E119¢6

A REAL APPLICATION FOR QUERYING,
ORDERING AND MONITORING REAL-TIME
DATA ON THE INTERNET

A Thesis Submitted to the
Graduate School of Natural and Applied Sciences of
Dokuz Eyliil University
In Partial Fulfillment of the Requirements for

the Degree of Master of Science in Computer Engineering, Computer Program

by
Nail Erdem BALAN
{ m(’i“wﬁ“&%@ﬁg
T.C. { i et WMLM
BOKUMAN prot e
February, 1999 o\b

M.Sc THESIS EXAMINATION RESULT FORM

We certify that we have read this thesis and that in our opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc.Prof. Dr.Alp Kut
(Advisor)

=
%5
Asst.Prof Dr.Yal¢in CEBI

(Committee Member)

Qb b

Asst Prof Dr.Adil ALPKOCAK

(Committee Member)

Approved by the
Graduate School of Natural and Applied Sciences

Prof. Dr. Cahi Helvaci
Director

ACKNOWLEDGMENTS

I wish to thank Alp KUT, advisor of this thesis, whose very insightful comments
helped me to shape this study. I'm very grateful for his advise and suggestions in all
phases of this study.

A special acknowledgment goes to Ali Yildiz for his hardware and software
support to my work. I extend a special thanks to Bora Kumova for his feedback and
comments. .

And I would also like to thank all of the individuals who work to develop the

Internet, “Information Superhighway”.

Nail Erdem Balan

ABSTRACT

To be competitive in the 1990's, organizations need to access accurate information
very quickly, regardless of the data source, platform or location. The growth of the
Internet, especially World Wide Web, allows organizations to access any information

easily.

Because of incompatible hardware architectures and operating systems, software
developers need platform independent tools to solve the compatibility problem and
make applications work in a distributed client-server environment. Java is designed
to meet the challenges of application development in the context of heterogeneous,
network-wide distributed environments. Java applications are portable across
multiple platforms and this portability allows the same Java program to run on

multiple operating systems and hardware architectures without modification.

The Java Database Connectivity (JDBC) API is a specification by which Java
application developers can access many different kinds of computer database
systems, regardless of their location and platform. JDBC provides Java programmers

a powerful API that is consistent with the rest of the Java language specification.

In this study, we first explained the background information necessary to develop
a Java application and then built up a real one. The main functions of our application
are ordering product, called “electronic commerce”, querying data from a database,
and monitoring real time data gathered from production systems. All data was stored
in two databases. In order to make connection with control systems and get real time
data from production floor, we used a Supervisory Control and Data Acquisition
(SCADA) software and sent collected data to SQL server.

OZET

1990'h yillarda, organizasyonlarin rekabet edebilmesi i¢in dogru bilgiye, bu bilgi
hangi kaynakta, ortamda ve cografyada olursa olsun, cok hizli bi¢imde ulagmasi
gereklidir. Internet'in, ozellikle de World Wide Web (WWW)'in geligmesi,

organizasyonlara her tiirlii bilgiye kolayca ulagma imkam vermistir.

Uyumsuz donanim yapilan ve igletim sistemleri nedeniyle, yazilim gelistiriciler
uyum problemini ¢dzmek ve uygulamalanini dagitilmig istemci-sunucu ortamlarinda
cahstirabilmek igin -calisma ortamindan bagimsiz araglara gereksinim
duymaktadirlar. Java homojen olmayan dagitilmiy ag ortamlaninda uygulama
gelistirme igin gerekli ihtiyaglan kargilamak igin tasarlanmigtir. Java uygulamalan
farkli ortamlar arasinda tasinabilir ve bu taginabilirlik 6zelligi ayn1 Java prografmmn
farkli igletim sistemlerinde ve farkli donamim mimarilerinde higbir degisiklik

yapilmadan galigmasini saglar.

Java Database Connectivity (JDBC) API, Java uygulama gelistiricilerin yeri ve
ortamu ne olursa olsun birgok degisik veri tabanina erigebilmesi igin gerekli kurallar
biitiiniidiir. JDBC’nin Java programcilarina sundugu arabirim Java programlama

dilinin 6zellikleriyle tamamen uyumludur.

Bu caligmada ilk olarak bir Java uygulamas: gelistirebilmek i¢in gerekli temel
bilgiler agikland: ve daha sonra gergek bir uygulama yapildi. Uygulamanin temel
fonksiyonlari, sipari§ verme, uzaktaki bir veri tabanindan sorgulama ve iiretim
sahasindaki verilerin gergek zamanh olarak gosterilmesi olarak belirlendi.. Bu

amagla kullamlan bitin veriler iki veri tabaminda toplandi. Uretim sahasindaki

kontrol sistemleriyle haberlesmeyi saglamak ve gercek zamanh wverileri SQL
sunucuya gondermek i¢in de bir SCADA yazilim kullamildi.

CONTENTS
L 000) 411 1 L - JUUUTT SRR vl
LaSt O Tab e o oot e XII
List Of Figures.ot e X1
Chapter One
INTRODUCTION
1L ItrOQUCHION ..o ettt et r e e e e e e e e e e aenae s 1
Chapter Two
THE INTERNET
2.1. The History of the Internet..................oooiiiiniiite e 3
22 TREWED ...t ee e e e 6
2.3. Who Controls the INTeImet?ooooeeeeeeee ettt 7
2.4 What Does INternet DO7.......ooo oo 7
Chapter Three
JAVA
B L, WAt 08 JAVAT ..ot 9

3.1.1. Java Programming Languageccccccoeceeeiiiiennreiieeecee e 9

3.1.2. The Java Platformmooonneneeeeee e s 10

3.2. Design Goals of Javaccoooouiiiiiiiiiiieeee e 11
321 SIMPIE ..ottt 12
3.2.2. Object OTENtEd..........ooooooooooooooeoeeoeoeeeeeoeoeeeoeoeeoeoeoeeooo 12
323 Familiar ..o 12
324 ROBUSE ..ottt 12
3.2.5. SECUTE.....cceiiiiiiiiie ettt 13
3.2.6. Architecture Neutral..................ccooiemiiieeieeeeeeceeeee e 13
3.2.7.Portable..........cooooiiii e 13
3.2.8. High Performanceccoouveiiieeiiieceecicie et 14
3.2.9. Interpretedccoeiiiiiiiiii e 14
3.2.10. Threaded.........ccooooiiiiiiiieeee e 14
3.2 11 DYNAMICoceiieiiiiiieciee e ee e et e r et eneeens 15

3.3. What Can Java Do? ... e, 15

3.4. Javaand the Web ..o 17

3.5. What Applets Canand Can't DOcoocvoveiieieieeciiiecieceeec 18
3.5.1. Security Restrictionscocooviiiimiiiciii 18
3.5.2. Applet Capabilities...........c.coeouvoiiiiiiiieieeee e 19

Chapter Four
JDBC

4.1. Open Database Connectivity (ODBC)........ccccooeviiiieicieeeeeeeeee 20

4.2. ODBC Over @ Network.........coocoiiiiiiiiiiee e 21

4.3. Java Database Connectivity (JDBC)ccooeeeeieeiiieieeeeeeee e 22

4.4. JIDBC versus ODBCoooiiiiiiiiieeeeeeee e 23

4.5. ODBC Compatibilityccooviiriiiiiiiiieiceceeeceee e 24

4.6. IDBC COMPONENLSocvviivieiiiiiiiieniiireeieeresesaesseteneeseeeneesaesessnesesesenns 24

4. 7. JIDBC DIIVET TYPES ...ttt 25
4.7.1. IDBC-ODBC bridge plus ODBC driver:.........ccccccoveevieeiiviinieieneenne. 25

4.7.2. Native-API partly-Java driver: ..o, 25

4.7.3. JDBC-Net pure Java driver:c...ccoevemencennneeiereceeseeeeee e 25

4.7 4. Native-protocol pure Java driver:c.cooceommerivenieieiiceceereee. 26
48 Current JDBC Developmentc.ooovvieiiieceieeeee e e 27
4.8.1.Javasoft.........cooooiiiiie e 27
4.8.2. WEDLOZICcuieiniiiieiicciecieece ettt sae s 28
4.8.3. VISIGEMC.eeoviiiririiieie ettt ceae et et ss e n e aeese e a e essens 29
4.9. SQL Conformance................cc.vveiieiiiriee e ieeeeee et s e e eenae e ans 29
4.10. Abstract Interfaces............ccoooreieenieieieeeece e 30
4.11. Security with JDBC ...t 31
4.12. Multi-Tier JDBC Systems..........cccoeiiiiieiiiiniieiieieeeceeeeee e 31
4.12.1. One Tier SYStemScccouvveiiiiieiceeeeee e 32
4.12.1.1. Standalone Application..............couovmereoerecciieeee 32
4.12.1.2. World Wide Web Applet........cooviieeieeicececev 32
4122 TWO THier SYSLEmMSc.ooineiiniiiiiieceeeeeeeeeeee e 33
4.12.2.1. Standalone Application.............cceeiieiiieieiieeecc e, 33
4.12.2.2. World Wide Web Applet..... .o 34
4.12.3. Three Tier SYStemMScccceeiiiiiiiiriieee et 35
4.12.3.1. Standalone Application..................cccecoooe.. . 35
4.12.3.2. World Wide Web Applet...........coooviiieieeeeeeve 35
Chapter Five
A REAL APPLICATION

5.1. Description of the Projectcccoiiiiiiniieieccceec 37
5.2. Development Tools and Servers............cc.ooovioeoceiiieeceecceee 38
5.2.1. Borland Jbuilder IDEcooiiiiieeee e 38
5.2.1.1. The DataExpress Architecture..............cocoeoiiiiiieiiiiniicie e, 39
5.2.1.2. The DataSet class hierarchy..............ccoocovviiiiiiii 42
5.2.2. Borland DataGatewaycccoooveieiiimiineececeeeceeeee e 44
5.2.4 Borland InterClientcccoooieiieiiiiie e 48

524 Borland INterBaseccooviriiiiii e 50

5.2 5. It ON X oo e e eeeeas 52

5.3. Components of the Projectccoeoireiiiiiiiiiiteeeree e 54
5.3.1. Databases.........cccoieiieiiieiiiiieie ettt en et e e e 54
5.3.2.Java applets. ... et 58
5.3.3 Structure of the Project.............c..oooiiiiiiiiieeeeeereree e 68
5.3 4. DataFloW [..ottt e 69

S5.4.CommonProblems ... 70

Conclusiono e 72

G {2 (< 1 - USSR 73

LIST OF TABLES

Table 4-1 JDBC driver categories and their propertiesccocooeiiieneicnnnnnen,

Table 5-1 DataGateway components

LIST OF FIGURES
Figure 3-1 Java interpreter and compiler..............ooooviiiiiniiiie e 9
Figure 3-2 Java platform ..ot 11
Figure 4-1 Visigenic's OpenChannel Architecture...........ccoceeeieeiieeiieneericireenne 29
Figure 4-2 One-Tier Standalone Application.............ccccoeieoeeeeieciieiceeeecee 32
Figure 4-3 One-Tier World Wide Appletoooiiviiiieeeee e 33
Figure 4-4 Two-Tier Standalone Application...........cccooeinreiiiniiiiiee 34
Figure 4-5 Three-Tier World Wide Web Applet.........ccoooomiiiiiiiee 36
Figure 5-1 The DataExpress Architecturecoooieveimniieie e 41
Figure 5-2 The DataSet class hierarchy ... 43
Figure 5-3 DataGateway StIUCIUTE................cooouiiiiiiieieeieeeeee e e 47
Figure 5-4 Borland InterClient architecture.................ccoccovieiiiiiii e, 49
Figure 5-5 Intellution FIX basic functions...............ccccccceneeennnn. RO ... S 53
Figure 5-6 Screen view of MainApplet ..o, 60
Figure 5-7 Screen view of FindOrderApplet............cooooiiiiii 61
Figure 5-8 Screen view of FindProductApplet..............ccoooiiiiiiiiie, 62
Figure 5-9 Screen view of FindCustomerApplet.............coocooiiinininiiinennennnn. 63
Figure 5-10 Screen view of CustomerApplet.............ocooiiiiiniiniiiieee 64
Figure 5-11 Screen view of OrderApplet............coooiiiiiiiii e 65
Figure 5-12 Screen view of AlarmApplet..............oooiiiiiiii e, 66
Figure 5-13 Screen view of RealValueAppletccooiiiiiiiiinii, 67
Figure 5-14 Structure of the Project ... 68
Figure 5-15 REMOTE database data flow...............c...cooominenii, 69

Figure 5-16 LOCAL database data flow..............c.cccoeoiiiiiieiieicee e, 70

CHAPTER ONE
INTRODUCTION

1.1. Introduction

Educational and corporate organizations continue to amass large amounts of data,
and that data is stored in a Database Management System (DBMS). The DBMS is
installed, and it includes many utilities to act upon the database, for administration,
application development, and user interaction. As more data appeared, more DBMS's
were purchased. Programmers were forced to develop different applications for each
DBMS, since each system had different protocols, Application Programming

Interfaces (API), and data structures.

