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FEATURE EXTRACTION AND CLASSIFICATION OF
ELECTROENCEPHALOGRAPHIC (EEG) SIGNALS TOWARDS THE USE
OF BRAIN-COMPUTER INTERFACE IN COGNITIVE APPLICATIONS

ABSTRACT

In this thesis, the brain computer interface system is developed for the cursor
movement through the cognitive signals. The EEG data is handled from the Emotiv

Neuroheadset device via our developed program written in c# language.

We have worked on classification of five cognitive tasks; up, down, left, right and
no movement. Before the movement of the cursor, the participants need to be trained
to control the brain signals. In the training phase, the training screen is designed to
consist of the visual stimuli. The participants have trained the program three times in
different days and each session includes 24 trainings. EEG signals are very complex
and the extracting information is difficult. Also, EEG signals has many artifacts
occurred by the eye movement, muscle movement and the noise in environment.
Therefore, median filtering and the normalization method are used in the
preprocessing phase. Then the specific features for all cognitive tasks are extracted
by the multifractal detrended fluctuation analysis and the fast Fourier transform. The
Pn values and beta signals calculated from the MFDFA and FFT methods
respectively, are used as features.

Finally these features are classified by the nearest neighbor algorithms. Nearest
neighbor (NN) algorithms are simple but effective methods for performing pattern
classification. The CxK nearest neighbor algorithm is firstly used for cognitive EEG
signal classification in this thesis and this method has given acceptable results when

compared with the other studies in literature.

Keywords: EEG, BCI, feature extraction, classification, k-nearest neighbor

algorithm, CxK-nearest neighbor algorithm.



BiLiSSEL UYGULAMALARDA BEYiN-BiLGiSAYAR ARAYUZUNUN
KULLANIMINA YONELIK OZELLiK CIKARIMI VE
ELEKTROENSEFALOGRAFiK (EEG) SiNYALLERIN

SINIFLANDIRILMASI

0z

Bu tez ¢alismasinda, bilgisayar imle¢inin diisiince giiciiyle hareket ettirilmesi i¢in
beyin-bilgisayar arayiizii gelistirilmistir. EEG sinyalleri, Emotive Neuroheadset
cihazinin c# diliyle gelistirdigimiz programa entegre edilerek elde edilmistir.
Diisiince giicliyle imlege yukari, asagi, saga, sola ve hareket etmeme komutlarini
yaptirma {izerinde calisilmigtir. Oncelikle katilimcilarn beyin sinyallerini control
edebilmesi i¢in egitilmeleri gerekmektedir. Egitim i¢in komutlarin gorsel resimlerini
iceren bir ekran gelistirilmistir. Katilimeilar 3 farkli giinde egitim programina tabi
tutulmustur. Her bir egitimde gorsel uyaranlari igeren uygulama 24 kere gosterilerek

elde edilen veriler sonraki ¢aligmalar i¢in kaydedilmistir.

EEG verileri kompleks ve ham halinden bilgi ¢ikarilmasi zordur. Ayrica, goz
hareketleri, kas harketleri ve ortam sesleri EEG sinyallerinde giiriiltiiye neden
olmaktadir. Bu nedenle 6n isleme asamasinda medyan filtreleme ve normalizasyon
yontemleri kullanilmistir. On isleme isleminden sonra spesifik ozellikler her bir
komut i¢in cikarilmustir. Ozellik cikarmak icin MFDFA ve FFT yontemleri
kullanilmistir. MFDFA yontemi ile elde edilen dagilim degeleri ve FFT yontemi ile
elde edilen beta sinyalleri 6zellik olarak kullanilmigtir. Bdylece biiyiik veri setinden
daha kiiciik veri seti olusturularak boyut indirgeme yapilmistir. Son olarak, ¢ikarilan
ozellikler en yakin komsu algoritmalariyla siniflandirilmistir. Siniflandirma yontemi
olarak basit fakat oriintii siniflandirma iy1 performans degerlerine sahip olan k-en
yakin komsu yontemi ile EEG sinyal Oriintiilerinin siniflandirilmasinda daha 6nce
kullanilmamis olan CxK en yakin komsu yontemi kullanilmigtir ve literatiirdeki

calismalarla karsilastirildiginda kabul edilebilir sonuglar elde edilmistir.

