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IDENTIFICATION OF BREAST CANCER SUB-TYPES BY USING
MACHINE LEARNING TECHNIQUES

ABSTRACT

Recent years technological developments for DNA sequencing and publicly
available patient databases reveal a new research field that proposes intelligent
systems for biomedical domain. Such systems might help to predict future outcomes
of patients. The main goal of this thesis is to predict breast cancer subtype of patients
by using machine learning (ML) methods on RNA-sequencing data, which were
extracted from the TCGA dataset. The significant genes were selected by applying
fold change and t-test statistical methods. Support vector machine and Random forest
models were trained with significant genes of 70% of the patient samples. The
predictive performance of models were measured on the unseen test data. The overall

performances of ML models varied between 86% to 98% of average accuracy.

We analyzed the best-predictive genes for each subtype to figure out which genes
have more effect on the subtype classification of breast cancer. The relevant
biological activities of these genes were found by applying a network-based analysis
and gene enrichment analysis. The results revealed that some biological processes
related with the cancer progression play a role for the classification of breast cancer

subtypes.

Keywords: Breast cancer, machine learning techniques, gene expression, interaction

network analysis, gene ontology



MAKINE OGRENMESI TEKNIiKLERI KULLANARAK GOGUS
KANSERI ALT TURLERININ TESPIiT EDILMESI

0z

Son yillarda DNA dizilemesindeki teknolojik gelismeler ve halka agik hasta veri
tabanlar1 biyomedikal alan i¢in akilli sistemler 6neren yeni bir arastirma alani ortaya
cikarmustir. Bu tiir sistemler hastalarin gelecekteki saglik durumlarini tahmin etmede
yardimct olabilirler. Bu tezin temel amaci, TCGA veri setinden ¢ikarilan RNA
dizileme verileri tizerinde makine d6grenmesi yontemlerini kullanarak gogiis kanseri
hastalarn alt tipini tayin etmektir. Onemli genler, kat degisikligi ve t-testi istatistiksel
yontemleri uygulanarak se¢ilmistir. Destek vektdr makinesi ve Rastgele orman
modelleri, hasta numunelerinin %70’lik kismindan elde edilen genlerle egitilmistir.
Modellerin tahminleme performansi, daha 6nce kullanilmayan test verileri iizerinde
Olglilmiistiir. Makine 6grenmesi modellerinin genel performanslar1 ortalama olarak

%386 ila %98 arasinda degismektedir.

Meme kanseri alt tip siniflandirmasina hangi genlerin daha fazla etkisi oldugunu
bulmak i¢in, her bir alt tipi en iyi siniflandiran genler analiz edilmistir. Bu genlerin
ilgili olduklar1 biyolojik aktiviteler, ag tabanli bir analiz ve gen zenginlestirme
analizi uygulayarak bulunmustur. Sonuglar gogiis kanseri alt tiplerinin
smiflandirilmasinda kanserin ilerlemesiyle ilgili bazi biyolojik siireglerin rol

oynadigini ortaya ¢ikarmistir.

Anahtar kelimeler: Gogiis kanseri, makine 6grenmesi teknikleri, gen ifadesi,

etkilesim ag1 analizi, gen ontolojisi
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CHAPTER ONE
INTRODUCTION

1.1 Overview

Cancer is the disease of our age. There are more than 100 types of cancer known
today and breast cancer is the most common type of cancer among women in many

countries.

Early diagnosis and prognosis have huge effect on survival rates and prediction of
recurrence for breast cancer. To select the best treatment, classification takes high
priority. On traditional procedure, breast cancer classification regards to the tumor
size, the stage of the tumor, histological grade and receptors status. However,
prognosis can be different even similar clinical stage and pathological results. From
another perspective, to explain complex genetic alterations and the biological events
involved in cancer development and progression, histological appearance of the

tumors is insufficient (Yersal & Barutca, 2014).

