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A DETAILED ANALYSIS OF THE EFFECTS OF VARIOUS 

COMBINATIONS OF HEART RATE VARIABILITY INDICES IN 

CONGESTIVE HEART FAILURE 

 

ABSTRACT 

 

The major purpose of the heart is to circulate blood, which carries oxygen and 

nutrients to the body. Heart Failure is a decreased ability of the heart to either fill itself 

with blood or emptying it. Because the congestion, which is the fluid accumulation in 

various parts of the body, is common in the patients with heart failure, this disease is 

also named as Congestive Heart Failure (CHF). Although, at times, the diagnosis of 

heart failure is straightforward, it often challenges physicians because particular aspects 

of the syndrome lead to confusion. When heart failure is suspected, certain elements of 

the physical examination aid in the diagnosis. Unfortunately, the examination often does 

not yield enough information for confirmation. Although several diagnostic criteria 

schemes are available, their clinical utility is questionable, and their concordance is 

poor. 

 

The physicians have long relied as a gold standard on echocardiography for the 

diagnosis of CHF patients. It has not been possible to use a simple method as ECG for 

this purpose because of the many difficulties in interpreting the ECG output. Therefore, 

it would be very helpful both for physicians and patients alike if it is possible to 

diagnose CHF from an ECG record. The main purpose of this thesis is accomplishing 

such a purpose, i.e. detecting CHF from an ECG output. 

 

Heart Rate Variability (HRV) analysis has been the subject of many studies of 

clinical origin. Majority of these studies have used HRV measures as predictors of the 

risk of mortality (prognosis) for cardiac patients. Only a few studies have been focused 

on using HRV measures for diagnostic purpose. This thesis is focused on exploring 

advanced techniques of HRV analysis in an attempt to develop robust methods for 

diagnosing patients with CHF from an ECG records. This study considers presenting 

new feature extraction method, developing new preprocessing techniques, and finding 

an optimal k-Nearest Neighbors classifier to discriminate the patients with CHF from 
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the normals and to discriminate systolic versus diastolic dysfunction in CHF patients. 

The wavelet entropy, which has been used in the other biomedical signal classification 

schemes like EEG spike detection, is also used as an HRV measure to enhance the 

performance of the classifier. Furthermore, lagged Poincare plot measures are also 

included in the study. A new preprocessing technique, called as heart rate normalization, 

is also used to enhance the performance in discriminating the CHF patients from 

normals and determining the type of dysfunctionality as systolic or diastolic in CHF 

patients. In addition, Genetic Algorithm is used to select the optimal features from 

among a large set. The whole process is summarized as a single flowchart, which will be 

a useful guide for novice researchers. 

 

In order to conduct these studies, open-source databases from MIT/BIH are used to 

discriminate the patients with CHF from normal subjects and ECG records from the 

Faculty of Medicine in Dokuz Eylül University to discriminate systolic CHF patients 

from diastolic ones. The results show that heart rate normalized analysis of HRV can be 

used to achieve more accurate results for diagnosing the patients with CHF. In addition, 

wavelet-entropy based frequency-domain measures seem to be useful in the diagnosis. 

On the other hand, higher-lagged Poincare plot measures seem to be useless in the 

diagnosis. As a result, this study achieves the overall accuracies of 93.98% in 

discriminating the CHF patients from normal subjects and 100% in discriminating 

systolic versus diastolic dysfunctionality in CHF patients, which are the highest values 

in the literature. 

 

Keywords: Electrocardiogram, Heart rate variability, Congestive Heart Failure, 

Normalization, Pattern recognition. 
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KONJESTİF KALP YETMEZLİĞİNDE KALP HIZI DEĞİŞKENLİĞİ 

İNDİSLERİNİN ÇEŞİTLİ VARYASYONLARININ ETKİLERİNİN AYRINTILI 

ANALİZİ 

 

ÖZ 

 

Kalbin asıl görevi vücut için gerekli oksijen ve besinleri taşıyan kanı dolaştırmaktır. 

Kalp Yetmezliği, kalbin doldurma veya boşaltma ile ilgili yeteneklerinin azalması 

durumudur. Konjestiflik (vücudun çeşitli yerlerinde sıvı birikmesi durumu) bu 

rahatsızlığa sahip hastalarda çok yaygın olduğu için bu rahatsızlığa Konjestif Kalp 

Yetmezliği (KKY) ismi de verilmektedir.  Kalp yetmezliğinin teşhisi günümüzde basit 

olmasına rağmen, hastalık belirtilerinin çoğu diğer hastalıkların belirtileri ile 

karıştırıldığı için özellikle pratisyen hekimler teşhiste zorlanmaktadırlar. Kalp 

yetmezliğinden şüphelenildiğinde, teşhiste bazı belli başlı fiziksel inceleme unsurları 

uygulanmaktadır. Ne yazık ki, bu inceleme sık sık yeterli bilgiyi vermemektedir. Her ne 

kadar birçok teşhis ölçütleri mevcut olsa da, bunların klinik geçerlikleri hala 

sorgulanmakta ve birbirleri ile uyumlu sonuç verememektedirler. 

 

Özellikle veri madenciliği ve karar verme teknikleri üzerine çok gelişmiş teknikler 

sunulmuş olmasına rağmen, tıp doktorları uzun zamandır sınırlı sayıdaki yöntemlerden 

yararlanmaktadırlar. Kalbin patolojik değişimlerinin erken tespitinde kullanılan 

elektrokardiyogram (EKG) en yaygın ve en başarılı teşhis yöntemidir. Ne yazık ki, EKG 

çıktısının değerlendirilmesinde EKG'nin yapısı ve kayıt yöntemleri nedeniyle bazı 

güçlüklerle karşılaşılmaktadır.  

 

KKY kalp hızı değişkenliği (KHD) üzerine yapılan bir çok çalışmaya konu 

olmuştur. Bu çalışmaların çoğunluğu KKY ölçümlerini ölüm riskinin kestirilmesi için 

kullanmaktadır. Buna rağmen, sadece birkaç çalışma teşhis amacıyla KHD ölçümlerinin 

kullanılması üzerinedir. Bu çalışmada, KKY hastalarının teşhisi için daha iyi sonuç 

verecek KHD analizi ileri tekniklerin geliştirilmesi için yeni yöntemler araştırılması 

üzerine odaklanmıştır. Bu çalışma hem KKY hastalarının normal kişilerden hem de 

sistolik KKY hastalarının diastolik KKY hastalarından ayrılması için yeni öznitelik 
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çıkarma yöntemleri önerilmesi, ön işlem teknikleri geliştirilmesi ve en iyi k-Yakın 

Komşuluk sınıflandırıcının bulunması üzerine yapılan araştırmaları sunmaktadır. Daha 

önce EEG'den iğcik tespiti gibi diğer biyomedikal işaretlerinde başarı ile uygulanmış 

olan Dalgacık entropisi sınıflandırıcı performansını iyileştirmek için yeni bir KHD 

özniteliği olarak önerilmiştir. Ayrıca, farklı adımlardaki Poincare çizimi ölçümleri de 

çalışmaya dâhil edilmiştir. Kalp hızı normalleştirme işlemi olarak bilinen yeni bir ön 

işleme yöntemi de sınıflandırıcı başarımını arttırmak için kullanılmıştır. Üstelik en 

uygun öznitelik kombinasyonunu seçmek için Genetik Algoritma kullanılmıştır. Son 

olarak, tüm çalışma yeni başlayan araştırmacılara faydalı bir rehber olacak şekilde tek 

bir akış şeması olarak özetlenmiştir. 

 

Bu çalışmaları yürütmek için, KKY hastalarının normal kişilerden ayırt edilmesinde 

MIT/BIH tarafından sağlanan ve herkesin erişimine açık olan veritabanları ve sistolik 

KKY hastalarının diastolik KKY hastalarından ayırt edilmesinde ise Dokuz Eylül 

Üniversitesi Tıp Fakültesi tarafından sağlanan EKG kayıtları kullanılmıştır. Elde edilen 

sonuçlar, kalp hızı normalleştirilmiş KHD analizinin KKY hastalarının teşhisinde daha 

başarılı sonuçlara ulaşılabileceğini göstermektedir. Üstelik dalgacık entropisi tabanlı 

frekans alanı ölçümlerinin kullanılmasının teşhiste faydalı olabileceği görülmektedir. 

Diğer yandan, yüksek adımlı Poincare çizimi ölçümlerinin teşhiste faydalı olduğu 

görülmemiştir. Sonuç olarak, bu çalışma ile KKY hastalarının normal kişilerden 

ayrılmasında %93,98 ve sistolik KKY hastalarının diastolik KKY hastalarından 

ayrılmasında %100 genel başarım sonuçlarına ulaşılmıştır. Bu değerler literatürdeki en 

yüksek değerlerdir.  

 

Anahtar sözcükler: Elektrokardiyogram, Kalp hızı değişkenliği, Konjestif kalp 

yetmezliği, Normalleştirme, Örüntü tanıma. 
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1 

CHAPTER ONE 

INTRODUCTION 

 

1.1 General Goals 

The heart has been one of the most studied subjects since 400 B.C. The pump 

function of the heart was stated by Plato as “it pumps particles as from a fountain into 

the channels of the veins, and makes the stream of the veins flow through the body as 

through a conduit” (Berne & Levy, 1997). Since that time, information about the heart 

and various diseases that may affect its functioning has increased (Langer, Frank, & 

Brady, 1976).  

To circulate blood, which carries oxygen and nutrients to the body, is the major 

purpose of the heart. In a normal heart, 50% to 70% of the blood in the pumping 

chambers is ejected out to the body with each contraction of the heart muscle, which is 

called ejection fraction (EF). The normal heart has strength far beyond what we need 

every day. Hence, even when the EF is low, the heart can often pump well enough for us 

to enjoy the usual activities in our lives (Berne & Levy, 1997). 

Heart Failure is a decreased ability of the heart to either fill or empty (Eberhart-

Phillips, Fenaughty, & Rarig, 2003; Flavell & Stevenson, 2001). Because the 

congestion, fluid accumulation in various parts of the body, is common in the patients 

with heart failure, this disease is also named as Congestive Heart Failure (CHF) (Wilbur 

& James, 2005). CHF is the end stage of chronic cardiovascular disease and is one of the 

leading causes of death in the United States (Albert, 2000; Zambroski, 2003). An 

estimated five million patients with approximately 500,000 newly diagnosed cases and 

250,000 deaths annually are affected (American Heart Association, 2006; Gura & 

Foreman, 2004). Death of approximately 50 percent of patients is observed within five 

years of their diagnosis (American Heart Association, 2006). But many of them could be 

healed, especially if the disease could be detected at early stages. 

Afterwards, it is one of the most disabling and lethal medical conditions of 

cardiovascular disease (Adams et al., 2000). It is the primary cause of hospitalizations, 

which translate into seven million hospital days annually with a 44 percent incidence 
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rate of readmission within six months (Gura & Foreman, 2004). It is a long-term chronic 

condition that gradually gets worse and requires more treatment to manage symptoms 

and control complications (Levy et al., 2001). CHF is the primary indication for three 

million physician visits each year. Although the symptoms can be treated, the disease 

cannot be cured (Boyd et al., 2004). Estimated annual expenditures for hospitalization 

costs are in excess of twenty billion dollars (Clark, Tu, Weiner, & Murray, 2003). 

Therefore, it is a costly cardiovascular condition (Albert, 2000). 

Although the diagnosis of heart failure is straightforward, physicians are often 

challenged because particular aspects of the syndrome lead to confusion. For instance, a 

patient presenting with dyspnea, which is the most common symptom of heart failure, 

will have a comorbid condition that may also cause this symptom (e.g., chronic 

obstructive pulmonary disease, COPD). Additionally, a patient may present anywhere 

along a spectrum from asymptomatic to florid failure. Although the syndrome of heart 

failure is progressive, there are peaks and valleys along the way, and the point in time 

when a patient is likely to have an impact on the time to diagnosis. Simple clinical tests 

are generally unhelpful in confirming heart failure. In addition, because heart failure is a 

clinical diagnosis, physicians sometimes disagree about it, resulting in delayed 

interventions. In elderly patients, making the diagnosis is more treacherous, because of a 

relative absence of typical signs and symptoms and the possibility of attributing heart 

failure symptoms to other conditions (Gillespie, 2006).  

The first step in diagnosing heart failure is to obtain a complete clinical history 

(Shamsham & Mitchell, 2000). Although heart failure cannot be predicted using single 

historical record (Wilbur & James, 2005), dyspnea, fatigue, or decreased exercise 

tolerance are generally present. Less commonly, fluid retention is present as the primary 

complaint. Dyspnea with exertion is present in most patients who have heart failure, and 

its complete absence should cause the clinician to reconsider the diagnosis (Davie, 

Francis, Caruana, Sutherland, & McMurray, 1997). However, dyspnea and other 

symptoms of heart failure are unreliable especially in the elderly; therefore, these have 

poor specificity for heart failure (Dosh, 2004; Gillespie, 2006). A previous history of 

myocardial infarction (MI) may be the most useful element, because it appears to be 

more strongly associated with the diagnosis of heart failure than other historical items, 
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and it is a known risk for developing heart failure (Davie et al., 1997). Other historical 

factors should include risk factors for heart failure, such as hypertension and diabetes, 

because these are associated with the ultimate development of the syndrome and have 

implications for its management. 

When heart failure is suspected, certain elements of the physical examination aid in 

the diagnosis (Wilbur & James, 2005). Unfortunately, enough information for 

confirmation is not yielded by the examination. Although there are several diagnostic 

criteria schemes (e.g., Framingham, Boston, and others), their clinical utility is still 

questionable and their concordance is poor (Di Bari et al., 2004). 

Clinical assessment is mandatory before detailed investigations are conducted in 

patients with suspected heart failure, although specific clinical features are often absent 

and the condition can be diagnosed accurately only in conjunction with more objective 

investigation, particularly echocardiography (Davies, Gibbs, & Lip, 2000). In the last 

decades, many clinical guidelines have been published on the diagnosis and treatment of 

heart failure. The assessment of the value diagnostic tests, e.g. electrocardiography, 

echocardiography, chest X-ray, in addition to readily available diagnostic parameters 

from the clinical assessment has been used (Fig. 1.1) (Chiarugi, Colantonio, 

Emmanouilidou, Moroni, & Salvetti, 2008). Nonetheless, the optimal diagnostic 

strategy to detect heart failure in suspected patients remains largely unknown, notably in 

the every-day practice. Since heart failure is mostly managed and the hesitation in 

making use of echocardiography is especially observed, it is of interest to develop an 

optimal diagnosis technique in heart failure. 

The medical doctors have relied on limited variable combination methods for much 

too long, especially while there are advanced methods of data mining and decision-

making to be harnessed. The electrocardiogram (ECG) is the most common and most 

successful diagnostic method to detect early pathological changes of the heart. For 

several decades, computerized ECG interpretation has been used by clinicians and 

cardiologists as a much needed supplement (Macfarlane, 1992).  
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Figure 1.1 The flowchart of the general diagnosis process of CHF. 

Unfortunately, because of the mechanisms of ECG and the recording methods, there 

are many difficulties in interpreting the ECG output. Because an ECG is the recorded 

potential difference at the body surface, the shape of the wave will be altered by any 

movement of sensors or anything influencing the electrical signals. Also since the 

physiological structures of humans vary, different people have different shapes of ECG. 

Therefore, the wave shape of the same disease may have many different versions. For 

some diseases, the clinical symptoms are seen in the ECG only when the disease is first 

apparent, whereas many cardiac diseases develop over a long time, e.g., heart failure. It 

may take time to make a diagnosis for such diseases. Sometimes, patients are told to 

carry a Holter ambulatory monitor which can record their ECG for about 24 hours. 

During a period of 24 hours, the number of ECG waves will be over 100,000. It is 

unreasonable to expect cardiologists to read all the waves and make a diagnosis in a 

short time. 

Currently there are many integrated commercial ECG analysis systems, especially 

Holter analysis (Tompkins, 2000), to help cardiologists make a diagnosis. After several 

decades of development, some components of pattern recognition that improve their 
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performances are included by the major brands of the current generation of ECG 

interpretation systems (General Electric Company, 2009). However, none of them 

provide the function of detecting CHF yet. 

In addition to discriminate the patients with CHF, from normal subjects, to 

distinguish diastolic heart failure from systolic heart failure based on physical findings 

or symptoms is also an important issue. Echocardiography has been used as a primary 

tool in the noninvasive assessment of cardiac systolic and diastolic dysfunctioning and is 

used to confirm the diagnosis of CHF (Gutierrez & Blanchard, 2004). 

An essential element for treatment success is the reliable and precise diagnosis of 

CHF. Nonetheless, systolic dysfunction was determined in only 50% of cases. On 

questioning, distinguishing between systolic and diastolic heart failure, regarded 

echocardiography as crucial in diagnosis, followed by clinical signs and symptoms was 

reported routinely by only 46% of physicians (Hobbs, Korewicki, Cleland, Eastaugh, & 

Freemantle, 2005). According to their study, which is called IMPROVEMENT study, 

ECG tests in patients with CHF were performed by the most of the physicians (about 

90%). In most of the cases, ECG study was performed at a local hospital with a usual 

waiting time of 48h. On the other hand, average waiting time for echocardiography was 

1 month. Only in Belgium, it was performed within 48h from referral. In some countries 

including Spain, Sweden, and the UK, most patients with CHF (40%) could be waited to 

have the study done for 1-3 months. Thus, simple and reliable diagnostic procedures are 

very important for primary care physicians, who are responsible for the early diagnosis 

of CHF and implementation of an adequate therapy. 

1.2 Specific Aims 

The specific aims of this research are listed below in order to improve the performance 

of the diagnosis of patients with CHF from the normal subjects and discriminating 

whether the systolic dysfunction or the diastolic dysfunction in CHF patients using 

Heart Rate Variability Analysis: 

1. to offer an ECG preprocessing technique to assess more accurate HRV data, 

2. to explore effects of heart rate normalization process, 
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3. to find out the possible use of Wavelet entropy based measures, 

4. to use the lagged Poincare plots’ measures, 

5. to use traditional patient information data, like age, and  

6. to find out the optimal feature subset(s). 

1.3 Significance 

Heart diseases are the leading killers of Americans today. Over 60 million 

Americans have one or more heart diseases. In 1993, more than 950,000 people died 

from them-over 42 percent of all deaths in the United States. CHF is the major chronic 

disease among the elderly, accounting for 88 percent of heart failure deaths. In addition, 

older age is associated with a worse prognosis, and fewer than 20 percent of 

octogenarians with heart failure remain alive after five years (Clark et al., 2003). The 

mortality rate, two years following symptom onset, is about 35 percent with 80 percent 

mortality for men and 65 percent for women over the next six years (Artinian et al., 

2003). Although these statistics are given for only US, these are also valid for other 

countries including Turkey. In addition, discriminating the systolic versus diastolic CHF 

patients is another challenge to determine adequate therapy and only 50% of patients are 

distinguished as their dysfunctionality according the recent survey (Hobbs et al., 2005), 

reducing the rate of early diagnosis. Early diagnosis of CHF will reduce the mortality 

rate and enhance the life quality of the patients. 

1.4 Methods 

The attempts of designing a k-Nearest Neighbors (KNN) classifier based automated 

ECG analysis system for early detection of heart failure is the main focus of this 

dissertation. The objective of this thesis is to present an integrated automated ECG 

diagnosing method which can be used with clinical Holter ECG data, with the capacity 

to be included in other ECG interpretation systems which do not detect heart failure. 

The KNN classifier and the Genetic Algorithm are the selected methods to conduct this 

study. Routine ECG data from lead II is used for the study. All the data, obtained from 

the well-known open databases in MIT/BIH websites (Goldberger et al., 2000) and 

recorded in Faculty of Medicine in Dokuz Eylül University, were annotated by 

experienced cardiologist(s). 
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CHAPTER TWO 

PHYSIOLOGICAL BACKGROUND 

 

In order to understand the function of the heart and heart diseases well, basic 

knowledge of the functional anatomy of the heart is necessary. In the following sections, 

the general terms on the circulatory system, the electrocardiogram, the heart rate 

variability concept, heart problems, and the brief information about the congestive heart 

failure are described with the related literature review. 

 

2.1 The Circulatory System 

The circulatory system carries nourishment and oxygen (O2) to, and waste and 

carbon dioxide (CO2) from, the tissues and organs of the body. The system can be 

considered as a closed loop hydraulic system (Webster, 1998). 

2.1.1 Elementary Circulatory System 

The simplified form of the human circulatory system is shown in Fig. 2.1. The heart 

can be considered as a pump to move blood through vessels called arteries and veins. 

Blood is carried away from the heart in arteries and is brought back to the heart in veins.  

When blood is circulated through the body, it carries O2 and nutrients to the organs 

and tissues and returns carrying CO2 to be excreted through the lungs and various waste 

products to be excreted through the kidneys. The deoxygenated blood is returned to the 

right side of the heart via the venous system.  

2.1.2 The Heart 

The heart contains four chambers, which are used to form two separate pumps. Each 

pump consists of an upper chamber (atrium) and a lower chamber (ventricle). The high 

pressure output side of each pump is the ventricle, so the myocardium thickness in the 

ventricular region is considerably greater than it is in the atrial region (Webster, 1998).  
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Figure 2.1 Human circulatory system (Webster, 1998). 

The basic structure of the heart and the blood flow direction in the heart as well as 

the connected blood vessels are shown in Fig. 2.2. The unidirectional blood flow is 

realized by the sequential contraction of the heart chambers and the orientation of the 

cardiac valves. Reversal of blood flow causes the cusps of the valves to shut so as to 

prevent back-flow. 

There are four valves in the human heart. The valve between the right atrium and the 

right ventricle is known as the tricuspid valve. It gets its name from the fact that it is 

formed of three cusp-shaped flaps of tissue arranged so that they will shut off and block 
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passage of blood in the reverse direction (from ventricles back to the atrium). The 

second valve, which is between the right ventricle and the pulmonary artery, is named 

for its shape: semilunar (half moon) valve. It prevents reverse flow (regurgitaion) of 

blood from the pulmonary artery to the right ventricle. Next, blood returning to the heart 

from the lungs must pass through the left atrium and the mitral valve (also known as a 

bicuspid valve for its shape) to the left ventricle. The last valve is the aortic-valve. Its 

shape is similar to the pulmonary valve and prevents regurgitation of blood from the 

aorta back to the left ventricle. 

 

Figure 2.2 Schematic showing the structure of the heart and direction of blood flow 

through the heart (Webster, 1998). 

 

The heart serves as a pump because of its ability to contract under electrical 

stimulus. When an electrical triggering signal is received, the heart will contract, starting 

in the atria, which undergo a shallow, ripple-like contracting motion. A fraction of a 

second later, the ventricles also begin to contract, from the bottom up, in a motion that 

resembles wringing out a dishrag or sponge. The ventricular contraction is known as 

systole and the ventricular relaxation is known as diastole. 
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2.1.3 Electroconduction System of the Heart 

The conduction system of the heart (Fig. 2.3) consists of the sinoatrial (SA) node, 

bundle of His, atrioventricular (AV) node, the bundle branches, and Purkinje fibers.  

 

Figure 2.3 Electrophysiology of the heart. The different waveforms 

for each of the specialized cells found in the heart are shown. The 

latency shown approximates that normally found in a healthy heart 

(Webster, 1993). 

The SA node serves as a pacemaker for the heart, and it provides the trigger signal. 

It is a small bundle of cells located on the rear wall of the right atrium, just below the 

point where superior vena cava is attached. The SA node fires electrical impulses 

through the bioelectric mechanism. It is capable of self-excitation (firing on its own). 

When the SA node discharges a pulse, the electrical current spreads across the atria, 

causing them to contract. Blood in the atria is forced by the contraction through the 

valves to the ventricles. 

There is a band of specialized tissue between the SA node and the AV node, 

however, in which the velocity of propagation is faster than it is in atrial tissue. This 

internal conduction pathway carries the signal to the ventricles. 
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It would not be desirable for the ventricles to contract in response to an action 

potential before the atria are empty of their contents. A delay is needed, therefore, to 

prevent such an occurrence; this is the function of the AV node. The action potential 

will reach the AV node 30 to 50 ms after the SA node discharges, but another 110 ms 

will pass before the pulse is transmitted from the AV node. The AV node operates like a 

delay line to retard the advance of the action potential along the internal 

electroconduction system toward the ventricles. 

Conduction into the bundle branches is rapid, consuming only another 60 ms to 

reach the furthest Purkinje fibers. The muscle cells of the ventricles are actually excited 

by the Purkinje fibers. The action potential travels along these fibers at a much faster 

rate, on the order of 2 to 4 m/s. The fibers are arranged in two bundles, one branch to the 

left and one to the right. 

