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HARDWARE BASED SIMULATOR FOR COUPLED ARRAYS OF
PENDULUMS

ABSTRACT

In this thesis, we have investigated coupled identical dynamical systems embedded
in a field programmable gate array in order to accelerate solution of associated
ordinary differential equation. The numerical solutions of ODE requires iterations
that form an algebraic loop. This study shows that the parallel computing ability of
field programmable gate array becomes economical after a certain number of coupled

nodes.
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KUPLAJLI SARKAC DiZiSiNIN DONANIM TABANLI BENZETIiMi

0z

Bu tezde birden ¢ok 6zdes dinamik sistemin sahada programlanabilir kap1 dizisi
tizerinde gerceklenmesi ¢alisildi.  Adi tiirevli denklemlerin ¢oziimleri sahada
programlanabilir kap1 dizisi ile hizlandirilabilir. Adi tiirevli denklemlerin sayisal
coziimleri cebirsel dongii igeren iterasyonlar gerektirir. Bu calisma ayni sistemin
kisisel bilgisayarlara nazaran ka¢ diiglimden sonra FPGA ¢6ziimiiniin daha hizh

olacagini da 6ngérmektedir.

Anahtar kelimeler: Fiziksel sistem aglari, Kuplaj, Alanda programlanabilir kap1 dizisi

uzerinde adi turevli denklem.



CONTENTS

Page

THESIS EXAMINATION RESULT FORM......ccoiiiiiiiiiiiiiiiiiieeeiiieieeeeeeee e i
ACKNOWLEDGEMENTS ...ttt il
ABSTRACT ..ottt e e v
OZ oo \%
LIST OF FIGURES ..ottt e e viii
LIST OF TABLES. ..ottt ettt e e e e e e e e e et aeeeeeeaeens X
CHAPTER ONE — INTRODUCTION......ccccttiiiiiisrrrrrnnnnneeeeeescccsssssssssssssseeesssees 1
1.1 Introduction to NetWorkss .......coouiiiiiiiiiiiiiiiiiiii e 2

1.2 Field Programmable Gate ATTayS.........cceeeevuriiiieeeerreiiiiieeeeeeeeeiiieeeeeeeeennennns 4
1.2.1 Special DSP48A1 slices for Xilinx Spartan 6...........ccccceeevvvnnvuiienenneee. 4

1.2.2 Hardware Description Languages (HDLS) ............coooviiviiiiiiiiiiiiiiiiiinns 5

1.2.3 Selection of Arithmetic Coding...........ccoeevviviiiiiiiiineieiiiiiiiee e, 6
CHAPTER TWO - FPGA IMPLEMENTATION OF FUNCTIONS........ccceeuuee. 8
2.1 Maintaining @ DeSiZN SEIVET ........cceeiiiiiiiiiiiiiiiiiiiiiieeeee e e e 8
2.2 Calculation of Sinusoidal Functions in FPGA...........cccccccovniniiiiiiiiicnnnnn. 8

2.3 The CORDIC AlOTithim.........ouuuiiiiiiiiiiiiiiiee e 9
2.4 The CORDIC Sine and COSINE ........euuueueemriiiiiiiiiiieiere e e e e eeeeeeeans 12
2.4.1 Four Quadrant Converging DesSign .............ccvvvvuiieeeeeeiriiiiiieeeeeeeeeennens 12

2.4.2 DESIZN SUMIMATY ...vetiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeaeeeeeeeeeeeeeeeeeeeeeeeeeeeeaaeene 14

2.4.3 DESIN CIILETIA ..vvvvriiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeeeeeeeeeeeeeeeerereeaaeae 15

CHAPTER THREE - ON CHIP DYNAMICAL SYSTEMS SOLVING

ALGEBRAIC LOOPS ... eveetteeteieeecreecrsecesscesscsssssssssssssssssssssssssssssssssssssssssssssses 17
3.1 Initialization Of The ODE States ......ueuuiineineie e 18
3.2 A Random Number Generator for FPGA ......co.vveniieiieie e, 18

vi



3.3 Case 1: Analytic Solution is Available .............ccceviiiiiiiiiiiiiiieeeeeeeeeeeeeeene, 20

3.4 Case 2: Analytic Solution is not Available ............ccccceeeeeiiiiiiiiiiineeeeeen, 22
3.5 Considering Multiple Linear Dynamical Systems ...............cccvvveeeeeeeenrnnnen. 25
3.6 Multiple Dynamical Systems with a Nonlinearity ...........ccc.eeeeeeeeieiiinnnnnnnn. 28

3.6.1 Implementation of Difference Equations with Trigonometric Functions29

3.7 FPGA Implementation of Star Network ............cocovviiiiiineiiiiiiiiiineeeeeeeeeien, 30
3.7.1 Comparison with Sequential Programming ...............cccccceeeeeeeerrnnnnnn. 30
CHAPTER FOUR — CONCLUSION...ccccittiiiiiiiinnnsssnnneeeeeiiesssssssssssssssssssssssssses 36
REFERENCES ......coiiiiiunneeiiiiiininiiiisssssssssscesissssssssssssssssssssssssssssssssssssssssssasssss 37
APPENDICES .....ciiiirnntiiiitiiniiiiiissinnnseteeeeessssssssssssssssssssesssssssssssssssssssssene 40
A.1F = 31 Bit N = 20 Iteration CORDIC Block With Algebraic Loop ........... 40
A2F = 31 Bit N = 20 Iteration CORDIC Unrolled Design..............ccccccceeennn. 44
A.3F = 31 Bit N = 20 Iteration CORDIC Test Bench...............ccceeeeeeiil. 47
A.4] + F = 24 Bit Random Number Generator Module ..........................o. 48
A.51 + F = 24 Bit Absolute Value Calculator............coooeviiiiiieinini 50
A.61 + F' = 24 Bit Single Pendulum Module ............cccoooiiiiiinnnn 51
A.71 + F = 24 Bit Six Node Coupled Pendulum Solver Module..................... 54
A.8MATLAB™Code FOr COMPATISON ....uvvvvveiiiiiiiiiiiiiaeaeaeaeeeeeeeeeaeaeaeeaaaannns 59
A.9C Code For Comparison IEEE754-32 ........ciiiiiiiiiiiiiie e, 62
A.1Q Code For Comparison [ = 2, F' = 29 Signed Fixed Point...................... 67

vii



LIST OF FIGURES

Page
Figure 1.1 Five different network examples ............ooooeiiiiiiiiiiiiiiiiiiiiiiiiin 2
Figure 1.2 FPGA SIIUCTUIE ....cooieieeeeeeeeee s 3
Figure 1.3 Logic Cell StIUCIUIE. .....ccovviiiiiiieeiiiiiiiiie e e e 3
Figure 2.1 The TOtation .........ueeiiiiiiiiiiiiiiiiieteceee e e 10
Figure 2.2 Unrolled sine cosine CORDIC processor..............eeeeeeeeeeeeiriniivieveeneen. 11
Figure 2.3 Sequential CORDIC rotations amounts arctan 2% ................c.cceeueenn.n. 12
Figure 2.4 Output waveforms and error plots. ........ceeeeeeiiiiiiiiiiieeeiiiiiciee e 16
Figure 3.1 The algebraic loop of the ODE.............ccooiiiiiiiiiiiiiieeeee e, 17
Figure 3.2 Unrolled x; 11 = Fay(2;) SUCLUIC. ..cvvviiiiiiiieeiiiie e 17
Figure 3.3 32-bit LFSR schematic. ............ouuiiiiiiiiiiiiiiiiiieeeeeee 19
Figure 3.4 Output waveform of the 32-bit LSFR random number generator. .......... 19
Figure 3.5 ODE with analytic solution and its implementation............................... 20
Figure 3.6 Unrolled feed forward circuitry to compute 1 — €™ .......ouvevevenennninnnnnnnnn. 21
Figure 3.7 Iterative circuit of the dynamical system of Figure (Figure 3.5)............. 23

Figure 3.8 Unrolled iterative circuit of the dynamical system of Figure (Figure 3.5)23

Figure 3.9 Iterative circuit of the dynamical system of Figure (Figure 3.5)............. 24
Figure 3.10Two independent RC model implemented in parallel............................ 25
Figure 3.11Two coupled RC model implemented in parallel (I).............cccceeeeeennnnn. 26
Figure 3.12Two coupled RC model implemented in parallel (IT) ............ccccuveeneneee. 28
Figure 3.13Two node synchronization. ..............cccceeviiiiiiiiiiiiiiiiiiiiiiiiiiiiieen 32
Figure 3.14Four node star and six node star synchronization.................cccccceceeennnn. 33

viii



LIST OF TABLES

Page
Table 1.1 32 bit IEEE754 standard coding examples...............ceeeeeeriiiiiiiiineeeeeeennnnnn. 6
Table 2.1 Unrolled design vs. algebraic loop design using DSP48A1 or not ........... 14
Table 2.2 Unrolled design vs. algebraic loop design using pipelining or not ........... 15
Table 3.1 Comparison of design SUMMATIES. ......cccceerrrrrrmrriiiiiiiereeeeeeeeniriiiiieeeeeee 31
Table 3.2 Comparison of design summaries 16 bit...............oovvvviiiviiiiiiiiiiiiiiinnnnnn. 34
Table 3.3 Mean time needed for one iteration to be completed on PC..................... 34

X



CHAPTER ONE
INTRODUCTION

Use of Field Programmable Gate Arrays (FPGA) in solving computation problems
are encountered in many different fields of the science and engineering where fast
computations are required. In those cases, specific and dedicated hardware is
developed to achieve a faster solution. During the solution of a computational
problem, instead of using a general purpose microprocessor with a central processing
unit (CPU), FPGA implementation of the problem introduces parallel computing
improvements in the target arithmetic. For example, implemented finite impulse
response image filtering on an FPGA circuitry works much faster compared to the

one implemented on a CPU that works sequential than parallel (Nelson, 2000).

In this thesis, we use FPGA to implement a dedicated Ordinary Differential Equation

(ODE) system solver for linearly interconnected network of rigid physical models.

When compared to the analog computing solutions, FPGA implementation
requires discretization of the problem, if the problem is continuous by nature. This
situation has both advantages and disadvantages. The first well-known advantage is
that discrete systems are much more robust to noise that is compared to analog
systems. Secondly, the used elements in an analog computer have tolerances which
are another source of error. On the other hand, the disadvantage is that discretized
systems have quantization error. Specific to the ODE problems, the quantization error
is multiplied in the difference equation of the ODE, where calculation of evolution of
system states take place (Mathews, 1992). Sometimes this error can undergo a rather
spread mapping of the difference equation and the obtained solution becomes
intolerably erroneous compared to the exact solution, though the difference equation
is Lipschitz continuous. When the solution of the ODE is analytic, the solution is
exact and the difference equation is used once to obtain the final state of the system
and the solution can be converted to a fully feed-forward circuit as a desired situation.
For most of the ODE systems, an analytic solution does not exist in general and the

solution comes in the form of iterations of the difference equation.
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Figure 1.1 Five different network examples

1.1 Introduction to Networks

A network is a structure that consists of interconnected elements, where the nodes
represent the elements of the system and edges represent the interactions between them
(Caldarelli, 2012). The world wide web and its own dynamics can also be represented
as interconnected computer nodes that leads to a network. The biological systems, for
example a community of ants, can be described as network that is interconnected by
means of their internal communication by pheromone (Dorigo, 1992). Furthermore,
in living cells molecules radiate communication signals to each to sustain tissular life
(Ernst, 2004). All can be modeled mathematically and in the end these examples leads
to network of nodes and vertices. Usually, networks are presented by graphs. Some
network graph examples are given in Figure (Figure 1.1). This study aims to design
systems as an analogy to such networked systems by means of Field Programmable

Gate Arras (FPGAs).
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Figure 1.2 FPGA structure: LUT-FF pairs stands for logic cells that is consisted of Lookup Table and
Flip Flop pairs. The inside of a LUT-FF is as shown in Figure (Figure 1.3).
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Figure 1.3 Logic cell structure, 4-Input, clk, M and D can be routed to other LUT-FF by programmable
interconnects shown in Figure (Figure 1.2), The inside of the LUT and FF, the initial values are
determined after power on reset this is also programmable. Furthermore M determines whether this

LUT-FF pair is used as a combinational LUT circuit or a combinationally feed FF circuit.



