
 

 

DOKUZ EYLÜL UNIVERSITY 

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

 

 

 

IDENTIFICATION OF BREAST CANCER SUB-

TYPES BY USING MACHINE LEARNING 

TECHNIQUES 

 

 

by 

Yunus BURAKGAZİ 

 

 

 

 

 

 

 

 

February, 2017 

İZMİR 



 

 

IDENTIFICATION OF BREAST CANCER SUB-

TYPES BY USING MACHINE LEARNING 

TECHNIQUES 

 

 

 

A Thesis Submitted to the 

Graduate School of Natural and Applied Sciences of Dokuz Eylül University 

In Partial Fulfillment of the Requirements for the Degree of Master of Sciences  

in Computer Engineering 

 

 

    

by 

Yunus BURAKGAZİ 

 

 

 

 

 

 

 

February, 2017 

İZMİR





iii 

 

ACKNOWLEDGEMENTS 

 

I would like to thank my supervisor Asst. Prof. Dr. Zerrin Işık who allowed me to 

work in this project and I appreciate for her valuable ideas, support and guidance 

throughout this project. 

  

Finally, I would like to offer my special thanks to my family and my fiancée Özge 

Akgün for their support, patience and help. It would not have been able to complete 

this thesis without their support and help. 

 

This thesis is published as an article on the proceedings book of 1
st
 International 

Mediterranean Science and Engineering Congress. 

                 

 

        Yunus BURAKGAZİ 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

IDENTIFICATION OF BREAST CANCER SUB-TYPES BY USING 

MACHINE LEARNING TECHNIQUES 

 

ABSTRACT 

 

Recent years technological developments for DNA sequencing and publicly 

available patient databases reveal a new research field that proposes intelligent 

systems for biomedical domain. Such systems might help to predict future outcomes 

of patients. The main goal of this thesis is to predict breast cancer subtype of patients 

by using machine learning (ML) methods on RNA-sequencing data, which were 

extracted from the TCGA dataset. The significant genes were selected by applying 

fold change and t-test statistical methods. Support vector machine and Random forest 

models were trained with significant genes of 70% of the patient samples. The 

predictive performance of models were measured on the unseen test data. The overall 

performances of ML models varied between 86% to 98% of average accuracy.  

 

We analyzed the best-predictive genes for each subtype to figure out which genes 

have more effect on the subtype classification of breast cancer. The relevant 

biological activities of these genes were found by applying a network-based analysis 

and gene enrichment analysis. The results revealed that some biological processes 

related with the cancer progression play a role for the classification of breast cancer 

subtypes. 

 

Keywords: Breast cancer, machine learning techniques, gene expression, interaction 

network analysis, gene ontology 
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MAKİNE ÖĞRENMESİ TEKNİKLERİ KULLANARAK GÖĞÜS 

KANSERİ ALT TÜRLERİNİN TESPİT EDİLMESİ 

 

ÖZ 

 

Son yıllarda DNA dizilemesindeki teknolojik gelişmeler ve halka açık hasta veri 

tabanları biyomedikal alan için akıllı sistemler öneren yeni bir araştırma alanı ortaya 

çıkarmıştır. Bu tür sistemler hastaların gelecekteki sağlık durumlarını tahmin etmede 

yardımcı olabilirler. Bu tezin temel amacı, TCGA veri setinden çıkarılan RNA 

dizileme verileri üzerinde makine öğrenmesi yöntemlerini kullanarak göğüs kanseri 

hastaların alt tipini tayin etmektir. Önemli genler, kat değişikliği ve t-testi istatistiksel 

yöntemleri uygulanarak seçilmiştir. Destek vektör makinesi ve Rastgele orman 

modelleri, hasta numunelerinin %70’lık kısmından elde edilen genlerle eğitilmiştir. 

Modellerin tahminleme performansı, daha önce kullanılmayan test verileri üzerinde 

ölçülmüştür. Makine öğrenmesi modellerinin genel performansları ortalama  olarak 

%86 ila %98 arasında değişmektedir. 

 

Meme kanseri alt tip sınıflandırmasına hangi genlerin daha fazla etkisi olduğunu 

bulmak için, her bir alt tipi en iyi sınıflandıran genler analiz edilmiştir. Bu genlerin 

ilgili oldukları biyolojik aktiviteler, ağ tabanlı bir analiz ve gen zenginleştirme 

analizi uygulayarak bulunmuştur. Sonuçlar göğüs kanseri alt tiplerinin 

sınıflandırılmasında kanserin ilerlemesiyle ilgili bazı biyolojik süreçlerin rol 

oynadığını ortaya çıkarmıştır. 

 

Anahtar kelimeler: Göğüs kanseri, makine öğrenmesi teknikleri, gen ifadesi, 

etkileşim ağı analizi, gen ontolojisi 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Overview 

 

Cancer is the disease of our age. There are more than 100 types of cancer known 

today and breast cancer is the most common type of cancer among women in many 

countries. 

 

Early diagnosis and prognosis have huge effect on survival rates and prediction of 

recurrence for breast cancer. To select the best treatment, classification takes high 

priority. On traditional procedure, breast cancer classification regards to the tumor 

size, the stage of the tumor, histological grade and receptors status. However, 

prognosis can be different even similar clinical stage and pathological results. From 

another perspective, to explain complex genetic alterations and the biological events 

involved in cancer development and progression, histological appearance of the 

tumors is insufficient (Yersal & Barutca, 2014). 

 

In the last two decades, DNA microarray technology has been improved by 

introducing genome wide sequencing. It allows the monitoring of expression levels 

in whole genome. By measuring the expression level of cancer-related genes, breast 

cancer can be analyzed more detailed and tests of prediction of recurrence outcome 

can become more accurate. Therefore, detailed biological classification can help to 

develop personalized treatment options for better survival rate and less toxicity. 

 

1.2 Purpose 

 

Recent years technological developments on RNA-sequencing, publicly available 

larger cancer databases, and machine learning (ML) methods led a new research field 

that develops intelligent systems for biomedical domain. These techniques can help 

to effectively predict future outcomes of a cancer patient. The application of ML 

methods could improve the accuracy of cancer susceptibility. The accuracy of cancer 
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prediction outcome has significantly improved by 15%-20% recently with the 

application of ML techniques (Cruz & Wishart, 2006). 

