Kegg Pathways store in the graph hashtable. 

Pathway Data up to Drug Target : 

For each drug in All (drug) do // Applied for 14 drugs 

          marray = ReadArrayFile (drug) ; //Get microarray file to marray hashtable 

          bfs_level, adjacency_matrixPerformBFS(drug_target) ; //Sort entire data by drug targets 

          score = ConstructArrayScore(); //Save marray hashtable in score hashtable 

   Score Flow Calculation and calculate statistical sigficant genes in the drug network 

   For each iteration = 0,...,1001 do  

      InitializeMatrix();//Obtain output_score hashtable up to score and  adjacency_matrix hashtable 

      ScoreComputation()//Run Score Flow Algorithm up to water-flow model 

     If(iteration == 0 ) then   SaveScoreFlowResults(); // Save the score flow algorithm results 

           For each gene in  All_Genes(drug) do //All genes in the specified drug 

                 rate.put(gene, output_score.get(gene)/score.get(gene));//contains rate of each node 

     Else //Score Flow results up to randomize generated data 

          For each gene in  All_Genes(drug) do //All genes in the specified drug 

    result=output_score.get(gene)/score.get(gene);//Calculate rate up to random input running 

    if((rate(gene)*0.9)<result && result<(1.1*rate(gene))  

         error_count.put(gene,error_count(gene)+1);//Increase 1 the error of the gene 

         score = ConstructRandomArrayScore(); //Obtain score data from randomize the initial values  

    For each gene in  All_Genes(drug) //All genes in the specified drug 

          If(error_count(gene)<50)    //If error count is less than p-value 

            SaveTheGene(level,error_Count,ProteinID);//Save the statistically significant genes 
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3.6.3 The Jaccard Index between the drugs and Most Common Used Proteins 

 

     Pseudo codes for the Jaccard index between drugs and most common used proteins 

are shown in Table 3.15. This algorithm was coded in .Net environment with C# 

programming language. 

 

Table 3.15 The Jaccard Index between the drugs and Most Common Used Proteins pseudo codes 

 

 

Hashtable protein_table <String, String[]>  :Save the  statistically significant genes in the drug 

Hashtable drug_table <String, String[]>      :Save the drugs that statistically significant genes use        

All(drug)                                                       :List of all drugs and the drug targets. 

All_Genes(drug)                                           :List of all genes up to specified drug 

All_Genes()                                                  :List of all statistically significant genes  

All_Drugs(protein)                                       : List of all drugs in a statistically significant gene 

Kesisim                                               :Save the intersection count between the drug-drug pair 

Birlesim                                              :Save the union count between the drug-drug pair 

Benzerlik                                              :Save the jaccard index percentage between the drug-drug pair 

Initialization : 

For each drug in All (drug) do // Gets the 14 drugs 

     drug_table,protein_table =ReadFile(drug) // Set the proteins to the specified drug and protein table 

Jaccard Index between the drugs : 

For each drug1 in All (drug) do // Gets the 14 drugs 

     For each drug2 in All (drug) do // Gets the 14 drugs 

       kesisim = 0;  birlesim = 0;  benzerlik = 0; //reset the values 

           For each gene1 in  All_Genes(drug1) //Gets the gene from the specified drug 

                 For each gene2 in  All_Genes(drug2) //Gets the gene from the specified drug 

                       If gene1 == gene2 //If the gene is common in the drug pair 

                         kesisim++; //Increase 1 the intersection 

                         exit for; //Exit from the for 

       birlesim = All_Genes(drug1) +All_Genes(drug2) –kesisim //calculate the intersection  

       benzerlik = (kesisim / birlesim) * 100;  // Calculate the jaccard index 

       SaveFile(Drug1,Drug2,benzerlik) //Save Jaccard Index 

Most Common Used Proteins : 

For each gene in  All_Genes()  //Gets the all gene from the specified drug 

      For each drug in All_Drugs(protein)  //Gets the drug which used the specified gene 

             SaveFile(gene,drug) // Save the most common used protein 
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CHAPTER FOUR 

EXPERIMENTAL RESULTS  

 

4.1 Score Calculation 

 

     We used the score flow algorithm for each 14 drugs. One detailed instance for 

Aclacinomycin A drug is showed in the Figure 4.1 that displays the score computation 

from first to fifth levels to Aclacinomycin A drug network. Aclacinomycin A has three 

drug targets. They are TOP1, TOP2A, TOP2B which are in the second level of the 

tree. The drug's score is zero at first. So the drug edges set to zero which connected 

from first to second level. TOP2B protein is in the second level and input score is 8.48, 

the incoming edges are all set to zero. The output score for that gene is equal to the 

input score. This output-score is divided between its children (32 children); each child 

of TOP2B will get a score of 0.33 from TOP2B's outgoing edge. The algorithm 

continues till the deepest level of the network. After running the score flow algorithm 

for each drug, the last output scores of all genes are saved. 