In the last two decades, DNA microarray technology has been improved by
introducing genome wide sequencing. It allows the monitoring of expression levels
in whole genome. By measuring the expression level of cancer-related genes, breast
cancer can be analyzed more detailed and tests of prediction of recurrence outcome
can become more accurate. Therefore, detailed biological classification can help to

develop personalized treatment options for better survival rate and less toxicity.

1.2 Purpose

Recent years technological developments on RNA-sequencing, publicly available
larger cancer databases, and machine learning (ML) methods led a new research field
that develops intelligent systems for biomedical domain. These techniques can help
to effectively predict future outcomes of a cancer patient. The application of ML

methods could improve the accuracy of cancer susceptibility. The accuracy of cancer



prediction outcome has significantly improved by 15%-20% recently with the
application of ML techniques (Cruz & Wishart, 2006).

The goal of our study is to classify breast cancer patients, extracted from the
TCGA dataset, into four classes (Luminal A, Luminal B, HER2, Basal) by using
RNA-sequencing data and ML methods. The novelty of our study is the biological
analysis of signature genes that are commonly selected and provided higher
accuracies in the discrimination of patient subtypes. We found out the relevant
biological activities of these genes by applying network and gene enrichment
analysis methods.

1.3 Organization of Thesis

This thesis includes five chapters and the rest of the thesis is organised as follows:

In Chapter 2, biological information about the terms that are mentioned in this
thesis frequently and a summary of our literature review about the related works are

presented.

In Chapter 3, we gave details about our dataset and its processing. Other details
such as technical background of the processes, general information about the
machine learning and feature selection methods used in our study, information about
the tools used in evaluation of system such as confusion matrix, Monte Carlo cross
validation, accuracy calculation are explained. Furthermore, in order to reveal
biological functions of signature genes, we applied a protein-protein interaction

based analysis. This network extraction is explained in detail in this chapter as well.

In Chapter 4, experimental results of this study presented.

Finally, in Chapter 5, the conclusion remarks and future works are given.



CHAPTER TWO
BIOLOGICAL BACKGROUND AND RELATED WORK

In normal human life, cells grow, divide to form new cells and die when old
enough or useless for body in a controlled way. A tumor is abnormal mass of tissue
which is caused by cells growth without purpose and stopping in out of control.
Tumors can be categorized as benign, pre-malignant and malignant. Cancerous
tumors are malignant. They have a potential to spread into or invade nearby tissues.
Cancer cells may form new tumors on different places of the body by using blood
vessels or lymph system. Normally, the immune system fights against abnormal cells
and remove them, but cancer cells are able to hide from the immune system. Possible
signs and symptoms include: a new lump, skin changes, abnormal bleeding, weight
loss, coughing or chest pain, unexplained weight loss, and a change in bowel
movements. While these symptoms may indicate cancer, they may also occur due to

other issues. There are over 100 different known cancers that affect humans.

2.1 Breast Cancer

Cancer that develops from breast tissue is called breast cancer. Either men or
women can get breast cancer. It affects one out of every eight women during their
lives. On American women, breast cancer comes after lung cancer on the highest
death rates, also comes after skin cancer on the most commonly diagnosed cancer

among all cancer types. There are several high-risk factors for getting breast cancer:

«  Gender (being a woman) and age (being old)
+  Gene mutations (BRCAL and BRCA2)
»  Beginning periods on early age or going through menopause on late age

» Having a family history who has been diagnosed with breast cancer

Other risks include not having children or having first child after age 30, being
overweight, long-term taking birth control pills, having dense breasts, continuous

exposure to electromagnetic fields and radiation, hormone therapy after menopause



etc. Symptoms of breast cancer vary from person to person actually it may not cause
any symptoms. Generally, the first sign is a new lump or mass in the breast. Here are

some unusual changes that can be symptoms of breast cancer:

+  Changes in the size or shape of the breast

+  Breast pain

« Bloody or normal flow from the nipple not like breast milk

*  Alump in the underarm area

»  Swelling on the breast

« Forms such as redness, bruising, scarring, vasodilation, inward depression,

common small swellings, orange peel appearance in breast skin

2.1.1 Breast Cancer Subtypes

Classification of breast cancer by applying new molecular techniques benefit
more accurate tests for the prediction of recurrence, developing new therapies and
personalized treatment. There are four major molecular subtypes of breast cancer that

researchers focused on:

*  Luminal-A: Most common subtype, 50-60% of all. Since Luminal A is under
group of luminal, it is high expression of hormone receptors (estrogen-receptor
and/or progesterone-receptor positive). Additionally, it is HER2 receptor-negative.
Voduc et al. (2010) claims that Luminal A tumors tend to have the best prognosis
among others. It has high survival rate and low relapse rate. Treatment of these

tumors often based on hormone therapy, sometimes response to chemotherapy.

*  Luminal-B: Comprises 10-20% of breast cancers. Like Luminal A, Luminal
B is also hormone-receptor positive. But Luminal B can be either HER2 negative or
HER2 positive. Compared to Luminal A tumors, Luminal B tumors have higher
histological grade, higher recurrence rate and lower survival rate, thus worse

prognosis. Its response to chemotherapy is higher than Luminal A.



+ HER2: HER2 gene products HER2 proteins. Healthy breast cells division,
growth and repairing are controlled by HER2 proteins. Protein overexpression and
gene amplification of HER2 causes breast cells grow out of control. HER2 type
stands for HER2-positive and accounts for 5-15% of breast cancers. HER2-positive
tumors are both estrogen-receptor and progesterone-receptor negative, generally poor
tumor grade and poor prognosis. HER2-positive breast cancers fairly have high
recurrence rate and spread. There are targeted drug options for HER2-positive breast

cancers treatment such as Herceptin, Kadycla, Perjeta and Tykerb.

+ Basal: ER-negative, PR-negative and HER2-negative are triple-negative
breast cancers. Kreike et al. (2007) defines triple-negative breast cancers as subtype
of basal, they can be surrogate for clinical stage. Women having BRCA1 gene
mutations tend to be basal breast cancers. About 15-20% of breast cancers are triple
negative/basal. Since lack of ER/PR receptors triple-negative/basal tumors do not
respond to hormone therapy. Targeted therapies except Herceptin, Kadycla or other

medicines can be useful for treatment options.

2.2 The Cancer Genome Atlas (TCGA)

The Cancer Genome Atlas (TCGA), collaboration between the National Cancer
Institute (NCI) and National Human Genome Research Institute (NHGRI), has
generated comprehensive, multi-dimensional maps of the key genomic changes in 33
types of cancer (Tomczak, Czerwinska & Wiznerowicz, 2015). The TCGA dataset
contains 2.5 petabytes of data describing tumor tissue and matched normal tissues
from more than 11,000 patients. It is publically available and has been widely used in

many research projects.

2.3 Gene Expression Profiling

In molecular biology, gene expression profiling (GEP) is a technique to measure

the activities of thousands of genes related with a specific disease or biological

process simultaneously.



Gene expression starts with transcription. Transcription refers to particular
segment of DNA copying into RNA molecule, which is called messenger RNA
(mRNA). In translation process with mRNA leading, gene product is synthesized.
The synthesized product is not always (sometimes functional RNA, small nuclear
RNA or transfer RNA) but usually proteins. Robertson (2014), expresses that a
person’s susceptibility to cancer can be ecasily determined by measuring the
expression level of cancer causing genes (oncogenes) or tumor suppressor genes in a
cell or tissue. Strong association with specific patterns in the cancer tumors gene
activity helps accurate tumor classification or accurate predictions of recurrence.
Useful for predictions of response to therapy with clinical outcome and a must for

targeted therapy. It is a challenging technology for pharmaceutical companies.

There are different technologies for measuring gene expression level such as DNA
microarray, massively parallel signature sequencing (MPSS), RNA sequencing
(RNA-seq) and serial analysis of gene expression (SAGE). RNA-seq technology has
advantages over others. It can work with any species and has bigger dynamic range
beside microarray. It consists of whole transcript sequences, but MPSS and SAGE
short parts of transcripts. In our study, our dataset includes RNA-seq data.

