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GOODNESS-OF-FIT TESTS IN RANKED SET SAMPLING

ABSTRACT

In literature, many authors have studied goodness-of-fit (GOF) tests based on ranked

set sampling (RSS). In these studies, many different distribution function estimators

have been suggested. In this thesis, empirical distribution function (EDF) estimators

based on sampling designs which are level-0, level-1 and level-2 in RSS are proposed

and GOF tests based on EDF are studied. Also, efficiencies of these EDF estimators

are investigated with respect to EDF estimator of simple random sampling (SRS) under

perfect and imperfect ranking for finite population. Moreover, powers of different EDF

based GOF test statistics for the sampling designs are examined under perfect ranking

for finite population. Besides the sampling designs, partially rank-ordered set (PROS)

is used in RSS procedure. By using different simulation algorithms, powers, critical

values for different GOF tests and efficiencies of the EDF estimators are obtained.

Based on these efficiency and power values, in general, it is observed that RSS has

higher performance than SRS. These results are presented in tables and illustrated in

figures.

Keywords: Ranked set sampling, partially rank-ordered set, sampling designs,

goodness-of-fit tests, empirical distribution functions
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SIRALI KÜME ÖRNEKLEMESİNDE UYUM İYİLİĞİ TESTLERİ

ÖZ

Literatürde, birçok yazar sıralı küme örneklemesine (SKÖ) dayalı uyum iyiliği

testleri çalışılmıştır. Bu çalışmalarda, birçok farklı dağılım fonksiyonu kestiricisi

önerilmiştir. Bu tezde, SKÖ’de seviye-0, seviye-1 ve seviye-2 örneklem tasarımlarına

dayalı ampirik dağılım fonksiyonu kestiricileri önerildi ve ampirik dağılım

fonksiyonuna dayalı uyum iyiliği testleri çalışmıştır. Ayrıca, sonlu kitle için kusursuz

ve kusurlu sıralamada bu ampirik dağılım fonksiyonu kestiricilerinin verimlilikleri

basit rastgele örneklemenin (BRÖ) ampirik dağılım fonksiyonu kestiricisine göre

incelenmiştir. Buna ek olarak, örneklem tasarımları için ampirik dağılım

fonksiyonuna dayalı farklı uyum iyiliği test istatistiklerinin güçleri kusursuz sıralama

altında sonlu kitle için incelenmiştir. Örnekleme tasarımlarının yanı sıra, SKÖ

sürecinde kısmi sıralı küme örneklemesi kullanılmıştır. Farklı simülasyon

algoritmaları kullanılarak, uyum iyiliği testleri için güç değerleri, kritik değerler ve

ampirik dağılım fonksiyonu kestiricilerinin etkinlik değerleri elde edilmiştir. Bu

sonuçlara dayanarak, genel olarak SKÖ’nün BRÖ’den daha iyi performans gösterdiği

gözlemlenmiştir. Bu sonuçlar tablo halinde sunulmuş ve şekillerde gösterilmiştir.

Anahtar kelimeler: Sıralı küme örneklemesi, kısmi sıralı küme örneklemesi,

örneklem tasarımları, uyum iyiliği testleri, ampirik dağılım fonksiyonları
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CHAPTER ONE

INTRODUCTION

In scientific researches, basic statistical principles play vital roles and one of these

principles is that ensure experimental data for making valid judgments on the

question(s) of interest under investigation. To obtain the experimental data, sampling

methods are used in important research across all of the sciences-agricultural,

biological, ecological, engineering, medical, physical, and social. The most

fundamental of these sampling methods is simple random sampling (SRS). Via SRS,

we select only a single random sample of size n,X1, · · · , Xn, from a fixed population

of interest. To make valid statistical inference, we hope that the sample is to be

representative of the population characteristic, say mean, median, etc., of interest.

However, in practice there is no guarantee that the single random sample is truly

representative of the entire population. In this case, sample size is usually increased

by researcher. However, if sample size is increased, it may not be appropriate in

terms of cost or time. To deal with the problem, McIntyre (1952) introduced ranked

set sampling (RSS) as an advantageous alternative to SRS. By using RSS, SRS

process is repeated over and over. Also, sample size is reduced and it is caused that

time and cost is optimized. On the other hand, population is partitioned into several

artificially strata under perfect ranking. Thus, a good sample is provided from

population via RSS.

McIntyre (1952) benefited from RSS for seeking to estimate the yield of pasture in

Australia, effectively. Because, making precise yield measurements requires

harvesting the crops and so it is expensive. McIntyre (1952) described RSS as

follows. First, a set of size k is drawn by using SRS from population and the sample

observations are ranked by visual inspection. Then, the first smallest observation is

identified and taken for full measurement. The other observations are discarded.

Next, another set of size k is drawn by using SRS. The second smallest observation is

measured and the other observations are discarded. This process is repeated until the

kth smallest observation is measured in the kth set. With the kth smallest
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observation, a cycle is completed. Then, the cycle repeats l times and a ranked set

sample of size n = kl is obtained. McIntyre (1952) showed that mean of the

measured sample observations is an unbiased estimator of the population mean

regardless of any error in ranking process. After McIntyre (1952), Halls & Dell

(1966) published second study on RSS. The authors evaluated the performance of

RSS for estimating the weights of browse and of herbage in a pine. They determine

efficiency of RSS in the face of SRS. Also, they investigated the effect of ranking

errors in practice. Takahasi & Wakimoto (1968) established the first theoretical result

about RSS. It is shown that mean of ranked set sample is unbiased estimator and the

variance of the estimator is always smaller than the variance of the mean of a simple

random sample under perfect ranking. Dell & Clutter (1972) evaluated the effect of

ranking errors on RSS. To examine the numerical effect of ranking error, Dell &

Clutter (1972) used a model, Y = X + ϵ, where X and ϵ are independent and

ϵ ∼ N(0, σ2
ϵ ). In this model, X is the interested variable and is ranked according to

Y . Using of concomitant variables is considered by Stokes (1977). In this study, it is

assumed that each sampling unit has a bivariate response (X,Y ) where X and Y are

interested and concomitant variables, respectively. Stokes (1980a) gave an estimator

of the population variance for the RSS. Stokes used only balanced allocations, but

allowed ranking errors. Stokes (1980b) proposed the estimation of correlation

coefficient of a bivariate normal population in the RSS. Neerchal et al. (1998)

suggested an RSS estimator of population proportion and they showed that the

proportion of the ranked set sample is unbiased and has smaller variance than the

variance of the proportion of the simple random sample. See these studies, Kaur et al.

(1995), Chen et al. (2003) and Al-Omari & Bouza (2014), in order to obtain some

other results.

Having knowledge about the population distribution is needed to apply accurate

tests in statistics. To check distributional assumptions, goodness-of-fit (GOF) tests

have been used in scientific researches. GOF tests specify the distance between the

theoretical distribution function and the empirical distribution function (EDF). Using

GOF tests based on the EDF is introduced by Stephens (1974) under the SRS as a
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practical guide. Stephens (1974) discussed Kolmogorov-Smirnov and Cramĕr-von

Mises tests in this work. For extensive reviews about the GOF tests based on SRS,

see D’Agostino (1986).

In literature, the estimation of cumulative distribution function (CDF) with various

settings of the RSS has been studied by many authors. Stokes & Sager (1988)

suggested an unbiased estimator for the population distribution function based on the

EDF of RSS. Under perfect ranking, they considered the performance of

Kolmogorov-Smirnov statistic by using the EDF. It is seen that the RSS can result in

a substantial decrease in the width of the simultaneous confidence band for the CDF

in this study. Shahabuddin et al. (2009) developed modification of

Kolmogorov-Smirnov GOF test and investigated the power of several GOF tests by

using the normal distribution with different parameters. Mahdizadeh & Arghami

(2010) investigated entropy estimation in terms of bias and root mean square error

(RMSE) in the RSS. They gave entropy-based GOF test for the inverse Gaussian

distribution using RSS. Al-Subh et al. (2009) considered a new way to develop the

power of the chi-square test for GOF was proposed based on selective ordered ranked

set sample (SORSS). Frey & Wang (2014) suggested alternative GOF tests that are

sensitive both to imperfect rankings and to departures from parametric family by

using the RSS. Al-Omari & Zamanzade (2016) proposed the GOF tests for Rayleigh

distribution using the RSS. Alizadeh Noughabi (2017) studied seven GOF tests for

normality and presented the powers of tests under many alternative distributions in

the RSS. Sevil & Yildiz (2017) examined the power of Kolmogorov-Smirnov test for

standard normal and inverse Gaussian distribution. In the RSS process, they benefited

from auxiliary informations, level-2 sampling design and partially rank ordered set

(PROS). This study is referred in the thesis, thoroughly. More on GOF tests in the

RSS, see Chen et al. (2003) and Al-Omari & Bouza (2014).

On the studies of GOF tests in RSS, it has been proved that RSS is more efficient

than its SRS counterpart. In these studies, different RSS versions have been used and

different estimators of population distribution have been suggested. In this thesis, we

studied GOF tests based on EDF. Unlike these previous studies, we used multiple
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auxiliary variables and PROS in ranking process. Also, different sampling designs are

used to collect RSS data. Moreover, we purposed EDF estimator for each sampling

designs and investigate powers of GOF tests based on these EDF. In Chapter two,

RSS procedure is described thoroughly. Then, using multiple auxiliary informations

and PROS in ranking process are introduced. Also, the performance of

Kolmogorov-Smirnov GOF test based on RSS is compared with

Kolmogorov-Smirnov based on SRS for standard normal distribution and inverse

Gaussian distribution in this chapter. In chapter three, level-0, level-1 and level-2

sampling designs and the EDF estimators for each of them are described. Efficiencies

of these estimators are examined for perfect and imperfect ranking. Chapter four

presents the powers of GOF tests for the three sampling designs by using symmetric

and asymmetric distributions. Finally, chapter five includes general conclusion and

final remarks.
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CHAPTER TWO

THE PERFORMANCE OF KOLMOGOROV-SMIRNOV

GOODNESS-OF-FIT TEST UNDER RSS AND SRS

In the RSS, the ranking process plays vital role to construct a ranked set sample

that represents to the population. Many different mechanisms are used to rank the

observations such as expert opinion, visual inspections or auxiliary variable. In many

studies on the GOF tests, the interested variable is ranked by using expert opinion or

visual inspections. In cases which visual inspections are time consuming or costly, use

of auxiliary variable is suggested by Stokes (1977) as an alternative these two ranking

process. Husby et al. (2005) benefited from themultiple auxiliary variables to rank corn

yields in a data set. In this study, they selected pairs of variables according to different

correlations. Ozturk (2014) used the PROS to combine the auxiliary variables in the

data set.