2.1.4 Cardiac Regulation 

The rate at which the heart beats in the absence of neurohumoral (nerve chemical) 

influences is referred to as the intrinsic heart rate. In heart transplant patients, the SA 

node - and hence the heart as a unit - cycles close to an intrinsic rate of 90-95 beats per 

minute (bpm). However, in a normal healthy individual, the beating of the heart is 

modulated to a slower rate by the influence of extrinsic nervous influence on the SA and 

AV nodes by the autonomic nervous system (ANS). Other factors such as temperature 

change and tissue stretch may also influence the discharge frequency of the SA node 

although autonomic control is the principal controller (Cooper, Lei, Cheng, & Kohl, 

2000). In conscious dogs, variations in conduction time through the AV node occur on a 

beat-to-beat basis in conjunction with respiration and the oscillatory activity of AV 

conduction is not dependent on simultaneous changes in heart rate (Webster, 1993). In 

addition, during atrial pacing autonomic neural activity associated with respiration and 

blood pressure appears to dynamically modulate AV conduction with respiratory effects 

predominating at low heart rates and blood pressure effects at high heart rates (Warner 

& Loeb, 1986). The quantity of blood pumped by the heart (cardiac output) may be 

considered as the product of heart rate and stroke volume. Therefore, cardiac activity is 

related to both regulation of pacemaker activity and myocardial performance, with heart 
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rate being regulated mainly by the ANS. However, baroreceptor, chemoreceptor, 

pulmonary inflation, atrial receptor (Bainbridge) and ventricular receptor reflexes can 

also regulate heart rate (Berne & Levy, 1997). 

2.1.4.1 Cardiac Autonomic Control 

 

The ANS regulates two processes; firstly, the overall cardiac cycle length and hence 

heart rate (the chronotropic effect), and secondly the speed of conduction of the 

electrical activity through the heart including the AV node (termed the dromotropic 

effect). The ANS comprises two divisions, parasympathetic and sympathetic, both of 

which innervate the heart (Fig. 2.4). Shortened cycle lengths or reduced conduction 

times are produced by a diminution of parasympathetic and/or an increase in 

sympathetic activity; increased cycle lengths or conduction times are produced by 

opposite changes in neural activity. Typically, parasympathetic tone predominates in 

healthy, resting individuals. 

 

 

Figure 2.4 Parasympathetic and sympathetic divisions of ANS (Berne & 

Levy, 1997). 

 

The cardiac parasympathetic fibers originate in the medulla oblongata in cells in the 

dorsal moto nucleus of the vagus (Fig. 2.5). Efferent vagal fibers pass inferiorly through 
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the neck as cervical vagus nerves and then through the mediastinum to synapse with 

postganglionic cells on the epicardial surface or within the walls of the heart. Most 

cardiac ganglionic cells are located near the SA node (predominately affected by right 

vagus) and AV conduction tissue (mainly inhibited by the left vagus) (Berne & Levy, 

1997). The SA and AV nodes are rich in cholinesterase and thus the effects of a vagal 

pulse are short lived due to the fact that acetylcholine released at the nerve terminals is 

rapidly hydrolyzed; in addition, short latency in the order of 50 to 100 ms is exhibited 

(acetylcholine activates special potassium ion channels in cardiac cells). For instance, if 

the vagus is stimulated at a constant frequency for several seconds, heart rate decreases 

sharply and reaches steady state in one or two cardiac cycles. Removal of the stimulus 

causes a rapid return to the basal level (Berne & Levy, 1997); thus, it can be seen that 

the parasympathetic nervous system is capable of providing beat by beat control of SA 

and AV nodal function and hence heart rate. 

 

 

Figure 2.5 The cardiac parasympathetic and sympathetic 

fibers (Berne & Levy, 1997). 

 

The cardiac sympathetic fibers originate in the inter-mediolateral columns of the 

upper five or six thoracic and lower one or two cervical segments of the spinal cord and 
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alter the cardiac cycle through adrenergic neurotransmitters (Fig. 2.5). At the onset of 

sympathetic stimulation, the facilitator effects on heart rate are much slower than 

inhibitory vagal influences; the recovery after stimulus removal is also slower than that 

of the parasympathetic branch. The major part of the norepinephrine (also known as 

noradrenalin) released during sympathetic stimulation is taken up again by the nerve 

terminals and most of the remainder carried away in the bloodstream - relatively slow 

processes. 

 

2.1.4.2 Nervous Influence on Conduction 

 

The cardiac parasympathetic effect on the SA node is primarily via small branches 

of the tenth cranial nerves (vagal nerves). AV conduction is influenced predominately 

by changes in parasympathetic activity which is the major determinant of respiratory 

related AV interval oscillations; sympathetic activity produces fluctuations in both AV 

conduction and blood pressure. Both divisions of the ANS continually modulate 

intrinsic rate-dependent properties of the AV node. AV conduction time is not solely 

determined by the autonomic nervous system - it is also influenced by refractory effects 

(Warner & Loeb, 1986). 

 

Acute changes in arterial blood pressure can cause inverse changes in heart rate via 

the baroreceptors located in the aortic arch and carotid sinus; this effect may be termed 

the baroreflex and is most pronounced over an intermediate range of arterial blood 

pressures. Some of the feedback mechanisms involved in the regulation of mean arterial 

blood pressure (MAP) during periods of isotonic exercise is illustrated in Fig. 2.6. 
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Figure 2.6 Homoeostatic feedback mechanisms involved in the regulation of mean arterial blood 

pressure (MAP) during periods of isotonic exercise. EDV = end diastolic volume, ESV = end 

systolic volume, HR = heart rate, SV = stroke volume, TPR = total peripheral resistance, CO = 

cardiac output. Broken lines indicate inhibitory input. 

 

2.1.4.3 Respiratory Influences on Conduction 

 

Respiratory cardiac arrhythmia - variations in heart rate occurring at the frequency 

of respiration - is visible in most people and usually pronounced in children. These 

variations manifest as cardiac acceleration during inspiration and deceleration during 

expiration. Inspiration is associated with both a reduction in the activity of vagal efferent 

nerve fibers controlling the heart and an increase in sympathetic activity. The neural 

activity in the vagal fibers increases during expiration; the rapid removal of 

acetylcholine at the vagal endings causes the rhythmic changes in heart rate, albeit 

somewhat damped by the slower removal of norepinephrine at the sympathetic endings. 
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As a result, vagal activity dominates the respiratory sinus arrhythmia; however, in 

addition, central and reflex factors can also contribute (Berne & Levy, 1997). According 

to Berne and Levy: “During inspiration, intrathoracic pressure decreases, and therefore 

venous return to the right side of the heart is accelerated, which elicits the Bainbridge 

reflex. After a time delay required for the increased venous return to reach the left side 

of the heart, left ventricular output increases and raises arterial blood pressure. This in 

turn reduces heart rate reflexly through baroreceptor stimulation. Fluctuations in 

sympathetic activity to the arterioles cause peripheral resistance to vary at the 

respiratory frequency.” Thus, oscillations in arterial blood pressure can affect heart rate 

via the baroreceptor reflex. The respiratory center in the medulla is also capable of 

influencing the cardiac autonomic centers (Fig. 2.7).  

 

 

Figure 2.7 Regulation of respiratory activity at the level of the Medulla in the brain stem. The 

inset shows neural interplay, from which the sinus arrhythmia phenomenon arises. CVM = 

cardiac vagal moto nucleus; I = inspiratory phase, PI = post inspiration (Berne & Levy, 1997). 

 

Inspiration, while usually resulting in a decrease in cycle length, also tends to 

shorten AV conduction time. However, the reduction in cycle length, of itself, tends to 

increase AV conduction time, so that the actual AV conduction delay is dependent upon 

the balance between these opposing effects; its exact behavior will depend on the 
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relative contribution of both effects. These considerations suggest that the respiratory 

AV conduction variability will be small, and complex in nature.  

 

2.2 The Electrocardiogram 

 

The action potential generated in the SA node stimulates the muscle fibers of the 

myocardium, causing them to contract. When the muscle is in contraction, it is shorter, 

and the volume of the ventricular chamber is less, so blood is squeezed out. The 

contraction of so many muscle cells at one time creates a mass electrical signal that can 

be detected by electrodes placed on the surface of the patient‟s chest or the patient‟s 

extremities. This electrical discharge can be mechanically plotted as a function of time, 

and the resultant waveform is called an electrocardiogram (ECG). 

 

A typical scalar ECG is shown in Fig. 2.3. It‟s composed of several waveforms 

called the P, QRS, and T waves respectively. In the same figure, the action potentials of 

various cardiac cells and when they are initiated are also shown. The P wave is the result 

of a summation of atrial muscle action potentials during depolarization, or in other 

words, it represents the atrial depolarization. The P-R interval represents the delay from 

the SA node through the AV node and is known as the atrioventricular conduction time. 

Conduction then occurs through the bundle of His to the myocardial fibres of the 

ventricles. Ventricular depolarization appears as the QRS complex. In addition, 

repolarization of the ventricles is shown as the T wave. Some ECG waveforms show an 

additional waveform after T wave, which is named the U wave. Usually its origin is 

attributed to slow repolarization of ventricular papillary muscles. 

 

2.2.1 Leads 

 

The ECG is recorded on electrocardiographic leads. The term „lead‟ refers to a 

measurement configuration of electrodes. Three bipolar limb leads of the frontal plane 

are connected between limbs (Fig. 2.8). Taking lead I as an example, the negative 

terminal electrode is connected to the right arm (RA) and the positive terminal electrode 

to the left arm (LA). These three limb leads constitute Einthoven‟s triangle. If any two 
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of the three electrocardiographic leads are known, the third one can be determined 

mathematically from the first two (Einthoven‟s law). The other three unipolar frontal 

leads are aVR (on the right arm), aVL (on the left arm) and aVF (on the foot), which are 

usually called augmented unipolar leads, measuring the potential difference on a limb 

with respect to a reference point formed by the two resistors between the electrodes on 

the other two limbs (Fig. 2.9). 

 

 

Figure 2.8 Directions 

of standard limb lead 

vectors (Webster, 

1993). 

 

 

Figure 2.9 (a), (b), (c) Connections of electrodes 

for the augmented limb leads, (d) Vector 

diagram showing the directions of limb lead 

vectors in the frontal plane (Webster, 1998). 
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The six precordial leads, VI-V6, are unipolar and measure the cardiac vector 

projection on the horizontal plane (Fig. 2.10). These precordial leads are measured with 

respect to theWilson‟s central terminal, which is formed by a three-resistor network in 

Fig. 2.11, yielding an average of right and left arms and left leg. 

 

 

Figure 2.10 (a) Positions of precordial leads on the 

chest wall, (b) Directions of precordial lead vectors 

in the transverse plane (Webster, 1998).  

 

 

Figure 2.11 Connection of electrodes 

to the body to obtain Wilsons central 

terminal (Webster, 1998). 

 

In order to use the surface ECG to diagnose abnormalities, it is important to know 

the normal characteristics of the ECG. A sample of a normal 12 lead ECG (10 s strip, 

paper speed 25 mm/s) is demonstrated in Fig. 2.12. For a normal ECG, typical P wave 

duration is less than 0.11 s (equivalent to 2.75 mm measured on this figure), and the 

morphology does not include any notches or peaks. The P wave is normally positive in 

leads I, II, aVF, V4 and V6, and negative in aVR. It can be positive, negative, or 
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biphasic in all other leads. The QRS complex duration is normally less than 0.12 s, and 

the morphology differs in different leads. In some leads there exist downward 

deflections of Q and S waves, and a large upward deflection of R wave in between as 

shown in Fig. 2.8. The normal morphology of the T wave is rounded and asymmetrical. 

It is positive in leads I, II, V3 and V6, and negative in aVR. The polarity may vary in 

leads III, V1 and V2. Typically the P-R interval is 0.18-0.2s, and R-R interval is 0.6-1.0s 

(Yanowitz, 2006). 

 

 

Figure 2.12 An example of a 12-lead ECG record. This ECG was recorded from my 

son, Ali Atakan İşler, using the BIOPAC MP30 bio-signal recording device. 

 

2.2.2 QRS Detection 

 

The aim in ECG analysis is to examine the sinus rhythm modulated by the 

autonomic nervous system (ANS). Therefore, one should technically detect the 

occurrence times of the SA-node action potentials. This is, however, practically 

impossible and, thus, the fiducial points for the heart beat is usually determined from the 

ECG recording. The nearest observable activity in the ECG compared to SA-node firing 

is the Pwave resulting from atrial depolarization (Figure 2.3) and, thus, the heart beat 

period is generally defined as the time difference between two successive P-waves. The 

signal- to-noise ratio of the P-wave is, however, clearly lower than that of the strong 

QRS complex which results primarily from ventricular depolarization. Therefore, the 

heart beat period is commonly evaluated as the time difference between the easily 

detectable QRS complexes. 
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A typical QRS detector consists of a preprocessing part followed by a decision rule. 

Several different QRS detectors have been proposed in the literature. For an easy to read 

review of these methods, see Kohler, Henning, & Orglmeister, (2002). The 

preprocessing of the ECG usually includes at least band-pass filtering to reduce power 

line noise, baseline wander, muscle noise, and other interference components. The pass 

band can be set to approximately 5-30 Hz which covers most of the frequency content of 

QRS complex (İşler, Özyürek, Çobanoğlu, & Kuntalp, 2008; Pahlm & Sornmo, 1984). 

In addition, preprocessing can include differentiation and/or squaring of the samples. 

After preprocessing, the decision rules are applied to determine whether or not a QRS 

complex has occurred. The decision rule usually includes an amplitude threshold which 

is adjusted adaptively as the detection progresses. In addition, the average heart beat 

period is often used in the decision. The fiducial point is generally selected to be the R-

wave and the corresponding time instants are given as the output of the detector. 

 

2.3 Heart Problems 

 

The physician uses the ECG and other tests to determine the gross condition of the 

heart. Although a complete discussion of heart problems is beyond the scope of this 

dissertation, some of the more common problems are discussed below in generalized 

terms. 

 

The heart is a muscle and must be perfused with blood to keep it healthy. Blood is 

supplied to the heart through the coronary arteries that branch off from the aorta just 

before it joins the heart. If an artery bringing blood to the heart becomes partially or 

totally blocked off, the area of the heart served by that vessel will suffer damage from 

the loss of the blood flow. That area of the heart is said to be infarcted and is 

dysfunctional. This type of damage is referred to as a myocardial infarction, another 

term for heart attack. 
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Another class of heart problem is cardiac arrhythmias. These are abnormal heartbeat 

rhythms and may be seen as ECG changes. Conditions under this classification include 

extremes in heart rate, premature contractions, heart block, and fibrillation. 

 

The human heart rate varies normally over a range of 60 to 110 beats/min (bpm). 

Rates, faster than this, are called tachycardia. Various authorities list slightly different 

figures as the threshold for defined tachycardia, but most list 120 bpm, with the range 

being 110 to 130 bpm. 

 

The opposite condition, too slow a heart rate, is called bradycardia, and again 

different sources list slightly different thresholds, but all are within the 40- to 60-

beats/min range. 

 

Premature contractions occur when an area of the heart becomes irritable enough to 

produce a spurious action potential at a time between normal beats. The action potential 

spreads across the myocardium in much the same manner as the regular discharge. Beats 

occurring at improper times are called ectopic beats. If it results in atrial contraction, 

then it is an atrial premature contraction (APC), and if in the ventricle, a ventricular 

premature contraction (VPC). 

 

Detailed information about the other abnormalities in the ECG can be found in an 

excellent online tutorial web site (Yanowitz, 2006). However, a special heart problem is 

congestive heart failure (CHF), which is the subject of this dissertation, will be 

described in the following section in detail. 

 

2.4 Congestive Heart Failure 

 

During the past two decades, a shift in understanding of heart failure has taken place. 

Traditionally, the pathophysiology of heart failure was described in terms of the 

structural and functional alterations observed. For most cardiac diseases, heart failure 

represents the final common pathway. Anything that causes damage to the heart muscle 

can lead to heart failure and their indications can be quite different. 
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 The cardiac pump may be defective: 

If the heart does not manage to empty, this is systolic heart failure. If the heart does 

not manage to fill up, on the other hand, this is diastolic heart failure: the heart fills 

poorly (its walls are rigid) and does not relax to receive the blood during diastole. Often 

both mechanisms coexist and are revealed by an oedema in the legs or the lungs. 

 

 The defective pump may be predominant: 

In the “right heart” (in other words, the right side of the heart, which acts as a 

reservoir, with a thin wall): which causes a further oedema in the legs and an enlarged 

liver. In the “left heart” (in other words the left side of the heart, which acts as a pump 

with a thicker muscular wall) which cause more breathlessness. The pump‟s deficiency 

is either due to the deterioration of the cardiac muscle itself, or else to the “exhaustion” 

of the muscle if it has been asked to do excessive work, because of a defect in a valve 

(for example, when there is a leak, the heart has to work harder). 

 

 Impairment of the cardiac muscle (cardiomyopathy).  

By far the most frequent cases of impairment are the consequences of coronary 

disease: 

1. If there has been an infarction, the scar, which replaces the destroyed muscle, 

does not contract like the healthy muscle.  

2. If the heart as a whole has suffered from ischaemia, it has become rigid all 

over. This is a so-called ischaemic cardiomyopathy which is a form of systolic 

heart failure. 

3. Hypertension in the long term results in the exhaustion of the cardiac muscle, 

if it is not properly controlled by treatment. This is mainly diastolic heart 

failure. 

4. The other forms of cardiomyopathy are much rarer and have very varied 

causes: alcohol, infections, haemochromatosis, AIDS. 
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 Deterioration of the heart valves.  

This used to be the most frequent cause of heart failure, particularly because poorly 

treated sore throat could be complicated by a disease known as ”acute rheumatic fever” 

(becoming less prevalent in industrialized countries). This disease damages the heart‟s 

valves. This heart failure as a result of a leak or a constriction of the valves, or both 

together, is much less frequent, unlike aortic constriction: an illness on the increase due 

to ageing with a calcium deposit on the aortic valves. 

 

CHF is a complex syndrome, and patients who have this syndrome may present at 

different ages, having comorbid conditions, having various etiologies of heart failure, 

and possessing different expectations from the health care team. All management 

decisions should begin by establishing goals of care, negotiated between the patient and 

physician. Patient education is essential in this process. Without a firm understanding of 

the prognosis and natural history of the syndrome, patients will not be able to participate 

fully in their own care (Wilbur & James, 2005). 

 

Optimal management of CHF relies on risk factor control, life-style modification, 

and patient self-assessment and self-management. If this nonpharmacologic therapy is 

not enough, pharmacologic therapy that is using medication is essential. Because the 

management of the heart failure is out of scope for this study, detailed information on 

this topic can be found in AHA‟a committee report updated in 2006 (American Heart 

Association, 2006). 

 

Once the diagnosis is established, heart failure can be further staged and classified 

based on various scoring systems (American Heart Association, 2005). In 2001, the 

American College of Cardiology (AAC) and the American Heart Association (AHA) 

published practice guidelines for evaluation of heart failure, which proposed new 

staging analogous to staging for cancer and is based on clinically measurable findings in 

the heart. One impetus for this method of staging was to promote recognition of 

presymptomatic stages of heart failure, so that intervention could occur earlier. This 

staging system compliments the New York Heart Association (NYHA) functional 
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classification scheme, and the two can be employed together. Table 2.1 summarizes the 

both classification schemes with short descriptions. 

 

Table 2.1 Staging and classification schemes for heart failure (Wilbur & James, 2005). 

AAC/AHA Staging System 

Stage A High risk 

Stage B Structural abnormalities without the development of symptoms 

Stage C Current or prior symptoms of heart failure with normal or decreased ejection 

fraction (blood output) 

Stage D End stage, refractory heart failure 

NYHA Functional Classification System 

Class I No limitation of activities 

Class II Slight, mild limitation of activities 

Class III Marked limitation of activity (shortness of breath, exercise tolerance) 

Class IV Activity severely limited 

 

2.4.1 Electrocardiography in CHF 

 

Structural heart disease, electrical instability, and decreased sympathetic activity can 

generate a number of specific and non-specific ECG changes and arrhythmias in patients 

with CHF. This section describes direct alterations of the P–QRS–T complex and ECG-

derived parameters in CHF, together with the significance of cardiac arrhythmias, 

markers of atrial and ventricular electrical instability, and the parameters of sympathetic 

nervous system activity, especially heart rate variability (HRV). 

 

2.4.1.1 General ECG Alterations in CHF 

 

Patients with CHF may display specific ECG alterations such as Q-waves after MI 

or persistent ST-segment elevation in MI-related leads consistent with a left ventricular 

(LV) aneurysm (Hombach, 2006). The conventional ECG may be used as first-line 

diagnostic tool for CHF (Fonseca et al., 2004). In this investigation, 6300 subjects in a 

general population were screened for CHF by symptoms or signs, chest X-ray, ECG, 

and echocardiography. The diagnosis was confirmed in 551 cases. Patients with right 

atrial enlargement, atrial flutter or fibrillation, first- and second-degree AV-blocks, left 
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bundle branch block (LBBB), and lung oedema were more likely to be diagnosed with 

CHF. An abnormal ECG had an estimated sensitivity of 81% and a negative predictive 

value of 75%, and for an abnormal chest X-ray the numbers were 57% and 83%, 

respectively. In addition, a recent study provides an overview of the most significant 

tests and indexes related to disturbed cardiac repolarization and sympathovagal balance, 

their pathophysiologic role in the initiation of malignant ventricular tachyarrhythmias, 

and clinical significance for investigating CHF patients (Hombach, 2006). 

 

In addition to these statistical studies related to CHF, there are some studies tried to 

design classifiers which discriminate the patients with CHF from others. These are 

presented in a chronological order in the following paragraphs. 

 

Osowski et al. presented the application of support vector machine (SVM) for 

reliable heartbeat recognition on the basis of the ECG waveform. They applied two 

different preprocessing methods for generation of features. One method involved the 

higher order statistics (HOS) while the second the Hermite characterization of QRS 

complex of the registered ECG waveform. The SVM had the same number of inputs and 

one output. In learning multiclass recognition problem, they applied the one-against-one 

strategy leading to many network structures adapted for the recognition between two 

classes at one time. The classification accuracy of their model was 95.77% for Hermite 

preprocessing and 94.26% for HOS preprocessing. The recurrent neural networks 

(RNN) trained on the features extracted by the usage of eigenvector methods indicated 

significantly higher performance than that of the SVM presented by (Osowski, Hoai, & 

Markiewicz, 2004). 

 

Acır used six fast least square support vector machines (LSSVMs) for classification 

of six types of ECG beats obtained from the MIT-BIH database. The classification 

accuracy was 95.2% by the proposed fast LSSVMs together with discrete cosine 

transform. The results of the present study indicated that the usage of RNN significantly 

improve the classification accuracy of ECG beats. The author also tried to classify same 

beats using multi-layer perceptron (MLP) with the maximum accuracy of 91.8% (Acır, 

2005). 
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A combined and a MLP neural networks were trained, cross validated and tested 

with the extracted features using discrete wavelet transform of the ECG signals. Four 

types of ECG beats (normal beat, congestive heart failure beat, ventricular 

tachyarrhythmia beat, atrial fibrillation beat) obtained from the Physiobank database 

(Goldberger et al., 2000) were classified with the accuracy of 96.94% by the cellular 

neural networks (CNN) and the accuracy of 96.88% by the MLP (Güler & Übeyli, 

2005a, 2005b). 

 

A multi-class SVM with the error correcting output codes, a RNN and a MLP neural 

network are used in the classification of ECG beats. Four types of ECG beats (normal 

beat, congestive heart failure beat, ventricular tachyarrhythmia beat, atrial fibrillation 

beat) obtained from the Physiobank database (Goldberger et al., 2000) were classified 

with the accuracy of 98.06% by the RNN (Übeyli, 2009), the accuracy of 98.61% by the 

SVM (Übeyli, 2007), and the accuracy of 91.39% by the MLP (Übeyli, 2007). 

 

2.4.1.2 Heart Rate Variability Analysis in CHF 

 

Analysis of HRV provides a non-invasive measure of autonomic control of the heart. 

A healthy heart rapidly adjusts HR and other autonomic parameters in response to 

internal and external stimuli. A heart that has been compromised is less able to make 

such adjustments and therefore exhibits lower HRV (Task Force, 1996). 

 

Numerous studies have shown that the altered cardiac autonomic tone associated 

with CHF is reflected by an increased HR and a decreased HRV. In addition, there are 

well-prepared review papers that summarize the studies for investigating the 

development and progression of CHF using HRV indices in the literature such as 

Chattipakorn, Incharoen, Kanlop, & Chattipakorn, (2007), Richard, Sandercock, & 

Brodie, (2006), and Sanderson, (1998). These studies are summarized as follows. 

 

Majority of the studies presented the similar results. For example, the altered cardiac 

autonomic tone associated with CHF is reflected by an increased HR and a decreased 
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variability in HR (Casolo, Balli, Taddei, Amuhasi, & Gori, 1989; Coumel et al., 1991; 

Kienzle et al., 1992; Panina, Khot, Nunziata, Cody, & Binkley, 1995; Ponikowski et al., 

1996; Saul et al., 1988). 

 

Since time-domain measures are simple statistical methods to calculate from both 

long- and short-term raw HRV data, these have been investigated in detail. The studies 

have shown that various combinations of these measures predicted increase risk of 

cardiac death and death to progressive CHF (see Table 2.2).  

 

Table 2.2 Time-domain HRV measures used in prognosis purpose. 

