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REAL-TIME AUDIO SIGNAL PROCESSING FOR SPEECH
ENHANCEMENT

ABSTRACT

In most applications, the purpose of speech enhancement is to enhance the quality
and intelligibility of speech degraded by noise. Speech enhancement algorithms
reduce or suppress the background noise to some extent and are used for various
purposes at cellular telephone systems, air-ground communication, and hearing aids,
etc. A typical speech enhancement study must include at least three main steps;

enhancement, noise estimation, and evaluation.

In this thesis, we are focused on real-time speech enhancement by using a digital
signal processing (DSP) evaluation module. Our purpose is to apply one of the
speech enhancement algorithms in the literature together with a noise estimation
algorithm by using real-time audio signal processing techniques. Besides, we are also
focused on developing a new fusion noise estimation algorithm and utilizing this new
method for our purposes. During this thesis study, many speech enhancement and
noise estimation algorithms have been applied on the evaluation module and the
performance of these algorithms have been evaluated by both subjective and
objective measures. In addition to that, several additional signal processing
techniques such as Infinite Impulse Response (IIR) filtering and some other
enhancements related to software have been used in order to increase the real-time
performance of the system. By this way, we have developed the final algorithm
which includes the speech enhancement algorithm, our newly developed fusion noise
estimation algorithm, and some other audio signal processing techniques combined

to obtain the maximum performance at real-time.

Keywords: audio, speech, speech enhancement, noise reduction, noise estimation,
real-time audio signal processing, digital signal processing (DSP), digital signal

processor.



KONUSMA SESLERININ IYILESTIRILMESI iCIN GERCEK ZAMANLI
OLARAK SES SINYALLERININ iISLENMESI

0z

Pek ¢ok uygulamada konusmanin iyilestirilmesinin amaci giiriiltiiye maruz kalan
konusma verilerinin kalite ve anlasilabilirligini artirmaktir. Arka plan giirtiltiistinii
belirli bir Ol¢lide azaltan ya da bastiran konusma iyilestirme algoritmalari cep
telefonu sistemleri, hava-yer irtibat1 ve isitme cihazlari gibi kullanim alanlarinda
cesitli amaglarla kullanilmaktadir. Tipik bir konugsma iyilestirme calismasi en
azindan {ic temel adimdan olusmaktadir; iyilestirme, giiriiltii tahmini ve

degerlendirme.

Bu tezde bir sayisal sinyal isleme (DSP) gelistirme platformu kullanarak gergek
zamanda konusmanin iyilestirilmesi iizerinde c¢alismaktayiz. Amacimiz gercek
zamanlt ses sinyali isleme tekniklerini kullanarak literatiirde varolan bir konusma
iyilestirme algoritmasiyla bir giiriiltii tahmin algoritmasinin birlikte uygulanmasidir.
Bunun yanisira, yeni bir filizyon giriilti tahmin algoritmas: gelistirmeye
odaklanilmakta ve bu yeni yontem amacimiza uygun olarak calismamiza dahil
edilmektedir. Calisma boyunca pek c¢ok konusma iyilestirme ve giiriiltii tahmin
algoritmas1 sayisal sinyal isleme gelistirme platformu {izerinde uygulanmistir ve bu
algoritmalar hem objektif hem de siibjektif kriterler ile degerlendirilmistir. Buna
ilave olarak, sistemin gercek zamanda performansini artirmak maksadiyla sonsuz
diirtt yanitli (1IR) filtre uygulamasi gibi ¢esitli sinyal isleme teknikleri ve yazilim
yapistyla ilgili diger iyilestirmeler kullanilmistir. Boylece, ger¢ek zamanda en iyi
performansi elde etmek icin konusma iyilestirme algoritmasi, yeni gelistirilen flizyon
giiriiltii tahmin algoritmast ve diger sinyal isleme tekniklerini igeren bir tiimlesik

algoritma gelistirilmistir.

Anahtar Kelimeler: ses, konusma, konusma iyilestirme, giiriiltii azaltma, girilti
tahmini, gergek zamanli ses sinyal isleme, sayisal sinyal isleme, sayisal sinyal

islemcisi.
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CHAPTER ONE
INTRODUCTION

1.1 Introduction

In most applications, the aim of speech enhancement is to improve the quality and

intelligibility of speech degraded by noise.

Speech enhancement algorithms reduce or suppress the background noise to some

extent and are sometimes referred to as noise suppression algorithms.

Figure 1.1 shows the speech enhancement process. The clean speech signal s(n)
is degraded by additive noise d(n) and noisy speech signal y(n) is obtained as
shown in Equation (1.1). Ideally, our purpose is to obtain the clean speech signal

s(n) again by using a speech enhancement algorithm.

y(n) =s(n) +dn) (1.1)
s(n)
II Il P A ¥
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Figure 1.1 Basic speech enhancement process.

The aims of speech cleaning vary according to the application. Cellular telephone
systems typically suffer from background noise present in the car, etc. In an air-
ground communication, it is critical to eliminate high levels of cockpit noise. In this,
as well as in similar communication systems used by military, it is more desirable to

enhance the intelligibility rather than quality.



Hearing-impaired listeners wearing hearing aids (Figure 1.2) experience extreme
difficulty communicating in noisy conditions. Speech enhancement can be used to

clean the noisy signal before amplification.

Figure 1.2 Hearing aid worn by hearing-impaired listeners.

These examples show that the goal of speech enhancement varies depending on
the application at hand. Ideally, we would like to improve both quality and
intelligibility. In practice, however, most enhancement algorithms improve only the
quality of speech. It is possible to reduce the background noise, but at the expense of
introducing speech distortion, which in turn may impair speech intelligibility. Hence,

the main challenge is to design effective speech enhancement algorithms.

1.2 Typical Solution Steps for a Speech Enhancement Problem

Basically, there are three steps that should be performed for the solution of a
speech enhancement problem. These three steps are; enhancement, noise estimation,
and evaluation. While enhancement and noise estimation algorithms are used for
development, evaluation algorithms are used to assess the performance of the

developed system.



The enhancement algorithm deals with improving some perceptual aspects of
speech. This is the algorithm that performs the main improvement operation. The
enhancement algorithm requires a noise estimation algorithm in order to determine
the required information about noise. This information is necessary, because we
assume that we know nothing about the noise source. The accuracy of noise
estimation and tracking algorithm is very important in terms of the performance of
the enhancement algorithm. Because of this, an algorithm that is most suitable for

our purposes should be used.

The evaluation algorithms are necessary for testing the performance of the
developed system. These algorithms can be subjective or objective. We prefer
objective measures in order to obtain quantitative results about the performance of
the developed system. There are different objective measures for evaluating
intelligibility and quality.

There exist many studies in the literature related to speech enhancement and noise
estimation (Berouti, M., Schwartz, M. & Makhoul, J. (1979), Hu, Y. & Loizou, P.
(2004), Jabloun, F. & Champagne, B. (2003), Martin, R. (2001), Hirsch, H. &
Ehrlicher, C. (1995)). This thesis study considers Scalart, P. & Filho, J. (1996) and
Ephraim, Y. & Malah, D. (1985) for speech enhancement and Lin, L., Holmes W. H.
& Ambikairajah, E. (2003) and Hirsch, H. & Ehrlicher, C. (1995) for noise
estimation as starting points, because these studies produced seemingly better results
and are more appropriate for real-time application purposes as compared to others.
Some other techniques such as subspace algorithms and the Karhunen-Loéve
transform (KLT) based method proposed in Hu, Y. and Loizou, P. (2003) have also
good performance, but since these algorithms require heavy numerical calculations
such as eigenvalue decompositions and matrix inverses, they are not suitable for
employing in a real-time system. In this thesis, it is aimed to obtain a novel real-time
system that produces satisfactory and competitive results as compared to non real-
time algorithms. It is also aimed to develop a fusion noise estimation algorithm by
using Lin, L., Holmes W. H. & Ambikairajah, E. (2003) and Ramirez, J., Segura, J.



C., Benitez, C., Torre A. & Rubio, A. (2003) and to utilize this noise estimation
algorithm together with a speech enhancement algorithm.

1.3 Outline of the Thesis

The rest of the thesis is organized as follows. In Chapter Two, fundementals of
speech and speech enhancement are given. Chapter Three presents the used
hardware platform; the evaluation module of Texas Instruments for developing the
software. Chapter Four outlines our thesis work related to speech enhancement
algorithms and noise estimation algorithms performed by using the evaluation
module. The novel fusion noise estimation algorithm is described in Chapter Five.
The evaluation results of the developed algorithms are interpreted in Chapter Six. In
Chapter Seven, the results of the thesis are discussed and our conclusions are given.



CHAPTER TWO
FUNDEMENTALS OF SPEECH ENHANCEMENT

2.1 Speech Production

The speech signal is a highly nonstationary signal in that its second-order statistics
(power spectrum) change over time. When examined closely, however, over a
sufficiently short period of time (10-30 msec), its spectral characteristics are fairly

stationary.

Speech segments can be separated into three categories:

e Periodic
e Noiselike
e Silence

Speech production involves a number of organs and muscles and includes the
lungs, the larynx, and the vocal tract. The lungs provide the main source of excitation
in speech production. Figure 2.1 shows these organs and muscles and Figure 2.2

shows the glottal pulses generated by vocal tracts.

Oral cavity
Velum S
asal cavity
/
Pharynx
Palate e
Epiglouis —__ ocal trac
= Lips
Esophagus i
. Tongue Larynx
Trachea ——,

False vocal cordss

True vocal cords
" Rib cage * Lungs

— Diaphragm

Abdomen

Figure 2.1 A cross section of the anatomy of speech production
(Loizou, P. C., 2007).
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Figure 2.2 Glottal pulses generated by vocal tracts (NCVS Tutorials —
Voice Production, www.ncvs.org).

The time duration of one glottal cycle is known as the pitch period which is
labeled with T in Figure 2.2. The reciprocal of the pitch period is known as the
fundamental frequency. Males typically have a lower fundamental frequency than
females, because their vocal folds are longer and more massive. The fundamental

frequency is 60-150 Hz for males and 200-400 Hz for females and children.

The vocal tract acts as a physical linear filter that spectrally shapes the input wave

to produce distinctly different sounds.

2.2 Engineering Model of Speech Production

Figure 2.3 shows the engineering model of speech production (Loizou, P. C.,
2007). In this model, the vocal tract is represented by a quasi-linear system that is
excited by either a periodic or an aperiodic source, depending on the state of vocal
folds. The output of this model is the speech signal that we can measure accurately.
Vocal folds are modeled as a switch having two states if we ignore the breathing

state.
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Figure 2.3 Engineering model of speech production (Loizou, P. C., 2007).

2.3 The Effects Degrading the Speech Signal

The principal degradations that we can be concerned with are:

Additive acoustic noise — such as the noise added to the speech signal when
recorded in an environment with noticeable background noise, like in an
aircraft cockpit.

Acoustic reverberation — results from the additive effect of multiple
reflections of an acoustic signal.

Convolutive channel effects — results when the communication channel is
not modelled effectively for the channel equalizer to remove the channel
impulse response.

Non-linear distortion arising such as due to clipping — for example, when
inappropriate gain is applied at the signal input stage.

Electrical interference

Codec distortion — distortion caused by the coding algorithm due to
compression.

Distortion introduced by recording apparatus — poor response of

microphone.



2.4 Noise Sources

Noise appears in different shapes and forms in daily life. It can be stationary, such
as fan noise from a PC or it can be non-stationary such as in a restaurant where
sounds of multiple people speaking in the background are mixed with the sound
coming from the kitchen. Figures 2.4 through 2.7 show time domain noise
waveforms for a car and a train and their power spectral density estimates, all plotted
using MATLAB.
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1: r r T T r r T r

0.8 -

0.4 .
| |

|
0af

0.4 -

s(t)

0.6~ -

-0.8 -

=

_1' r r r r
0 1 2 3 4 5 6 7 8 9

Time (sec)

Figure 2.4 Example noise waveform for a car; s(t) is normalized amplitude.
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Figure 2.5 PSD estimate of the waveform in Figure 2.4.
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Figure 2.6 Example noise waveform for a train; s(t) is normalized amplitude.
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Yule-Walker Power Spectral Density Estimate
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Figure 2.7 PSD estimate of the waveform in Figure 2.6.