2.4 RNA-Seq Raw Data Generation

For building and maintaining of a cell, DNA is essential for the reason of
containing the necessary instructions. These instructions are organized into genes.
DNA must be copied into RNA to carry out these instructions. First DNA must be
read and transcribed into RNA. These gene readouts are called transcripts.
Transcriptome is the complete set of the transcripts under specific circumstances or
in a specific cell (Young, Gordon & Voigt, 2016). Transcriptome profiling is
practicable using next generation sequencing by applying high throughput methods.
By comparison of transcriptomes, we can determine the genes, which are expressed
in distinct cell populations differentially. And this yields personalized treatment

options, high survival rates against disasters.



Next-generation sequencing platforms enable sequencing very rapidly in high
accuracies. This makes RNA-sequencing technology a cheaper way, for
comprehensive analysis of transcriptomes. SOLiD, Sanger, Roche 454 genome
analyzer, lllumina Genome Analyzer, Helios, Pacific Biosciences and lonTorrent use
different high throughput methods at lower cost. High throughput refers to

parallelizing the sequence process, millions of sequences concurrently.

As seen on Figure 3.1, in a typical RNA-seq experiment, the first action to take is
choosing the suitable samples (M. O. Griffith, Walker, Spies & Ainscough, 2015). In
transcriptome analysis cDNA will be needed. For generating cDNA, RNA transcripts
should be isolated and purified. The main concern on conversion of RNA to cDNA is
cutting off Poly(A) tails of RNA transcripts. Next step is construction of fragment
libraries. Sequencing adapters should be added to cDNA. Based on size selection,
cDNA will be randomly fragmented. Then these cDNAs should be sequenced in
chosen sequencing platform. Sequencing platform will produce hundreds of millions

of short paired-end reads.

Samples of interest Isolate RNAs Generate cDNA, fragment,
size select, add linkers
N

),
Condition 1 Condition 2 %MW
(e.g. tumor) (e.g. normal)

Unsequenced RNA RNA reads
e

7
Short insert

100s of millions of paired reads
10s of billions bases of sequence

Figure 2.1 RNA-seq laboratory flowchart (M. O. Griffith, Walker, Spies & Ainscough, 2015).



2.5 Analysis of RNA-Seq Raw Data

Even there are many effective algorithms and bioinformatics tools, analysis of raw
RNA-seq data is still open for development. Data analysis RNA-seq involves five

steps:

e Quality check and preprocessing of raw reads
e Read mapping

e Read counting and gene quantification

o Data normalization and differential analysis

e Pathway enrichment analysis

e Visualization

2.5.1 Quality Check and Preprocessing of Raw Reads

Zhao et al. (2016) express that errors based on library preparation or sequencing
steps or untrimmed adapter sequences may cause poor-quality data reads. And this
will lead to low accuracies on data analysis. The reference genome data is stored in a
format named FastA (Figure 3.2). Raw read data is generated by sequencer platform
in a format named FastQ (Figure 3.3) which is sum of FastA and quality of reads.
Via available tools such as PRINSEQ, FASTQC quality control can be checked in

FastQ files and reads with low quality bases can be removed.

@SEQID-2:20:000000000-A61NM:1:1101:12299:1738 I:N:0:AGTTCC
TGCGTCATCATCTTTGTCATCGTIGTATACGCCCTGATGGCTGGTG
TGGTITTGGTTTGGIC

Figure 2.2 An example of FastA format.



@SEQID-2:20:000000000-A61NM:1:1101:12299:1738 1'N:0:AGTTCC
TGCGTCATCATCTTTGTCATCGTGTATACGCCCTGATGGCTGGTG
TGGTTTGGTITTGGTC

+

AAAAADAFFFFFGGGFGGFGGFHF GFHHF GAE GITIITIITIITIITIITIITIIIN

Figure 2.3 An example of FastQ format.