 

     The highest influenced of a drug treatment proteins in the drug network was found 

up to difference between microarray score and the last score calculated by the score 

flow algorithm. The proteins with the one of the most difference in their scores are 

selected as the highest influenced ones and showed in Table 4.1. An example for 

Aclacinomycin A drug between first five levels score flow showed in the Figure 4.1 
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Figure 4.1 Score calculations for the “Aclacinomycin A” drug from first level to fifth level 

 

     The highest influenced proteins are not drug targets; because they are on lower 

levels, most usually in the third level, of the BFS tree. That conclusion is found in 

many latest studies (Isik, Baldow, Cannistraci & Schroeder,2015 ; Iskar et al.,2013). 

Those proteins which is in the faraway parts of the networks have changed importantly 

because of the drug treatments. Some of those proteins are found also in the different 

drugs. For instance, COX7A2 is the most effected protein in the Aclacinomycin A, H-

7 Dihydrochloride, Methotrexate, and Mitomycin C drugs network. NFE2L1 protein 

is also found in the Methotrexate and Mitomycin C drug networks. USP15 protein is 

identified the most effected protein in the Camptothecin and Etoposide drug networks. 
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     We performed a publications search about the previous studies about the most 

effected proteins monitored in the various drug treatments. A search found that the 

dys-regulation NFE2L1 protein can cause tumor (Oh, Rigas, Cho & Chan, 2012).The 

other research also showed that NFE2L1 protein is "related to the cell survival under 

stress condition" (Biswas, Kwong, Park, Nagra, & Chan, 2013). A previous study 

showed that "USP15 protein regulates the TGF-β pathway and USP15 has an 

important role in glioblastoma cancer" (Eichhorn  et al. , 2012). Those proteins are one 

of the most influential because they are present in most of our drug treatment datasets 

and have the same roles for cancer cell treatment activities. Shortly, the literature also 

shows our results which is obtained from the score flow algorithm that can assist a 

better understanding about molecular responses of a cell in the metabolic level after a 

drug treatment. 

 

Table 4.1 The highest influenced 3 proteins of all the 14 drugs. For each drug, three proteins with the 

most affected score change (showed as “Difference” column) were selected as the most affected proteins 

Drug Name Protein 

Name 

Initial Score Final Score Difference Level 

Aclacinomycin A ZRANB2 9.45 71.99 62.55 3 

Aclacinomycin A COX7A2 11.33 73.02 61.69 6 

Aclacinomycin A ECH1 9.50 70.26 60.76 6 

Blebbistatin TAF1 5.44 133.08 127.64 3 

Blebbistatin USP7 8.30 96.49 88.19 3 

Blebbistatin YME1L1 10.07 88.60 78.53 3 

Camptothecin USP15 5.70 225.42 219.72 3 

Camptothecin TEX10 6.97 155.05 148.08 3 

Camptothecin TFPI2 3.65 124.86 121.21 4 

Cycloheximide YEATS4 9.28 227.75 218.47 3 

Cycloheximide ZBTB7C 6.10 207.20 201.10 3 

Cycloheximide WDR61 8.43 171.72 163.29 3 

Doxorubicin hydrochloride ZCCHC11 5.15 258.38 253.23 3 

Doxorubicin hydrochloride VSIG8 3.70 190.53 186.83 3 

Doxorubicin hydrochloride ZNFX1 9.96 173.33 163.37 3 

Etoposide USP15 6.04 345.46 339.42 3 

Etoposide WDR26 8.96 180.13 171.17 3 

Etoposide SMURF2 4.46 153.33 148.87 3 
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Table 4.1 continues      