 

The goal of our study is to classify breast cancer patients, extracted from the 

TCGA dataset, into four classes (Luminal A, Luminal B, HER2, Basal) by using 

RNA-sequencing data and ML methods. The novelty of our study is the biological 

analysis of signature genes that are commonly selected and provided higher 

accuracies in the discrimination of patient subtypes. We found out the relevant 

biological activities of these genes by applying network and gene enrichment 

analysis methods. 

 

1.3 Organization of Thesis 

 

This thesis includes five chapters and the rest of the thesis is organised as follows: 

 

In Chapter 2, biological information about the terms that are mentioned in this 

thesis frequently and a summary of our literature review about the related works are 

presented. 

 

In Chapter 3, we gave details about our dataset and its processing. Other details 

such as technical background of the processes, general information about the 

machine learning and feature selection methods used in our study, information about 

the tools used in evaluation of system such as confusion matrix, Monte Carlo cross 

validation, accuracy calculation are explained. Furthermore, in order to reveal 

biological functions of signature genes, we applied a protein-protein interaction 

based analysis. This network extraction is explained in detail in this chapter as well. 

 

In Chapter 4, experimental results of this study presented. 

 

Finally, in Chapter 5, the conclusion remarks and future works are given. 
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CHAPTER TWO 

BIOLOGICAL BACKGROUND AND RELATED WORK 

 

In normal human life, cells grow, divide to form new cells and die when old 

enough or useless for body in a controlled way. A tumor is abnormal mass of tissue 

which is caused by cells growth without purpose and stopping in out of control. 

Tumors can be categorized as benign, pre-malignant and malignant. Cancerous 

tumors are malignant. They have a potential to spread into or invade nearby tissues. 

Cancer cells may form new tumors on different places of the body by using blood 

vessels or lymph system. Normally, the immune system fights against abnormal cells 

and remove them, but cancer cells are able to hide from the immune system. Possible 

signs and symptoms include: a new lump, skin changes, abnormal bleeding, weight 

loss, coughing or chest pain, unexplained weight loss, and a change in bowel 

movements. While these symptoms may indicate cancer, they may also occur due to 

other issues. There are over 100 different known cancers that affect humans. 

 

2.1 Breast Cancer 

 

Cancer that develops from breast tissue is called breast cancer. Either men or 

women can get breast cancer. It affects one out of every eight women during their 

lives. On American women, breast cancer comes after lung cancer on the highest 

death rates, also comes after skin cancer on the most commonly diagnosed cancer 

among all cancer types. There are several high-risk factors for getting breast cancer: 

 

• Gender (being a woman) and age (being old) 

• Gene mutations (BRCA1 and BRCA2) 

• Beginning periods on early age or going through menopause on late age 

• Having a family history who has been diagnosed with breast cancer 

 

Other risks include not having children or having first child after age 30, being 

overweight, long-term taking birth control pills, having dense breasts, continuous 

exposure to electromagnetic fields and radiation, hormone therapy after menopause 
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etc. Symptoms of breast cancer vary from person to person actually it may not cause 

any symptoms. Generally, the first sign is a new lump or mass in the breast. Here are 

some unusual changes that can be symptoms of breast cancer: 

 

• Changes in the size or shape of the breast 

• Breast pain 

• Bloody or normal flow from the nipple not like breast milk 

• A lump in the underarm area 

• Swelling on the breast 

• Forms such as redness, bruising, scarring, vasodilation, inward depression, 

common small swellings, orange peel appearance in breast skin 

  

2.1.1 Breast Cancer Subtypes 

 

Classification of breast cancer by applying new molecular techniques benefit 

more accurate tests for the prediction of recurrence, developing new therapies and 

personalized treatment. There are four major molecular subtypes of breast cancer that 

researchers focused on: 

 

• Luminal-A: Most common subtype, 50-60% of all. Since Luminal A is under 

group of luminal, it is high expression of hormone receptors (estrogen-receptor 

and/or progesterone-receptor positive). Additionally, it is HER2 receptor-negative. 

Voduc et al. (2010) claims that Luminal A tumors tend to have the best prognosis 

among others. It has high survival rate and low relapse rate. Treatment of these 

tumors often based on hormone therapy, sometimes response to chemotherapy. 

 

• Luminal-B: Comprises 10-20% of breast cancers. Like Luminal A, Luminal 

B is also hormone-receptor positive. But Luminal B can be either HER2 negative or 

HER2 positive. Compared to Luminal A tumors, Luminal B tumors have higher 

histological grade, higher recurrence rate and lower survival rate, thus worse 

prognosis. Its response to chemotherapy is higher than Luminal A. 
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• HER2: HER2 gene products HER2 proteins. Healthy breast cells division, 

growth and repairing are controlled by HER2 proteins. Protein overexpression and 

gene amplification of HER2 causes breast cells grow out of control. HER2 type 

stands for HER2-positive and accounts for 5-15% of breast cancers. HER2-positive 

tumors are both estrogen-receptor and progesterone-receptor negative, generally poor 

tumor grade and poor prognosis. HER2-positive breast cancers fairly have high 

recurrence rate and spread. There are targeted drug options for HER2-positive breast 

cancers treatment such as Herceptin, Kadycla, Perjeta and Tykerb. 

 

• Basal: ER-negative, PR-negative and HER2-negative are triple-negative 

breast cancers. Kreike et al. (2007) defines triple-negative breast cancers as subtype 

of basal, they can be surrogate for clinical stage. Women having BRCA1 gene 

mutations tend to be basal breast cancers. About 15-20% of breast cancers are triple 

negative/basal. Since lack of ER/PR receptors triple-negative/basal tumors do not 

respond to hormone therapy. Targeted therapies except Herceptin, Kadycla or other 

medicines can be useful for treatment options. 

 

2.2 The Cancer Genome Atlas (TCGA) 

 

The Cancer Genome Atlas (TCGA), collaboration between the National Cancer 

Institute (NCI) and National Human Genome Research Institute (NHGRI), has 

generated comprehensive, multi-dimensional maps of the key genomic changes in 33 

types of cancer (Tomczak, Czerwinska & Wiznerowicz, 2015). The TCGA dataset 

contains 2.5 petabytes of data describing tumor tissue and matched normal tissues 

from more than 11,000 patients. It is publically available and has been widely used in 

many research projects. 