Anahtar kelimeler: EEG, BCI, ozellik ¢ikarma, siniflandirma, K-en yakin komsu

algoritmasi, CxK- en yakin komsu algoritmasi.
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CHAPTER ONE
INTRODUCTION

The human body is controlled by the brain. The brain is very complex and the all
functions have not found yet. But we know that it is responsible for perception,
cognition, attention, emotion, memory and physical actions (Carlson, 2002; Purves et
al., 2004). 1t works by the electrical activities between the neurons. When the person
is thinking, reading, speaking or doing motor activities, the electrical signals are
generated with chemical synapses in the different part of the brain. These electrical
activities are measured and the occurred signals are monitored through the many
techniques such as the electroencephalography (EEG), electrocorticography (ECoG),
magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI),
positron emission tomography (PET) and single photo emission computed
tomography (SPECT). These non-invasive techniques are used easily and they give

an opportunity to analyze human brain functions.

We have use EEG technique in this thesis because the EEG has been generally
used method to capture brain signals, noninvasiveness, usability and low set-up costs
(Blankertz, et al., 2008; Grosse-Wentrup et al. 2009). EEG has been generally used
as non-invasive technique for the brain signal analysis. It is very useful in diagnosis
and treatment of mental and neurological brain diseases. The extracted features have
been used in the classification of the mental tasks of the EEG signals. These features
are very important for both diagnosis of the brain diseases and better understanding
of the cognitive process. For this reason, it is vital to develop automated
classification methods for EEG to ensure proper evaluation and treatment of
neurological diseases (Agarwal et al., 1998). The unsupervised and supervised
classification methods can be used to separate EEG signal features. In the
unsupervised methods, the classes are not known but in the supervised classification,

classes are known. We have used the supervised classification methods.

Recently, EEG signal are used in brain computer interface studies. Brain

computer interface is the very useful tool for the communication between brain and



computer by controlling components of EEG signals. Many studies have
demonstrated the relationship between EEG signals and mental tasks (Keirn &
Aunon, 1990; Lang et al., 1996; Pfurtscheller et al., 1997; Anderson et al., 1998;
Altenmuller & Gerloff, 1999; McFarland et al., 2000).

Generally, BCI Technology composed of four basic processes: recording the raw
EEG signals as signal acquisition, removing noises as signal preprocessing,
extraction of the intended action or desired features from the mental activity as

feature extraction, and finally classification of the desired features.

There have been many BCI applications in the literature. Brain computer interface
works are started with the study of Farwell & Donchin (1998). The basic BCI
applications are computer games, biofeedback therapy such as reduction of epileptic
seizures, treatment of attention deficit hyperactivity disorder (ADHD), navigation in
virtual reality and cursor control applications (Blankertz et al. 2007;Pfurtscheller et
al 2006; Sellers & Donchin, 2006). The increasing technology allow the control more
complex devices such as prostheses, robot arms and mobile robots (Graimann et al.,
2009; Vellistteet al., 2008). Also, BCI has been used for the disabled subjects.
Therefore, BCI communication could improve the quality of life for disabled peoples
such as lack of muscle control (McFarland et al., 1993; Wolpaw & McFarland,
1994).

In the signal acquisition process, the raw EEG signals are recorded by the Emotiv
Epoc Neuro Headset brain computer interface technology. Signals were filtered with
the band-pass filtering method for the removing artifacts. Also, the median filtering
and normalization methods are used as preprocessing. The features are extracted by
the Fast Fourier Transform (FFT) and multifractal detrended fluctuation analysis
method. The probability distribution and midrange beta signals are used as features

extracted by MFDFA and FFT analysis respectively.

The multifractal detrended analysis has been commonly used method in the

literature. Stan et al. (2013) have used the multifractal detrended cross correlation



analysis for investigating characteristics of series of length of coding and non-coding
DNA sequences. Zheng et al. (2005) have used multiplicative multifractals for
characterizing neuronal firing recordings. The MFDFA is used in linguistic analysis
for the characterization of the text (Ausloos, 2012; Suckling et al., 2008). Also, 1t is
used for EEG pattern recognition (Wang et al., 2003; Dutta et al., 2014; Kumar et al.,
2013) and eye movement analysis (Shelhamer, 2005; Ihlen & Vereijken,
2010; Schmeisser et al., 2001; Kelty-Stephen & Nixon, 2013; Astefanoaei et al.,
2013).

In this thesis, the cursor movement will be achieved using the imaginary EEG
signals. We aim to classify the brain signals for the left, right, up, down and no
movement mental tasks. K-Nearest Neighbor and C-KNN algorithms (Ulutagay &
Nasibov, 2016) are used for the classification of the mental tasks.

1.1 The Organization of the Thesis

Thesis consists of ten chapters and in each chapter gives valuable information for
this thesis. The organization of this thesis is briefly explained as follows:

Chapter 2 provides an overview of the brain structure and functional areas. The
brain is the complex organ of the human body. It is composed of the millions of
neurons. Beyond controlling the vital functions of the body, it controls the motor
functions, sensations, thinking and visual activities. In this chapter, these issues are

explained in a detail.