2.5 Classes of Speech Enhancement Algorithms

A number of algorithms have been proposed in the literature for speech
enhancement. These algorithms can be divided into three main classes:
e Spectral Subtractive Algorithms
e Statistical Model Based Algorithms
e Subspace Algorithms

2.5.1 Spectral Subtractive Algorithms

Assuming additive noise, the spectrum of the clean signal can be estimated by
subtracting an estimate of the noise spectrum from the noisy speech spectrum. The
noise spectrum can be estimated and updated during periods when the signal is
absent. The assumption made is that noise is stationary or a slowly varying process,
and that the noise spectrum does not change significantly between the updating

periods.
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The enhanced signal is obtained by computing the inverse discrete Fourier
transform (DFT) of the estimated signal using the phase information of the noisy
signal. The algorithm is computationally simple as it only involves a forward and an

inverse Fourier transform.
This operation does not need to be performed on magnitude spectrum; it can also

be performed on power spectrum or higher order spectrums. Figure 2.8 (Loizou, P.

C., 2007) shows the general form of the spectral subtraction algorithm.

Noise estimation/
update ]
Noisy e Y(w) 2
speech FFl B o>

Phase
information

| D(w))

Enhanced | IFFT I'IHF
speech

Figure 2.8 General form of the spectral subtraction algorithm (Loizou,
P. C., 2007).

Subtracting the expected noise spectrum rather than its instantaneous value causes
two problems:

e There is residual broad-band noise after processing.

e Individual narrow band spectral spikes remain and generate tonal noise often

referred to as musical noise.

A number of improvements have been proposed to circumvent these problems
including the introduction of a gain floor and over-subtraction (Berouti et. al., 1979,
Vary, P. & Martin R., 2006). Many variants of the spectral subtraction method exist,

each with its own strengths and weaknesses (Loizou, P. C., 2007).
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2.5.2 Statistical Model Based Methods — Wiener Filtering

Wiener filtering approach derives the enhanced signal by optimizing a
mathematically tractable error criterion, the mean-square error. The system is
designed in such a way that the output signal is as close to the desired signal as
possible. The estimation error is computed and made as small as possible. The
optimal filter that minimizes the estimation error is called the Wiener filter. Figure

2.9 (Loizou, P. C., 2007) shows the block diagram of the Wiener filtering approach.

Desired
response
Linear time- d(n)
Input invariant filter Output
—_— .—’ =
"n d(n)
y() ho, hy, b ... Estimation
Error
e(n)
Figure 2.9 Block diagram of the statistical filtering problem (Loizou, P. C.,
2007).

It should be noted that one of the constraints placed on the filter is that it is linear,
thus making the analysis easy to handle. In principle, the filter could be finite
impulse response (FIR) or infinite impulse response (IIR), but often FIR filters are
used because:

e They are inherently stable.

e The resulting solution is linear and computationally easy to evaluate.

Assuming an FIR filter, we have;

dn) =Yt hyin—k) n=0,12,.. (2.1)

The mean square of the estimation error is commonly used as a criterion for

minimization, and the optimal filter coefficients can be derived in time or frequency

domain (Loizou, P. C., 2007).
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2.5.3 Statistical Model Based Methods — Nonlinear Estimators

Nonlinear estimators take the probability density function (PDF) of noise and the
speech DFT coefficients explicitly into account. They are generally used with a soft-
decision mechanism that takes the probability of speech presence into account. Here,
the speech enhancement problem is given in a statistical estimation framework.
When a set of measurements that depend on an unknown parameter are given, we

wish to find a nonlinear estimator of the parameter of interest.

In our application, the measurements correspond to the set of DFT coefficients of
the noisy signal (noisy spectrum) and the parameters of interest are the set of DFT

coefficients of the clean signal (clean signal spectrum).

Various techniques exist in the estimation theory literature for deriving these
nonlinear estimators such as maximum likelihood estimators and Bayesian

estimators.

2.5.3.1 Maximum Likelihood Estimators

Maximum likelihood is the most popular approach in statistical estimation theory
for deriving practical estimators. They are often used even for the most complicated

estimation problems.

0y, = argmax p(y; 6) (2.2)
6

In speech enhancement terminology, y can be the observed data set, & might be
the clean speech magnitude and 8,,, is the maximum likelihood estimate of 6.
p(y; 0) is the likelihood function (McAulay, R. J. & Malpass, M. L., 1980).

2.5.3.2 Bayesian Estimators

In maximum likelihood, we assumed that 8 was deterministic but unknown. In
Bayesian philosophy, 8 is assumed as a random variable and the realization of it is to

be estimated. This approach takes its name from Bayes’ theorem. The Bayesian
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estimators typically perform better than the maximum likelihood estimators, as they
make use of prior knowledge (Lotter, T. & Vary, P., 2005, Wolfe, P. & Godsill, S.,
2000, Wolfe, P. & Godsill, S., 2001).

2.5.3.3 MMSE Estimator

The Wiener estimator is considered to be the optimal (in the mean-square-error
sense) complex spectral estimator, but it is not the optimal spectral magnitude
estimator. Short-time spectral amplitude (STSA) is very important with respect to
intelligibility and quality (Loizou, P. C., 2007). Hence, several authors have
proposed optimal methods for estimating spectral magnitude, such as;

e Maximum likelihood method (Ephraim, Y. & Malah, D., 1985),

e Decision-directed approach (Cohen, I., 2005, Hasan, M., Salahuddin, S. &

Khan, M., 2004, Cappe, O., 1994).

2.5.4 Subspace Algorithms

The speech enhancement algorithms described so far were based on signal
processing and statistical estimation. Subspace algorithms are largely based on linear
algebra theory. These algorithms are based on the principle that the clean signal
might be confined to a subspace of the noisy Euclidean space. We could estimate the
clean signal simply by nulling the components of the noisy vector residing in the

noise subspace.

For the implementation of subspace algorithms, singular value decomposition
(SVD) (Moor, B., 1993) and Karhunen-Lo¢ve transform (KLT) (Mittal, U. &
Phamdo, N., 2000) based algorithms are used in speech enhancement. The majority
of the subspace algorithms were originally formulated under the assumption that
noise is white. Some extensions to handle colored noise also exist (Wilkinson, J. H.,
1999, Rezayee, A. & Gazor, S., 2001). The implementation of subspace algorithms
requires a high computational load as SVD or eigenvalue decomposition (EVD)

needs to be performed in every frame (Loizou, P. C., 2007).
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2.6 Noise Estimation Algorithms

For the speech enhancement algorithms given up to now, it is assumed that an
estimate of the noise spectrum is available. Such an estimate is critical for the
performance of the algorithms such as for evaluating Wiener filter, for estimating a
priori SNR in the MMSE, or for estimating covariance matrix in the subspace
algorithms.

The noise estimate has a major impact on the quality of the enhanced signal. If the
noise estimate is too low with respect to true noise level, annoying residual noise will
be audible. If the noise estimate is too high, speech will be distorted, possibly

resulting in intelligibility loss.

2.6.1 Voice Activity Detection (VAD)

Voice activity detection (VAD) is the process of discriminating between voice
activity and silence. It is the simplest approach which estimates and updates the noise
spectrum during the silent segments of the signal. Although such an approach might
work satisfactorily for stationary noise (e.g., white noise), it will not work well in
more realistic enviroments (e.g., in a restaurant), where the spectral characteristics of

noise change constantly.
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Normalized Amplitude vs. Time
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Figure 2.10 An example speech signal; arrows indicate the silent intervals.

Figure 2.10 shows the silent intervals in a sentence when a voice activity detector

is active.

An accurate noise estimate is required at all times, even during the speech
activity. Noise estimation algorithms continuously track the noise spectrum for

nonstationary scenarios. There are three main classes of noise estimation algorithms.

2.6.2 Minimal-tracking Algorithms

These algorithms track the minimum of the noisy speech power in each frequency
band and estimate the noise level in that band. Examples can be found in Martin, R.
(1993), Martin, R. (1994), Martin, R. (2001) and Doblinger, G. (1995).
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2.6.3 Time-recursive Averaging Algorithms

The principle of these algorithms is that we can estimate and update the noise
spectrum of that band whenever the effective SNR at a particular frequency band is
extremely low. Examples can be found in Sohn, J. & Sung, W. (1998), Cohen, I.
(2002) and Lin, L., Holmes W. H. & Ambikairajah, E. (2003).

2.6.4 Histogram-based Algorithms

These algorithms assume that the noise levels correspond to the maximum of the
histogram of energy values. Examples can be found in Hirsch, H. & Ehrlicher, C.
(1995) and Ris, C. & Dupont, S. (2001).

2.7 Evaluating the Performance of Speech Enhancement Algorithms

The main evaluation methods for speech enhancement systems look at the effect
of the system on the intelligibility of the speech signal and the improvement in the

overall quality of the signal.

There are two groups of methods for assessing the intelligibility or quality of
speech: Subjective and objective methods.

2.7.1 Subjective Methods

These methods require the judgement of human listeners. These can be further

divided into two categories:

e Absolute scoring methods - a single stimulus is tested,

e Preference methods - multiple signals are compared.

2.7.2 Objective Methods

The judgment is predicted with some analysis of the system. Objective methods

can be further divided into two categories:
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e Intrusive - require access to both original and processed signals,

e Non-intrusive - only require access to the processed signal.

2.7.3 Quality and Intelligibility Evaluation Techniques

Quality assessment can be done using subjective listening tests or objective
quality measures. Subjective evaluation involves comparisons of original and
processed speech signals by a group of listeners who rate the quality. Objective
evaluation involves mathematical comparison of the original and processed speech
signals. Objective measures quantify quality by measuring the numerical “distance”
between the original and processed signals. Clearly, for an objective measure to be

valid, it needs to correlate well with the subjective listening tests.

Quality and intelligibility are different attributes, and the two are not equivalent.
For that reason, different assessment methods are used to evaluate the quality and
intelligibility. Quality is highly subjective in nature and is difficult to evaluate
reliably. Quality measures includes attributes such as “natural”, “raspy”, “hoarse”,
“scratchy”, and so on. Intelligibility measures assess “what” the speaker said; the
meaning or the content of the spoken words. Unlike quality, intelligibility is not
subjective and can be easily measured by presenting the speech material to a group
of listeners and by asking them to identify the words spoken.

There are many methods available for evaluating both intelligibility and quality in
the literature. We will explain the ones that we use for the purpose of evaluating the
algorithms in the following sections.

2.7.3.1 Perceptual Evaluation of Speech Quality

PESQ, perceptual evaluation of speech quality, is a family of standards
comprising a test methodology for automated assessment of the speech quality as
experienced by a user of a telephony system. It is standardised as ITU-T
recommendation P.862, (2001). Today, PESQ is a worldwide applied industry



19

standard for objective voice quality testing used by phone manufacturers, network

equipment vendors, and telecom operators.

PESQ was particularly developed to model subjective tests commonly used in
telecommunications (e.g. ITU-T P.800, 1996) to assess the voice quality by human
listeners. Consequently, PESQ employs true voice samples as test signals. In order to
characterize the listening quality as perceived by users, it is of paramount importance
to load modern telecom equipment with speech-like signals. Many systems are
optimized for speech and would respond in an unpredictable way to non-speech
signals (e.g. tones, noise). Guidelines for proper applications of voice test samples
are defined in the PESQ application guide ITU-T P.862.3.

The block diagram of the PESQ measure is shown in Figure 2.11 below. The
original (clean) and degraded signals are first level-equalized to a standard listening
level, and filtered by a filter with response similar to a standard telephone handset.
The signals are aligned in time to correct for time delays, and then processed through
an auditory transform to obtain the loudness spectra. The difference, termed
disturbance, between the two loudness spectra is computed and averaged over time
and frequency to produce the prediction of subjective mean opinion score (MOS)
(Loizou, P. C. (2007)).