 

2.3 Gene Expression Profiling 

 

In molecular biology, gene expression profiling (GEP) is a technique to measure 

the activities of thousands of genes related with a specific disease or biological 

process simultaneously. 
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Gene expression starts with transcription. Transcription refers to particular 

segment of DNA copying into RNA molecule, which is called messenger RNA 

(mRNA). In translation process with mRNA leading, gene product is synthesized. 

The synthesized product is not always (sometimes functional RNA, small nuclear 

RNA or transfer RNA) but usually proteins. Robertson (2014), expresses that a 

person’s susceptibility to cancer can be easily determined by measuring the 

expression level of cancer causing genes (oncogenes) or tumor suppressor genes in a 

cell or tissue. Strong association with specific patterns in the cancer tumors gene 

activity helps accurate tumor classification or accurate predictions of recurrence. 

Useful for predictions of response to therapy with clinical outcome and a must for 

targeted therapy. It is a challenging technology for pharmaceutical companies.  

 

There are different technologies for measuring gene expression level such as DNA 

microarray, massively parallel signature sequencing (MPSS), RNA sequencing 

(RNA-seq) and serial analysis of gene expression (SAGE). RNA-seq technology has 

advantages over others. It can work with any species and has bigger dynamic range 

beside microarray. It consists of whole transcript sequences, but MPSS and SAGE 

short parts of transcripts. In our study, our dataset includes RNA-seq data. 

 

2.4 RNA-Seq Raw Data Generation 

 

For building and maintaining of a cell, DNA is essential for the reason of 

containing the necessary instructions. These instructions are organized into genes. 

DNA must be copied into RNA to carry out these instructions. First DNA must be 

read and transcribed into RNA. These gene readouts are called transcripts. 

Transcriptome is the complete set of the transcripts under specific circumstances or 

in a specific cell (Young, Gordon & Voigt, 2016). Transcriptome profiling is 

practicable using next generation sequencing by applying high throughput methods. 

By comparison of transcriptomes, we can determine the genes, which are expressed 

in distinct cell populations differentially. And this yields personalized treatment 

options, high survival rates against disasters. 
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Next-generation sequencing platforms enable sequencing very rapidly in high 

accuracies. This makes RNA-sequencing technology a cheaper way, for 

comprehensive analysis of transcriptomes. SOLiD, Sanger, Roche 454 genome 

analyzer, Illumina Genome Analyzer, Helios, Pacific Biosciences and IonTorrent use 

different high throughput methods at lower cost. High throughput refers to 

parallelizing the sequence process, millions of sequences concurrently.  

 

As seen on Figure 3.1, in a typical RNA-seq experiment, the first action to take is 

choosing the suitable samples (M. O. Griffith, Walker, Spies & Ainscough, 2015). In 

transcriptome analysis cDNA will be needed. For generating cDNA, RNA transcripts 

should be isolated and purified. The main concern on conversion of RNA to cDNA is 

cutting off Poly(A) tails of RNA transcripts. Next step is construction of fragment 

libraries. Sequencing adapters should be added to cDNA. Based on size selection, 

cDNA will be randomly fragmented. Then these cDNAs should be sequenced in 

chosen sequencing platform. Sequencing platform will produce hundreds of millions 

of short paired-end reads.  

 

 

Figure 2.1 RNA-seq laboratory flowchart (M. O. Griffith, Walker, Spies & Ainscough, 2015). 
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2.5 Analysis of RNA-Seq Raw Data 

 

Even there are many effective algorithms and bioinformatics tools, analysis of raw 

RNA-seq data is still open for development. Data analysis RNA-seq involves five 

steps: 

 

 Quality check and preprocessing of raw reads  

 Read mapping 

 Read counting and gene quantification 

 Data normalization and differential analysis 

 Pathway enrichment analysis 

 Visualization 

 

2.5.1 Quality Check and Preprocessing of Raw Reads 

 

Zhao et al. (2016) express that errors based on library preparation or sequencing 

steps or untrimmed adapter sequences may cause poor-quality data reads. And this 

will lead to low accuracies on data analysis. The reference genome data is stored in a 

format named FastA (Figure 3.2). Raw read data is generated by sequencer platform 

in a format named FastQ (Figure 3.3) which is sum of FastA and quality of reads. 

Via available tools such as PRINSEQ, FASTQC quality control can be checked in 

FastQ files and reads with low quality bases can be removed. 

 

 

Figure 2.2 An example of FastA format. 
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Figure 2.3 An example of FastQ format. 

 

Tools like Cutadapt, Trimmomatic can be used for performing trim adapters, or 

other contaminating sequences. 

 

Bioconductor provides tools and R packages (Section 2.6) for the analysis of 

genomic data. Quality control and preprocessing of raw reads can be done via 

Bioconductor package “systemPipeRdata”. 

 

2.5.2 Read Mapping 

 

Short sequence reads must be aligned with respect to reference transcriptome a 

genome assembly to find out their correct locations. There are many algorithms have 

been developed such as TopHat2 (Kim et al., 2013), STAR (Dobin & Gingeras, 

2015), GSNAP (Wu & Nacu, 2010), OSA (Hu, Ge, Newman & Liu, 2012) and 

MapSplice (Wang et al., 2010). 

 

There are different packages available on R-Bioconductor for alignment process, 

e.g., “TopHat2”, “Rsubread”. 

 

2.5.3 Read Counting and Gene Quantification 

 

To simply say, it is counting reads per feature/gene. There are two approaches for 

counting reads, one is transcript-based approach and the other one is union-exon 

based approach. Researchers indicate that for the reason of a gene expressed in one 

more transcript isoforms, transcript-based approach is more meaningful (Zhao, Xi et 

al., 2015). But it is also more difficult because of different isoforms of the gene 
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typically having a high proportion of genomic overlap. Different kinds of algorithms 

that can be performed such as RSEM (Li & Dewey, 2011), Cufflinks (Trapnell et al., 

2011), ISOem (Nicolae, Mangul, Măndoiu & Zelikovsky, 2011), featureCounts 

(Liao, Smyth & Shi, 2014) and HTSeq (Anders, Pyl & Huber, 2014). 

“GenomicRanges” package is easy to use in R for these processes. 

