
DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

PROCESS DIVERSITY IN SOFTWARE

DEVELOPMENT

by

Serra ŞAHİN

December, 2018

İZMİR

PROCESS DIVERSITY IN SOFTWARE

DEVELOPMENT

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Master of Science

in Computer Engineering, Applied Computer Engineering

by

Serra ŞAHİN

December, 2018

İZMİR

ii

iii

ACKNOWLEDGEMENTS

 I would like to thank to my supervisor, Asst. Prof. Dr. Semih UTKU, for his

support, supervision and useful suggestions throughout this study. Also I would like

to thank to Prof. Dr. Mehmet Süleyman ÜNLÜTÜRK for his support and

suggestions.

 Finally, I would like to offer my special thanks to my family, husband and friends

for their support, patience and help. It would not have been able to complete this

thesis without their support and help.

Serra ŞAHİN

iv

PROCESS DIVERSITY IN SOFTWARE DEVELOPMENT

ABSTRACT

 Software companies need to employ state-of-the-art technologies to meet

customer requirements. Owing to the complexity of contemporary software products

and uncertainty concerning the budget for the required resources, companies use

process-oriented quality management techniques in order to guarantee appropriate

product quality. In this light, standardized quality assurance system that uses the

Capability Maturity Model Integration–Development (CMMI-DEV) program are

incorporated into software development processes, and software companies aim to

enhance productivity by acquiring CMMI-DEV certificates. In this study, an

approach based on CMMI-DEV is used to develop software process diversity for an

international company. The results show that the proposed software process diversity

model can be used to assess and improve processes in middle size Software

Company that has identical technical framework and similar business structure.

Keywords: Capability maturity-model integration-development (CMMI), hybrid

methodologies, software development life cycle (SDLC)

v

YAZILIM GELİŞTİRMEDE SÜREÇ ÇEŞİTLİLİĞİ

ÖZ

 Yazılım şirketleri, müşteri gereksinimlerini karşılamak için en son çıkan

teknolojileri doğru bir uygulama sistemi ile kullanmalıdırlar. Bu nedenle şirketler,

çağdaş yazılım ürünlerinin karmaşıklığında ki, gerekli kaynak kullanımının

belirlenmesinde ki ve bütçeyle ilgili belirsizlikte ki sorunları aşabilmek için ve uygun

ürün kalitesini garanti etmek için süreç odaklı kalite yönetimi tekniklerini kullanırlar.

Bu kapsamda standartlaştırılmış kalite güvence sistemi olan Bütünleşik Yetkinlik

Olgunluk Modeli – Geliştirme (CMMI-DEV), yazılım geliştirme süreçlerine de

kullanılmış ve yazılım şirketleri bu CMMI-DEV sertifikalarını alarak üretkenliği

artırmayı hedeflemiştir. Bu çalışmada ise, uluslararası bir şirketin bu kapsamda ki

sorunları için CMMI-DEV tabanlı bir yaklaşım içinde yazılım süreci çeşitliliği

kullanılmıştır. Sonuçlar, önerilen yazılım süreci çeşitlilik modelinin, aynı teknik

çerçeveye ve benzer iş yapısına sahip olan orta ölçekli yazılım şirketindeki süreçleri

değerlendirmek ve iyileştirmek için kullanılabileceğini göstermektedir.

Anahtar Kelimeler: Bütünleşik Yetkinlik Olgunluk Modeli (CMMI), melez

metodolojiler, yazılım geliştirme yaşam döngüsü (SDLC)

vi

CONTENTS

Page

M.Sc THESIS EXAMINATION RESULT FORM ... Error! Bookmark not defined.

ACKNOWLEDGEMENTS ... ii

ABSTRACT .. iv

ÖZ .. v

LIST OF FIGURES .. ix

LIST OF TABLES ... x

CHAPTER ONE - INTRODUCTION ... 1

1.1 General .. 1

CHAPTER TWO - RELATED WORK ... 5

2.1 Literature Review .. 5

CHAPTER THREE - CAPABILITY MATURITY-MODEL INTEGRATION-

DEVELOPMENT (CMMI) ... 7

3.1 Introduction CMMI ... 7

3.2 History of CMMI ... 8

3.3 CMMI and Dimension ... 8

3.4 Structure of CMMI Model .. 9

3.5 CMMI Representation ... 12

3.6 Maturity Level (staged representation) ... 15

3.7 Level -2 of Maturity (Managed) .. 16

CHAPTER FOUR - SOFTWARE DEVELOPMENT LIFE CYCLE (SDLC) .. 18

4.1 Stages of Software Development Life cycle (SDLC) 18

 4.1.1 Planning and Requirement Stage .. 18

 4.1.2 Definition Stage .. 19

 4.1.3 Analysis Stage ... 19

 4.1.4 Design Stage ... 19

vii

 4.1.5 Development or Building Stage .. 20

 4.1.6 Testing or Implementation Stage .. 20

 4.1.7 Maintenance Stage .. 21

4.2 Models of SDLC ... 21

 4.2.1 V – Model ... 21

 4.2.2 Scrum Model ... 23

 4.2.2.1 Theory of Scrum .. 24

 4.2.2.2 Advantage of Scrum ... 24

 4.2.2.3 Disadvantage of Scrum .. 24

CHAPTER FIVE - METHODS AND MATERIALS ... 26

5.1 Scope of Study ... 26

5.2 Population and Study Area .. 26

5.3 Data Collection Instrument ... 27

5.4 Improvement Process .. 33

 5.4.1 Requirement work item (Req. WI).. 35

 5.4.2 Integrated plan committee (IPC meeting) ... 35

 5.4.3 Specification work item (Spec WI) ... 36

 5.4.4 Development ... 36

 5.4.4.1 Business review ... 37

 5.4.4.2 Analyst, tester, coder meeting (ATCM) .. 37

 5.4.4.3 Design and control .. 37

 5.4.4.4 Coding ... 37

 5.4.4.5 Developer testing .. 38

 5.4.4.6 Code inspection ... 38

 5.4.5 Finished phase ... 38

 5.4.6 Phase review.. 38

 5.4.7 Integration, system and regression test (ISR Test) 38

 5.4.8 Acceptance test ... 39

CHAPTER SIX - RESULTS AND DISCUSSION .. 42

6.1 Speed Increase Based Results ... 45

viii

6.2 Number of Faults ... 46

CHAPTER SEVEN - CONCLUSION AND FUTURE WORK 48

REFERENCES ... 50

ix

LIST OF FIGURES

Page

Figure 3.1 The three critical dimensions .. 9

Figure 3.2 CMMI model components .. 11

Figure 3.3 Structure of the continuous and staged representations 14

Figure 3.4 Maturity levels with process areas .. 16

Figure 4.1 SDLC Stages ... 21

Figure 4.2 V- Model ... 22

Figure 5.1 V-model of selected company according to study of SDLC 40

Figure 5.2 Hybrid model of selected company according to study of SDLC 41

TezV2.10.doc#_Toc526542433
TezV2.10.doc#_Toc526542434
TezV2.10.doc#_Toc526542435
TezV2.10.doc#_Toc526542436
TezV2.4.doc#_Toc525479410
TezV2.4.doc#_Toc525479411
TezV2.8.doc#_Toc526005166

x

LIST OF TABLES

Page

Table 3.1 Process Area of CMMI .. 9

Table 3.2 Comparison of Capability and Maturity Levels ... 13

Table 3.3 Maturity Level 2 Process Area .. 17

Table 5.1 Detail for “Why are processes slow?” ... 27

Table 5.2 Solution to “Why do processes have faults?” .. 29

Table 6.1 Organizational flexibility ... 43

Table 6.2 Percentages of the issues resolved with SDLC in total CMMI issues. 44

Table 6.3 Version plans and their evaluation. .. 44

1

CHAPTER ONE

INTRODUCTION

1.1 General

 Software organizations define processes in the product development phase; they

standardize these processes and continually improve the models to increase its

quality and deliver the product on time e (Curtis, 2000). The choice of software

development process used significantly influences the quality and on-time delivery

of the product (Mathai, M.K., Venugopal, R., Abraham, 2016)(Aaen, Arent,

Mathiassen, & Ngwenyama, 2001; Ganpatrao Sabale & Dani, 2012; Ramasubbu &

Balan, 2009). There are numerous such software methodologies, development

processes and frameworks available for use by software teams. Software processes

guide the software team by partitioning the work into manageable tasks; therefore, it

is necessary to elaborate on the process definitions. In particular, when defining the

software process, the boundaries of work, objectives of the project, and number of

resources allocated must be well defined. The number of resources and hardware to

be used in these processes can hence be determined efficiently and accurately

(Lindvall & Rus, 2000). Moreover, the flexibility of the organization should be

considered in the stages of process improvement. In the current context, flexibility is

the capacity to use existing capabilities and explore new opportunities. Furthermore,

collaborative trust is based on institutional dialogue and common goals (Adler, 2013;

Heckscher, Adler, & Paul, 2008; O’Reilly & Tushman, 2011). For these reasons

software development firms must be able to standardize their development processes

to ensure continual improvement in the software development lifecycle (SDLC).