In this chapter, we study the EDF estimator based on the level-2 sampling design

in RSS and investigate performance of Kolmogorov-Smirnov GOF test under RSS

and SRS. In ranking procedure, we used multiple auxiliary informations and PROS.

Also, the ranked set sample is constructed by using level-2 sampling design that is

introduced with other sampling designs thoroughly in chapter three. Finally, the

power of Kolmogorov-Smirnov GOF test based on RSS is compared with the power

of Kolmogorov-Smirnov GOF test based on SRS for standard normal distribution and

inverse Gaussian distribution.

2.1 Ranked Set Sampling

This popular data collection method has been used in many scientific research areas

such as forestry Halls &Dell (1966), medicine Chen et al. (2005) and agriculture Husby

et al. (2005). It is shown that the RSS has some advantages against the SRS in these

studies. Since the number of sample observations (n) is reduced via the RSS, cost and

time are optimized as well. Also, the RSS divide the population into homogeneous
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groups of judgment strata under perfect ranking.

In RSS process, Xth,i is notation for a unit in the ith set, th ∈ {1, 2, · · · , N};

i = 1, · · · , k and h = 1, · · · , k. First, a set of size k,

S1 =
{
Xt1,1 , Xt2,1 , · · · , Xtk,1

}
is selected without replacement from the

population of size N . Then, the units are ranked from smallest to largest by using one

of the mechanisms, but not actual measurements. The smallest unit is identified to

measure and denoted by X[1]1. After the first set, second set of size k,

S2 =
{
Xt1,2 , Xt2,2 , · · · , Xtk,2

}
is selected and the second smallest unit is

measured, X[2]2. The process of selecting set is continued until the kth smallest unit,

X[k]k, is measured in the kth set, Sk =
{
Xt1,k , Xt2,k , · · · , Xtk,k

}
. A cycle

is completed with this unit. If the process is repeated l independent time, the data,

X[1]j, X[2]j, · · · , X[k]j is collected, for j = 1, · · · , l and can be shown as the following

matrix, 
X[1]1 X[1]2 · · · X[1]l

X[2]1 X[2]2 · · · X[2]l

...
...

...

X[k]1 X[k]2 · · · X[k]l

 .

In this matrix, X[i]j is denoted the ith smallest unit in the jth cycle, i = 1, · · · , k and

j = 1, · · · , l.

Under perfect ranking, it is expected that the observations in the matrix build k strata

in the population and number of measured observations equal l in each strata. In this

case, the X[i]j has probability density function (PDF) f[i](x) and the CDF F[i](x) for a

fixed j ∈ {1, 2, · · · , l}. The following (2.1), (2.3) and (2.4) are noted by Chen et al.

(2003).

f[i](x) =
k!

(i− 1)!(k − i)!
[F (x)]i−1[1− F (x)]k−if(x), (2.1)

F[i](x) = P [X[i] ≤ x] =
k∑

r=i

(
k

r

)
[F (x)]r[1− F (x)]k−r, (2.2)
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f(x) =
1

k

k∑
i=1

f[i](x) (2.3)

and

F (x) =
1

k

k∑
i=1

F[i](x) (2.4)

for all x. Let’s illustrate case of the perfect ranking by an example for a single cycle.

We assume that a ranked set sample of size five is collected from a population (X)

having standard normal distribution, X[1], X[2], X[3], X[4] and X[5]. Densities of these

observations, f[i](x), i = 1, · · · , 5, are shown by the five individual marginal density

curves that are mutually independent in Figure 2.1, Wolfe (2012). As seen in the Figure

Figure 2.1 The population with standard normal density (dotted curve) and the groups of judgment strata
for the five order statistics X[1], X[2], X[3], X[4] and X[5] (solid curves)

2.1, the population is partitioned into five judgment strata. For details about distribution

of order statistics, see Arnold et al. (2008).

Under imperfect ranking, the PDF of the ith order statistic is no longer f[i](x), but

the CDF F[i](x) is expressed in the following form by Chen et al. (2003),

F[i](x) =
k∑

r=1

pirF(r)(x), (2.5)

where pir denotes the probability that the unit actually has rank r in the set is selected

as ith judgment order statistic.
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2.1.1 Auxiliary Variables

As a motivation, we first consider the RSS with a single auxiliary variable. X and Y

are denoted, the interested variable and auxiliary variable, respectively. The auxiliary

variable is highly correlated, either positively or negatively, to the variable of interest.

Also, the interested variable is hard to measure and difficult to rank as well, but an

auxiliary variable can be easily measured. So, the auxiliary variable can be used to

rank the sampling units. RSS with the single auxiliary variable goes as follows. Each

time, a set of size k is selected from the population and the set includes two variables

which areX and Y . Then, rank values are assigned to all of theXs according to order

of related Y s. A single auxiliary variable is investigated in many studies and some

of them are Dell & Clutter (1972), Stokes (1977), Kaur et al. (1996) and Al-Saleh &

Al-Ananbeh (2007).

In practice, there can be two or more auxiliary variables. The each auxiliary

variable has relatively high correlation with the interested variable. So, any of the

auxiliary variables can be used as a ranking criterion. Chen (2002) and Chen & Shen

(2003) developed the ranking mechanisms based on the multiple auxiliary variables.

Husby et al. (2005) studied the multiple auxiliary variables under different

correlations. Ozturk (2014) suggested combining multiple auxiliary variables instead

of single auxiliary variable to obtain ranking information.

Now, let’s explain the ranking process with an example. We assume a finite

population of size N, X1, · · · , XN . The population includes M auxiliary variables,

Y1, · · · , YM . They have high correlation with the interested variable X ,

ρm = corr(X, Ym), m = 1, · · · ,M . A set of size k is selected from the population

and the values of Ym,i, i = 1, · · · , k, corresponding to each Xth,i, h = 1, · · · , k and

th ∈ {1, 2, · · · , N}, are measured. Then, an operator that is suggested by Ozturk

(2014) is applied to each auxiliary variables and this operator assign rank values

(Os,m,i) to all of the Xth,i, s = 1, · · · , k,

Om,i = O(Yt1,m,i, · · · , Ytk,m,i) = {O1,m,i, · · · , Ok,m,i} (2.6)

8



Here, Ok,m,i is assigned as a rank value to the Xtm,i by using the operator Om,i and

Ym,i = (Yt1,m,i, · · · , Ytk,m,i), are values of the auxiliary variables in the ith set, m =

1, · · · ,M and i = 1, · · · , k. This example is given in Table 2.1.

Table 2.1 For the first set, i = 1, auxiliary variables (Y1,1, · · · , YM,1) and their rank values

X Y1,1 Y2,1 · · · YM,1 O1,1 O2,1 · · · OM,1

Xt1,1 Yt1,1,1 Yt1,2,1 · · · Yt1,M,1 O1,1,1 O1,2,1 · · · O1,M,1

Xt2,1 Yt2,1,1 Yt2,2,1 · · · Yt2,M,1 O2,1,1 O2,2,1 · · · O2,M,1
...

...
...

...
...

...
...

Xtk,1 Ytk,1,1 Ytk,2,1 · · · Ytk,M,1 Ok,1,1 Ok,2,1 · · · Ok,M,1

2.1.2 Partially Rank Ordered Sets

In RSS, rankers aim to rank the all units in the sets accurately even with low

confidence. However, in practice, the units in the set are ranked inaccurately if the

rankers have low confidence. Also, if there are two or more tied units in selected set,

this case makes it difficult to rank the units in the set. This situation reduces the

efficiency of RSS. PROS is suggested by Ozturk (2011) against the situation.

Nonparametric inference is developed for one and two sample problems in PROS by

Ozturk (2012a, 2012b). Ozturk (2014) used PROS in a data including multiple

auxiliary variables.

PROS provides some flexibilities to rankers in RSS process. In RSS, increased the

set size usually causes ranking error, but PROS allows that the set size is increased due

to ranking the units in each set partially. That means, a full ranking of all units is not

required in each set. As increasing set size, ranking error is under control the PROS.

Also, the multiple auxiliary variables or rankers can be combined by using PROS in

RSS.

Ozturk (2014) used PROS to develop estimators of population mean and total for

United States Department of Agriculture (USDA) 1992 Ohio corn data. This data

includes five variables such as corn yields (bushels, X), farm size (acreage, Y1),

9



group size (Y2), acre planted (Y3) and acre harvested (Y4). The group size (Y2) is an

integer valued random variable and takes values 1, 2, 3.

We now define the PROS process with an example. Suppose that a set of size five

is selected, S1 = {X76,1, X147,1, X87,1, X119,1, X48,1} from the Ohio corn data.

Informations about the set are in the Table 2.2.

Table 2.2 Auxiliary measurements of randomly selected five farms (the numbers have been changed to
make the farms not identifiable)

th Y1 Y2 Y3 Y4 X O1 O2 O3 O4

76 55 1 16 16 x76 1− 2 1− 4 2 2
147 1280 3 389 389 x147 5 5 5 5
87 55 1 9 9 x87 1− 2 1− 4 1 1
119 135 1 77 77 x119 3 1− 4 4 4
48 855 1 55 55 x48 4 1− 4 3 3

The units in the set S1 are ranked by using the operator Om,i, m = 1, · · · , 4 and i = 1

and the ranks, Os,m,i, s = 1, · · · , 5 are assigned to the units by each of the Ym,i. In the

auxiliary variables Y1 and Y2, there are tied values. Thus, it is seen that dashed

integers a− b (a < b) including all ranks between a and b are assigned to the set units

(Xth,i) for corresponding the tied values in the Table 2.2. That means, the set units are

ranked partially by using the auxiliary variables Y1 and Y2. For example, the units

Xt76,1, Xt87,1, Xt119,1, Xt48,1 has same rank values according to Y2. In the auxiliary

variables Y3 and Y4, there is no tied unit so different ranks are assigned to the set

units. Also, these auxiliary variables can be combined as a ranking information (W̄i,

i = 1, · · · , k) via PROS. Ozturk (2014) suggested two equations to obtain a ranking

information.