 

2.5.4 Data Normalization and Differential Analysis 

 

Normalization is critical step to inference accurate gene expression after 

calculating read counts. Total number of aligned/mapped reads (library size) varies 

between different samples, for that reason we can not compare the different samples 

directly. We need to normalize library size. Scaling total number of read counts by 

the mean library size and then taking the log2, we can approximate library size. 

Therefore, genes of a sample having high differences compared to a sample evenly 

distributed will have lower expression and differentially expressed genes fail count 

will decrease. There are existing algorithms for identification of differentially 

expressed genes but there is still no optimal solution accepted among them.  

 

“DESeq”, “NOIseq”, “NBPSeq”, “rnaseqGene” are available packages in R for 

differential analysis. 

 

2.5.5 Pathway Enrichment Analysis 

 

By applying pathway enrichment analysis on differentially expressed genes, we 

can get more details about their biological activities. Annotation databases such as 

DAVID system (Huang, Sherman & Lempicki, 2009), Gene Ontology (Gene 

Ontology Consortium, 2004) and Kyoto Encyclopedia of Genes and Genomes 

pathways (Kanehisa, Goto, Kawashima, Okuno & Hattori, 2004) are available tools 

for functional enrichment analyses. 

 

“topGO” package can be used in R for gene set enrichment analysis. 
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2.5.6 Visualization 

 

RNA-seq data is very large, complex and abstract. The analysis of RNA-seq data 

is still open to development. There are available tools providing graphical user 

interface helping to visualize the dataset, plot the statistical results. Integrative 

Genomics Viewer is a high-performance visualization tool. 

 

There are different packages on R for visualization such as “ggplot2”, “grammar 

of graphics”, “rgl”. 

 

2.6 Literature Review 

 

There are many research projects on breast cancer classification.  

 

Kim et al. (2012) used Support Vector Machines (SVM) for training over 679 

patients clinical, pathologic data; the method was validated via hold-out method and 

obtained 89% accuracy.  

 

Researchers similarly trained a SVM over 547 patients, they obtained 95% 

average accuracy by applying 10-fold cross validation (Ahmad, Eshlaghy, 

Poorebrahimi, Ebrahimi, & Razavi, 2013).  

 

Listgarten et al. (2004) used again SVM for training SNPs data of 174 patients, 

applied of 20-fold cross validation and got 69% accuracy.  

 

In their study, researchers trained a Bayesian Network for 97 patients, 85% 

accuracy was reported by using hold-out method (Gevaert, De Smet, Timmerman, 

Moreau & De Moor, 2006). 

 

TCGA (Cancer genome atlas network, 2012) investigated breast cancer subtypes 

by incorporating information from multiple platforms, i.e., genomic DNA copy 

number arrays, DNA methylation, exome sequencing, mRNA arrays, miRNA 

http://vita.had.co.nz/papers/layered-grammar.pdf
http://vita.had.co.nz/papers/layered-grammar.pdf
http://rgl.neoscientists.org/about.shtml
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sequencing and reverse-phase protein arrays. By classifying tumors using each 

individual platform and comparing results at different levels, they conclude that 

diverse genetic and epigenetic alterations converge phenotypically into four major 

breast tumor subgroups (i.e., luminal A, luminal B, HER2 positive, triple negative) 

using mRNA profiling. There exits research on TCGA dataset to predict patients’ 

subtypes. 

 

List et al. (2014) used gene expression and DNA methylation data from TCGA. 

Along with these data, TCGA provided a subtype classification of all gene 

expressions sample via the gold standard PAM50. Using a 543 patients data they 

created four models which include gene expression, DNA methylation, gene 

expression and DNA methylation combined (DNA methylation columns added to 

gene expression data) and PAM50 gene expression. They ran Random Forest on each 

model and after validation with 0.632 bootstrap error, the gene expression model 

performed best with a very low bootstrap error of less than 10% and an AUC of close 

to 100%, which was also the case for the combined model and the control model. 

The methylation model performed slightly worse, achieving a bootstrap error of 20% 

and an AUC of 88%.  

 

Another publication using TCGA data proposed a subgroup-specific-gene-

centering method to perform molecular subtyping on a study cohort that has a 

skewed distribution of clinicopathological characteristics relative to the training 

cohort (Zhao, Rødland et al., 2015). On such a study cohort, they center each gene on 

a specified percentile, where the percentile is determined from a subgroup of the 

training cohort with clinicopathological characteristics similar to the study cohort. 

They demonstrated their method using the PAM50 classifier and its associated 

University of North Carolina training cohort. On that training cohort, triple-negative 

cohort was subset of TCGA breast data. There were samples of 77 patients. 

Compared to the standard gene centering, subgroup-specific’s overall prediction 

accuracy range was 17% to 33% across the five intrinsic subtypes. On the UNC 

triple-negative subgroup their method produced 11% (1/9) error rate on basal-like 

tumor classification, which standard-gene centering had a performance 56% (5/9).  
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Ali et al. (2014) have developed an expression-based method for the classification 

of breast tumors into the IntClust subtypes. They applied the method on public 

datasets of breast tumor transcriptomes to investigate the validity of IntClust. One of 

the dataset they used was containing gene expression data of 475 patients based on 

either RNA-seq or microarray from TCGA. Cross-tabulations of subtype assignment 

with Kappa-agreement statistics, by data type (RNA-seq or microarray) performed 

for each of the three classifiers (SCMGENE, PAM50 and IntClust). The agreement 

between classifiers was 93.1% for SCMGENE, 93.7% for PAM50 and 81.3% for 

IntClust. 
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CHAPTER THREE 

DATA PROCESSING AND METHODS 

 

3.1 Dataset 

 

Dataset used in this thesis includes RNA-seq gene expression data of 418 breast 

cancer patients and 3 healthy people obtained from TCGA. Genes are coded by 

Entrez identifiers that allow us to get more information about a specific gene in the 

NCBI website (http://www.ncbi.nlm.nih.gov/gene). Patients’ identities are hidden. 