To be competitive in the 1990's, organizations need to access accurate in-
formation very quickly, regardless of the data source, platform or location.
Management put the pressure on in-house developers to invent database clients for
each employee's desktop machine that can find all the company's information from

one application. (Visigenic, 1996)

The answer to this call was Open Database Connectivity (ODBC). Developed by
Microsoft and based on the Call Level Interface specification of the SQL Access
Group, ODBC allows users to access data in heterogeneous environments of
relational and non-relational databases. Developers, using the ODBC API, can write
one application to access data on many vendors' DBMS's on many platforms,

including Windows, Macintosh, and UNIX. (Intersolv, 1996)

In 1995, Sun Microsystems released an alpha 3 version of its new object-oriented

language, Java. This general purpose programming language became very popular

TCYUKST " 3 KUROLY
DOKUMAR.. . iii MERKEZ]

around the Internet, mostly because of its platform-independent bytecode
interpretation. A Java application is compiled into bytecodes, then interpreted on a
client machine by a Java interpreter for that particular architecture (Gosling &
McGilton, 1995).

The distributed, networking nature of Java quickly found the new language paired
with client/server database development. In an effort to develop Java applications for
use with remote DBMS's, the Java Database Connectivity (JDBC) API was created

by Javasoft, a Sun Microsystems operating company.

JDBC is based on the same Call Level Interface that ODBC was written from.
JDBC implementations, however, are native Java code, while ODBC
implementations are C coded programs. Developing a pure Java database driver is
important in maintaining adequate performance and convenience to the Java
developer. JDBC has beén adopted by most major DBMS vendors, including Oracle,
Informix, Imaginary, and Borland.

This study will provide background information about Internet and Java concepts
at first. Then it will define ODBC and JDBC, as well explore the issues developers
and implementors face in this ""Java-enhanced” world of database connectivity.
Furthermore, this study will explain a JDBC client/server system developed by the

author. The project's objectives are

e Introduce Internet and Java concepts
e Research the ODBC and JDBC specifications
e Study JDBC development

e Design, describe, and implement a JDBC compliant database system

CHAPTER TWO
THE INTERNET

The Internet was started as an experiment to test networks to try and develop a
network that could survive a nuclear attack. While the net has never needed to
survive a nuclear blast its design has proven again and again how robust it is. The
Internet of today transmits data to almost every country in the world. This data
includes everything from personal messages and currency transactions to military

data.

By definition the word internet means a collection of networks that are joined
together. Thus, the word Internet, with a capital T, means 'The collection of networks

that are joined together.'
2.1. The History of the Internet

The history of the Internet begins with the RAND group in 1966. Paul Baran was
commissioned by the U.S. Air Force to do a study on how it could maintain its
command and control over its missiles and bombers, after a nuclear attack. Baran's
finished document described several ways to accomplish this task. What he finally
proposes is a packet switched network. This network would have no central hub, and
no central control center. Instead it would have lines linking varies places together.
Packets would be forwarded from place to place until they arrived at the proper
destination.(Hardy, 1997) The theory was that if the middle of the country were
taken out by a nuclear attack, the coasts could still talk to one another. This would be
done by routing traffic around the missing links through Canada, satellites, or
possibly by going around the world.

In 1969 what would later become the Internet was founded. It contrasts sharply
with today's Internet. The ARPANET network had four machines on it, linked
together with a packet switched network. Soon afterward other government agencies
became interested in this new network; DoD, NASA, NSF, and the Federal Reserve
Board. Because of this new interest and the fact that ARPANET was growing, now
24 nodes in 1972, IPTO began to look at other ways to transmit data other than
through a wire. Two projects were launched to settle these needs. The first was the
use of satellites for data transmission. The second project was for radio transmitted
data. It soon also became apparent that a packet switched radio network, for mobile
computing, would be possible.(Norberb & O'Neill, 1992) In 1976 the packet satellite
project went into practical use. SATNET, Atlantic packet Satellite network, was

" born. This network linked the United States with Europe.

Because of the above two projects it soon became apparent that a new protocol for
the network was needed. For one the original addressing scheme did not contain
enough information to allow for the connection of other large networks. Also, a
system had to be found to allow the network to recover if it could not talk to the host
that it was trying to communicéte with. To try and solve these problems IPTO hired
Vinton Cerf who came from Stanford. Cerf and his students had written the first
protocol used on ARPANET, NCP. (Norberb & O'Neill, 1992)

In 1973 Cerf and his group developed the protocols that were to be called TCP/IP,
Transmission Control Protocol/ Internet Protocol. In 1976 the DoD began to
experiment with this new protocol and soon decided to require it for use on
ARPANET. January 1983 was the date fixed as when every machine connected to
ARPANET had to use this new protocol. Also, at this time is when ARPANET
ceased to be and the INTERNET came into being, for practical purposes. ARPANET
was not officially taken out of service until 1990. What this means is that the actual
56Kbs lines were taken out of service. But, because the network is designed to route
around missing parts no one noticed that they were gone. Those people that were still
using the lines received some sort of a new connection to the NSF backbone. As a
side note in 1984 the DoD decided to form MILNET out of the ARPANET. This was

done to ensure that the military would have a reliable network to use for
communication, while the ARPANET could still be used for advanced wide area

network testing.

In 1981 two other networks that would play an important role in the INTERNET
were founded. The first was BITNET. It was started by IBM and used IBM's RSCS
protocol over leased lines that connected the different sites. BITNET is an interesting
network in that it stands for "Because its Time Network". The basic principle of
BITNET was that it was a store and forward network. This meant that first users
could not get a real time connection over a BITNET connection. BITNET was
designed to allow E- mail and mailing lists. The second network that was founded in
1981 was CSNET. This network was setup by NSF as a way to allow CS
departments to work together. CSNET was designed to work over modems. Its basic
purpose was much like BITNET's because it allowed peers to exchange mail. In 1987
both of these networks combined together to form CREN, Corporation for Research
and Education Networking. In 1991 CREN discontinued CSNET, since its function
had been fulfilled and could now be met by other means. CREN is a totally self-
sufficient organization. Its costs are met by its members. BITNET its self is also
slowing ceasing to exist. Most of its members are leaving, they can get more

functionality out of an INTERNET connection.

In 1983 the University of Wisconsin made an incredible breakthrough in the way
the INTERNET worked. They developed the idea of the domain name server. This
meant that messages no longer needed to know the exact path, the IP number, to their
destination. The domain name server in essence allowed a message to ask for
directions along the way to its destination. For instance if you wanted to send a
message to "resource.cso.uiuc.edu” the message would first go to the DNS that
served "edu" which would then tell it how to get to "uiuc" which would tell the
message were it could find "resource.cso". This was a vast improvement over the old
system, before one of two things had to happen. Either the sender had to send a
message to the IP#, which in the example above would be "128.174.201.130" or the

administrator of the mainframe that you were using would have to place an entry in

the hosts file that would transform the name into an IP number. This made
administration of machines much easier, it also made life easier for the users, since

people find it easier to remember names instead of numbers.

In 1984 the National Science Foundation got into the act of networking. The NSF
felt that it would be good to setup super computer centers that people could purchase
time on for research. Five centers for super computer research were established and
each was linked via a backbone to the others. This NSF backbone was also linked to
ARPANET.

The years 1991 to 1994 were years of growth and stability for the Internet. No
major changes were made to the physical network. The most significant thing that
happened was the growth. Many new networks were added to the NSF backbone.
Hundreds of thousands of new hosts were added to the INTERNET during this time
period. Also, significant new uses of the net were found. CREN developed the
technology for the World Wide Web, which quickly became the second most used
application on the INTERNET, based on the amount of data transferred.

2.2. The Web

The World Wide Web came into being in 1991, thanks to developer Tim Berners-
Lee and others at the European Laboratory for Particle Physics, also known as
Conseil Européenne pour la Recherche Nucléaire (CERN). The CERN team created
the protocol based on hypertext that makes it possible to connect content on the Web
with hyperlinks. Berners-Lee now directs the World Wide Web Consortium (W3C),
a group of industry and university representatives that oversees the standards of Web

technology. (Microsoft, 1998)

Early on, the Internet was limited to noncommercial uses because its backbone
was provided largely by the National Science Foundation, the National Aeronautics
and Space Administration, and the U.S. Department of Energy, and funding came

from the government. But as independent networks began to spring up, users could

access commercial Web sites without using the government-funded network. By the
end of 1992, the first commercial online service provider, Delphi, offered full

Internet access to its subscribers, and several other providers followed.

2.3. Who Controls the Internet?

No one authority controls the World Wide Web. Today's Web site authoring tools
allow virtually anyone who has access to a computer and the Internet to post a Web
site and contribute to the definition of what this medium is and what it can do. But
the World Wide Web Consortium (W3C) does oversee the development of Web
technology. (Microsoft, 1998)

W3C was formed by Berners-Lee in 1994, An international group of industry and
university representatives, W3C promotes the Web by developing common protocols
for transmitting information over the Internet. The consortium provides information,
reference code, and prototype and sample applications to developers and users. It is
hosted by the Massachusetts Institute of Technology's Laboratory for Computer
Science in the United States, the Institut National de Recherche en Informatique et en
Automatique in Europe, and the Keio University Shonan Fujisawa Campus in Japan.
(Kehoe, 1992)

2.4, What Does Internet Do?

People use Internet basically to do four things: mail, discussion groups, long-

distance computing, and file transfers. (Sterling, 1993)

Internet mail is "e-mail," electronic mail, faster by several orders of magnitude
than the US Mail. Internet mail is somewhat like fax. It's electronic text. E-mail can

also send software and certain forms of compressed digital imagery.

The discussion groups, or "newsgroups," are a world of their own. This world of
news, debate and argument is generally known as "USENET. " USENET is, in point
of fact, quite different from the Internet. USENET is not so much a physical network

as a set of social conventions. In any case, at the moment there are some 2,500
separate newsgroups on USENET, and their discussions generate about 7 million
words of typed commentary every single day. Naturally there is a vast amount of talk
about computers on USENET, but the variety of subjects discussed is enormous, and
it's growing larger all the time. USENET also distributes various free electronic

journals and publications.

Long-distance computing was an original inspiration for ARPANET and is still a
very useful service. Programmers can maintain accounts on distant, powerful
computers, run programs there or write their own. Scientists can make use of
powerful supercomputers a continent away. Libraries offer their electronic card
catalogs for free search. Enormous CD-ROM catalogs are increasingly available

through this service. And there are fantastic amounts of free software available.