W̄i =
M∑

m=1

αmWm,i (2.7)

where
M∑

m=1

αm = 1. These weights αm show the quality of auxiliary variables and

are calculated by Equation 2.8 if the correlation coefficients ρm, m = 1, · · · ,M , are

known.
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αm =
|ρm|

M∑
m=1

|ρm|
(2.8)

If the ranking process is performed by using multi-ranker design, αm can be specified

based on their experiences. In our example, these weights αm are given in vector α,

α = {0.252, 0.208, 0.263, 0.276}. Wm,i is k by k weight matrix that is computed for

each judgment rank vector Om,i. In this matrix, the rows and columns represent the

units and the assigned judgment ranks, respectively. This matrix includes one and zero

ifmth auxiliary variable has no tied units likeW3,1 andW4,1,

W3,1 = W4,1 =



0 1 0 0 0

0 0 0 0 1

1 0 0 0 0

0 0 0 1 0

0 0 1 0 0


.

If themth auxiliary variable has t tied values for hth unit, weights 1/t are assigned to

the unit corresponds to the tied values in hth row and the other weights in this row are

zero likeW1,1 andW2,1,

W1,1 =



1/2 1/2 0 0 0

0 0 0 0 1

1/2 1/2 0 0 0

0 0 1 0 0

0 0 0 1 0


,

W2,1 =



1/4 1/4 1/4 1/4 0

0 0 0 0 1

1/4 1/4 1/4 1/4 0

1/4 1/4 1/4 1/4 0

1/4 1/4 1/4 1/4 0


.

By the Equation 2.7, the auxiliary variables are combined as an ranking information
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matrix W̄1 to rank the units in the set S1,

W̄1 =



0.178 0.717 0.052 0.052 0.000

0.000 0.000 0.000 0.000 1.000

0.717 0.178 0.052 0.052 0.000

0.052 0.052 0.304 0.591 0.000

0.052 0.052 0.591 0.304 0.000


.

For instance, the ranks 1, 2, 3, 4 and 5 are assigned to the unit X76 with weights

17.8%, 71.7%, 5.2%, 5.2% and 0%. It can be said that the unit X76 is the second

judgment ordered unit according to the largest weight. In this set, X87 is selected for

full measurement as the first smallest unit with the weight 71.7%.

2.2 Kolmogorov-Smirnov Test Statistic

In RSS, the most basic EDF estimator is suggested by Stokes & Sager (1988). In this

study, they showed that the EDF estimator (F ∗(t)) of RSS is unbiased and has smaller

variance than the EDF estimator of SRS. Kolmogorov-Smirnov test statistic based on

the EDF of RSS, D∗, is given by Stokes & Sager (1988).

D∗ = sup
t
[F ∗(t)− F0(t)] (2.9)

where F0(t) is a specific distribution function. By using the D∗, a confidence band

that is narrower than the corresponding band basedD calculated from a simple random

sample. Many Kolmogorov-Smirnov test statistics based different EDF estimators are

investigated in the literature. Some of them are Al-Subh et al. (2009, 2012), Frey &

Wang (2014) and Al-Omari & Zamanzade (2016).

If a simple random sample of size n, X1, · · · , Xn is selected from a specific

population having CDF F (x), and H0 : F (x) = F0(x) is tested against

H1 : F (x) ̸= F0(x) by GOF tests based on SRS EDF (F̂ (x)).
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F̂ (x) =
1

n

n∑
i=1

I(Xi ≤ x) (2.10)

By using F̂ (x), Kolmogorov-Smirnov test statistic is expressed in the following form.

DK ≡ sup
x

∣∣∣F̂ (x)− F0(x)
∣∣∣ (2.11)

Under RSS, a sample of size kl, X[i]j , i = 1, · · · , k and j = 1, · · · , l, is selected

by using level-2 sampling design from a population having CDF F (x). The sampling

observations and the EDF that belongs to the level-2 sampling design are denoted by

X
(2)
[i]j and F̂

∗
L−2(x), respectively. Then, the EDF is given by Equation (2.12).

F̂ ∗
L−2(x) =

1

lk

l∑
j=1

k∑
i=1

I(X
(2)
[i]j < x) (2.12)

and it is shown that F̂ ∗
L−2(x) is more efficient than F̂ (x) in the following chapter. The

Kolmogorov-Smirnov test statistic is given in Equation (2.13).

D∗
K ≡ sup

x

∣∣∣F̂ ∗
L−2(x)− F0(x)

∣∣∣ (2.13)

To show the behavior of the test statistics (DK and D∗
K), the efficiencies of the test

statistics are calculated by using the following equations.

EF (DK , D
∗
K) =

power of D∗
K

power of DK

(2.14)

If EF (DK , D
∗
K) > 1, it can be said that D∗

K is more powerful than DK .
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2.3 Simulation Results

In this section, our aim is to make power comparison for Kolmogorov-Smirnov

between RSS and SRS. In RSS, sample data is obtained by using level-2 sampling

design. In ranking procedure, we benefited from multiple auxiliary variables and

PROS.

Two simulation studies are described to compute critical values and powers for the

Kolmogorov-Smirnov GOF test under RSS. Suppose that population size (N ) is 300

and the population has four variables which are interested variable (X) and auxiliary

variables (Ym, m = 1, 2, 3). For the two simulation studies, we take correlation

coefficients ρm = {1.00, 0.75, 0.50}, set sizes k = {2, 3, 4} and cycle sizes

l = {5, 10}. The critical values and powers are obtained by simulating 10,000

samples.

The critical values are presented for standard normal and inverse Gaussian

distributions. These distributions can be easily generated by using R statistical

software with packages MASS and SuppDists. Distributions of interested variables

are illustrated in the Figure 2.2. Under these distributions, critical values are
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Figure 2.2 The population with standard normal (N(0, 1)) and inverse Gaussian distributions (IG(1, 1))

computed for α = 0.05 by using the following algorithm,
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(1) Select a RSS sample X[i]j from F0(x), i = 1, 2, · · · , k, j = 1, 2, · · · , l.

(2) Calculate the D∗
K according to Equation 2.13.

(3) This steps (1)-(2) are repeated to get D∗
K,1, · · · , D∗

K,10,000.

(4) The critical value C∗
α is the 100(1− α) percentage point of D∗

K .

In Table 2.3, critical values that are used to simulate powers ofDK and D∗
K are given.

For DK , actual critical values are used. In this table, it is seen that the critical values

forD∗
K are lower than the critical values forDK except for ρ = 0.50 and this situation

is increased the power of D∗
K against DK . Even, Stokes & Sager (1988) was drawn

attention to it. Also, critical values for D∗
K are obtained by setting cycle sizes l =

1, · · · , 10 and set sizes k = 2, 3, 4. These values are presented in Table A.1 and A.2.

Table 2.3 The critical values for RSS (D∗
K) and SRS (DK) under standard normal and inverse Gaussian

N(0, 1) IG(1, 1)

ρ l k RSS SRS RSS SRS

1.00 5 2 0.362 0.410 0.361 0.409
3 0.276 0.338 0.273 0.341
4 0.224 0.294 0.222 0.295

10 2 0.258 0.294 0.255 0.295
3 0.192 0.240 0.192 0.244
4 0.151 0.184 0.151 0.212

0.75 5 2 0.379 0.410 0.374 0.409
3 0.292 0.338 0.297 0.341
4 0.252 0.294 0.252 0.295

10 2 0.267 0.294 0.266 0.295
3 0.210 0.240 0.207 0.244
4 0.167 0.184 0.171 0.212

0.50 5 2 0.410 0.410 0.407 0.409
3 0.334 0.338 0.331 0.341
4 0.290 0.294 0.282 0.295

10 2 0.297 0.294 0.296 0.295
3 0.242 0.240 0.240 0.244
4 0.208 0.184 0.204 0.212

The powers for D∗
K and DK are obtained by using different alternative

distributions. When the null distribution is standard normal, the alternatives are
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different parameters in the normal distribution such as N(0.25, 1), N(0.50, 1),

N(0.75, 1), N(1, 1), N(1.25, 1), N(0, 2), N(0, 4), N(0, 8), N(0, 16) and N(0, 32).

Figure 2.3 illustrates these alternative distributions. When the null distribution is
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Figure 2.3 Alternative distributions for standard normal

inverse Gaussian, we take the alternative distributions such as exponential(1),

chi-square(1), lognormal(0,2), Weibull(2,1) (with shape parameter 2 and scale

parameter 1) and beta(5,2). Figure 2.4 illustrates these alternative distributions. By
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Figure 2.4 Alternative distributions for inverse Gaussian

using these alternative distributions, the following algorithm is performed in order to

calculate the powers of D∗
K .

(1) Select a sample X[i]j from a distribution under H1, i = 1, · · · ,m, j = 1, · · · , n.
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(2) Calculate D∗
K according to Equation 2.13.

(3) This steps (1)-(2) are repeated to get D∗
K,1, · · · , D∗

K,10,000.

(4) Power of D∗
K ≈ 1

10,000

10,000∑
h=1

I(DK,h > C∗
α)

In first five columns of Table 2.4, the results are given for the fixed variance. As the

correlations coefficients are decreased, the efficiencies are approaching to 1 for fixed

set and cycle sizes. Even, some efficiencies are lower than 1 for ρ = 0.5. As the set

and cycle are increased, the efficiencies increase for N(0.25, 1) and N(0.50, 1), but

the efficiencies close to 1 for N(1, 1) and N(1.25, 1). It can be said that the set and

cycle sizes affect the efficiencies as the mean parameter is approaching to 0.

Table 2.4 The efficiencies when the null hypothesis is standard normal distribution

ρ Cycle(l) Set(k) N(0.25, 1) N(0.50, 1) N(0.75, 1) N(1, 1) N(1.25, 1) N(0, 2) N(0, 4) N(0, 8) N(0, 16) N(0, 32)

1.00 5 2 1.171 1.318 1.308 1.193 1.077 1.315 1.416 1.479 1.478 1.338
3 1.787 1.673 1.319 1.085 1.016 1.584 1.749 1.493 1.273 1.119
4 1.957 1.743 1.191 1.023 1.002 2.152 1.936 1.394 1.098 1.017

10 2 1.441 1.385 1.144 1.023 1.003 1.577 1.384 1.229 1.071 1.014
3 1.855 1.371 1.048 1.001 1.000 2.115 1.547 1.137 1.010 1.000
4 2.597 1.245 1.011 1.000 1.000 2.972 1.417 1.026 1.000 1.000

0.75 5 2 1.139 1.204 1.184 1.159 1.027 1.140 1.326 1.360 1.253 1.178
3 1.238 1.464 1.347 1.131 1.010 1.498 1.398 1.245 1.093 1.026
4 1.268 1.520 1.296 1.074 1.000 1.514 1.424 1.124 1.018 1.002

10 2 1.175 1.377 1.203 1.053 1.001 1.312 1.205 1.099 1.015 1.000
3 1.423 1.414 1.117 1.009 1.000 1.522 1.243 1.018 1.000 1.000
4 2.090 1.458 1.047 1.001 1.000 1.835 1.184 1.003 1.000 1.000

0.50 5 2 0.829 0.943 0.987 1.010 1.010 0.855 0.940 0.952 0.978 0.983
3 0.848 0.988 1.045 1.024 1.005 0.902 0.924 0.986 1.003 0.996
4 0.914 1.043 1.044 1.014 1.005 0.953 0.999 1.029 1.006 1.000

10 2 0.899 0.982 1.008 1.005 0.999 0.858 0.929 0.960 0.994 0.998
3 0.893 1.010 1.017 1.001 1.002 0.865 0.973 0.997 0.999 1.000
4 0.910 1.041 1.005 1.000 1.000 0.949 0.997 1.004 1.000 1.000

In the other five columns of Table 2.4, the efficiencies are presented for fixed mean.