Parameter Related Literature 

SDNN (Bilchick et al., 2002; Boveda et al., 2001; La Rovere et al., 2003; 

Makikallio et al., 2001) 

SDANN (Binder et al., 1992) 

SDNN and SDANN (Aronson, Mittleman, & Burger, 2004; Jiang et al., 1997; Ponikowski et 

al., 1997) 

SDNN and PNN50 (Szabo et al., 1997) 

SDNN, SDANN, and pNN50 (Bonaduce et al., 1999) 

SDANN and RMSSD (Galinier et al., 2000) 

 

On the other hand, frequency-domain measures provide the basic information on how 

power distributes as a function of frequency. These measures have been calculated using 

FFT-, AR modeling-, and LS-based PSD estimation techniques. Since the clinical 

meanings of the power in corresponding frequency bands, these give expressive results 

(see Table 2.3).  

 

Conventional methods of quantifying HRV using linear methods have shown that 

decreased variability is associated with increased mortality in heart failure. However, 

there are some occasions in which raw HRV data is less suitable for analysis with linear 

methods. Poincare plot measures (Brouwer et al., 1996; Woo, Stevenson, Moser, 

Trelease, & Harper, 1992; Woo, Stevenson, & Middlekauf, 1994) and DFA (Ho et al., 

1997) have also been used in the literature. 

 

In addition, some studies also investigated the relation between the severity of CHF 

and HRV indices. For example, decreased HRV correlated with NYHA class (Casolo et 

al., 1995), the absence of LF power indicated with worse prognosis (Mortara et al., 
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1994), increased LF power in NYHA class II and the absence of LF power in NYHA 

class IV (Guzzetti et al., 1995) have been reported. In contradiction, HRV is also 

reported as no association with all-cause mortality and the severity in CHF (Anastasiou-

Nana et al., 2005; Kienzle et al., 1992). 

 

Table 2.3 Frequency-domain HRV measures used in prognosis purpose. 

Parameter Related Literature 

reduced HF (vagal activity) (Anastasiou-Nana et al., 2005; Binkley, Nunziata, Haas, Nelson, & Cody, 

1991; Casolo et al., 1989; Fei et al., 1994; Kienzle et al., 1992; Kingwell 

et al., 1994; Makikallio et al., 2001; Saul et al., 1988), 

increased or absence of LF 

(both sympathetic and 

vagal activities) 

(Mortara et al., 1994), reduced LF (Anastasiou-Nana et al., 2005; 

Bonaduce et al., 1999; Fei et al., 1994; Ho et al., 1997; La Rovere et al., 

2003; Lucreziotti et al., 2000; Ponikowski et al., 1997; Sanderson et al., 

1996; Van de Borne, Montano, Pagani, Oren, & Somers, 1997) 

increased LF/HF (Binkley et al., 1991; Bonaduce et al., 1999; La Rovere et al., 2003; 

Lucreziotti et al., 2000) 

reduced TP (Aronson, Mittleman, & Burger, 2004; Butler, Ando, & Floras, 1997; Fei 

et al., 1994; Hadase et al., 2004; Ho et al., 1997; Lucreziotti et al., 2000) 

reduced VLF (Hadase et al., 2004; Ho et al., 1997; Ponikowski et al., 1996) 

lnVLF (Hadase et al., 2004; Makikallio et al., 2001) 

LFday/LFnight (Galinier et al., 2000) 

LFnight < LFday (Tanabe, Iwamoto, Fusegawa, Yoshioka, & Shina, 1995) 

LFnight and HFnight (Guzzetti et al., 2005) 

 

CHF has been the subject of many studies using HRV analysis. Majority of the CHF 

studies, summarized above, use HRV measures as predictors of the risk of mortality 

(prognosis). However, only a few studies have been focused on using HRV measures for 

diagnosis purpose. These studies are summarized in the following paragraphs. 

 

Asyalı studied on discriminating CHF patients from normals using linear 

discriminant analysis and Bayesian classifier (Asyalı, 2003). In his study, only 9 

common long-term (24-hour) time-domain and classical FFT-based frequency-domain 

HRV measures were used and sensitivity and specificity rates of 81.8% and 98.1% are 

obtained, respectively. 
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Some researchers tried to discriminate the loss of complexity due to whether aging or 

CHF (Costa & Healey, 2003). They used Fisher‟s linear discriminant to evaluate the use 

of multi scale entropy (MSE) features for classification. In discriminant tests on the 

training data, they found that MSE features could separate CHF subjects‟ data from 

healthy subjects with a positive predictivity of 76% and a specificity of 83%. 

 

In another interesting study, researchers tried to discriminate patients from the 

clinical notes written by human experts (Pakhomov, Buntrock, & Chute, 2003). This can 

be classified as a character recognition study. They used two different classifiers: Naive 

Bayes and Perceptron. In Naive Bayes classifier case, they achieved a positive 

predictivity of 100% and accuracy 69.2%. In the other classifier model, test results 

became 95% and 76.92%, respectively. 
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CHAPTER THREE 

HEART RATE VARIABILITY 

 

3.1 Introduction 

 

Over the last three decades there has been a widespread interest in the study of 

variations in the beat-to-beat timing of the heart, known as heart rate variability (HRV). 

In certain circumstances, the evaluation of HRV has been shown to provide an 

indication of cardiovascular health (Malik & Camm, 1995). However, often 

contradictory results have left clinical researchers skeptical about the efficacy of HRV 

assessment and there exists no clear consensus on how to estimate HRV in clinical 

practice. 

 

Heart rate variability (HRV) is an important aspect of this thesis because all 

experiments start with these calculations. HRV makes up what is called the feature 

space that is used as inputs into our classification models. 

 

HRV is a complex and often ambiguous variable. Lack of standardized 

quantification procedures for HRV is the most significant barrier for further diagnostic 

and clinical use of it. Different or even conflicting results of their studies might be 

because of using different HRV measurements and standards for HRV calculation. Such 

problems include: lack of rules for artifact rejection and correction, choosing re-

sampling frequency, choosing length of segment for HRV evaluation, considering sleep 

states, stationarity of data within a time period as well as standardized methods to 

interpret different HRV measures. Determination of the affected factors for HRV 

measures, and further study into exposing the relationship between these measures is 

important for proper use of HRV. 

 

The aim of this chapter is to give a short introduction to the analysis of 

cardiovascular signals. The origin and derivation of HRV signal was given. One 

problematic feature of this signal that has to be considered prior to analysis is that they 

are nonequidistantly sampled. In this thesis, a cubic spline interpolation was used to 
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overcome this problem. Prior to analysis, cardiovascular variability signals should also 

always be checked for artifacts. The most common artifact types of this signal were 

discussed. The optimal case would be to include only artifact-free regions in the 

analysis. This is not, however, always possible in which case artifacts need to be 

corrected in some way before analysis. 

 

3.2 Background 

 

The sinoatrial node (SAN) is the pacemaker of the heart and is responsible for the 

HRV. The cells of the SAN slowly but automatically depolarize; when reaching a 

threshold, they rapidly depolarize, followed by a repolarization, and the process repeats 

itself again and again as explained in the previous chapter in detail. The depolarization 

quickly propagates to the surrounding cardiac muscle cells and the contraction of the 

heart begins. In healthy subjects, the SAN cells generate depolarization or action 

potentials at a frequency that is regulated through direct innervations of both branches of 

ANS: sympathetic and parasympathetic (or vagal). The parasympathetic branch releases 

acetylcholine (ACh) that slows the rate of SAN depolarization, while the sympathetic 

branch releases norepineprine that increases the rate of SAN depolarization. The SAN 

effectively integrates both inputs from ANS, both temporally and spatially, and this 

pacemaker activity is often modeled as an integrate pulse frequency modulation (Chang, 

Monahan, Griffin, Lake, & Moorman, 2001). This is the source of HRV (Cao, 2004). 

 

3.3 Clinical Relevance of HRV 

 

The clinical relevance of HRV was first appreciated in 1965 when Hon and Lee 

noted that fetal distress was preceded by alterations in inter-beat intervals before any 

appreciable change occurred in heart rate (HR) itself (Hon & Lee, 1965). About thirty 

years ago, Sayers (Sayers, 1973) and others (Hirsh & Bishop, 1981; Luczak & Lauring, 

1973; Penaz, Roukenz, & Van der Vaal, 1968) focused attention on the existence of 

physiological rhythms embedded in the beat-to-beat HR signal. During the 1970s, 

Ewing and colleagues devised a number of simple bedside tests of short-term RR 

differences to detect autonomic neuropathy in diabetic patients (Braune & Geisenorfer, 

1995; Ewing, Martin, Young, & Clarke, 1985). The association of higher risk of post-
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infarction mortality with reduced HRV was first shown in 1977 (Wolf, Varigos, Hunt, & 

Sloman, 1978). In 1981, it has been introduced power spectral analysis of HR 

fluctuations to quantitatively evaluate beat-to-beat cardiovascular control (Akselrod et 

al., 1981). 

 

These frequency domain analyses contributed to the understanding of autonomic 

background of RR interval fluctuations in the HR record (Pagani, 2000; Pagani et al., 

1986; Pomeranz et al., 1985). The clinical importance of HRV became appreciated in 

the late 1980s, when it was confirmed that HRV was a strong and independent predictor 

of mortality after an acute myocardial infarction (Bigger et al., 1992; Huikuri et al., 

2003; Kleiger, Miller, Bigger, & Moss, 1987; Lombardi, Makikallio, Myerburg, & 

Huikuri, 2001; Malik, Cripps, Farrel, & Camm, 1989; Malik, Farrel, Cripps, & Camm, 

1989). With the availability of new, digital, high-frequency, 24-hour, multichannel ECG 

recorders, HRV has the potential to provide additional valuable insight into 

physiological and pathological conditions and to enhance risk stratification. Since then, 

people have recognized consistently the significant association between HRV and ANS 

(Task Force, 1996). 

 

As a result, even though HRV has been studied extensively during the last decades 

within which numerous research articles have been published, the practical use of HRV 

have reached general consensus only in two clinical applications (Task Force, 1996). 

That is, it can be used as a predictor of risk after myocardial infarction (Huikuri et al., 

2003; Lombardi et al., 2001) and as an early warning sign of diabetic neuropathy 

(Braune & Geisenorfer, 1995; Pagani, 2000). In addition, HRV has been found to 

correlate with, gender, age, mental and physical stress, and attention (Berntson et al., 

1997). 

 

3.4 Considerations 

Determination of the standard for HRV calculation is also an important step to 

ensure more comparable results. Different standards for HRV calculation might result in 

different or even conflicting results in HRV analysis. Therefore, the same standard for 

the HRV calculation of all subjects were used during the thesis. 
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3.4.1 Appropriate Analytical Epochs 

HRV in both time and frequency domain are greatly influenced by the length of 

epochs being analyzed. It tends to increase with the length of the epochs analyzed. 

Comparison of HRV measures must be done for a fixed length of data for all subjects. It 

is necessary to define criteria for choosing the duration. Shorter epochs are 

recommended, because RR intervals over longer periods of time are more likely to be 

nonstationary, and HRV calculated from them are influenced by slower trends. 

Moreover, the slower HR activity is not clearly vagal and reflects interactions with the 

sympathetic nervous system. Its removal reduces the non-vagal influences on these 

HRV measures. Shorter epochs function as filtering the slow HR activity, and make the 

HRV measures more focused on the vagal influences (Izard, Simons, Haynes, Porges, & 

Cohen, 1991). 

 

Stationarity of the data is an important issue to be considered when choosing the 

length of epochs, especially for the spectral analysis of HRV. Most biomedical signals 

are not stationary. Physical activity and posture changes can be the cause of 

nonstationarity. Since many signal analysis techniques require stationarity from the 

signal, there is no ideal solution to this problem. Choosing shorter segments may 

somewhat solve this problem, because during short duration, the subject’s posture, 

activity and respiratory frequency can be considered as constant. The use of short 

segments and a Hanning window in the time domain (which further shortens the 

’effective’ length of a segment) also tend to minimize the effects of nonstationarity 

(Myers et al., 1986). However, the epochs cannot be too short, because biological 

rhythms generally vary from cycle to cycle. Recordings should be sufficiently long to 

evaluate the slow variance of interest. The recording duration should be at least 10 times 

the wavelength of the lower frequency component that was investigated. For the HRV 

analysis, a recording of approximately one minute is needed to address the HF 

component, and approximately two minutes is needed to assess LF component. Five 

minutes segments are highly recommended for clinical studies of HF and LF variability. 

 

A variety of epochs were used in the study of HRV, such as 30-sec (Izard et al., 

1991), 60-sec (Harper, Hoppenbrouwers, Sterman, McGinty, & Hodgman, 1976; 
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Rosenstock, Cassuto, & Zmora, 1999; Schechtman, Henslee, & Harper, 1998), 120-sec 

(Antila et al., 1990; Liao, Barnes, Chambless, & Heiss, 1996; Myers et al., 1986; Spicer 

& Lawrence, 1987), and 100-sec (Stevens, Wilson, Franks, & Southall, 1988). Stevens 

and colleagues support 100-second segments, because it is sufficiently long to get a 

reliable estimate of parameters, while it is also sufficiently short to allow short-term 

pattern changes to become apparent. Some researchers use the whole length of the data, 

24-hour recording (Leistner et al., 1980; Pikkujamsa et al., 1999). A 5-minute segment 

is the most popular (Berntson et al., 1997; Bigger et al., 1992; Edlinger, Litscher, & 

Pfurtscheller, 1994; Kleiger et al., 1991; Rottman et al., 1990; Task Force, 1996). 

 

Another issue, the reproducibility and reliability of HRV metrics were discussed in 

the literature. Although there were contradictory results, the most of 5-min HRV metrics 

were reported as reliable and reproducible (Dionne, White, & Tremblay, 2002; 

Hamilton, Mckenchnie, & Macfarlane, 2004; McNames & Aboy, 2006). Therefore, it is 

decided to use 5-minute segments for the HRV analysis during the thesis, as the best 

balance between stationarity issues and enough data to be representative. 

3.4.2 Overlapped or Non-Overlapped Segments 

Most of the analyses of HRV have been performed for non-overlapping consecutive 

segments of the RR interval time series. However overlapped segments were also used 

in some studies (Costa et al., 1994; Myers et al., 1986). Myers and colleagues used 

overlapped segments of RR interval data in the frequency analysis of HRV. Up to 20 

segments of 2-min epochs of RR intervals were selected in each hour, beginning on the 

hour. Succeeding segments began at the midpoint of the previous segment. Twenty 

consecutive segments were used if the data in these segments was acceptable. Most of 

the time, they used the first 21 minutes of data each hour. Noisy segments or segments 

with premature beats were excluded. In such an instance, the segment began three beats 

after the last premature or noisy beat. When doing frequency analysis, each 2-min epoch 

of RR intervals were evenly sampled to 1024 points, the mean of the RR interval was 

subtracted, and a Hanning window was applied in the time domain. Lastly, an FFT was 

performed to estimate the power spectrum (Myers et al., 1986). 
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3.4.3 Effect of Sleep State 

HR and HRV are sleep-state dependent variables. It is assumed that the awake-state 

has the highest HR and HRV, and quiet sleep has the lowest value of HR and HRV. The 

value for REM is in between. In addition, HR is the slowest and contains the highest 

frequencies in quiet sleep (Landes, Scher, Sun, & Sclabassi, 1996). Next, sleep-state 

differences are also shown in the frequency analysis of HRV. The HF component of 

HRV dominates during quiet sleep, while LF component of HRV dominates in REM 

(Medigue et al., 1997). Therefore, in order to perform all the HRV analysis and group 

comparisons in the same awake states, all the data segments used in the study were 

selected from the same time intervals as possible. 

 

3.5 Derivation of Cardiovascular Time Series 

 

After the QRS complex occurrence times have been estimated, the HRV time series 

can be derived. The inter-beat intervals or RR intervals are obtained as differences 

between successive R-wave occurrence times, i.e.  (Figure 3.1(a)). The 

time series constructed from all available RR intervals can be represented as a 

tachogram, i.e.  (Figure 3.1(b)) or a function, i.e. , (Figure 3.1(c)). Majority 

of studies related to analysis of HRV signal in the literature are preferred to use the latter 

approach (Task Force, 1996).  

 

In some context, normal-to-normal (NN) may also be used when referring to these 

intervals indicating strictly intervals between successive QRS complexes resulting from 

SA-node depolarization (Task Force, 1996). In practice, the NN and RR intervals appear 

to be the same and throughout this thesis the term RR is preferred. 
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Figure 3.1 Derivation of two HRV signals from ECG: (a) raw ECG signal, (b) the 

interval tachogram and (c) the interval function of the signal. 

 

3.6 Preprocessing of Cardiovascular Time Series 

 

Any artifact in the RR interval time series may interfere the analysis of these signals. 

The artifacts within cardiovascular signals can be divided into technical and 

physiological artifacts. The technical artifacts can include missing or additional QRS 

complex detections, errors in R-wave occurrence times. These artifacts may be due to 

measurement artifacts or the computational algorithm. The physiological artifacts, on 

the other hand, include ectopic beats and arrhythmic events. In order to avoid the 

interference of such artifacts, the ECG recordings and the corresponding event series 

should always be manually checked for artifacts and only artifact-free sections should be 

included in the analysis (Task Force, 1996). Alternatively, if the amount of artifact-free 

data is insufficient, proper interpolation methods can be used to reduce these artifacts 
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(Clifford & Tarassenko, 2005; Lippman, Stein, & Lerman, 1993, 1994; Mateo & 

Laguna, 2003). 

 

Another common feature that can alter the analysis significantly is the slow linear or 

more complex trends within the analyzed time series. Such slow nonstationarities are 

characteristic for cardiovascular variability signals and should be considered before the 

analysis. The origins of nonstationarities in HRV are discussed (Berntson et al., 1997). 

Two kinds of methods have been used to get around the nonstationarity problem. In 

(Weber, Molenaar, & Van der Molan, 1992), it was suggested that HRV data should be 

systematically tested for nonstationarities and that only stationary segments should be 

analyzed. Representativeness of these segments in comparison with the whole HRV 

signal was, however, questioned in (Grossman, 1992). Other methods try to remove the 

slow nonstationary trends from the HRV signal before analysis. The detrending is 

usually based on first order (Litvack, Oberlander, Carney, & Saul, 1995; Mitov, 1998) 

or higher order polynomial (Mitov, 1998) models. Recently, an advanced detrending 

procedure based on smoothness priors’ regularization was presented (Tarvainen, Ranta-

aho, & Karjalainen, 2002). 

 

3.6.1 Artifact Removal 

 

The first aim is to detect ectopic beats, which are QRS complexes not resulting from 

SAN depolarization (Clifford, Azuaje, & McSharry, 2006). Atrial and ventricular 

premature complexes (APCs and VPCs) can easily be identified through an analysis of 

the temporal series of the RR tachogram. When an APC occurs, a sudden reduction in 

the tachogram is present. The following sinus beat, however, has a normal distance from 

the ectopic one. A comparison of the RR intervals with respect to the mean of the 

preceding RR interval can be implemented to automatically detect APC. A VPC, 

instead, is characterized by a prolonged RR interval immediately following the ectopic 

beat (so-called compensatory pause) (Fig. 3.2). 
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Figure 3.2 Examples of normal, APC, and VPC beats by 

means of compensatory and non-compensatory pauses 

(Clifford, Azuaje, & McSharry, 2006). 

 

The effects of calculating the HRV indices on an artificial tachogram for varying 

level of ectopy have been illustrated as significant (Clifford & Tarassenko, 2005). 

Therefore, it is obvious that ectopic beats must be removed from the RR tachogram. In 

general, FFT-based techniques require the replacement of the removed beat at a location 

where one would have been expected the beat to have occurred if it was a sinus beat. 

Methods for performing beat replacement range from linear and cubic spline 

interpolation, AR model prediction, segment removal, and segment replacement 

(Clifford, Azuaje, & McSharry, 2006). The same procedure is also necessary for missing 

beats (Clifford & Tarassenko, 2005). Clifford & Tarassenko offer using Lomb-Scargle 

Periodogram method, which allows the removal of up to 20% of the data points in an 

RR tachogram without introducing a significant resampling error in an HRV metric. 

 

3.6.2 Interpolation 

 

Since the RR interval time series signal is sampled unevenly (according to the 

duration of each beat), the data must be evenly re-sampled. Selecting the optimal 
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sampling frequency is an important step. To avoid aliasing, the required sampling 

frequency must be at least twice the highest resolvable frequency, and a sampling 

frequency of 4 times the target frequency is more appropriate. So, for the HRV studies 

of humans, a sampling rate of 4 Hz is sufficient to capture the HF components. That 

sampling frequency is also appropriate for infants, who have high respiratory rates, and 

for adults during exercise (Berntson et al., 1997). Nonetheless, Clifford studied the 

effect of resampling and offered a sampling rate of at least 7 Hz in his studies (Clifford 

& Tarassenko, 2005). In this study, the cubic spline interpolation method with 7-Hz 

sampling frequency was chosen. 

 

3.6.3 Detrending 

 

Any estimation that attempts to characterize the specific periodicities over time may 

be distorted by slow linear or irregular trends, and might lead to misinterpretations of 

the results. As a result, 5-minute segments were chosen in this study for HRV analysis 

as offered in (Task Force, 1996). Then, remove the trends from these HRV data 

segments using smoothness priors detrending method were applied (Tarvainen, Ranta-

aho, & Karjalainen, 2002). 

 

Special attention was appointed to the slow trend components that are characteristic 

of cardiovascular signals. For removing such trend components, an advanced detrending 

method should be preferred. The method is based on smoothness priors formulation and 

was originally presented with an application to HRV analysis (Tarvainen, Ranta-aho, & 

Karjalainen, 2002). The main advantage of this method is its simplicity compared to 

methods presented in (Litvack et al., 1995). The frequency response of the method is 

adjusted with a single parameter. This smoothing parameter λ should be selected in such 

a way that the spectral components of interest are not significantly affected by 

detrending. Another advantage of this method is that the filtering effect is attenuated in 

the beginning and end of the data and thus the distortion of data end points is avoided. 
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3.7 Analysis Methods of HRV 

 

In this section, a short review of measures used in the analysis of short-term HRV 

recordings is given. The selection of the presented measures is based on the guidelines 

given in (Task Force, 1996). The analysis methods of HRV can be roughly divided into 

time-domain, frequency-domain, and nonlinear methods. In addition, time-varying 

methods such as time-frequency representations have been utilized. The presented HRV 

measures are explained below in detail. 

 

3.7.1 Time - Domain Measures 

 

Time domain analysis, which is the statistical analysis of the fluctuations in RR 

intervals, is the most commonly used method in the study of HRV. Generally speaking, 

time domain measures are simple and inexpensive to compute. However, simple 

descriptive statistics only provide global estimates of HRV. They cannot differentiate 

frequency components and attribute different components to different physiological 

activities precisely. The parameters of short-term time-domain HRV measures are listed 

in Table 3.1.  

 

In the analysis of HRV, there are two different approximations that emphasize short-

term (fast) and long-term (slow) variability. Short-term HRV is assumed to be 

associated with parasympathetic (vagal) activity. Long-term HRV is assumed to reflect 

both sympathetic and vagal influences. There is more disagreement on interpreting long-

term variability. It has not been demonstrated whether they are related mainly to 

sympathetic influences, or to the sympathetic and vagal balance (Izard et al., 1991; 

Malik & Camm, 1995; Porges & Byrne, 1992). 
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Table 3.1 The most commonly used time domain HRV measures 

MEAN Arithmetic mean of all RR values.   

 

(4.24) 

 

SDNN Standard deviation of normal-to-normal RR intervals over a period of time is a broad-band 

measure, containing both high and low frequency components of RR interval fluctuations 

(Berntson et al., 1997). In many studies, SDNN is calculated over a 24-hour period and 

thus it measures all sources of HRV, short-term high frequency variations as well as the 

lowest frequency components seen in the 24-hour period, such as circadian rhythms. 

 

SDSD Standard  deviation  of successive  differences  between  normal-to-normal RR intervals is 

defined as: 

 

RMSSD Root mean square of successive differences between normal-to-normal RR intervals 

(Antila et al., 1990; Berntson et al., 1997; Bigger et al., 1989) is defined as:  

 

NNdd The absolute number of differences between successive normal RR intervals that are 

greater than dd ms. Although dd value accepted as 50 in common (Bigger et al., 1989), 

recent researches show that the value of 20 is more effective for discriminating the patients 

from normals (Mietus, Peng, Henry, Goldsmith, & Goldberger, 2002). 

pNNdd The percent of absolute differences between successive normal RR intervals that are 

greater than dd ms. 

 

3.7.2 Frequency - Domain Measures 

 

Compared with time domain measures, frequency domain measures of HRV have 

the advantage of better separation of parasympathetic and sympathetic influences. 