Chapter 3 gives the overview of the biomedical signals. The biomedical signals
are the observations of physiological activities of organisms, ranging from gene and
protein sequences, to neural and cardiac rhythms, to tissue and organ images (Chang
& Moura, 2010). The aim of the biomedical signal processing is to extract specific
and important information from the biomedical signals. The Electroencephalogram is
the one and the mostly used biomedical signal. The EEG and its band power

frequency waves are mentioned in this chapter.
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Chapter 4 explains the brain computer interface system. The BCI is the
communication between human and machine. It allows the user to control computer
or machines through his/her thoughts. For this reason, many processing are carried

out in four phases.

Chapter 5 provides the collection of the data, training phase and preprocessing
methods. The data set is captured by the Emotiv Epoc Neuroheadset. The training
phase is applied to the participants for the improvement of the classification results.
The EEG signals are affected from the environment, muscle and eye movements and
these effects cause to the artifacts. The preprocessing methods are applied to the raw

EEG signal for removing artifacts.

Chapter 6 presents the Emotiv Epoc Neuroheadset and our developed software
Sycamore BCI. The Emotiv is easy to use device. It is non-invasive and, has 14
electrode location and two reference electrode. It capture the electrical signal of the
brain with this 14 electrodes. Firstly, we use the Emotiv cognitive application for the
test. Also, we take the EEG data from the Emotiv application program Test Bench
and make our analysis from this data with the Weka and Matlab. Then we develop
the Sycamore BCI program for the preprocessing, feature extraction and
classification processes. Also, the online test interface is developed to work with
extracted features and selected classification method. In this chapter these programs

and the interfaces are displayed and explained.

Chapter 7 illustrates the feature extraction methods in a detail. The feature
extraction is very important process because of the reduce curse of dimentionality.
The probability distribution of the Hurst exponent, extracted by the multifractal
detrended fluctuation analysis. Also the specific brain signals are extracted from the
time domain EEG data with the fast Fourier transform method. The midrange and the

beta signals are used as feature too.

In Chapter 8, the classification methods are mentioned. Statistical similarity

method is the statistical hypothesis test method. It used for the validation of the data



by measuring similarity of the each cognitive task. The commonly used method K-
nearest neighbor classifier is used to classify P,, midrange beta and beta feature
signals. Also, newly proposed CxK-nearest neighbor classifier is applied to the
classification of the features. These methods are explained by the algorithm steps.
Finaly, 10-fold cross-validation method used for the performance evaluation is
explained.

Chapter 9 shows the experimental results for offline and online analysis. In offline
analysis, extracted features are classified for five subjects with the K-nearest
neighbor algorithm and CxK-nearest neighbor algorithm. This cursor movement BCI
application is subject based application. Therefore, the feature extraction process is

done for all subjects and the subjects features are classified separately.

Chapter 10 is the final chapter. In this chapter the conclusion is explained. The

advantages of the used processes are discussed.

1.2 Significance of this Study

Contributory disciplines of BCI are known as Cognitive Psychology, Social and
Organizational Psychology, Ergonomics and Human Factors, Engineering, Design,
Anthropology, Sociology, Philosophy, Linguistics, Artificial Intelligence and
Computer Science.

Scope of a user interface includes design of input and output devices, workstation

environment, context of use, information layout and meaning.

User characteristics such as cognitive ability, expertise/experience, level of
education, age, attitude, physical ability and culture will be affected by the

improvements and outcomes of BCI studies.

In a business context, user interface and related studies such as BCl may improve

efficiency, effectiveness, productivity, safety and user satisfaction yielding;



e Completeness and accuracy with which users achieve specified goals
(effective)

e The speed with accuracy in which users can complete the tasks for which
they use the product (efficient)

e Pleasant and satisfying to use (engaging)

e Prevent errors caused by the user’s interaction & help the user recover
from any errors that do occur (error tolerant)

e Allows users to build on their knowledge without deliberate effort (easy to

learn)

In this thesis;

e The statistical similarity method is used as first time for the data
validation.

e The newly developed classifier the CxK-nearest neighbor algorithm is
applied to the EEG signal classification as a first time. This method is
basic and gives acceptable results in both online and offline analysis.

e In the literature, it is known that thinking signals occurs in the midrange
beta signal frequency but the Ph values give the better results than the
midrange beta signal. This shows that the Ph values represent the specific
features of the cognitive tasks.

e The BCI studies are done as a project with the team, in this study we have
carried out this works with a small team. Nevertheles, we take acceptable

results.

Any contribution to the BCI system is valuable. This proposed classification
method can be used for the wheel chair management for disable people, games, and

linguistic comments etc.