While the correlation coefficients are decreased, the efficiencies approach to 1 as

well. Also, some efficiencies are lower than 1 for ρ = 0.50. As the set and cycle sizes

increased, the efficiencies increase for N(0, 2), but the efficiencies decrease for

N(0, 16) and N(0, 32). While the alternative distributions expand, the efficiencies

decrease. Generally, it can be said that D∗
K is more powerful than DK for both fixed

variance and mean. In the Table 2.5, the outcomes appear for asymmetric alternatives

and the null distribution is inverse Gaussian. According to the results, D∗
K has higher

performance than DK when ρ = 1.00 and ρ = 0.75 except for Beta(5, 2). Mostly,

17



Table 2.5 The efficiencies when the null hypothesis is inverse Gaussian

ρ Cycle(l) Set(k) ChiSquare(1) Exp(1) Weibull(2, 1) Lognormal(0, 2) Beta(5, 2)

1.00 5 2 1.583 1.266 1.502 1.494 3.476
3 1.589 1.723 1.845 1.538 1.000
4 1.543 2.235 2.168 1.469 1.000

10 2 1.229 1.344 1.533 1.268 1.000
3 1.226 2.285 2.102 1.184 1.000
4 1.092 2.886 2.121 1.061 1.000

0.75 5 2 1.325 1.183 1.368 1.333 2.607
3 1.338 1.666 1.310 1.337 1.000
4 1.165 1.647 1.478 1.277 1.000

10 2 1.128 1.384 1.472 1.195 1.000
3 1.059 1.451 1.458 1.082 1.000
4 1.015 1.825 2.151 1.022 1.000

0.50 5 2 0.967 0.818 0.839 0.967 0.804
3 1.027 0.867 0.875 1.017 1.053
4 1.050 1.020 0.890 1.013 1.000

10 2 0.967 0.804 0.904 0.975 1.000
3 1.015 0.894 0.863 0.993 1.000
4 1.018 1.038 0.972 1.000 1.000

D∗
K and DK have equal power for Beta(5, 2). Finally, EDFs are simulated for

population, SRS and RSS. These functions are constructed under perfect ranking

(ρ = 1.00) for RSS by setting l = 5, 10 and k = 2, 3, 4. In these figures, the RSS is

better than the SRS even if the cycle size is 5 and set size is 2. While the set and cycle

sizes are increased, the distances among the lines reduce.
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Figure 2.5 EDFs for standard normal
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CHAPTER THREE

EMPIRICAL DISTRIBUTION FUNCTION ESTIMATORS FOR SAMPLING

DESIGNS IN RANKED SET SAMPLING

A single sampling procedure is generalized the infinite population, but it is not

generalized the finite population. Instead of using single sampling procedure in RSS,

Deshpande et al. (2006) described three different sampling designs which are level-0,

level-1 and level-2 in RSS. They simulated nonparametric confidence intervals for

population median in finite populations. Also, Ozturk (2014) developed mean

estimators for the sampling designs in PROS. In this chapter, we investigate EDF

estimators for each sampling designs in RSS. Also, it is shown that these estimators

are more efficient than SRS EDF estimator.

3.1 Sampling Designs

In this section, we define algorithms that are introduced by Deshpande et al. (2006)

for each the sampling designs in RSS. These designs depend on with or without

replacement sampling protocol as in SRS.

• Level-0 sampling design

(1) Select k units without replacement from the population,

Si =
{
X

(0)
t1,i
, X

(0)
t2,i
, · · · , X(0)

tk,i

}
.

(2) Rank all units in the Si and measured the ith order statistic.

(3) Units in Si are replaced back into the population.

(4) (1)-(3) are repeated for i = 1, · · · , k.

(5) (1)-(4) are repeated for i = 1, · · · , l.

Level-1 has two types that are level-1 ascending and level-1 descending. In this thesis,

level-1 ascending is used.
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• Level-1 ascending (A1) sampling design

(1) Select k units without replacement from the population,

Si =
{
X

(A1)
t1,i

, X
(A1)
t2,i

, · · · , X(A1)
tk,i

}
.

(2) Rank all units ascending order in the Si and measured the ith order statistic.

(3) Other (k − 1) units are replaced back into the population.

(4) (1)-(3) are repeated for i = 1, · · · , k.

(5) (1)-(4) are repeated for i = 1, · · · , l.

• Level-1 descending (D1) sampling design

(1) Select k units without replacement from the population,

Si =
{
X

(D1)
t1,i

, X
(D1)
t2,i

, · · · , X(D1)
tk,i

}
.

(2) Rank all units descending order in the Si and measured the (k + 1 − i)th

order statistic.

(3) Other (k − 1) units are replaced back into the population.

(4) (1)-(3) are repeated for i = 1, · · · , k.

(5) (1)-(4) are repeated for i = 1, · · · , l.

• Level-2 sampling design

(1) Select k units without replacement from the population,

Si =
{
X

(2)
t1,i
, X

(2)
t2,i
, · · · , X(2)

tk,i

}
.

(2) Rank all units ascending order in the Si and measured the ith order statistic.

(3) None of the set units are replaced back into the population.

(4) (1)-(3) are repeated for i = 1, · · · , k.

(5) (1)-(4) are repeated for i = 1, · · · , l.

In the level-0 sampling design, same unit can be measured more than one in RSS

sample. Via Level-0, all units in RSS sample are independent and selected with equal
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probability. In the level-1 sampling design, it is allowed that same unit is used in

ranking process. However, different units are measured for RSS sample. By using

level-2 sampling design, different units are appeared in both ranking process and RSS

sample. Thus, this design contains more information about population than other

sampling design. Also, strong correlation occurs among the units in RSS sample via

the level-2 design.

3.2 Empirical Distribution Function Estimators

EDF is basically a CDF. However, EDF models empirical data while CDF is a

hypothetical model of a distribution. That means, EDF is used for making inference

about entire distribution function. In many studies, different EDF estimators are

suggested for different sampling methods. The most basic EDF for SRS which is

given in Equation (2.10) is introduced by Stephens (1974). Then, EDF estimators are

considered by Stokes & Sager (1988) for RSS, by Samawi & Al-Sageer (2001) for

extreme and median RSS methods, by Abu-Dayyeh et al. (2002) for double RSS, by

Kim et al. (2005) for extreme median RSS, by Al-Subh et al. (2009) for SORSS and

by Nazari et al. (2016) for PROS. In this section, we describe EDF estimators based

on the sampling designs which are level-0, level-1 and level-2.

If the RSS sample, X(0)
[1]j, · · · , X

(0)
[k]j and j = 1, · · · , l, is selected by using Level-0

from F (x), then the EDF estimator (F̂ ∗
L−0(x)) is

F̂ ∗
L−0(x) =

1

lk

l∑
i=1

k∑
j=1

I(X
(0)
[i]j ≤ x). (3.1)

where I(.) is indicator function. If the RSS sample, X(1)
[1]j, · · · , X

(1)
[k]j , is obtained by

using Level-1, then the EDF estimator (F̂ ∗
L−1(x)) is

F̂ ∗
L−1(x) =

1

lk

l∑
i=1

k∑
j=1

I(X
(1)
[i]j ≤ x). (3.2)
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If the RSS sample, X(2)
[1]j, · · · , X

(2)
[k]j , is obtained by using Level-2, then the EDF

estimator (F̂ ∗
L−2(x)) is

F̂ ∗
L−2(x) =

1

lk

l∑
i=1

k∑
j=1

I(X
(2)
[i]j ≤ x). (3.3)

In the following section, it is shown that these EDFs are more efficient than SRS

EDF by numerical results.

3.3 Simulation Results

In this section, numerical results are provided to compare performances of EDFs

based on SRS and the sampling designs in RSS. Also, behaviors of sampling designs

are investigated. To evaluate RSS EDF estimators respect to SRS EDF estimator, their

MSEs are used.

In order to generate population of size N = 120, bivariate standard normal

distribution is used. In this population, there are interested variable (X) and auxiliary

variable (Y ). Between these variables, a fixed correlation coefficient (ρ) is existed.

Auxiliary variable is used in the ranking procedure, so the quality of the ranking

depends on the correlation coefficient between X and Y . If the correlation is high,

the interested variable can be ranked accurately. On the other hand, the ranking is

performed randomly if the correlation is low. In Table 3.1, we present the results under

perfect ranking (ρ = 1.00) and imperfect ranking (ρ = 0.25) for the sampling designs.

In simulation study, RSS EDFs are constructed for k = 2, 3, 4 and 5 and l = 2 and 3.

Also, we take sample size as n = 4, 6, 8, 9, 10, 12 and 15. MSEs of EDFs are computed

based on 10, 000 samples in R software. For SRS, mean squared error (MSE) of EDF

estimator is given by
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MSE(F̂ (x)) =
1

10, 000

10,000∑
i=1

(F̂i(x)− F (x))2. (3.4)

Following equation is also MSE for the sampling designs,

MSE(F̂ ∗
L−t(x)) =

1

10, 000

10,000∑
i=1

(F̂ ∗
L−t,i(x)− F (x))2. (3.5)

where t = 0, 1, 2. To compare these MSEs, relative efficiency (RE) is calculated by

using following equation,

REt =
MSE(F̂ (x))

MSE(F̂ ∗
L−t(x))

. (3.6)

These relative efficiencies are computed for some probabilities (P),

P = {0.05, 0.10, 0.15, 0.20, 0.30, 0.40, 0.50}. According to these probabilities,

MSE(F̂−1(p)) and MSE(F̂−1
L−t(p)) are obtained for SRS and RSS, respectively.