Frequency domain methods decompose the total variation of the RR interval time series 

into many different frequency components, which can be attributed to different 

physiologic effects. There are three major frequency bands for HRV in adults. The 
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definition of these three frequency bands is not exactly the same throughout the 

literature (Bigger et al., 1992; Costa et al., 1994; Kleiger et al., 1991; Mazursky, Birkett, 

Bedell, Ben-Haim, & Segar, 1998; Mrowka, Schluter, Gerhardt, & Patzak, 1996; Myers 

et al., 1986; Ori, Monir, Weiss, Sayhouni, & Singer, 1992; Task Force, 1996). After the 

task force published in 1996, these main spectral components are standardized for short-

term HRV recordings: very low frequency (VLF), low frequency (LF), and high 

frequency (HF) components. These frequency bands are limited bounded with the limits 

0-0.04 Hz, 0.04-0.15 Hz, and 0.15-0.40 Hz, respectively. In addition, researchers also 

show that the regulators of these frequency bands are circadian rhythm (Barrett, 

Navakatikyan, & Malpas, 2001; Braga, Da Silva, Da Silva, Fontes, & dos Santos, 2002), 

temperature & humoral systems (Braga et al., 2002; Porter & Rivkees, 2004; Vornanen, 

Ryukkynen, & Nurmi, 2002; Williams, Chambers, Henderson, Rashotte, & Overton, 

2002) for VLF, ANS (Sympathetic and Parasympathetic systems) (Goldstein et al., 

1998; Lanfranchi & Somers, 2002; Malpas, 2002) for LF, and Vagal innervations & 

RSA (Barbieri, Triedman, & Saul, 2002; Rentero et al., 2002) for HF. 

 

In order to calculate these measures, there exist several power spectral density (PSD) 

estimation methods such as FFT-, Autoregressive-modeling, Lomb-Scargle-, and 

Wavelet-based periodogram techniques in the literature. The most commonly used 

frequency domain parameters are summarized in Table 3.2. 

 

3.7.3 Nonlinear Parameters 

 

Nonlinear characteristics are certainly involved in HRV. Some investigators 

emphasize the importance of using nonlinear techniques to quantify HRV. It has been 

suggested that through nonlinear analysis of HRV, it might be possible to obtain 

precious information for physiological interpretation of HRV and to obtain (diagnosis) / 

to predict (prognosis) patients for various cardiac and non-cardiac diseases. However, 

these nonlinear methods have not been used systematically to investigate large patient 

populations. At present, they are just potential tools for HRV assessment (Task Force, 

1996). 
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Table 3.2 The most commonly used frequency domain HRV measures 

TP Total power is defined as the area under the power spectral curve (Bigger et al., 1989, 1992; 

Ori et al., 1992), or the sum of HF and LF (Kleiger et al., 1991). 

PVLF Absolute very low frequency power is the area under the power spectral curve related to 

VLF band. 

PLF Absolute low frequency power is the area under the power spectral curve related to low 

frequency band. Some studies suggest that LF is a quantitative marker of sympathetic 

modulations, while others view LF as reflecting both sympathetic activity and vagal activity 

(Rottman et al., 1990; Yeragani et al., 1998). 

PHF Absolute high frequency power is the area under the power spectral curve related to high 

frequency band. Most researchers agree that vagal activity is the major contributor to the HF 

component. 

NLF Normalized LF is defined as . 

NHF Normalized HF is defined as . 

LFHF The ratio of LF over HF ( ), which is considered by some investigators to reflect the 

balance between sympathetic and vagal or to reflect the sympathetic modulation (Task 

Force, 1996). 

 

There are several nonlinear methods such as Detrended Fluctuation Analysis (Hu, 

Ivanov, Chen, Carpena, & Stanley, 2001; Kantelhardt, Koscielny-Bunde, Rego, Havlin, 

& Bunde, 2001; Peng et al., 1994; Taqqu, Teverovsky, & Willinger, 1995), 

Approximate Entropy (Pincus, 1991; Yeragani et al., 1998), Sample Entropy 

(Goldberger et al., 2000), Multiscale entropy analysis (Costa, Goldberger, & Peng, 

2002, 2005), Poincare plot (Kamen, Krum, & Tonkin, 1996; Kamen & Tonkin, 1995), 

Symbolic Dynamic (Mokikallio et al., 1997) in the literature, which are used in HRV 

analyses. In a recent study, minimum 10000 samples are required for the reliability of 

the validity for all nonlinear measures except the Poincare plots’ measures (Şeker, Saliu, 

Birand, & Kudaiberdieva, 2000). Because this thesis is focused on only 5-min HRV 

analysis, there are approximately 300 samples for each data. Therefore, only Poincare 

plots’ measures were used in the thesis. 
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CHAPTER FOUR 

METHODS 

 

The act of taking raw data and making an action based on the category of the pattern 

is so-called Pattern Recognition (Duda, Hart, & Stork, 2001). The primary goal of 

pattern recognition is supervised or unsupervised classification of some patterns (data). 

Among the various frameworks in which pattern recognition has been traditionally 

formulated, the statistical approach most intensively studied and used in practice (Jain, 

Duin, & Mao, 2000). A general pattern recognition system consists of six stages: data 

acquisition, preprocessing, feature extraction, feature selection, classification, and 

evaluating the model. 

 

4.1 Data Acquisition Stage 

 

In the data acquisition stage, the data is collected from the human using an 

electrocardiography or a Holter device. In the former one, the patient is in the resting 

position while ECG is being recorded. This is preferred if the record is processed in a 

short-term (5- or 6-second and maximum 10-minute) duration. In the latter one, the 

patient is equipped with the Holter device which is taken back after 24- or 48-hour 

duration. Alternatively, the already recorded data can be used in the research. 

 

4.2 Preprocessing Stage 

 

This stage is the most problem-dependent part of the system. The data preprocessing 

step includes noise removal, data transformation (from ECG data to HRV data), artifact 

removal (bad data rejection), interpolation (resampling), and detrending (Lynn & 

Chiang, 2001). These steps are explained in the following subsections. 

 

4.2.1 Noise Removal 

 

In general, the aim of the preprocessing steps is to improve the signal-to-noise ratio 

(SNR) of the ECG for more accurate analysis and measurement. Noises may disturb the 
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ECG to such an extent that measurements from the original signals are unreliable. The 

main categories of noise are low-frequency baseline wander caused by respiration and 

body movements, high-frequency random noises by mains interference (50 Hz or 60 

Hz), and muscular activity, and random shifts of the ECG signal amplitude caused by 

poor electrode contact and body movements. Robust classical deterministic digital 

filtering techniques are mostly used in the field of arrhythmia detection. On the other 

hand, in the domain of ST segment analysis where accurate wave measurements are the 

main features of interest, filtering must not disturb the fine structure of the useful signal. 

In such cases, it is not possible to improve the SNR solely by using deterministic digital 

filtering techniques, and advanced nonlinear techniques are required (Clifford, Azuaje, 

& McSharry, 2006). 

 

Since low-frequency baseline wander among these noises cause the ST segment 

elevation in ECG (Sornmo, 1993), elimination of this makes the clinical information 

more valuable (Mozaffary & Tinati, 2005). This noise has been investigated using 

various methods in the literature. In a study, baseline is estimated using the function 

approximation method of Cubic Spline and it is removed from the original ECG signal 

(Meyer & Kelser, 1977). In another study, baseline wander is estimated from PR 

segments in ECG using linear interpolation technique (MacFarlane, Peden, Lennox, 

Watts, & Lawrie, 1977). This method is a nonlinear one and it does not give correct 

results in lower heart rates. In addition to these methods, filtering is very common 

method with the cut-off frequencies of 0.8 Hz (Van Aleste & Schilder, 1985) or 0.64 Hz 

(Christov, Dotsinsky, & Daskalov, 1992). Nonetheless, there are some problems in 

using filters: First, the number of coefficients to implement filter and the response time 

delay are extremely high when FIR structure is used. Next, since the frequency ranges of 

baseline wander and those of ECG signal are overlapped, removal of baseline wander 

using filtering causes the information losses in ECG components. In addition, these cut-

off frequencies do not satisfy the lowest ECG frequency (0.05 Hz) offered by American 

Heart Association (AHA), which causes the distortion on the ST segment and the QRS 

complexes (American Heart Association, 1975). Therefore, alternative filtering 

techniques such as time-varying filter (Sornmo, 1993), wavelet packets transformation 
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(Mozaffary & Tinati, 2005) and adaptive bionic wavelet transform (Soyadi & 

Shamsollahi, 2008) have been used in the literature. 

 

4.2.2 Data Transformation 

 

This subsection is the QRS detection. Fig. 4.1 shows the various processes involved 

in the analysis of the ECG signal. In order to isolate the portion of the wave, of which 

QRS energy dominant, the signal is passed through a band-pass filter that is composed 

of cascaded low- and high-pass filters. Then the signal is subjected to differentiation, 

squaring, time averaging, and finally peak is detected by applying threshold logic (Pan 

& Tompkins, 1985).  

 

 

Figure 4.1 Block diagram of the QRS detector used 

in the study. 
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4.2.2.1 Low-Pass Filtering 

 

The transfer function of the second-order low-pass filter is 

 

 
(4.1) 

 

and the difference equation of this filter is 

 

 (4.2) 

 

The cutoff frequency is about 11 Hz, the delay is five samples (or 25 ms for a 

sampling rate of 200 sps), and the gain is 36.  

 

4.2.2.2 High-Pass Filtering 

 

A high-pass filter is implemented by subtracting a first-order low-pass filter from an 

all-pass filter with delay. The high-pass filter is obtained by dividing the output of the 

low-pass filter by its DC gain and then subtracting from the original signal. The transfer 

function of the high-pass filter is 

 

 

(4.3) 

 

and the difference equation of this filter is 

 

 
(4.4) 

 

The low cut-off frequency of this filter is about 5 Hz, the delay is about 16T (or 80 

ms), and the gain is 1.  
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Fig. 4.2 shows the amplitude-response of the band-pass filter which is composed of 

the cascade of the low-pass and high-pass filters. The center frequency of the pass-band 

is at 10 Hz. The amplitude response of this filter is designed to approximate the 

spectrum of the average QRS complex. Thus this filter optimally passes the frequencies 

characteristic of a QRS complex while attenuating lower and higher frequency signals. 

 

 

Figure 4.2 Amplitude response of band-pass filter composed of low-

pass and high-pass filters (Tompkins, 2000). 

 

4.2.2.3 Differentiation 

 

After the signal has been filtered, it is then differentiated to provide information 

about the slope of the QRS complex. A five-point derivative has the transfer function 

 

 (4.5) 

 

This derivative is implemented with the difference equation 

 

 (4.6) 

 

The fraction 1/8 is an approximation of the actual gain of 0.1. Throughout these 

filter designs; we approximate parameters with power-of-two values to facilitate real-
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time operation. Note that P and T waves are further attenuated while the peak-to-peak 

signal corresponding to the QRS complex is further enhanced (Tompkins, 2000). 

 

4.2.2.4 Squaring Function 

 

The previous processes and the moving-window integration, which is explained in 

the next subsection, are linear processing parts of the QRS detector. The squaring 

function that the signal now passes through is a nonlinear operation. The equation that 

implements this operation is 

 

 (4.7) 

 

This operation makes all data points in the processed signal positive, and it amplifies 

the output of the derivative process nonlinearly. It emphasizes the higher frequencies in 

the signal, which are mainly due to the QRS complex. A fact to note in this operation is 

that the output of this stage should be hard-limited to a certain maximum level 

corresponding to the number of bits used to represent the data type of the signal.  

 

4.2.2.5 Moving Window Averaging 

 

The slope of the R wave alone is not a guaranteed way to detect a QRS event. Many 

abnormal QRS complexes that have large amplitudes and long durations (not very steep 

slopes) might not be detected using information about slope of the R wave only. Thus, 

we need to extract more information from the signal to detect a QRS event. Moving 

window integration extracts features in addition to the slope of the R wave. It is 

implemented with the following difference equation: 

 

 (4.8) 
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where N is the number of samples in the width of the moving window. The value of this 

parameter should be chosen carefully. For a sample rate of 200 sps, the window chosen 

for this algorithm was 30 samples wide (which correspond to 150 ms). 

 

Fig. 4.3 shows the appearance of some of the filter outputs of this algorithm. Note 

the processing delay between the original ECG complexes and corresponding waves in 

the moving window integral signal. 

 

 

Figure 4.3 QRS detector signals: (a) Unfiltered ECG, 

(b) Output of band-pass filter, (c) Output after 

differentiation, and squaring processes, and (d) Final 

moving-window integral (Tompkins, 2000). 

 

4.2.2.6 Adaptive Threshold Logic 

 

The set of thresholds detection algorithm were set such that signal peaks (i.e., valid 

QRS complexes) were detected (Pan & Tompkins, 1985). Signal peaks are defined as 
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those of the QRS complex, while noise peaks are those of the T waves, muscle noise, 

etc. After the ECG signal has passed through the band-pass filter stages, its signal-to-

noise ratio increases. This permits the use of thresholds that are just above the noise 

peak levels. Thus, the overall sensitivity of the detector improves. 

 

Two sets of thresholds are used, each of which has two threshold levels. The set of 

thresholds that is applied to the waveform from the moving window integrator is 

 

 (4.9) 

 

if PEAKI is the signal peak, 

 

 (4.10) 

 

if PEAKI is the noise peak, and 

 

 (4.11) 

 (4.12) 

 

where PEAKI is the overall peak, SPKI is the running estimate of the signal peak, NPKI 

is the running estimate of the noise peak, THRESHOLD1 is the first threshold applied, 

and THRESHOLD2 is the second threshold applied. 

 

A peak is determined when the signal changes direction within a certain time 

interval. Thus, SPKI is the peak that the algorithm has learned to be that of the QRS 

complex, while NPKI peak is any peak that is not related to the signal of interest. 

 

As can be seen from the equations, new values of thresholds are calculated from 

previous ones, and thus the algorithm adapts to changes in the ECG signal from a 

particular person. 
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Whenever a new peak is detected, it must be categorized as a noise peak or a signal 

peak. If the peak level exceeds THRESHOLD1 during the first analysis of the signal, 

then it is a QRS peak. If search-back technique is used, then the signal peak should 

exceed THRESHOLD2 to be classified as a QRS peak. If the QRS complex is found 

using this second threshold level, then the peak value adjustment is twice as fast as 

usual.  

 

The output of the final filtering stages, after the moving window integrator, must be 

detected for peaks. A peak detector algorithm finds peaks and a detection algorithm 

stores the maximum levels at this stage of the filtered signal since the last peak 

detection. A new peak is defined only when a level that is less than half the height of the 

peak level is reached. Fig. 4.4 illustrates that this occurs halfway down the falling edge 

of the peak (Pan & Tompkins, 1985). 

 

 

Figure 4.4 Output after the moving window integrator, with peak 

detection point (Tompkins, 2000). 

 

The accuracy of the R-wave occurrence time estimates is often required to be 1-2 ms 

and, thus, the sampling frequency of the ECG should be at least 500-1000 Hz (Task 

Force, 1996). If the sampling frequency of the ECG is less than 500 Hz, the errors in R-

wave occurrence times can cause critical distortion to HRV analysis results, especially 

to spectrum estimates (Merri, Farden, Mottley, & Titlebaum, 1990). The distortion of 

the spectrum is even bigger if the overall variability in HR is small (Pinna, Maestri, di 

Cesare, Colombo, & Minuco, 1994). The estimation accuracy can, however, be 

improved by interpolating the QRS complex, e.g., by using a cubic spline interpolation 

(Daskalov & Christov, 1997). It should be, however, noted that when the SA-node 
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impulses are of interest there is an unavoidable estimation error of approximately 3 ms 

due to fluctuations in the AV-nodal conduction time (Rompelman, 1993). 

 

4.2.3 Artifact Removal 

 

In ECG analysis, it is desirable to use only those heartbeats which are expected not 

to be disturbed by waves of the previous or following heartbeats. Therefore, abnormal 

beats like ventricular premature and atrial premature beats, and their neighbors, should 

be excluded from the beat sequence. These beats are also called as bad data or outliers in 

the literature (Clifford, Azuaje, & McSharry, 2006). Langley and colleague's algorithm 

identifies as possible ectopic those beats whose RR interval falls below the moving 

average of RR less 20% (Langley et al., 2001). Among these, the beats followed by beat 

introducing a ±10% variation from the mean RR classified as atrial; those followed by 

RR value exceeding the moving RR average of ±30% as ventricular (Fig. 4.5). 

 

 

Figure 4.5 Example of an RR series where a ventricular ectopic beat can easily be identified (Langley et 

al., 2001). 

 

4.2.4 Interpolation 

 

The idea is that the points are in some sense correct and lie on an underlying but 

unknown curve, the problem is to be able to estimate the values of the curve at any 

position between the known points. Cubic spline method is possibly the most preferred 

method among interpolation techniques because it is a smoother function and offers true 
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continuity between the segments (Kreyzig, 1993). Fig. 4.6 shows the principle with an 

example application of both linear and cubic spline interpolation techniques. 

 

 

Figure 4.6 Interpolation methods with an example application. Linear interpolation is on the left and cubic 

spline interpolation is on the right. The first row is the real values of the data, the second row illustrates 

the fitted functions for the data, and the bottom row gives the interpolated values with 10-Hz resampling 

rate. 

 

4.2.4.1 Cubic Spline Interpolation 

 

Given  distinct knots  such that  with 

 knot values , we are trying to find a spline function of degree  

 

 (4.13) 
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where each  

 

 (4.14) 

 

For a data set  of  points, we can construct a cubic spline with  piecewise 

cubic polynomials between the data points (Fig. 4.7). If  represents the spline 

function interpolating the function , we require: 

 the interpolating property, , , 

 the spline to join up, , , and 

 twice continuous differentiable,  and , $i=1, 

. 

 

 

Figure 4.7 Cubic Spline interpolation method. 

 

For the  cubic polynomials comprising , this means to determine these 

polynomials, we need to determine  conditions (since for one polynomial of degree 

three, there are four conditions on choosing the curve). However, the interpolating 

property gives us  conditions, and the conditions on the interior data points give us 

 data points each, summing to  conditions. We require two other 

conditions, and these can be imposed upon the problem for different reasons. 
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One such choice results in the so-called clamped cubic spline, with  and 

 for given values  and . Alternately, we can set  and  to 0 

resulting in the natural cubic spline.  

 

Amongst all twice continuously differentiable functions, clamped and natural cubic 

spline yield the least oscillation about the function  which is interpolated. 

 

After solving these equations (Schilling & Sandra, 1999), the interpolation using 

natural cubic spline can be defined as 

 

 

(4.15) 

 

where 

 

 (4.16) 

 

The coefficients can be found by solving this system of equations: 

 

  

 (4.15) 

 

(4.17) 

  

 

4.2.5 Detrending 

 

Any estimation that attempts to characterize the specific periodicities over time may 

be distorted by slow linear or irregular trends, and might lead to misinterpretations of 

the results. Spectral analysis requires that the data series is at least weakly stationary. 

Actually, in the study of HRV, this is a difficult issue because the actual heart period 

data are commonly nonstationary. Several methods have been suggested to deal with 
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this problem: (a) choosing shorter analytical epochs, because nonstationarity increases 

with the length of the sample epoch; (b) removing slow nonstationary trends before 

analysis; (c) applying band-pass filters to isolate the frequency component of the interest 

(Berntson et al., 1997). Alternatively, techniques designed for evaluating nonstationary 

signals, such as wavelets, should be used. Recently, a robust and ease-to-use detrending 

method was published (Tarvainen, Ranta-aho, & Karjalainen, 2002) of which principles 

are explained below in detail.  

 

4.2.5.1 Smoothness Priors Method 

 

Let  denote the RR interval time series which can be considered to consist of 

two components 

 

 (4.18) 

 

where  is the nearly stationary RR interval series of interest and  is the low 

frequency aperiodic trend component. Suppose that the trend component can be 

modeled with a linear observation model as 

 

 (4.19) 

 

where  is the observation matrix,  are the regression parameters, and  

is the observation error. The task is then to estimate the parameters by some fitting 

procedure so that  can be used as the estimate of the trend. The properties 

of the estimate depend strongly on the properties of the basis vectors (columns of the 

matrix ) in the fitting. A widely used method for the solution of the estimate  is the 

least squares method. However, a more general approach for the estimation of  is used 

here. That is, the so-called regularized least squares solution 

 

 (4.20) 
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where λ is the regularization parameter and Dd indicates the discrete approximation of 

the d-th derivative operator. This is clearly a modification of the ordinary least squares 

solution to the direction in which the side norm  gets smaller. In this way, 

prior information about the predicted trend  can be implemented to the estimation. 

The solution of (4.20) can be written in the form (Tarvainen, Ranta-aho, & Karjalainen, 

2002) 

 

 (4.21) 

 

and the estimate for the trend which is to be removed as 

 

 (4.22) 

 

The selection of the observation matrix  can be implemented according to some 

known properties of the data . For example, a generic set of Gaussian shaped functions 

or sigmoids can be used. Here, however, the trivial choice of identity matrix 

 is used. In this case, the regularization part of (4.20) can be understood to draw 

the solution toward the null space of the regularization matrix . The null space of the 

second order difference matrix contains all first order curves and, thus,  is a good 

choice for estimating the aperiodic trend of RR series. With these specific choices, the 

detrended nearly stationary RR series can be written as 

 

 (4.23) 

 

Fig. 4.8 illustrates the all above processes.  

 

4.3 Feature Extraction Stage 

Useful information that best represent characteristics of data must be extracted and 

rearranged into proper format. Feature extraction is the linear or non-linear 

transformation of the original feature space. The extracted features will then be fed into 

a classifier for classification (Lynn & Chiang, 2001). The most widely used feature 

extraction techniques can be roughly divided into time-domain, frequency-domain and 
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nonlinear methods. In addition, time-varying methods such as time-frequency 

representations have been utilized. In the following subsections, these methods (except 

time-domain HRV measures which was given in Table 3.1) used in the analysis of HRV 

are explained in detail. 

 

 

Figure 4.8 Smoothness priors detrending method: (a) interpolated RR interval function 

with trend and (b) detrended RR interval function. 

4.3.1 Frequency - Domain Measures 

In order to calculate these measures, there exist several methods in the literature. 

FFT-, Auto Regressive-, and Lomb-Scargle-based periodograms are the most popular 

ones due to their several advantages. In the following subsections, detailed information 

can be found. 

 

4.3.1.1 FFT-based Periodogram 

 

The Discrete Fourier Transform (DFT) of an N-point evenly-spaced sequence is 

given by 

 

 

(4.28) 
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where . 

 

Although the DFT is a computable transform, the implementation of (4.28) is very 

inefficient, especially when the sequence length N is large. In 1965, Cooley and Tukey 

showed a procedure to substantially reduce the amount of computations involved in 

DFT (Cooley & Tukey, 1965). This and other similar efficient algorithms are 

collectively known as fast Fourier transform (FFT) algorithms. Implementation of these 

algorithms can be found in popular digital signal processing books such as (Ingle & 

Proakis, 2000). 

 

Parseval's relation computes the energy in the frequency domain as 

 

 

(4.29) 

 

The quantity  is called the energy spectrum of finite-duration sequences. 

Similarly, for periodic sequences, the quantity  is called power spectral 

density (PSD).  

 

4.3.1.2 Autoregressive Model-Based Periodogram 

 

Parametric methods can yield higher resolutions than nonparametric methods in 

cases when the signal length is short. These methods use a different approach to spectral 

estimation; instead of trying to estimate the PSD directly from the data, they model the 

data as the output of a linear system driven by white noise, and then attempt to estimate 

the parameters of that linear system.  

 

The AR methods tend to adequately describe spectra of data that is "peaky," that is, 

data whose PSD is large at certain frequencies. The data in many practical applications 

(such as speech) tends to have "peaky spectra" so that AR models are often useful. In 

addition, the AR models lead to a system of linear equations which is relatively simple 

to solve (Wang & Paliwal, 2003). An AR process model is defined as 
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(4.30) 

 

where p is model order and n(t) is white noise. 

 

Selection of the model order, p, of the parametric process is an important issue. If it 

is chosen too high or low, it may come with failing to represent data properly. There are 

a number of criteria to optimize the AR model order. Akaike's final prediction error 

(FPE) is probably the most common used criterion among them. FPE, which selects p 

minimizing the function FPE(p), defined as: 

 

 
(4.31) 

 

where N is the number of samples and  is the variance of the AR model with the order 

p. It is seen that whereas  decreases with p, the term  increases with p. The FPE 

is an estimate of the prediction error power when the prediction coefficients must be 

estimated from the data. The term  accounts for the increase in variance of the 

prediction error power estimator due to the inaccuracies in the prediction coefficient 

estimates (Proakis & Manolakis, 1996). 

 

An AR method yields a PSD estimate given by 

 

 
(4.32) 

 

4.3.1.3 Lomb-Scargle Periodogram 

 

In addition to classical methods used in the calculation of PSD, a more appropriate 

PSD estimation for unevenly sampled data is the Lomb-Scargle (LS) periodogram 
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(Clifford & Tarassenko, 2005; Laguna, Moody, & Mark, 1998; Lomb, 1976; Scargle, 

1982). LS method is able to be used without the need to resample and detrend the RR 

data (Laguna, Moody, & Mark, 1998). The detailed explanation of this periodogram 

method is introduced in the following paragraphs. 

 

Consider a physical variable X measured at a set of times tj where the sampling is at 

equal times ( ) from a stochastic process. The resulting time 

series data, x(tj) where (j=1,2,…,N), are assumed to be the sum of a signal xs and 

random observational errors, R; 

 

 (4.33) 

 

Furthermore, it is assumed that the signal is periodic, that the errors at different 

times are independent (  where ) and that  is normally 

distributed with zero mean and constant variance, . 