File transfers allow. Internet users to access remote machines and retrieve
programs or text. Many Internet computers allow any person to access them
anonymously, and to simply copy their public files, free of charge. This is no small
deal, since entire books can be transferred through direct Internet access in a matter
of minutes. Today, there are over a million such public files available to anyone who
asks for them, and many more millions of files are available to people with accounts.
Internet file-transfers are becoming a new form of publishing, in which the reader
simply electronically copies the work on demand, in any quantity he or she wants,
for free. New Internet programs, such as "archie," "gopher," and "WAIS," have been

developed to catalog and explore these enormous archives of material.

CHAPTER THREE
JAVA

3.1. What is Java?

Java is two things: a a high-level programming language and a platform.
(Javasoft, 1998)

3.1.1. Java Programming Language

Java is a high-level, fobject-oriented programming language. Java is unusual in
that each Java program is both compiled and interpreted. With a compiler, a Java
program is translated into an intermediate language called Java bytecodes--the
platform-independent codes interpreted by the Java interpreter. With an interpreter,
each Java bytecode instruction is parsed and run on the computer. Compilation
happens just once; interpretation occurs each time the program is executed. This

figure illustrates how this works. (Javasoft, 1998)

Interpreter

Compiler

Figure 3-1 Java interpreter and compiler

Java bytecode is like machine code instructions for the Java Virtual Machine
(Java VM). Every Java interpreter, whether it's a Java development tool or 2 Web
browser that can run Java applets, is an implementation of the Java VM. The Java
VM can also be implemented in hardware. Java bytecodes help make "write once,
run anywhere” possible. The bytecodes can then be run on any implementation of the
Java VM. For example, the same Java program can run on Windows NT, Solaris, and

Macintosh.

3.1.2. The Java Platform

A platform is the hardware or software environment in which a program runs. The
Java platform differs from most other platforms in that it's a software-only platform
that runs on top of other, hardware-based platforms. Most other platforms are

described as a combination of hardware and opéiating system.

The Java platform has two components:

e The Java Virtual Machine (Java VM). The Java VM is the base for the Java

platform and ported onto various hardware-based platforms.

e The Java Application Programming Interface (Java API). The Java API1s a large
collection of ready-made software components that provide manmy useful
capabilities, such as graphical user interface (GUI) widgets. The Java API is

grouped into libraries (packages) of related components.

The following figure depicts a Java program, such as an application or applet,
that's running on the Java platform. As the figure shows, the Java API and Virtual

Machine insulates the Java program from hardware dependencies.

As a platform-independent environment, Java can be a bit slower than native
code. However, smart compilers, well-tuned interpreters, and just-in-time bytecode

compilers can bring Java's performance close to that of native code.

10

Java Program

Java APl I Java
Java Virtual Machine Platform

Hardware-Based Platform

Figure 3-1 Java platform

3.2. Design Goals of Java

Java is designed to meet the challenges of application development in the context
of heterogeneous, network-wide distributed environments. Paramount among these
challenges is secure delivery of applications that consume the minimum of system
resources, can run on qny hardware and software platform, and can be extended
dynamically. (Gosling&McGilton, 1995, p.12)

The massive growth of the Internet and the World-Wide Web leads developers to
a completely new way of looking at development and distribution of software. To
live in the world of electronic commerce and distribution, Java must enable the
development of secure, high performance, and highly robust applications on multiple
platforms in heterogeneous, distributed networks.Operating on multiple platforms in
heterogeneous networks invalidates the traditional schemes of binary distribution,
release, upgrade, patch, and so on. To overcome these difficulties, Java must be

architecture neutral, portable, and dynamically adaptable. (Gosling&McGilton, 1995)

Some of the properties of Java and their respective benefits were explained below.

(Gosling&McGilton, 1995)

11

3.2.1. Simple

Primary characteristics of Java include a simple language that can be programmed
without extensive programmer training while familiar to current software practices.
The fundamental concepts of Java are grasped quickly; programmers can be

productive from the very beginning.
3.2.2. Object Oriented

Java is designed to be object oriented from the ground up. The needs of
distributed, client-server based systems coincide with the encapsulated, message-
passing paradigms of object-based software. To function within increasingly
complex, network-based environments, programming systems must adopt object-
oriented concepts. Java provides a clean and efficient object-based development

environment.
3.2.3. Familiar

Even though C++ was rejected as an implementation language, keeping Java
looking like C++ as far as possible results in Java being a familiar language, while
removing the unnecessary complexities of C++. Having Java retain many of the
object-oriented features and the “look and feel” of C++ means that programmers can

migrate easily to Java and be productive quickly.
3.2.4. Robust

Java is designed for creating highly reliable software. It provides extensive
compile-time checking, followed by a second level of run-time checking. The
memory management model—no pointers or pointer arithmetic—eliminates entire
classes of programming errors. It is possible to develop Java language code with

confidence that the system will find many errors quickly.

12

3.2.5. Secure

Java is designed to operate in distributed environments, which means that security
is of paramount importance. With security features designed into the language and
run-time system, Java lets developers construct applications that can’t be invaded
from outside. In the networked environment, applications written in Java are secure
from intrusion by unauthorized code attempting to get behind the scenes and create

viruses or invade file systems.
3.2.6. Architecture Neutral

Java is designed to support applications that will be deployed into heterogeneous
networked environments. In such environments, applications must be capable of
executing on a variety of hardware architectures. Within this variety of hardware
platforms, applications must execute a variety of operating systems and interoperate
with multiple programming language interfaces. To accommodate the diversity of
operating environments, the Java compiler generates bytecodes—an architecture
neutral intermediate format designed to transport code efficiently to multiple
hardware and software platforms. The interpreted nature of Java solves both the
binary distribution problem and the version problem; the same Java language byte

codes will run on any platform.
3.2.7. Portable

Architecture neutrality is just one part of a truly portable system. The primary
benefit of the interpreted byte code approach is that compiled Java language
programs are portable to any system on which the Java interpreter and run-time
system have been implemented. The architecture-neutral aspect is one major step
towards being portable. Java eliminates portability problem by defining standard
behavior that will apply to the data types across all platforms. Java specifies the sizes

of all its primitive data types and the behavior of arithmetic on them.

13

The architecture-neutral and portable language environment of Java is known as
the Java Virtual Machine. It’s the specification of an abstract machine for which Java
language compilers can generate code. The Java Virtual Machine is based primarily
on the POSIX interface specification—an industry-standard definition of a portable

system interface.
3.2.8. High Performance

Performance is always a consideration. Java achieves superior performance by
adopting a scheme by which the interpreter can run at full speed without needing to
check the run-time environment. The automatic garbage collector runs as a low-
priority background thread, ensuring a high probability that memory is available
when required, leading to better performance. In general, users perceive that

interactive applications respond quickly even though they’re interpreted.

3.2.9. Interpreted

The Java interpreter can execute Java bytecodes directly on any machine to which
the interpreter and run-time system have been ported. In an interpreted environment
such as Java system, the link phase of a program is simple, incremental, and
lightweight. You benefit from much faster development cycles—prototyping,
experimentation, and rapid development are the normal case, versus the traditional

heavyweight compile, link, and test cycles.
3.2.10, Threaded

Modern network-based applications typically need to do several things at the
same time. A user working with multi-threaded Java application can perform several
tasks concurrently. Java’s multithreading capability provides the means to build

applications with many concurrent threads of activity.

14

Multithreading thus results in a high degree of interactivity for the end user. Java
supports multithreading at the language level with the addition of sophisticated
synchronization primitives: the language library provides the Thread class, and the
run-time system provides monitor and condition lock primitives. At the library level,
moreover, Java’s high-level system libraries have been written to be thread safe: the
functionality provided by the libraries is available without conflict to multiple

concurrent threads of execution.
3.2.11. Dynamic

While the Java compiler is strict in its compile-time static checking, the language
and run-time system are dynamic in their linking stages. Classes are linked only as
needed. New code modules can be linked in on demand from a variety of sources,

even from sources across a network.

“The result is on-line services that constantly evolve; they can remain innovative
and fresh, draw more customers, and spur the growth of electronic commerce on the

Internet.” (Gosling & McGilton, 1995, pp.12-16)
3.3. What Can Java Do?

The most well-known Java programs are Java applets. An applet is a Java
program that adheres to certain conventions that allow it to run within a Java-enabled
browser. Java is a general-purpose, high-level programming language and a powerful
software platform. Using the generous Java API, programmers can write many types
of programs. The most common types of programs are probably applets and

applications. (Javasoft, 1998)

Another type of Java program is Java application that is a standalone program that
runs directly on the Java platform. A special kind of application known as a server
serves and supports clients on a network. Examples of servers include Web servers,

proxy servers, mail servers, print servers, and boot servers. Another specialized

15

program is a servlet. Servlets are similar to applets in that they are runtime
extensions of applications. Instead of working in browsers, though, servlets run

within Java servers, configuring or tailoring the server. (Javasoft, 1998)

Java API support all of these kinds of programs with packages of software
components that provide a wide range of functionality. The core API is the API
included in every full implementation of the Java platform. The core API has the

following features:

e The Essentials: Objects, strings, threads, numbers, input and output, data

structures, system properties, date and time, and so on.

e Applets: The set of conventions used by Java applets.

e Networking: URLé, TCP and UDP sockets, and IP addresses.

e Internationalization: Help for writing programs that can be localized for
users worldwide. Programs can automatically adapt to specific locales and be

displayed in the appropriate language.

e Security: Both low-level and high-level, including electronic signatures,

public/private key management, access control, and certificates.
e Software components: Known as JavaBeans, can plug into existing
component architectures such as Microsoft's OLE/COM/Active-X

architecture, OpenDoc, and Netscape's Live Connect.

e Object serialization: Allows lightweight persistence and communication via

Remote Method Invocation (RMI).

e Java Database Connectivity (JDBC): Provides uniform access to a wide

range of relational databases. (JDBC is explained in Chapter-4 more detailed)

e 24 megzl'j"

16

3.4. Java and the Web

A Web browser that implements the Java run-time system can incorporate Java
applets as executable content inside of documents. This means that Web pages can
contain not only static hypertext information but also interactive applications. A user

can retrieve and use software simply by navigating with the Web browser.

“Formerly static information can be paired with portable software for interpreting
and using the information. Instead of just providing some data for a spreadsheet, for
example, a Web document might contain a fully functional spreadsheet application
embedded within it that allows users to view and manipulate the information.”

(Niemeyer&Peck, 1996, p.22)

The term applet used to mean a small, subordinate, or embeddable application.
Embeddable means that it’s designed to be run within the context of a larger system.
Most programs are embedded within a computer’s operating system. An operating
system manages its native applications in a variety of ways: it starts, stops, suspends,
and synchronizes applications. Java applets is embedded in and controlled by larger

applications, such as Java-enabled Web browser or an applet viewer. (Jamsa, 1996)

A Java applet is compiled Java program, composed of classes like any Java
program. While a simple applet may consist of only a single class, most large applets
should be broken into many classes. Each class is stored in a separate class file. The

class files for an applet are retrieved from the network, as they are needed.

An applet has four-part life cycle. When applet initially loaded by a Web browse,
it’s asked to initialize itself. The applet is then informed each time it’s displayed and
each time it’s no longer visible to the user. Finally, the applet is told when it’s no
longer needed, so that it can clean up after itself. During it’s lifetime, an applet may
start and suspend itself, do work, communicate with other applications, and interact

with the Web browser.

17

3.5. What Applets Can and Can't Do
3.5.1. Security Restrictions

Every browser implements security policies to keep applets from compromising
system security. The implementation of the security policies differs from browser to
browser. Also, security policies are subject to change. For example, if a browser is
developed for use only in trusted environments, then its security policies will likely

be much more lax than those described below. (Javasoft, 1998)

Current browsers impose the following restrictions on any applet that is loaded

over the network:

An applet cannot léad libraries or define native methods.

o It cannot ordinarily read or write files on the host that's executing it.

e It cannot make network connections except to the host that it came from.
e [t cannot start any program on the host that's executing it.

e It cannot read certain system properties.

e Windows that an applet brings up look different than windows that an

application brings up.