Table 3.1 shows that EDFs based on the sampling designs are more efficient than

EDF based on SRS for perfect ranking (ρ = 1.00). However, efficiencies are

approximately equal to 1 when ranking is imperfect (ρ = 0.25). While the set size is

increased, the efficiencies increase for perfect ranking. However, the efficiencies do

not monotone increase or decrease while the cycle size is increased.

Finally, efficiencies based on perfect ranking (ρ = 1.00) are illustrated for each

sampling designs in Figure 3.1 and Figure 3.2. According to Figure 3.1, EDF based

the on level-2 sampling design is more efficient than EDFs based on the level-0 and

level-1 except for k = 2. In Figure 3.2, efficiencies of EDF based on the level-2

sampling design is the highest among three different sampling designs. In the next

chapter, powers of different GOF tests are compared using these EDFs for the sampling

design.
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Table 3.1 Efficiencies for the sampling designs

ρ = 1.00 ρ = 0.25

Designs l k 0.05 0.10 0.15 0.20 0.30 0.40 0.50 0.05 0.10 0.15 0.20 0.30 0.40 0.50

Level − 0 2 2 0.971 1.042 1.100 1.158 1.215 1.306 1.279 0.986 0.953 0.986 0.987 0.988 0.968 0.968
3 1.057 1.116 1.209 1.286 1.431 1.479 1.541 0.927 0.968 0.927 0.960 0.966 0.946 0.934
4 1.107 1.211 1.290 1.451 1.581 1.728 1.762 0.992 0.914 0.992 0.997 0.942 0.938 0.968
5 1.074 1.240 1.370 1.560 1.780 1.825 1.905 0.986 0.915 0.986 0.944 0.933 0.939 0.925

3 2 0.968 1.015 1.065 1.114 1.200 1.222 1.249 0.978 0.994 0.978 0.959 0.971 0.952 0.948
3 1.032 1.117 1.181 1.276 1.382 1.437 1.514 0.954 0.938 0.954 0.926 0.968 0.958 0.952
4 1.012 1.180 1.316 1.415 1.556 1.569 1.672 0.920 0.913 0.920 0.944 0.915 0.910 0.925
5 0.997 1.209 1.355 1.437 1.637 1.787 1.737 0.925 0.911 0.925 0.900 0.880 0.914 0.914

Level − 1 2 2 1.028 1.099 1.164 1.185 1.241 1.341 1.299 1.017 0.985 1.017 0.995 0.997 0.970 0.987
3 1.085 1.165 1.266 1.351 1.518 1.572 1.642 0.989 1.012 0.989 1.000 0.999 0.991 0.978
4 1.149 1.280 1.394 1.580 1.687 1.865 1.885 1.061 0.966 1.061 1.065 1.002 0.969 1.012
5 1.172 1.350 1.497 1.711 1.944 2.040 2.167 1.032 0.987 1.032 1.020 1.005 1.008 1.001

3 2 1.031 1.055 1.125 1.184 1.282 1.315 1.345 1.017 0.994 1.017 1.007 1.015 1.006 0.993
3 1.110 1.176 1.251 1.386 1.518 1.576 1.602 1.016 0.996 1.016 1.006 1.032 0.993 0.987
4 1.100 1.300 1.458 1.604 1.755 1.790 1.850 1.026 1.010 1.026 1.016 0.973 0.983 1.021
5 1.164 1.362 1.569 1.639 1.916 2.005 1.988 1.039 1.024 1.039 1.020 0.996 1.010 1.000

Level − 2 2 2 1.026 1.051 1.127 1.154 1.251 1.329 1.313 1.055 0.977 1.055 1.009 1.010 0.974 0.994
3 1.062 1.182 1.258 1.361 1.520 1.577 1.646 1.013 1.029 1.013 1.025 1.015 0.989 0.989
4 1.103 1.287 1.408 1.585 1.767 1.952 2.031 1.034 0.973 1.034 1.064 0.989 0.974 0.989
5 1.195 1.393 1.537 1.785 2.098 2.179 2.297 1.044 0.967 1.044 1.006 1.002 1.013 1.009

3 2 1.050 1.096 1.153 1.205 1.320 1.341 1.352 0.973 1.002 0.973 0.996 1.015 0.983 0.970
3 1.109 1.188 1.285 1.408 1.535 1.625 1.652 0.998 0.996 0.998 1.036 1.040 1.010 1.004
4 1.120 1.308 1.504 1.608 1.854 1.891 2.058 1.010 0.985 1.010 1.040 1.000 0.989 1.003
5 1.170 1.451 1.730 1.817 2.139 2.329 2.344 1.061 1.000 1.061 1.024 1.015 1.017 1.019

Figure 3.1 When l = 2, efficiencies of EDFs based on the sampling designs
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Figure 3.2 When l = 3, efficiencies of EDFs based on the sampling designs
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CHAPTER FOUR

POWER COMPARISONS OF SOME GOODNESS-OF-FIT TESTS FOR

SAMPLING DESIGNS IN RANKED SET SAMPLING

In statistics, parametric tests are used under some assumptions and one of them is

normality. Normality assumption is an important GOF problem. To test this

assumption, many GOF techniques are suggested, see D’Agostino (1986).

In this chapter, we consider five GOF tests based on the EDF for RSS. Powers of

these tests based on RSS are simulated and compared with the test based on SRS. Also,

the sampling designs are used to construct RSS samples. In ranking process, the units

are ranked perfectly. To generate finite populations, Tukey’s g-h distribution is used.

RSS, the sampling designs and the EDF estimators are discussed in previous chapter.

Therefore, we only emphasize GOF tests and Tukey’s g-h distribution in this chapter.

Finally, results are given in tables and illustrated as figures.

4.1 Goodness-of-fit Tests

GOF tests examine how well a sample of observations agrees with a specific

distribution as its population. That means these tests are used for making inference

about the population distribution. Mostly, it is tested whether sampling observations

are obtained from a population having normal distribution or not. In this situation,

null hypothesis H0 is simple hypothesis if we know parameters. On the other hand,

H0 is composite hypothesis when the parameters don’t be known. In this case, the

parameters are estimated by using sampling observations. Also, alternative

hypothesis H1 is mostly composite hypothesis since we have little or no information

about distribution of the data. Actually, researchers hope that H0 is true.

In this study, we investigate the powers of Kolmogorov-Smirnov, Kuiper, Lilliefors,

Cramĕr-von Misses and Anderson-Darling GOF tests under SRS and RSS. These are
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GOF tests based on EDF and divided two different classes. Kolmogorov-Smirnov,

Kuiper and Lilliefors test statistics are in the supremum class. Anderson-Darling and

Cramer-von Mises tests belong to the quadratic class.

Firstly, we introduce these tests for SRS. It is assumed that a random sample of size

n,X1, · · · , Xn from a population and CDF of this population is F (x). We test the null

hypothesis H0 : F (x) = F0(x) against H1 : F (x) ̸= F0(x). Kolmogorov-Smirnov is

suggested by Kolmogorov (1933) and Smirnov (1939). Kolmogorov (1933) gave the

following test statistic D,

DK = sup
x

∣∣∣F̂ (x)− F0(x)
∣∣∣ = max(D+, D−) (4.1)

where F̂ (x) is EDF and

D+
K ≡ sup

x

{
F̂ (x)− F0(x)

}
, (4.2)

D−
K ≡ sup

x

{
F0(x)− F̂ (x)

}
. (4.3)

Smirnov (1939) proposed the following equations,

D+ = max(
i

n
− Zi), (4.4)

D− = max(Zi −
i− 1

n
). (4.5)

where Zi = ϕ(
X(i)−X̄

SX
) is CDF of standard normal distribution. Another test statistic V

is introduced by Kuiper (1962). This test statistic is used both Kolmogorov-Smirnov

test statistics, D+ and D−. That means this test statistic is also modified version of

Kolmogorov-Smirnov,
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V = D+ +D−. (4.6)

When population parameters are unknown, Kolmogorov-Smirnov and Kuiper tests

cannot be applied. To solve this problem, Lilliefors (1967) gave a test statistic D,

D = max
∣∣∣F̂ (x)− F0(x)

∣∣∣ (4.7)

where parameters of F0(x) are µ = X̄ sample mean and σ2 = S2 sample variance.

Anderson-Darling test statistic A2 is proposed by Anderson-Darling (1954).

A2 = n

∞∫
−∞

{F̂ (x)− F0(x)}2ψ(x)dF0(x) (4.8)

where ψ(x) is weight function and ψ(x) = 1
F0(x)(1−F0(x))

. When ψ(x) = 1 , Cramer-

von Mises test statistic is obtained. This test statistic is suggested by von Mises (1931).

W 2 = n

∞∫
−∞

{F̂ (x)− F0(x)}2dF0(x) (4.9)

Suppose that a RSS sample of size kl,X(t)
[i]j , i = 1, · · · , k and j = 1, · · · , l is selected

by using Level-t sampling design where t = 0, 1, 2. Then, these five GOF tests are as

follows.

• Kolmogorov-Smirnov test statistics:

D+
K ≡ sup

x

{
F̂ ∗
L−t(x)− F0(x)

}
(4.10)

D−
K ≡ sup

x

{
F0(x)− F̂ ∗

L−t(x)
}

(4.11)

D∗
K ≡ sup

x

∣∣∣F̂ ∗
L−t(x)− F0(x)

∣∣∣ (4.12)
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• Kuiper’s test statistic:

V = D+
K +D−

K (4.13)

• Lilliefors Test statistic:

D = max
∣∣∣F̂ ∗

L−t(x)− F0(x)
∣∣∣ (4.14)

where F0(x) is standard normal CDF with µ = x̄ sample mean and σ2 = s2

sample variance.

• Cramĕr-von Mises test statistic:

W 2 = n

∞∫
−∞

{F̂ ∗
L−t(x)− F0(x)}2dF0(x) (4.15)

• Anderson-Darling Test statistic:

A2 = n

∞∫
−∞

{F̂ ∗
L−t(x)− F0(x)}2ψ(x)dF0(x) (4.16)

where F̂ ∗
L−t(x) is EDF for level-t sampling design, t = 0, 1, 2.