Standardization contributes to improvement in productivity, quality, and schedule

planning (Agrawal & Chari, 2007; Chrissis, Konrad, & Shrum, 2003; Glazer, Dalton,

Anderson, Konrad, & Shrum, 2008). To achieve standardization, the Capability

Maturity Model Integration (CMMI) (a software process improvement (SPI) type)

can be used (Kuhrmann, 2015; Niazi, 2015). The concept of CMMI-DEV is not

concerned with implementation within processes, but with process

improvement in development environments (Garzás & Paulk, 2013). The latest

version of CMMI-DEV is widely used and can continually improve the maturity

2

model of software development processes (Chrissis et al., 2003; J. et al., 2014;

Kuhrmann, 2015; Niazi, 2015). Moreover, CMMI-DEV yields a dual benefit for

managing, measuring and monitoring software development processes because

CMMI provides continual improvement while eliminating the deficiencies of the

SDLC processes.

 In light of the abovementioned applicability and usefulness of process

improvements, there is need for further collaboration between concepts in

engineering and management for continual improvement of organizational processes.

Therefore, it is necessary to use CMMI-DEV for management problems and SDLC

methodologies to handle technical issues. To achieve this, process implementations,

excluding infrastructure-related issues, should align key process areas of each

methodology with those of CMMI-DEV. In particular, CMMI-DEV has been applied

to key methodologies to ensure good engineering practices, management structures,

and adequate institutionalization (Glazer et al., 2008; Paulk, 2001). In such a

collaboration, the selected methodology determines to the steps used to improve key

process areas; thus, it is necessary to determine the effects of these process areas on

CMMI-DEV.

 Resource-light methods have become increasingly popular; these methods are

based on the type and size of business. In many software applications (Web, mobile),

such methods are used to describe processes. In examining their effect on the

development process, it is necessary to assess software development processes

because such assessments are useful in guiding software development projects.

Furthermore, they are more suitable for small- or medium-sized projects than for

large-sized projects. For this reason, the design and selection of CMMI-DEV

applications in management processes of large and risky projects in conjunction with

lightweight methods is appropriate. The goals and practices of CMMI are rendered

more effective when it is used with activities involving lightweight methods(Garzás

& Paulk, 2013; Glazer et al., 2008; Paulk, 2001; Sutherland, Jakobsen, & Johnson,

2007). However, CMMI is similar to traditional model with strong documentation

requirements and an iterative structure in its levels. Considering this, all the goals

3

and practices of a given leveling process must be completed before moving on to a

new level.

 However, CMMI is not an SDLC-type but an SPI-type methodology. It is

therefore used as a standardization rule for lightweight software methods. In other

words, lightweight software methods are used to answer the “how” on CMMI

practices and this opportunity let companies customize it easily (Glazer et al., 2008).

However, some problems arise when CMMI is used in such a manner. Even

lightweight software methods used as models are supported using CMMI; therefore,

software development processes revert to purely lightweight methods when process

improvement is neglected. Therefore, the model used in improvement processes must

be developed or organized using robust structures (Hneif & Ow, 2009). Because

traditional methodologies are considerably rigid, requiring substantial resources and

documentation, and adapt slowly to change, companies have abandoned them (Cho,

2009; Mathai, M.K., Venugopal, R., Abraham, 2016; Stephen & Oriaku, 2014).

 When examining the literature on the strengths and weaknesses of software

development methodologies in light of the above discussion, any selected

methodology needs to address the problem of quality and time owing to the cost and

labor incurred in the development phase of a given project (Balaji, 2012; Madachy,

Boehm, & Lane, 2006; Mohammed, Munassar, & Govardhan, 2010; Pawar, 2015;

Preeti & Saru, 2014; Stephen & Oriaku, 2014; Stoica, Mircea, & Ghilic-Micu, 2013).

In this case, instead of using purely lightweight methods or traditional systems, a

model consisting of a combination of multiple software development processes is

required to implement software process diversity (Ramasubbu, Bharadwaj, & Kumar

Tayi, 2015). Hence,

 software teams can better adapt to changing user requirements and design

specifications;

 with the diversity in the capabilities of processes, teams can address and

resolve conflicting requests in the project;

4

 software teams using traditional methodologies can become flexible by

adopting certain components of lightweight methods to process frameworks;

and

 software teams using similar lightweight methods can use some structural

elements and formal documentation linked to plan-based process approaches

to improve productivity and overall predictability (Harris, Collins, & Hevner,

2009; Ramasubbu & Balan, 2009; Ramasubbu et al., 2015; Ramesh, Mohan,

& Cao, 2012)(Subramanyam, Ramasubbu, & Krishnan, 2012).

 This study aims to guide the workings of a software company experiencing

problems and determine solutions for process improvement. Furthermore, the results

of a software development improvement process, and the gains achieved by the

software firm in transitioning from existing software processes to software process

diversity with a flexible organizational structure are evaluated.

 In this paper, Chapter 2 presents related works in the field. Chapter 3 and Chapter

4 show related topic definition and structure like SDLC and CMMI. The scope of

study, population and study area, data collection instruments, and improvement

process are given in Chapter 5. The results of a software development improvement

process, and the gains achieved by the software firm in transition from existing

software processes to software process diversity with a flexible organizational

structure, are evaluated in Chapter 6, Chapter 7 presents the conclusion and scope for

future work.

5

CHAPTER TWO

RELATED WORK

2.1 Literature Review

 In this chapter, reports and published research related to CMMI-DEV, SDLC, and

software process diversity models based on such factors as efficiency, timing,

quality, and cost have been investigated. In a study on process improvement by

Glazer et al. (Glazer et al., 2008), the relation between CMMI and lightweight

software methodologies were defined. Similarly, Paulk (Paulk, 2001) investigated

the Software Capability Maturity Model (SW-CMM) as basis for an XP model. In

another study, using Spanish companies as examples, Garzás and Paulk (Garzás &

Paulk, 2013) described a successful relationship between CMMI and the lightweight

software method of Scrum. Sutherland et al. (Sutherland et al., 2007) discussed

maturity level 5 of the CMMI and Scrum processes and claimed that integrity was

obtained between them.

 However, Glazer et al. (Glazer et al., 2008) have also argued that CMMI

overcomes the differences in definitions between lightweight and conventional

models. Certain issues have emerged relating to the “restrictions of lightweight

methodologies” according to Hneif and Ow (Hneif & Ow, 2009). In this regard, the

common opinion based on a comparison among software models, such as those

proposed by Stephan and Oriaku (Stephen & Oriaku, 2014), Balaji (Balaji, 2012),

Pawar (Pawar, 2015) Mohammed et al. (Mohammed et al., 2010), Preeti and Saru

(Preeti & Saru, 2014), and Stoica et al. (Stoica et al., 2013) show that the

disadvantages of each model are constrained by the project size. Sabale and Dani

(Ganpatrao Sabale & Dani, 2012) showed the significance of product quality and

timing in all SDLC models. Munassar and Govardhan (Mohammed et al., 2010)

reported that the primary issues for all models, regardless of the wide range of

software development models available, are cost and other resources; therefore, they

proposed hybrid models.

6

 Madachy et al. (Madachy et al., 2006) recommended extending the spiral model

and using it as a lightweight spiral lifecycle model. Cho (Cho, 2009) reported on the

strengths of a combination of the Rational Unified Process (RUP) and Scrum.

Furthermore, in their study, Boehm and Turner implemented lightweight software

methods (Boehm & Turner, 2005) in standard industry processes by maintaining

their specific lightweight characteristics. In addition to these, Vinekar et al. (Vinekar,

Slinkman, & Nerur, 2006) and Batra et al. (Batra, Xia, van der Meer, & Dutta, 2010)

adopted a more scientific approach to assess the combined applicability of the

conventional and lightweight methodologies.

 Ramasubbu et al. (Ramasubbu et al., 2015) investigated software process

diversity on a project with multiple software process development frameworks.

O’Reilly and Tushman (O’Reilly & Tushman, 2011) defined flexibility as the

capacity to simultaneously exploit existing capabilities and explore new

opportunities, such as collaborative trust based on institutional dialogue and shared

purposes (Heckscher et al., 2008).

 When all these studies are examined, in summary; relationship and integrity

between CMMI and the lightweight software method of Scrum are defined and

provided. The advantages of CMMI over lightweight and conventional models are

presented and hybrid solutions are proposed accordingly. Lightweight spiral lifecycle

model is recommended, and conventional and lightweight methodologies are

combined. However, It has not been mentioned how CMMI processes benefit hybrid

solutions in software development processes. In this study, the software process

diversity processes are provided for an international company and CMMI-DEV and

Scrum were combined to enhance software productivity and creativity.