Geldanamycin TK1 6.39 218.23 211.84 3 

Geldanamycin ZNF346 6.03 156.38 150.36 3 

Geldanamycin TALDO1 8.69 152.95 144.26 3 

H-7 Dihydrochloride COX7A2 11.39 120.69 109.30 6 

H-7 Dihydrochloride ZNF30 5.80 83.15 77.35 4 

H-7 Dihydrochloride ZNRF4 4.15 81.37 77.22 4 

Methotrexate YARS 9.80 142.33 132.53 3 

Methotrexate NFE2L1 7.16 139.13 131.97 3 

Methotrexate COX7A2 11.02 115.07 104.05 4 

Mitomycin C ZMPSTE24 9.97 109.39 99.42 3 

Mitomycin C COX7A2 11.07 105.53 94.46 4 

Mitomycin C NFE2L1 6.94 100.78 93.84 3 

Monastrol RXFP1 3.82 133.42 129.61 4 

Monastrol SIAH2 11.40 122.16 110.76 4 

Monastrol TMEM223 8.45 115.43 106.98 4 

Rapamycin RCC1L 6.01 172.69 166.68 3 

Rapamycin TRIP6 6.75 150.61 143.86 3 

Rapamycin ZFP36 10.53 147.42 136.89 3 

Trichostatin A YTHDF3 7.86 236.42 228.57 3 

Trichostatin A YARS2 8.58 182.77 174.19 3 

Trichostatin A UBE2NL 4.21 168.68 164.48 3 

Vincristine PSMB10 0.00 131.70 131.70 4 

Vincristine SBDS 10.92 129.93 119.01 4 

Vincristine MRPL52 9.60 125.57 115.98 4 

 

4.2 Statistical Significance of Output Scores 

 

     We tested the statistical significance of output score of each gene for each 14 drugs 

separately according to the same score flow algorithm with randomly derived initial 

scores. This calculation is repeated for 1000 times. So the genes whose p-value are 

less than 0.05 were assumed to be statistically effected due the drug treatment. 

 

     The detailed examples for all drugs are given from Figure 4.2 to Figure 4.15, which 

show the statistically significant genes with their significance level. According to those 



51 

figures most of the proteins are in the level 3 or level 4 but for Aclacinomycin A drug 

most of the proteins are in the level 6.  

Figure 4.2 The genes whose p-value are less than 0.05 with level information for Aclacinomycin A drug 

Figure 4.3 The genes whose p-value are less than 0.05 with level information for Blebbistatin drug 
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Figure 4.4 The genes whose p-value are less than 0.05 with level information for Camptothecin drug 

Figure 4.5 The genes whose p-value are less than 0.05 with level information for Cycloheximide drug 
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Figure 4.6 The genes whose p-value are less than 0.05 with level information for Doxorubicin 

hydrochloride drug 

Figure 4.7 The genes whose p-value are less than 0.05 with level information for 

Etoposide drug 
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Figure 4.8 The genes whose p-value are less than 0.05 with level information for Geldanamycin drug 

Figure 4.9 The genes whose p-value are less than 0.05 with level information for 

H-7 Dihydrochloride drug
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Figure 4.10 The genes whose p-value are less than 0.05 with level information for Methotrexate drug 

Figure 4.11 The genes whose p-value are less than 0.05 with level information for Mitomycin C drug
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Figure 4.12 The genes whose p-value are less than 0.05 with level information for Monastrol drug 

Figure 4.13 The genes whose p-value are less than 0.05 with level information for Rapamycin drug 
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Figure 4.14 The genes whose p-value are less than 0.05 with level information for Trichostatin A drug 

Figure 4.15 The genes whose p-value are less than 0.05 with level information for Vincristine drug 
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4.3 The Jaccard Index between the drugs 

 

     The Jaccard index (JI) method was used to calculate similarities between the 

affected proteins of two drugs. The JI shows the ratio of common genes, whose p-

value are less than 0.05, between two drugs. The JI values of each drug pair in 

descending order are shown in the Table 4.2.  

 

     Most commonly observed proteins are also listed in the Table 4.3. TMEM50A 

protein is the most common one for all drugs based on its p-value. WIF1, TIFAB, and 

ZNF454 are the other common proteins almost found in the most of drugs. Levels of 

TMEM50A protein in the drug networks are showed in the Table 4.4. Levels of WIF1 

protein in the drug networks are showed in the Table 4.5.  Levels of TIFAB protein in 

the drug networks are showed in the Table 4.6.  Levels of ZNF454 protein in the drug 

networks are showed in the Table 4.7.     