1.2 Field Programmable Gate Arrays

FPGAs are semiconductor devices which are an array of configurable logic cells
connected via programmable interconnects. The logic cells form the main structure of
FPGAs. A logic cell consists of one Look-up Table (LUT), one D-flip flop and one
2 x 1 multiplexer. Figure (Figure 1.3) shows a logic cell with four input LUT. LUTs
are actually small random access memories that fulfill logic operations. By the
combination of thousands of logic cells, complex and large functions can be
implemented. The prog-
ramming interface used to create logic functions is called Hardware Description Lan-
guage (HDL). FPGAs can be reprogrammed to desired application or functionality re-
quirements after manufacturing. This feature distinguishes FPGAs from Application
Specific Integrated Circuits (ASICs), which are custom manufactured for specific

design tasks.

There are several companies' with many different configuration boards* commer-
cially available with different input output (IO) units on-board. Character LCD,
Analog digital converter, digital analog converter, LED lines, switch lines, buttons,
video graphics array output jack, AC97 controller, general purpose IO etc, are some

of available optional peripherals.

1.2.1 Special DSP48A1 slices for Xilinx Spartan 6

The DSP48A1 slices are special slices that support many independent functions,
including multiplier, multiplier-accumulator (MACC), pre-adder/subtracter followed
by a MACC, multiplier followed by an adder. The architecture also supports
connecting multiple DSP48A1 slices to form wide math functions, DSP filters, and

complex arithmetic without the use of general FPGA logic (Xilinx™, 2014).

! Altera and Xilinx
2Virtex, Spartan and Stratix series etc.



1.2.2 Hardware Description Languages (HDLs)

Digital circuit design is advancing rapidly in recent few decades. At the very
beginning of this phenomenon the first digital circuits was consisting of vacuum
tubes. After the invention of transistor in 1947 those circuits become in solid state
transistors. As the years past, integrated circuits (ICs) are inverted and much more
complex digital circuits are produced and those ranging from small scale integration
(SSI), medium scale integration (MSI), large scale integration (LSI), very large scale
integration (VLSI). According to the Moore’s Law, the amount of integration is
doubled every two years. During this improvement computer technology is also
improved and Computer Aided Design (CAD) has become a key point of IC design.
With the aid of computer designers started to design at the gate level designs which is
one above of the transistor level. CAD is also used in placing circuit templates and
routing of the signals in the design. At the gate level design, use of different CAD

commands of different designers make those commands become standardized.

At last but not least, HDLs provides many beneficial features to the designer,

1. Designs depending on HDLs made abstracted and they do not have to be trans-

ferred on to an FPGA or IC production flow,

2. Designs that are done with HDLs can be easily simulated before production and
most of the design faults at the gate level can easily be detected and fixed

immediately before production.

3. Many manufacturer builds HDL libraries and cores that makes designers’ job

easier.

Verilog is an implementation of HDL which has a syntax much alike to C programming

language. In this thesis, I preferred Verilog.



Table 1.1 32 bit IEEE754 standard coding examples.

N 56766656463626160 Mooy - - - My

E M
0.000000 || 00000000000000000000000000000000
1.000000 || 00011111110000000000000000000000
1.500000 || 00011111111000000000000000000000
-2.000000 || 10100000000000000000000000000000
-3.000000 || 10100000001000000000000000000000
4.000000 || 00100000010000000000000000000000
6.666666 | 00100000011010101010101010101010
8.000000 | 00100000100000000000000000000000
10.000000 || 00100000100100000000000000000000
11.000000 || 00100000100110000000000000000000

1.2.3 Selection of Arithmetic Coding IEEE754 or Signed 2°s Complement

In digital systems where arithmetic operations are carried out, there should be a way
of holding the information. This is commonly done either by coding the values into a
binary signed 2’s complement system or using IEEE754 floating point standard. There
are 16 bit (half-presicion), 32 bit (single precision), 64 bit (double precision), 128 bit

(quadruple precision), and 256 bit (octuple precision) implementation of this standard.

In our design, we selected to use signed 2’s complement coding. Since Xilinx tools
do not provide a debugging interface for IEEE754 numbers, we would have to build
an interpreter or transfer the numbers into the computer to interpret them.
Additionally, the resultant arithmetic circuitry of ODE solver will be too large
compared to the signed 2’s complement one. Furthermore signed 2’s complement
coding is also primarily supported in both Verilog and VHDL as well as other HDLs
at the software level. Besides that Xilinx ChipScope™is able to deal with signed 2’s

complement numbers and plot them.

The IEEE754-32 standard it is widely used for coding in computer systems where
the most significant bit of the number is sign bit S the trailing 8 bits denotes exponent £

and the remaining 23 bits stands for mantissa M and the number NV is coded as follows;



N = (1) x 28712T x 1. M (1.1)

Fixed point numbers include an integer part [ and a fraction part F' in addition to

the sign bit S, e.g. signed [ = 3, F' = 28 fixed point numbers are defined as follows:

N :S bgblbo b,1 e 6728, (12)
S~ ——
I1=3 F=28

where the most significant S is the sign bit, bob, by is the integer part I and trailing

b_1b_o - - - b_og is the fraction part F', i.e.

2
N=(-1)% > b2". (1.3)

1=—28

In this thesis, coupled identical dynamical systems are implemented on an FPGA
kit with different data encoding and different number of nodes in the system. The
measurements are done with ChipScope™ChipScope™is a programmable measuring
environment that picks measurements from the debugged circuit on FPGA to the
computer side via the download cable. The second investigation is whether we ac-
celerate the solution of ordinary differential equation on FPGA although numerical
solutions with iterations that are in the form of algebraic loops. Third investigation is
that after how many nodes we can compete with a personal computer solution of the
same problem. We will also show that the parallel computing ability of FPGA
becomes economical after a certain number of nodes when compared to sequential

programming.



CHAPTER TWO
FPGA IMPLEMENTATION OF FUNCTIONS

2.1 Maintaining a Design Server for both Local and Remote Access

The FPGA development kits are electronic boards that can be easily get damaged
during a transportation or set up and remove operation due to static electric. In order
to use the board from a remote location, we set up a design server that has a public
Internet Protocol (IP) address. Then we installed Xilinx tools as well as a Secure
Shell (SSH) server software and a Virtual Network Computation (VNC) server
software on the server. The result is remotely accessible design and debug
environment. However if the programmed circuitry uses the peripherals such as
buttons or switches you can not use them remotely, nevertheless there is a design core
of Xilinx called ChipScope™Virtual Input Output (VIO) that emulates both switches
and buttons during running the programmed circuitry. Besides from gathering
information from the board via computer ChipScope™has this VIO core emulates
input and output from the computer side. Since we can not build a ODE solver circuit
from a totally isolated from environment there must be a signal that initializes states

of the ODE system, this operation is done by using VIO core.

2.2 Calculation of Sinusoidal Functions in FPGA Environment

In designing ODE solvers in FPGA environment, we have to think about advanced
calculations of functions due to the fact that many nonlinear continuous or discrete
systems, especially physical models consists of them. The trigonometric functions i.e.

f(z) = sinz or f(x) = cosx are widely used ones.

A digital implementation of sine and cosine functions can be in the form of a look
up table. This is the fastest available method, however this implementation uses too

much resources when compared to other methods and (—m, 7| domain has to be



sampled/discretized in addition to using discrete numbers which is not desired in

ODE solutions.

The Coordinate Rotational Digital Computation (CORDIC) algorithm does not need
such a discretization (Arbaugh, 2004). It iteratively calculates the sine and cosine value

of the input angle with multiply and add (MAD) operations.

We both tested those iterations in the form of a feed forward unrolled design and the
one that forms an algebraic loop. The algebraic loop structure that uses less resources
than unrolled method where the internal states are to be hold in update registers, which

results in set up and hold times and need of a clock that slows the design.

In the unrolled design, we tested the algorithm with fixed point data encoding with
31 bits denoting the fractional part for 20 iterations. The combinational path length
is proportional with carried out number of iterations. The combinational path works
feeding the angle 6 in radians and the result appears at the output stage as cos 6 and sin ¢
values. The one that contains an algebraic loop differs on the point of internal states
cos 6; and sin @, are kept in update registers which are updated sequentially without
conveying the middle steps of the iterations to a next stage of a new layer of forwarding
hardware; which in turn helps to save the resources indeed. Atthe same time throughput

is reduced due to repeating set up and hold times of the registers in the loop.

2.3 The CORDIC Algorithm

Consider the rotation of a point in two dimensional coordinate system as shown
in Figure (Figure 2.1), Equation (2.1) denotes the rotation of the point [z, 1, y,_1]
to [, y,]? with the one-to-one onto linear transformation matrix as shown in Figure

(Figure 2.1).



Figure 2.1 The rotation

Tn cos —sinf| |z,—1
= (2.1)
Yn sind cosf Yn_1

The rotation matrix in Equation (2.1) can be re-written as in the following form by

. . . . . . _ 1 _ tan0 .
making use of the trigonometric identity sinf = Worrer and cosf = TirnTo which

substituted in Equation (2.1) to yield:

Tn, 1 1 —tanf| |z,
S . (2.2)
Un V1+tan?60 |iang 1 Yn1

If the rotations going to be carried out are considered using the transformation

tan 6, = 27" for each rotation, the following equation set can be written.

Tn 1 —0p_127" 0 Tp_1
1
n = 0,127 " 1 0 e
Y m On—1 Yn—1
0, — 0,1 0 0 V1+22¢g, ;| |arctan2™"
(2.3)

10



Zo 1 1, 0, <06

Yo| = |0 On = —1, 0, >0 (24)
0o 0 0, otherwise
o Yo

arctan 2~ ()

l>>nfll l>>nfll

Figure 2.2 N iteration unrolled sine cosine CORDIC processor, at the last layer a Ky scaling is needed
to make sure that z,, = cosf,,, and y,, = sin6,,.

Equation (2.3) and (2.4) gives the whole algorithm. Beginning from the initial
condition [xg, Yo, 0o]" = [1,0,0], each 6,, value is compared to the input angle 6 to
predict the right direction for the next turn with a smaller angle arctan2™". Since
there exist no calculator for an arc-tangent function, arctan 27" is simply embedded in
a logical table. The resultant angle 6,, is within the neighborhood of the input angle ¢
with a maximum error of & arctan2~" for N iterations. However, the scaling factor
Ky = [T, ﬁ has to be taken into account to obtain a correct answer. As in
the case of the arctan 27" numbers, that factor can be easily called from a look up
table circuitry as well. The algorithm is called as a shift-add (SAD) algorithm since

calling the next iteration requires 2~" scaling which is continued with an addition of

Tn—1 and Yn—-1 -

11



arctan 27
13

—

"2 1 0o 1 2 3 4 5 6 7

7
Figure 2.3 Sequential CORDIC rotations amounts arctan 2~

2.4 The CORDIC Sine and Cosine: Implementation

The space-time trade off always stands for an implementation issue for digital
systems especially that contain algorithms including iterations. The problem here is
how to implement this digital iteration sequence with the fastest way or in a minimum
number of resources or both. In this thesis, timing constraints are assumed to be

critical, hence the implementation is optimized accordingly.

In the Figure (Figure 2.2), the implementation of the Equations (2.3) is seen with
constant shifters and cascaded adders. At the output stage, it is necessary to scale the
obtained x,, and y,, with K. The implementation considered here employs a ' = 31

bit fractional fixed point numbers as internal states 6,,, x,, and v,,.

2.4.1 Four Quadrant Converging Design
The required outcome is to compute sin # and cos §. However the arctan 2~ angle

is m/4 radians for i = 0. Which means an infinite number of diminishing addition for

state 0,, even in the same direction i.e. 0,, = 1 Vn or 0, = —1 Vn yields the following

12



upper and lower bounds;

= A}gnoo Z oparctan 2~ (2.5)
max 6,, = Z arctan 2~° = 1.7433rad, (2.6)
i=0
minf, = — Z arctan2~' = —1.7433rad 2.7)
i=0

which means that this type of design only calculates the input angle spanning
+1.7433rad therefore total (—, 7] range is not covered. To deal with this problem
the initial rotation angle §; should be selected as o arctan2? to cover the desired

input range, i.e.

max 6, = Z arctan 2~ = 4.1763rad (2.8)
i=—2
minf,, = — Z arctan2™* = —4.1763rad (2.9)
i=—2

Selection of starting angle by two iterations earlier causes a wide range as shown in
Equation (2.8), which means that total rotation range is increased by an unnecessary
amount of

+4.1763rad — £7rad = 4+1.0347rad,
—_— Y~ —

available required redundant
though number of iterations are increased. This requires more resources and time. To
meet with complete coverage with minimizing requirements needs changing the initial
conditions. This can be compensated by selecting initial angle §y = 4 /2 therefore the
resultant coverage will be £1.5708rad + +1.7433rad = £3.3141rad which is slightly
above t+7rad. The initial condition of Equation (2.4) becomes;

0,1,Z]7,  6>0

[Io,yo790]T = (2.10)
0,-1,-3]", <0

Therefore no additional iterations are required.