7

CHAPTER THREE

CAPABILITY MATURITY-MODEL INTEGRATION-DEVELOPMENT

(CMMI)

 This chapter mentions about definition, history, structure and level of the

capability maturity model integration development (CMMI).

3.1 Introduction CMMI

 Nowadays, companies want to deliver products and services better, faster, and

cheaper. While this product is producing, created modules are increasingly complex.

So requirement analysis and resource management are becoming a serious

issue. (Software Engineering Institute, 2010)

 Now more than ever, an integrated approach is improved so as enterprise-wide

solutions are required these solution for solution of these issues. Especially,

management entity of organizational, develop the service and product are critical

effect to business success. Because, their development are needed management

activities as part of business. (Software Engineering Institute, 2010)

 The most influential method that is used to resolve the problems of software

development is CMMI that is Capability Maturity Model Integration. CMMI

provides an opportunity to avoid or eliminate these barriers thanks to continuously

improvement are supplied on processes. CMMI consists of best practices that

development activities applied to products and services. Therefore, CMMI as a

concept of software development processes refers to the model and develop software

process may be referred to maturity assessment model.(Software Engineering

Institute, 2010)

8

3.2 History of CMMI

 CMMI was budgeted by American department of defense (DoD) in 1984, was

released by Software Engineering Institute at (SEI) Carnegie Mellon University in

1986, and the standards in force at that time were for the military and the

government. Then CMM (SW-CMM) was published for software and successful. In

2002, this model was released with sector independent, called CMMI v1.1 model. In

2006, the latest version was released, called CMMI v1.2 and accepted by a wider

audience. When this version was released, three structures were created due to

independent sector. These are CMMI-DEV for Development, CMMI-SVC for

Services and CMMI-ACQ. However, CMMI-DEV concept is not concerned with

‘How to be implemented within processes' (Stoica et al., 2013). Therefore, the last

version of CMMI-DEV can be used for the continuous improvement in the software

development processes maturity model, and is more widely accepted. So CMMI v1.3

is published to support the Agile Software development principles (Garzás & Paulk,

2013; Glazer et al., 2008; Hneif & Ow, 2009; Paulk, 2001),(“SDLC Overview”,

2016; Software Engineering Institute, 2010).

3.3 CMMI and Dimension

 Software Engineering Institute has discovered many factors to provide quality

products and services while doing research on this subject. The most critical ones of

these factors people, procedures and methods, and tools and equipment. These

dynamic items are shown in Figure 3.1 The three critical dimensions (Software

Engineering Institute, 2010). When connections of between these elements are

correctly organized, understanding of associated with the operation of the process,

resource management and structures of the construction work to made quality work

at less cost. Thus, development processes can be more resistant in features toward to

changing the shape (Software Engineering Institute, 2010).

9

 Additionally, connection of these dimension are interested to process area

category of CMMI that include project management, process management, systems

engineering, hardware engineering, software engineering, and other supporting

processes used in development and maintenance in process area category (Software

Engineering Institute, 2010).

3.4 Structure of CMMI Model

 In every CMMI models, major construction item is “Process Area (PA)” that are

focus on the activities of the developer organization. It has 22 process areas and these

are shown on Table 3.1 Process Area of CMMI.

Table 3.1 Process Area of CMMI (Software Engineering Institute, 2010)

Name Abbreviation

Causal Analysis and Resolution CAR

Configuration Management CM

Decision Analysis and Resolution DAR

Integrated Project Management IPM

Figure 3.1 The three critical dimensions (Software Engineering Institute, 2010)

http://tureng.com/tr/turkce-ingilizce/abbreviation

10

Table 3.2 continues

Measurement and Analysis MA

Organizational Process Definition OPD

Organizational Process Focus OPF

Organizational Performance Management OPM

Organizational Process Performance OPP

Organizational Training OT

Product Integration PI

Project Monitoring and Control PMC

Project Planning PP

Process and Product Quality Assurance PPQA

Quantitative Project Management QPM

Requirements Development RD

Requirements Management REQM

Risk Management RSKM

Supplier Agreement Management SAM

Technical Solution TS

Validation VAL

Verification VER

 However, process areas are grouped three categories (requires, expected and

informative) in structure illustration (“SDLC Overview”, 2016; Software

Engineering Institute, 2010). These are;

 Required: In given process area, process improvement is accomplished that are

the specific and generic goals

 Expected: In accomplishing a required CMMI component, important activities

are described that are specific and generic practices

 Informative: In accomplishing and describing CMMI component, models help

to user for understanding.

11

 Each process area is grouped with practices. They are practices aggregately to set

of goals to make improvement. Namely a process area has specific and generic goals

and each specific and generic goals has own specific and generic practices. Also each

goals are implemented with “Required” category, and each practices are

implemented with “Expected” category. Goals and practices structure of a process

area are shown in Figure 3.2 CMMI model components (Software Engineering

Institute, 2010).

Figure 3.2 CMMI model components (Software Engineering Institute, 2010)

12

 According to CMMI model components definitions;

 Purpose Statements: This component defines aim of process area and it is

‘Informative’ category

 Introductory Notes Statements: This component defines basic concept in

process area and it is ‘Informative’ category.

 Related Process Areas: This component shows the related process area

reference ad relationship among them and it is ‘Informative’ category.

 Specific Goals: This component defines the unique goals to supply the process

area. It is obligatory definition and it is ‘Requirement’ category.

 Generic Goals: This component defines the goals that are applied on single or

multiple process area to institutionalize the implement process area. It is

obligatory definition and it is ‘Requirement’ category.

 Specific Practices: This component define processes for achieving the

associated specific goals. It is ‘Expected’ category.

 Generic Practices: This component defines processes that are applied on single

or multiple process area for achieving the associated generic goals. It is

‘Expected’ category.

 Sub practices: This component defines the details of interpreting and

implementing for specific or generic practice. It is ‘Informative’ category.

 Generic Practices Elaborations: This component define the guidance after

generic practices for applying uniquely on process area. It is ‘Informative’

category.

 Example Work Product: this component lists of sample output from a specific

practice. It is ‘Informative’ category.

3.5 CMMI Representation

 While active product or service is developing in CMMI-Dev, processes need to

improve. Improvement process of organization is performed with levels. CMMI

13

model is unified under two representations. These are; (“SDLC Overview”, 2016;

Software Engineering Institute, 2010)

 Capability Level (continuous representation): Capability levels are a means for

continuously improving the process that is selected individual or group of

processes area by company. Capability levels are achieved by “continuous

representation”. these levels are numbered 0 through 3. These are shown on

Table 3.2 Comparison of Capability and Maturity Levels.

 Maturity Level (staged representation): Maturity levels are a means for

improving the processes that are selected related set of processes by

company. Maturity levels are achieved by “staged representation”. These

levels are numbered 1 through 5. These are shown on Table 3.2 Comparison

of capability and maturity levels.

Table 3.3 Comparison of Capability and Maturity Levels (Software Engineering Institute, 2010)

 Continuous Representation Staged Representation

Level Capability Levels Maturity Levels

Level 0 Incomplete

Level 1 Performed Initial

Level 2 Managed Managed

Level 3 Defined Defined

Level 4 Quantitatively Managed

Level 5 Optimizing

 On the other hand these levels are characterized according to specification.

Maturity levels are used to describe relative to model for general state of the

organization's processes by the staged representation. It concentrates general

maturity that is measured by maturity levels Capability levels are used to describe

relative to individual process area for state of organization’s processes by continuous

representation. It concentrates a process area that is measured by capability levels.

14

 Further, when correlating between level of CMMI and component of CMMI is

define, maturity level is related with process area and capability level is related with

generic goals. This explanation is shown on Figure 3.3 Structure of the continuous

and staged representations (Software Engineering Institute, 2010).

 Components of Continuous Representation of CMMI

o Capability Level (continuous representation)

 General Goal and Generic Practices

o Categorically Process Areas

o Profile

o Other Component

 Components of Staged Representation of CMMI

o Maturity Levels (Staged Representation)

 Capability Level (continuous representation)

 Process Area

 Generic Goal and Specific Goal

 Generic Practices and Specific Practices

Figure 3.3 Structure of the continuous and staged representations (Software Engineering Institute,

2010)

15

 Maturity level 2 is applied owing to empirical study is limited to level 2. So

technical definition is concentrated on maturity level 2 that is staged representation

in this study. But before maturity level 2 explanation, maturity levels should be

explain to understand the concept of maturity.

3.6 Maturity Level (staged representation)

 Maturity level is used to characterize organization's process areas according to all

model. The staged representation doesn’t concerned with individual process areas

that is status like complete or incomplete. It interests in multiple process areas that

are specified with in maturity level. These combinations are shown Figure 3.4

maturity level with process areas (Software Engineering Institute, 2010). Staged

representation provide to perfectly, accurately and timely complete work. While it

doing, requests, resources, risk and stockholders are planned to provide a way

measurement value, perfuming area to improve the processes of organization

(Software Engineering Institute, 2010).