 

The N-point discrete Fourier transform (DFT) of this sequence is 

 

 

(4.34) 

 

where , , and the power spectral density (PSD) estimate is 

therefore given by the standard method for calculating a periodogram: 

 

 

(4.35) 

 

Now consider arbitrary tj's or uneven sampling ( ) and a 

generalization of the N-point DFT (Scargle, 1982): 
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(4.36) 

 

where , j is the summation index, and A and B are as yet unspecified functions 

of the angular frequency wn. This angular frequency may depend on the vector sample 

times, {tj}, but not on the data, {x(tj)}, nor on the summation index j. The corresponding 

periodogram is then 

 

 

(4.37) 

 

If , Equations 4.36 and 4.37 reduce the classical definitions [Equations 

4.34 and 4.35]. For even sampling FTX reduces to the DFT and in the limit  and 

, it is proportional to the Fourier transform. Scargle shows how Equation 4.37 is 

not unique and further conditions must be imposed in order to derive the corrected 

expression for the LSP: 

 

 

(4.38) 

 

where 

 

 (4.39) 
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τ is an offset that makes PN(w) completely independent of shifting all the tj's by any 

constant (Clifford & Tarassenko, 2005; Laguna et al., 1998). C and MATLAB codes for 

this calculation are available from PhysioNet (Goldberger et al., 2000). 

 

4.3.2 Time - Frequency - Domain Measures 

 

Power spectral density (PSD) estimation allows quantitative analysis of the 

frequency components of the RR interval time series, and it is an important method to 

understand tonic cardiovascular activities. The power spectrum is often assessed by FFT 

and LSP as described above. However, these traditional methods have their own 

limitation when used in the analysis of HRV. They assume that the signal is at least 

quasi-stationarity, which is not always true in physiological signals. This obscures the 

accuracy of PSD estimation of nonstationary signals. Furthermore, traditional spectral 

analysis methods have an excellent frequency resolution, but their time resolution is 

insufficient. The wavelet transform, popular time - frequency domain method, is a better 

alternative. Compared with traditional frequency analysis methods, the wavelet 

transform has many advantages (Pichot et al., 1999): 

 It has no prerequisite over the stationarity of the analyzed signal. The time - 

frequency localization property of the wavelet transform makes it more suitable for 

the analysis of nonstationary signals, such as the RR interval. It provides the status 

of HRV at any time, and can capture any sudden changes in autonomic tone.  

 It exhibits good frequency resolution as well as time resolution. 

 It offers a flexible multi-resolution signal representation and variable scale. Long 

windows can be used to analyze low frequency components, while short windows 

can be used for high frequency components. 

 It provides different shapes of mother wavelets to fit the analyzed signal better than 

the fixed sinusoidal shape of the Fourier transform. 

 

Wavelets have challenged the traditional Fourier transforms for analyzing and 

processing signals. Instead of relying on fixed sinusoidal functions in Fourier transform, 

wavelets use a 'mother' wavelet with various shapes. It is a mathematical function that 

breaks down the signals into a number of scales related to frequency components and 
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analysis each scale with a certain resolution. This breaking down process is called a 

wavelet transform. It offers a flexible multi-resolution signal representation which is 

useful in many applications. 

 

4.3.2.1 Continuous Wavelet Transform 

 

In mathematical terms, the continuous wavelet transform (CWT) decomposes a 

signal x(t) by performing scalar product with a family of  functions, which are 

built by dilation and trans-location of the mother wavelet . The transform is defined as 

(Aldroubi & Unser, 1996): 

 (4.40) 

 

The resultant C(a,b) are called wavelet coefficients, which represent the correlation 

between the signal and the chosen wavelet at different scales. The amplitude of the 

coefficients therefore tends to be maximum at those scales and locations where the 

signal most resembles the chosen wavelet. The wavelet transform is a tool for time-

frequency signal analysis since each wavelet function  is predominantly 

localized in a certain region of the time-frequency plane. The wavelet function  

depends on two parameters, scale a and trans-location parameter b, which vary 

continuously over the real numbers. For smaller values of scale a, the wavelet is 

contracted in the time domain and the wavelet transform gives information about the 

detail of the signal, which is also called high frequency component. For larger values of 

a, the wavelet expands to give a global view of the signal, which is the low frequency 

component of the signal. 

 

4.3.2.2 Discrete Wavelet Transform 

 

To reduce the redundancy of the continuous wavelet transform, the discrete wavelet 

transform (DWT) has been introduced. It can be understood as a CWT sampled on a 

discrete plane (Fig. 4.9). The most popularly used algorithm in HRV study is the 

orthogonal multi-resolution pyramidal DWT algorithm (Malik, Cripps et al., 1989), 
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because of its non-redundancy and computational efficiency. The principle of the dyadic 

pyramid algorithm is depicted in Fig. 4.10.  

 

 

Figure 4.9 Block diagram of filter analysis. 

 

 

 

Figure 4.10 A 3-level filter bank. 

 

 

One other important issue is to find out the relationship between wavelet scale 

(level) and the Fourier frequency, so as to make the results from both frequency and 

time-frequency analysis of HRV comparable. The frequency interpretation was given in 

Fig. 4.11 as following (Medigue et al., 1997): for a given signal sampled at fs Hz, the 

wavelet decomposition at scale m acts as a band-pass filter between  Hz and  

Hz. Previously, this equation has been used to interpret HRV with wavelet in adults 

(Shimazu, Ojima, Takasugi, Nejime, & Kamishima, 1999). For example a signal with 32 

samples, frequency range 0 to  and 3 levels of decomposition, 4 output scales are 

produced: 
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Table 4.1 Frequency bands for each level in a 3-level DWT where 

di's are detail coefficients and a3 is the approximation coefficients of 

the last level. 

Level   Frequencies  Number of Samples 

a3  0 
 

 4 

d3  
  

 4 

d2  
  

 8 

d1  
  

 16 

 

 

Figure 4.11 Frequency domain representation of the DWT. 

 

4.3.2.3 Wavelet Packet Decomposition 

 

Wavelet packet decomposition (WPD) (sometimes known as just wavelet packets) is 

a wavelet transform where the signal is passed though more filters than the DWT. In the 

DWT, each level is calculated by passing the previous approximation coefficients 

though a high and low pass filters. However in the WPD, both the detail and 

approximation coefficients are decomposed (Fig. 4.12). 

 

For n levels of decomposition the WPD produces 2
n
 different sets of coefficients (or 

nodes) as opposed to n+1 sets for the DWT (Fig. 4.13). However, due to the down-

sampling process the overall number of coefficients is still the same and there is no 

redundancy. 
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Figure 4.12 Wavelet Packet decomposition over 3 levels. 

 

 

Figure 4.13 Frequency domain representation of the WPT. 

 

4.3.2.4 Mother Wavelet 

 

Choosing an appropriate mother wavelet is another important issue in all wavelet 

applications. In the literature, many studies related to the analysis of ECG and HRV 

preferred Daubechies 4 wavelet as mother wavelet (Fig. 4.14) (Asyalı, 2003; Bakardjian 

& Yamamoto, 1995; Pichot et al., 1999; Shimazu et al., 1999; Torrence & Compo, 

1998; Wiklund, Akay, & Niklasson, 1997).  
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Figure 4.14 Daubechies 4 wavelet mother function. 

 

4.3.2.5 Wavelet-Based Measures 

 

Like frequency domain measures, similar parameters are defined here to quantify 

different frequency components, which are calculated from the wavelet transform 

(Medigue et al., 1997; Shimazu et al., 1999). These measurements are called Wavelet 

Variance, Wavelet Energy, and Wavelet Entropy measures. In order to calculate these 

measures, there is a three-step procedure defined in the literature (Rosso, Quian, Blanco, 

Figliola, & Başar, 1998; Rosso et al., 2001): i) obtaining the coefficients for wavelet 

packet analysis, ii) calculating the wavelet energy and variance, and iii) calculating the 

wavelet entropy. The last two steps are described below in detail. 

 

4.3.2.5.1 Wavelet Variance. Once the wavelet coefficients are known, the variance 

for each wavelet scale level can be calculated as 

 

 (4.41) 

 

where Nm is the number of wavelet coefficients and  is the mean value of all wavelet 

coefficients for wavelet level m (Engin, 2007).  
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4.3.2.5.2 Wavelet Energy. In addition to the wavelet variance, the energy for each 

wavelet coefficient can be calculated using wavelet coefficients as 

 

 (4.42) 

 

where Cj is the j-th coefficient of the last level of wavelet packets (Rosso et al., 1998, 

2001).  

 

The total energy can be evaluated as  

 

 (4.43) 

 

where N is the number of wavelet coefficients at the last level of wavelet packets.  

 

4.3.2.5.3 Wavelet Entropy. The normalized values, which represent the relative 

wavelet energy (or the probability distribution), can be defined as 

 

 (4.44) 

 

Clearly,  and, then, following the definition of entropy given by Shannon 

(Shannon, 1948), the wavelet entropy can be defined as  

 

 (4.45) 

 

where all pj values are in the frequency band, f, of interest (Rosso et al., 2001). 
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4.3.3 Nonlinear Parameters 

 

Nonlinear characteristics are certainly involved in biomedical signals. It has been 

suggested that through nonlinear analysis, it might be possible to obtain precious 

information for physiological interpretation and to obtain (diagnosis) / to predict 

(prognosis) patients for various cardiac and non-cardiac diseases. However, these 

nonlinear methods have not been used systematically to investigate large patient 

populations. At present, they are just potential tools for ECG and HRV assessments 

(Task Force, 1996).  

 

4.3.3.1 Poincare Plot Measures 

 

The Poincare plot, a technique taken from nonlinear dynamics, portrays the nature of 

the signal. It is a graph of each data on x axis plotted against the next data on y axis (Fig. 

4.15). The plot provides summary information as well as detailed information on the 

behavior of the heart (Kamen, Krun, & Tonkin, 1996; Kamen & Tonkin, 1995; Woo et 

al., 1992). The overall shape of the distribution is used to characterize the dynamics of 

the time series (Berntson et al., 1997). The Poincare plot is becoming a popular 

technique due to its simple visual interpretation and proved clinical ability as a predictor 

of disease and cardiac dysfunction (Kamen, 1996). Poincare plot is drawn using the raw 

dataset.  

 

Fitting an ellipse to the Poincare plot's shape is becoming increasingly popular 

technique (Marciano, Migaux, Acanfora, Furgi, & Rengo, 1994). The standard deviation 

of the distance of the points on the plot determines the width (SD1) and length (SD2) of 

the ellipse (Brennan, Palaniswami, & Kamen, 2001). These measures can be calculated 

as follows (Landes et al., 1996): 

 

 (4.46) 

 

(4.47) 
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where SDSD is standard deviation of successive differences and SD is the standard 

deviation of the data where lag=1 instead of the equations of 

 (4.48) 

 
(4.49) 

 

 

Figure 4.15 An example Poincare plot and the measures of SD1 and SD2. 

  

In addition, the product ( ) and the ratio ( ) may also be computed to 

describe the relationships between these components. The ratio is assumed to be 

indicator of the balance between the sympathetic and vagal activities (Kamen & Tonkin, 

1995). In the literature, the conventional value of lag is 1 (Smith, Reynolds, & Owen, 

2007; Stein, Le, & Domitrovich, 2008), but some studies used different values from 1 to 

10 (Contreras, Canetti, & Migliaro, 2007; Thakre & Smith, 2006). The results for lagged 

Poincare plots carry over to higher-dimensional Poincare plots (Brennan, Palaniswami, 

& Kamen, 2001). 
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4.3.4 Feature Normalization 

 

In order to prevent any initial bias due to the natural ranges of values for the original 

features, input feature values should be normalized. The performance of the classifiers 

can be improved by using the normalization (Kotsiantis, Kanellopoulos, & Pintelas, 

2006). In this scope, the Min-Max normalization, Rank normalization, or Z-score 

standardization techniques may be used.  

 

In the min-max normalization, all the samples are normalized into the range of [0,1] 

as 

 
(4.50) 

 

where i=1,2,…,d, d is the number of features, fi,N is the normalized i-th feature, fi is the 

i-th feature, min(fi) and max(fi) are the minimum and the maximum values of the i-th 

feature, respectively. 

 

In the rank normalization, all the samples are ordered and numbered with an integer 

number. After this ordering, the corresponding numbers can be divided by the maximum 

order number to fit the normalized values into the range of [0,1]. 

 

In the z-score standardization, all the samples are normalized into the zero mean and 

unity variance values as 

 

 
(4.51) 

 

where i=1,2,…,d, d is the number of features, fi,N is the normalized i-th feature, fi is the 

i-th feature,  and std(fi) are the mean and the standard deviation values of the i-th 

feature, respectively. 
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4.4 Feature Selection Stage 

Feature selection, also known as variable selection, feature reduction, attribute 

selection or variable subset selection, is the technique, commonly used in machine 

learning, of selecting a subset of relevant features for building robust learning models 

(Duda, Hart, & Stork, 2001). By removing most irrelevant and redundant features from 

the data, feature selection helps improve the performance of learning models by: 

 alleviating the effect of the curse of dimensionality, 

 enhancing generalization capability, 

 speeding up learning process, and 

 improving model understandability.  

 

Feature selection also helps people to acquire better understanding about their data 

by telling them that which are the important features and how they are related with each 

other. 

 

The feature selection algorithms can be divided into two major groups (Fig. 4.16), 

the filter approach and the wrapper approach (John, Kohavi, & Pfleger, 1994). The filter 

approach assesses the relevance of the features from the data set and the selection is 

mainly based on statistical measures. The effects of the selected features on the 

performance of a particular classifier are neglected. In contrast, the wrapper approach 

uses the classification performance of the classifier itself as part of the search for 

evaluating the feature subsets. Since the selection of a feature subset which takes the 

classification algorithm into account achieves a high predictive accuracy on unknown 

test data, the wrapper approach is more appropriate. However, this approach is 

associated with high computational costs, although advances in computer technology 

make the wrapper method feasible. The filter approach is mostly used in data mining 

applications where huge data sets are considered.  

 

In addition, the feature selection algorithms can also be split up into methods which 

guarantee finding the optimal solution and algorithms which may result in suboptimal 

feature sets (Jain & Zongker, 1997; Zongker & Jain, 1996). 
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Figure 4.16 The feature selection algorithms: the filter approach (upper) and the wrapper approach 

(bottom). 

 

4.4.1 Optimal methods 

 

Exhaustive search for feature selection is too time-consuming even for a moderate-

number of features. The total number of competing subsets is given by . Even if 

the size of the final feature subset d is given, the total number of subsets   

is too high for performing an exhaustive search (Jain, Duin, & Mao, 2000), where n is 

the number of extracted features and  denotes the size of the final feature subset.  

 

4.4.2 Suboptimal methods 

 

These feature selection algorithms may result in suboptimal feature subsets using a 

deterministic or stochastic approach for the search. Sequential feature selection 

algorithms search in a sequential deterministic manner for the suboptimal best feature 

subset. Basically, forward and backward algorithms are available. The forward methods 

start with an empty set and add features until a stopping criterion concludes the search. 

The backward algorithms begin with all features and remove features iteratively. The 

detailed list can be found in the literature (Jain, Duin, & Mao, 2000; Pernkopf, 2005). In 

stochastic approach, genetic algorithms (GA) are probably the most widely used 

methods in the literature. 
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4.4.2.1 Genetic algorithms 

 

GA is optimization algorithms founded upon the principles of natural evolution 

discovered by Darwin. In nature, individuals have to adapt to their environment in order 

to survive in a process of further development. GA turns out to be competitive for 

certain problems, e.g. large-scale search and optimization tasks. It uses a stochastic, 

directed and highly parallel search based on principles of population genetics that 

artificially evolve solutions to a given problem (Goldberg, 1989, Holland, 1975). GA 

work well even if the space to be searched is large, not smooth or not well understood, 

or if the fitness function is noisy and, in addition, when finding a good solution (not 

necessarily the exact global optimum) is sufficient (Koza, 1992). 

 

GA is stochastic optimization procedures which have been successfully applied in 

many feature selection tasks. The problem of dimensionality reduction is well suited to 

formulation as an optimization problem. Given a set of d-dimensional input patterns, the 

task of the GA is to find a transformed set of patterns in an m-dimensional space (m < d) 

that maximizes a set of optimization criteria (Raymer, Punch, Goodman, Kuhn, & Jain, 

2000). Typically, the transformed patterns are evaluated based upon their 

dimensionality, and their class separation or the classification accuracy that can be 

obtained on the patterns with a given classifier.  

 

The main factors that make GA different from traditional methods of search and 

optimization are (Koza, 1992): 

 GA work with a coding of the design variables as opposed to the design variables 

themselves; 

 GA work with a population of points as opposed to a single point, thus reducing the 

risk of getting stuck at local minimum; 

 GA requires only the objective function value, not the derivatives. This aspect makes 

GA application problem-independent; and 

 GA is a family of probabilistic search methods, not deterministic, making the search 

highly exploitative. 
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Main elements of a GA mechanism, used in the feature selection, will be given in 

the following. 

 

4.4.2.1.1 The representation scheme. A direct approach to using GA for feature 

selection was introduced by (Siedlecki & Sklansky, 1989). In their work, a GA is used 

to find an optimal binary vector, where each bit is associated with a feature (Fig. 4.17). 

If the i-th bit of this vector equals 1, then the i-th feature is allowed to participate in 

classification; otherwise, the corresponding feature does not participate.  

 

 

Figure 4.17 N-bit binary representation of 

whole feature space (Siedlecki & Sklansky, 

1989). 

 

4.4.2.1.2 Fitness. The evolutionary process is driven by the fitness measure. The 

fitness assigns a value to each resulting subset of features is evaluated according to its 

classification accuracy on the testing data set. Because the implementation of GA in 

MATLAB is designed to find the minimum values, the fitness value is calculated as 

 

 
(4.52) 

 

where N is the size of the dataset, NF and NC are the number of failed and correctly 

classified samples, respectively. 

 

4.4.2.1.3 The Selection Scheme. The selection operator improves the average quality 

of the population by giving individuals with higher fitness a higher probability to 

undertake any genetic operation. An important feature of the selection mechanism is its 
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independence of the representation scheme, as only the fitness is taken into account. The 

probabilistic feature allocates to every individual a chance of being selected 

occasionally.  

 

The most popular of the stochastic selection strategies is fitness proportionate 

selection, also called biased roulette wheel selection. It can be regarded as allocating pie 

slices on a roulette wheel, with each slice proportional to a string's fitness. Selection of a 

string to be a parent can then be viewed as a spin of the wheel, with the winning slice 

being the one where the spin ends up. Although this is a random procedure, the chance 

of a string to be selected is directly proportional to its fitness and the least fit individuals 

will gradually be driven out of a population. For example, if we generate a random 

number C between 0 and 1 and we get the value 0.61, string 3 in Fig. 4.18 would be 

selected. 

 

A second common strategy is called tournament selection (Goldberg & Deb, 1991). 

A subpopulation of individuals is chosen at random. The individual from this 

subpopulation with the highest fitness wins the tournament. Generally, tournaments are 

held between two individuals (binary tournament). However, this can be generalized to 

an arbitrary group whose size is called the tournament size. This algorithm can be 

implemented efficiently as no sorting of the population is required. More important, it 

guarantees diversity of the population. The most important feature of this selection 

scheme is that it does not use the value the fitness function. It is only necessary to 

determine whether an individual is fitter than any other or not. Other selection schemes 

and their comparative analysis have been reviewed by (Goldberg & Deb, 1991). 

 

4.4.2.1.4 Crossover. The crossover operator is responsible for combining good 

information from two strings and for testing new points in the search space. The two off-

springs are composed entirely of the genetic material from their two parents. By 

recombining randomly certain effective parts of a character string, there is a good 

chance of obtaining an even more fit string and making progress toward solving the 

optimization problem. 
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Figure 4.18 Fitness proportionate method (Goldberg & Deb, 1991). 

 

Several ways of performing crossover can be used. The simplest but very effective is 

the one-point crossover (Goldberg, 1989). Two individual strings are selected at random 

from the population. Next, a crossover point is selected at random along the string 

length, and two new strings are generated by exchanging the substrings that come after 

the crossover point in both parents. The mechanism is illustrated in Fig. 4.19. 

 

 

Figure 4.19 GA One-point crossover. 

 

A more general case is the multi-point crossover in which parts of the information 

from the two parents are swapped among more string segments (de Jong, 1975). An 

example is the two-point crossover, where two crossover points are selected at random 

and the substring lying in between the points are swapped. 
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In uniform crossover, each bit of the offspring is created by copying the 

corresponding bit from one or the other parent selected at random with equal probability 

(Syswerda, 1989). Uniform crossover has the advantage that the ordering of bits is 

entirely irrelevant because there is no linkage between adjacent bits. Multi-point 

crossover takes half of the material from each parent in alternation, while uniform 

crossover decides independently which parent to choose. When the population has 

largely converged, the exchange between two similar parents leads to a very similar 

offspring. This is less likely to happen with uniform crossover particularly with small 

population size, and so, gives more robust performance. 

 

4.4.2.1.5 Mutation. Mutation prevents the population from premature convergence 

or from having multiple copies of the same string. This feature refers to the phenomenon 

in which the GA loses population diversity because an individual that does not represent 

the global optimum becomes dominant. In such cases the algorithm would be unable to 

explore the possibility of a better solution. 

 

Mutation consists of the random alteration of a string with low probability. It is 

implemented by randomly selecting a string location and changing its value from 0 to 1 

or vice versa, as shown in Fig. 4.20. 

 

 

Figure 4.20 GA mutation. 

 

4.4.2.1.6 Simple Genetic Algorithm. For feature selection, each individual is 

represented by binary values. The advantage of this representation is that the classical 

GA operators (binary mutation and crossover) can easily be applied without any 

modification. This assures that the basic GA implementation can be used (Vafaie & De 

Jong, 1995).  
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Assuming we have n tuning parameters encoded with binary values, GA works as 

follows: 

 Start with a randomly generated population of individuals of length n-bits. 

 Iteratively perform the following steps on the population: 

o calculate the fitness of each chromosome by least-squares, 

o sort the population, 

o create a new population: 

 Calculate the elite according to input parameter Pe, which is an 

additional operator that transfers unchanged a relatively small number 

of the fittest individuals to the next generation. Such individuals can 

be lost if they are destroyed by crossover or mutation (de Jong, 1975). 

 Fill up the population with the surviving strings according to 

tournament selection of size 2. 

 With the probability Pc, select a pair of individuals from the current 

population. The same string can be selected more than once to 

become a parent. Recombine sub-strings using the single-point 

crossover. Two new offspring are inserted into the new population 

instead of their parents. 

 With the probability Pm, mutate a randomly selected string at a 

randomly selected point. 

o Check the termination criteria (the maximum number of iteration exceeded, 

the fittest value found …). If not satisfied, go to the iteration. 

 

Each iteration of this process is called a generation. The entire set of generations is 

called a run. At the end of the run, there are one or more highly fit strings in the 

population. Generally, it is necessary to make multiple independent runs of a GA obtain 

a result that can be considered successful for a given problem. 

 

4.5 Classification Stage 

The last stage of the pattern recognition system, the classification stage, gives a 

decision usually based on the availability of a set of patterns that have already been 

classified. This set of patterns is termed the training set and the resulting learning 
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strategy is characterized as supervised. Learning can also be unsupervised, in the sense 

that the system is not given an a priori labeling of patterns. In this case, it establishes the 

classes based on the statistical properties of the patterns (Vatanabe, 1985). 

 

The classifier usually uses one of the several types of classification approaches. 

Nonetheless, the rapidly growing and available computing power, while enabling faster 

processing of huge data sets, has also facilitated the use of elaborate and diverse 

methods for data analysis and classification. In more recently, demands on automatic 

pattern recognition systems have raised enormously due to the availability of large 

databases and high performance of computers. In many of recognition applications, it is 

clear that no single approach is optimal. Therefore, multiple methods and approaches are 

needed to be used. Thus, combining several methods and classifiers is now commonly 

used in pattern recognition (Jain, Duin, & Mao, 2000).  

 

A learning rule is defined as a procedure for modifying the parameters of a network, 

which can also be referred to as a training algorithm. The learning rule is applied to train 

the network to perform some particular task. Learning rules fall into two broad 

categories: supervised learning, and unsupervised learning.  

 

In supervised learning, the learning rule is provided with a set of examples (the 

training set) of proper network behavior {(p1,t1), (p2, t2), …, (pN, tN)} where pi is an 

input to the network, and ti is the corresponding correct (target) output. As the inputs are 

applied to the network, the network outputs are compared to the targets. The learning 

rule is then used to adjust the parameters of the network in order to force the network 

outputs closer to the targets.  

 

In unsupervised learning, on the other hand, the parameters are modified in response 

to network inputs only. There are no target outputs available. Most of these algorithms 

perform clustering operations. They categorize the input patterns into a finite number of 

classes. This is especially useful in such applications as vector quantization. 
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Although there are many classification schemes, the Bayes and the k-Nearest 

Neighbors classifiers were used in this study due to their simplicity and 

understandability. 