 

     We performed a literature search about the biological functions of the common 

proteins which monitored for several drug treatments. A prior research showed that 

"TMEM50A protein appears to be highly upregulated in late stage cervical cancer in 

comparison to normal cells" (Attwood et al., 2016). Another study also suggested that 

WIF1 protein regulates cancer stemness and senescence, which can lead major 

implications in the field of cancer biology (Ramachandran et al., 2014). Another study 

research showed that The Cancer Genome Atlas (TCGA) confirms that TIFAB protein 

is one of the genes that is deleted in nearly all reported cases of the aggressive subtypes 

of del(5q) myelodysplastic syndrome which is also considered a slow-growing 

(chronic) blood cancer (Dutt et al., 2010; Varney et al., 2015). A recent study found 

that ZNF454 protein leads many tumor and cancer stem in the cell organization 

(Sottoriva et al., 2015). 

 

     We found out that drug similarities predict the number of shared significant genes 

across drug pairs statistically. We performed a literature search about similarities 

between drug pairs with the jaccard index of the statistically significant proteins. Here, 

we crosschecked our results with MeSHDD tool. This tool is a framework in 
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calculating drug repositioning using literature-derived drug similarity. MeSHDD also 

uses drug cluster-based repositioning for drug similarities (Brown & Patel, 2017). You 

can find MeSHDD tool via http://apps.chiragjpgroup.org/MeSHDD/. According to 

this tool, the most similar drug to Etoposide is Doxorubicin hydrochloride; and the 

distance between these two drugs is given as 0.5786. When we subtract 0.5786 value 

from 1, we get 42.14% as a result. We found the a similar outcome with our algorithm 

with 42.54% result. Likewise, this tool also supports the similarity between 

Cycloheximide and Doxorubicin hydrochloride; Mitomycin C and Vincristine 

similarities. Another study also suggested that Camptothecin and Etoposide have the 

same reaction in tumor cells during their treatment (Sha et al., 2012). A recent study 

also suggested that Camptothecin and Doxorubicin hydrochloride are also conducive 

in fighting with breast cancer (Kathryn et al., 2011). 

 

Table 4.2 The Jaccard Index scores of each drug pair 

Drug 1 Drug 2 Jaccard Index 

Doxorubicin hydrochloride Etoposide 42.54% 

Camptothecin Doxorubicin hydrochloride 36.18% 

Camptothecin Etoposide 33.49% 

Cycloheximide Doxorubicin hydrochloride 31.15% 

Mitomycin C Vincristine 30.27% 

Cycloheximide Etoposide 28.50% 

Camptothecin Methotrexate 25.84% 

Cycloheximide Rapamycin 25.44% 

Monastrol Vincristine 25.31% 

H-7 Dihydrochloride Monastrol 25.22% 

Camptothecin Geldanamycin 25% 

Doxorubicin hydrochloride Rapamycin 24.72% 

Cycloheximide Geldanamycin 24.47% 

Etoposide Rapamycin 24.32% 

Camptothecin Cycloheximide 24.29% 

Cycloheximide Methotrexate 24.06% 

Etoposide Geldanamycin 22.93% 
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Table 4.2 continues   

Doxorubicin hydrochloride Methotrexate 22.84% 

Methotrexate Mitomycin C 22.68% 

H-7 Dihydrochloride Vincristine 22.30% 

Geldanamycin Rapamycin 22.03% 

Doxorubicin hydrochloride Geldanamycin 22% 

Etoposide Methotrexate 21.95% 

Camptothecin Mitomycin C 21.92% 

Vincristine Trichostatin A 19.55% 

Blebbistatin Mitomycin C 18.99% 

Camptothecin Rapamycin 18.54% 

Cycloheximide Trichostatin A 18.08% 

Blebbistatin Vincristi ne 17.61% 

Mitomycin C Trichostatin A 17.49% 

Mitomycin C Monastrol 17.24% 

Methotrexate Trichostatin A 17.22% 

Geldanamycin Trichostatin A 16.39% 

Blebbistatin H-7 Dihydrochloride 16.36% 

Blebbistatin Monastrol 16.28% 

Geldanamycin Methotrexate 16.26% 

Etoposide Trichostatin A 15.82% 

Camptothecin Trichostatin A 15.38% 

Cycloheximide Mitomycin C 15.12% 

Etoposide Mitomycin C 14.93% 

Doxorubicin hydrochloride Mitomycin C 14.42% 

Trichostatin A Aclacinomycin A 13.56% 

Methotrexate Vincristine 13.40% 

Geldanamycin Mitomycin C 13.21% 

Blebbistatin Methotrexate 12.88% 

Camptothecin Vincristine 12.71% 

Methotrexate Rapamycin 12.63% 
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Table 4.2 continues   