Tools like Cutadapt, Trimmomatic can be used for performing trim adapters, or

other contaminating sequences.

Bioconductor provides tools and R packages (Section 2.6) for the analysis of
genomic data. Quality control and preprocessing of raw reads can be done via

Bioconductor package “systemPipeRdata”.

2.5.2 Read Mapping

Short sequence reads must be aligned with respect to reference transcriptome a
genome assembly to find out their correct locations. There are many algorithms have
been developed such as TopHat2 (Kim et al., 2013), STAR (Dobin & Gingeras,
2015), GSNAP (Wu & Nacu, 2010), OSA (Hu, Ge, Newman & Liu, 2012) and
MapSplice (Wang et al., 2010).

There are different packages available on R-Bioconductor for alignment process,
e.g., “TopHat2”, “Rsubread”.

2.5.3 Read Counting and Gene Quantification

To simply say, it is counting reads per feature/gene. There are two approaches for
counting reads, one is transcript-based approach and the other one is union-exon
based approach. Researchers indicate that for the reason of a gene expressed in one
more transcript isoforms, transcript-based approach is more meaningful (Zhao, Xi et

al., 2015). But it is also more difficult because of different isoforms of the gene



typically having a high proportion of genomic overlap. Different kinds of algorithms
that can be performed such as RSEM (Li & Dewey, 2011), Cufflinks (Trapnell et al.,
2011), ISOem (Nicolae, Mangul, Mandoiu & Zelikovsky, 2011), featureCounts
(Liao, Smyth & Shi, 2014) and HTSeq (Anders, Pyl & Huber, 2014).

“GenomicRanges” package is easy to use in R for these processes.

2.5.4 Data Normalization and Differential Analysis

Normalization is critical step to inference accurate gene expression after
calculating read counts. Total number of aligned/mapped reads (library size) varies
between different samples, for that reason we can not compare the different samples
directly. We need to normalize library size. Scaling total number of read counts by
the mean library size and then taking the log,, we can approximate library size.
Therefore, genes of a sample having high differences compared to a sample evenly
distributed will have lower expression and differentially expressed genes fail count
will decrease. There are existing algorithms for identification of differentially

expressed genes but there is still no optimal solution accepted among them.

“DESeq”, “NOIseq”, “NBPSeq”, “rnaseqGene” are available packages in R for
differential analysis.

2.5.5 Pathway Enrichment Analysis

By applying pathway enrichment analysis on differentially expressed genes, we
can get more details about their biological activities. Annotation databases such as
DAVID system (Huang, Sherman & Lempicki, 2009), Gene Ontology (Gene
Ontology Consortium, 2004) and Kyoto Encyclopedia of Genes and Genomes
pathways (Kanehisa, Goto, Kawashima, Okuno & Hattori, 2004) are available tools

for functional enrichment analyses.

“topGO” package can be used in R for gene set enrichment analysis.
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2.5.6 Visualization

RNA-seq data is very large, complex and abstract. The analysis of RNA-seq data
is still open to development. There are available tools providing graphical user
interface helping to visualize the dataset, plot the statistical results. Integrative

Genomics Viewer is a high-performance visualization tool.

There are different packages on R for visualization such as “ggplot2”, “grammar

of graphics”, “rgl”.

2.6 Literature Review

There are many research projects on breast cancer classification.

Kim et al. (2012) used Support Vector Machines (SVM) for training over 679
patients clinical, pathologic data; the method was validated via hold-out method and

obtained 89% accuracy.

Researchers similarly trained a SVM over 547 patients, they obtained 95%
average accuracy by applying 10-fold cross validation (Ahmad, Eshlaghy,
Poorebrahimi, Ebrahimi, & Razavi, 2013).

Listgarten et al. (2004) used again SVM for training SNPs data of 174 patients,
applied of 20-fold cross validation and got 69% accuracy.

In their study, researchers trained a Bayesian Network for 97 patients, 85%
accuracy was reported by using hold-out method (Gevaert, De Smet, Timmerman,
Moreau & De Moor, 2006).