4.5.1 Bayes Classifier 

In Bayesian decision theory, tradeoffs between probabilities and decision costs from 

the basis of a classification decision (Duda, Hart, & Stork, 2001). It is desirable to 

minimize the cost of making an incorrect classification, given certain theoretical 

knowledge of the classification task. Bayes's rule provides a method of classifying an 

object optimally into one of c mutually exclusive classes, using 

 the prior (a priori) probabilities P(Ck), where k=1,…,c, and  

 the conditional densities p(x|Ck), where P(.) denotes a probability mass function and 

a lowercase p(.) to denote a probability density function. The class conditional 

probability density function determines how the feature values are distributed for 

each class. Feature vector x, where x = {x1, …, xd}, will have a distribution described 

by the probability density function p(x). The probability P(x) of a feature vector x 

lying in a region R is 

 

(4.53) 

 

p(x) is normalized s.t.  if R spans all possible values of x. The class 

densities are the separate probability density functions formed for each class: p(x|Ck). 

The unconditional probability density function is the sum of class conditional 

probability density functions weighted by prior probabilities and is independent of class 

(Duda, Hart, & Stork, 2001): 

 

 
(4.54) 

 

The posterior probabilities may be calculated from 
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(4.55) 

 

where P(Ck|x) is the posterior probability for class Ck, p(x|Ck) is the class conditional 

probability density function for class Ck, P(Ck) is the prior probability of class Ck, p(x) is 

the unconditional probability density function (from Equation 4.54). Assuming that the 

feature vectors can provide actual classifying information, the posterior probability can 

increase confidence in the final decision relative to the prior probabilities (Duda, Hart, 

& Stork, 2001). 

 

To classify x, the class Ck with the highest posterior probability is chosen (or a 

random choice in the case of equal posterior probabilities) using 

 

 (4.56) 

 

With Bayes's rule, a classifier is a means of partitioning the input space into c 

decision regions Rk so that feature values in each decision region are associated with a 

particular class. The probability density of a correct classification at point x, for a class 

Ck, in a region is p(x|Ck)P(Ck). Therefore, the overall probability of an accurate decision 

is obtained (Duda, Hart, & Stork, 2001) by integration of the probability density over all 

regions is 

 

(4.57) 

 

Pcorrect is maximized by the choice of regions to maximize each of c integrands, i.e. by 

assigning a pattern to class Ck that maximizes p(x|Ck)P(Ck). Since 

, it may be seen that the maximum Pcorrect value is achieved by maximizing 

P(Ck|x), the posterior probability. 
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If p(x|Ck) for different classes overlap, e.g. for the cases of two curves with 

overlapping joint probability density functions, the best classification choice is to 

minimize the overlap area (to maximize Equation 4.57); however, in this case, a perfect 

classifier cannot be realized. 

4.5.2 k-Nearest Neighbors Classifier 

k-nearest neighbors (KNN) is amongst the simplest of all machine learning 

algorithms. KNN is one of the instance-based classifiers. In instance-based methods, 

system parameters or classifying system units simply consist of the samples that are 

presented to the system. This algorithm assumes that all instances correspond to points 

in the d-dimensional space R
d
 (Mitchell, 1997). An object is classified by a majority 

vote of its neighbors, with the object being assigned to the class most common amongst 

its k nearest neighbors (Fig. 4.21). k is a positive integer, typically small. If k = 1, then 

the object is simply assigned the class of its nearest neighbor. In binary (two class) 

classification problems, it is helpful to choose k to be an odd number as this avoids 

difficulties with tied votes (Nixon & Aguado, 2002). 

 

The neighbors are taken from a set of objects for which the correct classification is 

known. This can be thought of as the training set for the algorithm, though no explicit 

training step is required. In order to identify neighbors, the objects are represented by 

position vectors in a multidimensional feature space. It is usual to use the Euclidean 

distance, though other distance measures, such as the Mahalanobis distance could be 

used instead.  

 

The training phase of the algorithm consists only of storing the feature vectors and 

class labels of the training samples. In the actual classification phase, the test sample 

(whose class is not known) is represented as a vector in the feature space. Distances 

from the new vector to all stored vectors are computed and k closest samples are 

selected. A major drawback to use this technique to classify a new vector to a class is 

that the classes with the more frequent examples tend to dominate the prediction of the 

new vector, as they tend to come up in the KNN when the neighbors are computed due 

to their large number. One of the ways to overcome this problem is to take into account 
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the distance of each KNN with the new vector that is to be classified and predict the 

class of the new vector based on these distances (Vatanabe, 1985). 

 

 

Figure 4.21 An example of KNN classification. The test 

sample (?) should be classified either to the first class of X’s 

or to the second class of O’s. If k = 3, it is classified to the 

second class because there are 2 O’s and only 1 X inside the 

inner circle. If k = 5, it is classified to first class (3 X’s vs. 2 

O’s inside the outer circle). 

 

A KNN classifier allows a great deal of generality in the classification because, 

unlike many other classifiers which assume a multivariate Gaussian distribution of the 

feature values, the KNN classification method does not depend on the data following 

any particular distribution (Duda, Hart, & Stork, 2001). They have also advantages in 

that the information in training data is never lost (Şahan, Polat, Kodaz, & Güneş, 2007). 

But, there are some problems with this algorithm. First of all, for large data sets, this 

algorithm is very time-consuming because each sample in the training set is processed 

while classifying a new data and this requires a longer classification time. This cannot 

be a problem for some application areas but when it comes to a field like medical 

diagnosis, time is very important as well as classification accuracy. Nonetheless, the 

accuracy of the KNN algorithm can be severely degraded by the presence of noisy or 
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irrelevant features, or if the feature scales are not consistent with their importance. Much 

research effort has been put into selecting or scaling features to improve classification. 

 

4.6 Model Evaluation Stage 

 

To discuss applications and accomplishments of various classifiers, we will first 

introduce a few standard measures that will be used throughout this thesis to compare or 

report various results. These measures have been recommended and used to evaluate 

physicians and health-care workers by various organizations, and therefore are good 

measures for evaluating the performance of any automated system that is designed to 

assist these health-care professionals (Valafar, 2001). 

 

There are at least two reasons for calculating the generalization rate of a classifier on 

a given problem. One is to see if the classifier performs well enough to be useful; 

another is to compare its performance with that of a competing design. Estimating the 

final generalization performance can be calculated using various performance measures 

in the validation methods. Such techniques can be applied to virtually every 

classification method, where the specific form of learning or parameter adjustment 

depends upon general training method (Duda, Hart, & Stork, 2001). 

4.6.1 Performance Assessment 

The American Heart Association (AHA) recommends the use of four measures to 

evaluate the procedures for diagnosing CAD (Gibbons et al., 1997). Since these 

measures are useful in other areas of diagnosis as well, they are used in evaluating most 

diagnostic systems (Valafar, 2001). In this performance measurement system, the 

recognition system discriminates the decisions only between two alternatives which are 

"positive" and "negative". In each alternative, there are two kinds of responses which are 

"true" and "false". 

 

By considering the two-class case, there are four possible outcomes. If the instance 

is positive and it is classified as positive, it is counted as true positive (TP); if it is 

classified as negative, it is counted as false negative (FN). If the instance is negative 
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and it is classified as negative, it is counted as true negative (TN); if it is classified as 

positive, it is counted as false positive (FP). Given a classifier and a set of instances (the 

test set), a two-by-two confusion matrix (also called a contingency table or decision 

matrix) can be constructed representing the dispositions of the instances. This matrix 

forms the basis for many common metrics (Eberhart & Dobbins, 1990). Fig. 4.22 shows 

this matrix. 

 

 

Figure 4.22 Two-by-two decision matrix. 

 

4.6.1.1 Classical Performance Measures 

 

There are several ways of computing the performance of a recognition system using 

the decision matrix. They are often considered to be the most informative for 

characterizing the performance of the classifier and easy to calculate (Eberhart & 

Dobbins, 1990).  

 

Sensitivity (True Positive Rate) is the ratio of the number of positive decisions 

correctly made by the recognition system to the total number of positive decisions made 

by the expert. Selectivity (Precision) is the ratio of the number of positive decisions 

correctly made by the recognition system to the total number of positive decisions made 

by the recognition system. Specificity (True Negative Rate) is the ratio of the number of 

negative decisions correctly made by the recognition system to the total number of 

negative decisions made by the expert. Accuracy is the ratio of the total number of 

positive decisions and negative decisions correctly made by the recognition system to 

the total number of positive decisions and negative decisions made by the recognition 

system.  
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(4.58) 

 
(4.59) 

 
(4.60) 

 
(4.61) 

 

In addition to these calculations, there exist a few performance measures such as 

positive and negative predictive accuracies. Positive predictive accuracy measure is the 

same with selectivity measure defined above. Latter accuracy measure can be 

determined by calculating (Cao, 2004) 

 

 
(4.62) 

 

4.6.2 Cross-Validation 

 

In simple validation, the set of labeled training samples are randomly split into two 

parts: one is used as the traditional training set for adjusting the model parameters in the 

classifier; the other set (validation set) is used to estimate the generalization error. Since 

the ultimate goal of the designer is low generalization error, the classifier is trained until 

reaching a minimum of this validation error (Fig. 4.23). It is essential that the validation 

(or the test) set does not include points used in the training process (Duda, Hart, & 

Stork, 2001).  

 

A simple generalization of above method is m-fold cross-validation. Here the 

training set is randomly divided into m disjoint sets of equal size , where n is again the 

total number of patterns in D. The classifier is trained m times, each time with a 

different set held out as a validation set. The estimated performance is the mean of these 

m errors. In the limit where m=n, the method is in effect the leave-one-out approach. In 

this approach, the classifier is trained using the whole dataset except one and then tested 

on this single excluded data. This process is repeated for all the samples in the dataset. 
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Here the computational complexity may be very high, especially for large number of 

samples (n). However, it gives the advantage of using the whole dataset in training of 

the classifier and is especially preferred when the available dataset is small. 

 

 

Figure 4.23 In validation, the data set D is split into two parts. The first is used as a 

standard training set for setting free parameters in the classifier model; the other is 

the validation set and is meant to represent the full generalization task. For most 

problems, the training error decreases monotonically during training. Typically, the 

error on the validation set decreases, but then increases, an indication that the 

classifier may be over-fitting the training data. In validation, training or parameter 

adjustment is stopped at the first minimum of the validation error. In the more 

general method of cross-validation, the performance is based on multiple 

independently formed validation sets (Duda, Hart, & Stork, 2001). 

 

In this study, the leave-one-out method is used in evaluating the goodness of the 

classifier. The classifier is trained using the whole dataset except one and tested on the 

single excluded data. This process is repeated for all samples in the dataset.  

 

4.7 Statistical Analysis 

Throughout the thesis, all values in the tables are given as mean ± standard deviation 

unless otherwise noted. In addition, values of the features given in all tables were 

examined using unpaired t-test (see Appendix One). The p-value < 0.05 was regarded as 

statistical evidence to conclude that there was significant difference between two 

groups. 
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CHAPTER FIVE 

RESULTS AND DISCUSSION 

 

In the CHF diagnosis, there are two stages: (i) discriminating the patients from the 

normal subjects and (ii) determining the type of dysfunctionality. The achieved results 

related to these stages using the HRV analysis are given in this chapter. All the methods 

mentioned in chapter 4, entitled Methods, were combined together and visualized as a 

flowchart in Fig. 5.1. The optional steps can be seen easily in this figure with dashed 

lines. 

 

The software environment of MATLAB version 2008b was used to implement all 

the methods given. All the study had been conducted using a Pentium IV-3.0 GHz 

computer with 3 GB DDR2 memory.  

 

5.1 Discriminating CHF Patients from Normal Subjects 

 

5.1.1 Data Acquisition Stage 

 

The databases from the MIT/BIH, an open-source and freely available dataset via 

the Web, were used in order to evaluate the results obtained by comparing other studies. 

The data for the normal control group were obtained from 24 hour Holter monitor 

recordings of 54 healthy subjects and 29 patients with CHF. The detailed information 

about the databases (Goldberger et al., 2000; Moody, Goldberger, McClennen, & 

Swiryn, 2001) used in the study were summarized as follows.  

 

 Congestive Heart Failure RR Interval Database (CHF2DB) includes beat 

annotation files for 29 long-term ECG recordings of subjects aged 34 to 79, with 

congestive heart failure (NYHA classes I, II, and III). Subjects included 8 men and 2 

women; gender is not known for the remaining 19 subjects. The original ECG 

recordings (not available) were digitized at 128 samples per second, and the beat 

annotations were obtained by automated analysis with manual review and 

correction.  
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Figure 5.1 The flowchart of the whole study. 
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 Normal Sinus Rhythm RR Interval Database (NSR2DB) includes beat annotation 

files for 54 long-term ECG recordings of subjects in normal sinus rhythm (30 men, 

aged 28.5 to 76, and 24 women, aged 58 to 73). The original ECG recordings (not 

available) were digitized at 128 samples per second, and the beat annotations were 

obtained by automated analysis with manual review and correction.  

 

Although the databases included 24-h HRV data, only 5-min (300-s) ECG data were 

used to achieve the results quickly. Two example 300-s HRV data for a normal subject 

and a patient with CHF are shown in Fig. 5.2. 

 

 

Figure 5.2 HRV data of (a) a normal subject and (b) a patient with CHF. 

 

5.1.2 Preprocessing Stage 

 

In the second stage of the study, because RR databases were used, the first two steps 

(noise removal and data transformation) would be unnecessary (the second path of the 

first stage in the flowchart, Fig. 5.1). Therefore, the other steps of removing ectopic 

beats, heart rate normalization, resampling, and detrending were applied sequentially.  
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In HRV analysis, it is desirable to use only those heartbeats which are expected not 

to be disturbed by waves of the previous or following heartbeats. Therefore, abnormal 

beats like ventricular premature and atrial premature beats, and their following 

neighbors, should be excluded from the beat sequence (Clifford, Azuaje, & McSharry, 

2006). Hence, the algorithm developed by Langley and colleagues (Langley et al., 2001) 

were used to detect these artifacts.  

 

After removing the artifacts from the data, the heart rate normalization step was 

applied optionally. The rest of the study was conducted using both HRV data and heart 

rate normalized HRV data separately in order to find out the effect of the heart rate 

normalization process. In this optional step, the mean heart rates of all RR datasets were 

fixed to 75 bpm as offered in Hallstrom et al. (2004). 

 

The cubic spline interpolation method with a rate of 4 Hz (Task Force, 1996) to 

achieve evenly-sampled RR data and the smoothness priors based detrending method 

with a parameter of λ=1000 (Tarvainen, Ranta-aho, & Karjalainen, 2002) to remove 

trends from the RR data were used. An example of interpolated and detrended HRV data 

for the normal subject and the patient with CHF was shown in Fig. 5.3 (İşler, Selver, & 

Kuntalp, 2005). 

 

5.1.3 Feature Extraction Stage 

 

Time-domain, Lomb-Scargle algorithm-based frequency-domain, and Poincare plot 

measures were calculated directly from the raw HRV data. The wavelet entropy 

measures, on the other hand, were calculated using DB4 wavelet packet transform 

method with a scale of 7 from the resampled data. FFT-based frequency-domain 

measures were calculated from resampled and detrended data. Poincare plot measures 

were calculated using the method of ellipse fitting. At the end of this stage, the HRV 

dataset were constructed with 71 features (1 for gender, 12 time-domain measures, 6 

FFT-based PSD measures, 6 wavelet entropy measures, 6 LS-based PSD measures, and 

4 Poincare plot measures with 10 different lags).  
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Figure 5.3 Interpolated and detrended HRV data of (a) the normal subject and (b) the 

patient with CHF. 

 

After being calculated, all features were presented in the form of their mean ± 

standard deviations in tables. Hence, these were compared statistically using the method 

of unpaired t-test with unequal variances. In addition, classification performances of 

each feature were evaluated using Bayes classifier and included into these tables. 

 

Patient information of age for all records in the databases included into the study 

was summarized in Table 5.1.  

 

Table 5.1 Patient information for normals and patients with CHF from the databases. All values are 

presented as mean ± standard deviation.  

Feature NORMAL CHF P SEN SPE POS NEG ACC 

age 61±12 55±12 0.026 83 55 78 65 73 

 

Time domain statistical measures have been found common use because of their 

simplicity. These measures used in the study were summarized in Table 5.2. MEAN, 

RMSSD, NN20_2, NN20, PNN20, and SDSD values showed statistically significant 

differences for HRV data. After heart rate normalization process was applied, the 

features of SDNN, RMSSD, and SDSD showed statistically significant differences.  
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Table 5.2 Nominal 5-min time-domain metric values for normals and patients with CHF from the 

databases. All values are presented as mean ± standard deviation.  

Feature NORMAL CHF P SEN SPE POS NEG ACC 

BEFORE HEART RATE NORMALIZATION 

MEAN 0.740±0.11 0.670±0.09 0.007 54 66 74 43 58 

SDNN 0.061±0.02 0.078±0.07 0.162 67 34 65 36 55 

RMSSD 0.035±0.03 0.089±0.11 0.001 85 38 72 58 69 

NN20_1 58±28 46±27 0.060 63 66 77 49 64 

NN20_2 57±26 44±27 0.033 67 62 77 50 65 

NN20 115±54 90±54 0.044 61 66 77 47 63 

PNN20 0.297±0.16 0.202±0.12 0.008 56 62 73 43 58 

NN50_1 9.888±15.92 13.793±18.28 0.315 69 34 66 37 57 

NN50_2 9.833±13.75 14.137±18.16 0.229 69 38 67 39 58 

NN50 20±29 28±36 0.268 70 34 67 38 58 

PNN50 0.054±0.08 0.062±0.07 0.714 70 34 67 38 58 

SDSD 0.059±0.03 0.096±0.10 0.023 80 38 70 50 65 

AFTER HEART RATE NORMALIZATION 

MEAN 0.800±0.00 0.800±0.00 0.820 52 52 67 37 52 

SDNN 0.064±0.02 0.093±0.09 0.036 72 34 67 40 59 

RMSSD 0.038±0.03 0.107±0.13 0.000 89 41 74 67 72 

NN20_1 66±28 64±37 0.819 48 55 67 36 51 

NN20_2 64±25 62±38 0.820 48 55 67 36 51 

NN20 130±52 126±75 0.819 46 55 66 36 49 

PNN20 0.320±0.13 0.272±0.14 0.144 56 55 70 40 55 

NN50_1 11±14 16±19 0.213 72 34 67 40 59 

NN50_2 11±13 16±20 0.168 74 41 70 46 63 

NN50 22±27 32±39 0.185 74 38 69 44 61 

PNN50 0.058±0.08 0.069±0.08 0.536 70 34 67 38 58 

SDSD 0.063±0.03 0.114±0.12 0.005 81 38 71 52 66 

 

Frequency domain measures have also been found common use in all the forms of 

signal processing field. These measures were calculated using the FFT-based PSD, 

Lomb-Scargle PSD, and Wavelet entropies (Table 5.3). The former two were processed 

over 512 equally-spaced frequency points. Among these methods, LS-based frequency-

domain measures were noticed as their accuracies were a few higher than those of others 

(İşler, Avcu, Kocaoğlu, & Kuntalp, 2008). Because heart rate normalization process 

changed only the mean value of the data, the frequency domain measures were not 

significantly affected from this process. LS_LF and FFT_VLF were not found 

statistically different between two groups. 
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Table 5.3 Nominal 5-min frequency-domain metric values for normals and patients with CHF from the 

databases. All values are presented as mean ± standard deviation.  

Feature NORMAL CHF P SEN SPE POS NEG ACC 

BEFORE HEART RATE NORMALIZATION 

LS_LFHF 4.592±3.48 1.692±2.31 0.000 63 83 87 55 70 

LS_VLF 0.435±0.18 0.281±0.21 0.001 69 66 79 53 67 

LS_LF 0.155±0.10 0.118±0.06 0.089 50 83 84 47 61 

LS_HF 0.059±0.05 0.147±0.08 0.000 83 69 83 69 78 

LS_NLF 0.744±0.15 0.482±0.20 0.000 80 76 86 67 78 

LS_NHF 0.256±0.15 0.517±0.20 0.000 80 76 86 67 78 

FFT_LFHF 4.444±3.57 1.841±1.68 0.000 52 86 88 49 64 

FFT_VLF 0.000±0.00 0.000±0.00 0.092 87 24 68 50 65 

FFT_LF 0.000±0.00 0.005±0.01 0.026 94 14 67 57 66 

FFT_HF 0.000±0.00 0.004±0.01 0.020 96 14 68 67 67 

FFT_NLF 0.743±0.13 0.558±0.17 0.000 80 76 86 67 78 

FFT_NHF 0.256±0.13 0.441±0.17 0.000 80 76 86 67 78 

WS_LFHF 4.944±4.34 2.255±1.73 0.002 57 79 84 50 65 

WS_VLF 0.000±0.00 0.000±0.00 0.003 85 31 70 53 66 

WS_LF 0.000±0.00 0.000±0.00 0.001 91 31 71 64 70 

WS_HF 0.000±0.00 0.000±0.00 0.001 91 38 73 69 72 

WS_NLF 0.758±0.13 0.622±0.15 0.000 74 66 80 58 71 

WS_NHF 0.241±0.13 0.377±0.15 0.000 74 66 80 58 71 

AFTER HEART RATE NORMALIZATION 

LS_LFHF 4.592±3.48 1.692±2.31 0.000 63 83 87 55 70 

LS_VLF 0.435±0.18 0.282±0.21 0.001 69 66 79 53 67 

LS_LF 0.155±0.10 0.118±0.06 0.089 50 83 84 47 61 

LS_HF 0.059±0.05 0.147±0.08 0.000 83 69 83 69 78 

LS_NLF 0.744±0.15 0.482±0.20 0.000 80 76 86 67 78 

LS_NHF 0.256±0.15 0.517±0.20 0.000 80 76 86 67 78 

FFT_LFHF 3.974±3.21 1.667±1.49 0.000 48 86 87 47 61 

FFT_VLF 0.000±0.00 0.001±0.00 0.031 93 21 68 60 67 

FFT_LF 0.001±0.00 0.011±0.02 0.022 96 14 68 67 67 

FFT_HF 0.001±0.00 0.010±0.03 0.030 96 14 68 67 67 

FFT_NLF 0.721±0.14 0.540±0.17 0.000 74 76 85 61 75 

FFT_NHF 0.278±0.14 0.459±0.17 0.000 74 76 85 61 75 

WS_LFHF 4.462±3.92 2.269±1.82 0.006 54 79 83 48 63 

WS_VLF 0.000±0.00 0.001±0.00 0.001 89 31 71 60 69 

WS_LF 0.000±0.00 0.001±0.00 0.001 93 31 71 69 71 

WS_HF 0.000±0.00 0.000±0.00 0.002 93 31 71 69 71 

WS_NLF 0.745±0.13 0.619±0.16 0.000 65 62 76 49 64 

WS_NHF 0.254±0.13 0.381±0.16 0.000 65 62 76 49 64 

 

Poincare Plot is probably the mostly used nonlinear technique in the analysis of 

HRV. Additional embedded information, which cannot be obtained in the time- and 

frequency-domain measures, can be obtained. These measures were calculated using the 

ellipse-fitting method with ten different lag values from 1 to 10 for HRV data (Table 



99 

 

5.4) and heart rate normalized HRV data (Table 5.5). In both tables, statistically 

significant differences are shown in only SD2 measures although there were 

improvements in these measures of heart rate normalized HRV analysis.  It should be 

noted that all classifier performances were also increased after the heart rate 

normalization was applied. Nonetheless, all classifier performances were decreased 

while the lag values used in Poincare measures were increased. 

 

5.1.4 Feature Selection Stage 

 

In this study, best combination of short-term heart rate variability (HRV) measures 

were sought for to distinguish 29 patients with congestive heart failure (CHF) from 54 

healthy subjects in the control group. In the analysis performed, in addition to the 

standard HRV measures, wavelet entropy based frequency domain measures and 

Poincare plot parameters with 10 different lags were also used. A genetic algorithm was 

used to select the best ones from among all possible combinations of these measures. 

Using the leave-one-out method and KNN classifier, the fitness values were calculated. 

New population was constructed until the maximum number of generations was reached 

as a stopping criterion. The following standard GA parameters were chosen: Maximum 

generations of 250, Population size of 300, Elite count of 4, and Population type of bit 

string. 
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Table 5.4 Poincare plots' measures with 10 different lags for normals and patients with CHF from the 

databases using HRV data. All values are presented as mean ± standard deviation.  