We have the information of breast cancer subtypes (Luminal A, Luminal B, Her2, 

Basal) of each patient. In the data processing, we removed the genes whose 

expression could not be measured in the sequencing experiment. Those values might 

affect the performance of machine learning techniques negatively. Then the 

remaining gene count decreased from 20531 to 13259. Table 3.1 shows how looks 

like the last version of the dataset. Columns except gene symbol and entrezid are 

encoded names of the patients which are totally 421. And rows are gene expression 

value of these patients. Genes having negative value are downregulated, positive 

ones are upregulated. Downregulation means that the related gene product, protein, 

for the patient is decreased. Vice versa upregulation means protein increased. We 

used 70% of patient samples for training and 30% for testing. 
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Table 3.1 A snapshot of dataset extracted from TCGA. 

 

 

3.2 Feature Selection Methods 

 

Feature selection, also named variable selection or attribute selection is a 

technique to select subset features that are most useful on predictive models. 

Features, columns in a tabular data, that are irrelevant or redundant may not 

contribute to the accuracy of predictive model but also may decrease the accuracy 

performance. There are three benefits of feature selection method. First is improving 

the predictive performance of selection models. Second is making more 

understandable of the process of generated data. Third is providing faster predictors 

for train sets (Guyon & Elisseeff, 2003). Feature selection should be performed on 

after model selection and before model is trained. 

 

Feature selection methods are applicable on large datasets in supervised or 

unsupervised machine learning. In the fields of bioinformatics, feature selection 

technique has become a prerequisite to apply on large datasets for model building. 
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In our study, we applied two selection features to our predictive model, principle 

component analysis and t-Test & Fold Change separately. In fact, feature selection 

methods do not mean dimension reduction like principal component analysis does. 

But it is accepted as a means of feature selection. 

 

3.2.1 Principal Component Analysis 

 

Principal Component Analysis (PCA) is an algorithm used to reduce the 

dimensionality of the data by creating new variables, principal components, which 

are linear combination of existing features to explain maximum variance.  

 

PCA is an orthogonal linear transformation (Jolliffe, 2002). It transforms data to a 

new coordinate system in which the new coordinates of the system are called 

principal components. The center of data points is the origin of new coordinate 

system. The first principle component points the direction of highest variance. The 

second points the direction of second highest variance and so on. Even most of the 

time dimensionality reduction is meaning loss of information, it is possible to just 

losing only a commensurately small amount of information by using only a few 

components. 

 

Processing steps of PCA are: 

1. Standardize the data 

2. Subtract the mean 

3. Calculate the covariance matrix 

4. Calculate the eigenvalues and eigenvectors of the covariance matrix 

5. Choose components and form a feature vector 

6. Derive the new dataset 

 

PCA has been applied in many fields such as taxonomy, biology, pharmacy, 

finance, agriculture, ecology, health and architecture (Sanguansat, 2012). 

 

https://en.wikipedia.org/wiki/Orthogonal_transformation
https://en.wikipedia.org/wiki/Linear_transformation
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We used the “FactoMineR” R package to apply PCA. On each fold, we run PCA 

function on train data. Dimdesc function is performed after PCA function. For 

dimdesc function parameters, we set the significance threshold to 0.05, which means 

95% confidence and we set correlation coefficients threshold big or equal to 0.7. 

With these options, the genes existing on the first five principal components are 

selected. Before applying PCA, train set had 13259 dimensions(genes). Even its 

count changes according to the train data, we were able to reduce the dimensions. On 

the first principal component we obtained most of the genes ~158. The genes count 

on the five principal component varied between 165 and 328 on different folds of 

cross validation. 

 

3.2.2 Fold Change & t-Test 

 

Fold change (FC) is the quantity change ratio between two values, shortly final 

value divided by initial value. Fold change is commonly used in bioinformatics 

mostly for gene expression change measurement but the ratio is calculated in log2. 

Consider there are 100 reads count in a control and 200 reads count in a treatment for 

a gene. The FC value of that gene becomes 2 FC. If it is bigger than 0, then this gene 

shows an over-expression in the treatment case. But when it is other way round, 

reads count in a control is higher than treatment, FC value always will be negative. 

FC value is calculated as: 

 

FC  log 2
              

                     
                          (3.1) 

 

t-Test is used to compare two sets of data samples whether they significantly 

differ from each other or not. t-Test makes this comparison by the means of two 

groups. t-Test tries to explain the mean of two groups statistically different or not. 
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Figure 3.1 Control and treatment groups distributions in different scenarios. 

 

As seen on Figure 3.1, the difference between the means are the same in all but 

their variation distributed differently. In high variability case, the groups difference is 

not much as others due to distribution overlap. t-Test considers the difference 

between the two groups means relative to their variance distribution (3.2). 

 

   difference between groups / variability of groups  (3.2)                         

 

We can tell that variability of groups is equal to standard error of the difference 

(Trochim, 2006). Standard error is calculated taking variance of each group and 

dividing it to the group’s items count. Then we sum these values and take square root 

of this value (Equation 3.3). 

 

      
 ̅     ̅ 

√
    
  

   
    
  

                           (3.3) 
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The result will be negative if the first group is less than the second group. The 

general concern is to define a confidence threshold for the value of the ratio which is 

0.05. It means with confidence 95%, the groups significantly differ from each other. 

 

We performed Fold Change and t-Test together as a feature selection method. On 

each fold, 70% of patient samples are randomly selected as a train set. We used 

“genefilter” R package and ran “rowTTest” function to apply t-Test. After selection 

of the train set, iteratively we applied t-Test to every patient on the train set. We 

created a matrix which consists of three healthy people and one of the patient’s gene 

expression data. We passed two parameters to “rowTTest” function. One of them 

was matrix data itself and the second one was class labels. Healthy people are 

marked as “Class1” and the patient is labelled as “Class2” in that class labels. Since 

column count of the matrix and labels count are equal, we can perform t-Test on row 

level. Thus we were able to measure every gene expression change for each patient. 

On the results of “rowTTest” function, if the p-value (i.e., t-test outcome) is equal or 

smaller than 0.01, this gene was chosen as a significant one. On the same iteration, 

we applied FC by using “gtools” R package as well. We provided the mean values of 

healthy people samples and the cancer patients’ samples to the FC calculation. The 

genes, whose absolute FC value is equal or bigger than 2, were marked as significant 

ones. We chose the genes which satisfy both criteria at the end of the iteration. Those 

genes were called as significant genes of the experiment. We reduced the dimension 

(i.e., total number of genes) of the train set by choosing only significant genes. In this 

way, it will be faster and more accurate to train machine learning methods.  