TCGA (Cancer genome atlas network, 2012) investigated breast cancer subtypes

by incorporating information from multiple platforms, i.e., genomic DNA copy
number arrays, DNA methylation, exome sequencing, mMRNA arrays, miRNA

11
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sequencing and reverse-phase protein arrays. By classifying tumors using each
individual platform and comparing results at different levels, they conclude that
diverse genetic and epigenetic alterations converge phenotypically into four major
breast tumor subgroups (i.e., luminal A, luminal B, HER2 positive, triple negative)
using mRNA profiling. There exits research on TCGA dataset to predict patients’
subtypes.

List et al. (2014) used gene expression and DNA methylation data from TCGA.
Along with these data, TCGA provided a subtype classification of all gene
expressions sample via the gold standard PAM50. Using a 543 patients data they
created four models which include gene expression, DNA methylation, gene
expression and DNA methylation combined (DNA methylation columns added to
gene expression data) and PAMS50 gene expression. They ran Random Forest on each
model and after validation with 0.632 bootstrap error, the gene expression model
performed best with a very low bootstrap error of less than 10% and an AUC of close
to 100%, which was also the case for the combined model and the control model.
The methylation model performed slightly worse, achieving a bootstrap error of 20%
and an AUC of 88%.

Another publication using TCGA data proposed a subgroup-specific-gene-
centering method to perform molecular subtyping on a study cohort that has a
skewed distribution of clinicopathological characteristics relative to the training
cohort (Zhao, Redland et al., 2015). On such a study cohort, they center each gene on
a specified percentile, where the percentile is determined from a subgroup of the
training cohort with clinicopathological characteristics similar to the study cohort.
They demonstrated their method using the PAMS50 classifier and its associated
University of North Carolina training cohort. On that training cohort, triple-negative
cohort was subset of TCGA breast data. There were samples of 77 patients.
Compared to the standard gene centering, subgroup-specific’s overall prediction
accuracy range was 17% to 33% across the five intrinsic subtypes. On the UNC
triple-negative subgroup their method produced 11% (1/9) error rate on basal-like

tumor classification, which standard-gene centering had a performance 56% (5/9).

12



Ali et al. (2014) have developed an expression-based method for the classification
of breast tumors into the IntClust subtypes. They applied the method on public
datasets of breast tumor transcriptomes to investigate the validity of IntClust. One of
the dataset they used was containing gene expression data of 475 patients based on
either RNA-seq or microarray from TCGA. Cross-tabulations of subtype assignment
with Kappa-agreement statistics, by data type (RNA-seq or microarray) performed
for each of the three classifiers (SCMGENE, PAMS50 and IntClust). The agreement
between classifiers was 93.1% for SCMGENE, 93.7% for PAM50 and 81.3% for
IntClust.

13



CHAPTER THREE
DATA PROCESSING AND METHODS

3.1 Dataset

Dataset used in this thesis includes RNA-seq gene expression data of 418 breast
cancer patients and 3 healthy people obtained from TCGA. Genes are coded by
Entrez identifiers that allow us to get more information about a specific gene in the
NCBI website (http://www.ncbi.nlm.nih.gov/gene). Patients’ identities are hidden.
We have the information of breast cancer subtypes (Luminal A, Luminal B, Her2,
Basal) of each patient. In the data processing, we removed the genes whose
expression could not be measured in the sequencing experiment. Those values might
affect the performance of machine learning techniques negatively. Then the
remaining gene count decreased from 20531 to 13259. Table 3.1 shows how looks
like the last version of the dataset. Columns except gene symbol and entrezid are
encoded names of the patients which are totally 421. And rows are gene expression
value of these patients. Genes having negative value are downregulated, positive
ones are upregulated. Downregulation means that the related gene product, protein,
for the patient is decreased. Vice versa upregulation means protein increased. We
used 70% of patient samples for training and 30% for testing.
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Table 3.1 A snapshot of dataset extracted from TCGA.