Feature NORMAL CHF P SEN SPE POS NEG ACC 

SD1_1 0.025±0.02 0.063±0.07 0.001 85 38 72 58 69 

SD2_1 0.081±0.03 0.088±0.08 0.591 63 38 65 35 54 

SD1SD2_1 0.002±0.00 0.011±0.02 0.009 91 28 70 62 69 

RATIO_1 0.317±0.20 0.645±0.30 0.000 83 66 82 68 77 

SD1_2 0.029±0.02 0.064±0.07 0.003 85 38 72 58 69 

SD2_2 0.080±0.03 0.087±0.08 0.549 63 38 65 35 54 

SD1SD2_2 0.002±0.00 0.011±0.02 0.012 91 28 70 62 75 

RATIO_2 0.369±0.20 0.656±0.29 0.000 80 66 81 63 75 

SD1_3 0.033±0.02 0.065±0.07 0.006 83 38 71 55 67 

SD2_3 0.078±0.03 0.086±0.08 0.539 63 38 65 35 54 

SD1SD2_3 0.003±0.00 0.011±0.02 0.015 91 28 70 62 69 

RATIO_3 0.427±0.20 0.677±0.26 0.000 80 66 81 63 75 

SD1_4 0.035±0.02 0.065±0.07 0.010 80 38 70 50 65 

SD2_4 0.077±0.03 0.086±0.08 0.477 65 38 66 37 55 

SD1SD2_4 0.003±0.00 0.011±0.02 0.017 89 28 70 57 67 

RATIO_4 0.473±0.20 0.677±0.24 0.000 72 66 80 56 70 

SD1_5 0.037±0.02 0.067±0.07 0.012 80 38 70 50 65 

SD2_5 0.076±0.03 0.085±0.08 0.463 65 38 66 37 55 

SD1SD2_5 0.003±0.00 0.011±0.02 0.018 89 28 70 57 67 

RATIO_5 0.514±0.21 0.710±0.24 0.000 70 69 81 56 70 

SD1_6 0.039±0.02 0.067±0.07 0.016 80 38 70 50 65 

SD2_6 0.075±0.03 0.085±0.08 0.438 65 38 66 37 55 

SD1SD2_6 0.003±0.00 0.011±0.02 0.019 89 28 70 57 67 

RATIO_6 0.546±0.22 0.733±0.24 0.001 69 69 80 54 69 

SD1_7 0.040±0.02 0.068±0.07 0.019 80 38 70 50 65 

SD2_7 0.074±0.03 0.084±0.07 0.421 65 38 66 37 55 

SD1SD2_7 0.003±0.00 0.011±0.02 0.020 87 28 69 53 66 

RATIO_7 0.572±0.22 0.739±0.23 0.002 69 66 79 53 67 

SD1_8 0.041±0.02 0.067±0.07 0.023 80 38 70 50 65 

SD2_8 0.074±0.03 0.085±0.08 0.364 65 38 66 37 55 

SD1SD2_8 0.003±0.00 0.011±0.02 0.020 87 28 69 53 66 

RATIO_8 0.591±0.23 0.730±0.21 0.010 69 69 80 54 69 

SD1_9 0.041±0.02 0.066±0.07 0.023 78 38 70 48 64 

SD2_9 0.073±0.03 0.086±0.08 0.346 65 38 66 37 55 

SD1SD2_9 0.003±0.00 0.011±0.02 0.020 87 28 69 53 66 

RATIO_9 0.602±0.23 0.743±0.22 0.009 69 69 80 54 69 

SD1_10 0.042±0.02 0.068±0.07 0.023 80 38 70 50 65 

SD2_10 0.073±0.03 0.085±0.08 0.362 65 38 66 37 55 

SD1SD2_10 0.003±0.00 0.011±0.02 0.021 87 28 69 53 66 

RATIO_10 0.610±0.23 0.752±0.20 0.007 69 69 80 54 69 

 

 

 



101 

 

Table 5.5 Poincare plots' measures with 10 different lags for normals and patients with CHF from the 

databases using heart rate normalized HRV data. All values are presented as mean ± standard deviation.  

Feature NORMAL CHF P SEN SPE POS NEG ACC 

SD1_1 0.026±0.02 0.076±0.09 0.000 89 41 74 67 72 

SD2_1 0.085±0.03 0.104±0.09 0.186 67 38 67 38 57 

SD1SD2_1 0.002±0.00 0.016±0.03 0.004 96 34 73 83 75 

RATIO_1 0.317±0.20 0.645±0.30 0.000 83 66 82 68 77 

SD1_2 0.030±0.02 0.076±0.09 0.001 89 41 74 67 72 

SD2_2 0.084±0.03 0.104±0.09 0.167 67 38 67 38 57 

SD1SD2_2 0.002±0.00 0.016±0.03 0.005 96 34 73 83 75 

RATIO_2 0.369±0.20 0.656±0.29 0.000 80 66 81 63 75 

SD1_3 0.034±0.02 0.078±0.09 0.001 85 38 72 58 69 

SD2_3 0.083±0.03 0.102±0.09 0.163 67 38 67 38 57 

SD1SD2_3 0.003±0.00 0.016±0.03 0.006 96 34 73 83 75 

RATIO_3 0.427±0.20 0.677±0.26 0.000 80 66 81 63 75 

SD1_4 0.037±0.02 0.078±0.09 0.003 85 38 72 58 69 

SD2_4 0.081±0.03 0.102±0.09 0.135 72 38 68 42 60 

SD1SD2_4 0.003±0.00 0.016±0.03 0.006 96 34 73 83 75 

RATIO_4 0.473±0.20 0.677±0.24 0.000 72 66 80 56 70 

SD1_5 0.040±0.02 0.080±0.09 0.003 85 38 72 58 69 

SD2_5 0.080±0.03 0.101±0.09 0.133 70 38 68 41 59 

SD1SD2_5 0.003±0.00 0.016±0.03 0.007 96 34 73 83 75 

RATIO_5 0.514±0.21 0.710±0.24 0.000 70 69 81 56 70 

SD1_6 0.041±0.02 0.080±0.09 0.004 83 38 71 55 67 

SD2_6 0.079±0.03 0.101±0.09 0.122 70 38 68 41 59 

SD1SD2_6 0.003±0.00 0.016±0.03 0.007 96 34 73 83 75 

RATIO_6 0.546±0.22 0.733±0.24 0.001 69 69 80 54 69 

SD1_7 0.042±0.02 0.081±0.09 0.004 81 38 71 52 66 

SD2_7 0.078±0.03 0.100±0.09 0.112 70 38 68 41 59 

SD1SD2_7 0.003±0.00 0.016±0.03 0.007 96 34 73 83 75 

RATIO_7 0.572±0.22 0.739±0.23 0.002 69 66 79 53 67 

SD1_8 0.043±0.02 0.080±0.08 0.006 81 38 71 52 66 

SD2_8 0.078±0.03 0.102±0.09 0.093 70 38 68 41 59 

SD1SD2_8 0.003±0.00 0.016±0.03 0.007 96 34 73 83 75 

RATIO_8 0.591±0.23 0.730±0.21 0.010 69 69 80 54 69 

SD1_9 0.044±0.02 0.079±0.08 0.005 81 38 71 52 66 

SD2_9 0.077±0.03 0.102±0.09 0.091 70 38 68 41 59 

SD1SD2_9 0.003±0.00 0.016±0.03 0.007 96 34 73 83 75 

RATIO_9 0.602±0.23 0.743±0.22 0.009 69 69 80 54 69 

SD1_10 0.044±0.02 0.081±0.08 0.005 81 38 71 52 66 

SD2_10 0.077±0.03 0.101±0.09 0.093 70 38 68 41 59 

SD1SD2_10 0.003±0.00 0.016±0.03 0.007 96 34 73 83 75 

RATIO_10 0.610±0.23 0.752±0.20 0.007 69 69 80 54 69 

 

 

 



102 

 

5.1.5 Classification Stage 

 

A k-nearest neighbor classifier was used to evaluate the performance of the feature 

combinations in classifying these two groups. The algorithm was run for three times. In 

the first run, all HRV measures (given in Tables 5.1, 5.2, and 5.3) and Poincare plot 

measures with only lag=1 (the first four measures listed in Table 5.4) were used and the 

heart rate normalization process was not applied. To find out the effect of wavelet 

entropy measures was aimed in this run. In the second run, all HRV measures (given in 

Tables 5.1, 5.2, and 5.3) and Poincare plot measures with only lag=1 (the first four 

measures listed in Table 5.4) were used and the heart rate normalization process was 

applied optionally. To obtain the effect of heart rate normalization process was aimed in 

this run. In the last run, all HRV measures (given in Tables 5.1, 5.2, 5.3, 5.4, and 5.5) 

were used and the heart rate normalization process was applied optionally. To find out 

the effect of lagged Poincare plot measures was aimed in this run. In each cases, KNN 

classifier was used with different number of nearest neighbors’ k=1, 3, 5, 7, 9, 11, and 

13.  

 

5.1.6 Model Evaluation Stage 

 

The first run of the study was performed for a total of 28 times using these 

configurations (7 (k values) × 4 (configurations)): 

 No MINMAX normalization using all features, 

 No MINMAX normalization using only GA-selected features, 

 MINMAX normalization using all features, and 

 MINMAX normalization using only GA-selected features. 

 

The aim of using these different cases is to compare the performance of the feature 

sets determined by GA with that of including all features and the effect of using 

MINMAX normalization process. The performances of all the classifiers were 

calculated based on their SEN, SPE, POS, NEG, and ACC measures (see Table 5.6). As 

can be seen from this table, three of the feature combinations, selected by GA, provide 

the maximum performance in terms of the accuracy measure of 89.16%: (i) for a 1-
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nearest neighbor classifier, the selected features were seen to be mean, SDNN, SD2, 

FFT algorithm-based PSD measures of LF/HF ratio, normalized HF power, normalized 

LF power, LS algorithm-based PSD measures of normalized LF power and normalized 

HF power, and wavelet entropy measures of LF power and normalized LF power with 

sensitivity rate of 79.31% and specificity rate of 94.44%, (ii) for a 3-nearest neighbor 

classifier, the selected features were seen to be mean, SDNN, SD2, FFT algorithm-based 

PSD measures of LF/HF ratio, normalized HF power, normalized LF power, LS 

algorithm-based PSD measures of normalized LF power and normalized HF power, and 

wavelet entropy measures of LF power and normalized LF power with sensitivity rate of 

79.31% and specificity rate of 94.44%, and (iii) for a 5-nearest neighbor classifier, the 

selected features were found to be age, mean, RMSSD, SD1, FFT algorithm based PSD 

measures of LF/HF ratio, VLF power, normalized LF power, and wavelet entropy 

measure of normalized HF power with sensitivity rate of 75.86% and specificity rate of 

96.30% (İşler & Kuntalp, 2006, 2007a, 2007b).  

 

Table 5.6 Classifier results for the first run where k is the parameter of the KNN classifier, SEN is 

sensitivity (%), SPE is specificity (%), POS is positive predictivity, NEG is negative predictivity, and 

ACC is accuracy (%). In the algorithm (Alg.) column, algorithm column, “All” indicates that all the 

variables in the dataset is used, “GA” indicates that feature selection is done using “GA” (İşler & Kuntalp, 

2007a). 

Alg. k 
without MINMAX with MINMAX 

SEN SPE POS NEG ACC SEN SPE POS NEG ACC 

ALL 

1 62.16 86.99 71.95 81.06 78.31 72.41 92.59 84.00 86.21 85.54 

3 72.41 92.59 84.00 86.21 85.54 75.86 92.59 84.62 87.72 86.75 

5 68.97 92.59 83.33 84.75 84.34 65.52 96.30 90.48 83.87 85.54 

7 72.41 94.44 87.50 86.44 86.75 65.52 96.30 90.48 83.87 85.54 

9 75.86 92.59 84.62 87.72 86.75 68.97 94.44 86.96 85.00 85.54 

11 41.38 98.15 92.31 75.71 78.31 68.97 94.44 86.96 85.00 85.54 

13 75.53 85.36 73.49 86.66 81.93 65.60 94.40 86.29 83.63 84.34 

GA 

1 79.31 88.89 79.31 88.89 85.54 79.31 94.44 88.46 89.47 89.16 

3 75.86 92.59 84.62 87.72 86.75 79.31 94.44 88.46 89.47 89.16 

5 72.41 94.44 87.50 86.44 86.75 75.86 96.30 91.67 88.14 89.16 

7 75.86 92.59 84.62 87.72 86.75 72.41 96.30 91.30 86.67 87.95 

9 65.52 92.59 82.61 83.33 83.13 75.86 92.59 84.62 87.72 86.75 

11 65.52 94.44 86.36 83.61 84.34 75.86 94.44 88.00 87.93 87.95 

13 72.41 87.04 75.00 85.45 81.93 72.41 92.59 84.00 86.21 85.54 

 



104 

 

The most important point revealed by this run is that the combinations of features 

that give the best discrimination accuracies include wavelet entropy measures in 

addition to the standard HRV indices. This shows that supporting the classical HRV 

indices with measures obtained from wavelet entropy calculations could significantly 

improve the performance of the HRV analysis in the diagnosis of CHF and could be 

used as a diagnostic tool for discriminating the patients with CHF from healthy normals. 

 

The second run of the study was performed for a total of 28 times using only GA-

selected features for these configurations (7 (k values) × 4 (configurations)): 

 No MINMAX normalization, No HR normalization, 

 No MINMAX normalization, HR normalization, 

 MINMAX normalization, No HR normalization, and 

 MINMAX normalization, HR normalization. 

 

The aim of using these different cases is to compare the performance of the heart 

rate normalization process using only feature sets determined by GA. The performances 

of all the classifiers were calculated similar to the previous run (see Table 5.7). As can 

be seen from this table, two of the feature combinations, selected by GA, provide the 

maximum performance in terms of the accuracy measure of 93.98%: (i) for a 3-nearest 

neighbor classifier, the selected features were seen to be AGE, SDNN, SD1, SD2, 

PNN20, PNN50, SDSD, FFT algorithm based PSD measures of LF/HF ratio, VLF 

power, LF power, and wavelet entropy measures of LF power and normalized LF power 

with sensitivity rate of 82.76% and specificity rate of 100.0% and (ii) for a 5-nearest 

neighbor classifier, the selected features were found to be AGE, RMSSD, SD1, PNN20, 

PNN50, SDSD, LS algorithm based PSD measures of normalized LF power, FFT 

algorithm based PSD measures of LF/HF ratio, VLF power, LF power, and wavelet 

entropy measures of LF power and normalized LF power with sensitivity rate of 82.76% 

and specificity rate of 100.0% (İşler & Kuntalp, 2009a).  

 

The results show that using both normalization procedures of MIN-MAX and HR 

improve the performance of the classification. Therefore, heart rate normalization seems 

to increase the effect of the heart rate variability analysis. 
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Table 5.7 Classifier results for the second run where k is the parameter of the KNN classifier, SEN is 

sensitivity (%), SPE is specificity (%), POS is positive predictivity (%), NEG is nagetive predictivity (%), 

and ACC is accuracy (%). In the algorithm (Alg.) column, HRV shows HRV analysis and HRN shows 

heart rate normalized HRV analysis (İşler & Kuntalp, 2009a). 

Alg. k 
without MINMAX with MINMAX 

SEN SPE POS NEG ACC SEN SPE POS NEG ACC 

HRV 

1 79.31 88.89 79.31 88.89 85.54 79.31 94.44 88.46 89.47 89.16 

3 75.86 92.59 84.62 87.72 86.75 79.31 94.44 88.46 89.47 89.16 

5 72.41 94.44 87.50 86.44 86.75 75.86 96.30 91.67 88.14 89.16 

7 75.86 92.59 84.62 87.72 86.75 72.41 96.30 91.30 86.67 87.95 

9 65.52 92.59 82.61 83.33 83.13 75.86 92.59 84.62 87.72 86.75 

11 65.52 94.44 86.36 83.61 84.34 75.86 94.44 88.00 87.93 87.95 

13 72.41 87.04 75.00 85.45 81.93 72.41 92.59 84.00 86.21 85.54 

HRN 

1 65.52 85.19 70.37 82.14 78.31 75.86 98.15 95.65 88.33 90.36 

3 72.41 96.30 91.30 86.67 87.95 82.76 100.0 100.0 91.53 93.98 

5 72.41 96.30 91.30 86.67 87.95 82.76 100.0 100.0 91.53 93.98 

7 75.86 98.15 95.65 88.33 90.36 75.86 100.0 100.0 88.52 91.57 

9 72.41 96.30 91.30 86.67 87.95 72.41 98.15 95.45 86.89 89.16 

11 72.41 90.74 80.77 85.96 84.34 75.86 100.0 100.0 88.52 91.57 

13 79.31 90.74 82.14 89.09 86.75 79.31 96.30 92.00 89.66 90.36 

 

The third and last run of this part of the study was also performed for a total of 28 

times using only GA-selected features for these configurations (7 (k values) × 4 

(configurations)): 

 No MINMAX normalization, No HR normalization, 

 No MINMAX normalization, HR normalization, 

 MINMAX normalization, No HR normalization, and 

 MINMAX normalization, HR normalization. 

 

The aim of using these different cases is to find out the possible improvement in the 

performance using lagged Poincare plots’ measures. The performances of all the 

classifiers were calculated similar to the others (see Table 5.8). As can be seen from this 

table, three of the feature combinations, selected by GA, provide the maximum 

performance in terms of the accuracy measure of 93.98%: (i) for a 1-nearest neighbor 

classifier, the selected features were seen to be AGE, SDNN, SD1 (lag=1), RATIO 

(lag=1), SD1SD2 (lag=3), SD2 (lag=6), SD1SD2 (lag=7), LS algorithm based PSD 

measures of VLF power, normalized LF power, and normalized HF power, FFT 
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algorithm based PSD measures of VLF power and HF power, and wavelet entropy 

measures of LF/HF ratio, VLF power, normalized LF power, and normalized HF power 

with sensitivity rate of 89.66% and specificity rate of 96.30%, (ii) for a 3-nearest 

neighbor classifier, the selected features were seen to be AGE, SDNN, PNN50, SDSD, 

SD1 (lag=1), SD2 (lag=1), SD1SD2 (lag=3), LS algorithm based PSD measures of 

normalized LF power, FFT algorithm based PSD measures of VLF power and HF 

power, and wavelet entropy measures of LF/HF ratio, VLF power, and normalized LF 

power with sensitivity rate of 82.76% and specificity rate of 100.0%, and (iii) for a 5-

nearest neighbor classifier, the selected features were found to be AGE, SDNN, 

RMSSD, PNN20, SDSD, SD1 (lag=1), SD1SD2 (lag=3), and SD2 (lag=6), LS 

algorithm based PSD measures of VLF power and normalized LF power, FFT algorithm 

based PSD measures of VLF power, LF/HF ratio, and HF power, and wavelet entropy 

measures of LF power, normalized LF power, and normalized HF power with sensitivity 

rate of 82.76% and specificity rate of 100.0%.  

 

Table 5.8 Classifier results for the third run where k is the parameter of the KNN classifier, SEN is 

sensitivity (%), SPE is specificity (%), POS is positive predictivity (%), NEG is nagetive predictivity (%), 

and ACC is accuracy (%). In the algorithm (Alg.) column, HRV shows HRV analysis and HRN shows 

heart rate normalized HRV analysis. 

Alg. k 
without MINMAX with MINMAX 

SEN SPE POS NEG ACC SEN SPE POS NEG ACC 

HRV 

1 79.31 88.89 79.31 88.89 85.54 79.31 94.44 88.46 89.47 89.16 

3 72.41 92.59 84.00 86.21 85.54 75.86 96.30 91.67 88.14 89.16 

5 68.97 92.59 83.33 84.75 84.34 75.86 96.30 91.67 88.14 89.16 

7 72.41 94.44 87.50 86.44 86.75 72.41 96.30 91.30 86.67 87.95 

9 75.86 92.59 84.62 87.72 86.75 75.86 92.59 84.62 87.72 86.75 

11 41.38 98.15 92.31 75.71 78.31 75.86 94.44 88.00 87.93 87.95 

13 75.53 85.36 73.49 86.66 81.93 72.41 92.59 84.00 86.21 85.54 

HRN 

1 68.97 88.89 76.92 84.21 81.93 89.66 96.30 92.86 94.55 93.98 

3 72.41 96.30 91.30 86.67 87.95 82.76 100.0 100.0 91.53 93.98 

5 72.41 96.30 91.30 86.67 87.95 82.76 100.0 100.0 91.53 93.98 

7 75.86 98.15 95.65 88.33 90.36 75.86 100.0 100.0 88.52 91.57 

9 72.41 96.30 91.30 86.67 87.95 72.41 98.15 95.45 86.89 89.16 

11 72.41 90.74 80.77 85.96 84.34 75.86 100.0 100.0 88.52 91.57 

13 79.31 90.74 82.14 89.09 86.75 79.31 96.30 92.00 89.66 90.36 
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There was only improvement in the performance of the KNN classifier with k=1 by 

comparing the previous results (Table 5.7). Although the lagged Poincare measures 

were selected by GA for these classifiers, the maximum performance achieved was still 

unchanged (93.98%). Hence, lagged Poincare plots’ measures seem to be useless to 

improve the classifier performance.  

 

5.2 Discriminating Systolic versus Diastolic Dysfunction in CHF Patients 

 

5.2.1 Data Acquisition Stage 

 

The data used in this study were obtained from the Faculty of Medicine in Dokuz 

Eylül University. All data included in this database have been carefully reviewed and 

labeled by the experts. These data include long-term (~24 h) ECG recordings that were 

digitized at 128 samples per second. The systolic CHF has data from 8 patients (5 men, 

3 women) with an age range of 20 to 66 years and the diastolic CHF has data from 4 

patients (all women) with an age range of 39 to 65. Because the short-term analysis was 

of interest, only 5-minute ECG data were used.  

 

5.2.2 Preprocessing Stage 

 

The second stage of the system covers noise removal from ECG records, data 

transformation from ECG to HRV data, removing ectopic beats, heart rate 

normalization, interpolation, and detrending steps. In this part of the thesis, all these 

steps were used in a sequence.  

 

Smoothness priors based detrending algorithm was used to isolate baseline wander 

from ECG signals in this study. The smooth approximation of the signal was calculated 

and subtracted from the original ECG. This algorithm was tested using a synthetically 

generated data (McSharry, Clifford, Tarrassenko, & Smith, 2003) with artificially added 

baseline like sinusoid at 0.35 Hz (Fig. 5.4a). Then, this signal was high-pass filtered 

with the cut-off frequency of 0.64 Hz (Fig. 5.4b) as offered in (Christov, Dotsinsky, & 
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Daskalov, 1992) and smoothness priors method with λ=1000 (Fig. 5.4c) (İşler & 

Kuntalp, 2008). 

 

 

Figure 5.4 Baseline wander elimination from the synthetic ECG 

signal: (a) the corrupted signal with the sinusoid of 0.35 Hz, (b) 

baseline wander elimination using high-pass FIR filter, and (c) 

baseline wander elimination using smoothness priors (İşler & 

Kuntalp, 2008). 

 

QRS complexes were obtained using the filtered and smoothed synthetic ECG 

signal. These values were compared to the original timing values (Table 5.9). The 

smoothness priors’ based detrending method finds the correct QRS timings by 

comparing the classical high-pass filtering method. After detecting all R points using the 

QRS detection algorithm developed by Pan and Tompkins (Tompkins, 2000), RR 

interval (HRV data) were constructed using consequent R timing values. In addition, 

smoothness priors’ method is able to determine all RR intervals correctly. The classical 

filtering method, on the other hand, has failed. 
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Table 5.9 QRS occurring timings and corresponding RR intervals for synthetically generated ECG (İşler 

& Kuntalp, 2008). 

Synthetic ECG After filtering After smoothness priors 

QRS Occurring 

(s) 

RR interval 

(s) 

QRS Occurring 

(s) 

RR interval 

(s) 

QRS Occurring 

(s) 

RR interval 

(s) 

1.000 - 1.688 - 1.000 - 

1.988 0.988 2.676 0.988 1.988 0.988 

3.000 1.012 3.688 1.012 3.000 1.012 

4.016 1.016 4.703 1.015 4.016 1.016 

4.996 0.980 5.684 0.981 4.996 0.980 

5.988 0.992 6.676 0.992 5.988 0.992 

7.016 1.028 7.703 1.027 7.016 1.028 

8.012 0.996 8.699 0.996 8.012 0.996 

8.980 0.968 9.668 0.969 8.980 0.968 

9.996 1.016 10.680 1.012 9.996 1.016 

11.020 1.024 11.700 1.020 11.020 1.024 

 

5.2.3 Feature Extraction Stage 

 

The 71 features were calculated for this part of the thesis using the same methods 

described in Section 5.1.3. Patient information of age for all records in the data recorded 

was included into the study and summarized in Table 5.10. This feature seems to be 

statistically insignificant different between two groups. 

 

Table 5.10 Patient age information for the patients with both systolic CHF and diastolic CHF. All values 

are presented as mean ± standard deviation.  

Feature Systolic CHF Diastolic CHF p SEN SPE POS NEG ACC 

Age 41.000±17.59 54.500±12.04 0.202 75 75 60 86 75 

 

Time domain statistical measures were calculated using raw HRV data and heart rate 

normalized HRV data (Table 5.11). NaN values are used to indicate that there is no 

value for corresponding feature. Features related to NN50 measures were not presented 

because there were no HRV data that had successive differences more than ±50 ms. 

After heart rate normalization, NN20_2 (the number of HRV data that had successive 

differences less than -20ms) was also not presented. None of the time-domain measures 

showed statistically significant differences.  
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Table 5.11 Nominal 5-min time-domain metric values for the patients with both systolic CHF and 

diastolic CHF. All values are presented as mean ± standard deviation.  