Ref_erence Ay
Signal ) »
Pre-Processing —» Transform
Time Disturbance Time PESQ
alignment Processing Averaging
A » Pre-Processing —» > T?:ggfg‘% |ditr91rt'ltlrf\)// lllad
Degraded evais
Signal 7'y
< 4

Figure 2.11 Block diagram of PESQ measure computation.
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2.7.3.2 Spectral Distance Measures Based on LPC

Several objective measures were proposed based on the dissimilarity between
all-pole models of the clean and enhanced speech signals (Quackenbush, S.,
Barnwell, T. & Clements, M., 1988). These measures assume that over short time
intervals, speech can be represented by a p™ order all-pole model of the form

x(n) =YP_ a,(Dx(n — i) + Gyu(n) (2.3)
where a, (i) are the coefficients of the all-pole filter (determined using linear
prediction techniques), G, is the filter gain, and u(n) is a unit variance white noise
excitation. Log-likelihood ratio is one of the most common all-pole-measures used to
evaluate speech-enhancement algorithms. Cepstral distance measures derived from
the linear predictive coding (LPC) coefficients are also used.

2.7.3.2.1 LLR Obijective Speech Quality Measure. The log-likelihood ratio (LLR)

measure is defined as:

dyir(ay, 3z) = log 2% (2.4)
where al = [1, —a, (1), —a,(2), ..., —a,(p)] are the LPC coefficients of the clean
signal, ak = [1, —az(1), —az(2), ..., —az(p)] are the coefficients of the enhanced

signal, and R, is the (p+1)x(p+1) Toeplitz autocorrelation matrix of the clean signal.

2.7.3.2.2 Cepstrum Distance Objective Speech Quality Measure. The LPC
coefficients can also be used to derive a distance measure based on cepstrum
coefficients. This distance provides an estimate of the log-spectral distance between
two spectra. The cepstrum coefficients can be obtained recursively from the LPC

coefficients {a;} using the following expression (Rabiner, L. & Schafer, R., 1978)
c(m) =a,, + Z}(”;f%c(k)am_k 1<m<p (2.5)
where p, which is also given in Equation (2.3), is the order of the LPC analysis. A

measure based on cepstrum coefficients can be computed as follows (Kitawaki, N.,
Nagabuchi, H., & Itoh, K., 1988)

10
loge 10

Jz SP_ [, () — ca(k)]? (2.6)

dcep (er C;?) =
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where ¢, (k) and cg(k) are the cepstrum coefficients of the clean and enhanced

signals, respectively.

2.7.3.3 Composite Objective Speech Quality Measure

Composite measures are formed by combining multiple objective measures. The
rationale behind the use of composite measures is that different objective measures
capture different characteristics of the distorted signal, and therefore combining them
in a linear or nonlinear fashion can potentially yield significant gains in correlations.
One possibility is to use the following linear regression mode

Vi=f) +e=ao+ X ax;+ g (2.7)
where f(x) is the mapping function presumed to be linear, p is the number of
objective measures involved, {y;}}, are the dependent variables corresponding to
the subjective ratings of N samples of degraded speech, x;; is the independent

(predictor) variable corresponding to the jth objective measures computed for the i*"
observation (degraded file), and ¢; is a random error associated with each
observation. The regression coefficients «; can be estimated to provide the best fit
with the data using a least-squares approach which is described in Quackenbush, S.,
Barnwell, T. & Clements, M. (1988). The p objective measures considered in
Equation (2.7) may include, among other measures, the LPC-based measures (e.g.,
LLR), segmental SNR measures (e.g., SNRseg), or the PESQ measure. The selection
of objective measures to include in the composite measures is not straightforward
and, in some cases, it is based solely on experimental evidence (trial and error) and
intuition. Ideally, we would like to include objective measures that capture
complementary information about the underlying distortions present in the degraded
signal.

We have used the composite method described in Hu, Y. and Loizou, P. (2006) as
one of our evaluation methods which involves LLR, SNRseg, weighted spectral
slope (WSS), and PESQ measures.
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2.7.3.4 MARS Frequency-Variant fwSNRseg Measure

A linear function f(x) was assumed in Equation (2.7) for mapping p objective
measures to the observed subjective ratings, {y;}*_,. Such a model is accurate only
when the true form of the underlying function is linear. If it is not, then the modeling
error will likely be large and the fit will be poor. Nonparametric models, which make
no assumptions about the form of the mapping function, can alternatively be used.
More specifically, models based on multivariate adaptive regression splines (MARS)
have been found to yield better performance for arbitrary data sets (Friedman, J.,
1991). Unlike linear and polynomial regression analysis, the MARS modeling
technique is data driven and derives its functional form from the data. The basic idea
of the MARS modeling technique is to recursively partition the domain into smaller
subregions and use spline functions to locally fit the data in each region. The number
of splines used in each subregion is automatically determined from the data. The
MARS model has the following form

Vi = @+ XL, a;B;(x) + & (2.8)
where B;(x) are the basis functions, and M is the number of the basis functions that
are automatically determined from the data (note that M could be larger than the
number of objective measures, p). Spline basis funcitons of the following form were
proposed in Friedman, J. (1991)

Bi(x) = ?zlskj max (0, xx; — tx;) (2.9)
where x;; are the predictor variables (values of the objective measures), t;; are the
split points (knots) determined from a recursive algorithm that partitions the domain
into smaller subregions, K; is the number of splits involved in the computation of the
jt™  basis function, and sxj = £1. One of the most powerful features of MARS

modeling is that it allows for possible interactions between the predictor variables so

that a better fit can be found for the target variable.

2.7.3.5 Frequency Weighted SNRseg Objective Measure

This method is a segmental SNR measure which is evaluated in frequency

domain. For this measure to be meaningful, it is important that the original and
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processed signals be aligned in time and that any phase errors present be corrected.
The equation of the frequency domain segmental SNR can be given as follows

E M-1 Zf:]_ Bj loglO [FZ (m'])/(F(mv])_ﬁ(m!j))z]
M m=0 25'(=1Bj

fwSNRseg = (2.10)

where B; is the weight placed on the jth frequency band, K is the number of bands,
M is the total number of frames in the signal, F(m, j) is the filterbank amplitude of
the clean signal in the jt* frequency band at the m!* frame, and F(m,)) is the
filterbank amplitude of the enhanced signal in the same band. The main advantage of
using the frequency-based segmental SNR over the time-domain SNRseg is the
added flexibility of assigning different weights for different frequency bands of the
spectrum. There is also the flexibility of choosing perceptually motivated frequency

spacing such as critical-band spacing.

One potential problem with the estimation of SNRseg is that the signal energy
during intervals of silence in the speech signal (which are abundant in conversational
speech) will be very small, resulting in large negative SNRseg values, which will
bias the overall measure. One way to remedy this is to exclude the silent frames from
the sum in Equation (2.10) by comparing short-time energy values against a
threshold.

2.7.3.6 Frequency-Variant fwSNRseg Objective Measure

As an alternative to the frequency domain fwSNRseg measure, the weights for
each frequency band can be obtained using regression analysis, producing the so
called frequency-variant objective measures (Quackenbush, S. et. al., 1988). This
way, the weights can be chosen to give maximum correlation between the objective
and subjective measures. For these measures, a total of K (one for each band)

different objective measures, D;, are computed for each file, where D; is given as

Dy = —%M_110logso[F2(m,j)/(F(m,j) = F(m,j)?]  j=12,...K (211)
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The optimal weights for each objective measure D; of each band are obtained
using K"-order linear regression analysis, yielding the following frequency-variant
objective measure

fwVar = ag + ¥, a;D; (2.12)
where {a;} are the regression coefficients, D; is given in Equation (2.11), and K is
the number of bands (K = 6 in Quackenbush, S. et. al., 1988). Nonlinear regression

analysis can alternatively bu used to derive the frequency-variant objective measures.

2.7.3.7 Speech Recognition

Speech recognition converts spoken words to text. Recognizing the speaker can
simplify the task of translating speech. Speech recognition applications include voice
user interfaces such as voice dialing, call routing, voice control of home appliances,
search, simple data entry, preparation of structured documents, speech-to-text

processing (e.g., word processors or emails).

Both acoustic modeling and language modeling are important parts of modern
statistics based speech recognition algorithms. Hidden Markov models (HMMs) are
widely used in many systems. Language modeling has many other applications such

as smart keyboard and document classification.

There are several speech-to-text algorithms which transcribe the spoken words
simultaneously. We use “Dragon NaturallySpeaking” software, version 10.0, from
Nuance Communications, Inc. for evaluating the intelligibility performance of
systems that we develop. Methods other than speech recognition can only be used to
evaluate the quality. However, speech recognition is directly related with the
intelligibility. This evaluation is performed as follows:

e Firstly, it is necessary to train the speech-to-text software. A clean speech file

is used to train the software.

e After the software is trained, the evaluation is performed using another

speech file of the same speaker; that is, if an audio book is used, the first
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chapter of the book can be used to train the algorithm and the second chapter
of the same book can be used to evaluate the algorithm.

In order to evaluate the algorithms, noise files including different types of
noise (white noise, pink noise, speech noise, etc.) are added to the speech file
reserved for evaluation, separately.

These noisy speech files are used as input files to the evaluation module. The
audio output of the evaluation module is connected to the audio input of the
computer and the recordings are saved. Each noisy file is recorded with and
without application of the enhancement algorithm. We do not use the noisy
files directly. We record them from the output of the evaluation module
without any processing in order to eliminate the effect of analog recording,
evaluation module, cables, etc.

Both the noisy speech files and the enhanced speech files are applied to the
speech-to-text software as inputs. If the number of correctly identified words
is greater in the enhanced file, it means that the intelligibility increases.
Otherwise, if the number of correctly identified words in the noisy speech file
is greater than the one in the enhanced file, then it means that the
intelligibility decreases.

This operation is performed for each noise type that we want to evaluate and
according to all the results, the intelligibility performance of the system is
obtained.



CHAPTER THREE
OMAP - L137 EVALUATION MODULE

The OMAP-L137 EVM is a standalone development platform that enables users
to evaluate and develop applications for the OMAP-L137 processor. Note that the
OMAP-L137 and C6747 are the same devices except the fact that C6747 does not
include the ARMS9 core. Detailed information concerning the OMAP L-137
processor can be found in Appendix A and OMAP-L137 Processor datasheet, 2008.

Figures 3.1 and 3.2 (OMAP-L137 EVM Tech. Ref., 2008) show the image of
OMAP-L137 EVM and its block diagram, respectively.
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Figure 3.1 OMAP-L137 EVM.
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Figure 3.2 Block diagram of OMAP-L137 EVM.

OMAP-L137 is selected for this thesis study because of its advantages in terms of
performance and flexibility such as being a floating point processor, including
external SDRAM, and having an operating frequency of 300 MHz. Key features of
the EVM are;

e A Texas Instruments OMAP-L137 device with a C674x VLIW DSP floating
point processor and an ARM926EJ-S processor operating up to 300 MHz,

e 64 Megabytes SDRAM,

e SPI Boot EEPROM,

e Port Ethernet Phy/switch,

e SD/MMC/MMC Plus media card interfaces,

e TLV320AIC3106 Stereo Codec,

e USB 1.1 USB2 2.0 interfaces,

e RS-232 interface,

e On chip real time clock,

e User LEDs/4 position user DIP switch,

e Expansion connectors for daughter card use and embedded JTAG emulation.
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Figure 3.3 (SPRT529B, 2009) shows the software structure of the OMAP-L137
EVM. Both processors inside the OMAP-L137 processor can be used or only one of
them can be in use based on the application at hand. If only a digital signal
processing task is to be performed, then it makes more sense to use only the DSP
processor. However, if one wants to develop a media player, for example, then both
ARM and DSP processors can be used.

OMAP-L1x Software Solutions

Applications Level Software

Browser/ Other ‘
User Interface h .
| ‘ ‘ Media Players ‘ ‘ Applications DSP
— Applications
| Application Framew orks |
Platform Drivers Multimedia Components
Linux for OmMAP-L137/138 . :
Multimedia Framework
WINGE for OMAP-L137/L138 1Q2010 (CODIEE Engiie)
| \awWarks OMAP-L 137 availahle now | video, Imaging, Speech, Audio Codecs
| ViWorks OMAP-L138 1G2010 |

B isiiconacore B 1iBasesoftware [ 3rd party s Community/ Customer
Libraries Components
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Figure 3.3 OMAP-L137 Software Solutions.