Each browser has a SecurityManager object that implements its security policies.
When a SecurityManager detects a violation, it throws a SecurityException. An
applet can catch this SecurityException and react appropriately. (Javasoft, 1998)

18

3.5.2. Applei Capabilities
The java.applet package provides an API that gives applets some capabilities that
applications don't have. For example, applets can play sounds, which other programs

can't do yet. (Javasoft, 1998)

Here are some other things that current browers and other applet viewers let

applets do:
e Applets can usually make network connections to the host they came from.

e Applets running within a Web browser can easily cause HTML documents to

be displayed.

e Applets can invoke public methods of other applets on the same page.

e Applets that are loaded from the local file system (from a directory in the
user's CLASSPATH) have none of the restrictions that applets loaded over the

network do.

e Although most applets stop running once you leave their page, they don't have

to.

19

CHAPTER FOUR
JDBC

4.1. Open Database Connectivity (ODBC)

In an effort to standardize an interface to DBMS's, Microsoft created Open
Database Connectivity (ODBC), based on the X/Open definitions of SQL CLI (Call
Level Interface). ODBC is an API in which application developers can code their
programs using ODBC function calls, and each DBMS vendor can provide an ODBC
driver for their specific DBMS. An application written for the ODBC API can be
used to access any DBMS, given the appropriate ODBC drivers (Visigenic, 1996).

ODBC alleviates the need for independent software vendors and corporate
developers to learn multiple API's. ODBC now provides a universal data access
interface. Application developers can allow an application to concurrently access,

view, and modify data from multiple, diverse databases.

ODBGC is a specification to which developers write either

e An ODBC-enabled ''front-end" or "“client" desktop application, also known as
an ""ODBC Client." This is the application that the computer-user sees on the

computer screen, or

e An ODBC Driver for a “'back-end” or “‘server" DBMS (Database
Management System). This is the DBMS application that resides on a
computer that is used to store data for access by several users. This application
is a standards consortium not what is loaded on the end user's computer. This

server application is usually more robust than the client application. The

20

ODBC Driver resides between the ODBC Client and the DBMS; however, it

is loaded on the front-end computer.
To use ODBC, the following three components are required. (Hamann, 1996)

ODBC CLIENT an ODBC-enabled front-end (also called ODBC client) -
Examples Microsoft Access, an application created with Access, or ODBC enabled

applications from other vendors (such as Lotus)

ODBC DRIVER an ODBC Driver for the ODBC Server. Any ODBC client can
access any DBMS for which there is an ODBC Driver.

DBMS SERVER a back-end or server DBMS - Examples SQL Server, Oracle,
AS/400, Access, or any DBMS for which an ODBC driver exists.

4.2, ODBC Over a Network

Some DBMS vendors provide a transport mechanism for client applications to
access the database server over a network. MiniSQL is built around a network
paradigm, as the database engine is a daemon 12 to be accessed locally via a UNIX
domain socket or remotely via a TCP socket. Oracle provides developers with

SQLNet, a set of libraries to facilitate data transfers over a TCP/IP network.

A three-tier architecture can be used to develop ODBC clients in a TCP/IP
network. The client application is written to the ODBC specifications, and compiled
with the ODBC and DBMS transport libraries. The client binary is now equipped to
communicate with a DBMS server remotely, and the source code is portable among

other DBMS's.

21

4.3. Java Database Connectivity (JDBC)

JDBC is a Java API for executing SQL statements. It consists of a set of classes
and interfaces written in the Java programming language. JDBC provides a standard
API for tool/database developers and makes it possible to write database applications

using a pure Java APIL (Sun Microsystems, 1997)

Using JDBC API, it is easy to send SQL statements to virtually any relational
database and not necessary to write special programs to access different databases.
The combination of Java and JDBC lets a programmer write it once and run it

anywhere.

JDBC makes it possible to do three things:
e establisha connectioﬁ with a database
e send SQL statements
e process the results.

JDBC is a "low-level" interface, which means that it is used to invoke SQL
commands directly. It works very well in this capacity and is easier to use than other
database connectivity APIs, but it was designed also to be a base upon which to build
higher-level interfaces and tools. A higher-level interface is "user-friendly," using a

more understandable or more convenient API that is translated behind the scenes into

a low-level interface such as JDBC.
Two kinds of higher-level APIs were developed on top of JDBC:

e An embedded SQL for Java. DBMSs implement SQL, a language designed
specifically for use with databases. JDBC requires that the SQL statements be
passed as Strings to Java methods. An embedded SQL preprocessor allows a

22

programmer to instead mix SQL statements directly with Java: for example, a
Java variable can be used in a SQL statement to receive or provide SQL
values. The embedded SQL preprocessor then translates this Java/SQL mix
into Java with JDBC calls.

e A direct mapping of relational database tables to Java classes. In this
"abject/relational" mapping, each row of the table becomes an instance of that
class, and each column value corresponds to an attribute of that instance.
Programmers can then operate directly on Java objects; the required SQL calls
to fetch and store data are automatically generated "beneath the covers.” More
sophisticated mappings are also provided, for example, where rows of

multiple tables are combined in a Java class.
4.4. JDBC versus ODBC

Microsoft's ODBC (Open DataBase Connectivity) API is the most widely used
programming interface for accessing relational databases. It offers the ability to
connect to almost all databases on almost all platforms. ODBC can be used from
Java without JDBC, but accessing a database from Java is best done ODBC with the
help of JDBC in the form of the JDBC-ODBC Bridge. (Sun Microsystems, 1997)

Advantages of ODBC with JDBC:

1. ODBC is not appropriate for direct use from Java because it uses a C
interface. Calls from Java to native C code have a number of drawbacks in the
security, implementation, robustness, and automatic portability of

applications.

2. A literal translation of the ODBC C API into a Java API would not be
desirable. For example, Java has no pointers, and ODBC makes copious use of

them, including the notoriously error-prone generic pointer "void *".

23

3. ODBC is hard to learn. It mixes simple and advanced features together, and it
has complex options even for simple queries. JDBC, on the other hand, was
designed to keep simple things simple while allowing more advanced

capabilities where required.

4. A Java API like JDBC is needed in order to enable a "pure Java" solution.
When ODBC is used, the ODBC driver manager and drivers must be
manually installed on every client machine. When the JDBC driver is written
completely in Java, however, JDBC code is automatically installable, portable,

and secure on all Java platforms from network computers to mainframes.

The JDBC API is a natural Java interface to the basic SQL abstractions and
concepts. It builds on ODBC rather than starting from scratch. JDBC retains the
basic design features of ODBC, and both interfaces are based on the X/Open SQL
CLI (Call Level Interface).

4.5. ODBC Compatibility

In an effort to bridge the initial gap between existing ODBC applications and the
new JDBC specifications, Intersolv released a JDBC-ODBC Bridge. Java
applications can be written using the JDBC API, but the API calls are filtered
through the JDBC-ODBC bridge and converted into ODBC function calls. The
remote DBMS (with the appropriate ODBC drivers) receives these calls as they do
from any other ODBC client, and dutifully execute them. (Hamann, 1996)

4.6. JDBC Components
JDBC product consists of three components :
e The JDBC driver manager : The JDBC driver manager is the backbone of

the JDBC architecture. Its primary function is to connect Java applications to
the correct JDBC driver and then get out of the way.

24

e The JDBC driver test suite : The JDBC driver test suite provides some
confidence that JDBC drivers will run a program. Only drivers that pass the
JDBC driver test suite can be designated JDBC COMPLIANT.

e The JDBC-ODBC bridge : The JDBC-ODBC bridge allows ODBC drivers
to be used as JDBC drivers. It was implemented as a way to get JDBC off the
ground quickly, and long term will provide a way to access some of the less

popular DBMSs if JDBC drivers are not implemented for them.

4.7. JDBC Driver Types

The JDBC drivers fit into one of four categories (Sun Microsystems, 1997):

4.7.1. JDBC-ODBC bridge plus ODBC driver:

The JavaSoft bridge product provides JDBC access via ODBC drivers. ODBC
binary code, and in many cases database client code, must be loaded on each client
machine that uses this driver. As a result, this kind of driver is most appropriate on a
corporate network where client installations are not a major problem, or for

application server code written in Java in a three-tier architecture.

4.7.2. Native-API partly-Java driver:

This kind of driver converts JDBC calls into calls on the client API for Oracle,
Sybase, Informix, DB2, or other DBMS. Like the bridge driver, this style of driver

requires that some binary code be loaded on each client machine.
4.7.3. JDBC-Net pure Java driver:
This driver translates JDBC calls into a DBMS- independent net protocol which is

then translated to a DBMS protocol by a server. This net server middleware is able to

connect its pure Java clients to many different databases. The specific protocol used

25

depends on the vendor. In general, this is the most flexible JDBC alternative. It is
likely that all vendors of this solution will provide products suitable for Intranet use.
In order for these products to also support Internet access, they must handle the
additional requirements for security, access through firewalls, and so on, that the
Web imposes. Several vendors are adding JDBC drivers to their existing database

middleware products.
4.7.4. Native-protocol pure Java driver:

This kind of driver converts JDBC calls into the network protocol used by
DBMSs directly. This allows a direct call from the client machine to the DBMS
server and is a practical solution for Intranet access. Since many of these protocols
are proprietary, the database vendors themselves will be the primary source, and

several database vendors have these in progress.

Driver categories 1 and 2 are interim solutions where direct pure Java drivers are
not yet available. There are possible variations on categories 1 and 2 that require a
connector, but these are generally less desirable solutions. Driver categories 3 and 4
will be the preferred way to access databases from JDBC. Categories 3 and 4 offer
all the advantages of Java, including automatic installation and automatic download

the JDBC driver with an applet that uses it.

DRIVER CATEGORY ALL JAVA? NET PROTOCOL
1 - JDBC-ODBC Bridge No Direct
2 — Native API as basis No Direct
Requires
3 — JDBC-Net Yes
Connector
4 — Native protocol as basis| Yes Direct

Table 4-1 JDBC driver categories and their properties

26

4.8. Current JDBC Development

Several companies are pouring a great deal of personnel and resources into Java
development. Some of these companies are small Internet firms, banking the
company's future on the success of Java. Others, like Javasoft, are backed by large

corporations seeking to dominate a new market.

4.8.1. Javasoft

Sun Microsystems released the Java language specifications an an alpha product
in June 1995. Since then, Javasoft released two or three beta specifications, and
finally, in January 1996, announced the release and availability of the Java 1.0 AP, a
production-quality release. Javasoft also develops Java compilers for Solaris and
Windows 95/NT, to promote the use of the Java. This software is available from their
WWW server, free of charge.

Javasoft continues to refine and improve the Java language with new

specifications for certain functions.

JDBC JDBC allows Java applets to communicate with a wide range of database

systems.

JavaBeans JavaBeans provides a platform-independent, portable component
model and a rational security model. JavaBeans will work with ActiveX/COM,
OpenDoc, and LiveConnect.

IDL Currently in its alpha 2.0 release, Java IDL provides a way for transparently
connecting Java clients to network servers using the industry standard IDL Interface

Definition language.

JECF Java Electronic Commerce Framework is a secure, extensible framework

for conducting business on the Internet.

27

Java Workshop Currently in its beta release, Java Workshop is a commercial
product that provides programmers a comprehensive environment for Java

application development.

RMI and Object Serialization Object Serialization allows programs to serialize
objects into a stream of bytes that can be later used to build equivalent objects.
Remote Method Invocation (RMI) lets you create Java objects whose methods can be

invoked from another virtual machine, analogous to a remote procedure call (RPC).
4.8.2. WebLogic

WebLogic, Inc., founded in 1995 in San Francisco, provides software for rapid
development of products to build enterprise-wide, commercial applications.

WebLogic's software products are written exclusively in Java.