GeneSymbol EntrezID TCGA.ALAOSK.01A.12R.A084.07 TCGA.ALAQSO.01A.22R.A084.07 TCGA.A2.A04P.01A.31R.A034.07
AlBG 1 6,43702E+14 8,19519E+14 6,76487E+14
GGACT 87769 8,65885E+14 6,67188E+14 6,47007E+14
AZM 2 1,20325e+14 1,19992E+14 1,31823E+14
AAGALT 53947 6,31715E+14 5,21095E+14 7,2328E+14
AAAS 8086 9,98745E+14 9,16413E+14 9,6676E+14
AACS 65985 1,12418e+14 8,98555E+13 9,82025E+13
AADAT 51166 8,73396E+14 9,64868E+14 6,22282E+14
AAGAB 79719 1,09364E+14 1,043E+14 9,13356E+13
AAKL 22848 8,99771E+14 9,40236E+14 9,4366E+14
AAMP 14 1,06036E+14 1,09862E+13 1,13824E+14
AARS 16 1,14801E+14 1,13731E+14 1,12736E+14
AARS2 57505 8,4556E+14 9,92146E+14 9,61392E+14
AARSDL 80755 8,72105E+14 8,51912E+13 9,30315E+14
AASDH 132943 8,08067E+14 8,74228E+14 7,6786E+14
AASDHPPT 60496 1,0649E+14 1,1339E+14 9,17572E+13
AASS 10157 5,63793E+14 7,8527E+14 7,64908E+14
AATF 26574 1,07435E+14 1,03755E+14 9,74377E+14
AATE 9623 3,90401E+14 7,13881E+13 3,62412E+14
ABAT 18 3,85771E+13 7,3797E+14 6,07526E+14
ABCAL 19 9,70375E+13 8,30745E+14 8,08632E+14
ABCA11P 79963 6,58946E+13 5,68133E+13 7,03263E+14

3.2 Feature Selection Methods

Feature selection, also named variable selection or attribute selection is a
technique to select subset features that are most useful on predictive models.
Features, columns in a tabular data, that are irrelevant or redundant may not
contribute to the accuracy of predictive model but also may decrease the accuracy
performance. There are three benefits of feature selection method. First is improving
the predictive performance of selection models. Second is making more
understandable of the process of generated data. Third is providing faster predictors
for train sets (Guyon & Elisseeff, 2003). Feature selection should be performed on

after model selection and before model is trained.
Feature selection methods are applicable on large datasets in supervised or

unsupervised machine learning. In the fields of bioinformatics, feature selection

technique has become a prerequisite to apply on large datasets for model building.
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In our study, we applied two selection features to our predictive model, principle
component analysis and t-Test & Fold Change separately. In fact, feature selection
methods do not mean dimension reduction like principal component analysis does.

But it is accepted as a means of feature selection.
3.2.1 Principal Component Analysis

Principal Component Analysis (PCA) is an algorithm used to reduce the
dimensionality of the data by creating new variables, principal components, which

are linear combination of existing features to explain maximum variance.

PCA is an orthogonal linear transformation (Jolliffe, 2002). It transforms data to a
new coordinate system in which the new coordinates of the system are called
principal components. The center of data points is the origin of new coordinate
system. The first principle component points the direction of highest variance. The
second points the direction of second highest variance and so on. Even most of the
time dimensionality reduction is meaning loss of information, it is possible to just
losing only a commensurately small amount of information by using only a few

components.
Processing steps of PCA are:
1. Standardize the data
Subtract the mean

Calculate the covariance matrix

2
3
4. Calculate the eigenvalues and eigenvectors of the covariance matrix
5. Choose components and form a feature vector

6

Derive the new dataset

PCA has been applied in many fields such as taxonomy, biology, pharmacy,

finance, agriculture, ecology, health and architecture (Sanguansat, 2012).
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We used the “FactoMineR” R package to apply PCA. On each fold, we run PCA
function on train data. Dimdesc function is performed after PCA function. For
dimdesc function parameters, we set the significance threshold to 0.05, which means
95% confidence and we set correlation coefficients threshold big or equal to 0.7.
With these options, the genes existing on the first five principal components are
selected. Before applying PCA, train set had 13259 dimensions(genes). Even its
count changes according to the train data, we were able to reduce the dimensions. On
the first principal component we obtained most of the genes ~158. The genes count
on the five principal component varied between 165 and 328 on different folds of

cross validation.