3.1 TI C67x DSP Library

The TI C67x DSPLIB is an optimized floating-point DSP Function Library for C
programmers using TMS320C67x devices. It includes C-callable, assembly-
optimized general-purpose signal-processing routines. These routines are typically
used in computationally intensive real-time applications where optimal execution
speed is critical. In addition, by providing ready-to-use DSP functions, TI DSPLIB
can significantly shorten DSP application development time. Some example

functions are given as follows;
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e DSPF_sp_autocor (autocorrelation)

e DSPF_sp_biquad (biquad filter)

e DSPF_sp_convol (convolution)

e DSPF_sp_fftSPxSP (mixed radix forward fast Fourier transform (FFT) with

bit reversal)

3.2 Direct Memory Access (DMA)

Direct memory access (DMA) is a feature of modern computers and
microprocessors allowing certain hardware subsystems within the computer to access
system memory for reading and/or writing independent of the central processing unit.
Many hardware systems use DMA including disk drive controllers, graphics cards,

network cards, and sound cards.

Computers that have DMA channels can transfer data to and from devices with
much less CPU overhead than computers without a DMA channel. Similarly, a
processing element inside a multi-core processor can transfer data to and from its
local memory without occupying its processor time and allowing computation and

data transfer concurrency.

Without DMA, using programmed input/output (PIO) mode for communication
with peripheral devices, or load/store instructions in the case of multicore chips, the
CPU is typically fully occupied for the entire duration of the read or write operation,
and is thus unavailable to perform other tasks. With DMA, the CPU would initiate
the transfer, do other operations while the transfer is in progress, and receive an
interrupt from the DMA controller once the operation has been done. This is
especially useful in real-time computing applications where not stalling behind
concurrent operations is critical. Another related application area is various forms of
stream processing where it is essential to have data processing and transfer in parallel

in order to achieve sufficient throughput.



CHAPTER FOUR
THE EXPERIMENTAL STUDY

In this chapter of the thesis, we outline the applied algorithms for the speech
enhancement problem. First, a feasibility study for the studied algorithms is given
and then the flowchart of the proposed algorithm is presented. Then, the equations
and explanations of the applied speech enhancement, noise estimation, and

evaluation algorithms are provided.

4.1 Hardware Configuration

We have used the following hardware configuration shown in Figure 4.1 during
our studies. The computer is used for uploading the software to the evaluation
module and for inputting audio files to the EVM. All the processing operations are
performed on the EVM and the processed audio is given from the audio output of the

EVM to the speakers or headphone.

USB — For SW Updati

g

Audio In to DSP EVM Audio Out to Speaker

\\‘ Processed Audio

Figure 4.1 The hardware configuration used during this thesis study.

The configuration shown in Figure 4.1 is used for the subjective evaluation of the
developed algorithms whereas we have used the configuration in Figure 4.2 for the
objective evaluation of the developed algorithms. In this configuration, the only
difference from Figure 4.1 is the use of a sound card for recording the processed
speech data. By this way, the recorded files can be evaluated via the evaluation
algorithms on the computer.

30
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Audio In to DSP EVM Audio Out to Sound Card

N

Figure 4.2 The hardware configuration used for objective evaluation.

4.2 The Feasibility Study for the Algorithms

The important points for developing our enhancement algorithm can be given as

follows.

® The enhancement algorithm should include a noise estimation algorithm to be
suitable for real-time processing, because the noise source is not considered as
stationary. This operation is mandatory.

e The enhancement algorithm might include a block that determines whether the
frame is speech or not. This step is optional.

e A decision mechanism might be necessary to decide whether a considered
speech frame is intelligible enough. If it is not intelligible, then it requires
enhancement. This step is also optional.

e The enhancement algorithm should not introduce either speech distortion or
musical noise as much as possible. This is quite critical in terms of the
performance of the developed algorithm.

e In order for the algorithm to be successful, it should at least enhance either the
quality or intelligibility of the speech. If it enhances only one of them, it
should not degrade the other. For example, if the algorithm enhances only the
quality, it is desired that it does not degrade the intelligibility, or at least the
intelligibility should stay the same.

e The whole process should not be too long for real-time processing. The
algorithm at hand should finish its job until the next frame is taken. This issue

is very critical, because we do not have a chance to store the data. All the
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operations on one frame should be completed in approximately up to 30 msec

at most.

4.3 The Basic Algorithm

In Figure 4.3, the flowchart of the basic algorithm is given.
Wait for DMA to
.| collectdata |, Initialize
from audio Hardware
decoder

Frame
Ready?

YES
v INFINITE LOOP

Apply Input
Overlapping

4

Estimate the
Noise Spectrum

4

Apply
Enhancement END
Algorithm
BREAK
L |

Apply Bandpass Apply Output Send Output ol

i i i > Headphone
Filter (Optional) Overlapping Frame to DMA Cutas

Figure 4.3 The flowchart of the basic algorithm.

After the software is executed, the first operation performed here is to initialize
the hardware. During this process, the audio driver and the audio codec, the McASP

port which is used to carry digital audio data, and the DMA block are initialized.

After the initialization process, the analog audio data are collected from the line-in
audio input which exists on the EVM. This audio data correspond to the noisy speech
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signal. The DMA block collects this data in a previously allocated buffer. When the
audio frame is ready, the required operations on the collected data are performed.
The first operation to be performed is the application of overlapping algorithm to the
input data. Then, the noise spectrum of the input data should be estimated, because it
Is most likely that the noise spectrum is non-stationary. Thus, it is necessary to
update the noise spectrum constantly. For the current frame, the noise spectrum is
estimated and updated, and then the speech enhancement algorithm is applied. It is
possible to increase the number of algorithms to be applied in this step. For example,
a bandpass filter for filtering out the undesired frequencies other than speech
frequencies could be used. After the processing operations are ended, an overlapping
operation on the output data is performed. Next, the enhanced audio frame is
transferred to the output DMA buffer and the DMA block sends these data to the
codec. The last operation to be performed here is the digital-to-analog conversion of
the audio data which is performed by the controller automatically and the audio

output is given from the headphone output.

The steps explained above are for one audio frame. As shown in the flowchart,
these steps are applied successively to every input audio frame until the user halts the

software.

The overlapping, speech enhancement, noise estimation, and filtering operations

shown in the flowchart are explained in the following sections.

4.4 Application of the Algorithms on EVM

As described in Section 1.2, there are three main steps to be performed for a
typical speech enhancement study. In Figure 4.4, there is a summary of these steps.
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¢ Several algorithms exist as explained before.

Enhancement RS algorithms have powerful and weak
aspects.

e Very important in terms of the performance of the
enhancement algorithm.

o Different methods are available.

e Subjective and objective methods are available for
evaluating the performance of the system.

e Both quality and intelligibility should be evaluated.

Figure 4.4 Summary of typical steps for the solution of a speech enhancement problem.

We explain speech enhancement and noise estimation algorithms applied on the
EVM. As mentioned in Chapter Two, there are a variety of algorithms for both
speech enhancement and noise estimation in the literature. Obviously, it is not
practical to try all these algorithms. The purpose here is to develop an efficient
system which is proper for a real-time application and has good performance. The
main challenges are performance and execution time of the algorithm. Some
algorithms such as subspace algorithms can have better performance in terms of
intelligibility, but they cannot be used in a real-time system, because they require

longer execution time.

In light of these facts, “Log-spectral amplitude estimator (LOG-MMSE)”
proposed in Ephraim, Y. & Malah, D. (1985) and “Wiener filtering algorithm based
on a priori SNR estimation (Wiener-SNR)” described in Scalart, P. & Filho, J. (1996)
are selected as the enhancement algorithms, because these two algorithms are known
to perform better (Loizou, P. C. (2007)).

We have tried several noise estimation algorithms together with the
aforementioned enhancement algorithms. Since the noise estimation algorithm
directly affects the performance of the system, different results are obtained by

application of different noise estimation algorithms. We have tried voice activity



35

detection (VAD), “Weighted-spectral averaging”, “SNR-dependent recursive
averaging algorithms” and “Histogram-based algorithms” as explained in (Loizou, P.

C. (2007)) together with the enhancement algorithms.

For the application of these algorithms, one more step called overlapping is
necessary. Overlapping operation is not only related with our algorithm, but also it is
mandatory for a real-time audio application in order to prevent the discontinuities

which cause a “popping” sound.

The last step performed is the filtering operation after the application of the
enhancement algorithm, because the speech related frequencies do not occupy the
whole audio frequency range and filtering out the undesired frequency bands

increases the performance of the system.

The block diagram given in Figure 4.5 shows the essential steps of the whole
algorithm applied for speech enhancement. In this section, we will explain

implementation details at each step.

Enhancement Noise PS o
Filtering

Algorithm Update

Figure 4.5 Main steps of the developed system.

4.4.1 Overlapping Method

As shown in Figure 4.3, after the audio frame is taken from the DMA buffer, the
overlapping should be performed on the data. Overlapping is used to prevent
discontinuities between successive frames. There are some methods such as overlap-

add and overlap-save for the implementation of overlapping.

Our input and output buffers include 768 samples and the processing buffer
includes 1024 samples, because we have used 25% overlapping rate. Since our input
and output buffers include 768 samples and the sampling frequency is 32 kHz, the
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time duration for processing one data packet can be at most 24 msec. As shown in
Figure 4.6, the first 256 elements of the processing buffer is the last 256 elements of
the previous input buffer and the remaining 768 elements of the processing buffer are
the elements of the current input buffer. The last 256 elements of each input buffer

are stored for the next processing buffer.

All the signal processing operations are performed on the processing buffer. For
our application, these tasks could be obtaining the power spectral density estimate of
noise, taking FFT, inverse FFT, and executing enhancement algorithm. After the
processing tasks are done, the output buffer that is sent to the DMA for audio output

should be obtained. This operation is illustrated in Figure 4.7.
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Figure 4.6 Demonstration of the overlapping on the input buffer.

As shown in Figure 4.7, the processed frames have 1024 samples, but the output
buffer has only 768 samples. Due to overlapping, the last 256 samples of each
processed frame are stored to be used with the next frame. As shown in Figure 4.7,
the last 256 samples of the (n-1)™ frame are multiplied with a decreasing linear ramp
function and the first 256 samples of the n™ frame are multiplied with an increasing

ramp function. Then, these two groups of multiplied samples are summed up.



37

Addition

(n — 1)t Processed Frame
1024 Samples Addition

(n)™ Processed
Frame 1024 Samples

(n + 1)** Processed
Frame 1024 Samples

,  (m)®™ output data buffer ,  (n+ 1)™ output data
768 Samples buffer 768 Samples

Figure 4.7 Demonstration of the overlapping on the output buffer.

Figure 4.8 shows this operation in a different way. Note that the last 256 samples
of the n™ frame are not used with the n™ frame. They are stored to be used with the
(n+1)™ frame. As explained before, the last 256 samples of the (n-1)" frame are
multiplied with a decreasing linear ramp function and added to the first 256 samples
of the n™ frame which are multiplied with an increasing linear ramp function. By this

way, the ™ output buffer containing 768 samples is created.

Last 256

Samples of
(n)t" Frame

Stored to be
used with
(n)t" output data buffer (n + 1" frame
— 768 Samples T

Figure 4.8 Demonstration of the overlapping process on the
output buffer (illustration on a single frame).
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4.4.2 The Applied Enhancement Algorithms

In this section, we explain the two enhancement algorithms that we have used
during our studies; LOG-MMSE and Wiener-SNR algorithms.

4.4.2.1 Wiener-SNR Algorithm

This algorithm is based on the Wiener filtering approach. In speech enhancement
applications, the input signal y(n) expressed below is the noisy speech signal

y(n) =s(n) +d(n) (4.1)

where s(n) is the clean speech signal and d(n) is the noise signal. The objective of

the Wiener filter is therefore to produce an estimate of the clean signal s(n).

The corresponding Wiener filters can be derived in time or frequency domain.
Here, we do not give the derivation which can be found in Loizou, P. C. (2007).