WebLogic has focused on database access, and has developed the following

products:

jdbcKona The jdbcKona products are a set of JDBC drivers for a variety of
environments. The native drivers are based on vendor-supplied database libraries
rather than on Microsoft's ODBC, and offer the performance of native vendor

libraries as well as the platform neutrality of JDBC.

htmlKona htmlKona is a set of Java objects for programmatically generating
complex HTML documents and constructing dynamic applications using CGI or one
of the new Java-enhanced HTTP servers, like Netscape's Enterprise Server and
JavaSoft's Jeeves. htmlKona is useful in an interactive HTTP/CGI environment or
with Java-enabled HTTP servers, as well as for the periodic generation of static

HTML pages.

eventKona/T3 eventKona/T3, WebLogic's event server, provides high-level

event handling services between applications that generate user-defined events and

28

29

applications that have registered an interest in the events. eventKona/T3 features
include server-based Java evaluation of events as they are submitted to WebLogic's

event server, and the ability to perform arbitrary actions based on the events.
4.8.3. Visigenic

Visigenic specializes in application middleware that provides developers access to
heterogeneous databases, and enables multi-tier distributed applications for the

Internet, intranet, and enterprise environments.

Their new product, OpenChannel, intends to streamline and simplify the design of
a client/server database system. Visigenic's solution fits OpenChannel modules on

both the client and server to negotiate the transmission of data in a standard form.

S

HTEERET

Figure 4-1 Visigenic's OpenChannel Architecture

4.9. SQL Conformance

Database systems support a wide range of SQL syntax and semantics, and they are

not consistent with each other on more advanced functionality such as outer joins and

stored procedures. Hopefully, the portion of SQL that is truly standard will expand to
include more and more functionality. In the meantime, Javasoft takes the following

position:

e JDBC allows any query string to be passed through to an underlying DBMS
driver, so an application may use as much SQL functionality as desired at the
risk of receiving an error on some DBMSs. In fact, an application query need
not even be SQL, or it may be a specialized derivative of SQL, e.g. for

document or image queries, designed for specific DBMSs.

e In order to pass JDBC compliance tests and to be called "JDBC
COMPLIANT", Javasoft requires that a driver support at least ANSI SQL92
Entry Level. This-gives applications that want wide portability a guaranteed
least common denominator. ANSI SQL-2 Entry Level is reasonably powerful
and is reasonably widely supported today.

4.10. Abstract Interfaces

The JDBC API is expressed as a series of abstract Java interfaces that allow an
application programmer to open connections to particular databases, execute SQL
statements, and process the results. (Sun Microsystems, 1997)

The critical interfaces are

e java.sql.DriverManager, which handles the loading of DBMS drivers and

provides support for creating new database connections.
e java.sql.Connection, which represents a connection to a particular database.
J q P P

e java.sql.Statement, which acts as a container for executing an SQL statement

on a given connection. Two sub-types are

30

¢ java.sdl.PreparedStatement, for executing a pre-compiled SQL

statement

¢ javasql.CallableStatement, for executing a call to database stored

procedure

¢ java.sql.ResultSet, which controls access to the row results of a given

statement.
4.11. Security with JDBC

As with other Java applets, there are two scenarios a JDBC developer should
consider (Hamann, 1996)

Trusted Code A trusted Java program includes Java applications and applets
from *“friendly" sources. A *“friendly" source could be your company's Information
Services server or your professor's server. The applet can be signed with a

cryptographic key to ensure its integrity during its download.

Untrusted Code Untrusted code is Java applets found across the Internet.
Untrusted applets are not allowed access to the client's local devices, such as its
filesystem. Furthermore, untrusted applets are only allowed to open network
connections back to the server from which it was downloaded. An untrusted JDBC
applet should avoid making any automatic or implicit use of local credentials when

making connections to remote database servers.
4.12. Multi-Tier JDBC Systems

As a result of the complexities of serving executable content over an insecure
network, developers have struggled with system architectures to provide efficient and
convenient access to databases, while still maintaining system security and stability.

In providing database access through JDBC, either from a stand-alone application or

31

a World Wide Web applet, three major paradigms are generally followed one-tier,

two-tier, or three-tier systems.
4.12.1. One Tier Systems

The one-tier system is only seen when the JDBC driver is completely written in

Java code.
4.12.1.1. Standalone Application
The Java client code, the JDBC Driver Manager, and the JDBC Driver(s) are all

contained in one tier, on the client machine The database client may then connect to

any host on the network and beginaccessing information in the remote database.

H] . !
[}
i : i i
1 !] 1
! : : !
' Database B : Data C DEMS !
! Client | Access | :
1 ']
i | i '
a }] g E i
: Driver I JDBC i E E
' Manager Driver E ' :
; 1 ! !
! Host A i : Host B ___i

o o = - - v . = o — = - = - — - —

Figure 4-1 One-Tier Standalone Application

4.12.1.2. World Wide Web Applet

The Java client code, the JDBC Driver Manager, and the JDBC Driver(s) are all
downloaded from the WWW server, onto the client machine. The database client
may then connect to a remote database on the same host from which the classes were

loaded from (the WWW server) and begin accessing information.

32

1] i
1 []]
: H '
[} []]
h , i
' WWW 1Data .
! g~ 4 - DBMS
] Client Access |
[]]
1 [])
5 } } 5 !
i A Java ~~ Driver | I H i
: Applet Manager JDBC : i
: Driver : :
[] ?
: H)
5 i H WWW
: 1 1 Server
i : H
b MastA i |
1
(]
: HostB

Figure 4-1 One-Tier World Wide Applet

4.12.2. Two Tier Systems

The two-tier system is applicable when the JDBC driver requires a native code

library to translate JDBC functions into the DBMS's specific query language.

WebLogic's JDBC driver for Oracle 7 uses a native code library, and therefore

requires a two or three tier system.

4.12.2.1. Standalone Application

The Java client code, the JDBC Driver Manager, and the JDBC Driver(s) are all

contained in one tier, on the client machine. In addition, the JDBC Driver (written in

Java) requires a native code library to translate its JDBC functions into a language

specific to one DBMS. This native-code library, specific to one DBMS and one

operating system, is contained in the second tier. The database client may connect to

any host on the network, and begin accessing information, via the native code

library, in the remote database.

33

4.12.2.2. World Wide Web Applet

This architecture is not possible for WWW applets. The Java client code, the
JDBC Driver Manager, and the JDBC Driver(s) can be downloaded from the
network, but the required native code library cannot be retreived and used on the
client machine. The library is platform-specific, and is not subject to the normal

safety checks that the Java compiler and runtime engine impose on Java applets.

1 ' 1 .
i i 1 :
1 ! ! 1
t : : :
: WWW ! : i
: ' : h
! Client =t \ ; DBMS i
: ' i |
: // i P I\! Data | ;
: A Java 3 I I Access |
' Driver JDBC | !
! Applet Manager : :
: Host A river Host B i
.... O e eeeeeessnenneeeneene oo Xeenfeee e vt

Tier 2 . :

i i

5 WWW :,

! Server ‘

' i

i !

! !

) 1

e e N R S

Tier 3 ! 1

! :

5 :

i :

{ Native E

| Code !

E Library !

1

| !

.)

! Host € H

Figure 4-1 Two-Tier Standalone Application

34

4.12.3. Three Tier Systems

Three-tier systems are being developed by companies like WebLogic and
Visigenic because of their support for database access from WWW applets. The

JDBC drivers typically require a native code library for translations.
4.12.3.1. Standalone Application

The Java client code, the JDBC Driver Manager, and the JDBC Driver(s) are all
contained in one tier, on the client machine The native code library is housed on a
second host, and serves as a gateway to a third tier, the DBMS. The database client
may instantiate a ““session" with the native code library gateway, which in turn
connects to the remote-database system. As the client access data, the gateway

negotiates the flow of information to and from the database system.

This allows a centralized point of administration for systems personnel,
simplifying upgrades and protocol changes. It also creates a bottleneck situation if

the gateway to flooded with requests simultaneously.
4.12.3.2. World Wide Web Applet

The Java client code, the JDBC Driver Manager, and the JDBC Driver(s) are
downloaded from the host server to the client machine running a Java-enabled
WWW browser (e.g. Netscape Navigator 2.x or later). The native code library is
housed on that same host server, and serves as a gateway to a third tier, the DBMS.
The database client may instantiate a “*session" with the native code library gateway,
which in turn connects to the remote database system. As the client access data, the

gateway negotiates the flow of information to and from the database system.

This architecture works around the browser policy restrictions of connecting only
to the applet's “"home" server. The web server from which the applet was retrieved

serves as a proxy gateway, by which applets can in fact communicate with any

35

remote hosts the proxy allows. Once again, this architecture offers a centralized point
of authentication and access control for systems personnel, rather than trying to
maintain the access control restrictions in the code of many software programs

distributed throughout an enterprise.

]] i

i i e i
] M :]
' ! | !
] i 1 1
. WWW . . ;
E Client - \ E E DBMS ,:
]] 1]
1 [} 1)
E d } $ | Data |
. ¥ Java / | I Access } \
' Driver DBC | i '
' Applet Manager J ' : \
' - & Driver ! i '
S R HostA | w HostB !
B0 SOOI EUI NI, WU ANOTossossoss s

Tier 2 ,)

? :

!]

{]

| www | |

! Server :

! 1

5 ’.

! |

t

JMer2 o R

Tier 3 ! i

! '

1]

! !

:)

' Native E

! Code !

E Library !

! :

!]

1 t

| ___._Hostc .

Figure 4-1 Three-Tier World Wide Web Applet

CHAPTER FIVE
A REAL APPLICATION

5.1. Description of the Project

I developed a real application, which enable authorised people to send or receive

data stored in remote databases via Internet.

The project consists of three parts. The first part is for ordering via Internet,
namely “Electronic Commerce”. Second part of the project lets someone to query the
main database of the company, so that he can get information about products, orders
etc. The last part is about monitoring real-time data of the production system. The
real-time data are temperature, pressure, or speed of the machines at the production

floor.

Since Java is more suitable to internet applications, I chose Java environment to
develop the project. To manage the project and create java applets, Borland JBuilder
IDE was used. Borland InterBase was chosen as an SQL server. JDBC connection

between applets and database is made with Borland DataGateway.

In order to make connection with control systems and get real time data from
production floor, I used FIX Supervisory Control and Data Acquisition (SCADA)
software and sent collected data to SQL server.

Before describing the project more detailed, development tools and other software

will be explained in the next section.

37

5.2 Develop‘ment Tools and Servers
5.2.1. Borland Jbuilder IDE

Borland JBuilder 2 is a family of highly productive, visual development tools for
creating high-performance, platform-independent applications using the Java
programming language created by Sun Microsystems. The JBuilder 2 scalable,
component-based environment is designed for all levels of “Information Network”
development projects, ranging from applets and applications that require networked
database connectivity to client/server and enterprise-wide, distributed multi-tier
computing solutions. The JBuilder 2 open environment supports 100% Pure Java,
JavaBeans, Enterprise JavaBeans, Servlets, JDK 1.1, JDK 1.2, JFC/Swing, RMI,
CORBA, JIDBC, ODBC, and all major corporate database servers. JBuilder 2 will
also provide developers “with a flexible open architecture to incorporate new JDKs,

third-party tools, add-ins, and JavaBean components.

JBuilder was architected to generate only 100% Pure Java code. All applications,
applets, or JavaBeans created with JBuilder can work on any platform running a Java
Virtual Machine: Windows, Unix, Mac, AS/400, mainframes, etc. They will also
work in any browser supporting JDK 1.1.

JBuilder 2 offers the fastest rebuild/recompile speeds by using Smart Dependency
Checking, which results in fewer unnecessary compiles of interdependent source
files, and thus accelerates the edit/recompile cycle. When compiling, instead of
deciding whether to recompile a source file based only on the time stamp of the file,
JBuilder analyzes the nature of the changes made to source files. A source file is
recompiled only if it uses (or depends on) a particular element that has changed
within another source file. There are two commands for compiling: the Make
command, and the Build command. The Make command compiles only the files that
have changed. Make is the recommended command. The Build command compiles
all the files.