13



Table 2.1 Design summaries for unrolled design vs. algebraic loop design with using DSP48A1 or not.

Resource summary for algebraic loop design:

Number of Slice LUTS 1180/27288 (%4)
Number of DSP48A1 8/58 (%13)
Timing summary for algebraic loop design:

Minimum Period 12.44ns
Maximum combinational path delay No path found
Resource summary for algebraic loop design (no DSP48AT1):

Number of Slice Registers 160/54576 (%0)

Number of Slice LUTS
Number of DSP48A1 slices

2150/27288 (%7)

Timing summary for algebraic loop design (no DSP48A1):

Minimum Period 12.235ns
Maximum combinational path delay No path found
Resource summary for unrolled design:

Number of Slice LUTS 2444/27288 (%8)
Number of DSP48A1 slices 12/58 (%20)
Timing Summary for unrolled design:

Minimum Period: No path Found
Maximum combinational path delay 106.58ns
Resource summary for unrolled design (no DSP48A1):

Number of Slice LUTS 2950/27288 (%14)
Number of DSP48A1 slices -

Timing Summary for unrolled design: (no DSP48A1)

Minimum Period: No path Found
Maximum combinational path delay 97.43Tns

2.4.2 Design Summary

Two different case implementations, namely iterative and unrolled case is depicted

in Table (Table 2.1) and (Table 2.2) for Spartan™6 xc6s1x45-3csg484 chip.

Here we can, easily measure how fast the unrolled design is; 20 x 12.44 = 248.8ns

is required time for the algebraic loop for 20 iterations and this amount is about 2.5

times slower than unrolled timing which is 106.58ns. With pipelining this measure is

approximately same with unrolled case i.e. 20 x 5.732 = 114.64 ~ 106.58ns. The

fastest available solution for N = 20 iterations is using the IP core without pipelining.

Pipelining increases the rate of throughput with high clocking rates of the circuit in

the return of a little bit slowing down when compared the no pipelining situation of
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Table 2.2 Design summaries for unrolled design vs. algebraic loop design with using register pipelining

or not.

Resource summary for unrolled CORDIC IP: (with pipelining)

Number of Slice Registers 2860/54576(%5)
Number of Slice LUTS 2978/27288 (%8)
Number of DSP48AL1 slices -

Timing summary for unrolled CORDIC IP (with pipelining):

Minimum Period 0.732ns
Maximum combinational path delay No path found
Resource summary for unrolled CORDIC IP: (without pipelining)

Number of Slice Registers 112/54576(%0)
Number of Slice LUTS 2975/27288 (%8)

Number of DSP48A1 slices -

Timing summary for unrolled CORDIC IP (without pipelining):

Minimum Period 81.342ns
Maximum combinational path delay No path found

the same implementation. Maximum clocking rate is for pipelined architecture is

1/5.732ns ~ 174MHz

2.4.3 Design Criteria: Calculation of The Bound of Error for N Iterations.

In order assess the accuracy of the implementations, we checked the error bounds.
Amount of error is based absolutely on the minimum angle of turn with N iterations.
Which is simply | arctan 27| < |2 x 107°] in our case, that explains the error margin

in plot in Figure (Figure 2.4b).
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Figure 2.4 Output waveforms and error plots.
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CHAPTER THREE
ON CHIP DYNAMICAL SYSTEMS SOLVING ALGEBRAIC LOOPS

Every differential equation does not have an analytic solution. However the
solutions can be approximated by iterations. Every iteration that contains feedback is
called as an algebraic loop. Technically, the numerical solution of a differential

equation that is in the form

T = f(x,t)

is based on an algebraic loop that is shown in Figure (Figure 3.1). The main question
arises from this point of view is: ”Can we avoid this loop to obtain a parallel in parallel
out expression?” as shown in Figure (Figure 3.2). There are two ways to do so and they

have limitations that is a consequence cost of synthesized parallelism.

Ty

Lo — far() b Az

algebraic loop

Figure 3.1 Iterative structure of approximate solution covered with algebraic manipulations that is called

an algebraic loop of the ODE.

X

20— Fag( ) PR Fag() 12

T3 Tfr_1

Fa()

Fae(7) — 25

Figure 3.2 Unrolled x;11 = Fa:(x;) structure.

1. Ifthere is an analytic solution to & = f(z, t) the whole algebraic loop becomes a
single algebraic equation that can be realized as a single high resolution look up
table or MAD operations. For example an e” in the solution can be obtained by
adding the Maclaurin series expansion terms up to a desired resolution and those
terms are only a combination of MAD operations. In most of the time seemingly

complex algebraic terms are reduced to MAD operations.

2. & = f(x,t), t € [to, ty], the discretization of time domain yields finite number

of iterations for a finite At iterations. That can be formulated as an iterative

17



function F,( ) and that is,

Tit1 = FAt(xi)'

Consequently the loop of Figure (Figure 3.1) can be unrolled to complete a feed

forward parallel path as shown in Figure (Figure 3.2).

3.1 Initialization of The States For Prior to Running The ODE System

In order to solve the ODE system, one has to supply the initial states to the solver.
This can be done by using VIO core through PC connection to the FPGA kit. Although
VIO core is easily programmed for initialization, there is a restriction that user have
to input 8 x32 bits manually from this ChipScope™interface. Instead of this, a single
initialize command can be issued via an IO interface on-board or via VIO™Core to
perform randomly generated system states where the error dynamics of them diminishes
after synchronization. We used the fact that the initial values are to be random and non-

zero at the initialization.

3.2 A Random Number Generator for FPGA

We utilized a Linear Feedback Shift Register (LFSR) for generation of randomized
states for the ODE system. In this circuitry, output of a serial in parallel shift register is
feedback to itself via xor operations of several output bits. Namely, we built a random
32 bit LFSR for each state of the dynamical system and the LFSR’s feedback consisted
of XORing Oth, Ist, 21st and 31st bits. The random generated output of one of them at

initialization is shown in Figure (Figure 3.4).
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3.3 Case 1: A Single Dimensional Dynamical System That Has an Analytic

Solution

Consider a RC circuit of Figure (Figure 3.5). The solution is well-known to satisfy

the following equation;

V(t) = d;)—fRCJrvc. G.1)

_t_

The solution of this ODE comes with the multiplication with integration constant e e,

—t

ve(ty) = V(1 — erd). (3.2)

The solution is given in Equation (3.2). Whence the circuitry of the parent equation

that is an unsolved ODE reduces to single monolithic feed forward logical circuitry.
—t

This is shown in Figure (Figure 3.5). The block 1 — e can be calculated as a wholly

integrated look-up table or this expression can be calculated with an unrolled circuitry

that iterates Maclaurin series to maintain a feed forward structure. The N = 9 partial

—t

% o—1_ ere [ vo(ty)

Vo

Figure 3.5 A single dimensional dynamical system that has an analytic solution and its feed forward

implementation.

20



N
@IHO—)@

ot

2|

S)

L
,Og|.—\o—>®

W
|
—
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series expansion of a function F'(x) is as follows:

%) (g o)
Foy=3 2200 ol s pe =S W 53

z!

n!
n=0 20=0 n=0
0 1 2
Fla)=1—¢"=1- % — % — % + Higher Order Terms, (3.4)
2 3 4 5 6 7 8 9
U e e e . (3.5)

3.4 Case 2: A Single Dimensional Dynamical System Assuming No Analytic
Solution At All

If an analytic solution does not exist, the Equation (3.1) can be discretized to a
difference equation by assuming 0cAt ~ vclk + 1] — ve[k], where k is an integer
variable that is denoted to belong to discrete time domain and At denotes the time
interval between two consecutive discrete times £ and k£ + 1. After using this Euler
expansion that approximates the derivative, the Equation (3.1) becomes,

volk + 1] —velk]  V —vclk]

At -~ T RC (3.6)
At

Uc[k+1] = (V—Uc[k}])%‘f‘ﬂc[k’] (37)

There exist better discretization techniques such as Runge Kutta (RK) method. They
require more internal stages leading much more complex circuitry and a larger
algebraic loop path to be encountered. The Figure (Figure 3.7) shows the algebraic

loop of Equation (3.7).

Furthermore the algebraic loop of Euler approximated ODE can be unrolled to
complete m finite number of steps as indicated in Figure (Figure 3.8) to solve
capacitor voltage vc after mAt seconds of exposure to V' bias. Alternatively the

structure in Figure (Figure 3.9) can be used for calculations at each cycle.
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RC °

Figure 3.7 Iterative circuit of the dynamical system of Figure (Figure 3.5) that solves Explicit Euler

discretization where v [k] denotes initial condition of capacitor voltage, % denotes a resolution based

scale constant and V' denotes capacitor bias

voltage.
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D velk +m)|

(Y6} [0] o—

Feed
Forward

— U¢ [m]

Figure 3.8 Unrolled iterative circuit of the dynamical system of Figure (Figure 3.5) that solves explicit

Euler discretization where v [k| denotes initial condition of capacitor voltage, % denotes a resolution

based scale constant and V' denotes capacitor bias voltage. This iteration can be written as vo[k + 1] =

F(vc[k]).
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Figure 3.9 Iterative circuit of the dynamical system of Figure (Figure 3.5) that solves explicit Euler

discretization where v [n] denotes initial condition of capacitor voltage, This iteration can be written as

ven + 1] = fa(veln]) +veln].
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Figure 3.10 Two independent RC circuitry model that is to be implemented in parallel in a logical

circuitry.

3.5 Considering Multiple Linear Dynamical Systems

Let us investigate the case of multiple systems, say we have more than one identical
systems. The first assumption is there exist no coupling between them as shown in
Figure (Figure 3.10), which means they are separated, but they are in the same logical
circuitry as shown in Figure (Figure 3.10). The solution is the same with Equation
(3.2) and the solution provided by a parallel in parallel out single circuitry. Next, we
can establish a linear coupling between them, we can introduce Figure (Figure 3.11).

The solution for this system can be written in the following equations;

dUC
R101 dt1 + Vo, = Vo, — Vg (38)
dUC
RQCQ dt2 + Voy = Vo — Uy (39)
dvc —2 1
Tl — R1C1 R101 Ucl (3 10)
dvc 1 -2 '
e R2C> RaCa Uy

25



Ve, — - Vo, — Ve,

algebraic loop

Ave,
vey [k o Ay @ c @ ve, [k 4 1]
Ve, [k‘] o L At —— U, [k‘ + 1]

R1Cy

—2_At

- A\
A
L_At M b @

R2Co v

algebraic loop

algebraic loop

vey K] Rl R Ave Y vey [k + 1]
[ UCQ[k] % A RgczAt At | @

{ =2 At L At }

R2Co

: |

Figure 3.11 Two linearly coupled RC circuitry that is to be implemented in parallel in a logical circuitry

with the same unrolling as shown in Figure (Figure 3.9). The matrix product can be implemented in
parallel since every row of matrix A is multiplied with the initial value v¢[k]. The multiplication of
each row with the initial vector and summation of the dot product can be depicted as same with other
rows. The length of combinational path for each MAD operation is the same with any other so the matrix

product can be implemented in parallel.
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Let,

d | ve =2 L A
a C _ R11C'1 lel T = Kt‘r
UCQ RoCo RoCo
dx A
—_— = —I
dt At
AtdT e A
dt At
d (eﬁtx) =0
dt n
ty
A
/d@M%@D:O
t=0

eAAttfx(tf) —z(0) =0

2(ty) = ear's z(0).

(3.11)

(3.12)
(3.13)

(3.14)

(3.15)

(3.16)
(3.17)

The coupled RC circuit described with Equation (3.17) with input states can be

implemented as shown in Figure (Figure 3.12). If we just do not want to solve

Equation (3.12) analytically we can discretize this equation according to (Chen, 1998)

in the following manner;

dt A0 At At
x(t+ At) =z(t) + Azx(t)

z((k+1)At) =(I + A)z(kAt), keN
zlk + 1) =(A + Iz[k].

(3.18)
(3.19)
(3.20)
(3.21)

This Euler approximation of Equation (3.21) is implemented in Figure (Figure 3.11).

The result is similar with Figure (Figure 3.7) apart from matrix multiplication and bias

voltages. The matrix multiplication in Figure (Figure 3.11) is seen to be parallel in

row multiplications of the matrix, that is, both two rows of the matrix is multiplied and

summed with the states at the same part of processing time.
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Figure 3.12 Two linearly coupled RC circuitry model that is to be implemented in parallel in a logical

circuitry with parallel in parallel out states.