4.2 Tukey’s g-h Distribution

A new class of distribution function is introduced by Tukey (1977) and it is named

as Tukey’s g-h distribution function. The Tukey’s g-h distribution arises as a non-

linear transformation of a standard normal random variable Z. That means, symmetric

and asymmetric distributions can be produced and PDF and CDF can be expressed in

parametric form by using this function. A g-h random variable is denoted by Ya,b,g,h

where a and b are location and scale parameters and g and h are skewness and the

kurtosis, respectively.
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Ya,b,g,h = a+ bZ

(
eg

Z − 1

gZ

)
ehZ

2�2, (4.17)

where a ∈ R, b ∈ R+, g ∈ R and h ∈ R. When h = 0 the Tukey’s g-h distribution

reduces to

Ya,b,g = a+ b (exp (gZ)− 1) /g, (4.18)

which is Tukey’s g distribution. Similarly, when g → 0, the Tukey’s g-h distribution is

given by

Ya,b,h = a+ bZ exp
(
hZ2�2

)
(4.19)

known as the h distribution. When h is negative, a left skewed distribution is obtained.

On the other hand, a right skewed distribution is obtained when h is positive; see Jorge

& Boris (1984) and Dutta & Babbel (2002) for more details. For specific values of g

and h, the distribution approximates a selected set of well known distributions as given

in Table 4.1.

Table 4.1 Values of g and h for some distributions

Distribution Parameters a b g h

Cauchy µ, γ > 0 µ σ 0 1

Exponential λ > 0 1
λ ln 2

g
λ 0.773 −0.09445

Laplace α, β > 0 α β 0 0

Logistic α, β > 0 α β 0 1.7771× 10−3

Lognormal µ, σ2, C > 0 Cµ gCµ σ lnC 0

Normal µ, σ2 µ σ 0 0

t10 v = 10 0 1 0 5.7624× 10−2

In the case of a = 0 and b = 1, τg,h is denoted as univariate g − h distribution
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function. By using this function, a data set that is distributed for a = 0 can be generated.

Yg,h = τg,h(Z) =
(eg

z − 1)

g
ehZ

2/2 (4.20)

The multivariate form of the function is introduced by Field & Genton (2006). In this

thesis, we used bivariate form of the function (Y) to construct the alternative hypothesis.

Y = (τg1,h1(Z1), τg2,h2(Z2)) = τg,h(Z) (4.21)

where τg1,h1 = X (interested variable) and τg2,h2 = C (auxiliary variable). The Z

is distributed bivariate standard normal. Finally, the Y is defined by the following

equation.

Y = σ1/2τg,h(Z) + µ (4.22)

where σ =

σ(Z1) = 1 σ(Z1,Z2)

σ(Z1,Z2) σ(Z2) = 1

 and µ =
[
0, 0
]
.

Here, σ(Z1,Z2) is covariance and computed by Equation (4.22).

σ(Z1,Z2) = ρ(Z1,Z2) σ(Z1) σ(Z2) = ρ(Z1,Z2) (4.23)

If the Y is described f(x, c), then the marginal distributions of the Y are given by

following equation.

f(x) = τg1,h1(Z1) = (
eg

Z1
1 − 1

g1
)eh1Z2

1/2,

f(c) = τg2,h2(Z2) = (
eg

Z2
2 − 1

g2
)eh2Z2

2/2.

(4.24)

In the simulation study, it is assumed that kurtosis parameter (h= 0) and skewness

parameter (g= 0, 1,−1) to generate three different alternative distribution.

Descriptive statistics of alternative distributions are in Table 4.2. Also, these
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alternative distributions can be seen in Figure 4.1.

Table 4.2 The alternative distributions

g h Skewness Kurtosis µ σ2

0 0 0.02 3.03 0.06 3.64
1 0 3.09 15.14 1.28 14.59
−1 0 −3.99 26.78 −1.07 13.77
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Figure 4.1 The alternative distributions

4.3 Simulation Results

In this chapter, we compare the performances of GOF tests which are Kolmogorov-

Smirnov, Kuiper, Lilliefors, Cramĕr-von Mises and Anderson-Darling based on SRS

and RSS in finite population. In RSS process, sample data is collected by using three

different sampling designs which are Level-0, Level-1 and Level-2. Powers of GOF

tests are simulated by using EDFs for the sampling designs and SRS.

In order to compute the critical values and powers of GOF tests, two different

simulations are performed. Null hypothesis is assumed as bivariate standard normal

33



distribution and alternative hypothesis is obtained by using bivariate Tukey’s g-h

distribution. We consider the population size (N ) 300, set sizes (k) 3, 5 and total

sample sizes (n) 15, 30 and 45. For perfect ranking of interested variable (X), the

correlation coefficient between interested variable and auxiliary variable (C) is

assumed as 1, (ρ = 1). To generate critical values and powers of the GOF tests,

simulations are repeated 5, 000 times.

For RSS, critical values are computed by using the following algorithm. T ∗ indicates

a test statistic in Equations (4.10) - (4.16).

(1) Select a RSS sample X[i]j from F0(x), i = 1, 2, · · · , k, j = 1, 2, · · · , l.

(2) Calculate the T ∗ according to Equations (4.10) - (4.16).

(3) This steps (1)-(2) are repeated to get T ∗
1 , · · · , T ∗

5,000.

(4) The critical value C∗
α is the 100(1− α) percentage point of T ∗.

Table 4.3 Critical values for the GOF tests under RSS when α = 0.05

Designs l k DK V D W 2 A2

5 3 0.292 0.409 0.220 0.285 1.638
10 0.211 0.301 0.160 0.292 1.705

Level − 0 15 0.175 0.249 0.134 0.294 1.671
3 5 0.269 0.397 0.216 0.222 1.305
6 0.197 0.285 0.159 0.226 1.339
9 0.161 0.241 0.134 0.224 1.350

5 3 0.285 0.402 0.215 0.269 1.554
10 0.200 0.286 0.155 0.258 1.463

Level − 1 15 0.164 0.232 0.129 0.245 1.444
3 5 0.263 0.383 0.210 0.210 1.244
6 0.182 0.272 0.151 0.196 1.178
9 0.151 0.225 0.126 0.195 1.164

5 3 0.284 0.401 0.214 0.258 1.521
10 0.197 0.286 0.153 0.249 1.436

Level − 2 15 0.159 0.232 0.127 0.228 1.327
3 5 0.259 0.381 0.210 0.199 1.169
6 0.179 0.273 0.152 0.181 1.087
9 0.142 0.222 0.126 0.166 1.015

Also, critical values (A.2 - A.6) are generated by setting the cycle sizes l = 1, · · · , 20

and the set sizes k = 2, · · · , 5 for each GOF tests. For these critical values, simulation
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is repeated 2, 000 samples since a single replication takes a little over 40 seconds for

l = 15, · · · , 20. It can be benefited from these critical values in studies which sampling

designs are used in RSS.

In order to calculate the powers of T ∗, the following algorithm is used. This

algorithm steps are also repeated 5, 000 times.

(1) Select a sample X[i]j from a distribution under H1, i = 1, · · · , k, j = 1, · · · , l.

(2) Calculate T ∗ according to Equation (4.10)-(4.16).

(3) Repeat steps (1)-(2) to get T ∗
1 , · · · , T ∗

5,000.

(4) Power of T ∗ ≈ 1
5,000

5,000∑
h=1

I(T ∗
h > C∗

α)

Then, the results in Tables 4.4 - 4.6 are obtained for different set (k) and total sample

sizes (n) under RSS and SRS. The power of GOF tests based on SRS are same for all

sampling designs. According to powers of GOF tests, it can be said that GOF tests

based on RSS have higher performance than the GOF tests based on SRS. Also, it is

shown that the GOF tests based on F̂L−2(t) have the best performance among the three

sampling designs. As the set size (k) is increased, the power values increase. In general,

Lilliefors test (D) has the best performance among the tests based supremum statistic.

However,D has minimum power for symmetric distribution under both SRS and RSS.

Among the five GOF tests, the best results are obtained for Anderson-Darling (A2) test.

Finally, we illustrate EDFs based on SRS, level-0, level-1 and level-2 sampling

designs for symmetric distribution. In these figures, it is shown that the EDFs of the

sampling designs are almost identical for each set and total sample sizes.
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Table 4.4 The power values for the Level-0 sampling design

Distr. n k DK V D W 2 A2

SRS RSS SRS RSS SRS RSS SRS RSS SRS RSS

g − h(0, 0) 15 3 0.268 0.375 0.553 0.606 0.064 0.059 0.288 0.456 0.785 0.881
5 0.436 0.659 0.056 0.591 0.942

30 3 0.475 0.647 0.860 0.878 0.058 0.074 0.562 0.766 0.966 0.986
5 0.741 0.934 0.058 0.887 0.996

45 3 0.746 0.838 0.980 0.973 0.069 0.071 0.829 0.924 0.996 0.998
5 0.915 0.985 0.064 0.979 1.000

g − h(−1, 0) 15 3 0.300 0.379 0.499 0.554 0.650 0.630 0.260 0.415 0.867 0.927
5 0.468 0.606 0.678 0.533 0.960

30 3 0.513 0.693 0.818 0.846 0.917 0.907 0.501 0.713 0.982 0.991
5 0.778 0.904 0.914 0.848 0.998

45 3 0.794 0.883 0.969 0.955 0.990 0.979 0.773 0.892 0.999 0.999
5 0.935 0.973 0.986 0.963 1.000

g − h(1, 0) 15 3 0.354 0.484 0.540 0.611 0.695 0.682 0.295 0.475 0.911 0.953
5 0.564 0.661 0.717 0.616 0.978

30 3 0.661 0.822 0.871 0.889 0.954 0.945 0.598 0.812 0.993 0.998
5 0.891 0.937 0.955 0.920 0.999

45 3 0.898 0.949 0.986 0.976 0.995 0.992 0.864 0.952 0.999 1.000
5 0.985 0.990 0.993 0.988 1.000

Table 4.5 The power values for the Level-1 sampling design

Distr. n k DK V D W 2 A2

SRS RSS SRS RSS SRS RSS SRS RSS SRS RSS

g − h(0, 0) 15 3 0.268 0.388 0.553 0.635 0.064 0.058 0.288 0.486 0.785 0.901
5 0.437 0.692 0.060 0.612 0.952

30 3 0.475 0.707 0.860 0.920 0.058 0.065 0.562 0.832 0.966 0.991
5 0.831 0.957 0.063 0.930 0.998