After the frequency domain derivation, the Wiener filter can be obtained as

H(wy) = ——=sM6)___ (4.2)

Pss(Wi)+Pga(wy)
where P, is the power spectrum of the clean speech signal and P, is the power
spectrum of the noise signal. As we can easily see from Equation (4.2), this filter is
not realizable, because we do not know the clean speech signal (it is the signal to be

obtained). If we define

fk a PSS(Wk) (43)

T Paa(wi)

as the a priori SNR at frequency wy, we can also express the Wiener filter as follows

H(wy) = (4.4)

Eptl
Note that 0 < H(wy) < 1, and H(wy) = 0 when &, — 0 (at extremely low-SNR
regions) and H(wy) = 1 when &, — oo (at extremely high-SNR regions). According

to Equation (4.4), the Wiener filter emphasizes portions of the spectrum where SNR
is high and attenuates portions of the spectrum where the SNR is low.
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There are many written articles and many methods are available to obtain an
estimate of a priori SNR &, (Hu, Y. & Loizou, P., 2004, Scalart, P. And Filho, J.,
1996, Cappe, O., 1994, Ephraim, Y. And Malah, D., 1984). For our algorithm, we
have used a noniterative approach used in Scalart, P. & Filho, J. (1996) for

estimating the Wiener gain function which can be expressed in terms of &,

g(k) = 2 (4.5)

where u is the Lagrangian multiplier which is an adjustable parameter. The focus
was on getting a good (low-variance) estimate of the a priori SNR &, needed in the
Wiener gain function, g(k), because it is known that a low-variance estimate of &,
can eliminate musical noise. In the method we used, the a priori SNR &, was
estimated using the decision-directed method (Scalart, P. & Filho, J., 1996). More
specifically, &, was estimated as a weighted combination of the past and present

estimates of &,. At frame m, &, (m) was estimated as

| X (m—1)|2
[D(m—1)|2

with a being a smoothing constant (¢ = 0.98 in Scalart, P. & Filho, J., 1996).

E(m) = a * + (1 — a) *xmax (M — 1,0) (4.6)

|Dg(m)|?

X.(m—1) denotes the enhanced signal spectrum obtained at frame m-1, and
Y, (m), D, (m) denote the noisy speech and noise spectra, respectively. &, (m) can be
approximated as

&(m)=ax&(m—1)+ (1 —a)*&(m) (4.7)
where &, (m) denotes the current frame estimate of &,. This recursion provides

smoothness in the estimate of &, and consequently can eliminate the musical noise.

The flowchart given in Figure 4.9 shows the steps of the Wiener-SNR algorithm
used in the software and Figure 4.10 shows the related equations that are applied at

each step.
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Figure 4.9 Flowchart of Wiener-SNR algorithm for speech enhancement.
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Figure 4.10 Defining equations of Wiener-SNR algorithm.
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4.4.3 LOG-MMSE Estimator

The Wiener filtering approach given in the previous section assumes a linear
relationship between the clean spectrum and the true spectrum. Acknowledging the
importance of the short-time spectral amplitude (STSA) on speech intelligibility and
quality, several authors have proposed optimal methods for obtaining the spectral
amplitudes from noisy observations (Ephraim, Y. & Malah, D., 1985, Cohen, 1.,
2005, Hasan, M., Salahuddin, S. & Khan, M., 2004 and Cappe, O., 1994).

The MMSE estimator, unlike the Wiener estimator, does not assume the existence
of a linear relationship between the observed data and the estimator, but it does
require knowledge about the probability distributions of the speech and noise DFT

coefficients.

Although a metric based on the squared error of the magnitude spectra as given in
Loizou, P. C. (2007) is mathematically tractable, it may not be subjectively
meaningful. It has been suggested that a metric based on the squared error of the log-
magnitude spectra may be more suitable for speech processing. In Ephraim, Y. &
Malah, D. (1985), the derivation of an estimator that minimizes the mean-square

error of the log-magnitude spectra

~ \2
E{(long - long) } (4.8)
is given. In Equation (4.8), E{} is the expectation operator. The optimal LOG-MMSE
estimator can be obtained by evaluating the conditional mean of the log X, as
log Xy = E{log X |Y (W)} (4.9)
from which we can solve for X, as

Xy = exp (E{log X, |[Y (W)} (4.10)

Lengthy derivations are omitted here. However, they can be found in Ephraim, Y.
& Malah, D. (1985). As a result, the optimal LOG-MMSE estimator is obtained as

A~

1 roet
R = = s exp (5 ka ert) *Yie £ Grsa(§i, Vi) * Yy (4.11)

- Ep+1

where &, is the a priori SNR, and G;s4(&x, vi) is the gain function of the LOG-

MMSE estimator. The integral in Equation (4.11) is known as the exponential
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integral and can be evaluated numerically. The exponential integral, Ei(x), can be
approximated as follows

. 0 e™¥ x k!
Ei(x) = |, Bde ~ E?ka_k (4.12)

Some other approximations can also be found in the literature (Ephraim, Y. &
Cohen, I., 2006).

Figure 4.11 shows the flowchart of the LOG-MMSE algorithm including the steps
of the algorithm and Figure 4.12 shows the equations used in these steps.
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Posterior SNR = Noisy Speech | . P ? P Calculate initial
Noisy_PS/ Frame PS and No;ér:r;f)ut ol\ﬁ)rﬁpét?fge:o Noise PS
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A
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2
< X Initialize a priori START AGAIN——
Ifrztli'cril(r:iu;ﬁsg YES—» SNR only using
g current Post SNR
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.
Calculate a priori Sl he il e
o p END USER BREAK—— output to output
buffer
A
v 4
Calculate Gain Over?a%p;?/ng to
(RS Output Buffer
A
v (5 (6) ) (8)
Calculate Multiply Input Calculate and
B Calculate Filter Signal FFT with Store Update Noise PS
I?ﬂe ral "l Coefficients i Filter Estimated Xk with an algorithm
9 Coefficieints for next frame

Figure 4.11 Flowchart of LOG-MMSE algorithm for speech enhancement.
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hw = G * eFivk (6)
Outputppr = Inputppr * hw (7)

< ST 2 ST
Xk prev = (S lgmag) ,Where S tGmag = |Inputppr| * hw (8)

Figure 4.12 Equations of LOG-MMSE algorithm.

4.4.4 Voice-Activity Detection (VAD)

As explained in the introduction section, voice activity detection (VAD) is the
process of discriminating between voice activity and silence. This is a binary
decision algorithm and is executed by comparing the calculated variable for voice

activity decision with a constant value.

We use VAD at the beginning for updating the noise spectrum. However, we have
to note that it is not very successful, especially for non-stationary noise case.

Detailed information about different VAD algorithms can be found in Loizou, P.
C. (2007). The flowchart of the VAD algorithm used in this thesis study is given in
Figure 4.13 and the related equations are given in Figure 4.14.
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Figure 4.13 Flowchart of VAD for noise power spectrum estimation.
109 ggma = Vic* 77 — log(1 + &) &)
VAD 4o = VAD 4, + logsigma (2
noise,s = Pyq = p*noiseps + (1 — p) * noisy, 3)

Figure 4.14 Equations of VAD method.

4.4.5 Weighted Spectral Averaging

Weighted spectral averaging is a simple approach for noise estimation via
recursive averaging proposed in Hirsch, H. & Ehrlicher, C. (1995). This method is

described as follows:
Y (A,K)]

f m < ﬁ then (413)
644 k) = a6y(A—1,k) + (1 —a)|Y(A k)| (4.14)
otherwise,6;(A, k) = 6;(1 —1,k) (4.15)

where 64(4, k) indicates the magnitude spectrum of the noise, a denotes the

smoothing factor which is fixed, and £ denotes the threshold.

In this approach, the smoothing factor, «, is fixed, but a different method is used
to control the update of the noise spectrum. More specifically, the decision as to
whether the noise spectrum should be updated or not is based on the comparison of
the estimated posterior SNR to a threshold. If the posterior SNR is found to be
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smaller than a specified threshold, suggesting absence of speech, then the noise
spectrum is updated. Conversely, if the posterior SNR is found to be larger than the
threshold, suggesting presence of speech, then the noise spectrum update is

postponed.

In Figures 4.15 and 4.16, the flowchart and the equations of the weighted spectral

averaging technique are given, respectively.

Calculate Calculate
START Smoothed Noisy »  bosterior SNR
Speech PS

(1) (2)
) Update the
(Smth Noisy i
Speech PS)/Noise YES—» Sa?glér?s?fri’\rlgse
?
PS<Beta* Condition
3)
NO
A 4
Do Not Update
Other Samples of END

Noise PS

Figure 4.15 Flowchart of weighted spectral averaging algorithm for noise power spectral estimation.

Smoothed noisy PS = Pgne = @ * Poyy prey + (1 — @) * noisy, 1)
Ve = I;SZ; ,where P4, is noise ps @)
Pagli] = a * Pygli] + (1 — @) * Pgpei] 3

Figure 4.16 Equations of weighted spectral averaging algorithm.

In this method, the threshold value B can have a significant effect on the noise
spectrum estimation. If B is chosen too small, then the noise spectrum is not updated
often enough and is underestimated. On the other hand, if B is chosen too large, then
the noise spectrum is overestimated. In this approach, the  parameter is determined

experimentally according to the input data at hand.
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4.4.6 Histogram-Based Noise Estimation

The histogram-based noise estimation algorithms are motivated by the
observation that the most frequent value of energy values in individual frequency
bands correspond to the noise level of the specified frequency band; that is, the noise

level corresponds to the maximum of the histogram of energy values.

In its most basic formulation, the noise estimate is obtained based on the
histogram of past power spectrum values (Hirsch, H. & Ehrlicher, C., 1995); that is,
for each incoming frame, we first construct a histogram of power spectrum values
spanning a window of several hundreds of milliseconds, and take as an estimate of
the noise spectrum the value corresponding to the maximum of the histogram values.
This is done separately for each individual frequency bin. A first-order recursive
smoothing may also be performed on the noise spectrum estimate to smooth out any

outliers in the estimate.

Figures 4.17 and 4.18 show a simple example of finding the noise level estimate
at a frequency component. Figure 4.17 shows the noisy signal power spectrum levels
during an interval of 150 msec and Figure 4.18 is the histogram of this signal
calculated with 40 bins. The histogram based noise estimation algorithm detects the
maximum of the histogram and sets that level as the noise level at that frequency. For

this example, the noise level at frequency 1000 Hz is set as -8.66 dB.
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The histogram method described in Loizou, P. C. (2007), can be summarized as
follows:

For each frame A;

(1) Compute the noisy speech power spectrum |Y (A, k)|2.

(2) Smooth the noisy power spectral density (PSD) using first-order recursion

SALK)=a*SA—1,k) + (1 —a) *|Y(Ak)|? (4.16)

where o is a smoothing constant.

(3) Compute the histogram of D past PSD estimates S(A, k)
{S(A—1,k),S(A — 2,k), ....,S(A — D, k) } using, say, 40 bins.

(4) Let ¢ = [cq,Cy, ..., Cap] e the counts in each of the 40 bins in the histogram
and s = [sq, Sy, ....., S40] denote the corresponding centers of the histogram
bins. Let c,,4, be the index of the maximum count, i.e;

Crnax = argmax c; (4.17)
1<i<40

Then, determine the estimate of the noise PSD (denoted by H,,,, (A, k)) as the
value corresponding to the maximum of the histogram, i.e., H,,, (A k) =
S(Cmax)-
(5) Smooth the noise estimate H,,,, (A, k) using first order recursion
GEAK) = oy x62(A— 1,k) + (1 — ap) * Hpey A k) (4.18)
where 62 (A, k) is the smoothed estimate of the noise PSD, and a,, is the smoothing

constant.

Figure 4.19 shows the flowchart of the histogram-based method.
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Figure 4.19 Flowchart of histogram-based noise estimation algorithm.

Because these steps are performed for each frequency bin (1024 frequency bins
for our case), it takes too much time for a real-time processing task. Hence, we have
performed an optimization in order to implement this algorithm in software.

Especially, Steps 3 and 4 require too much processing power.