CHAPTER TWO
STRUCTURE OF THE BRAIN

The human brain is the mysterious organ which controls all essential functions of
the body. The brain receives the information from the outside world through five
senses organ: eye (vision), nose (smell), skin (touch), tongue (taste), and ear
(hearing). Then it interprets the received information to meaningful information for
us and stores in memory. Also, thoughts, speech, movement of the limb, function of

many organs within body, breathing are a few of the things controlled by the brain.

2.1 Lobes and the Functional Areas of the Brain

Brain is the most complex organ of the human body. All physical and mental
tasks are managed through the brain. The brain anatomically consists of three
important parts; cerebrum, cerebellum and brainstem (Gray, 2002) as displayed in

Figure 2.1.
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Figure 2.1 Anatomy of the brain and functions (Gray, 2002).



The afformentioned parts are explained as follows:

Cerebrum:

The cerebrum is the largest and principle part of the brain. It is located in the in
the front area of the skull and consisting of left and righ hemispheres. Each
hemisphere composed of the four parts called as lobes: frontal, parietal, occipital, and
temporal (Purves et al., 2004) as shown in Figure 2.2. The outer layer of the
cerebrum is made up of neural tissues known as the cerebral cortex. The cerebrum
part of the brain is generally responsible from thoughts, movements, emotions and
motor brain functions. These lobes are responsible for variety functions.

Thought, Language
memory and and touch
behaviour

Visual
processing

Balance and

Hearing, learning coordination

and emotions Breathing,

heart rate and
temperature

PARTS OF THE BRAIM
D Frontal lobe
Parietal lobe
Temporal lobe
Occipital lobe

Cerebellum

EOECE

Brain stem

Figure 2.2 The lobes of the cerebrum (Purves et al., 2004).
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e Frontal Lobe is located at the front of the brain and positioned in front of the
parietal lobe and above and in front of the temporal lobe. The frontal lobe
controls voluntary movement, emotions, problem solving, motor

development, reasoning, planning, parts of speech and movement.

e Parietal Lobe is positioned above the occipital lobe and behind the frontal
lobe. The parietal lobe is responsible for sensation such as pain, touch etc.,
sensory comprehension, and recognition, perception of stimuli, orientation

and movement.

e Occipital Lobe is responsible for visual processing, such as color

differentiation, and motion perception.

e Temporal Lobe is positioned under the lateral fissure on both cerebral
hemispheres. The temporal lobe is involved in processing sensory inputs

of visual memories, language comprehension, and emotion association.

Cerebellum:

The cerebellum is the part of the brain at the lower back of the skull in vertebrates.
Also, cerebellum composed of the two hemispheres: left and right. It is the second
largest part of the brain and contains more than half of the brain neurons. This part is
generally responsible for the sensory perception, coordinates and regulates muscular
activities. The cerebellum is also associated with voluntary muscle movements, fine

motor skills, posture and balance regulation.

Brainstem:

The brainstem is the posterior part of the brain and connects the cerebrum and
spinal cord. In the human brain, the brainstem contains the midbrain, pons and
medulla. The midbrain is associated with vision, hearing, motor control, sleep/awake,

alertness, and temperature regulation. The pons contains system that carry signals
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from the cerebrum to the medulla and vice versa. Also it carries sensory signals to

the thalamus.

__Brainstem

Medulla-
Basilar artery

Vertebral arteries

Figure 2.3 The parts of the brainstem.

The brain stem is the main control panel of the body. It is responsible for vital
functions of the body, including breathing, consciousness, movements of the eyes
and mouth, and the relaying of sensory messages (pain, heat, noise etc), heartbeat,

blood pressure and hunger.

2.2 Cortical Homunculus

The homunculus shows in which the body parts are rendered according to how
much of the somatosensory cortex is devoted to them (Schacter et al., 2009). The
homunculus scheme was useful to determine a good choice of discrimination tasks
for each patient, leading to motor imagery of left hand vs. right hand or little left

finger vs. tongue.
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Figure 2.4 The motor homunculus visualizes the mapping of body muscles to the motor cortex. The
mapping is not isomorph as important areas like tongue, hands and lips are overly represented

(according to (Gohlenhofen, 1997)).

2.3 Brain Cell

The human nervous system consists of approximately 10*° to 10™ neurons, cells

specialized in information processing, and of about the same number of neuroglia

cells that support the neurons’ activities in various ways (Eckert et al., 1993). Most

of the neurons are situated in the central nervous system consisting of the brain and
the spinal cord. The single pyramidal neuron cell is in Figure 2.5:
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Figure 2.5 The cell of the human motor cortex.