38

JBuilder also includes a graphical debugger with all the features professional
developers need to easily find and fix bugs. For faster development cycles, this
professional debugger includes breakpoint setting, multi-thread support, single step
through the code, etc.

Unique “Two-Way Tool” lets developers work simultaneously in the visual
designers and pure Java code by switching between the Design and Source tabs, so
they get all the benefits of visual programming without sacrificing the control of

working in code.

The JBuilder compiler has full support for the Java language, including inner
classes and JAR files. Developers can compile from within the IDE, or from the

command line.

JBuilder supports the pure JDBC API, JavaSoft database connectivity
specification. JDBC is the ultimate all-Java industry standard API for accessing and
manipulating database data. JBuilder database applications can connect to any
database that has a JDBC driver. All-Java based drivers can be loaded from the
server or locally. The advantages to using a driver entirely written in Java is that it
can be downloaded as part of an applet and is cross-platform. This is the preferred
environment for Pure Java portable solutions. JBuilder also supports ODBC. If the
connection to the database server is through an ODBC driver, use the JavaSoft (tm)

JDBC-ODBC bridge software integrated within JBuilder.

5.2.1.1. The DataExpress Architecture

The JBuilder DataExpress architecture, in combination with the industry-standard
JavaSoft JDBC call level API, provides powerful, vendor-independent support for
Oracle, Sybase, Informix, Interbase, DB2, MS SQL server, Paradox, dBase, FoxPro,

Access and other popular databases.

39

The DataExpress approach to data access and update of data sources like JDBC

data sources can be explained as three phases:

A subset of data from a data source such as a SQL server is fetched into a
DataSet component. This phase is called "'providing."

The data in the DataSet can be freely navigated and edited entirely on the client
machine without further communication with the original data source. All edits to
the DataSet are all transparently recorded.

All of the recorded changes to a DataSet can be saved back to a data source such
as a SQL server. This process is called "resolving.” There is sophisticated built-

in reconciliation technology to deal with potential edit conflicts.
The advantages of this approach can be summarized as follows.

The personalities/semantics of data access and update for various data sources
can be largely isolated to two clean points: providing (load the data) and
resolution (save the changes to the data). For example, if data is accessed directly
through a SQL server cursor—many issues come up: Is record locking
supported? Are bidirectional cursors supported? What kind of transactional
support is needed? What index ordering is supported? Where do posted records
go—to the end, or where they are inserted, or in index order? How is data cached
across transaction boundaries? Scroll bars like to know how many rows there are

and which row is currently being scrolled to.

Most SQL servers are highly tuned for the high volume of short running, small
row set transactions that are common in an OLTP application. Because the
DataExpress approach is "set" oriented, it is ideally suited to this environment.
For providing, a transaction is only open long enough to fetch the result set. For

resolving, the transaction stays open only long enough to save the changes.

DataExpress encourages thin client application solutions when used with all-Java

JDBC drivers. No special driver installation and registry settings are required

40

41

with an all Java JDBC driver. This allows applications built with DataExpress

technology to be run as an application or as an applet from with in a Web

browser.
User Intert:
Application ace
(JBCL data-aware controls)
(" JBuilder #)
DataExpress
Architecture DetaSet DataSetView
StorageDataSet
MemoryStore | DataStore

QueryDataSet - ProcedureDataSet TableDataSet
A
\ + 1 { C Wy
TextDataFile

GenericDataSource

LEGEMD:

1

ol »
2

D Inheritance Oracie C
Sybase Access Data
B BataFlow Informix |pzopace| FoxPro fila
InterBase | server | Paradox
DB2 dBase
MS SQL Server

Figure 5-1 The DataExpress Architecture

The DataExpress approach is also well-suited to application partitioning.
DataSets allow for a deferred update model. This is because providing and
resolving are done in separate transactions with an arbitrary amount of time for
editing and processing in between the providing/resolving operations. DataSets
are also well suited for streaming as parameters to remote methods. It is a rich

data structure of manageable size that contains structure, data, and edit state.

o As more support for application partitioning is introduced in the DataExpress
architecture, even thinner client software will be possible. The primary reason for
this is that providing/resolving and business rule logic can be partitioned to

another tier.

e DataSets on the client machine can be sorted and filtered independently of any

indexes normally associated with the original data source.

e The data collected from the data source is a single consistent snapshot which is
independent of changes which occur between the providing and the resolving of
the DataSet. This effectively removes the traditional refresh problems associated
with trying to reconcile data changes coming from other users while the data is

being edited on a client machine.

The DataExpress approach is one of the most practical approaches for developing
thin client/server-oriented applications on the Internet across a broad variety of data

sources
5.2.1.2. The DataSet class hierarchy.

The DataSet class hierarchy is the centerpiece of the DataExpress architecture.
The DataSet class hierarchy is not a set of implementable interfaces. DataSets
provide a rich level of functionality and semantics for data access and update. The
intent of the DataExpress architecture is to provide a powerful, performant, and
tested set of components that are ready for use and customization. Customization is
achieved by property settings, event handlers, and implementation of smaller, more

focused interfaces such as Resolver and DataFile.

The DataSet class hierarchy is not a set of implementable interfaces. DataSets
provide a rich level of functionality and semantics for data access and update. If
interfaces existed for these APIs, the implementor would have the burden of

supporting the rich functionality and semantics of the DataSet APIs. The leaf nodes

42

of this class hierarchy are instantiable components. DataSet and

StorageDataSet are abstract classes.

DataSet : An abstract class. A large amount of the public API for all DataSets is
surfaced in this class. All navigation, data access, and update APIs for a DataSet are
surfaced in this class. Support for master detail relationships, row ordering, and row
filtering are surfaced in this class. All of our data, aware JBCL controls have a
DataSet property. This means a GridControl can have its DataSet property set to the
various extensions of DataSet: DataSetView, QueryDataSet, ProcedureDataSet, and
TableDataSet.

(DataSet)

(DataSetView) , (StorageDataSet)

(QueryDataSet) @rocedureDataSet) (TableDataSet)

Figure 5-1 The DataSet class hierarchy

StorageDataSet : An abstract class. The StorageDataSet manages the storage of
DataSet data,indexes used to maintain varying views of the data and persistent
Column state. The current release provides efficient in-memory storage for data. The
architecture also lends itself to plugging in persistent DataStores as well. All
structural APIs (add/delete/change/move column) are surfaced in this
class. Since StorageDataSets manage the data, it is where all row updates, inserts,

and deletes are automatically recorded. Since all changés to the StorageDataSet are

43

tracked, we know exactly what needs to be done to save (resolve) these changes back

to the data source during a resolution operation.

DataSetView : This component can be used to provide independent navigation (a
cursor) with a row ordering and filtering different than that used by the base DataSet.
To use this, component DataSetView has a StorageDataSet property that must be set.
This component can also be used when multiple controls need to dynamically switch
to a new DataSet. The controls can all be wired to the same DataSetView. To force
them all to view a new DataSet, the DataSetView StorageDataSet property can be
changed.

QueryDataSet : This is a JDBC-specific DataSet. It manages a JDBC provider of
data. The data to be provided is specified in a query property. The query property is a
SQL statement.

ProcedureDataSet : This is a JDBC-specific DataSet. It manages a JDBC
provider of data. The data to be provided is provided with a procedure property. The
procedure property is a stored procedure.

TabieDataSet : This is a generic DataSet component without anya built-in
provider mechanism. Even though it has no default provider, it can be used to resolve
its changes back to a data source. TableDataSets Columns and data can be added
through DataSet methods or by importing data with a DataFile component like
TextDataFile.

5.2.2. Borland DataGateway

Borland DataGateway for Java provides developers a multi-tier, fast, and reliable
database connectivity solution adhering to the industry standard, JDBC. It uses the
Borland Database Engine (BDE) and SQL Links, which supply drivers for many
databases to access both local and remote data.

S0 e

» S
y.”ﬁ) _{i L ”,f‘j [‘m
DOKOMAN;;.;; . %m

44

DataGateway is a network-protocol/all-Java driver. The DataGateway Client is

written entirely in Java and this provides the following benefits:

1. Complete cross-platform support: Clients can connect from any platform
supported by a Java Virtual Machine (JDK 1.1 or greater).
2. Zero-Configuration/Zero-Install Client: The Client is fully downloadable and

requires no separate installation or configuration.

Borland DataGateway is a collection of JDBC drivers that allow Java applications

and applets on any platform to access the following data sources:

Desktop databases .
DBASE, Paradox; Microsoft Access, FoxPro

Client/Server databases
InterBase, Informix, Oracle, Sybase, Microsoft SQL Server, IBM DB/2

Other data sources
ODBC drivers (version 3 or 2.1)

DataGateway consists of the following parts:

Part Description

DataGateway Client Communicates with the DataGateway Server. It
is written in Java and resides on the Java
application/applet machine. The Client can

exist on any machine that supports Java.

DataGateway Server Manages the transfer of information and calls

between the Client and the Bridge. Exists on

Windows 95 and Windows NT machines only.

45

DataGateway Bridge Translates the Java calls that come from a Java
application/applet to BDE calls and BDE calls
to Java. Exists on Windows 95 and Windows

NT machines only.

BDE and SQL Links Provides access to multiple data sources
through a consistent API and native

drivers.

Table 5-1 DataGateway components

The DataGateway Client, written completely in Java, runs on all hardware
platforms that support Java and resides with the Java application or applet on the
client machine. The client connects to the DataGateway Server on the server machine
using TCP/IP protocol. "l:he DataGateway Bridge connects to both local and remote
data sources through BDE and SQL Links.

Tier 1: DataGateway Client
A Java application or applet makes JDBC calls through the DataGateway Client,
and the Client connects to a Windows 95 or Windows NT server through the TCP/IP

protocol.

Tier 2: DataGateway Server

The server has the DataGateway Server, the DataGateway Bridge, and the
Borland Database Engine (BDE) installed, as well as valid BDE aliases for the data
sources requested by the Java application or applet. The DataGateway Server
manages the Client requests and passes the information on to the Bridge. The Bridge

converts the JDBC calls to BDE calls, and then passes these calls to the BDE.

The BDE then queries the data source specified by the Java application or applet.
If the data source is a local database such as dBASE or Paradox, the BDE uses its

local drivers to retrieve the data from the database.

46

Figure 5-1 DataGateway structure

47

Tier 3: SQL data sources

If the data source specified by the Java application or applet is an SQL database,
the BDE uses SQL Links to connect to the specified database and retrieves the data.
The data is passed back to the Bridge for conversion back to JDBC, and is then
returned via the Server to the Client. The Client then passes the returned data back to

the Java application or applet.
DataGateway ban be configured and used in three ways:

Client on client machine, Server and Bridge on a server machine:
Here the DataGateway client resides on the various client virtual machines, and

the DataGateway Server, Bridge, BDE and SQL Links reside on a Windows 95/NT

server machine.

Client, Server, and Bridge all on one machine:
Here the DataGateway Client, Server, Bridge, BDE and SQL links, and

application all reside and run on one machine.

Bridge only:

It is possible to use the DataGateway Bridge without the DataGateway Client and
Server when the Java application resides on the same machine as the BDE and SQL
Links.

5.2.3. Borland InterClient

Borland's InterClient allows developers to create Java applications and applets
that communicate with an InterBase database over a WAN or LAN. The JDBC API
is the framework for the InterClient API. The JDBC API is a Java application

programming interface to SQL databases that was developed by Sun Microsystems.