 As mentioned before, five maturity levels are numbered 1 through 5. First level

does not need specific or special effort for improving process. Because each

company processes are level 1 from the first time it was established. So starting point

is named "initial". But companies does not has any CMMI certificate. Company is

expressed like mature means that it has CMMI certificate at least level 2. At that time

development processes of company are improvement. It can be measurable so

directed (Software Engineering Institute, 2010).

16

Figure 3.4 Maturity levels with process areas (Software Engineering Institute, 2010)

3.7 Level -2 of Maturity (Managed)

 As the name suggests, requirements are managed consequently processes are

planned and performed in level-2 expedient. In Level 2;

 Generate the managed outputs with skilled employee who are chosen for

project.

 Involve associated stakeholders that are controlled, reconsidered, monitored

and evaluated.

 Maintain the existing practice during misfortune

 Manage and perform the project with their documents

17

 Demonstrate the management of status for work product with defined points.

(Major tasks, major milestones etc.)

 Establish the commitments among associated stakeholders

 Control convenience of work product.

 Establish their standards, descriptions, processes and procedures on work

products.

 When the mentioned maturity values is detailed, it has 22 “Process Area (PA)” to

focus on the activities of the developer organization in every CMMI models. Each

process area is clustered with related practices. These process areas are shown in

Table 3.3 Maturity Level 2 Process Area below.

Table 3.4 Maturity Level 2 Process Area (Software Engineering Institute, 2010)

Name Abbreviation

Requirements Management REQM

Project Planning PP

Project Monitoring and Control PMC

Measurement and Analysis MA

Process and Product Quality Assurance PPQM

Supplier Agreement Management SAM

Configuration Management CM

http://tureng.com/tr/turkce-ingilizce/abbreviation

18

CHAPTER FOUR

SOFTWARE DEVELOPMENT LIFE CYCLE (SDLC)

 Software development processes’ set of activities that are significant combined to

generate the software product. These are combined different ways in different set of

activities according to different software processes. Besides that, every software

process includes set of well- defined activities that have common definition. Thus,

maturity’ levels of software development are identified in stage of process and

activities and functions fit into particular methodology (“SDLC Overview”, 2016).

4.1 Stages of Software Development Life cycle (SDLC)

 SDLC include set of general stage that shows major step, schedule and

information of software development processes. Generally, each stage is built on the

other and associated. Main stages are following; (Cortellessa, Vittorio, Di Marco,

Antinisca, Inverardi, 2011; “SDLC Overview”, 2016)

 Planning and Requirement Stage

 Definition Stage

 Analysis Stage

 Design Stage

 Development or Building Stage

 Testing or Implementation Stage

 Maintenance Stage

4.1.1 Planning and Requirement Stage

 Requirement analysis is most important fundamental stage of SDLC to determine

to proceed or not feasibility of project. Stage is continued by specified member of

team with sales department, notice from customer and. Feasibility study is occurred

with this information that is mean produced high level overview document, to survey

plan project and determine to budget, schedule and technical specification (“SDLC”,

19

2009; “SDLC Overview”, 2016). Figure 4.1 SDLC Stages shows planning and

Requirement Stage on main structure.

 In planning stage, quality assurance of software start to build and risks of project

are defined. Thus, project is implemented with minimum risks according to outcome

of technical feasibility study (“SDLC Overview”, 2016).

4.1.2 Definition Stage

 Definition stage includes the when, who, and how the project expression. With

the aid of expression, high level outline of project is generated. Thus Software

Requirement Specification document that includes the all of product requirement to

develop the product is associated with the project plan (Cortellessa, Vittorio, Di

Marco, Antinisca, Inverardi, 2011; “SDLC Overview” 2016). Figure 4.1 SDLC

Stages shows Definition Stage on main structure.

4.1.3 Analysis Stage

 Analysis Stage is used to define to current and feature users, to execute the

business processes in detail and to replicate the data on works. Various tools are used

in this step like flow – charting. According to the information gathered, user’

requirements are followed and re- documented for system. Correspondingly, project

plan should be updated with these changing that are budget, schedule, technical

detail, data and stockholder … etc.) (“SDLC”, 2009). Figure 4.1 SDLC Stages

shows Analysis Stage on main structure.

4.1.4 Design Stage

 Design stage is used to build the system with the best architecture and to specific

the technical requirements. Also, technical specifications are produced for minutia.

Software Requirement Specification is reference to design for this architecture but

sometimes, more than one design approach is suitable for product. So Design

20

Document Specification that is reviewed by all risk parameter, stockholders, design

specification, budget, schedule and product stability, is produced for each design. But

one must be chosen that is best for users and needs of business (“SDLC”, 2009;

“SDLC Overview”, 2016). Figure 4.1 SDLC Stages shows Design Stage on main

structure.

The purpose of system design is to create blueprint for the system that will satisfy

all documented system design: (“SDLC”, 2009)

 Input

 Interface

 Processes

 Output

4.1.5 Development or Building Stage

 Development is started in this stage. Code is programmed and starts to generate

the product according to Design Document Specification. If required, development,

unit test, integration test, screen and report and data replication are deal distributed.

Also user documentation and development of user procedure is performed parallel

(“SDLC”, 2009; “SDLC Overview”, 2016). Figure 4.1 SDLC Stages shows

Development or Building Stage on main structure.

4.1.6 Testing or Implementation Stage

 In this stage, test activities that are subset of all the staged and are involved in all

stage are established. System is installed, tested and rolled out with program that is

suitable training with business environment. If every feedback is ok, product is

released, otherwise bug are fixed, necessary updated are coded then re-testing is

maintained. Until user requirements are supported, these processes are repeated.

However, carefully the project deadline, schedule and budget during fix bug and re-

21

testing activities (“SDLC”, 2009.; “SDLC Overview”, 2016). Figure 4.1 SDLC

Stages shows Testing or Implementation Stage on main structure.

4.1.7 Maintenance Stage

 System is continuously improved according to feedbacks of users in this stage.

The product is released in limited function and tested in real business environment.

Then missing functions or modules are added to product with user’s feedback. Figure

4.1 SDLC Stages shows Maintenance Stage on main structure.

4.2 Models of SDLC

4.2.1 V – Model

 The V- Model was defined by the Paul Rook in towards the end of 1980’s to

improve the efficiency and effectives of software development. It is like modified

waterfall that concentrate between each phase of the development life cycle and its

associated phase of testing. Thus phases of SDLC are verified by testing variation

(Isaias & Issa, 2015).

Planning Stage

Definition Stage

Analysis Stage

Design StageDevelopment Stage

Test Stage

Maintenance Stage

Figure 4.1 SDLC Stages

https://en.wikipedia.org/wiki/Software_testing

22

 To verification, each step is implemented with the aid of documentation of the

previous step and steps are checked and confirmed with these documentations then it

can move to a new step. Thus testing and development will be continued in parallel

(Isaias & Issa, 2015).

 V- Model includes process phases like waterfall models. The project begins with

collecting requirement analysis and defining the specification then detail design is

done and project is implemented with design documentation. At the same time, while

system is moving down like descends down the ladder, the system move up like

upwards up the ladder to verify with testing phases. It is called V model that like “V”

shape (see Figure 4.2 V- Model) (Isaias & Issa, 2015; “v-model-final,” 2013)

 If system is detailed, implementation is tested by unit test, system design is tested

by integration testing and specifications are tested by system testing and finally, all

system is tested by acceptance testing (Isaias & Issa, 2015; “v-model-final,” 2013).

Requirement Analysis

Specification

High Level Design

Low Level Design

Coding

Unit Testing

Integration Testing

System Testing

Acceptance Testing

Planning

Figure 4.2 V- Model

23

 4.2.1.1 Advantage of V-model

 Improved quality and reliability.

 Improved Risk Management.

 Reduced the amount of re-work.

 Reduced the amount of fault. Because defects don’t flow down

 Offered simple and easy implementation

 4.2.1.2 Disadvantage of V – Model

 Very rigid and less flexible

 Prototype is not created early. Because software is developed during the

implementation step

 It is not suitable to large project.

 Required lots of resources.

 When any requirements are changed at middle of project, attached documents,

that are analysis and test documents, are updated (Isaias & Issa, 2015;

Munassar & Govardhan, 2010).

4.2.2 Scrum Model

 The scrum is the model to solve the complex issue and provide quick adaptation,

while highest valuable products that are owned from company, are development

with productively and creatively (Madachy et al., 2006).

 Since early 1990, processes of complex product have been managed with Scrum

Model and Scrum is not technique or process of development. So Scrum is used to

improve the product management and development process. Scrum model include

the Scrum Teams and own roles, events, and rule. Each process serves specific

purpose and is essential to Scrum’s success and usage for continuity and success in

24

Scrum Model. Thus Scrum Model arranges interaction between processes and bind

together (Madachy et al., 2006).