In order to use this algorithm as our noise estimation algorithm, we first calculate
the power spectrum of each noisy speech frame and smooth them. We have generally
used 80 frames for creating a noise estimate (80 frames takes approximately 2
seconds for 32 kHz sampling rate). These 80 smoothed noisy power spectrums are
stored in an 80x1024 array. During the collection of the data, no other operation is
performed. After all these smoothed noisy frames are collected, the histogram of
each frequency component is calculated. Since we use 1024-point FFT, there must be
1024 histogram calculations. This operation needs too much processing power to
perform during a single period (24 msec). In order to solve this problem, the
histogram calculation operation is divided into 8 parts and completed during these 8
periods. Moreover, we have not calculated 1024 histograms. Instead, we have
calculated 512 histograms for 512 frequency components, because the Fourier
transform output is symmetrical. Therefore, we calculate the noise PSD by using 512

frequency components and duplicate these components in order to perform 1024-
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point noise PSD. For the histogram calculation, we have used 40 bins. After this
operation, the maximum of each histogram must be found. Again, this operation
needs too much processing power (it is completed during 4 cycles). The maximum of
each histogram is used to estimate the noise PSD. The last operation is the smoothing

of the noise PSD with a smoothing constant.

4.4.7 SNR-Dependent Recursive Averaging Noise Estimation

The time-recursive averaging algorithms exploit the observation that the noise
signal typically has a nonuniform effect on the spectrum of speech, in that some
regions of the spectrum are affected by noise more than others. Put differently, each
spectral component will typically have a different effective SNR. Consequently, we
can estimate and update individual frequency bands of the noise spectrum whenever
the effective SNR at a particular frequency band is extremely low. Equivalently, we
can update the individual frequency bands of the noise spectrum whenever the
probability of speech being present at a particular frequency band is extremely low.
This observation led to the recursive-averaging type of algorithms in which the noise
spectrum is estimated as a weighted average of past noise estimates and the present
noisy speech spectrum. The weights change adaptively depending either on the

effective SNR of each frequency bin or on the speech-presence probability.

All time-recursive algorithms have the following general form
620K = aWk) *62(A— 1,k) + (1 —a(AK)) * [Y (A, k) |2 (4.19)
where |Y(A,k)|? is the noisy speech magnitude spectrum squared (periodogram),
62()\, k) denotes the estimate of the noise PSD at frame A and frequency k, and
a(A, k) is the smoothing factor, which is time and frequency dependent. Different
algorithms were developed depending on the selection of the smoothing factor
a(A k).

In the recursive averaging technique proposed in Lin, L., Holmes W.H. &
Ambikairajah, E. (2003), the smoothing factor a(A, k) in Equation (4.19) is chosen to
be a sigmoid function of the posterior SNR y;. (1)
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1
110 BK-15)

a(A k) = (4.20)

B is a parameter with values in the range 15< <30 and y; (1) is an approximation to

the posterior SNR given by

lY(AK)|?
=T, 83(A-1K)

V@) = (4.21)

The denominator in Equation (4.21) gives the average of the estimated noise PSD

for the past 10 frames.

The recursive algorithm can be explained as follows: If speech is present, the
posterior estimate y,(A) will be large and therefore a(A, k) =~ 1. Consequently,
because a(A, k) =~ 1, we will have 62(A, k) = 67 (A — 1,k); that is, the noise update
will cease and the noise estimate will remain the same as the previous frame’s
estimate. Conversely, if speech is absent, the posterior estimate y; (A) will be small
and therefore a(A,k) =~ 0. As a result, 67(A\,k) = |[Y(A,k)|?; that is, the noise
estimate will follow the PSD of the noisy spectrum in the absence of speech. The
main advantage of using the time smoothing factors, as opposed to using a fixed
value for a(A, k), is that these factors are time and frequency dependent. This means
that the noise PSD will be adapted differently and at different rates in the various
frequency bins, depending on the estimate of posterior SNR, y, (), in that bin. This

Is particularly suited in situations in which the noise is colored.

4.4.8 Filtering as Post Processing

The sounds of a normal speaking voice contain fundamental frequencies between
100 and 300 Hz. The overtones contained in these sounds extend the range of
frequencies to approximately 5000 Hz. Voices of different individuals vary in their
frequency content. Men usually have voices with lower fundamental and harmonic
frequencies than those of women and children. The range of fundamental frequencies
of the singing voice is greater than that of the speaking voice; it varies from about 80
Hz for a deep bass to about 1200 Hz for a high soprano. The overtones contained in

the sounds of the singing voice reach as high as 10000 Hz. For purposes of
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comparison, the frequency range of the instruments of a symphony orchestra
includes fundamental of about 16 to 4000 Hz with overtones ranging to 12000 Hz or

higher.

Thus, the speech information is not included inside the entire audio spectrum
between 0 - 20 kHz. The telephony systems use 300 Hz - 3400 Hz for speech
transmission, but decreasing this interval can worsen the speech quality. Generally,
the lowest frequency band that carries speech information can be regarded as 200 Hz,
while the highest frequency that carries speech frequency can be thought
approximately between 5 - 10 kHz depending on the harmonics.

By considering this information, we have employed a fourth order IR filter after
the speech enhancement operation. This filter is a bandpass filter having cut-off
frequencies of 200 Hz and 8000 Hz.

The filter is designed using MATLAB “fdatool” as shown in Figure 4.20 and
applied to the DSP platform software.

After exporting the coefficients of the generated filter to MATLAB workspace,
there is one more thing that must be done in order to use the filter in the DSP
platform. MATLAB generates “SOS” and “G” default coefficients which represent
the second-order section of a given digital filter. These coefficients should be
converted to the equivalent transfer function representation (“A and B” coefficients)
using “sos2tf” command of MATLAB. The MATLAB command line “[b,a] =
sos2tf(sos,g)” returns the transfer function that describes a discrete-time system

given by SOS in second-order section form with gain G.
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Figure 4.20 MATLAB “fdatool” used for designing digital filters.

These generated coefficients are used in DSP evaluation module software. We can

also check the generated coefficients by plotting the magnitude and phase responses

as in Figure 4.21.
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Figure 4.21 Magnitude and phase responses of the applied filter.



CHAPTER FIVE
A NOVEL FUSION NOISE ESTIMATION ALGORITHM

In this chapter, we explain the details of our newly developed fusion noise
estimation algorithm. This algorithm is a combination of two methods related to
noise estimation introduced in Lin, L., Holmes W. H. & Ambikairajah, E. (2003) and
Ramirez, J. et. al. (2003). We have proposed two new algorithms called the “reset
algorithm” and the “p parameter estimation algorithm” inspired by the existing
methods proposed in Lin, L., Holmes W. H. & Ambikairajah, E. (2003) and Ramirez,
J. et. al. (2003). The reset algorithm is used to reset the noise estimation algorithm
when the input data change suddenly. The B parameter estimation algorithm deals
with dynamically updating the B parameter that is used in the SNR dependent
recursive averaging noise estimation algorithm introduced in Section 4.4.7. Both
algorithms require computation of long-term spectral divergence (LTSD) value
described in Ramirez J. et. al. (2003).

5.1 Long-term Spectral Divergence (LTSD)

In Ramirez, J. et. al. (2003), it is stated that the proposed speech/non-speech
detection algorithm assumes that the most significant information for detecting voice
activity on a noisy speech signal remains on the time-varying signal spectrum
magnitude. It uses a long-term speech window instead of instantaneous values of the
spectrum to track the spectral envelope and is based on the estimation of the so-
called long-term spectral envelope (LTSE). The decision rule is then formulated in

terms of the long-term spectral divergence (LTSD) between speech and noise.

Following Ramirez, J. et. al. (2003), we also utilize LTSD values in our proposed
algorithm. In order to calculate LTSD, the following procedure is used. Let x(n) be a
noisy speech signal that is segmented into overlapped frames and, X(k,[) be its
amplitude spectrum for the k" band and at frame [. The N-order long-term spectral

envelope is defined as

LTSEyn(k, 1) = max{X(k, 1 + HY="N (5.1)

j=-N

54
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Note that the LTSE is calculated for the interval between —N and +N. However,
since our study is at real-time we do not have access to the future samples. Hence,

we have slightly modified this definition as follows:

LTSEy(k, 1) = max{X(k, 1 + Y20, (5.2)

The N-order long-term spectral divergence between speech and noise is defined as
the deviation of the LTSE with respect to the average noise spectrum magnitude
N (k) for the k" band with k =0; 1; ... ;NFFT-1. It is given by;

1 _1 LTSE?(k,1
LTSDy (D) = 10 logso (5 TRES ™ ) (5.3)

In Ramirez, J. et. al. (2003), it is proved that the optimal window length, N,
should be around 5 or 6. Hence, we also employ these values in the experiments of

our study.

5.2 Noise Estimation Reset Algorithm

In this algorithm, our purpose is to reset the noise estimation algorithm in case the
input data change immediately. At sudden changes, the noise estimation algorithm
does not operate correctly because of the continuous interval of silence during the
input switching. Thus, it is necessary to reset the noise estimation algorithm for the

system to operate correctly.

A case of sudden increase is illustrated in Figure 5.1. Without the reset algorithm,
it is seen that the noise estimation algorithm does not operate correctly after the
sudden increase. Hence, the noise estimation algorithm must be restarted. After the
application of the reset algorithm proposed in this section, the noise estimation
algorithm continues to operate as desired. Figure 5.2 demonstrates the operation of
the reset algorithm. It is seen that the noise estimation algorithm is reset as marked in

Figure 5.2 and continues to operate correctly after the reset occurs.
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Figure 5.1 Calculated LTSD values after a change in the input signal (without application of the reset
algorithm).
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Figure 5.2 Calculated LTSD values after a change in the input signal (with application of the reset
algorithm).

The flowchart given in Figure 5.3 shows the steps of the noise estimation reset

algorithm. The operation of the algorithm can be summarized as follows.
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If the algorithm runs at first time, the previous LTSD vector is filled with +0.25 of
current LTSD value. That is; the odd samples of the vector are filled with current
LTSD value plus 0.25, while the even samples of the vector are filled with current

LTSD value minus 0.25. This is necessary for the operation of one of the reset cases.

There are two reset cases for this algorithm. The first case checks if there is a
sudden increase from the previous LTSD values to the current LTSD value. If the
current LTSD value is greater than any of the previous LTSD values times LIM1, the
reset case occurs. The LIM1 value is selected as 1.4 (40% difference). The second
reset case checks the rate of change of LTSD. If it is too stable, then it is
experimentally determined that a reset is necessary. In our system, the stability limit
is +1%, CNT_LIMIT is assigned as 38 and the total size of previous LTSD vector is
40. When one of the reset cases occurs, the noise estimation parameters are reset.

START

A

Initialize Variables

First Run of
Algorithm?

YES

Fill Prev LTSD
Vector with +0.25
Current LTSD
Value

Rate of curren
and prev LTSD is
around 1%?

Increase Reset
Count
Reset Count >
CNT_LIMIT

Figure 5.3 The flowchart of the noise estimation reset algorithm.

Current LTSD>
Prev LTSD*LIM

Set Related
Variable

A

Set the Reset Flag
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5.3 p Parameter Estimation Algorithm

It is stated in Lin, L., Holmes W. H. & Ambikairajah, E. (2003) that the
parameter is important for the rate of noise updates: larger values of  lead to slower
noise updates, whereas smaller values of 8 give faster noise updates at a risk of over-
estimation. It is also stated that this value is selected as a constant value before the

operation.

Because our operation is at real-time and the input data are completely random,
we do not have a chance to select the B parameter based on the input data.
Additionally, a selected constant value will not be appropriate for all input signals.

Thus, we need to estimate and update this parameter at run-time when necessary.

In order to update the B parameter dynamically, we need some feature data. These
data must have distinctive properties for input signals including different noise types
and levels. For this purpose, we have experimented with several techniques and
selected to use long-term spectral divergence (LTSD) which is used for speech/non-

speech analysis of the input data (Ramirez, J. et. al., 2003).

The purpose of the developed algorithm is the selection of different B parameters
based on the calculated LTSD value. Following our experiments with different signal
and noise types, we have decided to use four different p values as shown in Figure
5.4.
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Figure 5.4 Use of different (3 values.

If the input data are determined as just noise by the algorithm, a small B value is
assigned. This value is selected as 0.1. If the input data are determined as only
speech, which means that there is no or negligible level of noise, then a large  value
is selected. This value is determined as 1.5 in our algorithm. “$;” and “B,” are the 3
values between noise only and speech only cases. The rationale behind the selection
of B, and f3, is different from the other two 3 values. For determining the appropriate
B value, we check whether the pre-determined number of LTSD samples is outside
the limit of £10% of the average LTSD value. If this condition is satisfied, then the 3
value is set to ,. However, if this condition is not satisfied, then the p value is set as
equal to B;. This is because, if the amount of LTSD variation with respect to the
average LTSD value is sufficient in order to perform the speech/non-speech
discrimination, then a larger B should be used. However, if the amount of LTSD
variation is not sufficient to perform this discrimination, then a smaller B value
should be used. B; and 3, values have been selected as 0.45 and 0.6, respectively,

after experimenting with different input signals.