Feature Systolic CHF Diastolic CHF P SEN SPE POS NEG ACC 

BEFORE HEART RATE NORMALIZATION 

MEAN 0.844±0.37 0.992±0.42 0.547 50 88 67 78 75 

SDNN 0.528±1.35 1.489±1.99 0.340 50 88 67 78 75 

RMSSD 0.661±1.74 1.713±2.23 0.387 50 88 67 78 75 

NN20_1 0.125±0.35 0.500±1.00 0.348 25 88 50 70 67 

NN20_2 0.125±0.35 0.500±1.00 0.348 25 88 50 70 67 

NN20 0.250±0.71 1.000±2.00 0.348 25 88 50 70 67 

PNN20 0.002±0.00 0.006±0.01 0.383 25 88 50 70 67 

NN50_1 0.000±0.00 0.000±0.00 NaN NaN NaN NaN NaN NaN 

NN50_2 0.000±0.00 0.000±0.00 NaN NaN NaN NaN NaN NaN 

NN50 0.000±0.00 0.000±0.00 NaN NaN NaN NaN NaN NaN 

PNN50 0.000±0.00 0.000±0.00 NaN NaN NaN NaN NaN NaN 

SDSD 0.663±1.75 1.718±2.24 0.387 50 88 67 78 75 

AFTER HEART RATE NORMALIZATION 

MEAN 0.800±0.00 0.800±0.00 0.019 50 75 50 75 67 

SDNN 0.274±0.61 0.867±1.06 0.237 50 88 67 78 75 

RMSSD 0.331±0.79 1.005±1.20 0.265 50 88 67 78 75 

NN20_1 0.000±0.00 0.250±0.50 0.167 25 100 100 73 75 

NN20_2 0.000±0.00 0.000±0.00 NaN NaN NaN NaN NaN NaN 

NN20 0.000±0.00 0.250±0.50 0.167 25 100 100 73 75 

PNN20 0.000±0.00 0.001±0.00 0.167 25 100 100 73 75 

NN50_1 0.000±0.00 0.000±0.00 NaN NaN NaN NaN NaN NaN 

NN50_2 0.000±0.00 0.000±0.00 NaN NaN NaN NaN NaN NaN 

NN50 0.000±0.00 0.000±0.00 NaN NaN NaN NaN NaN NaN 

PNN50 0.000±0.00 0.000±0.00 NaN NaN NaN NaN NaN NaN 

SDSD 0.332±0.79 1.008±1.21 0.265 50 88 67 78 75 

 

Frequency domain measures have also been found common use in all the forms of 

signal processing field. These measures were calculated using the FFT-based PSD, 

Lomb-Scargle PSD, and Wavelet entropies (Table 5.12) similar to the previous part of 

the study. Because heart rate normalization process changed only the mean value of the 

data, the frequency domain measures were not affected from this process. In this table, 

LS algorithm based normalized LF power and normalized HF power, and wavelet 

entropy based HF power were found statistically different between two groups.  
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Table 5.12 Nominal 5-min frequency-domain metric values for the patients with both systolic CHF and 

diastolic CHF. All values are presented as mean ± standard deviation.  

Feature Systolic CHF Diastolic CHF P SEN SPE POS NEG ACC 

BEFORE HEART RATE NORMALIZATION 

LS_LFHF 2.715±2.97 0.454±0.14 0.169 100 50 50 100 67 

LS_VLF 0.229±0.19 0.220±0.19 0.938 50 50 33 67 50 

LS_LF 0.190±0.12 0.073±0.04 0.080 100 38 44 100 58 

LS_HF 0.129±0.08 0.173±0.09 0.423 50 50 33 67 50 

LS_NLF 0.599±0.22 0.308±0.06 0.030 100 63 57 100 75 

LS_NHF 0.401±0.22 0.692±0.06 0.030 100 63 57 100 75 

FFT_LFHF 9.31±14.79 115.82±224.39 0.189 25 100 100 73 75 

FFT_VLF 401.61±1135.9 4.33±5.30 0.510 100 13 36 100 42 

FFT_LF 90.346±255.53 19.893±36.06 0.604 75 13 30 50 33 

FFT_HF 2.026±5.73 0.180±0.26 0.544 100 13 36 100 42 

FFT_NLF 0.734±0.22 0.598±0.41 0.465 50 75 50 75 67 

FFT_NHF 0.266±0.22 0.402±0.41 0.465 50 75 50 75 67 

WS_LFHF 1.071±0.61 1.807±1.90 0.325 25 75 33 67 58 

WS_VLF 0.390±0.49 1.034±0.77 0.103 50 88 67 78 75 

WS_LF 1.031±0.87 0.583±0.72 0.398 75 50 43 80 58 

WS_HF 0.847±0.49 0.265±0.13 0.044 100 63 57 100 75 

WS_NLF 0.482±0.14 0.543±0.20 0.551 50 50 33 67 50 

WS_NHF 0.518±0.14 0.457±0.20 0.551 50 50 33 67 50 

AFTER HEART RATE NORMALIZATION 

LS_LFHF 2.715±2.97 0.454±0.14 0.169 100 50 50 100 67 

LS_VLF 0.229±0.19 0.220±0.19 0.938 50 50 33 67 50 

LS_LF 0.190±0.12 0.073±0.04 0.080 100 38 44 100 58 

LS_HF 0.129±0.08 0.173±0.09 0.423 50 50 33 67 50 

LS_NLF 0.599±0.22 0.308±0.06 0.030 100 63 57 100 75 

LS_NHF 0.401±0.22 0.692±0.06 0.030 100 63 57 100 75 

FFT_LFHF 9.31±14.79 115.82±224.39 0.189 25 100 100 73 75 

FFT_VLF 84.658±239.45 1.602±1.87 0.514 100 13 36 100 42 

FFT_LF 19.045±53.87 10.363±19.72 0.766 75 13 30 50 33 

FFT_HF 0.427±1.21 0.059±0.07 0.565 100 13 36 100 42 

FFT_NLF 0.734±0.22 0.598±0.41 0.465 50 75 50 75 67 

FFT_NHF 0.266±0.22 0.402±0.41 0.465 50 75 50 75 67 

WS_LFHF 1.071±0.61 1.807±1.90 0.325 25 75 33 67 58 

WS_VLF 0.390±0.49 1.034±0.77 0.103 50 88 67 78 75 

WS_LF 1.031±0.87 0.583±0.72 0.398 75 50 43 80 58 

WS_HF 0.847±0.49 0.265±0.13 0.044 100 63 57 100 75 

WS_NLF 0.482±0.14 0.543±0.20 0.551 50 50 33 67 50 

WS_NHF 0.518±0.14 0.457±0.20 0.551 50 50 33 67 50 

 

Poincare Plot measures were calculated using the ellipse-fitting method with ten 

different lag values from 1 to 10 for HRV data (Table 5.13) and heart rate normalized 

HRV data (Table 5.14). In both tables, no measures showed statistically significant 

differences although there were improvements in these measures of heart rate 
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normalized HRV analysis.  In the heart rate normalized HRV analysis, all classifier 

performances were greater or equal than those of HRV analysis.  

 

Table 5.13 Poincare plots' measures with 10 different lags for the patients with both systolic CHF and 

diastolic CHF using HRV data. All values are presented as mean ± standard deviation.  

Feature Systolic CHF Diastolic CHF P SEN SPE POS NEG ACC 

SD1_1 0.469±1.23 1.214±1.58 0.387 50 88 67 78 75 

SD2_1 0.579±1.45 1.726±2.33 0.313 50 88 67 78 75 

SD1SD2_1 1.842±5.20 4.857±7.87 0.440 25 88 50 70 67 

RATIO_1 0.583±0.37 0.731±0.08 0.462 75 63 50 83 67 

SD1_2 0.500±1.32 1.354±2.00 0.391 50 88 67 78 75 

SD2_2 0.556±1.39 1.602±2.02 0.312 50 88 67 78 75 

SD1SD2_2 1.876±5.30 5.103±8.60 0.434 25 88 50 70 67 

RATIO_2 0.592±0.25 0.668±0.23 0.620 25 63 25 63 50 

SD1_3 0.523±1.37 1.441±2.00 0.366 50 88 67 78 75 

SD2_3 0.538±1.34 1.551±2.01 0.318 50 88 67 78 75 

SD1SD2_3 1.891±5.34 5.228±8.60 0.421 25 88 50 70 67 

RATIO_3 0.667±0.27 0.755±0.20 0.574 75 63 50 83 67 

SD1_4 0.521±1.36 1.400±2.00 0.384 50 88 67 78 75 

SD2_4 0.544±1.36 1.580±2.03 0.313 50 88 67 78 75 

SD1SD2_4 1.902±5.37 5.206±8.67 0.428 25 88 50 70 67 

RATIO_4 0.718±0.21 0.709±0.20 0.949 75 50 43 80 58 

SD1_5 0.528±1.37 1.446±2.03 0.371 50 88 67 78 75 

SD2_5 0.539±1.36 1.546±2.00 0.322 50 88 67 78 75 

SD1SD2_5 1.914±5.41 5.256±8.71 0.426 25 88 50 70 67 

RATIO_5 0.754±0.20 0.735±0.21 0.882 50 50 33 67 50 

SD1_6 0.537±1.39 1.402±1.93 0.390 50 88 67 78 75 

SD2_6 0.534±1.35 1.528±1.98 0.323 50 88 67 78 75 

SD1SD2_6 1.925±5.44 4.999±8.19 0.450 25 88 50 70 67 

RATIO_6 0.801±0.22 0.755±0.18 0.724 75 50 43 80 58 

SD1_7 0.538±1.40 1.244±1.64 0.452 50 88 67 78 75 

SD2_7 0.535±1.35 1.364±1.69 0.377 50 88 67 78 75 

SD1SD2_7 1.937±5.47 3.766±5.76 0.603 50 88 67 78 75 

RATIO_7 0.841±0.24 0.742±0.19 0.492 75 50 43 80 58 

SD1_8 0.532±1.38 1.250±1.66 0.444 50 88 67 78 75 

SD2_8 0.545±1.38 1.362±1.68 0.387 50 88 67 78 75 

SD1SD2_8 1.950±5.51 3.777±5.80 0.606 50 88 67 78 75 

RATIO_8 0.828±0.23 0.769±0.18 0.668 75 50 43 80 58 

SD1_9 0.443±1.12 1.234±1.60 0.338 50 88 67 78 75 

SD2_9 0.622±1.60 1.384±1.74 0.467 50 88 67 78 75 

SD1SD2_9 1.847±5.21 3.799±5.81 0.568 50 88 67 78 75 

RATIO_9 0.829±0.25 0.739±0.17 0.541 50 50 33 67 50 

SD1_10 0.530±1.37 1.217±1.64 0.458 50 88 67 78 75 

SD2_10 0.554±1.41 1.398±1.73 0.382 50 88 67 78 75 

SD1SD2_10 1.974±5.57 3.791±5.87 0.612 25 88 50 70 67 

RATIO_10 0.872±0.25 0.737±0.18 0.361 75 63 50 83 67 
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Table 5.14 Poincare plots' measures with 10 different lags for the patients with both systolic CHF and 

diastolic CHF using heart rate normalized HRV data. All values are presented as mean ± standard 

deviation.  

Feature Systolic CHF Diastolic CHF P SEN SPE POS NEG ACC 

SD1_1 0.235±0.56 0.713±0.85 0.265 50 88 67 78 75 

SD2_1 0.304±0.65 1.001±1.24 0.220 50 88 67 78 75 

SD1SD2_1 0.390±1.10 1.501±2.08 0.243 50 88 67 78 75 

RATIO_1 0.583±0.37 0.731±0.08 0.462 75 63 50 83 67 

SD1_2 0.251±0.60 0.765±1.03 0.291 50 88 67 78 75 

SD2_2 0.294±0.62 0.950±1.11 0.211 50 88 67 78 75 

SD1SD2_2 0.398±1.12 1.539±2.26 0.257 50 88 67 78 75 

RATIO_2 0.592±0.25 0.668±0.23 0.620 25 63 25 63 50 

SD1_3 0.263±0.62 0.829±1.05 0.260 50 88 67 78 75 

SD2_3 0.284±0.60 0.912±1.09 0.218 50 88 67 78 75 

SD1SD2_3 0.401±1.12 1.601±2.27 0.237 50 88 67 78 75 

RATIO_3 0.667±0.27 0.755±0.20 0.574 75 63 50 83 67 

SD1_4 0.264±0.61 0.799±1.04 0.281 50 88 67 78 75 

SD2_4 0.286±0.61 0.932±1.10 0.213 50 88 67 78 75 

SD1SD2_4 0.404±1.13 1.582±2.28 0.248 50 88 67 78 75 

RATIO_4 0.718±0.21 0.709±0.20 0.949 75 50 43 80 58 

SD1_5 0.268±0.62 0.829±1.06 0.267 50 88 67 78 75 

SD2_5 0.283±0.61 0.909±1.08 0.220 50 88 67 78 75 

SD1SD2_5 0.406±1.14 1.603±2.29 0.243 50 88 67 78 75 

RATIO_5 0.754±0.20 0.735±0.21 0.882 50 50 33 67 50 

SD1_6 0.273±0.63 0.808±1.02 0.280 50 88 67 78 75 

SD2_6 0.280±0.60 0.898±1.07 0.221 50 88 67 78 75 

SD1SD2_6 0.409±1.14 1.535±2.16 0.255 50 88 67 78 75 

RATIO_6 0.801±0.22 0.755±0.18 0.724 75 50 43 80 58 

SD1_7 0.274±0.63 0.727±0.88 0.325 50 88 67 78 75 

SD2_7 0.280±0.61 0.813±0.94 0.257 50 88 67 78 75 

SD1SD2_7 0.411±1.15 1.206±1.55 0.337 50 88 67 78 75 

RATIO_7 0.841±0.24 0.742±0.19 0.492 75 50 43 80 58 

SD1_8 0.271±0.62 0.728±0.89 0.320 50 88 67 78 75 

SD2_8 0.285±0.62 0.814±0.94 0.264 50 88 67 78 75 

SD1SD2_8 0.414±1.16 1.207±1.56 0.340 50 88 67 78 75 

RATIO_8 0.828±0.23 0.769±0.18 0.668 75 50 43 80 58 

SD1_9 0.231±0.50 0.725±0.87 0.233 50 88 67 78 75 

SD2_9 0.320±0.72 0.821±0.96 0.331 50 88 67 78 75 

SD1SD2_9 0.392±1.10 1.217±1.57 0.309 50 88 67 78 75 

RATIO_9 0.829±0.25 0.739±0.17 0.541 50 50 33 67 50 

SD1_10 0.271±0.62 0.707±0.87 0.335 50 88 67 78 75 

SD2_10 0.288±0.63 0.835±0.97 0.260 50 88 67 78 75 

SD1SD2_10 0.419±1.17 1.205±1.57 0.349 50 88 67 78 75 

RATIO_10 0.872±0.25 0.737±0.18 0.361 75 63 50 83 67 
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5.2.4 Feature Selection and Classification Stages 

 

These stages were applied similar to Section 5.1.4 and 5.1.5. The only differences 

were that the classification was performed using 1- and 3- nearest neighbor classifiers 

and the features that had NaN values in their accuracies of Table 5.11 were excluded 

from the study. Therefore, 67 features were used in HRV analysis and 66 features were 

used in heart rate normalized HRV analysis. 

 

5.2.5 Model Evaluation Stage 

 

The results, as can be seen from the Table 5.15, show that using both MINMAX and 

HR normalization procedures improves the performance of the classification. The 

maximum accuracy is found as 100.0% in the configuration of MINMAX and HR 

normalized features selected with GA using a KNN classifier with k=1 among the 

constructed classifiers. The selected features in this combination were AGE, SDNN, 

RMSSD, SD2 (lag=2), RATIO (lag=7), SD2 (lag=9), RATIO (lag=9), SD2 (lag=10), LS 

algorithm based PSD measures of LF/HF ratio, VLF power, and normalized HF power, 

FFT algorithm based PSD measures of VLF power and HF power, and wavelet entropy 

measure of normalized HF power (İşler & Kuntalp, 2009b). Although the results seem 

to be satisfactory, there are only 12 participants in this part of the study and there is need 

of extra data to enhance the validity of this part. 

 

Table 5.15 Classifier results where k is the parameter of the KNN classifier, SEN is sensitivity (%), SPE 

is specificity (%), POS is positive predictivity (%), NEG is negative predictivity (%), and ACC is 

accuracy (%).In the algorithm (Alg.) column, HRV shows HRV analysis and HRN shows heart rate 

normalized HRV analysis (İşler & Kuntalp, 2009b). 

Alg. k 
without MINMAX with MINMAX 

SEN SPE POS NEG ACC SEN SPE POS NEG ACC 

HRV 
1 87.50 100.0 100.0 80.00 91.67 87.50 100.0 100.0 80.00 91.67 

3 100.0 0.0 66.67 0.0 66.67 100.0 0.0 66.67 0.0 66.67 

HRN 
1 87.50 100.0 100.0 80.00 91.67 100.0 100.0 100.0 100.0 100.0 

3 100.0 0.0 66.67 0.0 66.67 100.0 25.00 72.73 100.0 75.00 
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CHAPTER SIX 

CONCLUSION 

 

Congestive Heart Failure (CHF) is a decreased ability of the heart to either fill itself 

with blood or emptying it with the fluid accumulation in various parts of the body. 

Although the diagnosis of heart failure is straightforward, it often challenges physicians 

because particular aspects of the syndrome lead to confusion. When heart failure is 

suspected, certain elements of the physical examination aid in the diagnosis. 

Unfortunately, the examination often does not yield enough information for 

confirmation. Although several diagnostic criteria schemes are available, their clinical 

utility is still questionable. Clinical assessment is mandatory before detailed 

investigations are conducted in patients with suspected heart failure, although specific 

clinical features are often absent and the condition can be diagnosed accurately only in 

conjunction with more objective investigation, particularly echocardiography. 

Echocardiography has been accepted as a golden standard to make the diagnosis of 

CHF. However the echocardiography is relatively expensive and thus does not exist in 

every health facility. In addition, the average waiting time for echocardiography was 1 

month.  On the other hand, the ECG is a cheap and common device that it can be found 

in almost every health station. Moreover, an ECG study was performed at a local 

hospital with a usual waiting time of 48h. Therefore, if an optimal diagnostic strategy 

based on the ECG to detect CHF can be presented; this would help to enhance the rate 

of early diagnosis cases, notably by the every-day practice. In this study, the goal is to 

be able to use the ECG device for the diagnosis of CHF and discriminating between its 

two types, i.e. systolic vs diastolic CHF. 

 In addition to discriminate the patients with CHF, from normal subjects, to 

distinguish diastolic heart failure from systolic heart failure based on physical findings 

or symptoms is also an important issue. Echocardiography has been used as a primary 

tool in the noninvasive assessment of cardiac systolic and diastolic dysfunctioning and is 

used to confirm the diagnosis of CHF. Thus, simple and reliable diagnostic procedures 

are very important for primary care physicians, who are responsible for the early 

diagnosis of CHF and implementation of an adequate therapy. 
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A healthy heart rapidly adjusts heart rate (HR) and other autonomic parameters in 

response to internal and external stimuli. A heart that has been weakened is less able to 

make such adjustments and therefore exhibits lower heart rate variability (HRV), i.e. 

shows fewer variations in its beat-to-beat timing. In certain circumstances, the 

evaluation of HRV has been shown to provide an indication of cardiovascular health. 

CHF has been the subject of many studies using HRV analysis. Majority of the CHF 

studies use HRV measures as predictors of the risk of mortality (prognosis). However, 

only a few studies have been focused on using HRV measures for diagnosis purpose.  

This dissertation contributes into different stages in HRV analysis for the diagnosis 

purpose in CHF. These contributions are removing baseline wandering using 

smoothness priors’ method, removing the effects of different heart rates using the heart 

rate normalization method in the preprocessing stage, using Wavelet entropy measures, 

using Poincare plot measures with different lags in the feature extraction stage, and 

finding the optimal feature combinations using GA and KNN classifier in the following 

stages. 

In the first contribution, it was shown that the smoothness priors based baseline 

removal method can be applied instead of classical filtering techniques. This method 

does not lead to the phase difference with the original ECG signal, which helps to the 

exact determination of the QRS timing. Nonetheless, this method causes extreme 

computational load when compared to the classical filtering methods. In addition, this 

method requires whole data, which makes realizing the real time applications using this 

method impossible. 

In the second contribution, the wavelet entropy based frequency domain measures 

were shown to improve the discrimination power of the HRV analysis. Because of its 

nature, the Wavelet transform is even suitable for using in nonstationary signals. 

Although the HRV signal is a nonstationary signal, only short-term (5-minute long) 

HRV data has been used to assume it stationary as offered in the Task Force. 

In addition, the Poincare plot measures with different lags were shown not to 

improve the discrimination power of the HRV analysis. Classical Poincare measures 

show only 2-D properties. Nonetheless, some studies showed that the HRV data had 
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properties of higher dimensional space. The results showed that using Poincare 

measures with different lags did not improve the classification performances in this 

work.  

The effects of HR normalization over the HRV data were also studied in this study. 

The class discrimination power of different combinations of short-term HRV measures 

were investigated using HRV data obtained from an on-line and widely-used database. 

The hypothesis in this thesis was that using the heart normalization preprocessing 

technique would remove the effects of different heart rates. This would make the 

analysis independent from the mean heart rate consideration as discussed in the Task 

Force. 

The best combinations of the features were selected by a GA. A KNN classifier was 

used to evaluate the performance of each feature set selected since this classification 

method does not depend on the data following any particular distribution. The six-stage 

system (Fig. 5.1), which visualizes the whole study, summarizes all the techniques used 

in the short-term HRV analysis, which will help the novice researchers. 

The results in discriminating the normal subjects from the patients with CHF, as can 

be seen from the Tables 5.6, 5.7, and 5.8, show that using both MINMAX and HR 

normalization procedures improves the performance of the classification. The maximum 

accuracy is found as 93.98% using a KNN classifier with k=1, 3, and 5 among the 

constructed classifiers.  

The results in discriminating the systolic CHF patients from the diastolic CHF 

patients, as can be seen from the Table 5.15, also show that using both MINMAX and 

HR normalization procedures improves the performance of the classification. The 

maximum accuracy is found as 100.00% in the configuration of MINMAX and HR 

normalized features selected with GA using a KNN classifier with k=1 among the 

constructed classifiers.  

As a result, heart rate normalization process and using both patient information and 

wavelet entropy based measures in addition to the classical HRV indices seem to 

increase the effect of the heart rate variability analysis at least in diagnosing the patients 
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with CHF and discriminating the systolic CHF patients from the diastolic CHF patients. 

On the other hand, using lagged Poincare plots measures were found to be not much of 

help in improving the performance of discriminating CHF patients from normal 

subjects. 

Obviously, the performances of different combinations of features depend on the 

type of the classifier used. In this study, only the KNN classifier was used. Using other 

classifier types such as multilayer perceptrons (MLP), radial basis functions (RBF), and 

support vector machines (SVM) could further improve the accuracy values. Moreover, 

using long-term HRV measures in addition to the short-term ones could also increase 

the diagnostic ability of the constructed classifier systems.  

In addition, the AR-based frequency domain measures were not included in the 

study because of its limitation in selecting an adequate model order. Although there 

have been many papers on selecting an adequate model order, it is still an open question 

in studies related to the HRV analysis. After including these AR-based frequency-

domain measures, the study may expose a higher classification power. 

Although the classification results achieved in the thesis seem satisfactory, larger 

databases are needed to confirm the achieved results. In addition, there is a lack of 

information such as drug use, physical activity and emotional states, which should be 

considered during performing the HRV analysis. Because this information was not noted 

in the databases used, the studies covered in the thesis neglected these considerations. 

The performance of the classification systems is hoped to improve further if these 

additional parameters are taken into account. 
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APPENDIX A 

STATISTICAL ANALYSIS 

 

A.1 Hypothesis Testing 

 

Hypothesis testing is the use of statistics to determine the probability that a given 

hypothesis is true. There are four general steps to test (Ashcroft & Pereira, 2003): 

 Formulate the null hypothesis H0 (commonly, that the observations are the result of 

pure chance) and the alternative hypothesis H1 (commonly, that the observations 

show a real effect combined with a component of chance variation). 

 Identify a test statistic that can be used to assess the truth of the null hypothesis. 

 Compute the p-value, which is the probability that a statistic at least as significant as 

the one observed would be obtained assuming that the null hypothesis were true. The 

smaller p-value, the stronger the evidence against the null hypothesis. 

 Compare the p-value to an acceptable significance value, α. If p≤ α, that the observed 

effect is statistically significant, and the alternative hypothesis is valid. The most 

commonly used significance level is α=0.05 (for a two-sided test, α/2). 

 

Hypotheses are generally defined as: 

 

 (A.1) 

 

and 

 

 (A.2) 

 

where  and  are the mean values of two groups. 

 

A.1.1 General t-Testing 

 

A t-test is a statistical hypothesis test in which the test statistic has a Student's t 

distribution if the null hypothesis is true. It is applied when the population is assumed to 
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be normally distributed but the sample sizes are small enough that the statistic on which 

inference is based is not normally distributed because it relies on an uncertain estimate 

of standard deviation rather than on a precisely known value. The general formula for t-

test is as follows: 

 

 
(A.3) 

 

Among the t tests, the unpaired t-Test with Unequal Variance method, which is given in 

the following subsection, is used in the thesis. 

 

A.1.2 Unpaired t-Test with Unequal Variance 

 

The difference from the previous test is that the variance in two samples is extremely 

different, meaning samples are very different in size. The two sample t test for unpaired 

data is defined as: 

 

 
(A.4) 

 

where  and  are the sample sizes,  and  are the sample means, and  and  

are the sample variances. It assumes that the degree of freedom (d.f.) is calculated by: 

 

 

 

(A.5) 

 

where d.f. is rounded to an integer value after this calculation is completed. 
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