As an all-Java JDBC driver, InterClient enables platform-independent,

client/server development for the Internet and corporate Intranets. The advantage of

48

an all-Java driver versus a native-code driver is that you can deploy InterClient-based
applets without having to manually load platform-specific JDBC drivers on each
client system (the Web servers automatically download the InterClient classes along
with the applets). Therefore, there's no need to manage local native database
libraries, which simplifies administration and maintenance of customer applications.
As part of a Java applet, InterClient can be dynamically updated, further reducing the

cost of application deployment and maintenance.
InterClient allows Java applets and applications to:

e Open and maintain a high-performance, direct connection to an InterBase
database server
e Bypass resource-intensive, stateless Web server access methods

¢ Allow higher throughput speeds and reduced Web server traffic

Desktop Client
System

Server

Figure 5-1 Borland InterClient architecture

The InterClient product consists of two major pieces:

1. A client-side Java package, called InterClient, containing a library of Java classes

that implement most of the JDBC API and a set of extensions to the JDBC APIL

49

This package interacts with the JDBC Driver Manager to allow client-side Java
applications and applets to interact with InterBase databases.

2. A server-side driver, called InterServer. This server-side middleware serves as a
translator between the InterClient-based clients and the InterBase database

SCrver.

InterClient Communication ;

InterClient is a driver for managing interactions between a Java applet or
application and an InterBase database server. On a client system, InterClient works
with the JDBC Driver Manager to handle client requests through the JDBC API. To
access an InterBase database, InterClient communicates via a TCP/IP connection
with an InterServer translator that runs on the same system as the InterBase database
server. InterServer forwards InterClient requests to the InterBase server and passes

back the results to the InterClient process on the client machine.

5.2.4. Borland InterBase

InterBase is a relational database management system (RDBMS) that provides

rapid transaction processing and data sharing in a single- or multi-user environment.

InterBase is a server technology that offers transparent support across
heterogeneous networks. InterBase runs on Windows 95, Windows NT, Novell

NetWare, and many implementations of the UNIX operating systems.

In addition, InterBase Server includes a driver for the Open Database
Connectivity standard (ODBC) that enables ODBC client applications to share data

with InterBase servers.

InterBase offers all the benefits of a fully relational DBMS. The following table

lists some of the key InterBase features:

50

Feature

Network protocol support

SQL-92 entry-level conformance

Simultaneous access to multiple DBs

Multi-generational architecture

Query optimization

Declarative referential integrity

Stored procedures

Triggers

Description

Support for both Microsoft
NetBEUI/Named Pipes and TCP/IP for
communication to clients. InterBase Server

only.

ANSI standard SQL, available through an
Interactive SQL tool and Borland desktop

applications.

One application can access many databases

at the same time.

Server maintains older versions of records
(as needed) so that transactions can see a

consistent view of data.

Server optimizes queries automatically, or

user may manually specify query plan.

Automatic enforcement of cross-table
relationships (between FOREIGN and
PRIMARY KEYs))

Programmatic elements in the database for
advanced queries and data manipulation
actions.

Self-contained program modules that are
activated when data in a specific table is

inserted, updated, or deleted.

51

Updatable views

Concurrent multiple application access

Automatic two-phase commit

Server Manager

Windows ISQL

Comdiag

5.2.5. Intellution FIX

Views can reflect data changes as they

occur.

One application reading a table does not

necessarily block others from it.

Multi-database transactions check that
changes to all databases happen before

committing. (InterBase Server only)

Windows tool for database backup,

restoration, maintenance, and security.

Interactive data definition and query tool

for Windows

InterBase communications diagnostic tool.

FIX software is industrial automation software. Industrial automation software

provides real-time data to plant personnel and other software applications throughout

a plant. This real-time data presentation is the key to more efficient use of resources

and personnel. The core software performs the basic functions that allow specific

applications to perform their assigned tasks. The two most basic functions are data

acquisition and data management.

Data Acquisition

Data acquisition is the ability to retrieve data from the plant floor and to process

that data into a usable form. Data can also be written to the plant floor, thereby

establishing the critical two-way link that control and application software require.

52

FIX software requires no proprietary hardware to acquire data. It communicates
directly with the /O devices already in place through a software interface called an
I/O driver.

Data Management

Once data is acquired, it is manipulated and channeled according to the requests

of software applications. This process is known as data management.

Since all FIX platforms has the intrinsic ability to communicate with nodes
running on other platforms, plant managers can tie the entire plant together. The

core FIX software manages the cross-platform data requests seamlessly.

Montoring<—» Sumri'ory "

MAN-MACHINE INTERFACE

Data Management «—a-Control .

y .
Data Acquisition
PLANT FLOOR

Figure 5-1 Intellution FIX basic functions

The basic functions of data acquisition and management provide the basis for all

the industrial automation tasks, for example:

53

Monitoring
Monitoring is the ability to display real-time plant-floor data to operators.
Powerful numeric, text, and graphical formats are available to make data more

accessible.

Supervisory Control
Supervisory control is the ability to monitor real-time data coupled with the ability

of operators to change set points and other key values directly from the computer.

Alarming

Whether operators are working from a monitoring station or a supervisory control
station, they need the ability to immediately recognize exceptional events within the
process. Alarming is the ability to recognize exceptional events and immediately

report those events.

Control

Control is the ability to automatically apply algorithms that adjust process values
and thereby maintain those values within set limits. Control goes one step beyond
supervisory control by removing the need for human interaction. Database

Definitions
5.3. Components of the Project
5.3.1. Databases

There are two databases in the project, LOCAL and REMOTE. The first database,
LOCAL contains data about products, customers and orders, while other database,
REMOTE contains real-time data coming from SCADA software. LOCAL database
resides in the main server machine in which Gateway server, web server and SQL
server tun. REMOTE database is served by another SQL server that runs on the

remote server machine located in the production floor.

54

LOCAL database contains tables below,

e Table CUSTOMER contains customers data.
/* Table: CUSTOMER, Owner: SYSDBA */
CREATE TABLE CUSTOMER (ID INTEGER NOT NULL,

FIRSTNAME VARCHAR(25),

MI CHAR(1),

LASTNAME VARCHAR (40),

PHONE VARCHAR(15},

FAX VARCHAR(15),

EMAIL VARCHAR(128),

ADDR1 VARCHAR(30),

ADDR2 VARCHAR(30),

CITY VARCHAR(30),

STATE VARCHAR(1S5),

POSTALCODE VARCHAR(12),

COUNTRY VARCHAR(20),

SHIPNAME VARCHAR(60),

SHIPADDR1 VARCHAR(30),

SHIPADDR2 VARCHAR(30),

SHIPCITY VARCHAR(30),

SHIPSTATE VARCHAR(15),

SHIPPOSTALCODE VARCHAR(12),

SHIPCOUNTRY VARCHAR(20),
CONSTRAINT PK CUSTOMER PRIMARY KEY (ID));

e Table L PRODUCTCATEGORY is a lookup table and provide
data for a choiceControl component.

/* Table: L _PRODUCTCATEGORY, Owner: SYSDBA */

CREATE TABLE L _PRODUCTCATEGORY (CATEGORY VARCHAR(25) NOT

NULL,

CONSTRAINT PK _CONPRODCAT PRIMARY KEY (CATEGORY));

55

¢ Table L STATUS is another lookup table and provide data

related to order status for a choiceControl component.
/* Table: L _STATUS, Owner: SYSDBA */
CREATE TABLE L_STATUS (STATUS VARCHAR(15) NOT NULL,
CONSTRAINT PK_STATUS PRIMARY KEY (STATUS)):;

¢ Table ORDERITEM contains data of each ordered item.

/* Table: ORDERITEM, Owner: SYSDBA */

CREATE TABLE ORDERITEM (ORDERID INTEGER NOT NULL,
PRODUCTID INTEGER NOT NULL,
QTY INTEGER,
SALEPRICE DOUBLE PRECISION,

CONSTRAINT PK ORDERITEM PRIMARY KEY (ORDERID, PRODUCTID)):

¢ Table ORDERS stores information of orders.
/* Table: ORDERS, Owner: SYSDBA */
CREATE TABLE ORDERS (ID INTEGER NOT NULL,
CUSTOMERID INTEGER NOT NULL,
ORDERDATE DATE,
STATUS VARCHAR(15),
SHIPDATE DATE,
ORDERTRACKNUM VARCHAR(20),
CUSTOMERPONUM VARCHAR{10),
AMTPAID DOUBLE PRECISION,
SHIPNAME VARCHAR(60),
SHIPADDR1 VARCHAR(30),
SHIPADDR2 VARCHAR(30),
SHIPCITY VARCHAR (30},
SHIPSTATE VARCHAR(13),
SHIPPOSTALCODE VARCHAR(12),
SHIPCOUNTRY VARCHAR(20),
BILLADDR1 VARCHAR(30),
BILLADDRZ VARCHAR (30},
BILLCITY VARCHAR(30),

56

BILLSTATE VARCHAR(15),

BILLPOSTALCODE VARCHAR(12),

BILLCOUNTRY VARCHAR(20),
CONSTRAINT PK ORDER PRIMARY KEY (ID));

s Table PRODUCT stores information of products.
/* Table: PRODUCT, Owner: SYSDBA */
CREATE TABLE PRODUCT (ID INTEGER NOT NULL,
ISACTIVE SMALLINT,
NAME VARCHAR(255),
CATEGORY VARCHAR(25),
BASEPRICE DOUBLE PRECISION,
DISCOUNTPCT DOUBLE PRECISION,
STOCKQTY INTEGER,
MINREORDERQTY INTEGER,
CONSTRAINT PK_ERODUCT PRIMARY KEY (ID)):

REMOTE database contains tables below,

e Table ALARM contains data about alarms occurred on the

production floor, eg. High temperature, low pressure,

broken resistants.

/* Table: ALARM, Owner: SYSDBA */
CREATE TABLE ALARM (LINENO VARCHAR(3),
ALARMCODE VARCHAR(4),
ALARMNAME VARCHAR(40),

START DATE,
END DATE) ;

e Table SQLERR is a SCADA software specific
contains errors
/* Table: SQLERR, Owner: SYSDBA */
CREATE TABLE SQLERR (TD DATE,
NODE VARCHAR(S8),
TAG VARCHAR(30),

table

and

57

SQLNAME VARCHAR(8),
FIX_ERR VARCHAR(100),
SQL_ERR VARCHAR(250),
PROG_ERR VARCHAR (100));

¢ Table SQILLIB is another SCADA software specific table and
identify SQL commands for inserting alarms to ALARM table
/* Table: SQLLIB, Owner: SYSDBA */
CREATE TABLE SQLLIB (SQLNAME VARCHAR(8) NOT NULL,
SQLCMD VARCHAR (200),
CONSTRAINT SQLLIBPRIMARYKEY1l PRIMARY KEY (SQLNAME));

¢ Table REALVALUE contains real-time data
/* Table: REALVALUE, Owner: SYSDBA */
CREATE TABLE REALVALUE (LINENO VARCHAR (3),
ITEMNAME VARCHAR (20),
VALUE DOUBLE PRECISION);

5.3.2. Java applets

DataModulel

DataModulel is an implementation of the DataModule interface. The DataModule
is a non visual container for components, especially DataBroker components (i.e.
Database and DataSet components). This centralizes related database components

into one module, allowing a separation of business rule logic and application logic.

A big advantage DataModules allow for easier reuse or sharing of components
between multiple applets. This class employs the Singleton pattern to ensure that the
class has only one instance. Accessing the singleton instance is made by calling the
static method getDataModule. This method instantiates the DataModule for the first

caller and returns this same instance to any successive callers:

DataModulel dm = DataModulel.getDataModule();

58

The DataSets are contained and initialized here in this DataModule. Any master-
detail relationships between datasets are defined here too. All persistent columns for

the various datasets are defined and initialized here also.

Client-side business logic is implemented in the data module to centralize a

common response by datasets to validation checks and database exceptions.

To access a dataset contained in the data module, use the getter methods for the
various DataSets in the data module. These methods instantiate the DataSets for the
first caller and returns the same instances to any successive callers, allowing

mulitple applets to share the same dataset

DataModulel dm = DataModulel.getDataModule();
QueryDataSet customerDataSet = dm.getCustomerDataSet();

59

60

MainApplet

MainApplet is the starting point of the project. This class implements a button
menu to navigate to other functional areas of the project. During instantiation of this
class, an attempt to make the database connection is made.