The calculated LTSD values obtained by using a constant  value (B = 0.6) for
different input signals are given in figures below. The calculated LTSD values for
noise-only input are shown in Figure 5.5. It is seen that the LTSD values are small

and around 20. Thus, a threshold can be used for detection of noise-only input. This
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hold is set as 25 based on our experiments. That is, if the calculated LTSD value

is under 25 for some interval, the input data are decided as noise-only and the  value

for noise-only case is used.

1497

11.24

7.451

3.734

-3.734

7.45]

11 .24

1497

-18.6+

L_LTSD Value

-
P A A A T AR

’

[ LTSD Number

-224

T

0 205 410 614 819 1024 1229 1434 1638 1843 2048

Figure 5.5 Calculated LTSD values for noise only input data.

In

Figure 5.6, the calculated LTSD values for speech-only input case are plotted.

It is seen that the values are quite high as compared to the noise-only case. Again, a

thres

hold should be assigned. This threshold is determined to be 70. Hence, if the

calculated LTSD values are greater than the determined threshold value, the input

data

set.

are decided as the speech-only and the pre-determined B value for this case is
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Figure 5.6 Calculated LTSD values for speech only input data.
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Figure 5.7 Calculated LTSD values for a signal having a clear speech/non-speech discrimination.
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Figure 5.8 Calculated LTSD values for a signal not having a clear speech/non-speech discrimination.

The calculated LTSD values for two different signals are shown in Figures 5.7
and 5.8. We can determine a threshold value as shown in Figure 5.7 with a dashed
line. By this way, we can easily perform the speech/non-speech discrimination for
this input signal. If we want to perform VAD for the data in Figure 5.7, the values
above the threshold would be decided as speech regions and the values under the
threshold as non-speech regions. However, our purpose here is not to perform VAD.
It is sufficient for us only to perform the speech/non-speech discrimination. Thus, the

B value of 0.6 is used for such signals.

If the calculated LTSD values in Figure 5.8 are analyzed, it is seen that the
speech/non-speech discrimination is not clear as in the previous case. If we try to set
some threshold values, it is hard to determine speech and non-speech regions for
these data. Hence, we set the p value as 0.45 if this type of an input signal is

encountered.



5.3.1 The Flowchart of the Algorithm

In this section, we give the flowchart of the B parameter estimation algorithm and

explain its steps.
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Figure 5.9 The flowchart of B parameter estimation algorithm.

The flowchart given in Figure 5.9 shows the steps of the B parameter estimation
algorithm. Because the flowchart looks somewhat complicated, we explain the
blocks one by one as follows.
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(1), (33) Start and End blocks of the algorithm

(2) Initialization of the required variables for the algorithm.

(3), (4) If the algorithm runs at first time, then we do not have an “average
LTSD” value. Thus, it is equalized to the “current LTSD” value at first run of the

algorithm.

(5) For a pre-determined number (AVG_CNT) of LTSD samples, the average
LTSD is computed. For this purpose, the current LTSD values are summed until the
average LTSD value is calculated. The AVG_CNT is defined as 250. That is, for
every 250 LTSD samples, the average LTSD value should be computed.

(6), (7), (8) If the number of calculated LTSD values reaches to AVG_CNT,
then the algorithm computes the average LTSD value by dividing the summation of
calculated LTSD values which are obtained in step (5) by the AVG_CNT. After the
average LTSD value is obtained, then some variables are reset for new average
calculation and a flag called “New Avg Calc” showing the average LTSD value is
calculated in this cycle.

(9) If the number of summed LTSD values does not reach the desired
AVG_CNT value, then the average LTSD value should be calculated in this cycle. In
this case, the counter that keeps the number of calculated LTSD values for average

calculation should be increased by one.

(10), (11), (12) If the average LTSD value is smaller than the pre-defined
“Noise Level Limit” value, then it is decided by the algorithm that the current input
does not include speech data, but only includes noise data. Therefore, the pre-defined
B value for the noise case is set as the current B value. The “Noise Clean Flag” is
used to keep the noise only/speech only cases. That is, if one of the B parameters is
selected for noise only or speech only case, this flag is set to TRUE. This is
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necessary because, if B is different than the noise only or speech only case, extra
operations are needed to be performed.

(13), (14), (15) If the average LTSD value is larger than the pre-defined “Clean
Speech Level Limit” value, then it is decided by the algorithm that the current input
includes speech data completely. Thus, the pre-defined p value for the speech only

case is set as the current B value. The “Noise Clean Flag” value is again set to TRUE.

(16), (17), (18), (19) If the B value is not set to speech only or noise only 3
values, then it is necessary to determine if the B is set to 8, or 3,. For this operation,
the number of LTSD samples that are outside the range should be counted. As
already mentioned above, the range is £10% of the average LTSD value. For each
LTSD sample, this operation should be performed and the “Out of Limit Count”
should be increased by one provided that the condition at issue is satisfied. The
“Noise Clean Flag” should be set to FALSE even if the condition in question is

satisfied or not.

(20), (32) In this step, “New Avg Calc” flag is checked, because we should
change the value of  to §; or B, based on a counting operation. If “New Avg Calc”

flag is FALSE, the B value is kept unchanged, (the previous  value should be valid).

(21), (22), (23), (24) If the “Out of Limit Count” is greater than the pre-defined
“LIMIT” value and ‘“Noise Clean Flag” is FALSE, then the B value should be set as
B,. If the “Out of Limit Count” is smaller than the pre-defined “LIMIT” value and
“Noise Clean Flag” is again FALSE, then the B value should be set as ;. The
“LIMIT” value is set 40 based on our experiments. That is, if 40 of the LTSD
samples out of the total 250 samples provide outside limit condition, then S, value
should be used, otherwise g; is assigned. If the “Noise Clean Flag” is TRUE, we do
not perform any operations in this step, because the value of p has already been
determined for noise only or speech only cases.
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(25), (26), (27), (28), (29), (30) There is one more operation to be performed
before updating the B parameter. Because the input data are completely random,
there can be some sudden increases or decreases in a certain period of time. In order
to eliminate these sudden effects, a control case is added. This case checks if the
following B parameters are obtained as the same value. If two sequential
parameters are the same, then we can update the p parameter. If not, the previous

value is accepted as valid, namely we do not update the § parameter in this case.

(31) After the p parameter is updated based on the calculated average LTSD
value, some initial values should be set for next calculations. The “Out of Limit
Count” is set 0, because this count should be created from the new data set. The

“New Avg Calc” flag is set as FALSE in order to start the next calculation operation.



CHAPTER SIX
EVALUATION RESULTS

In this chapter, the evaluation results for quality and intelligibility measures are

given.

6.1 Evaluation Results for Quality Measure

The results are obtained for different input signals by using different speech
enhancement and noise estimation algorithms. For all the signals, all possible
combinations are evaluated. Two tables are created based on the use of a bandpass
filter. Table 6.1 shows the evaluation results when the bandpass filter is not in use
and Table 6.2 shows the evaluation results when the bandpass filter is in use.

The first lines of the tables show the optimal values of each quality measure. For
instance, according to the PESQ measure, the speech quality is very high if the
calculated value is near 4.5 and the speech quality is very low if the calculated value
is near 0. The abbreviations used in these tables are given below.

e Comp FW Mars - Frequency-variant fwSNRseg measure based on MARS
analysis (Section 2.7.3.4).
e Comp FW Seg Variant - Frequency-variant fwSNRseg measure (Section
2.7.3.6).
e Composite - Composite objective measure (Section 2.7.3.3).
Each of the three speech quality measures given above produces three ratings:
o SIG - predicted rating of speech distortion (between 1 and 5).
o BAK - predicted rating of noise distortion (between 1 and 5).
o OVL - predicted rating of overall quality (between 1 and 5).
e LLR - Log likelihood ratio measure (Section 2.7.3.2.1).
e CEP - Cepstrum distance measure (Section 2.7.3.2.2).
e Comp FWSEG - frequency-weighted SNRseg measure using a different
weighting function, the clean spectrum (Section 2.7.3.5).
e PESQ - PESQ measure based on the ITU standard P.862 (Section 2.7.3.1)

67
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Different noise types are used in our experiments. The PSD estimates of these
noise types are given in Figures 6.1 through 6.5.
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Figure 6.1 PSD estimate of white noise.
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Figure 6.2 PSD estimate of speech noise.
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Figure 6.3 PSD estimate of PN pink noise.
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Figure 6.4 PSD estimate of restaurant ambiance noise.

69



70

Welch Power Spectral Density Estimate
-40

S\

o\
0 \\

N

S

0 5 10 15 20
Frequency (kHz)

Power/frequency (dB/Hz)
~
o

-100

Figure 6.5 PSD estimate of airport noise.

If we analyze the results in Tables 6.1 and 6.2, we see that the results when the
bandpass filter is active are not better than the ones when the bandpass filter is not in
use. This can be due to the comparison of clean speech signal and the filtered output,
because the original speech data include the whole frequency range, but the
processed speech data do not include the whole frequency range due to filtering
operation. Therefore, the mathematical comparison may not match well with the
application in this case. Either using subjective evaluation techniques or filtering the

original speech data as pre-processing might solve this problem.

If we compare the speech enhancement and noise estimation algorithms based on
the evaluation results given in Tables 6.1 and 6.2, we see that Wiener filtering
approach together with the recursive-averaging noise estimation algorithm has
produced favorable results for all input signals. Hence, this combination is selected

for use in our further studies.
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The objective evaluation results for the new fusion noise estimation algorithm are
given in Table 6.3. Looking at these results, we can infer that better results are
obtained when B value is assigned as 0.45 for “News with airport noise” and “Syn.
Abst. with PN pink noise” input signals while better results are obtained for “G.

Hitabe with white noise” input signal when [ equals to 0.60.

In Table 6.3, the B values labeled with “Auto” means that the B value is
determined by the novel fusion noise estimation algorithm. As can be seen from the
results, the new algorithm has produced favorable results for all three cases. If § had
been selected as a constant value such as 0.45, it would have been appropriate for the
first and second input signals. However, this would have not been the best selection
for the last input signal. Thus, using our fusion noise estimation algorithm is a good

way to determine the 3 parameter automatically.

Besides, the fusion noise estimation algorithm also works for “noise-only” and
“speech-only” cases that a constant  value can not handle. We do not give any
objective results for these cases, but it is obvious that it is not necessary to apply the
enhancement algorithm when the input data do not include noise. In the same way, if
the input data includes only noise, we should suppress the input as much as possible,

because it does not carry any information.

6.2 Evaluation Results for Intelligibility Measure

In this section, the evaluation results for intelligibility measure are given by using
the procedure explained in Section 2.7.3.7. The clean speech file used in this test has
not been used in the training phase of the speech-to-text algorithm for a more correct
evaluation. Three types of noise are added to this file; white noise, speech noise, and
PN pink noise. We obtain the results for each noise type and as corresponding to the
application of different noise estimation and enhancement algorithms and filtering
operation. The evaluation results obtained by using the speech-to-text software is

given in Table 6.4.
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Table 6.4 The number of correctly identified words by the speech-to-text software for different
algorithm applications and noise types.