The neuron is the basic unit and messenger of the peripheral nervous system. It is
composed of four basic parts:

- soma (or cell body),

- dendrites,

- axon, and

- axon terminals.

The soma surrounds the nucleus. Dendrites sense information from neighboring
cells. The axon can be part of the spinal cord, connect with muscle or sensory nerves,
or branch into small fibers. The axon terminals branch off from the axon and send
the action potential to nearby neurons.
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CHAPTER THREE
BIOMEDICAL SIGNALS

The human body consists of the many systems. These are the nervous system, the
cardiovascular system, and the musculoskeletal system. Each system is composed of
subsystems that perform many physiological processes. For example, the cardiac
system performs the rhythmic pumping of blood throughout the body to facilitate the
delivery of nutrients, as well as pumping blood through the pulmonary system for

oxygenation of the blood itself.

Physiological processes are including:
- Nervous or hormonal stimulation and control;
- Inputs and outputs that could be in the form of physical material,
- Neurotransmitters,

- Mechanical, electrical, or biochemical actions.

The physiological processes are described by the signals. These signals have
many types; biochemical, electrical and physical. The signal reflects the form of
hormones and neurotransmitters is called biochemical signals. The electrical signals
reflect the form of potential or current. Also, the physical signals reflect the form of

pressure or temperature.

3.1 Electroencephalogram (EEG)

EEG represents the electrical activity of the brain (Cox et al., 1972; Cooper et al.,
1980; Kooi et al., 1978, Rangayyan 2002). The electrical activity in the brain was
discovered in 1875 by an English physician Richard Caton. Caton observed the EEG

signals of rabbits and monkeys.

In 1924 Hans Berger, a German neurologist, used his ordinary radio equipment to
amplify the brain's electrical activity measured on the human scalp. He announced
that weak electric currents generated in the brain can be recorded without opening

the skull, and depicted graphically on a strip of paper.
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The activity that he observed changed according to the functional status of the
brain, such as in sleep, anesthesia, lack of oxygen and in certain neural diseases, such

as in epilepsy.
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Figure 3.1 First recording of EEG signals made by Hans Berger (Berger, 1929).

Berger laid the foundations for many of the present applications of
electroencephalography. He also used the word electroencephalogram as the first for
describing brain electric potentials in humans. He was right with his suggestion that
brain activity changes in a consistent and recognizable way when the general status

of the subject changes, as from relaxation to alertness (Bronzino, 1995).
Later in 1934 Adrian & Matthews published the paper verifying concept of

“human brain waves” and identified regular oscillations around 10 to 12 Hz which

they termed “alpha rhythm” (Bronzino, 1995).
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3.2 Measuring Brain Activity

The brain analysis is composed of structural and functional analysis. Structural
analysis is used to analyze the anatomy of the brain, in order to find structural
features. These could be tumors, hemorrhages, blood clots and lesions, or even
deficits present at birth.

The magnetic resonance imaging (MRI) is the structural analysis method.
Functional analysis is used to measure and locate brain activity. It is used for
exploring the functions of special structures, and to diagnose epileptic seizures or

diseases affecting brain activity.

The electroencephalography (EEG) and functional magnetic resonance imaging
(fMRI) are used as functional analysis methods. Functional imaging is also used to
aid surgical treatment of brain lesions when it becomes necessary to determine the
locality of essential functional cortex to help guide the best surgical approach. Many
times a structural and functional method will be used in conjunction to better assess

how the activity and region are related.

The EEG and fMRI are two commonly used methods for investigating human
brain states in cognitive neuroscience experiments. Both are noninvasive, but in other
respects they are complimentary. EEG measures voltage changes in electrodes placed
on the scalp (Figure 3.2), whose number ranges commonly from 32 to 256.
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Figure 3.2 EEG sensing device.

EEG has millisecond time sensitivity, but spatial information must be inferred
through an inversion process, and has at most as many independent spatial
measurements as there are electrodes (Grave de Peralta Menendez et al., 2001).

The fMRI measures changes in blood oxygen level also called the BOLD signal,
throughout the brain (Ogawa et al., 1990; Frahm et al., 1992). It produces a 3D
image with a spatial resolution of roughly a few millimeters, but temporal resolution

is on the order of a few seconds.

Furthermore the BOLD signal is a complicated convolution of brain activity
because the blood oxygen level takes several seconds to rise and even longer to fall
in response to an impulse of activity. Thus EEG provides an excellent measure of
temporal dynamics but a poor measure of spatial locations, and fMRI provides an

excellent measure of spatial locations but a poor measure of temporal dynamics.
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3.3 Brain Waves

Brain patterns are commonly formed sinusoidal wave shapes. Usually, these
signals are measured from peak to peak and normally range from 0.5 to 100 uV in
amplitude. The power spectrum is derived from the raw EEG signal by the Fourier
transform. The contribution of sine waves with different frequencies can be seen in

power spectrum.