Pressing “Orders” button displays two choices that are “New Order” and “Find
Order”. If “New Order” is selected “New Order” page will be shown. If “Find
Order” is selected “Find Order” page will be shown.

Pressing “Customers” button displays two choices that are “New Customer” and
“Find Customer”. If “New Customer” is selected “New Customer” page will be
shown. If “Find Customer” is selected “Find Customer” page will be shown.

Pressing “Alarms”, “RealValues”, or “Products” buttons shows related pages.

A REAL APPLICATION
FOR QUERYING, ORDERING AND MONITORING

REAL-TIME DATA ON THE INTERNET

Figure 5-1 Screen view of MainApplet

FindOrderApplet

This find form allows users to lookup orders by searching on a value for a single
column in the order dataset. “Field” choicebox is used to select search column, e.g.
Order Tracking #, PO#, ID. By entering value into “Value” textbox related data is
shown automatically. By pressing CLOSE button, it is possible to go to the main

menu.

FIND ORDER

Field Order Tracking #

Value r

CustomeriD |8 { Orer Date {03103/1939
CustomerPO# | 7531 | Ship Date { 030811999
Order 1D {7 | Status {open
OrderTrack# | 0045
Ship Name | Banu Alkan
Ship Address 1 | Cuma Mah. Egemenlik Cad. 61
Ship Address 2 |] B B
Postal Coda 133840
City LAY e

Figure 5-2 Screen view of FindOrderApplet

FindProductApplet

This find forms allows users to lookup products by searching on a value for a
single column in the product dataset. “Field” choicebox is used to select search
column, e.g. Name, Category, ID. By entering value into “Value” textbox related
data is shown automatically. If there are more than one product with the same
property, down arrow key can be used to show other customers. By pressing CLOSE

button, it is possible to go to the main menu.

FIND PRODUCT

Field {ID
vaiue |4
ProductiD F
Name | PVC Y.BORU 125mm 4 Atm
Category | PVC YAPISTIRMA BORU
Base Price f’ 43°°9QE’° —
Discount {0.00 - I
Stoek Quantity 00 e
Min Order Quantity [1 0

Figure S-3 Screen view of FindProductApplet

62

FindCustomerApplet

This find form allows users to lookup customers by searching on a value for a
single column in the customer dataset. “Field” choicebox is used to select search
column, e.g. LastName, FirstName, ID. By entering value into “Value” textbox
related data is shown automatically. If there are more than one customer with the

same property, down arrow key can be used to show other customers. By pressing

CLOSE button, it is possible to go to the main menu.

FIND CUSTOMER

Field {LastName

Value] .
Customer ID D
Phone-Fax Number]232-5236142 §f253-435070?

E-mail | goktepeun@superoniine.com]
Address-1 7563 SokakNo.81/3
Address-2 | Karsiyaka
Postal Code {35620

Figure 5-1 Screen view of FindCustomerApplet

63

CustomerApplet

CustomerApplet implements the Customer Form that is used to maintain
Customer records. This form allows users to view or update existing customers, or
enter new customers. A standard navigation control is used to allow for record
browsing. A master-detail relationship between customers and orders is used to
display a list of orders placed by each customer. SAVE button post entered data to
the database. CANCEL button cancels all modifications. By pressing CLOSE button,

it is possible to go to the main menu.

NEW CUSTOMER

1 First M Last

Name | Yusu 1 Jxun

Address 1 7563 Sokak No:81/3 ’
Address 2 Karsiyaka
City tzmir

Postal Code 35620 .

Phaone | 232-5236142 | Fax | 2568-4360707
EMail [goktepeunt@superontine.com

Figure 5-1 Screen view of CustomerApplet

65

OrderApplet
OrderApplet is used to view, insert, and update Order records. SAVE button post

entered data to the database. CANCEL button cancels all modifications. By pressing
CLOSE button, it is possible to go to the main menu.

NEW ORDER

Date [osn3r1999 |
Order#: 7 OrderTrack # | 0043
PO # 7531

Bill To Ship To
Banuy Alk;an N » .
Cuma Mah. Egemenlik Cad. 61

[Aydin _[aé{éid

Status Ship Date

760,280iPVC YBORU 75m{ 760,280,000
2000 1,060,000:PVC Y.BORU 90mi _ 2.120,000,000

SubTotal

Tax

Shipping :

Paid 1,000,000,000
Due 2,456,336,000

Figure 5-2 Screen view of OrderApplet

AlarmApplet

Alarm applet lets users view alarms provided by ALARM tat;le of REMOTE
database. Specifying line number or alarm code with date/time combination can filter

displayed alarms. When choosing LINENO, all alarms with selected attributes will

be shown. By pressing CLOSE button, it is possible to go to the main menu.

LINE NO

ALARM

ALARM START DATE

[or_Ffor

ALARM START TIME

“l0ZEL KART HATASI 101/03/1939 19:36:18

01/03/1999 1

PLC PILIBITTI 02/03/1999 19:36:19

01/03/1999 1

EXT MOTOR ANA TERMIK ATIK 04/03/1999 19:36:22

01/03/1993 1

EXTRUDER MOTOR AKIMI YU{ 04/03/1999 20:52:03

OZEL KART HATASI 04/03/1988 20:52:03

PLC PILIBITT! 04/03/1999 20:54:27

04/03/1999 2

EXTRUDER MOTOR AKIMI YU§ 05/03/1999 19:36:58

01/03/1999 1

EXTRUDER MOTOR AKIMI YU} 07/03/1999 22:58:08

OZEL KART HATASI 07/03/1999 22:58:09

PLC PILIBITT! 07/03/1999 22:58:10

071031999 2

Record 1 of 11

Figure 5-1 Screen view of AlarmApplet

{EXT MOTOR ANA TERMIK ATIK 07/03/1999 22:58:10

07/03/1899 2

66

67

RealValueApplet

The purpose of RealValueApplet is monitoring working condition of production
floor to authorised people. By selecting line number, several real-time values are
displayed. Real-time values are updated with five-second interval by SCADA
software. RealValueApplet also updates those values by re-executing query within a
thread.

REAL VALUE

Extruder Real Values

Line Number [xna
Product 1D

Speed of Pipe
Length of Pipe

Length of Thichening

|

f

|
Heater 1 f 130

r

[

l

Heater 2

Heater 3

Gear Pump Pressure

Figure 5-1 Screen view of RealValueApplet

5.3.3. Structure of the Project

68

Borland(LInotéAL GS.SB[)' Server FIX SCADA Server
BDE / INTERBASE ¢
(REMOTE) ODBC / VISIGENIC
(REMOTE)
Borland Interbase SQL Server
(REMOTE.GDB)
Borland Borland
InterClient Server DataGatewav Server Remote Server
HIML / Java classes
Borland
Web Server
” > Web Browser
Main Server Client

Figure §-1 Structure of the Project

Borland InterBase SQL Server that serves LOCAL database, Borland
DataGateway Server, Borland InterClient Server, Borland Web Server run on the

Main Server machine. HTML pages and java applets/classes were on the same

machine too.

I called this database as LOCAL, because it reside on the same machine with java

applets. However it is possible to install Borland InterBase SQL Server on another

machine located different location and serve LOCAL database with that server to get

more distributed environment.

FIX SCADA server collects information (alarms and real-time data) from
production floor and write it to REMOTE database by using InterBase ODBC driver
by Visigenic. Clients (or applets running on client machines) get data from
REMOTE database by Borland DataGateway and Borland Database Engine.

5.3.4. Data Flow :

Remote database

1. FIX SCADA server collects real-time data from control systems at the
production floor.

2. FIX SCADA server then sends that data to REMOTE database via ODBC
protocol.

3. Borland InterBase SQL Server running on the Remote Server Machine serves
REMOTE database

Intellution FIX SCADA Server

T

ODBC

!

Borland InterBase SQL Server
REMOTE database

v

Borland Database Engine

v

DataGateway Server

v

Borland Web Server

y

AlarmApplet & RealValueApplet

Figure 5-1 REMOTE database data flow

69

70

4. AlarmApplet and RealValueApplet instances loaded by clients receive data
from Borland InterBase SQL Server running on the Remote Server Machine

via Borland DataGateway Server and Borland Database Engine.

Local database

1. Borland InterBase SQL Server running on the Main Server Machine serves
LOCAL database.

2. Borland InterClient Server serves LOCAL database.

3. Applets except AlarmApplet and RealValueApplet loaded by clients receive

data via Borland InterClient Server.

Borland InterBase SQL Server
LOCAL database

v

Borland InterClient Server

:

Borland Web Server

}

Other Applets

Figure 5-2 LOCAL database data flow

5.4. Common Problems

While developing the application, I encountered some problems.
1. A column that is the primary key of a table should not be assigned to
ChoiceContro! component. If done so, selected column cannot be displayed

with ChoiceControl component.

. Internet Explorer should not be used for displaying applets, If those applets
were developed with JDK 1.2 and contains layout managers, e.g
GridBagLayout. Netscape communicator 4.5 is better.

. Data in GridControl components weren’t refreshed automatically. repaint()
method must be used to refresh.

. Jdbc-odbc bridge should not be used with java applets. Jdbc-odbc bridge
driver is suitable for java applications and only development phase of java
applets. Othervise SecurityException occurs or URL in database connection
statement couldn’t be founded by clients.

. Borland InterClient product can be used, If database and web server are on the
same machine. If applets connect to more than one database on different

servers, Borland DataGateway is the right choice.

71

CONCLUSIONS

This project examines database connection with Java applets via Internet. As
companies continue to automate their business, the need to organize, maintain, and

access electronic data increases.

With the growing popularity of Java, the network programmers on both the public
Internet and private intranets desire to write one common interface for all of their

organization’s databases, portable to many platforms.

Java and the JDBC API is the future solution. Java will continue to be driving
force in application development, and JDBC will be the connecting API of choice for

robust database systems.

72

73

REFERENCES

Gosling, J., & McGilton, H. (1995). The Java Language Environmeni: A White
Paper. Mountain View, CA: Sun Microsystems.

Hamann, J. (1996). Analysis of Java Database Connectivity and its Application in a
Multi-Platform, Multi-DBMS Environment. Texas A&M University.

Hardy, HE., (1997). History of the Net.
http://info.isoc.org/guest/zakon/Internet/History/History_of the Net.html

Jamsa, K. (1996). Java Now. Las Vegas : Jamsa Press.

JavaSoft. (1998). The Java Tutorial. Mountain View, CA: Author.

Kehoe, B.P. (1992). Zen and the Art of the Internet. New York: Addison-Wesley
Publishing Company, Inc.

Lemay, L., Perkins, C. H. (1996). Teach Yourself Java In 21 Days. Indianapolis :

Sams Net.

Microsoft. (1996). ODBC-Open Database Connectivity. New York: Author

Microsoft. (1998). A Brief History of the Internet. New York: Author.

Niemeyer, P., Peck, J. (1996). Exploring Java. Sebastopol: O’Reilly & Associates,
Inc.

74

Norberb, A. & OWNeill, J. (1992) A History of the Information Processing
Techniques Minneapolis: Office of the Defense Advanced Research Projects
Agency, The Charles Babbage Institue.

Shaughnessy, S. (1997). DataExpress Technology Overview. New Haven, CA:

Borland International.

Sterling, B. (1993, Feb 13). The Internet The Magazine of Fantasy and Sicence

Fiction, pp. 5-10

Sun Microsystems. (1997). JDBC Guide. Mountain View, CA: Author.

Tappendorf, S. (1995) ARPANET and Beyond

Visigenic. (1996). Developing Database Independent Applications with ODBC.
New Haven, CA: Author.

o L ::URULU
AL Py i
i GIERKEZE