Noise Type EnAngfﬁmint Est’?rzle?fion Fli: tR; r ’\éLcIJTrbeec:I?/f e W(I)q;dteError
Algorithm Identified Words
No No No No 749 6 (Org. File. Cmp.)
White Noise No No No 7 99,07
White Noise Log-MMSE Hist. Based | OFF 15 98,0
White Noise Log-MMSE Hist. Based |ON 26 96,53
White Noise Log-MMSE Rec. Avg. OFF 77 89,7
White Noise Log-MMSE Rec. Avg. ON 124 83,4
White Noise W-SNR Hist. Based | OFF 172 77,0
White Noise W-SNR Hist. Based |ON 173 76,9
White Noise W-SNR Rec. Avg. OFF 176 76,5
White Noise W-SNR Rec. Avg. ON 328 56,2
Speech Noise | No No No 114 84,78
Speech Noise | Log-MMSE Hist. Based | OFF 6 99,2
Speech Noise | Log-MMSE Hist. Based | ON 13 98,27
Speech Noise | Log-MMSE Rec. Avg. OFF 14 98,13
Speech Noise | Log-MMSE Rec. Avg. ON 22 97,06
Speech Noise | W-SNR Hist. Based | OFF 35 95,33
Speech Noise | W-SNR Hist. Based |ON 32 95,73
Speech Noise | W-SNR Rec. Avg. OFF 129 82,78
Speech Noise | W-SNR Rec. Avg. ON 138 81,57
PN Pink Noise | No No No 155 79,3
PN Pink Noise | Log-MMSE Hist. Based | OFF 58 92,26
PN Pink Noise | Log-MMSE Hist. Based |ON 107 85,71
PN Pink Noise | Log-MMSE Rec. Avg. OFF 199 73,43
PN Pink Noise | Log-MMSE Rec. Avg. ON 192 74,37
PN Pink Noise | W-SNR Hist. Based | OFF 297 60,35
PN Pink Noise | W-SNR Hist. Based |ON 358 52,2
PN Pink Noise | W-SNR Rec. Avg. OFF 338 54,87
PN Pink Noise | W-SNR Rec. Avg. ON 377 49,67

In this table, “No” means that no algorithm is applied to the noisy speech file; that

is, the noisy speech file is directly used as an input to the speech-to-text software.

The original speech file used for intelligibility evalulation includes 797 words.

When the clean speech file is applied to the speech-to-text software, 749 words are

correctly identified; that is, the word error rate of the speech-to-text software is 6%.

The number of correctly identified words for noisy signals are calculated with
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respect to the output of speech-to-text software for clean speech file, not the original
text. However, since the word error rate of the speech-to-text software is 6%, this
issue does not have an important effect on the scores. In Table 6.4, the word error
rates of the noisy speech signals are given with respect to the output of the speech-to-
text software for clean speech file as mentioned. The first word error rate value given
in this table (6%) is calculated with respect to the original text.

As can be seen from Table 6.4, application of the algorithms generally increases
the number of correctly identified words. For the white noise case, if no algorithms
are applied, the number of correctly identified words is only 7. As shown in Figure
6.6, application of algorithms always increases intelligibility for the white noise case.
However, the maximum intelligibility is obtained when Wiener-SNR algorithm is
applied together with recursive-averaging noise estimation algorithm and IIR filter.
When the speech noise is applied to the clean speech data, this time some algorithms
reduce the intelligibility as shown in Figure 6.7. In this case, again only the
combinations of Wiener-SNR and recursive-averaging noise estimation algorithms
increase the intelligibility while the others decrease it. For the PN pink noise, only
the combinations of LOG-MMSE and histogram-based noise estimation algorithms
decrease the intelligibility while the others increase it. Again, the best performance is
obtained with the application of Wiener-SNR and recursive averaging noise

estimation algorithms as shown in Figure 6.8.

If the number of correctly identified words is compared with the total number of
words in the clean speech file, it follows that the word error rate is 49,67% which
means that only half of the total words are correctly identified at the best case. The
word error rate is 99,07% for the white noise case, 84,78% for the speech noise case
and 79,3% for the PN pink noise case without the application of any enhancement
algorithms. If the values in Table 6.4 are analyzed, it can be seen that Wiener-SNR
algorithm together with recursive-averaging noise estimation algorithm and IIR filter
has decreased the word error rate from 99,07% to 56,2% for the white noise case,
from 84,78% to 81,57% for the speech noise case and from 79,3% to 49,67% for the
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PN pink noise case. Thus, we can state that application of the enhancement algorithm

generally decreases the word error rate a great deal.

In conclusion, Wiener-SNR algorithm together with recursive-averaging noise
estimation algorithm has produced the best results among others for all noise types
that are experimented with. It has also been seen that application of IIR filtering

increases the number of correctly identified words considerably.

Correctly Identified Words
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Figure 6.6 Graphical comparisons of speech-to-text algorithm outputs for white noise.
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Figure 6.7 Graphical comparisons of speech-to-text algorithm outputs for speech noise.
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CHAPTER SEVEN
CONCLUSIONS

Speech enhancement aims to improve speech quality by using various algorithms.
The objective of enhancement is improvement in intelligibility and/or overall
perceptual quality of degraded speech signal using audio signal processing

techniques.

Throughout this thesis work, a real-time system that performs speech
enhancement task is designed and implemented on the evaluation module of OMAP-
L137 digital signal processor of Texas Instruments. Unlike the algorithms proposed
in the literature, we have implemented the algorithm at real-time. Therefore, one of
the most important challenges for us is the speed of the process. This means that the
operations on the currently processed data must be completed until a new audio
packet arrives. In addition to this requirement, the developed system needs to

improve speech quality and/or speech intelligibility.

We have implemented several algorithms by combining different speech
enhancement, noise estimation algorithms, and filtering operations on the evaluation
module. In order to implement some algorithms such as histogram-based noise
estimation and LOG-MMSE speech enhancement algorithm on the evaluation
module, we have applied several optimizations related to software and the
architecture of the DSP. For instance, the memory management is very important in
terms of the performance of the algorithm; the internal and external RAM blocks
must be used correctly for the maximum performance. Inaccurate memory
management causes delays in the process which leads to nonexecution of the desired

algorithms.

In addition to the implementation of the speech enhancement and noise estimation
algorithms in the literature, we have also proposed a novel fusion noise estimation
algorithm as outlined in Chapter Five. The proposed algorithm aims to increase the

performance of the SNR-dependent recursive averaging noise estimation algorithm

79
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described in Lin, L., Holmes W.H. & Ambikairajah, E. (2003) by updating the
parameter, which determines the rate of the noise updates based on the input signal.
We have used the decision rule called LTSD which is proposed in Ramirez, J. et. al.
(2003) in order to estimate the p parameter. By this way, we have proposed a new
method that updates the p parameter based on the input data as opposed to the use of
a constant 3 parameter as in Lin, L., Holmes W.H. & Ambikairajah, E. (2003).

Different speech and noise signals are used during the studies: Atatiirk's address to
the Turkish youth, several news contents, a speech related to old ages, soccer games
with heavy “Vuvuzela” noise, sounds of pilots in an airplane cockpit, white noise,
PN pink noise, speech noise, restaurant ambiance noise, and airport noise, etc. The
developed algorithms are tested by using all these noisy speech files and the

processed data are evaluated by using both subjective and objective methods.

We have evaluated several combinations of algorithms by using objective
measures for both quality and intelligibility as described in Chapter Six. We have
used eight different quality measures in order to evaluate the speech quality.
According to the obtained results, the Wiener filtering approach together with
recursive averaging noise estimation algorithm has produced favorable results in all
cases and has generally provided the best results in terms of all quality measures. As
already mentioned in Section 6.1, the use of IIR filter has not improved the quality
noticeably. This is probably because of not filtering of the clean speech signal that is

used by the objective measures for comparison.

It is seen in Table 6.3 that the use of different p parameter values for different
input types increases the performance and a constant 3 parameter value is not
approprite for all cases. Hence, the 3 parameter should be updated based on the input
signal type for a better performance. As shown in Table 6.3, the novel fusion noise
estimation algorithm succeeds in automatically updating the B parameter based on
the input signal type and produces acceptably good results for all cases. As described
in Chapter Five, the B parameter value is determined as one of the four different pre-

defined values. Further study can be performed in order to derive a procedure or
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formula that can be used to compute the B parameter value by using some kind of
audio features instead of using experimentally-determined {3 values.

We have also evaluated the implemented algorithms in terms of speech
intelligibility by using a speech recognition technique given in Section 2.7.3.7.
Generally, most of the algorithms increases the intelligibility, but some of them
decreases it for some input signals. According to this evaluation technique, again the
Wiener filtering approach together with recursive averaging noise estimation
algorithm and IR filtering is the combination that provides the best performance in
terms of intelligibility. That combination has decreased the word error rate from
99,07% to 56,2% for the white noise case, from 84,78% to 81,57% for the speech
noise case and from 79,3% to 49,67% for the PN pink noise case. Thus, we can state
that application of the enhancement algorithm generally decreases the word error rate
and increases the performance in terms of speech intelligibility a great deal.

We have also used “vuvuzela” noise in our studies, but we have not applied
objective evaluation methods for that noise type. With respect to subjective
evaluation measures, it is seen that the enhancement algorithms, especially the
Wiener filtering approach together with recursive-averaging noise estimation
algorithm, suppresses the ‘“vuvuzela” noise considerably. This combination has
increased the speech quality without decreasing the speech intelligibility for the input

signal containing “vuvuzela” noise.

In summary, the combination of Wiener filtering approach and SNR-dependent
recursive averaging noise estimation algorithm together with the application of 1IR
filtering has improved both speech quality and intelligibility in most cases. The novel
fusion noise estimation algorithm has increased the performance of the noise

estimation algorithm in terms of speech quality.
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— End Paoint 0 (Control)

— End Paoints 1,2 3 4 (Control, Bulk, Interrupt or
ISOC) Rx and Tx

Three Multichannel Audic Serial Ports:

— Six Clock Zones and 28 Serial Data Pins

— Supports TDM, 125, and Similar Formats

DIT-Capable (McASP2)

— FIFO buffers for Transmit and Receive

107100 Mb's Ethernet MAC (EMAC):

— |EEE 802.3 Compliant {3.3-V VO Only)

— RMIl Media Independent Interface

— Management Data VO (MDIO] Module

Real-Time Clock With 32 KHz Oscillator and

Separate Power Rail

One 64-Bit General-Purpose Timer

({Configurable as Two 32-Bit Timers)

One 64-bit General-PurposeWatchdog Timer

{Configurable as Two 32-bit General-Purpose

Timers)

Three Enhanced Pulse Width Modulators

(e HRPWM):

— Dedicated 16-Bit Time-Base Counter With
Period And Frequency Control

— B Single Edge, & Dual Edge Symmetric or 3
Dual Edge Asymmetric Outputs

— Dead-Band Generation

— PWM Chopping by High-Frequency Carrier

— Trip Zone Input

Three 32-Bit Enhanced Capture Modules

(e CAP):

— Configurable as 3 Capture Inputs or 3
Auxiliary Pulse Width Modulator (APWM)
outputs

— Single Shiot Capture of up to Four Event
Time-Stamps

Two 32-Bit Enhanced Guadrature Encoder

FPulse Maodules [eQEP)

256-Ball Pb-Free Plastic Ball Grid Array (PBGA)

[ZKB Suffix], 1.0-mm Ball Pitch

Commerzial, Industrial, Extended, or

Automotive Temperature

Community Resources

— Tl E2E Community
— Tl Embedded Processors Wiki




A.2 Functional Block Diagram
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PLLClock With MMU DSF CPU
Input
—  Generator
Clocks) WO SC
| 4 KB ETB | | AET |
General-
Pumpose | 16 KB || 16KB | 32 KB ” 32 KB
Timer PowerSleep I-Cache || D-Cache L1 Pgm || L1 RAM
General- Controller BKB RAM
Purpose (Vector Table) 2E6KE L2 RAM
Timer 3;'“?& Pin
(Watchdog) |[*B50" || Multiplexing| ||| s4xerom |M| soor rom |
ir ir iz
ol
| Switc hed Central Resource (SCR) |
2 2 2 92 9
Peripherals
DMA Audio Ports Serlal |nte faces Display Intemal Memory
£ kY i) £ % / '\,
McASP e SPl UART LED
128 KB PRU
GPID EDMAZ WE}FO () (2) 3 Ctir RAM Subsystem
Control Timers Connectivity External Memory interfaces
Al a
P N,
usBz.o UsBEl1 (107100} EMIFA(BbHEB) EMIFE
&H R{i}m e-{C;.P e-{QZEP‘ OTG Ctir | | OHCI Ctir EMAC | MDIC HF1 “}‘;‘E?D MANDFlash SDRAM Only
PHY PHY (RMI) 160 SDRAM {16bf3 2b)

Mote: Not all penipherals are available at the same time due to multiplexing.