45 3 0.746 0.900 0.980 0.989 0.069 0.060 0.829 0.969 0.996 0.999
5 0.957 0.996 0.061 0.993 1.000

g − h(−1, 0) 15 3 0.300 0.420 0.499 0.580 0.650 0.663 0.260 0.442 0.867 0.933
5 0.506 0.647 0.686 0.557 0.959

30 3 0.513 0.741 0.818 0.891 0.917 0.930 0.501 0.785 0.982 0.996
5 0.866 0.933 0.944 0.904 0.998

45 3 0.794 0.924 0.969 0.931 0.990 0.987 0.773 0.953 0.999 0.999
5 0.974 0.993 0.994 0.984 1.000

g − h(1, 0) 15 3 0.354 0.498 0.541 0.631 0.695 0.715 0.295 0.510 0.911 0.966
5 0.627 0.693 0.762 0.648 0.986

30 3 0.661 0.869 0.871 0.927 0.954 0.954 0.598 0.874 0.993 0.999
5 0.942 0.958 0.969 0.951 1.000

45 3 0.898 0.978 0.986 0.990 0.995 0.997 0.864 0.985 0.999 1.000
5 0.997 0.997 0.998 0.997 1.000
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Table 4.6 The power values for the Level-2 sampling design

Distr. n k DK V D W 2 A2

SRS RSS SRS RSS SRS RSS SRS RSS SRS RSS

g − h(0, 0) 15 3 0.268 0.383 0.553 0.631 0.064 0.064 0.288 0.504 0.785 0.909
5 0.473 0.716 0.066 0.637 0.959

30 3 0.475 0.736 0.860 0.912 0.058 0.070 0.562 0.843 0.966 0.994
5 0.852 0.954 0.059 0.946 0.999

45 3 0.746 0.916 0.980 0.987 0.069 0.057 0.829 0.976 0.996 0.999
5 0.976 0.997 0.061 0.995 1.000

g − h(−1, 0) 15 3 0.300 0.412 0.499 0.575 0.650 0.661 0.260 0.463 0.867 0.932
5 0.512 0.661 0.705 0.592 0.972

30 3 0.513 0.769 0.818 0.885 0.917 0.935 0.501 0.802 0.982 0.996
5 0.882 0.937 0.942 0.922 0.999

45 3 0.794 0.947 0.969 0.981 0.990 0.987 0.773 0.964 0.999 1.000
5 0.987 0.994 0.991 0.994 1.000

g − h(1, 0) 15 3 0.354 0.502 0.541 0.632 0.695 0.715 0.295 0.528 0.911 0.965
5 0.640 0.711 0.747 0.670 0.987

30 3 0.661 0.884 0.871 0.920 0.954 0.962 0.598 0.887 0.993 0.999
5 0.960 0.961 0.971 0.971 1.000

45 3 0.898 0.983 0.986 0.992 0.995 0.998 0.864 0.989 0.999 1.000
5 0.999 0.997 0.997 0.999 1.000
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Figure 4.2 The EDFs under the level-0 sampling design
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Figure 4.3 The EDFs under the level-1 sampling design
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Figure 4.4 The EDFs under the level-2 sampling design

38



CHAPTER FIVE

CONCLUSION

In this thesis, EDFs based on the level-0, level-1 and level-2 are suggested and

efficiencies of these EDFs are investigated in finite population. Also, we examined

powers of GOF tests based on these three sampling designs.

In chapter two, power of Kolmogorov-Smirnov test statistic based on RSS is

compared with power of the test statistic based on SRS. RSS data is collected by using

level-2 sampling design. Moreover, we benefited from PROS in RSS and we showed

that it is how useful procedure in ranking procedure. Multiple auxiliary variables are

used in ranking process. Three different correlation coefficients are used to show the

effects of ranking error. Efficiency of Kolmogorov-Smirnov GOF test based on RSS

is computed by using different alternatives such as normal and asymmetric

distributions. In the results, efficiency values depend on correlation coefficient

between interested variable and auxiliary variable and these values decrease as the

correlation coefficient are reduced. The best efficiency values are obtained when

l = 10 and k = 4 for distributions N(0.25, 1) and N(0, 2). Also, the best efficiencies

are obtained when l = 5 and k = 2 for distributions N(1.25, 1) and N(0, 32).

In chapter three, algorithms of the sampling designs are introduced and EDFs

based on the level-0, level-1 and level-2 sampling designs are given. Two correlation

coefficients are used for perfect and imperfect rankings. Under standard normal

distribution, efficiency values are obtained by using ratio of MSEs of EDF estimators

based on the sampling designs in RSS and based on SRS. According to the results,

EDFs based on the sampling designs have higher performance than EDF based on

SRS for perfect ranking. Also, the efficiencies increase as the set size is increased.

EDF based on the level-2 sampling design has higher efficiencies than EDFs based on

the level-0 and level-1 sampling designs except for k = 2 in Figure 3.1.

In chapter four, the powers of different GOF tests based on RSS and SRS are

evaluated. RSS sample observations are collected by using level-0, level-1 and
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level-2 sampling designs. Thus, powers of GOF tests are examined among the

sampling designs. It is assumed that the ranking is perfect. Powers of GOF tests are

obtained by using three alternative distributions. According to these powers, GOF

tests based on RSS have higher power values than the GOF tests based on SRS.

Mostly, GOF tests based on the level-2 sampling design have the highest power

values. Among these five GOF tests, the best power is obtained for Anderson-Darling

(A2) test.

As a result, it is shown that the use of auxiliary variable is a good alternative to rank

the interested variable under high correlation and PROS is a useful method to combine

the multiple auxiliary variables. The EDFs based on the sampling designs in RSS have

higher efficiencies than the EDF based on SRS under perfect ranking. Moreover, EDF

based on the level-2 sampling design is the best estimator among the three sampling

designs. GOF tests based on F̂ ∗
L−0(x), F̂ ∗

L−1(x) and F̂ ∗
L−2(x) have higher powers than

GOF tests based on F̂ (x).
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APPENDICES

A.1: Critical values for Kolmogorov-Smirnov test

Table A.1 The critical values for RSS (D∗
K ) when α = 0.05 under standard normal distribution

m = 2 m = 3 m = 4
n ρ = 1.00 ρ = 0.75 ρ = 0.50 ρ = 1.00 ρ = 0.75 ρ = 0.50 ρ = 1.00 ρ = 0.75 ρ = 0.50

1 0.751 0.816 0.798 0.570 0.621 0.651 0.484 0.562 0.565
2 0.548 0.582 0.581 0.432 0.471 0.483 0.351 0.408 0.426
3 0.460 0.485 0.492 0.355 0.386 0.403 0.291 0.332 0.349
4 0.405 0.429 0.433 0.307 0.338 0.354 0.252 0.284 0.304
5 0.362 0.379 0.410 0.276 0.292 0.334 0.224 0.252 0.290
6 0.330 0.342 0.369 0.253 0.266 0.296 0.203 0.225 0.258
7 0.311 0.314 0.334 0.230 0.245 0.276 0.186 0.208 0.243
8 0.290 0.296 0.324 0.215 0.229 0.261 0.173 0.195 0.225
9 0.272 0.282 0.301 0.202 0.217 0.243 0.161 0.183 0.212
10 0.258 0.267 0.297 0.192 0.210 0.242 0.151 0.167 0.208
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A.2: Critical values tables for different sampling designs (Level-0, level-1, level-2)

in Ranked Set Sampling

Table A.2 Critical Values of the Kolmogorov-Smirnov Test

Level − 0 Level − 1 Level − 2

l k = 2 k = 3 k = 4 k = 5 k = 2 k = 3 k = 4 k = 5 k = 2 k = 3 k = 4 k = 5

1 0.765 0.587 0.499 0.436 0.761 0.593 0.501 0.445 0.759 0.601 0.492 0.430
2 0.557 0.443 0.368 0.319 0.562 0.435 0.374 0.322 0.555 0.447 0.364 0.316
3 0.470 0.369 0.310 0.268 0.473 0.367 0.304 0.268 0.465 0.360 0.305 0.262
4 0.411 0.321 0.270 0.235 0.412 0.324 0.271 0.227 0.411 0.317 0.267 0.234
5 0.376 0.288 0.241 0.209 0.370 0.291 0.236 0.206 0.370 0.292 0.240 0.206
6 0.339 0.264 0.219 0.191 0.344 0.257 0.218 0.193 0.342 0.264 0.219 0.192
7 0.319 0.243 0.202 0.176 0.323 0.247 0.207 0.175 0.315 0.243 0.205 0.177
8 0.298 0.234 0.192 0.167 0.300 0.228 0.191 0.166 0.298 0.226 0.190 0.171
9 0.279 0.217 0.181 0.156 0.286 0.217 0.181 0.157 0.272 0.219 0.179 0.156
10 0.264 0.207 0.175 0.147 0.267 0.201 0.174 0.150 0.267 0.202 0.172 0.149
11 0.258 0.196 0.165 0.141 0.255 0.199 0.164 0.144 0.255 0.199 0.165 0.141
12 0.247 0.189 0.156 0.137 0.242 0.187 0.154 0.139 0.249 0.188 0.159 0.135
13 0.236 0.180 0.152 0.129 0.230 0.177 0.149 0.133 0.233 0.185 0.148 0.133
14 0.227 0.176 0.145 0.126 0.230 0.178 0.146 0.125 0.229 0.171 0.144 0.125
15 0.220 0.170 0.140 0.123 0.218 0.171 0.145 0.124 0.219 0.170 0.139 0.122
16 0.215 0.165 0.137 0.117 0.214 0.164 0.135 0.120 0.215 0.167 0.136 0.118
17 0.209 0.159 0.134 0.114 0.207 0.158 0.132 0.115 0.207 0.163 0.133 0.113
18 0.202 0.156 0.127 0.111 0.198 0.158 0.126 0.111 0.203 0.153 0.129 0.110
19 0.196 0.153 0.125 0.109 0.198 0.152 0.124 0.108 0.196 0.151 0.124 0.107
20 0.195 0.147 0.123 0.106 0.194 0.146 0.120 0.105 0.192 0.148 0.120 0.105
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Table A.3 Critical Values of the Kuiper’s Test