 4.2.2.1 Theory of Scrum

 Theory of Scrum uses the iterative and incremental approach. Thus risk is

controlled and predictability is optimized. For this scrum uses empirical process

control theory, or empiricism. Every implementation of processes is supported three

items that are; (Madachy et al., 2006).

 Transparency

 Inspection

 Adaptation.

 4.2.2.2 Advantage of Scrum

 Easy processes tracking

 Consistently customer feedback.

 Applied rhythm to easy understand and learn stakeholders

 Observable productiveness (with team velocity, burn down charts etc.)

 Easy organize stakeholders in different processes

 Low strict rules (documentation, procedures etc.)

 Importance for communication via face-to-face (Madachy et al., 2006)

 4.2.2.3 Disadvantage of Scrum

 If there is not a definite end date, the project management stakeholders will be

used to keep demanding new functionality to be delivered.

 If a task is not well defined, estimating project costs and time will not be

accurate.

25

 If the team members are not committed, the project will either never complete

or fail.

 It is suitable for small organization (fast moving projects).

 Need experienced stakeholders.

 Scrum works well when the Scrum Master trusts the team they are managing.

 If any of the team members leave during a development it can have a huge

inverse effect on the project development

 If the test teams are not able to conduct failure testing after each sprint, project

quality management is hard (Madachy et al., 2006).

26

CHAPTER FIVE

METHODS AND MATERIALS

 In this chapter, materials and methods that are used in CMMI study and SDLC

structure of software and affiliated departments, were explained. scope of study,

population and study area, improvement process are explained and detailed with

dialogs

5.1 Scope of Study

 This study describes the effects of software process diversity on the CMMI level

2 process in a company.

5.2 Population and Study Area

 The company being examined was located in Izmir, Turkey, with offices in

Istanbul as well as Amsterdam. Software solutions in sales and distribution,

logistical systems, labeling applications, and automatic defining and data collecting

(AD/DC) technologies were developed by the company. The solutions were

delivered to national and international customers by more than 140 employees using

channels established by the solution partners. The solutions were grouped under

different headings according to focus and specialization. The most important solution

was Mobile Sales and Distribution Management (MSDM), used by senior

management to control points of sale to increase. In particular, more than 4,000

enterprises across 12 countries relied on this software solution in their strategic

decision making processes.

 CMMI level 2 processes were applied to the software and affiliated departments.

Software improvement processes were implemented on the primary product MSDM

and its sub-product Quest. Accordingly, the study area and population of the research

were:

27

 Product: Mobile Sales and Distribution Management, and Quest

 Location: İzmir

 Participants;

o Software Department

 Business developers: 15

 Framework developers: 3

 Bug fix developers: 3

 Quality assurance: 1

 Analysts: 2

o Test Department

 Testers: 5

5.3 Data Collection Instrument

 As mentioned earlier, the improvement processes were examined in CMMI level

2. Issues in the various process areas were resolved using global and specific goals

and practices within the structure of CMMI. Problems were identified using

independent interviews with each stakeholder as well as the teams they are part of.

These problems were then mapped to the key process areas of CMMI maturity level

2. Detailed information concerning the problems is listed in Tables 5.1 Detail for

“Why are processes slow?” and 5.1 Detail for “Why do processes have faults?”

Table 5.1 Detail for “Why are processes slow?”

Issues Solutions Process

Area

SDLC

Area

Unaware of

slowness

 Defining speed and speed targets, and

measuring the size, time, and realized

speed.

 Comparing the realized speed with

target speed.

PPQA,

MA

Not yet

No

motivation to

be fast

 Establishing a premium system to

award achievement, training system to

prevent failure, and punishment

system to prevent continual failure.

 Each employee has personal targets,

and will be informed about whether

they have been achieved

PPQA,

MA

Not yet

28

Table 5.2 continues

Poor

time/resource

planning

 Creating a capacity calculation system

and establishing a size calculation

system to calculate the size of needs

or faults, a cost calculation system to

calculate the time and resources

needed to improve needs or eliminate

faults, a software development and

planning system to meet the

requirements appropriately in

optimum time based on the scope of

the requirements, cost, and available

capacity.

 Creating a dashboard for follow-up on

daily and weekly proceedings.

PP, PC,

PPQA,

MA

Req.WI,

Spec.WI

Incorrect

issues

affecting

plans

 Defining and improving “urgent”

issues to distinguish actually urgent

issues from false alarms.

PPQA Not yet

Lack of

knowledge

and

experience

 Preventing helpers from

simultaneously performing their tasks

and providing help.

 Establishing a training system

describing who requests help.

PPQA,

CM

Design

control,

Code

Inspection

Tool support Establishing a software support tool

map to asses and realize compatibility

among tools, support issues, and

suggested solutions according to the

overall aims.

 Obtaining support from consultants

and vendors for tools.

PPQA,

CM,

SAM

Not yet

29

Table 5.3 Solution to “Why do processes have faults?”

Issues Solution Process

Area

SDLC

Area

Misunderstood

needs /

requests

 The risks of incomplete

understanding or a misunderstanding

of the needs are considered and

necessary measures are taken.

 Business review before coding.

 Accepting no new needs’ analysis at

least two weeks before IPC date.

 Making changes to validated needs’

analyses through change request.

 Writing needs/technical analyses in

the form of scenarios using display

drawings in needs’ analyses and

preparing test cases for technical

analysis in technical analysis.

REQM,

PP, PC

Req. WI,

IPC,

Business

Review,

Finished

Phase,

Phase

Review

Lack of

knowledge

and

experience

 Commencing Saturday trainings to

improve knowledge of the staff.

Everyone attends Saturday trainings

at least once. Taking exams after the

trainings.

 Holding ATCM meetings and

preparing a design document before

coding.

 Performing code inspection.

PP, PC,

PPQA

Business

Review,

ATCM,

Design

Control,

Code

Inspection

30

Table 5.4 continues

Poor

time/resource

planning /

incorrect

design/coding

decisions

 Preventing interruption of work of

the software development team due

to the faults in the field.

 Allocating a fault team for this

purpose.

 Working on urgent definitions of

issues.

 Ensuring that all customers have

migrated to the latest version to

reduce faults in the field.

 Reconsidering the decision to not

assign DLL in pilot and set

transitions. Constitution of separate

sets for the 5 major customers.

Service Pack logic, etc.

 Improvement of environment and

resource on the mobile side.

PP, PC,

REQM

Developm

ent

Complexity of

code

 Manage program parameters.

 Keeping online help content

updated.

 Implementing principles to balance

the packaged product and customer

demands.

REQM,

PPQA,

CM

Developm

ent, Code

Inspection

Web, business,

database

compatibility

 Checking for conformance to the

layered structure, modular, and

object-oriented (LEGO) principles.

 Documenting the big picture

describing the

infrastructure/framework.

PPQA,

CM

Not yet

31

Table 5.5 continues

New

technology

 Accelerating the new framework

project.

PPQA Not yet

No pre-test

verification

checks

 Software test, technical analysis test.

 Code inspection.

PPQA Code

Inspection,

Developm

ent Test

Insufficient

number of test

cases and

content

 Increasing the back office and mobile

test cases.

 Reviewing test cases for content

quality.

PPQA,

CM

ISR Test

Test

environment

and test data

issues

 Determining test environment issues,

test environment improvement plan,

and realizing the test environment

improvement plan.

 Determining test data issues, test data

improvement plan, and realizing

these plans

PP, PC,

PPQA,

CM

ISR Test

Poor

Time/resource

planning /

improper fault

detection

 Focusing on test automation.

 Planning testing activities better.

Calculating and allocating time

required to conduct tests efficiently.

Measuring the tested percentage (%)

of the code

 Test training.

 Preparing a test dashboard.

 Establishing a test process.

PP, PC,

MA,

PPQA

ISR Test,

Acceptanc

e Test

32

Table 5.6 continues

Impairing

another

module/code

while fixing

one

 Saturday trainings.

 Big picture document describing the

framework.

 Assigning points to each fault and

performing an impact analysis.

Performing code inspection and

holding an ATCM meeting for major

faults.

PPQA,

CM, MA

Developm

ent, Code

Inspection

Excessive time

for fault

solutions

 Saturday trainings.

 Reducing mobile build time.

 Holding an ATCM meeting for

major faults.

 Establishing a fault-handling

process.

PPQA,

CM, MA

ATCM

Inter-team

communication

problem within

the software

teams

 Allocating a special fault team to

prevent staff from resolving faults

detected in the approved set test to

be interrupted with faults from the

field.

 Ensuring that no old version is used

in the field.

PPQA, ATCM,

Design

Control,

Code

Inspection

Poor

time/resource

planning /

solving of the

detected faults

 Written and verbal communication

training will be provided within the

team.

 An orientation program will be

scheduled.