The brain waves have been categorized into basic groups as Delta, Theta, Alpha,
Beta and Gamma (Table 3.1) (Teplan, 2002). For the detailed analysis in this work

Beta signals are separated to Low, Midrange and High frequency bands.

Table 3.1 Brain wave frequencies (Teplan, 2002)

Brainwave Type | Freguency Range Mental States and Conditions

Delta 0.1 Hz. to 3 Hz. Deep, dreamless sleep, NON-Rem sleep, unconcsious
Theta 4 Hz. to 7 Hz. Intuitive, creative, recall, fantasy, imaginary, dream
Alpha 8 Hz. to 12 Hz. Relaxed, but not drowsy, tranquil, conscious

Low Beta 12 Hz. to 15 Hz. Formerly SMR, relaxed yet focused, integrated
Midrange Beta 16 Hz. to 20 Hz. Thinking, aware of self & surroundings

High Beta 21 Hz. to 30 Hz. Alertness, agitation

Gamma 30 Hz. to 100 Hz. Motor functions, higher mental activity

Delta (0.1 — 3 Hz): Delta waves are between 0.1 Hz and 3 Hz frequency range
(Figure 3.3). Delta waves are usually associated with the deep sleep. Sleep is
generally divided into two types: non-rapid eye movement sleeps (NREM) and REM
sleep. NREM and REM occur in alternating cycles. NREM is further divided into
stage I, stage I, stage Ill, and stage IV. The last two stages correspond to deeper

sleep, where slow delta waves show higher proportions.

Figure 3.3 Delta wave
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Theta (4 - 7 Hz): Theta waves are between 4 Hz and 7 Hz frequency range (Figure
3.4). Theta activity is seen in drowsiness, arousal and often during meditation.
Dominant Theta activity is associated with relaxed, meditative, and creative states,

memory recall and flow states.

0.0 02 0.4 [ 0.8 1.0

Figure 3.4 Theta wave

Alpha (8 - 12 Hz): Alpha waves are between 8 Hz and 12 Hz frequency range
(Figure 3.5). Alpha activity is induced when closing the eyes and relaxation, and
abolished by eye opening or alerting by any mechanism (e.g. thinking, mathematical
calculations) (Teplan, 2002). Most of people, when close their eyes their wave
pattern significantly changes from beta into alpha waves.

High Alpha levels appear in the frontal lobes during relaxation and are suppressed
when other activities take place. It is quite common in EEG signal analysis to
compare the Alpha suppression between different regions in order to determine the
functional areas which are currently in use. For example, linguistic processing tends
to depress Alpha activity in the left frontal lobe, while abstract spatial thinking can
suppress Alpha in the right frontal lobe. Trained meditators often produce much
higher levels of Alpha activity during normal activities, especially in the frontal

lobes.

Similar rhythms in the motor cortex called as Mu-rhythms which around the same
frequency range indicate muscle relaxation. Suppression of Mu-rhythms in the motor
cortex in specific regions corresponds with activation of particular muscle groups.
For example, clenching your right fist is directly associated with a dip in Mu-rhythm

near the F3 sensor on the left side of the head.
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Figure 3.5 Alpha wave

Beta (12 - 30Hz): Beta waves are between 12 Hz and 30 Hz frequency range (Figure
3.6). Beta wave is the terms used to designate the frequency range of human brain
activity between 12 and 30Hz.

Beta activity of multiple and varying frequencies is often associated with active,
task-oriented, busy or anxious thinking and active concentration. Beta waves can be
separated to three parts: Low Beta, Midrange Beta and High Beta. The low beta

waves are between 12 Hz and 15 Hz frequency range.

It is active, when people relaxed yet focused, formerly SMR and integrated
situations. The midrange beta waves are between 16 Hz and 20 Hz frequency range.
It is active in thinking, aware of self and surroundings situations. The high beta
waves are between 21 Hz and 30 Hz frequency range. It is active in alertness and

agitation situations.
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Figure 3.6 Beta wave

Gamma (> 30Hz): Gamma waves are higher than 30 Hz frequency range (Figure
3.7). Gamma rhythms occur when different populations of neurons network together

to carry out demanding cognitive or motor functions.