 

3.3 Machine Learning Methods 

 

By performing feature selection methods, we selected significant genes. Now we 

can train our data with machine learning methods to build our predictive model. 

Then we will test our model on unseen data and measure its accuracy performance. 
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3.3.1 Support Vector Machine (SVM) 

 

SVM is a machine learning method that can be used in both classification and 

regression. Supervised learning refers to labelled data. Otherwise data without class 

labels requires unsupervised learning approaches such as support vector clustering. 

 

A SVM model differentiates two classes. SVM tries to find an optimal hyper-

plane to segregate the classes by using support vectors. The distance between classes 

is important to minimize the classification errors. According to the hard-margin or 

soft-margin concern, SVM chooses the hyper-plane with the convenient margin 

among the infinite separating hyper-planes.  

 

For linearly separable training data, hard-margin SVM chooses the maximum-

margin hyper-plane to segregate the classes. Hard-margin allows zero error, but it is 

open to over-fitting problems. On the other hand, it can be a better option to allow 

errors in the training set to have a more generalized model for working with new 

datasets. Generally working with non-linearly separable data, soft-margin SVM 

allows classification errors with a loss function. The “C” parameter is this loss 

function’s multiplier. Users can increase error tolerance by setting C parameter to a 

higher value. Figure 3.2 illustrates linearly separable objects and two hyper-planes. 

Hyper-plane B is suitable for hard-margin SVM since there won’t be any 

classification errors. When soft-margin SVM applied to training set, hyper-plane A 

will be selected. In that way, some misclassifications errors allowed but a more 

generalized model is selected. 
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Figure 3.2 An example of linearly separable data with hyper-plane examples. 

Most of real-world problems cannot be separated by a simple hyper-plane. One 

solution is to map the original data into a higher dimension and define a separating 

hyper-plane in the new space. This higher-dimensional space is called as feature 

space. If feature space has sufficient dimensionality, any kind of data sample can be 

separable with hyper-planes. However, separation of the data in such a hyper-space 

might lead over-fitting of the training data (Brown et al., 2000). SVMs nicely 

overcome these problems (Vapnik, 1998). They prevent over-fitting by finding a 

hyper-plane that separates classes. The decision function for classifying samples only 

requires dot products between feature vectors of samples. SVM finds the location of 

the optimal hyper-plane without explicitly representing the space, instead a kernel 

function performs a dot product in the feature space. Assume that SVM applies a 

kernel function to data points given in Figure 3.3. In the new coordinate system, data 

belongs to class1 would be leading on higher value of z and data belongs to class2 

would be leading on lower value of z (Figure 3.4). So that, it would be easier to find 

a separating hyper-plane. 

 

There are different kinds of methods for using kernels such as linear, polynomial, 

radial basis functions and sigmoid. 
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Figure 3.3 Input space of non-linearly separable data. 

 

 

Figure 3.4 Feature space after applying kernel function. 

 

Even though SVM is originally designed for binary classification, it can perform 

multi class classification. There are different approaches such as one-against-one and 

one-against-all. Due to the shorter training time, one-against-one is more suitable 

technique (Chih-Wei Hsu and Chih-Jen Lin, 2002).  

 

SVM brings solutions to many real-world problems and is widely used in speech 

recognition, speaker identification, text categorization, image classification, 
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bioinformatics, hand-written character recognition etc. We used “e1071” R package 

to train support vector machine on training data. 

 

3.3.2 Random Forest 

 

The general method of random decision forests was first proposed by Ho in 1995 

(Ho, 1995). An extension of algorithm was developed for classification purposes by 

Leo Breiman (Breiman, 2001), the algorithm uses an ensemble of decision trees. 

Each decision tree is constructed by applying bootstrap sampling of the data. The 

feature size for each node is represented by m that is quite smaller than the total 

number of features of the original data. So, m features are randomly chosen out of all 

possible features, the best split of m features are used to partition the node. Trees of 

the forest grow as much as they can without any pruning. To perform classification 

of data, each sample vector is threaded over each trees of the forest, each tree 

provides a decision, finally the forest makes a final decision by choosing the highest 

voted class. As summary, random forest uses both bagging (Breiman, 1996) and 

random feature selection (Friedman, Hastie & Tibshirani, 2001) in tree building.  

 

Random forest is widely used in molecular biology, financial analysis, computer 

vision, astronomy etc. We used "randomForest" R package to train the random forest 

method on training data. 

 

3.4 Evaluation of System 

 

In our experiment, we performed 100-fold Monte Carlo cross validation. For each 

cross-validation process, the patient samples are randomly partitioned as 70% train 

and 30% test dataset (Figure 3.5). We applied both PCA and FC & t-Test feature 

selection methods on the train set separately. With the help of feature selection 

methods, we could filter the significant genes. Then we trained both SVM and 

random forest models independently with significant genes of the train set. We built 

our predictive models and performed cross validation on unseen data. To measure the 

accuracy performance of predictive models, we constructed a confusion matrix.  
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Since our predictive model is not a binary classification (four cancer sub-types), 

we constructed a confusion matrix with four classes. And overall accuracy is 

calculated for each subtype independently as given in Equation 3.4. For example, we 

are calculating the accuracy for the Basal subtype patients, TP (true positive) would 

be the number of correct predictions of Basal subtype, TN (true negative) would be 

the sum of correct predictions of other subtypes. FP (false positive) would be the sum 

of predictions that outcome Basal subtype when true class labels are from other 

subtypes. FN (false negative) would be the sum of predictions that outcome other 

subtypes when true class labels are Basal subtype.  

 

                                                     (3.4) 

 

This process is repeated for 100 times and the overall performance of each 

machine learning method is reported as the average accuracy of all iterations. The 

signatures that provided the best prediction performance are recorded for further 

biological validations. 
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Figure 3.5 The workflow of the proposed method. 
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3.5 Biological Network Extraction 

 

In order to reveal biological functions of best predictive signatures (i.e., genes), 

we applied a network based analysis.  For this purpose, a functional protein-protein 

interaction network - STRING - was used (Szklarczyk et al., 2014). This network 

contains 10.579 proteins and 200.091 interactions. Using “igraph” R package we 

uploaded the input network as a graph on R-edge. We first identified the “core 

clusters” that are including the best predictive signature genes for each cancer 

subtype. For the genes which were not found in the core clusters, we applied a 

shortest path algorithm (Bread-First search) to interconnect these genes with the core 

cluster genes, these new clusters are called as “extended clusters”. There were many 

interconnected genes; therefore, we only focused on some crucial genes, which have 

specific biological functions in cancer.  For this purpose, we performed a functional 

enrichment analysis via DAVID tool (Huang, Sherman & Lempicki, 2009). We only 

focused on Gene Ontology annotations under the biological process functional class. 