PP, PC,

PPQA,

MA

ATCM,

Design

Control,

Code

Inspection

 Following these operations, reports were created and measurements conducted to

assess the improvement. A “back-log” system was designed to record the daily

activity of each stakeholder. In this phase, a customized CMMI template of the Team

33

Foundation Server (TFS) system was used. Each user filled specific areas of the

work item on the TFS.

5.4 Improvement Process

 The company had used Scrum to solve complex issues and quickly adapt their

software products to address those issues. Therefore, CMMI-DEV and Scrum were

combined to enhance software productivity and creativity. Furthermore, even though

the requirements changed quickly, Scrum was effective in managing them.

Therefore, software products were continually released at a specified frequency and

uninformed assumptions were eliminated through face-to-face communication. The

following items were observed for the company:

 Sprint frequency was set to every four months.

 The number of iterations for each sprint was set to three.

 The Scrum groups and Scrum master were well organized.

 Iteration, regression, and acceptance tests were conducted on time.

 An assessment meeting was held at the conclusion of the operation of Scrum.

 The complexity of software development increased within the company and

issues arose with resource and scheduled management. New versions were delayed,

and the number of bugs increased following a release. The company had difficulty in

implementing and measuring the quality of the software project. As a solution, the

company began using traditional methodologies to improve quality, reliability, and

risk management. The aim was to reduce the amount of re-work and number of bugs.

This was also done to ensure simple and easy implementation. However, as

traditional methodologies are rigid and inflexible, requiring substantial resources and

documentation, and cannot quickly adapt to changes, the company abandoned them.

Thus, neither traditional nor lightweight software methodologies were suitable for

the company’s software products. As a result, a system for software process diversity

among software methodologies was required. When a software process diversity

34

model using combined software methodologies was employed, the disadvantages of

each were compensated for.

 At the outset, the company applied a combination of CMMI level 2 and Scrum to

its software department; however, it sought a better software process diversity

system to replace Scrum. An investigation into this process revealed two primary

questions that had to be addressed:

 Why are processes slow?

 Why do processes have faults?

 The SPI was operated using CMMI-DEV and Scrum for a year. During this time,

the following observations were made:

 Requirements’ analysis is unsuitable for quickly moving processes except in

the cases of urgently needed changes for bugs reported by customers.

 Product versions across customers were not the same. A new version was

released every four months and some customers preferred not to use them.

For such customers, the number of bugs was higher.

 Each Scrum needed experienced team members, but software teams in the

company lacked the required number of expert developers.

 Risk was not managed appropriately during the iteration process within the

Scrum,

 There was insufficient documentation

 Based on these observations, Scrum was converted into a software process

diversity method that combines Scrum and the V-Model. The development process

was thus extended, the release period between versions was more appropriate, and

the requirements’ analysis was fully documented. To achieve these, the development

process was divided into six parts and each part was defined according to the

methodology of the V-Model. Thus, a software process diversity model was

35

implemented by combining the V-Model with Scrum. The new configuration to

address the abovementioned issues is shown in Figures 5.1 and 5.2.

 In particular, Figure 5.2 shows the software process diversity model used during

the software processes, while Figure 5.1 shows the V-model used during software

development. The processes and procedures of this model are described below.

5.4.1 Requirement work item (Req. WI)

 The primary objective in this process is based on the collection and management

of customer needs. For this purpose, project managers collect customer requests from

the customer services department, entered as work items on the tool used by the

company. The product manager then examines these work items. If he/she approves

a needs’ analysis, the work item is directed to be evaluated by the software.

Otherwise, the project manager returns to rectify the item. Once the relevant work

item reaches the software, the required person days are entered by experienced

software developers and administrators. In this manner, the needs’ analyses with

their number of person days are determined and collected. However, the person days

spent on the processes in the V-Model software process were subsequently added to

the person days’ calculation of the relevant analysis. Moreover, the sprints to which

the areas of the analyses were allocated were determined and categorized before the

IPC (Integrated Plan Committee) process. These areas were handled by the back

office and mobile areas.

5.4.2 Integrated plan committee (IPC meeting)

 This process is based on the establishment and transmission of the project plan.

The sprints and iteration for the collected needs’ analyses are determined by

software, quality assurance, and product and project managers in the IPC meeting.

Start and end dates are determined by establishing a project plan based on the total

number of person days, urgent customer needs person days, and holidays and leave

36

days for the selected needs’ analysis. This content is transmitted to the stakeholders

of each department by the managers attending the meeting.

5.4.3 Specification work item (Spec WI)

 The Spec WI process is based on writing the technical analysis to render the

needs’ analyses in the plan into a format that can be understood by software

developers. A technical analysis is not written for every needs’ analysis within the

scope of the plan; this determination is made by software and product managers.

These analyses are conducted by business analysts who obtain approval from the

product manager or project manager of the relevant analysis. If the technical analysis

is approved, it is associated with the relevant work item in the system. Otherwise,

business analysts perform a reconfiguration for the analyses returned. However, the

Cross Check and Business Preview processes of the V-Model were configured in this

process.

5.4.4 Development

 The development process was reconfigured with processes of the V-Model. As

shown in Figure 5.1, this process divided the development process of the Scrum

model into parts, and restructured it into a control and verification mechanism. There

were three basic procedures catering to the following: what to do before coding, what

to do during coding, and what to do after coding. Before coding, the Analyst, Tester,

Coder meeting was conducted, and the Design and Design Control processes from

the V-model were included. During coding, the Buddy Check and Preview Coding

sub-processes were added, as explained in the V-model. Finally, after coding,

Developer and Test and Code Inspection were added to build the control and

verification mechanisms.

37

 5.4.4.1 Business review

 This process consists of a review of the technical documents by project managers,

which are drafted by business analysts and project managers. In this process, the

analysis is approved by the project manager in prototype or text format.

 5.4.4.2 Analyst, tester, coder meeting (ATCM)

 The primary objective of this process is to determine a road map with the

stakeholders from every department before commencing coding analysis. As in the

title, this meeting involves an analyst, a tester, and a coder, and is planned by Scrum

masters.

 5.4.4.3 Design and control

 The primary objective of this process is to combine the technical analysis

algorithm with the software by utilizing the relevant technical data and diagrams

before commencing coding. Thus, software developers design the relevant technical

document and obtain the approval of an experienced software developer. There is no

software-related or other rule that must be observed in this process.

 5.4.4.4 Coding

 Coding is the fault, fault-free development of the product by the software

developer. Hence, software developers cooperate with experienced software

developers and business analysts. This cooperation is achieved as follows:

 Preview: For two days each week, business analysts check for the compliance

of the analyses they are responsible for against the business criteria during

development.

 Buddy Check: The technical accuracy of the code flow is checked twice daily

by experienced software developers.

38

 5.4.4.5 Developer testing

 This step involves checking during unit testing before proceeding with the test

stage. Hence, software developers cooperate with either testers or business analysts.

 5.4.4.6 Code inspection

 The objective of this process is to check for the compliance of the code with

coding standards as well as ensuring the technical accuracy of the code by

experienced software developers. Although this process appears similar to Buddy

Check, there is a significant difference. A critical error detected at this point requires

that the software developer redesign and reconfigure the code from scratch.

5.4.5 Finished phase

 The finished phase is based on an estimation of the finished phase date. Scrum

teams and the relevant masters determine this date.

5.4.6 Phase review

 The assessment of the finished phase and risk management for deficiency, if any,

constitutes this phase. Finished phases are assessed by Scrum teams and masters,

testers, and product managers.

5.4.7 Integration, system and regression test (ISR Test)

 Test processes are managed and controlled in the ISR test process. Testing starts

from the smallest area. In this workplace, the testing department performs its

smallest test using the integration test. Large areas are then tested with the system

and regression tests. The integration test is performed until the end of the relevant

phase as analysis ends, following which testers test the analyses assigned to them. An

error found here is forwarded to the corresponding software developer who

39

developed the code. Following the integration test phase, regression tests begin.

Regression testing is also performed at the end of a relevant phase. The integrity of

the analyses performed with respect to the other analyses of the module containing

the product is tested. Any error occurring here can be resolved by any software

developer. Following this part, the final type of system test, i.e., product test, is

performed. Again, any software developer can resolve any mistake at this stage.

Once this three-part test is complete, acceptance tests are performed at the end of the

sprint. These tests are conducted in a separate process. The testing department

follows a certain method for them. The test cases created earlier are first determined

followed by the new test cases. The cases are prioritized and checked by the test

manager. The results are reported by a test specialist (test case report). Based on this

report, the outcome criteria are decided. The lifecycle of the test for the relevant

analysis is then modified. The resulting document is shared with the test department.