3.6 Considering Multiple Dynamical Systems Including a Non-linearity

We selected out nonlinear dynamical ODE system as the model of a unity period
undamped pendulum in this case where the modeled rigid body equation of motion is

defined as in the following equation;

d*0

The trigonometric function sin # is the source of non-linearity that we want to include.

The explicit Euler discretized equation set can be defined as:

Ok + 1] = w[k] At + 0[k] (3.23)
wlk + 1] = — sin O[k] At + wlk). (3.24)

For two pendulum system, the unity coupling coefficient linearly coupled network

system dynamics can be written as;

df
d—tl = w (3.25)
d

% — _siné, (3.26)
df

d—; = Wy + 91 — 92 (327)
% — sinfy + wy — ws. (3.28)
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The Euler kind discretization of this system yields the following discrete equation set;

O01[k + 1] = wy [k] At + 6, [k] (3.29)
wilk 4+ 1] = (= sin 0 [k]) At + w; [k] (3.30)
Ox1k + 1) = (walk] + 01[k] — O2[k]) At + 05[] (3.31)
walk + 1] = (= sin Oa[k] + w1 [k] — walk]) AL + ws K] (3.32)

The right hand side of the difference equation of ODE system that is formed by
Equations (3.23,3.24) is
wlk]
fa, (7)) = At (3.33)
— sin §[k]
and the difference equation of ODE system that is consist of Equations (3.29, 3.30,
3.31, 3.32) can be defined as;

w1 [k]

—sin 91 [k‘]
fa, (1) = At. (3.34)
W9 [k] + ‘91 [k] - eg[k]

— sin Oy[k] 4+ wy [k] — wa[k]

3.6.1 FPGA Implementation of Difference Equations Consisting of Trigonometric

Functions

The implementation the difference equation functions of Equations (3.33) and
(3.34) includes sinus operation and this is the bottleneck of the this FPGA
implementation. Since implementation of Figure (Figure 2.2) is consisted of MAD
operations, the longest combinational path that occurs in Equation (3.34) is this path
i.e. consider the calculation of — sin 0, [k]| 4 65[k] — 6, [k] the sin 6; operation have to
be completed before the addition and subtraction operations. Therefore, the speed and
parallel computation is limited to here. However, the other part of the equation where

— sin 6y ]k] + 0:1[k] — 65]k] is calculated is implemented in parallel, i.e. both sin #; and
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sin f5 calculations work in parallel.

The implemented FPGA solvers’ ChipScope™plots are captured. In Figure
(Figure 3.13b) the error norm e[k] of all of the states in equation set described with
Equations (3.30), (3.31), (3.32) is absolutely normed with respect to Equation (3.29)

and summed. The e[k] is defined as;

2 2
e[k] =) 10: — 03] + > |wi — wi (3.35)
=1 i=1

3.7 Analysis of FPGA Implementation of Star Network of Identical Pendulums

Used resources are analyzed here for two, there, four, five, and six identical pen-
dulum of networks of star connection. The most costly equipment here is sinus block
where CORDIC algorithm is used. That can be seen when we compare the Tables
(Table 2.1), (Table 2.2) and (Table 3.1). We can have an idea of how much resource
is consumed for 1 — e* at O(a!0) resolution when compared to CORDIC block at
N = 20 resolution on Spartan 6. Additionally, we can compare them with two, there,
four, five and six node pendulum system that has a CORDIC resolution of N = 22
iterations for 24 bit resolution. What we want to conclude from the Table (Table 3.1)
is that minimum period of the system is approximately 85ns for star coupling. This
amount reduced to 55ns for 16 bit implementations. The 16 bit implementation of six
node star network runs but granular error becomes visible at this resolution as shown

in Figure (Figure 3.14b) which is not desired.

3.7.1 Comparison with Sequential Programming
As we can see in the Table (Table 3.3) MATLAB™o0de45(---) and ode23(---)

on IEEE754-32 floating numbers are depicted. Floating numbers have great range of

resolution when compared to 32 bit 24 bit and 16 bit fixed numbers. However, when
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Table 3.1 Comparison of design summaries.

Four Path
input Registers delay/Min. DSP48Als
LUTs Period
Nine Term o
Maclaurin 1 — e@ - - 67.029ns  24/58(%41)
Nine Term
Maclaurin 1 — e®* | 1523/27288(%)5) - 41.400ns -
(no DSP48A1)
Two Pendulum
With CORDIC IP | 9135/27288(%33) 654/54576(%1) 118.375ns -
CORE 32bit
Two Pendulums
With CORDIC IP | 5664/27288(%20) 586/54576(%1) 85.710ns -
CORE 24bit
Three Pendulums
With CORDIC IP | 8497/27288(%31) 680/54576(%]1) 85.710ns -
CORE 24bit
Four Pendulums
With CORDIC IP | 11465/27288(%42) 774/54576(%]1) 85.716ns -
CORE 24 bit
Five Pendulums
With CORDIC IP | 14236/27288(%52) 845/54576(%]1) 85.716ns -
CORE 24 bit
Six  Pendulums
With CORDIC IP | 17102/27288(%62) 893/54576(%]1) 85.716ns -
CORE 24 bit
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(a) Implemented FPGA solver of two node pendulum system.
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(b) Obtained norm e[k].

Figure 3.13 Two node synchronization.
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Four Node Pendulum Synchonisation
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(a) Four node 24 bit star.

Six Node Pendulum Synchonisation
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6 . .
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(b) Six node 16 bit star.

Figure 3.14 Four node star synchronization for 24 bit and six node star synchronization 16 bit

implementations.
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Table 3.2 Comparison of design summaries 16 bit

. Path
#ofnodes | Four input Registers  delay/Min. DSP48Als
LUTs .
Period

2 3121/27288(%11)  522/54576(%0)  55.426ns i
3 4441/27288(%16)  584/54576(%1)  55.426ns -
4 6084/27288(%22)  631/54576(%1)  55.426ns i
5 7416/27288(%27)  678/54576(%1)  55.426ns i
6 9025/27288(%33) 710/54576(%1)  55.426ns i

Table 3.3 Mean time needed for one iteration to be completed on PC at 1.2GHz with IEEE754 32 bit
float numbers. The execution of the C code does not include any printf (---) command that takes

additional time.

2 node PC MATLAB™o0de45 IEEE754-32 201us
3 node PC MATLAB™ode45 IEEE754-32 227us
4 node PC MATLAB™o0de45 IEEE754-32 249us
5 node PC MATLAB™ode45 IEEE754-32 285us
6 node PC MATLAB™ode45 IEEE754-32 308us
2 node PC MATLAB™ode23 IEEE754-32 399us
3 node PC MATLAB™ode23 IEEE754-32 456 s
4 node PC MATLAB™o0de23 IEEE754-32 586us
5 node PC MATLAB™ode23 IEEE754-32 720us
6 node PC MATLAB™ode23 IEEE754-32 643us
2 node PC C Explicit Euler IEEE754-32 78ns

3 node PC C Explicit Euler IEEE754-32 120ns
4 node PC C Explicit Euler IEEE754-32 168ns
5 node PC C Explicit Euler IEEE754-32 199ns
6 node PC C Explicit Euler [IEEE754-32 235ns

2 node Explicite Euler PC I = 2, ' = 29 bit Signed 427ns
3 node Explicite Euler PC I = 2, F' = 29 bit Signed 650ns
4 node Explicite Euler PC I = 2, F' = 29 bit Signed 783ns
5 node Explicite Euler PC [ = 2, F' = 29 bit Signed 1056ns
6 node Explicite Euler PC [ = 2, F' = 29 bit Signed 1265ns

it comes to FPGA with fixed point numbers, one iteration is approximately 2000 times
faster than MATLAB™implementation at 1.2GHz CPU. The C implementation of the
Explicit Euler solution is approximately closer to FPGA solution and fixed point FPGA

solution is faster for 1.2GHz CPU clock PC for more than two node implementations.
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MATLAB™Ccodes, C codes and Verilog codes are given in the Appendix.
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CHAPTER FOUR
CONCLUSION

The discretization of an ODE system yields a difference equation that gives the
discretized state evolution. When there exist an analytic solution the difference
equation reaches the solution at once and the FPGA implementation becomes a single
monolithic feed forward circuitry. In the cases where there exist no analytic solution,
the discretization introduces iterations of the difference equation function in the
FPGA implementation, whether this is an Euler solution, RK solution or other explicit
or implicit methods. In Chapter Three, it is shown that those iterations can be
unrolled to complete a single feed forward circuitry, which is consisted of replicas of
the right hand side of the difference equation. Those replicas that eliminate both set
up and hold times of clocked registers of the algebraic looped structure and this
results in a faster implementation. However, it uses much more resources and this
implementation needs a wider FPGA area and can only solve finite number of

iterations in time, that is, time domain is finite for this solution.

In the initialization of the system states of the dedicated ODE solver system, the
data have to be signaled from outside, so I used Xilinx’s VIO core to solve this issue.
Finally, synchronizing star topology network of pendulum models are analyzed and the
resultant hardware’s bottleneck is found to be the calculation of trigonometric function
sinus where MAD operations are carried out. The result of FPGA implementation is a
dedicated ODE solver system for network structure. Even for a single model dedicated

FPGA implementation yields parallel paths in difference equation implementation.

There is no question that for larger networks that consist more number of nodes and
complex ODE models that consist more algebra, we need to have a wider FPGA area.
We can easily deduce that in order to build a network of nodes of a physical model, this

area at least has to be proportional to the number of nodes.
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APPENDICES

A.1 F = 31 Bit N = 20 Iteration CORDIC Block With Algebraic Loop

‘tim

escale Ins / 1ps

‘include ”macros.v”

module cordic(

reg
reg
reg
reg
reg
reg

reg

wire

wire

wire

wire

assign lookUpOneByOnePlusTwoToTheMinusTwol = ‘BITWIDTH’

theta ,

cosTheta ,

sinTheta ,
startConversion ,
outputReady ,

clk
)s

input wire signed [(‘BITWIDTH—1):0] theta;
output wire signed [(‘BITWIDTH—1):0] cosTheta;
output wire signed [(‘BITWIDTH—1):0] sinTheta;

input wire startConversion;

output reg outputReady;

input wire clk;

[5:0] i; //for loop variable

signed [(‘BITWIDTH—1):0] xSum;
signed [(‘BITWIDTH—1):0] ySum;
signed [(‘BITWIDTH—1):0] xSumBuffer;
signed [(‘BITWIDTH—1):0] ySumBuffer;
signed [(‘BITWIDTH—1):0] zSum;
signed [(‘BITWIDTH—1):0] thetaReg;

signed [(‘BITWIDTH—1):0] lookUpOneByOnePlusTwoToTheMinusTwol;

signed [(‘BITWIDTH—1):0] lookUpArtTanTwoToTheMinusOnel

signed [(20‘BITWIDTH—1):0] xSumScaled;
signed [(20‘BITWIDTH—1):0] ySumScaled;

b000000001000011011100100101010011110;

assign lookUpArtTanTwoToTheMinusOnel[0] = ‘BITWIDTH’

b000010101001101101000110010010101001 ;

assign lookUpArtTanTwoToTheMinusOnel[1] = ‘BITWIDTH’

b000010001101101101110000110010010111 ;

assign lookUpArtTanTwoToTheMinusOnel[2] = ‘BITWIDTH’

b000001100100100001111110110101010001 ;

assign lookUpArtTanTwoToTheMinusOnel[3] = ‘BITWIDTH’

b000000111011010110001100111000001011;
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assign lookUpArtTanTwoToTheMinusOnel[4] = ‘BITWIDTH’
b000000011111010110110111010111111001;

assign lookUpArtTanTwoToTheMinusOnel[5] = ‘BITWIDTH’
b000000001111111010101101110101001101

assign lookUpArtTanTwoToTheMinusOnel[6] = ‘BITWIDTH’
b000000000111111111010101011011101110;

assign lookUpArtTanTwoToTheMinusOnel[7] = ‘BITWIDTH’
b000000000011111111111010101010110111;

assign lookUpArtTanTwoToTheMinusOnel[8] = ‘BITWIDTH’
b000000000001111111111111010101010110;

assign lookUpArtTanTwoToTheMinusOnel[9] = ‘BITWIDTH’
b000000000000111111111111111010101011;

assign lookUpArtTanTwoToTheMinusOnel[10] = ‘BITWIDTH’
b000000000000011111111111111111010101;

assign lookUpArtTanTwoToTheMinusOnel[11] = ‘BITWIDTH’
b000000000000001111111111111111111011;

assign lookUpArtTanTwoToTheMinusOnel[12] = ‘BITWIDTH’
b000000000000000111111 111 1111111111115

assign lookUpArtTanTwoToTheMinusOnel[13] = ‘BITWIDTH’
b000000000000000100000000000000000000 ;

assign lookUpArtTanTwoToTheMinusOnel[14] = ‘BITWIDTH’
b000000000000000010000000000000000000 ;

assign lookUpArtTanTwoToTheMinusOnel[15] = ‘BITWIDTH’
b000000000000000001000000000000000000 ;

assign lookUpArtTanTwoToTheMinusOnel[16] = ‘BITWIDTH’
b000000000000000000100000000000000000 ;

assign lookUpArtTanTwoToTheMinusOnel[17] = ‘BITWIDTH’
b000000000000000000010000000000000000 ;

assign lookUpArtTanTwoToTheMinusOnel[18] = ‘BITWIDTH’
b000000000000000000001000000000000000 ;

assign lookUpArtTanTwoToTheMinusOnel[19] = ‘BITWIDTH’
b000000000000000000000100000000000000 ;

assign xSumScaled = xSum [J lookUpOneByOnePlusTwoToTheMinusTwol;
assign ySumScaled = ySum [I lookUpOneByOnePlusTwoToTheMinusTwol;

assign cosTheta = xSumScaled >>> (‘BITWIDTH-1);

assign sinTheta = ySumScaled >>> (‘BITWIDTH-1);