We also mapped FC changes of genes that have cancer related annotations that were 

visualized by the Cytoscape tool for each subtype. 
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CHAPTER FOUR 

EXPERIMENTAL RESULTS 

 

4.1 Classification Performance of Models 

 

Our dataset consists of 418 breast cancer patients’ and 3 healthy people samples. 

142 patients were Basal subtype, 67 patients were Her2 subtype, 105 patients were 

Luminal A subtype and 104 patients were Luminal B subtype. We performed 100-

folds Monte Carlo cross validation in our experiments. For each cross-validation 

step, the patient samples of each subtype are randomly partitioned as 70% train and 

30% test dataset. Before applying feature selection methods the genes total count was 

13259, which is a high dimension to train machine learning models. PCA is 

performed with the options significance threshold equals to 0.05 and correlation 

coefficients threshold is bigger or equal to 0.7. We selected the genes covered in the 

first five principal components. The genes count varied between 165 and 328 on 

different folds of cross validation. On the other hand, Fold Change and t-Test were 

also applied together as a feature selection method. The amount of genes, whose 

absolute FC value is equal or bigger than 2 and t-Test p-value is equal or smaller 

than 0.01, varied between 510 and 667 on different folds of cross validation. 

 

For each fold, after feature selection methods were performed, we trained our 

machine learning models and performed cross validation on unseen test data. Then 

we constructed confusion matrices for both SVM and RM predictive models. Since 

our predictive model contains multi-class (four subtypes) classification, we 

constructed the confusion matrix considering four classes. For this purpose, we used 

one-vs-all technique. This strategy trains a single classifier for each class by taking 

that class’ samples as positive ones and others as negative ones. The base classifier 

produces a real-valued score for its decision. The prediction results (confusion 

matrix) of the SVM is given in Table 4.1 for each cross validation iteration. 
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Table 4.1 The confusion matrix of one-fold of Monte Carlo cross validation for four subtypes. 

 Known (True) Subtype 

Prediction Basal Her2 LumA LumB 

Basal 41 0 0 0 

Her2 2 17 0 1 

LumA 0 0 26 6 

LumB 0 4 6 25 

 

This confusion matrix for Basal subtype is recalculated by applying one-vs-all 

technique as shown in Table 4.2. Basal subtype is labeled as positive class and the 

other subtypes are labeled as negative. According to the table, TP (true positive), 

which stands for the number of correct predictions of positive class (Basal subtype), 

is 41. TN (true negative), which stands for the number of correct predictions of 

negative class (Her2, LumA, LumB), is 68.  FP (false positive), which stands for the 

sum of predictions that outcome positive class when true class labels are from 

negative, is 2. FN (false negative), which stands for the sum of predictions that 

outcome negative class when true class labels are positive, is 0. We calculated the 

accuracy for every iteration of cross validation as given in Equation 3.5. For every 

cross validation iteration, we calculated accuracy of both SVM and RF for each 

subtypes for both feature selection methods performed independently. 

 

Table 4.2 The confusion matrix for only the Basal subtype 

 Basal All 

Basal 41 0 

All 2 68 

 

 

When PCA was chosen as the feature selection method, the average accuracy of 

each subtype was reported as the prediction performance of each ML method (Figure 

4.1). Basal and Her2 subtypes were classified with 0.97 and 0.94 average accuracies, 
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respectively. LumA and LumB subtypes were classified with 0.90 and 0.88 average 

accuracies, respectively. 

 

Figure 4.1 Average accuracy of 100-fold Monte Carlo cross-validation (error bar shows the standard 

deviation of 100 folds) when PCA was chosen as the feature selection method. 

 

When FC & t-Test performed together as the selection feature method, the 

average accuracy of each subtype was reported as the prediction performance of each 

ML method (Figure 4.2). Basal and Her2 subtypes were classified with 0.97 and 0.95 

average accuracies, respectively. LumA and LumB subtypes were classified with 

0.89 and 0.87 average accuracies, respectively. 
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Figure 4.2 Average accuracy of 100-fold Monte Carlo cross-validation (error bar shows the standard 

deviation of 100 folds) when FC & t-Test  were chosen as the feature selection method. 

 

The results showed that applied feature selection methods (PCA and FC & t-Test) 

does not have an impact on the performance of machine learning methods in our 

experiments. Furthermore, ML methods are more successful for the discrimination of 

Basal and Her2 subtypes from others. 

 

In a similar work (List et al., 2014), they also used data of TCGA breast cancer 

patients. They run 10 times 0.632 bootstrapping recursively for feature elimination 

and used RF (using varSelRF package) as the ML method. Their overall performance 

was nearly 100% accuracy. In their experiment, the Basal subtype prediction had the 

best performance and Luminal B had the worst prediction performance. Their results 

are also concordance with our prediction performances. So, the subtype classification 
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of breast cancer patients was not significantly affected by the different feature 

selection and machine learning techniques. Considering the other works on TCGA 

breast cancer data we can claim that this dataset is generally providing high 

accuracies for the subtype classification problem. 

 

4.2 Biological Validation of Results 

 

On every fold of Monte Carlo cross validation, we saved the accuracy and 

significant genes results into a file. FC is more widely used in gene expression 

analysis. So, instead of PCA, we chose the intersection of genes which had the best 

accuracies for both SVM and RF from the results of FC & t-Test performed together. 

We selected these best significant genes to find out the relevant biological activities, 

functions and pathways by applying a network analysis. We constructed a sub-

network for each subtype that covers interactions (obtained from the STRING 

network) between the best predictive genes of that subtype. Some genes were not 

covered in the network, some of them created a core-connected cluster. The rest of 

them were not connected to these core-clusters. Therefore, we found the extended 

cluster that connects sub-clusters and the rest of the genes. Table 4.3 shows the 

amount of significant, covered by PPI network, core-cluster and extended cluster 

genes. 