Generally Gamma waves are observed in the frontal regions when fast, coupled
processing is required, such as in fight/flight mode and when task switching during

multi-tasking. In task switching, Gamma bursts are clearly evident when the current
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task is archived to short term memory and a new task is retrieved for ‘concurrent’

processing.
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Figure 3.7 Gamma wave
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CHAPTER FOUR
BRAIN COMPUTER INTERFACE

BCI is a communication system that recognizes user’s command only from his or
her brainwaves and feedback according to commands. For this purpose subject is
trained. Simple task can consist of desired motion of an arrow displayed on the
screen only through subject’s imaginary of the motion of his/her left or right hand.
As the consequence of imaging process, certain characteristics of the brainwaves are

raised and can be used for user’s command recognition.

4.1 The Structure of the BCI

BCI Technology composed of four basic processes: recording the raw EEG
signals as signal acquisition, removing noises as signal preprocessing, extraction of
the intended action or desired features from the mental activity as feature extraction,

and finally classification of the desired features.

1. EEG Data Acquisition: The effectively acquisition of the brain signal is the most
important phases of the brain computer interface system communication. Human
thoughts produce the electrical activities. These activities could be measured many
types of EEG devices. The measured electrical activities are analog signals and
analog signals are converted to the digital signals. In this thesis, EEG signals are

captured by the Emotiv Epoc Neuroheadset.

2. Signal Preprocessing: The EEG signals are affected from the environment
sounds, eye movement and muscle movements. Because of the outside effects, the
noises called as artifacts, are occurred in the captured EEG signal. Therefore, the
preprocessing is required for the removing these artifacts. In the preprocessing phase,
the recorded data is cleaned and purified from the noisy data (Bashashati et al. 2007).

After the preprocessing, the quality of the data is improved.
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Figure 4.1 The flow of the BCI system.

3. Feature Extraction: EEG signals are very complex and the patterns are not
recognized easily. In this phase, feature extraction methods extract the signal features
that encode the user’s messages or commands. Thus, the raw EEG signals have been
characterized by the features. The feature extraction phase is very important because
of the effective classification results. Also, dimension of the features are lower than
the dimension of the raw EEG signal. So, we avoid from the curse of the

dimensionality.

4. Classification: In the classification phase, the extracted specific features are
assigned to the accurate classes. The classes are defined as the type of cognitive
states. There are the supervised and unsupervised methods. When the classes are
known, the supervised classifiers are used; otherwise the unsupervised classifiers are

used for the classification of the EEG signal.
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5. Feedback: Finally, in this phase the feedback according to the identified cognitive
task is provided to the participant. The goal of the feedback is that helping the

control brain activity of the participant.
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CHAPTER FIVE
DATA

The EEG signals can be captured through invasive and non-invasive methods. The
invasive methods require surgery, therefore this method do not preferred. There are
many non-invasive devices for measuring EEG signals. In this thesis, the Emotiv

Epoc Neuroheadset is used for capturing EEG signals.

5.1 Data Acquisition

The raw EEG signals are recorded using an Emotiv Epoc amplifier device (Figure
5.1). Signals were measured from 14 EEG channels plus 2 references (CMS/DRL
references, P3/P4 locations) offering optimal positioning for accurate spatial

resolution.

Figure 5.1 Emotiv Epoch device.

Channel names based on the international 10-20 electrode location system are: AF3,
F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4, with CMS/DRL references
in the P3/P4 locations (Figure 5.2).
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Figure 5.2 Emotiv electrode locations.

The 10-20 system or International 10-20 system is an internationally recognized
method to describe and apply the location of scalp electrodes in the context of
an EEG test or experiment. This method was developed to ensure standardized
reproducibility so that a subject's studies could be compared over time and subjects
could be compared to each other. This system is based on the relationship between
the location of an electrode and the underlying area of cerebral cortex. The "10" and
"20" refer to the fact that the actual distances between adjacent electrodes are either
10% or 20% of the total front—back or right—left distance of the skull.

Each part has a letter to identify the lobe and a number to identify the hemisphere
location. The letters F, T, C, P and O mean as frontal, temporal, central, parietal,

and occipital lobes, respectively.

Emotiv EPOC uses sequential sampling method, single ADC, at a rate of 128
SPS. It operates at a resolution of 14 bits per channel with frequency response
between 0.16 - 43 Hz. The Emotiv Epoc System comprises of a built-in digital 5th
order sinc filter with a bandwidth of 0.2-45 Hz and a digital notch filter at 50 and 60
Hz.
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5.2 Training Experiments

The first step toward to classification of the cognitive states, is training of the
subjects. The dataset accumulated during the subject trains itself to generate
cognitive states. The visual stimuli is used in this study to provide instructions to the
subject on the mental task he has to perform during the training phase. The visual cue
contains instructions for five mental commands: Up, Down, Left, Right and No
Movement in form of direction of an arrow and blank screen, as shown in Fig.5.3
(Bhattacharyya et al., 2015).