‘ifndef TOP MODULE //if top module does not exist assign an input value of Ilrad.
‘ifndef SYNTHESIZE
real xSumScaled2 ;

real ySumScaled2 ;

reg [(‘BITWIDTH—1):0] thetaDriver;
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assign theta = thetaDriver;

initial begin

#10
thetaDriver = ‘BITWIDTH’ b000001111001110000000000000000000000 ;
#30
$finish () ;
end
‘endif
‘endif

always @(posedge clk) begin

if (startConversion == 0) begin
i=0;
xSum = ‘BITWIDTH’b00000000000000000000000000000000 ;
ySum = (theta > 0)?
‘BITWIDTH’ b000010000000000000000000000000000000 :
‘BITWIDTH’ b111110000000000000000000000000000000 ;
zSum = (theta > 0)?
‘BITWIDTH’ b000011001001000011111101101010100010 :
‘BITWIDTH’b111100110110111100000010010101011110;
thetaReg = theta;
end
if (i < 20) begin
if (zSum < thetaReg) begin
zSum = zSum + lookUpArtTanTwoToTheMinusOnel[i];
xSum = xSum — (ySum >>> 1i);
ySum = ySum + (xSum >>> 1i);
end
else if (zSum > thetaReg) begin
zSum = zSum — lookUpArtTanTwoToTheMinusOnel[i];
xSum = xSum + (ySum >>> i);
ySum = ySum — (xSum >>> 1i);

end

end

if (i == 20) begin
outputReady = 1;

end

// xSum xSumBuffer ;

//ySum = ySumBuffer;

‘ifndef SYNTHESIZE

#1

xSumScaled2 = xSumScaled / S$itor (1’°bl <<< 31);
ySumScaled2 = ySumScaled / S$itor(1’bl <<< 31);
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‘endif

‘ifndef SYNTHESIZE

$display (”i=%d\n,T=%1.10f\n, ySumScaled=%1.10f, xSumScaled=%1.10f\n,
zSum=%1.10f\n",

i,

theta / Sitor(l’bl <<< 31),

ySumScaled2 / S$itor(l1’bl <<< 31),

xSumScaled2 / S$itor(l1’bl <<< 31),

zSum / Sitor(1°bl <<< 31) );

‘endif

‘ifndef SYNTHESIZE
$display (”i=%d\n,T=%1.10f\n, ySumScaled=%1.10f, xSumScaled=%1.10f\n,zSum=%1.10f
\n”,
i,
theta / Sitor(l’bl <<< 31),
ySumScaled2 / S$itor(1’bl <<< 31),
xSumScaled2 / S$itor(1’bl <<< 31),
zSum / $itor (1’°bl <<< 31) );
‘endif
end

endmodule
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A.2 F' = 31 Bit N = 20 Iteration CORDIC Unrolled Design

‘include

”macros.v”

module cordic_unrolled ( theta, cosTheta, sinTheta);

input

wire

output wire

output wire

wire
wire

wire

wire

wire

wire

wire

signed
signed

signed

signed

signed

signed

signed

signed [(‘BITWIDTH—-1):0] theta;
signed [(‘BITWIDTH—1):0] cosTheta;
signed [(‘BITWIDTH—1):0] sinTheta;

[(‘BITWIDTH—1):0] xSum [(‘ITERATIONS—1):07;
[(‘BITWIDTH—1):0] ySum [(‘ITERATIONS—1):07;
[(‘BITWIDTH—1):0] zSum [(‘TTERATIONS—1):07;

[(‘BITWIDTH—1):0] lookUpOneByOnePlusTwoToTheMinusTwol;

[(‘BITWIDTH—1):0] lookUpArtTanTwoToTheMinusOnel

[(‘BITWIDTH2—1):0] xSumScaled;
[(‘BITWIDTHLI12—1):0] ySumScaled;

assign lookUpOneByOnePlusTwoToTheMinusTwol = ‘BITWIDTH’

b000001001101101110100111011011010100

assign lookUpArtTanTwoToTheMinusOnel[0] = ‘BITWIDTH’

b000001100100100001111110110101010001 ;

assign lookUpArtTanTwoToTheMinusOnel[l] = ‘BITWIDTH’

assign

b000000111011010110001100111000001011 ;
lookUpArtTanTwoToTheMinusOnel[2] = ‘BITWIDTH’
b000000011111010110110111010111111001;

assign lookUpArtTanTwoToTheMinusOnel[3] = ‘BITWIDTH’

b000000001111111010101101110101001101 ;

assign lookUpArtTanTwoToTheMinusOnel[4] = ‘BITWIDTH’

b000000000111111111010101011011101110;

assign lookUpArtTanTwoToTheMinusOnel[5] = ‘BITWIDTH’

b000000000011111111111010101010110111;

assign lookUpArtTanTwoToTheMinusOnel[6] = ‘BITWIDTH’

b000000000001111111111111010101010110;

assign lookUpArtTanTwoToTheMinusOnel[7] = ‘BITWIDTH’

b000000000000111111111111111010101011;

assign lookUpArtTanTwoToTheMinusOnel[8] = ‘BITWIDTH’

b000000000000011111111111111111010101;

assign lookUpArtTanTwoToTheMinusOnel[9] = ‘BITWIDTH’

b00000000000000111111111 1111111111011

assign lookUpArtTanTwoToTheMinusOnel[10] = ‘BITWIDTH’

b0000000000000001 1111111 1111111111111

assign lookUpArtTanTwoToTheMinusOnel[11] = ‘BITWIDTH’

b000000000000000100000000000000000000 ;
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assign lookUpArtTanTwoToTheMinusOnel[12] = ‘BITWIDTH’
b000000000000000010000000000000000000 ;

assign lookUpArtTanTwoToTheMinusOnel[13] = ‘BITWIDTH’
b000000000000000001000000000000000000 ;

assign lookUpArtTanTwoToTheMinusOnel[14] = ‘BITWIDTH’
b000000000000000000100000000000000000 ;

assign lookUpArtTanTwoToTheMinusOnel[15] = ‘BITWIDTH’
b000000000000000000010000000000000000 ;

assign lookUpArtTanTwoToTheMinusOnel[16] = ‘BITWIDTH’
b000000000000000000001000000000000000 ;

assign lookUpArtTanTwoToTheMinusOnel[17] = ‘BITWIDTH’
b000000000000000000000100000000000000 ;

assign lookUpArtTanTwoToTheMinusOnel[18] = ‘BITWIDTH’
b000000000000000000000010000000000000 ;

assign

assign

assign

assign

assign

lookUpArtTanTwoToTheMinusOnel[19] = ‘BITWIDTH’
b000000000000000000000001000000000000 ;

xSumS

ySum$S

caled =

caled =

xSum [ (‘ITERATIONS—1)] 1 lookUpOneByOnePlusTwoToTheMinusTwol;
ySum [ (‘ITERATIONS—1)] [ lookUpOneByOnePlusTwoToTheMinusTwol;

cosTheta = (xSumScaled) >>> ‘BITWIDTH;

sinTheta

= (ySumScaled) >>> ‘BITWIDTH;

‘ifndef TOP MODULE //if top module does not exist assign an input value of Irad.

‘endif

‘ifndef SYNTHESIZE //if xst runs the ndoes not set theta initial value
reg signed [((‘BITWIDTH)—1):0] thetaDriver;

assign

initial

end

‘endif

assign xSum[0]

assign ySum[0]

theta =

begin

thetaDriver;

$monitor (”cosTheta=%b,_ sinTheta=%b”, cosTheta, sinTheta);

#10

//thetaDriver = ‘BITWIDTH bl111001101101111000000100101010111100;
thetaDriver = ‘BITWIDTH’b000001111001110000000000000000000000 ;

#10

$display (”cosTheta=%b, ,sinTheta=%b”, cosTheta, sinTheta);
$finish ();

= ‘BITWIDTH’ b00000000000000000000000000000000 ;

= (theta > 0)?
‘BITWIDTH’ b000010000000000000000000000000000000 :
‘BITWIDTH’ b111110000000000000000000000000000000 ;
assign zSum[0] = (theta > 0)?
‘BITWIDTH’ b000011001001000011111101101010100010 :
‘BITWIDTH’b111100110110111100000010010101011110;
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genvar i;

generate
for (i = 0; i < (‘'ITERATIONS—-1); i =1 + 1)

begin : bl

myBuffer ul (.out(zSum[i+1]),

Lin(

( zSum[i] < theta) ?
zSum[i] + lookUpArtTanTwoToTheMinusOnel[i]:
zSum[i] — lookUpArtTanTwoToTheMinusOnel[i ]

)

)3

myBuffer u2 (.out(xSum[i+1]),

Lin(
( zSum[i] < theta) ?
xSum[i] — (ySum[i] >>> i)
xSum[i] + (ySum[i] >>> i)
)

)3

myBuffer u3 (.out(ySum[i+1]),

Lin(

( zSum[i] < theta) ?
ySum[i] + (xSum[i] >>> i)
ySum[i] — (xSum[i] >>> i)

)

)3

end
endgenerate
endmodule

module myBuffer ( output wire [(‘BITWIDTH—1):0] out, input wire [(‘BITWIDTH-1):0]

)3
assign out = in;

endmodule
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A3 F' = 31 Bit N = 20 Iteration CORDIC Test Bench

‘timescale Ins / Ips

‘include ”macros.v”

module cordic_tb(

)

reg signed [(‘BITWIDTH—1):0] theta tb;
wire signed [(‘BITWIDTH—1):0] cosTheta tb;
wire signed [(‘BITWIDTH—1):0] sinTheta tb;
integer input file;

integer output file;

integer read_status;

cordic_unrolled u0 (.theta(theta tb), .cosTheta(cosTheta tb), .sinTheta(sinTheta tb))

>

initial begin

input_file = $fopen (
”/home/ gbas/cordic—lut—gen/test_pattern_ file.txt”,”r”);
output_ file = S$fopen(
”/home/ gbas/cordic—lut—gen/test pattern_output_file.txt”
w7

while (!$feof(input_file)) begin

s

read_status = $fscanf(input_file , ™%b\n”, theta tb);
#30;
$fwrite (output_file , ”{’%b’,,’%b’}\n”, cosTheta tb, sinTheta_tb);
#10;

end

$fclose (input_file);

$fclose (output_file);

$finish ();

end

endmodule
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A4 I + F = 24 Bit Random Number Generator Module

‘timescale Ins / Ips

‘include ”constants.v”

module randomNumberGenerator (
input CLK,
output reg [“WORDSIZE—1:0] b
)5

reg CLK2;

reg [4:0] counter;

always @(posedge CLK) begin
counter = counter + 1;
if (counter == 10) begin
counter = 0;
CLK2 = "CLK2;
end

end

parameter seed = ‘WORDSIZE’ sb0011_1100_0011_0011;

wire feedback;//24 bit design
assign feedback = b[23] " b[22] ~" b[21] " b[16];

initial begin

counter = 5;
b = seed;
CLK2 = 0;
end
integer 1i;

always @(negedge CLK2) begin

b[0] <= feedback;

for (i = 0; i < ‘WORDSIZE—1; i = i + 1) begin
b[i+1] <= b[i];

end
end
//debugging
/0

wire [35:0] CONTROLO;
my _ila my ilal (
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. CONTROL (CONTROL0O) , // INOUT BUS [35:0]
.CLK(CLK), // IN
.TRIGO(b) // IN BUS [31:0]
)’.
my_icon my_iconl (
. CONTROLO(CONTROLO) // INOUT BUS [35:0]
),.
ny

endmodule
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A.5 [ + F' = 24 Bit Absolute Value Calculator