Blebbistatin Trichostatin A 12.59% 

H-7 Dihydrochloride Mitomycin C 12.35% 

Doxorubicin hydrochloride Trichostatin A 12.31% 

Vincristine Aclacinomycin A 11.89% 

Cycloheximide Monastrol 11.86% 

Etoposide Monastrol 11.34% 

Doxorubicin hydrochloride Monastrol 11.23% 

Monastrol Rapamycin 11.11% 

Rapamycin Trichostatin A 11.05% 

Geldanamycin Monastrol 10.99% 

Etoposide Vincristine 10.96% 

Mitomycin C Rapamycin 10.66% 

Camptothecin Monastrol 10.10% 

Geldanamycin Vincristine 9.63% 

Blebbistatin Geldanamycin 9.41% 

Doxorubicin hydrochloride Vincristine 9.38% 

Monastrol Trichostatin A 9.26% 

Blebbistatin Camptothecin 9.23% 

Blebbistatin Doxorubicin hydrochloride 9.09% 

Blebbistatin Cycloheximide 8.98% 

H-7 Dihydrochloride Rapamycin 8.97% 

Cycloheximide Vincristine 8.80% 

Blebbistatin Etoposide 8.70% 

Methotrexate Monastrol 8.70% 

Vincristine Rapamycin 8.50% 

H-7 Dihydrochloride Trichostatin A 7.64% 

Doxorubicin hydrochloride H-7 Dihydrochloride 7.51% 

Cycloheximide H-7 Dihydrochloride 7.32% 

Blebbistatin Rapamycin 7.19% 

Etoposide H-7 Dihydrochloride 6.59% 
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Table 4.2 continues   

H-7 Dihydrochloride Aclacinomycin A 6.32% 

Cycloheximide Aclacinomycin A 6.16% 

Camptothecin H-7 Dihydrochloride 6.15% 

Mitomycin C Aclacinomycin A 5.92% 

Rapamycin Aclacinomycin A 5.38% 

H-7 Dihydrochloride Methotrexate 5.33% 

Blebbistatin Aclacinomycin A 4.90% 

Geldanamycin H-7 Dihydrochloride 4.65% 

Geldanamycin Aclacinomycin A 4.61% 

Methotrexate Aclacinomycin A 3.97% 

Etoposide Aclacinomycin A 3.59% 

Monastrol Aclacinomycin A 3.36% 

Camptothecin Aclacinomycin A 2.76% 

Doxorubicin hydrochloride Aclacinomycin A 1.85% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

63 

 

Table 4.3 Most common proteins that were found to be significant at least more than seven drugs 

Protein Name # of Drugs Found in Common 

TMEM50A 14 

WIF1 13 

TIFAB 12 

ZNF454 11 

IL12A 10 

MS4A4A 10 

IL17D 10 

ELOA2 9 

NRB1 9 

IGDCC3 9 

MXRA5 9 

KLRC1 9 

CD1B 8 

PTGR1 8 

ZNF568 8 

S100B 8 

SEC16B 8 

SERPINB8 8 

CBLC 8 

FAAP20 8 

TNN 8 

SLC4A4 8 

HSPB9 8 

GPRC5B 8 

ZNRF4 8 

UGT2B4 8 
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Table 4.4 Levels of TMEM50A protein in drug networks 

Drug Name Level in which protein is found 

Aclacinomycin A 10 

Blebbistatin 9 

Camptothecin 5 

Cycloheximide 8 

Doxorubicin hydrochloride 5 

Etoposide 5 

Geldanamycin 8 

H-7 Dihydrochloride 9 

Methotrexate 5 

Mitomycin C 6 

Monastrol 8 

Rapamycin 6 

Trichostatin A 8 

Vincristine 9 

 

Table 4.5 Levels of WIF1 protein in drug networks 

Drug Name Level in which protein is found 

Aclacinomycin A Not Found 

Blebbistatin 4 

Camptothecin 3 

Cycloheximide 4 

Doxorubicin hydrochloride 3 

Etoposide 3 

Geldanamycin 3 

H-7 Dihydrochloride 4 

Methotrexate 4 

Mitomycin C 4 

Monastrol 4 

Rapamycin 3 

Trichostatin A 3 

Vincristine 4 
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Table 4.6 Levels of TIFAB protein in drug networks 