Accordingly, test environments are prepared. Following this process, analyses are

assigned in a work distribution between test managers and testers. Each tester tests

his/her own analysis. Completed test cases are overwritten in the system. If there are

no errors, the analysis is complete. However, this process is conducted based on four

new rules:

 executing the processes capable of being resumed in the test case by automatic

testing tools;

 inspecting and configuring insufficient test cases at the end of each sprint, and

adding missing test cases, if any;

 documenting the test cases and results;

 If there is an incorrect analysis during testing, this fault must return to the first

process called the “requirement work item process.”

5.4.8 Acceptance test

 This process is implemented in the final phase by the testing department. In this

process, the system is tested in its entirety. Software developers primarily address

40

Requirement Analysis

Specification

Coding

Integration & System & Regression Testing

Business Review

ATCM

Design

Design Control

Developer Test

Code Inspaction

After all iteration of Scrum

Acceptance Testing

any fault at this stage. Following this, the product is ready to be released on the

market.

 In summary, the CMMI research and results, and research on the SDLC and the

transition from the old system to the new one are described in this chapter. The

following chapter describes the solutions based on the above discussion, their

implementation using the modified SDLC, and the advantages of the implemented

SDLC.

Figure 5.1 V-model of selected company according to study of SDLC

41

F

ig
u

re
 5

.2
 H

y
b

ri
d

 m
o
d

el
 o

f
se

le
ct

ed
 c

o
m

p
an

y
 a

cc
o

rd
in

g
 t

o
 s

tu
d

y
 o

f
S

D
L

C

42

CHAPTER SIX

RESULTS AND DISCUSSION

 In this chapter, the solutions obtained from the CMMI processes, relation among

the solutions, and SDLC processes are evaluated. In particular, the version plans used

by the Scrum and software process diversity models as well as the results of these

version plans, and comments obtained by addressing the two primary issues

examined using CMMI are considered. Each issue is detailed and answered. Each

solution is mapped to the key area of the related CMMI process (see Table 3.3 in

Chapter Three).

 The actions to be taken for the two issues were agreed upon by all stakeholders

from the software department (chief technology officer, quality assurance

department, software manager, software leader, team leaders, and all developers) as

well as the test department. At this stage,

 the company was committed to CMMI practices and these were explained in

detail to its employees;

 the necessary CMMI process training was provided to follow-up on the

improvements;

 by adopting human-focused processes to manage this change and build CMMI

process awareness, employees were given the necessary motivation (like

rewards); and

 experienced stakeholders were assigned to improve SDLC, find CMMI

solutions, and report the benefits.

 In addition to the above, changes to the software process were accepted by the

relevant departments, but the improvement processes were not fully executed on all

products of the company. The firm evaluated CMMI over one year. Following the

assessment, it was determined that the stakeholders working on different products

should apply flexibility and diversity in the improvement processes of products with

few dependencies. Because of the use of key areas of the CMMI process, the

43

application time might have increased. For this reason, as company policy,

improvements were made to two software products with the same business processes

and structures. The other software products were excluded from the process until

CMMI migration problems were overcome. Even though the improvement processes

were not homogeneously distributed on all products, resource assignment was used

to do so for each selected project. As listed in Table 6.1, a total of 16 stakeholders

(two stakeholders were fully integrated and 14 stakeholders shared integrated) were

assigned to the product "Quest." A total of 27 stakeholders (13 stakeholders were

fully integrated and 14 shared integrated) were assigned to the product “MSDM”.

Table 6.1 Organizational flexibility

Organizations No. of stakeholders

 Product 1: MSDM Product 2: Quest

Web developer 6 1

Mobile developer 7 1

Framework developer 3

Bug-fix developer 3

Quality assurance 1

Analyst 2

Tester 5

 As listed in Table 6.2, 13 of the 20 sub-problems were originally selected for

CMMI improved with SDLC processes (see Tables 5.1 and 5.2 in the Chapter Five

for issues and solutions). The 65% improvement rate is relatively high. When the

SDLC processes were used in the process improvement stages, half the processes

were improved using the appropriate method. In particular, the organizations were

very effective in reducing the number of faults and solving the speed-related

problem. Given the records of the issues of speed and faults, a 78.5% improvement

was obtained in reducing faults and 33.3% in increasing speed. Therefore, reducing

the number of faults and speeding the processes up were the basic criteria in this

context.

44

Table 6.2 Percentages of the issues resolved with SDLC in total CMMI issues

 Issue Counts Implementation of Solution Counts %

Slowness 6 2 %33.3

Fault Count 14 11 %78.5

Total 20 13 %65

 In A numerical representation of the methods shows that it is possible to measure

the fundamental basic processes in CMMI level 2. A conclusive summary is

presented in Table 6.3.

Table 6.3 Version plans and their evaluation

 software

versions 1

software

versions 2

software

versions 3

Total number of days 110 days 103 days 152

Number of days’ delay 53 days 14 days 3 days

Planned person days 1013 678.17 1400

Realized person days 1398 678.17 1249.73

Daily average closed person days 6.04 10.5

Number of analysis test faults 325 371

Number of approved set faults 711 654

Approved set workdays 45 19

Number of approved set faults per day 15.80 34.42

 In particular, Table 6.3 shows the number of faults at the end of the project and

improvement in speed on the basis of version for the company. The model used in

software version 1 was Scrum, and software process diversity models were used in

software versions 2 and 3.

45

6.1 Speed Increase Based Results

Inferences;

 In software version 1, 1398 person days of work were performed for a sprint of

110 days, and with 1013 planned person days.

 In software version 2, 678.17 person days of work were performed for a sprint

of 103 days in the software process diversity model.

 In software version 3, 1249.73 person days of work were performed for a sprint

of 152 days in a software process diversity model, with 1400 planned person

days.

 These observations show that the numbers of person days used for software

version 1, the Scrum model, and the two software process diversity models were

quite close; however, the work was completed in fewer days in software version 2.

The processes emerged in addition to production because the V-Model is a

component of the software process diversity model based on a verification and

control mechanism (Business Review, ATCM, Design and Design Control,

Development Test and Code Inspection). If higher production is required in software

version 3 by verifying this process, its business plan takes longer. Consequently,

software version 3 took two months longer than version 2; nevertheless, software

version 3 involved higher production.

 Results;

 The release date was delayed by 53 days owing to the complexity of and excess

work in software version 1, planned using the Scrum model.

 Using the software process diversity model, the set was released with a delay

of 14 days owing to insufficient improvement in the model in software

version 2. In this version, the daily average number of closed person days was

6.04 when measurements started in this version.

46

 Using the software process diversity model, the process proceeded smoothly

and the set was released with a negligible delay in software version 3. Thus,

this version was an improved one, and the average number of person days

almost doubled to 10.5.

6.2 Number of Faults

 Inferences;

 In software version 1, real numbers could not be obtained as the records could

not be transferred to the modified system appropriately.

 In software version 2, testers detected 325 faults when testing 678.17 person

days of work, and they were resolved by software developers until the

approved testing period. The testers detected 711 faults in the approved

testing period, and it took 45 days to resolve the process and its faults.

 In software version 3, the testers detected 371 faults when testing 1249.73

person days of work, and they were resolved by software developers until the

approved testing period. The testers detected 654 faults in the approved

testing period, and it took 19 days to resolve the process and its faults.

 These observations indicate that the number of faults detected in the test stage

continued to decrease and were resolved in a shorter period as the version developed.

At first glance, although it seems that fewer faults were detected in software version

2 compared with version 3, when ratio of person days spent is examined in the

relevant version, there were fewer faults in the product development process in

software version 3. If 325 analysis tests occurred in the daily plan of 678.17 person

days in software version 2, they might have been expected to detect a maximum of

598.90 faults in testing 1249.73 person days. However, only 371 faults were detected

in software version 3. Similarly, if 711 faults were detected in 678.17 person days in

the approved test set, they might have been expected to detect a maximum of 1310

faults in testing 1249.73 person days. However, only 654 faults were detected in the

approved test of software version 3. Moreover, 45 days were spent on 711 faults in

47

the approved set test of software version 2, whereas only 19 days were spent on 654

faults in for software version 3.

 Results;

 Using the software process diversity model, the approved test period was

longer and more faults were resolved in software version 2 than software

version 3.

 Using the software process diversity model, the process proceeded smoothly in

software version 3, and the approved test period was processed with fewer

faults and in a shorter period of time.

 In summary, based on our observations, the expected results were obtained by the

software department along with the estimated development process. Consequently,

improvements were made in every version to achieve the desired speed and

improvement, considering the change in the number of the faults resolved in parallel

with the proposed process.

48

CHAPTER SEVEN

CONCLUSION AND FUTURE WORK

 Both cost and time are difficult to calculate when a single process was performed

uniformly on products that have an identical technical framework and similar

business structure. To address this problem, continual improvement processes are

required that are inherent to the software. In this study, the applicability of the

CMMI model to SDLC was verified by showing that a company's Scrum model was

inadequate. As CMMI and SDLC are complementary, they are more appropriate to

assess results. Considering the impact on CMMI, because the company evaluated in

our study used CMMI level 2, only some questions concerning how SDMI processes

and CMMI should be implemented were addressed.