‘timescale Ins / Ips

‘include ”constants.v”

module abs_val(
input signed [‘WORDSIZE—1:0] in,
output signed [‘WORDSIZE—1:0] out
)3

assign out = (in[*WORDSIZE—1])?("in+1):i

endmodule

n;
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A.6 I + F' = 24 Bit Single Pendulum Module

‘timescale Ins / Ips

‘include ”constants.v”

module top _mod2 (
CLK _OUT,BRST, packed_u, packed_x

)

input wire CLK OUT;

input wire BRST;

input wire [200°WORDSIZE—1:0] packed _u;
output wire [2[1°WORDSIZE—1:0] packed x;

wire signed [‘WORDSIZE—1:0] u _sub 1;
wire signed [‘WORDSIZE—1:0] u_sub_2;

assign u_sub_1

assign u_sub_ 2

packed u[‘WORDSIZE—1:0];
packed u[200°WORDSIZE—1:“WORDSIZE ];

parameter thetaSeedInitial = ‘WORDSIZE’sb0001_1011_0010_0001;
parameter thetaDotSeedInitial = “WORDSIZE’ sb0000_0000_0000_0000;

parameter stepSize

parameter initGain

11;
= 2;

reg signed [‘WORDSIZE—1:0] theta;
reg signed [‘WORDSIZE—1:0] thetaDot;

initial begin

theta

thetaDot

end

thetaSeedInitial; //initialize

thetaDotSeedInitial;

wire signed [‘WORDSIZE—1:0] sinTheta;
wire signed [‘WORDSIZE—1:0] sinThetaS;
wire signed [‘WORDSIZE—1:0] cosTheta;

assign sinTheta

sinThetaS >>> 1;

my_cordic my_cordic_ 1 (

.phase_in(theta), // input [I5

//initialize

0] phase_in

//.x_out(cosTheta), // output [I5 : 0] x_out

.y_out(sinThetaS)//, // output [I5

//.ordy (rdy) //

>

// output rdy

//.clk (CLK_OUT) // input clk

0] y_out
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wire signed [‘WORDSIZE—1:0] theta_k plus_one;
wire signed [‘WORDSIZE—1:0] thetaDot _k plus_one;

assign theta k plus one = thetaDot >>> stepSize;
assign thetaDot_k plus_one = (( sinTheta + 1)) >>> stepSize

5

assign packed_x = {thetaDot, theta};

wire signed [‘WORDSIZE—1:0] thetalnitial;
wire signed [‘WORDSIZE—1:0] thetaDotlInitial;

randomNumberGenerator #(thetaSeedInitial) rngl (
.CLK(CLK_OUT) ,
.b(thetalnitial)
)3

randomNumberGenerator #(thetaDotSeedInitial) rng2 (
.CLK(CLK_OUT) ,
.b(thetaDotlnitial)
)3

always @(posedge CLK OUT) begin
theta = theta + theta_k_plus_one + (u_sub_1 >>> stepSize);

thetaDot = thetaDot + thetaDot _k plus _one + (u_sub 2 >>> stepSize);

if ("BRST)
begin

theta thetalnitial >>> initGain; //initialize theta
thetaDot = thetaDotInitial >>> initGain; //initialize thetaDot

end

if (theta >= ‘WORDSIZE’ sb0110_0100_1000_0111_1110_1101_0101_0001)
begin
theta = theta + ‘WORDSIZE’sb1001_1011_0111_1000_0001_0010_1010_1111 +
‘WORDSIZE’sb1001_1011_0111_1000_0001_0010_1010_1111
end
if (theta <= ‘WORDSIZE’sb1001_1011_0111_1000_0001_0010_1010_1111)
begin
theta = theta + ‘WORDSIZE’sb0110_0100_1000_0111_1110_1101_0101_0001 +
‘WORDSIZE’ sb0110_0100_1000_0111_1110_1101_0101_0001;

end
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end

endmodule
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A.7 I 4+ F = 24 Bit Six Node Coupled Pendulum Solver Module

‘timescale Ins / Ips

‘include ”constants.v”

module top _mod3 (
input clk
//,input BRST
)5

parameter gain = 0;

wire BRST;

reg [15:0] counter;

reg CLK OUT;

initial begin
counter = 0;

CLK OUT = 0;

end

always @(posedge clk) begin //frequency divider block

counter = counter + 1;
if (counter == 1000) begin
counter = 0;

CLK OUT = “CLK OUT;
end

end

wire signed [200°WORDSIZE—1:0] packed x1;
20‘WORDSIZE—1:0] packed_x2;
201°WORDSIZE—1:0] packed x3;
2[1‘WORDSIZE—1:0] packed x4;
2[1‘WORDSIZE—1:0] packed x5;
wire signed [20‘WORDSIZE—1:0] packed x6;

[
wire signed [
[
[
[
[
wire signed [2L1‘WORDSIZE—1:0] packed_ul;
[
[
[
[
[

wire signed
wire signed

wire signed

wire signed [201‘WORDSIZE—1:0] packed u2;
20‘WORDSIZE—1:0] packed_u3;
200°WORDSIZE—1:0] packed u4;
2[1‘WORDSIZE—1:0] packed_u5;

2[1‘WORDSIZE—1:0] packed u6;

wire signed
wire signed
wire signed

wire signed

//
wire signed [‘WORDSIZE—1:0] abs_outl2theta;
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wire signed
wire signed
wire signed

wire signed

wire signed
wire signed
wire signed

wire signed

abs_val

abs_val

abs_val

abs_val

abs_val

abs_val

abs_ val

abs_val

‘WORDSIZE—1:0] abs_outl2thetaDot;
‘WORDSIZE—1:0] abs_outl3theta;
‘WORDSIZE—1:0] abs_outl3thetaDot;
‘WORDSIZE—1:0] abs_outl4theta;

‘WORDSIZE—1:0] abs outlStheta;
‘WORDSIZE—1:0] abs_outlSthetaDot;
‘WORDSIZE—1:0] abs outl6theta;
‘WORDSIZE—1:0] abs_outl6thetaDot;

[
[
[
[
wire signed [‘WORDSIZE—1:0] abs_outl4thetaDot;
[
[
[
[

my_ abs_vall2theta (

.in (" packed x1[‘WORDSIZE—1:0]+1+packed x2[‘WORDSIZE—1:0]),

.out(abs outl2theta)

)

my_abs_vall2thetaDot (

.in (" packed_x1[20‘WORDSIZE—1:“WORDSIZE—1]+1+packed x2[2[1*WORDSIZE—1:“WORDSIZE
—11),

.out(abs_outl2thetaDot)

)

my_abs_vall3theta (

.in (" packed x1[‘WORDSIZE—1:0]+1+packed x3[‘WORDSIZE—1:0]),

.out(abs_outl3theta)

)3

my_abs_vall3thetaDot (

.in (" packed x1[20°WORDSIZE—1:*WORDSIZE—1]+1+packed x3[20‘WORDSIZE— 1:*WORDSIZE
—11),

.out(abs_outl3thetaDot)

)3

my_abs_vall4theta (

.in (" packed_x1[‘WORDSIZE—1:0]+1+packed x4 [ “WORDSIZE—1:0]),

.out(abs_outl4theta)

)3

my_abs_vall4thetaDot (

.in (“packed x1[20°WORDSIZE—1:*WORDSIZE—1]+1+packed x4[20‘WORDSIZE— 1:*WORDSIZE
~1]),

.out(abs_outl4thetaDot)

)3

my_ abs_vallStheta (

.in (" packed x1[‘WORDSIZE—1:0]+1+packed x5[“WORDSIZE—1:0]),

.out(abs outlStheta)

)3

my_abs_vall5SthetaDot (

.in (" packed_x1[201‘WORDSIZE—1:“WORDSIZE—1]+1+packed_x5[201*WORDSIZE—1:*“WORDSIZE
—11),

.out(abs _outlSthetaDot)

)3

abs val my abs vall6theta (
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.in ("packed x1[‘WORDSIZE—1:0]+1+packed x6 [ “WORDSIZE—1:0]),
.out(abs_outl6theta)
)
abs_val my_abs_vall6thetaDot (
.in (" packed x1[2[1‘WORDSIZE—1:"WORDSIZE—1]+1+packed x6[271*“WORDSIZE—1:*“WORDSIZE
—11),
.out(abs _outl6thetaDot)
)5

wire [35:0] CONTROLO;
wire [35:0] CONTROLI;
my_icon my_iconl (
.CONTROLO(CONTROLO) , // INOUT BUS [35:0]
.CONTROLI1 (CONTROLI)

my_ila my_ilal (

.CONTROL(CONTROLO) , // INOUT BUS [35:0]

.CLK(CLK_OUT), // IN

.TRIGO(abs_outl2theta+abs_outl2thetaDot +
abs_outl3thetatabs_outl3thetaDot +
abs outl4thetatabs outl4thetaDot +
abs _outlStheta+tabs outlSthetaDot +
abs outl6theta+abs_outl6thetaDot), // IN BUS [

arrange _accordingly :0]

.TRIGI1(BRST) // IN BUS [0:0]

//

my_vio my_viol (
.CONTROL(CONTROLL) , // INOUT BUS [35:0]
.ASYNC OUT(BRST) // OUT BUS [0:0]

assign packed_ul ["WORDSIZE—1:0] = 0;
assign packed ul[2[1*WORDSIZE—1:*"WORDSIZE] = 0;
assign packed u2[*WORDSIZE—1:0] = “packed x2[‘WORDSIZE—1:0] +1+

[

packed x1[‘WORDSIZE—1:0];

assign packed u2[2[1‘WORDSIZE—1:*"WORDSIZE] = ~“packed x2[2[1‘WORDSIZE—1:"WORDSIZE] +1+
packed_x1[2L1‘WORDSIZE—1:“WORDSIZE ;

assign packed u3[*“WORDSIZE—1:0] = “packed_x3[‘WORDSIZE—1:0] +1+

56



packed_x1

assign packed u3[2[1*WORDSIZE—1:"WORDSIZE] “packed_x3

[
[

“WORDSIZE—1:01;
201‘WORDSIZE— 1:*WORDSIZE] +1+
20 ‘“WORDSIZE— 1:“WORDSIZE | ;

assign packed_u4[“WORDSIZE—1:0] = “packed x4[‘WORDSIZE—1:0] +1+
packed x1[‘WORDSIZE—1:0];
assign packed u4[2[1‘WORDSIZE—1:*"WORDSIZE] = ~“packed x4[2[1‘WORDSIZE—1:"WORDSIZE] +1+
packed x1[20‘WORDSIZE—1:*WORDSIZE | ;
assign packed_uS5[“WORDSIZE—1:0] = “packed_x5[‘WORDSIZE—1:0] +1+

[
packed x1[
[

packed_xI1
assign packed u5[2[1*WORDSIZE—1:*"WORDSIZE ]

assign packed u6[“WORDSIZE—1:0]

[

[

[
packed_x1[20‘WORDSIZE—1:*“WORDSIZE ;

[

[

‘WORDSIZE—1:0];
“packed_x5[2[]°WORDSIZE—1:“WORDSIZE] +1+

~packed_x6[*WORDSIZE—1:0] +1+

packed_x1[*WORDSIZE—1:0];
assign packed u6[2[1‘WORDSIZE—1:*"WORDSIZE] = ~packed_ x6[2[1‘WORDSIZE—1:"WORDSIZE] +1+

[
[

packed x1[2[1*WORDSIZE—1:“WORDSIZE ];

top_mod2 #(*WORDSIZE’sb0011_1001_0010_0001_0010_0001 ,
“WORDSIZE’ sb0100_0100_0000_0010_0000_0000) top_mod2a

(
.CLK_OUT(CLK_OUT) ,

.BRST(BRST) ,
.packed u(packed ul),
.packed x(packed x1)

top_mod2 #(*WORDSIZE’sb1111_0000_0010_0001_0000_0010 ,
“WORDSIZE’ sb0000_0000_0100_0000_0000_0001) top_mod2b

(

.CLK_OUT(CLK_OUT) ,
.BRST(BRST) ,
.packed_u(packed u2),
.packed x(packed x2)

)5

top_mod2 #(*WORDSIZE sb1111_0010_0010_0001_0000_0010,
“WORDSIZE’ sb0000_0000_0100_1000_0000_0001) top_mod2c

(

.CLK_OUT(CLK_OUT) ,
.BRST(BRST) ,
.packed u(packed u3),
.packed_x(packed_x3)
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top_mod2 #(*‘WORDSIZE’sb1111_0011_0010_0001_0000_0010 ,
“WORDSIZE’ sb0000_0000_0100_1010_0000_0001) top_mod2d