3.2.2 Fold Change & t-Test

Fold change (FC) is the quantity change ratio between two values, shortly final
value divided by initial value. Fold change is commonly used in bioinformatics
mostly for gene expression change measurement but the ratio is calculated in log,.
Consider there are 100 reads count in a control and 200 reads count in a treatment for
a gene. The FC value of that gene becomes 2 FC. If it is bigger than 0, then this gene
shows an over-expression in the treatment case. But when it is other way round,
reads count in a control is higher than treatment, FC value always will be negative.

FC value is calculated as:

Patient Sample

FC=log2 Healthy People Sample

(3.1)

t-Test is used to compare two sets of data samples whether they significantly
differ from each other or not. t-Test makes this comparison by the means of two

groups. t-Test tries to explain the mean of two groups statistically different or not.
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Figure 3.1 Control and treatment groups distributions in different scenarios.

As seen on Figure 3.1, the difference between the means are the same in all but
their variation distributed differently. In high variability case, the groups difference is
not much as others due to distribution overlap. t-Test considers the difference

between the two groups means relative to their variance distribution (3.2).

t = difference between groups / variability of groups (3.2)

We can tell that variability of groups is equal to standard error of the difference
(Trochim, 2006). Standard error is calculated taking variance of each group and
dividing it to the group’s items count. Then we sum these values and take square root

of this value (Equation 3.3).

Xr—Xc
varr N varc
nr nc

(3.3)
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The result will be negative if the first group is less than the second group. The
general concern is to define a confidence threshold for the value of the ratio which is

0.05. It means with confidence 95%, the groups significantly differ from each other.

We performed Fold Change and t-Test together as a feature selection method. On
each fold, 70% of patient samples are randomly selected as a train set. We used
“genefilter” R package and ran “rowTTest” function to apply t-Test. After selection
of the train set, iteratively we applied t-Test to every patient on the train set. We
created a matrix which consists of three healthy people and one of the patient’s gene
expression data. We passed two parameters to “rowTTest” function. One of them
was matrix data itself and the second one was class labels. Healthy people are
marked as “Class1” and the patient is labelled as “Class2” in that class labels. Since
column count of the matrix and labels count are equal, we can perform t-Test on row
level. Thus we were able to measure every gene expression change for each patient.
On the results of “rowTTest” function, if the p-value (i.e., t-test outcome) is equal or
smaller than 0.01, this gene was chosen as a significant one. On the same iteration,
we applied FC by using “gtools” R package as well. We provided the mean values of
healthy people samples and the cancer patients’ samples to the FC calculation. The
genes, whose absolute FC value is equal or bigger than 2, were marked as significant
ones. We chose the genes which satisfy both criteria at the end of the iteration. Those
genes were called as significant genes of the experiment. We reduced the dimension
(i.e., total number of genes) of the train set by choosing only significant genes. In this

way, it will be faster and more accurate to train machine learning methods.

3.3 Machine Learning Methods

By performing feature selection methods, we selected significant genes. Now we

can train our data with machine learning methods to build our predictive model.

Then we will test our model on unseen data and measure its accuracy performance.
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3.3.1 Support Vector Machine (SVM)

SVM is a machine learning method that can be used in both classification and
regression. Supervised learning refers to labelled data. Otherwise data without class

labels requires unsupervised learning approaches such as support vector clustering.

A SVM model differentiates two classes. SVM tries to find an optimal hyper-
plane to segregate the classes by using support vectors. The distance between classes
is important to minimize the classification errors. Acc