 For this reason, detailing SDLC processes used in the Scrum model appeared

unsuitable for products requiring verification, control, and documentation. The

Scrum model is tailored to the software department's advantage. The software

diversity process and flexibility were used for improvement processes on several

products with varying organizational structures. As a result, stable and more feasible

structures were established.

 According to the results obtained during our study of the software development

process of the company, these processes, implemented within a year, were successful

in terms of increasing speed and reducing the number of faults; however, they did not

achieve a successful outcome in the case of productivity.

 However, the solutions applied in our study involve a routine model, which does

not solve the problems experienced by several companies. In particular,

administrative problems such as time constraints, lack of resources, and limitation of

resource usage can cause the process to fail in the long term. Ensuring effective

change in a live system requires effort and determination. It is thus considerably

important to reuse experience and make marked improvements in measurements.

49

 As future work, two issues will be addressed: specifying how the SDLC models

can implement CMMI, and whether it is possible to obtain the desired software

processes by implementing the CMMI model in the cases where the existing SDLC

models are inadequate. Thus, future research will focus on detailing software process

diversity models to mitigate the disadvantages of models that are separately

configured and widely used in recent times. Another area of focus may be the

advantages of software process diversity models in the cases where they are used

together with other SPI types than CMMI, when compared with other single models.

CMMI level 3 and higher might be investigated with respect to improving project

management in terms of person and risk management, quality management using

process and software metrics, early recognition of deviations in budget and time

targets through continual improvement in measures, and necessary improvements

and continual improvement of function policies in the process.

50

REFERENCES

Aaen, I., Arent, J., Mathiassen, L., & Ngwenyama, O. (2001). A conceptual map of

software process improvement. Scandinavian Journal of Information Systems.

Retrieved February 18, 2017 from http://aisel.aisnet.org/sjis/vol13/iss1/8

Adler, P. (2013). The Collaborative , ambidextrous enterprise. Universia Business

Review, 40, 34-51.

Agrawal, M., & Chari, K. (2007). Software effort, quality, and cycle time: A study of

CMM level 5 projects. IEEE Transactions on Software Engineering, 33(3), 145-

156. https://doi.org/10.1109/TSE.2007.29

Balaji, S. (2012). Waterfall vs V-model vs Agile : A comparative study on SDLC.

International Journal of Information Technology and Business Management, 2(1),

26-30.

Batra, D., Xia, W., van der Meer, D., & Dutta, K. (2010). Balancing agile and

structured development approaches to successfully manage large distributed

software projects: A case study from the cruise line industry. Communications of

the Association for Information Systems, 27(1), 379-394.

Boehm, B., & Turner, R. (2005). Management Challenges to implementing agile

processes in traditional development organizations. IEEE Software, 22(5), 30-39.

Cho, J. (2009). A Hybrid software development method for large-scale projects:

Rational unified process with Scrum. Issues in Information Systems, 10(2), 340-

348.

Chrissis, M. B., Konrad, M., & Shrum, S. (2003). CMMI: Guidelines for process

integration and product improvement (2nd ed.). Boston MA: Addison-Wesley

51

Cortellessa, Vittorio, Di Marco, Antinisca, Inverardi, P. (2011). Model-based

software performance analysis. Heidelberg: Springer.

Curtis, B. (2000). Global pursuit of process maturity. IEEE Software, 17(4), 76-78.

Ganpatrao Sabale, R., & Dani, A. (2012). Comparative study of prototype model for

software engineering with system development life cycle. IOSR Journal of

Engineering, 2(7), 2250-3021.

Garzás, J., & Paulk, M. C. (2013). A case study of software process improvement

with CMMI-DEV and Scrum in Spanish companies. Journal of Software:

Evolution and Process, 25(12), 1325-1333.

Glazer, H., Dalton, J., Anderson, D., Konrad, M., & Shrum, S. (2008). CMMI or

Agile: Why not embrace both !. SEI in Software Engineering. Retrieved

November 11, 2008 from https://resources.sei.cmu.edu/library/asset-

view.cfm?assetid=8533

Harris, M. L., Collins, R. W., & Hevner, A. R. (2009). Control of flexible software

development under uncertainty. Information Systems Research, 20(3), 400-419.

Heckscher, C. C., Adler, P. S., & Paul, A. (2008). The Firm as Collaborative

Community: Reconstructing Trust in the Knowledge Economy. Oxford: Oxford

University Press.

Hneif, M., & Ow, S. H. (2009). Review of agile methodologies in software

development. International Journal of Research and Reviews in Applied Sciences,

1(1), 2076-734.

Isaias, P., & Issa, T. (2015). High level models and methodologies for information

systems. New York: Springer.

52

J., S., R.J., K., J.J.M., T., A.J.M.M., W., Samalikova, J., Kusters, R. J., … Weijters,

A. J. M. M. (2014). Process mining support for Capability Maturity Model

Integration-based software process assessment, in principle and in practice.

Journal of Software: Evolution and Process, 26(7), 714-728.

Kuhrmann, M. (2015). Crafting a software process improvement approach - a

retrospective systematization. Journal of Software: Evolution and Process, 27,

114-145.

Lindvall, M., & Rus, I. (2000). Process diversity in software development. IEEE

Software, 17(4), 14-18.

Madachy, R., Boehm, B., & Lane, J. A. (2006). Spiral lifecycle increment modeling

for new hybrid processes. Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

(167-177).

Mathai, M.K., Venugopal, R., Abraham, J. . (2016). Hybrid model for software

development. International Journal of Research in Engineering and Technology,

5, 198-202.

Mohammed, N., Munassar, A., & Govardhan, A. (2010). A comparison between five

models of software engineering. International Journal of Computer Science, 7(5),

94-101.

Munassar, N. M. A., & Govardhan, A. (2010). Hybrid model for software

development processes. Retrieved November 13 2017 from

http://itpapers.info/acit10/Papers/f256.pdf

Niazi, M. (2015). A comparative study of software process improvement

implementation success factors. Journal of Software: Evolution and Process,

27(9), 700-722.

53

O’Reilly, C. A., & Tushman, M. L. (2011). Organizational ambidexterity in action:

How managers explore and exploit. California Management Review, 53(4), 5-22.

Paulk, M. C. (2001). Extreme programming from a CMM perspective. IEEE

Software, 18(6), 19-26.

Pawar, R. P. (2015). A Comparative study of agile software development

methodology and traditional waterfall model. IOSR Journal of Computer

Engineering, (1-8).

Preeti, R., & Saru, D. (2014). Impact of different methodologies in software

development process. International Journal of Computer Science and Information

Technologies, 5(2), 1112-1116.

Ramasubbu, N., & Balan, R. K. (2009). The impact of process choice in high

maturity environments: An empirical analysis. In Proceedings - International

Conference on Software Engineering (529-539).

Ramasubbu, N., Bharadwaj, A., & Kumar Tayi, G. (2015). Software process

diversity: Conceptualization, measurement, and analysis of impact on project

performance. MIS Quarterly, 39(4), 787-807.

Ramesh, B., Mohan, K., & Cao, L. (2012). Ambidexterity in agile distributed

development: An empirical investigation. Information Systems Research, 23(2),

323-339.

SDLC (2009). Retrieved September 7, 2016 from

http://www.slideshare.net/orlandomoreno/sdlc-system-development-life-cycle-

sdlc

SDLC Overview (n.d.). Retrieved September 7, 2016 from

http://www.tutorialspoint.com/sdlc/sdlc_overview.htm

54

Software Engineering Institute (2010). CMMI for development, version 1.3.

Carnegie Mellon University. Retrieved November 1, 2010 from

https://resources.sei.cmu.edu/asset_files/TechnicalReport/2010_005_001_15287.p

df

Stephen, O., & Oriaku, K. (2014). Software development methodologies: Agile

model vs V-model. International Journal of Engineering and Technical Research

(IJETR), 2(11), 108-113.

Stoica, M., Mircea, M., & Ghilic-Micu, B. (2013). Software development: Agile vs.

traditional. Informatica Economică, 17(4), 64-76.

Subramanyam, R., Ramasubbu, N., & Krishnan, M. S. (2012). In search of efficient

flexibility: Effects of software component granularity on development effort,

defects, and customization effort. Information Systems Research, 23(3), 787–803.

Sutherland, J., Jakobsen, C. R., & Johnson, K. (2007). Scrum and CMMI level 5:

The magic potion for code warriors. In Proceedings - AGILE 2007 (272–277).

V-model-final. (2013). Retrieved September 7, 2016 from

http://www.slideshare.net/suhasreddy1/v-model-final

Vinekar, V., Slinkman, C. W., & Nerur, S. (2006). Can agile and traditional systems

development approaches coexist? An ambidextrous view. Information Systems

Management, 23(3), 31-42.