(

.CLK_OUT(CLK_OUT) ,
.BRST(BRST) ,
.packed u(packed u4),
.packed_x(packed_x4)

top_mod2 #(*WORDSIZE’sb1111_0011_0010_0001_0100_0010 ,
‘WORDSIZE’ s0000_0000_0100_1010_0000_0001) top_mod2e

(

.CLK_OUT(CLK_OUT) ,
.BRST(BRST) ,
.packed u(packed u5),
.packed x(packed x5)

top_mod2 #(*WORDSIZE’sb1111_0011_0010_0001_0100_ 0010,
“WORDSIZE’ sb0000_0000_0100_1010_0000_0001) top_mod2f

(

.CLK_OUT(CLK_OUT) ,
.BRST(BRST) ,
.packed _u(packed u6),
.packed x(packed x6)

endmodule
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A.8 MATLAB™Code For Comparison

% this is to determine ODE behaviour of the implemented system
% function pendulumsolver_with MATLAB _ODE _SOLVER

clear all;close all; clc;

final time = 20;
f2 =@ (t, x) ...
[ x(2) + 0;...
—sin(x(1)) + 0;...
x(4) - x(3) + x(1);
—sin(x(3)) — x(4) + x(2);
15
f3 =@ (t, x ) ...
[ x(2) + 0;...
—sin(x(1)) + 0;...
x(4) = x(3) + x(1);
—sin(x(3)) — x(4) + x(2) ;...
x(6) — x(5) + x(1);
—sin(x(5)) — x(6) + x(2);
15
f4 =@ (t, x ) ...
[ x(2) + 0;...
—sin(x(1)) + 0;...
x(4) — x(3) + x(1);
—sin(x(3)) — x(4) + x(2);...
x(6) — x(5) + x(1);...
—sin(x(5)) — x(6) + x(2);...
x(8) — x(7) + x(1l);...
—sin(x(7)) — x(8) + x(2);...
Is
f5 =@ (t, x ) ...
[ x(2) + 0;...
—sin(x(1)) + 0;...
x(4) — x(3) + x(1);...
—sin(x(3)) — x(4) + x(2) ;...
x(6) — x(5) + x(1);...
—sin(x(5)) — x(6) + x(2);...
x(8) — x(7) + x(1);...
—sin(x(7)) — x(8) + x(2);...
x(10) - x(9) + x(1l);...
—sin(x(9)) — x(10) + x(2);...
Is
f6 =@ (t, x ) ...
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n =

[ x(2)

—sin(x(1)) +

x(4)

—sin(x(3)) —

x(6)

—sin(x(5)) —

x(8)

—sin(x(7)) —

x(10)

x(12)

0;...
0;...

x(3)
x(4)
x(5)
x(6)
x(7)
x(8)

+ x(1);...
+ x(2);...
+ x(1);...
+ x(2);...
+ x(1l);...
+ x(2);...

— x(9) + x(1);...
—sin(x(9)) — x(10) + x(2);...
— x(11) + x(1);...

—sin(x(11)) — x(12) + x(2) ;...

15

100

% to deplete
[tl,yl] = oded45(f2,[0 final time],rand(4,1));

transient

fprintf (1, \\ hline \\\\\n");
i = l:n,tic;[t2,y2] = oded45(f2,[0

for

toc ;end

single (final time)],single(rand(4,1)));b2(i) =

fprintf (1, 2 node pcy\\ texttt {oded5}  FP32,bit & $%.0f\\ micro\\second$ \\\\\n’,1e60
mean(b2)/numel (t2));
i = l:n,tic;[t3,y3] =

for

toc ;end

oded5(£3,[0

single (final time)],single(rand(6,1)));b3(i) =

fprintf (1, 3 node pcy\\ texttt {oded5} FP32,bit & $%.0f\\ micro\\second$ \\\\\n’,1e6[]
mean(b3)/numel (t3));

for

i = l:n,tic;[td4,y4] =

toc ;end

oded45(f4,[0

single (final time)],single(rand(8,1)));b4 (1)

fprintf (1, 4 node pcy\\ texttt {oded5} ,FP32,bit & $%.0f\\ micro\\second$ \\\\\n’,1e60
mean(b4)/numel(t4));
i = l:n,tic;[t5,y5] =

for

toc ;end

oded5(£5,[0

single (final time)],single(rand(10,1)));b5(1)

fprintf (1, 5, node,pcy\\texttt {oded5} FP32,bit &, $%.0f\\ micro\\second$ \\\\\n’,1e60!
mean(b5)/numel (t5));
i = l:n,tic;[t6,y6] =

for

toc ;end

oded5 (6 ,[0

single (final _time)],single(rand(12,1)));b6(1i)

fprintf (1, 6 node pc,\\texttt {oded5} ,FP32,bit & $%.0f\\ micro\\second$ \\\\\n’,1e60
mean(b6)/numel (t6));

[tl,yl] = ode23(f2,[0 final time],rand(4,1));

fprintf(1,’\\hline \\\\\n’);

for

i = l:n,tic;[t2,y2] =

toc;end

0de23(£2,[0

single (final time)],single(rand(4,1)));b2(i) =
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fprintf (1, 2 node pcy\\ texttt {ode23} FP32,bit & $%.0f\\ micro\\second$ \\\\\n’,1e6[]
mean(b2)/numel (t2));
for i = l:n,tic;[t3,y3] = 0de23(f3,[0 single(final time)],single(rand(6,1)));b3(i)
toc ;end
fprintf (1, 3 node pcy\\ texttt {ode23} ,FP32,bit & $%.0f\\ micro\\second$ \\\\\n’,1e60
mean(b3)/numel(t3));
for i = l:n,tic;[t4,y4] = ode23(f4,[0 single(final time)],single(rand(8,1)));b4(i)
toc;end
fprintf (1, 4 node,pey,\\ texttt {ode23} FP32,bit &, $%.0f\\ micro\\second$ \\\\\n’,1e60!
mean(b4)/numel(t4));
for i = l:n,tic;[t5,y5] = ode23(f5,[0 single(final time)],single(rand(10,1)));b5(i)
toc ;end
fprintf (1, 5, node pc,\\ texttt {ode23} FP32,bit &, $%.0f\\ micro\\second$ \\\\\n’, le6L
mean(b5)/numel (t5));
for i = l:n,tic;[t6,y6] = 0de23(f6,[0 single(final time)],single(rand(12,1)));b6(1)
toc;end
fprintf (1, 6 node pcy,\\texttt {ode23} ,FP32,bit & $%.0f\\ micro\\second$ \\\\\n’,1e60
mean(b6)/numel (t6));
fprintf(1,’\\ hline \\\\\n’);
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A.9 C Code For Comparison IEEE754-32
#include <stdio.h>

#include <math.h>

#include <time.h>

#include <unistd.h>

#define CLOCK PROCESS CPU_TIME ID 2
#define CLOCK THREAD CPU _TIME ID 3
#define N 12

#define ITER 20000

#define ITER2 2000

int main () {

time _t t;

struct timespec tl, t2;
double total elapsed time;
double avr elapsed time;

int i,j;

float dt;
float xn[N], x[N];

srand ((unsigned) time(&t));

dt = pow(2,—11);

for (i = 0; i <N;i++) x[i]=(rand() % 4)-2;

clock gettime (CLOCK THREAD CPU TIME ID, &tl);

for (j = 0; j < ITER2; j++) {

//clock_gettime (CLOCK THREAD CPU TIME ID, &tl);

for (i = 0; i < ITER; i++) {

xn[0] = x[0] + ( x[1] )odt;
xn[1] = x[1] + ( —sin(x[0]) )dt;
xn[2] = x[2] + ( x[3] + x[0] — x[2])Cdt;
xn[3] = x[3] + ( —sin(x[2]) + x[1] — x[3])ldt;
x[0] = xn[0];
x[1] = xn[1];
x[2] = xn[2];
x[3] = xn[3];
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}

}
clock gettime (CLOCK_THREAD CPU TIME ID, &t2);

//avr_elapsed time = 0;

//for (j=0;j<ITER2;j++) {

//avr_elapsed time += elapsed time[j];

//}

total_elapsed_time = t2.tv_secl/le9 — tl.tv_secllle9 +
t2.tv_nsec — tl.tv_nsec;

printf(”TotalyElapsedyTime:,%.0f\n”, total_elapsed_time);

avr_elapsed time = total elapsed time / ITER / ITER2;

printf(”2,node  Explicite Euler FP32,&,,%.0f\\ nano\\second \\\\\n”,

avr_elapsed_time);

for (i = 0; i <N;i++) x[i]=(rand() % 4)—2;

clock_gettime (CLOCK THREAD CPU TIME ID, &tl);

for (j = 0; j < ITER2; j++) {

//clock _gettime (CLOCK THREAD CPU TIME ID, &t1);

for (i = 0; i < ITER; i++) {

xn[0] = x[0] + ( x[1] ydt;
xn[1] = x[1] + ( —sin(x[0]) )odt;
xn[2] = x[2] + ( x[3] + x[0] — x[2])0)dt;
xn[3] = x[3] + ( —sin(x[2]) + x[1] — x[3])dt;
xn[4] = x[4] + ( x[5] + x[0] — x[4])0dt;
xn[5] = x[5] + ( —sin(x[4]) + x[1] — x[5])idt;
x[0] = xn[0];
x[1] = xn[1];
x[2] = xn[2];
x[3] = xn[3];
x[4] = xn[4];
x[5] = xn[5];

}

}

clock gettime (CLOCK THREAD CPU TIME ID, &t2);
total elapsed time = t2.tv_secllle9 — tl.tv_secllle9 +

t2 . tv_nsec — tl.tv_nsec;

printf(”Total Elapsed, Time:,%.0f\n”, total elapsed time);
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avr_elapsed_time = total elapsed_time / ITER / ITER2;

printf (7”3 node Explicite Euler FP32_ &,,%.0f\\ nano\\second \\\\\n”,
avr_elapsed_time);

for (i = 0; i <Nj;i++) x[i]=(rand() % 4)-2;

clock_gettime (CLOCK THREAD CPU TIME ID, &tl);

for (j = 0; j < ITER2; j++) {

for (i = 0; i < ITER; i++) {
xn[0] = x[0] + ( x[1] )odt;
xn[1] = x[1] + ( —sin(x[0]) )odt;
xn[2] = x[2] + ( x[3] + x[0] — x[2])ldt;
xn[3] = x[3] + ( —sin(x[2]) + x[1] — x[3])dt;
xn[4] = x[4] + ( x[5] + x[0] — x[4])0dt;
xn[5] = x[5] + ( —sin(x[4]) + x[1] — x[5])0dt;
xn[6] = x[6] + ( x[7] + x[0] — x[6])ldt;
xn[7] = x[7] + ( —sin(x[6]) + x[1] — x[7])dt;
x[0] = xn[0];
x[1] = xn[1];
x[2] = xn[2];
x[3] = xn[3];
x[4] = xn[4];
x[5] = xn[5];
x[6] = xn[6];
x[7] = xn[7];

}

1
s

clock gettime (CLOCK THREAD CPU TIME ID, &t2);

total_elapsed_time = t2.tv_secllle9 — tl.tv_secllle9 +
t2.tv_nsec — tl.tv_nsec;

printf(”Total Elapsed,Time:,%.0f\n”, total elapsed time);

avr_elapsed time = total elapsed _time / ITER / ITER2;

printf(”4,node  Explicite Euler FP32,.&,,%.0f\\ nano\\second \\\\\n”,

avr_elapsed time);

for (i = 0; i <N;i++) x[i]=(rand() % 4)—2;

clock_gettime (CLOCK THREAD CPU TIME ID, &tl);
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for (j = 0; j < ITER2; j++) {

for (i = 0; i < ITER; i++) {

xn[0] = x[0] + ( x[1] )odt;
xn[1] = x[1] + ( —sin(x[0]) )odt;
xn[2] = x[2] + ( x[3] + x[0] — x[2])Cdt;
xn[3] = x[3] + ( —sin(x[2]) + x[1] — x[3])ldt;
xn[4] = x[4] + ( x[5] + x[0] — x[4])ldt;
xn[5] = x[5] + ( —sin(x[4]) + x[1] — x[5])dt;
xn[6] = x[6] + ( x[7] + x[0] — x[6])0dt;
xn[7] = x[7] + ( —sin(x[6]) + x[1] — x[7])dt;
xn[8] = x[8] + ( x[9] + x[0] — x[8])ldt;
xn[9] = x[9] + ( —sin(x[8]) + x[1] — x[9])ldt;
x[0] = xn[0];
x[1] = xn[1];
x[2] = xn[2];
x[3] = xn[3];
x[4] = xn[4];
x[5] = xn[5];
x[6] = xn[6];
x[7] = xn[7];
x[8] = xn[8];
x[9] = xn[9];