Level − 0 Level − 1 Level − 2

l k = 2 k = 3 k = 4 k = 5 k = 2 k = 3 k = 4 k = 5 k = 2 k = 3 k = 4 k = 5

1 0.966 0.824 0.702 0.632 0.967 0.817 0.707 0.631 0.968 0.825 0.696 0.629
2 0.737 0.614 0.523 0.463 0.740 0.605 0.524 0.463 0.744 0.617 0.517 0.463
3 0.626 0.508 0.439 0.386 0.629 0.502 0.440 0.385 0.622 0.500 0.434 0.392
4 0.556 0.450 0.383 0.340 0.550 0.448 0.383 0.336 0.557 0.456 0.381 0.341
5 0.499 0.405 0.345 0.308 0.501 0.407 0.343 0.303 0.510 0.405 0.344 0.304
6 0.462 0.369 0.317 0.280 0.464 0.373 0.314 0.278 0.462 0.375 0.316 0.279
7 0.430 0.339 0.295 0.258 0.426 0.343 0.300 0.260 0.437 0.347 0.293 0.259
8 0.401 0.324 0.276 0.246 0.405 0.321 0.274 0.241 0.404 0.318 0.271 0.247
9 0.380 0.305 0.261 0.230 0.384 0.305 0.266 0.229 0.378 0.305 0.257 0.230
10 0.364 0.290 0.249 0.218 0.364 0.287 0.253 0.221 0.358 0.291 0.244 0.218
11 0.350 0.277 0.237 0.209 0.345 0.279 0.239 0.208 0.350 0.281 0.238 0.206
12 0.334 0.265 0.227 0.199 0.326 0.264 0.228 0.200 0.330 0.266 0.229 0.199
13 0.320 0.256 0.217 0.191 0.315 0.251 0.217 0.195 0.317 0.260 0.217 0.195
14 0.309 0.244 0.209 0.185 0.313 0.250 0.212 0.184 0.305 0.245 0.211 0.186
15 0.298 0.241 0.204 0.181 0.293 0.246 0.204 0.179 0.296 0.240 0.206 0.182
16 0.291 0.235 0.198 0.174 0.289 0.232 0.198 0.175 0.290 0.228 0.197 0.173
17 0.282 0.228 0.194 0.167 0.282 0.223 0.190 0.169 0.285 0.224 0.192 0.168
18 0.273 0.218 0.186 0.163 0.270 0.224 0.184 0.162 0.269 0.220 0.185 0.162
19 0.268 0.214 0.182 0.160 0.267 0.215 0.181 0.160 0.266 0.213 0.179 0.157
20 0.262 0.207 0.179 0.156 0.261 0.203 0.177 0.156 0.259 0.210 0.178 0.154

Table A.4 Critical Values of the Lilliefors Test

Level − 0 Level − 1 Level − 2

l k = 2 k = 3 k = 4 k = 5 k = 2 k = 3 k = 4 k = 5 k = 2 k = 3 k = 4 k = 5

1 0.260 0.376 0.374 0.337 0.260 0.375 0.373 0.340 0.260 0.372 0.370 0.337
2 0.371 0.324 0.282 0.254 0.370 0.325 0.283 0.256 0.373 0.324 0.285 0.256
3 0.320 0.274 0.239 0.216 0.321 0.273 0.240 0.213 0.323 0.270 0.237 0.216
4 0.290 0.241 0.213 0.187 0.284 0.247 0.208 0.188 0.288 0.240 0.208 0.188
5 0.260 0.215 0.191 0.172 0.260 0.217 0.186 0.168 0.261 0.217 0.187 0.172
6 0.240 0.199 0.174 0.155 0.243 0.204 0.176 0.158 0.241 0.204 0.174 0.157
7 0.223 0.184 0.161 0.145 0.225 0.187 0.163 0.141 0.226 0.189 0.161 0.143
8 0.211 0.175 0.154 0.135 0.210 0.173 0.150 0.135 0.212 0.170 0.154 0.136
9 0.200 0.169 0.144 0.128 0.201 0.163 0.144 0.129 0.200 0.164 0.143 0.128
10 0.191 0.157 0.137 0.123 0.189 0.160 0.137 0.122 0.191 0.156 0.134 0.124
11 0.184 0.149 0.131 0.117 0.184 0.152 0.131 0.117 0.183 0.152 0.134 0.117
12 0.177 0.146 0.126 0.113 0.177 0.142 0.127 0.110 0.177 0.142 0.124 0.114
13 0.169 0.138 0.122 0.107 0.169 0.138 0.121 0.109 0.169 0.142 0.121 0.109
14 0.165 0.133 0.116 0.105 0.166 0.134 0.117 0.103 0.162 0.135 0.116 0.103
15 0.159 0.130 0.113 0.100 0.158 0.130 0.114 0.102 0.158 0.130 0.113 0.102
16 0.156 0.127 0.109 0.099 0.154 0.127 0.110 0.096 0.153 0.123 0.111 0.097
17 0.148 0.121 0.105 0.094 0.149 0.123 0.107 0.093 0.149 0.120 0.107 0.095
18 0.147 0.118 0.104 0.090 0.145 0.119 0.102 0.091 0.144 0.118 0.105 0.092
19 0.142 0.116 0.099 0.090 0.143 0.117 0.101 0.089 0.142 0.117 0.099 0.089
20 0.139 0.114 0.099 0.087 0.136 0.112 0.098 0.088 0.137 0.114 0.098 0.088
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Table A.5 Critical Values of the Cramĕr-Von Mises Test

Level − 0 Level − 1 Level − 2

l k = 2 k = 3 k = 4 k = 5 k = 2 k = 3 k = 4 k = 5 k = 2 k = 3 k = 4 k = 5

1 0.328 0.260 0.238 0.212 0.331 0.260 0.237 0.227 0.321 0.275 0.233 0.210
2 0.323 0.284 0.242 0.215 0.335 0.279 0.250 0.220 0.323 0.288 0.238 0.222
3 0.338 0.277 0.245 0.221 0.345 0.276 0.242 0.222 0.337 0.269 0.234 0.221
4 0.334 0.287 0.249 0.222 0.343 0.294 0.240 0.206 0.326 0.285 0.244 0.223
5 0.339 0.281 0.240 0.224 0.342 0.290 0.257 0.210 0.343 0.288 0.241 0.218
6 0.331 0.276 0.289 0.220 0.350 0.273 0.237 0.224 0.345 0.280 0.245 0.221
7 0.346 0.274 0.242 0.215 0.355 0.288 0.256 0.215 0.329 0.277 0.247 0.215
8 0.334 0.288 0.249 0.221 0.337 0.268 0.242 0.223 0.330 0.271 0.237 0.231
9 0.326 0.279 0.249 0.222 0.338 0.296 0.241 0.225 0.321 0.289 0.241 0.221
10 0.336 0.283 0.247 0.216 0.347 0.273 0.262 0.220 0.340 0.261 0.242 0.212
11 0.345 0.281 0.244 0.220 0.344 0.286 0.250 0.229 0.332 0.280 0.245 0.212
12 0.348 0.288 0.244 0.221 0.337 0.280 0.227 0.223 0.356 0.282 0.255 0.221
13 0.340 0.275 0.244 0.212 0.322 0.268 0.246 0.233 0.326 0.297 0.244 0.225
14 0.347 0.282 0.245 0.220 0.346 0.295 0.246 0.223 0.363 0.264 0.237 0.216
15 0.345 0.278 0.241 0.222 0.321 0.278 0.253 0.227 0.336 0.285 0.241 0.220
16 0.344 0.291 0.252 0.212 0.338 0.279 0.242 0.228 0.346 0.300 0.241 0.218
17 0.350 0.283 0.251 0.213 0.349 0.273 0.246 0.215 0.355 0.294 0.243 0.215
18 0.345 0.283 0.245 0.220 0.330 0.288 0.238 0.223 0.349 0.276 0.251 0.214
19 0.345 0.282 0.244 0.215 0.338 0.294 0.249 0.217 0.336 0.274 0.234 0.217
20 0.362 0.274 0.250 0.219 0.358 0.279 0.238 0.206 0.345 0.283 0.244 0.211

Table A.6 Critical Values of the Anderson-Darling Test

Level − 0 Level − 1 Level − 2

l k = 2 k = 3 k = 4 k = 5 k = 2 k = 3 k = 4 k = 5 k = 2 k = 3 k = 4 k = 5

1 2.031 1.675 1.524 1.320 2.129 1.714 1.459 1.346 1.999 1.705 1.428 1.295
2 1.906 1.679 1.469 1.307 1.931 1.648 1.466 1.294 2.041 1.707 1.448 1.326
3 1.968 1.621 1.485 1.310 1.994 1.643 1.522 1.301 1.889 1.551 1.386 1.293
4 1.937 1.656 1.497 1.321 1.997 1.630 1.413 1.260 1.908 1.620 1.471 1.309
5 1.967 1.633 1.409 1.327 1.943 1.652 1.497 1.255 1.967 1.698 1.455 1.298
6 1.917 1.619 1.436 1.336 1.969 1.631 1.376 1.315 1.931 1.613 1.460 1.316
7 1.957 1.618 1.450 1.294 1.980 1.627 1.515 1.288 1.872 1.595 1.495 1.285
8 1.945 1.708 1.464 1.310 1.884 1.597 1.405 1.333 1.884 1.562 1.377 1.357
9 1.871 1.629 1.469 1.306 1.908 1.686 1.441 1.362 1.858 1.680 1.389 1.297
10 1.938 1.637 1.467 1.286 1.965 1.607 1.524 1.299 1.938 1.606 1.430 1.270
11 1.946 1.642 1.424 1.321 1.983 1.667 1.445 1.336 1.910 1.647 1.441 1.251
12 1.975 1.651 1.447 1.333 1.944 1.640 1.381 1.298 1.936 1.634 1.534 1.267
13 1.944 1.621 1.425 1.253 1.860 1.534 1.422 1.389 1.866 1.666 1.427 1.339
14 1.979 1.635 1.425 1.286 1.945 1.674 1.497 1.313 2.046 1.592 1.414 1.268
15 1.943 1.657 1.437 1.319 1.862 1.707 1.471 1.297 1.931 1.642 1.414 1.321
16 1.955 1.685 1.472 1.281 1.942 1.629 1.406 1.350 1.937 1.671 1.437 1.279
17 1.972 1.655 1.494 1.250 1.962 1.570 1.467 1.257 1.988 1.695 1.446 1.314
18 1.945 1.655 1.431 1.306 1.918 1.707 1.397 1.285 1.955 1.588 1.424 1.272
19 1.930 1.637 1.424 1.287 1.949 1.670 1.463 1.317 1.921 1.544 1.395 1.283
20 2.028 1.585 1.455 1.305 1.985 1.609 1.363 1.294 2.005 1.639 1.439 1.250

49


	S22C-6e18010210480_0001
	MainDocument1