 

Table 4.3 The gene count based on the network topology. 

Subtype 
Significant 

Genes 

Network 

Coverage 

Core 

Cluster 

Extended 

Cluster 

Basal 547 263 83 1874 

Her2 575 271 91 1814 

LumA 545 250 105 1872 

LumB 595 282 97 1937 
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For functional analysis, we investigated the Gene Ontology (GO) annotations of 

the member of extended core network by using DAVID tool. We only focused on the 

biological process GO terms. Table 4.4 shows the selected GO-terms and total 

number of genes that are annotated with these terms for each subtype. The most of 

the predictive genes of all subtypes are annotated with the cell proliferation and 

apoptosis terms that are well-known regulator processes for cancer development and 

progression. Immune system related genes are only shared by Basal and Her2 

subtypes. A recent study (Jézéquel et al., 2015) also showed the high enrichment of 

immune system related genes for basal-like subtype. Hormone response related genes 

are only the member of LumA and LumB signatures, this result is well-known factor 

since LumA and LumB are ER+ cancer types. 

 

Table 4.4 Total number of genes that were annotated with the given GO-term. 

GO-term Basal Her2 Luminal A Luminal B 

Regulation of cell proliferation 106 97 97 105 

Positive regulation of immune 

system process 
39 39 - - 

Inflammatory response 54 47 52 55 

Regulation of apoptosis 114 103 109 108 

T-cell activation 23 22 20 23 

Response to hormone stimulus - - 54 53 

 

As seen on Table 4.5, most of the predictive genes are common among the 

significant genes of each subtype. These genes have important roles in subtype 

predictions, therefore we selected these genes for each subtype to find out the 

relevant biological activities, functions and pathways by applying a network analysis. 

We also mapped the fold change values and GO-annotations of genes in these sub-

networks to understand the function and collaboration of these genes related with the 

specific biological process. 
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Table 4.5 Intersection of predictive genes between each subtype. 

 Basal Her2 Luminal A Luminal B 

Basal 547 504 474 499 

Her2 504 575 471 511 

LumA 474 471 545 489 

LumB 499 511 489 595 

 

 

Figure 4.3 Basal subtype genes that were annotated with the "Regulation of apoptosis" GO-term. 

 

In sub-networks, nodes are the genes that are taking place in the specific 

biological activity. Edges show the relationship between two nodes which can be 

identified in two ways. One way is these genes concurrently take place in the same 

biological process and the other way they take place in turn for the specific 

biological process.  

 

When we analyzed the predictive genes of the Basal subtype, most of them (more 

than 106) were annotated with "Regulation of apoptosis" and "Regulation of cell 

proliferation" GO-terms. Figure 4.3 shows the network topology of "Regulation of 
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apoptosis" genes. There are two main connected clusters (on the left and up-right 

corners) of genes, the rest of them are loosely connected; almost all genes are either 

down-regulated or not expressed for this subtype. With a similar analysis, Figure 4.4 

shows the network topology of "T-cell activation" genes for the HER-2 subtype. It 

contains quite small well-connected gene cluster, all genes were significantly down-

regulated in this subtype. Figure 4.5 shows the network topology of "Response to 

hormone stimulus" genes for the LumA subtype. There is no a core-connected 

network and gene expressions are mixed for this subtype. Figure 4.6 shows the 

network topology of "Regulation of cell proliferation" genes for the LumB subtype. 

It is comparably larger network and contains several small clusters of genes from 

different gene expression level. 

 

Figure 4.4 Her2 subtype genes that were annotated with the “T-cell activation” GO-term. 

 

 

Figure 4.5 LumA subtype genes that were annotated with the "Response to hormone stimulus" GO-

term. 
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Figure 4.6 LumB subtype genes that were annotated with the "Regulation of cell proliferation" GO-

Term. 

 

By using TCGA RNA-seq data, first we selected significant genes. Then fold 

change values and GO-annotations of these genes were mapped in these sub-

networks. Fold change values showed us down-regulation or up-regulation of the 

genes for different cancer subtypes. The significant genes in a specific sub-network 

with a certain up / down-regulation pattern or GO term annotation should be further 

analyzed on different breast cancer cohorts to see if they have important roles in 

these subtypes and biological processes. Another direction might be the highlighting 

the relations between specific GO-terms. The genes having an impact on breast 

cancer subtype classification can be determined on different patient datasets and be 

enriched by applying different functional annotations . 
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CHAPTER FIVE 

CONCLUSION AND FUTURE WORK 

 

For many years, histology and morphology had a lead role on breast cancer 

classification. It was seen that prognosis could be different even with the same 

treatment for the same histology and the clinical stage. The development of DNA 

microarray technology, measuring the expression levels of entire transcriptome 

simultaneously, can help molecular subtyping. Such technologies have positive 

effects on early diagnosis and prognosis of cancer.  

 

In our study, we classified breast cancer patients by using RNA-sequencing data 

and ML methods. The overall performances of machine learning models varied 

between 0.88 to 0.97 average accuracy when PCA is applied as the feature selection 

method; and varied between 0.87 to 0.97 average accuracy when FC & t-Test is 

applied. It showed us that applying different feature selection methods do not have 

high impact on ML prediction performance. Basal and Her2 subtypes predictions had 

the highest accuracies compared to the LumA and LumB predictions. Cancer 

subtypes were predicted with similar accuracies by applying different machine 

learning methods. This study was presented in 1st International Mediterranean 

Science and Engineering Congress (Burakgazi & Işık, 2016). 

 

The biological analysis of predictive genes revealed that most of them were 

shared by the other subtypes and such genes were commonly annotated with cell 

proliferation and apoptosis Gene Ontology terms that are well-known regulator 

processes for cancer development and progression. Based on our results, a network 

based analysis can identify more accurate predictive genes for cancer subtype 

classification, such genes might be suggested as biomarkers for the new diagnostic 

kits. 

 

As a future work, the most predictive genes highlighted by our network analysis 

can be tested on different breast cancer datasets to investigate their classification 

capabilities in the subtype prediction. Beside over-representation analysis, there are 



37 

 

different pathway analysis methods in literature. Functional class-scoring and 

topology-based methods (Khatri, Sirota & Butte, 2012) can be researched to have 

different pathway analysis and compare our results with them. 
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