}

}

clock _gettime (CLOCK THREAD CPU TIME ID, &t2);

total elapsed time = t2.tv_seclJle9 — tl.tv_seclJle9 +
t2.tv_nsec — tl.tv_nsec;

printf(”Total Elapsed Time:,%.0f\n”, total_ elapsed_time);

avr_elapsed_time = total elapsed_time / ITER / ITER2;

printf(”5S,node  Explicite Euler FP32 &,,%.0f\\ nano\\second \\\\\n”,

avr_elapsed_time);

for (i = 0; i <N;i++) x[i]=(rand() % 4)—2;

clock_gettime (CLOCK THREAD CPU TIME ID, &tl);

for (j = 0; j < ITER2; j++) {

for (i = 0; i < ITER; i++) {
xn[0] = x[0] + ( x[1] )odt;
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xn[1] = x[1] + ( —sin(x[0]) )odt;
xn[2] = x[2] + ( x[3] + x[0] — x[2])[ldt;
xn[3] = x[3] + ( —sin(x[2]) + x[1] — x[3])dt;
xn[4] = x[4] + ( x[5] + x[0] — x[4])0dt;
xn[5] = x[5] + ( —sin(x[4]) + x[1] — x[5])0dt;
xn[6] = x[6] + ( x[7] + x[0] — x[6])Cldt;
xn[7] = x[7] + ( —sin(x[6]) + x[1] — x[7])dt;
xn[8] = x[8] + ( x[9] + x[0] — x[8])0dt;
xn[9] = x[9] + ( —sin(x[8]) + x[1] — x[9])Idt;
xn[10]=x[10] + ( x[11] + x[0] — x[10])Lldt;
xn[11]=x[11] + ( —sin(x[10]) + x[1] — x[11])CIdt;
x[0] = xn[0];
x[1] = xn[1];
x[2] = xn[2];
x[3] = xn[3];
x[4] = xn[4];
x[5] = xn[5];
x[6] = xn[6];
x[7] = xn[7];
x[8] = xn[8];
x[9] = xn[9];

x[10] = xn[10];
x[11] = xn[11];
}

}
clock_gettime (CLOCK THREAD CPU TIME ID, &t2);

total _elapsed _time = t2.tv_secl]le9 — tl.tv_secllle9 +
t2.tv_nsec — tl.tv_nsec;

printf(”TotalyElapsedyTime:,%.0f\n”, total_elapsed_time);

avr_elapsed time = total elapsed time / ITER / ITER2;

printf(”6,node  Explicite Euler FP32_ &,,%.0f\\ nano\\second \\\\\n”,

avr_elapsed time);

return 0;
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A.10 C Code For Comparison I = 2, F' = 29 Signed Fixed Point

#include <stdio.h>

#include <time.h>

#include <unistd.h>

#define N 12

#define CLOCK THREAD CPU TIME ID 3
#define ITER 1000

#define ITER2 10000

int atanTable [30] =
{

0x1921FB54, 0x0ED63383, 0x07D6DD7E, 0x03FAB753,
0x01FF55BB, O0x00FFEAAE, 0x007FFDS55, 0x003FFFAB,
0x001FFFF5, O0x000FFFFF, 0x00080000, 0x00040000,
0x00020000, 0x00010000, 0x00008000, 0x00004000,
0x00002000, 0x00001000, 0x00000800, 0x00000400,
0x00000200, 0x00000100, 0x00000080, 0x00000040 ,
0x00000020, 0x00000010, 0x00000008, 0x00000004 ,
0x00000002, 0x00000001

3
int scaleFactor = 0x1B7B2B63;
int main() {
time t t;
struct timespec tl, t2;
int xn[N], x[N];
double total elapsed_time;

double avr_elapsed_time;

int i,j;

int dt = 0x00040000; // 2°(—11)

srand ( time (NULL) );

for (i = 0; i < 12; i++) x[i] = rand()%4 — 2;

clock gettime (CLOCK THREAD CPU TIME ID, &tl);

for (i = 0; i < ITER; i++)
for (j = 0; j < ITER2; j++) {

xn[0] = x[0] + (x[1]

xn[1] = x[1] + (—cordicSin(x[0])

xn[2] = x[2] + (x[3] + x[2] — x[0]
xn[3] = x[3] + (—cordicSin(x[2]) + x[3] — x[1]
x[0] = xn[0];
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yodt;
)odt;
)yodt;
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x[1] = xn[1];
x[2] = xn[2];
x[3] = xn[3];

clock gettime (CLOCK THREAD CPU TIME ID, &t2);

total_elapsed_time = t2.tv_secllle9 — tl.tv_secllle9 +
t2.tv_nsec — tl.tv_nsec;
printf(”Total, Elapsed, Time,%.0f\n”, total elapsed time);
avr_elapsed time = total elapsed _time / ITER / ITER2;
printf(”2yunode Explicite Euler, $1=2%, ,$F=29%8,bit signed Fixed_ Numbers & %.0f

\\nano \\second \\\\\n”, avr elapsed time);

for (i = 0; i < 12; i++) x[i] = rand ()%4 — 2;

clock gettime (CLOCK THREAD CPU TIME ID, &tl);

for (i = 0; i < ITER; i++)
for (j = 0; j < ITER2; j++) {

xn[0] = x[0] + (x[1] )odt;
xn[1] = x[1] + (—cordicSin(x[0]) )odt;
xn[2] = x[2] + (x[3] + x[2] — x[0] )ldt;
xn[3] = x[3] + (—cordicSin(x[2]) + x[3] — x[1] )odt;
xn[4] = x[4] + (x[5] + x[4] — x[0]  )HUdt;
xn[5] = x[5] + (—cordicSin(x[4]) + x[5] — x[1] )odt;
x[0] = xn[0];

x[1] = xn[1];

[

x[2] = xn[2];
x[3] = xn[3];
x[4] = xn[4];
x[5] = xn[5];

clock_gettime (CLOCK THREAD CPU TIME ID, &t2);
total _elapsed time = t2.tv_secllle9 — tl.tv_secllle9 +
t2.tv_nsec — tl.tv_nsec;
printf(”Total Elapsed Time%.0f\n”, total elapsed_time);
avr_elapsed_time = total _elapsed_time / ITER / ITER2;
printf(”3unode Explicite Euler $I=2%, $F=29%,bit_ signed_ Fixed_ Numbers & %.0f
\\nano\\second \\\\\n”, avr_elapsed _time);

for (i = 0; i < 12; i++) x[i] = rand()%4 — 2;

clock_gettime (CLOCK THREAD CPU TIME ID, &tl);
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for (i = 0; i < ITER; i++)
for (j = 0; j < ITER2; j++) {

xn[0] = x[0] + (x[1] )odt;
xn[1] = x[1] + (—cordicSin(x[0]) )t
xn[2] = x[2] + (x[3] + x[2] — x[0] )HUdt;
xn[3] = x[3] + (—cordicSin(x[2]) + x[3] — x[1] )odt;
xn[4] = x[4] + (x[5] + x[4] — x[0] )odt;
xn[5] = x[5] + (—cordicSin(x[4]) + x[5] — x[1] )odt;
xn[6] = x[6] + (x[7] + x[6] — x[0] )odt;
xn[7] = x[7] + (—cordicSin(x[6]) + x[7] — x[1] )odt;
x[0] = xn[0];

x[1] = xn[1];

[

x[2] = xn[2];
x[3] = xn[3];
x[4] = xn[4];
x[5] = xn[

x[6] = xn[6];
x[7] = xn[7];

clock_gettime (CLOCK THREAD CPU TIME ID, &t2);

total elapsed time = t2.tv_secllle9 — tl.tv_seclJle9 +
t2.tv_nsec — tl.tv_nsec;
printf(”Total Elapsed Time %.0f\n”, total_elapsed_time);
avr_elapsed time = total elapsed time / ITER / ITER2;
printf(”4 node Explicite Euler $I=2%, ,$F=29%,bit_ signed_ Fixed_ Numbers & %.0f

\\nano\\second \\\\\n”, avr_elapsed_time);
for (i = 0; i < 12; i++) x[i] = rand ()%4 — 2;
clock gettime (CLOCK THREAD CPU TIME ID, &tl);

for (i = 0; i < ITER; i++)
for (j = 0; j < ITER2; j++) {

xn[0] = x[0] + (x[1] yhdt;
xn[1] = x[1] + (—cordicSin(x[0]) ydt;
xn[2] = x[2] + (x[3] + x[2] — x[0] )HUdt;
xn[3] = x[3] + (—cordicSin(x[2]) + x[3] — x[1] )odt;
xn[4] = x[4] + (x[5] + x[4] — x[0] )Udt;
xn[5] = x[5] + (—cordicSin(x[4]) + x[5] — x[1] )odt;
xn[6] = x[6] + (x[7] + x[6] — x[0] )odt;
xn[7] = x[7] + (—cordicSin(x[6]) + x[7] — x[1] )odt;
xn[8] = x[8] + (x[9] + x[8] — x[0] )HUdt;
xn[9] = x[9] + (—cordicSin(x[8]) + x[9] — x[1] )odt;

x[0] = xn[0];
x[1] = xn[1];
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x[2] = xn[2];
x[3] = xn[3];
x[4] = xn|[

x[5] = xn[

x[6] = xn[6];
x[7] = xn[7];
x[8] = xn[8];
x[9] = xn[9];

clock gettime (CLOCK THREAD CPU TIME ID, &t2);

total elapsed time = t2.tv_secllle9 — tl.tv_secllle9 +

t2.tv_nsec — tl.tv_nsec;
printf(”Total Elapsed Time %.0f\n”, total elapsed_ time);
avr_elapsed _time = total elapsed time / ITER / ITER2;
printf(”5.nodeyExplicite Euler $I1=2%, $F=298, bit signed Fixed Numbers & %.0f

\\nano \\second \\\\\n”, avr _elapsed time);
for (i = 0; i < 12; i++) x[i] = rand()%4 — 2;
clock gettime (CLOCK THREAD CPU TIME ID, &tl);

for (i = 0; 1 < ITER; i++)
for (j = 0; j < ITER2; j++) {

xn[0] = x[0] + (x[1] )odt;
xn[1] = x[1] + (—cordicSin(x[0]) )odt;
xn[2] = x[2] + (x[3] + x[2] — x[0] ydt;
xn[3] = x[3] + (—cordicSin(x[2]) + x[3] — x[1] )Odt;
xn[4] = x[4] + (x[5] + x[4] — x[0] )HUdt;
xn[5] = x[5] + (—cordicSin(x[4]) + x[5] — x[1] )odt;
xn[6] = x[6] + (x[7] + x[6] — x[0] )odt;
xn[7] = x[7] + (—cordicSin(x[6]) + x[7] — x[1] )dt;
xn[8] = x[8] + (x[9] + x[8] — x[0]  )idt;
xn[9] = x[9] + (—cordicSin(x[8]) + x[9] — x[1] )odt;
xn[10] = x[10] + (x[11] + x[10] — x[0] )ldt;
xn[11] = x[11] + (—cordicSin(x[10]) + x[11] — x[1] )odt;

x[0] = xn[0];
x[1] = xn[1];
x[2] = xn[2];
x[3] = xn[3];
x[4] = xn[4];
x[5] = xn[5];
x[6] = xn[6];
x[7] = xn[7];
x[8] = xn[8];
x[9] = xn[9];
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x[10]
x[11]

xn[10];
xn[11];

clock gettime (CLOCK THREAD CPU TIME ID, &t2);

total_elapsed_time = t2.tv_secllle9 — tl.tv_seclle9 +

t2.tv_nsec — tl.tv_nsec;
printf(”Total, Elapsed Time %.0f\n”, total elapsed_time);
avr_eclapsed _time = total elapsed time / ITER / ITER2;
printf(”6,nodeyExplicite Euler $I1=2%, $F=298, bit signed Fixed Numbers & %.0f

\\nano\\second \\\\\n”, avr _elapsed time);

return 0;

int cordicSin (int z) {

int xSum = 0;
int ySum = (z>0)? 0x20000000:0xE0000000 ;
int zSum = (z>0)? 0x3243F6A9:0xCDBC0957;

int i;

for (i = 0;i < 22;i++) {

xSum = (z < zSum) ? xSum + ySum >> i : xSum — ySum >> i;
ySum = (z < zSum) ? ySum — xSum >> i : ySum + xSum >> i;
zSum = (z < zSum) ? zSum — atanTable[i]:zSum + atanTable[i];

}
ySum (= scaleFactor;

return ySum; //return sin z;
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