Drug Name Level in which protein is found 

Aclacinomycin A Not Found 

Blebbistatin 4 

Camptothecin 4 

Cycloheximide 4 

Doxorubicin hydrochloride 4 

Etoposide 4 

Geldanamycin 4 

H-7 Dihydrochloride Not Found 

Methotrexate 4 

Mitomycin C 4 

Monastrol 5 

Rapamycin 4 

Trichostatin A 4 

Vincristine 4 

 

Table 4.7 Levels of ZNF454 protein in drug networks 

Drug Name Level in which protein is found 

Aclacinomycin A 3 

Blebbistatin 3 

Camptothecin 3 

Cycloheximide 3 

Doxorubicin hydrochloride 3 

Etoposide 3 

Geldanamycin 3 

H-7 Dihydrochloride Not Found 

Methotrexate 3 

Mitomycin C 3 

Monastrol Not Found 

Rapamycin 3 

Trichostatin A 3 

Vincristine Not Found 
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CHAPTER FIVE 

CONCLUSION AND FUTURE WORKS 

 

     More information about cell signaling is needed to better understand the analysis 

of microarray experiments. For this reason, it became more interesting to gain a new 

perspective on the signaling pathway and interaction network analysis issues in the 

traditional analysis of gene expression data (Cline et al., 2007; Garcia, Espinal &  

Hernandez, 2015; Kotelnikova, Pyatnitskiy, Paleeva, Kremenetskaya & Vinogradov, 

2016). Novel methods have started to detect one of the most important proteins and 

cellular processes in the signaling pathways. Those results have not been discovered 

by traditional methods. New methods need to apply to discover such results (Isik, 

Baldow, Cannistraci & Schroeder, 2015; Kaushik, Ali & Gupta, 2017; Mueller, Tew, 

Vasieva, Clegg & Canty, 2016; Tarca et al., 2009; Zhou et al., 2016). 

 

     Biological pathways are collection units of proteins that perform a specific 

metabolic task cooperatively. They represent the attitude of gene groups in response 

to an external signal like a drug treatment (Pas, Hemert, Hulsegge, Rebel & Smits, 

2008). Pathway-based analysis is a quite new idea in understanding gene expressions 

in large quantities in signal and metabolic levels. Cell signaling networks and gene 

expression profiling can help to understand the metabolic effects of drug development 

in cells with graphical topologies such as tree networks in the metabolic level (Zhang, 

Gao, Liu, Zhao & Che, 2009). 

 

     In our studies, we observed molecular effects of a score flow algorithm in 

lymphoma cancer cells integrated into KEGG signaling networks after 14 different 

drug applications. Our results have shown that certain proteins are mostly affected by 

these drugs. We have also observed that the vast majority of these proteins are also 

effective in cancer related cell responses. In addition, statistically significant proteins 

are generally located at the center of the signaling network, which is why the other 

proteins are linked to each other at a greater number of bonds at later levels.   
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     Some proteins are also found in different medicines. COX7A2 is identified as the 

highly affected protein in the drug network of Aclacinomycin A, H-7 Dihydrochloride, 

Methotrexate, and Mitomycin C drugs. NFE2L1 is identified in the drug networks of 

Methotrexate and Mitomycin C. USP15 is also highly influenced protein in the drug 

networks of Camptothecin and Etoposide.  TMEM50A protein is the most common 

for all drugs based on its p-value. WIF1, TIFAB, and ZNF454 are also common 

proteins practically found in most of the drugs based on their p-value.  The most similar 

drug pair is Etoposide and Doxorubicin hydrochloride in the our data set. The other 

similar drugs are Camptothecin and Doxorubicin hydrochloride; Camptothecin and 

Etoposide; Cycloheximide and Doxorubicin hydrochloride; Mitomycin C and 

Vincristine. 

 

     The literature verifies our results obtained from the score flow algorithm that can 

assist to better understand the molecular responses of a cell in the signaling level after 

a drug treatment. With these particular experimental conditions, we showed the 

significance of the methods recommended in understanding of cellular responses. We 

have shown that a computational method can be very important in understanding of 

cellular responses in lymphoma cancer cells. Lastly, literature review supports the 

results obtained from the score flow algorithm on responses at the signaling level of a 

cell after drug treatment. Such methods can be crucial in finding new drug 

combinations at the molecular signal level. 
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