- --' .', Blank

1 2 3 4 5 6 7 8

Time (1n sec) -

A

Figure 5.3 Timing diagram of a motor imagery trial performed by the subject. The direction of the
arrows provides instruction to the subject (Bhattacharyya et al., 2015).

The subject is relaxing before the training. In the visual stimuli, when plus image
appeared the subject knowing that the training will start. When the arrows appear,
the subject both follows the arrows and thinks the control right hand according to the
arrow rotation. In the blank screen, the subject thinks nothing. There is the breaks
two second between each training. In a section, each training is repeated 24 times.
Also, trainings of subject is undertaken over 3 diferent sessions and one session is

performed on a single day.

5.3 Data Preprocessing

The EEG signals have many noises because of the various out affects, such as eye
movement, head movement and the noises comes from the test environment. In the
signal processing, many kinds of noise reduction methods are commonly used. In
this thesis dissertation, median filtering and normalization is used for the

preprocessing.
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5.3.1 Median Filtering

The median filtering as a nonlinear digital filtering technique is used for the
removing noises for improving the results of later processing. The median filtering is
commonly used in signal processing beacuse certain conditions, it maintains edges

while removing noise.

The median is the middle value of the data. In the calculation of the median
filtering, all values in all rows are sorted in ascending order and then the middle
value is found. If the sorted count is even, This values calculated from the all rows

are substracted from each value.

Sorted: 3838 3956 3964 3957 3995 4060 4231 4277 4793 4357 4364 4372 43BD 4381

414%

AF3 F7

4381

4382 4222 57 3992 4378 4373 4381 1540 3067 3956, ABE5 4359 4301 a0m
4383 4333 3357 3992 47T 4373 4381 3233 3967 3999 4365 4359 4307 4063
4383 4224 A58 3993 42377 4373 4380 HEEE 3065 3997 ABE5 4359 4302 407
4383 4335 3958 3933 4277 2374 4380 3537 3965 3935 4365 4359 4302 4071
4383 4225 ¥sd 3992 4377 A3 4350 B 067 39495 ABE5 4359 4302 4071
4383 4138 353 3933 4378 2375 4381 =33 3969 3555 4365 4360 4302 4071
4383 A12F ¥59 3994 417F 4376 4381 iy 72 3996, 4357 4361 430 4071
4384 4230 280 3993 4IT3 4378 4382 B4l 3975 35957 4358 4361 430 40n

Figure 5.4 Median filtering example.
5.3.2 Normalization

The normalization is commonly used as a preprocessing method in biomedical
signals. The normalization process transforms the measured data to a new interval
from new minimum value to new maximum value for feature F. The basic forrmula

is give by equation 5.1 .

. v—min, : :
V'=————————(new_max_—new_min_)+new_min_ (5.1)
max . —min.

where V is the current value of feature F.
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CHAPTER SIX
SOFTWARES

In this thesis, Emotiv Epoc Neuroheadset and our developed software Sycamore
are used for acquisition of the raw EEG signal. The training studies are done both in
Emotive control panel and our software program which is written in c# language.

The analysis and online tests are carried on through our Sycamore software.

6.1 Emotiv Epoc Neuroheadset Software

The Emotive Headset Setup is opened by default when starting EPOC Control
Panel (Figure 6.1). This screen is used to display contact quality of EPOC
Neuroheadset’s sensors and provide quidance to user in fitting the EPOC

Neuroheadset correctly.

Achieving best results is possible with the contact quality. It is important that
controlling the contact quality before starting to cognitive process. Poor contact
quality will give poor detection results.

TP EROC Cantol P

Application  Tool  Connect elp

ENGINE STATUS USER STATUS

o1 e System us: Emotiv Engine is ready Headset: User
\ s > +) [Emouser -/ epoc control panel (’,i
ire ood scee

High eses ADD USER REMOVE USER i SAVE USER |

Expressiv Suite I Affectiv Svite I Cognitiv Suite an.sc [mulnlorl

Status: OK...

Contacgt Quality

+ |Headset Setup Guide r

[Eefore puttrg on the Emoty headset, ensure that each of the 16 electrede recesses are fitted E
vith 2 mokst felt pad., If the pace ars not dready most, wet them with salne solution bfore

ingerting into the headset, or, alternatively, use a medidne dropper to carsfully moisten the pads
while dready n placs.

tep 2 Swtch on the Emotv heacset and vernify that the bult-in bsttery & dharged andis
[praviding power by kokng for the biue LED located near the power switch at the back of the
headset, If the hazdset battery neeck charging then set thz pawer owitch 1o the off poeltion and
plug the headset into the Emoti battery chargsr using the mini-LSB cable provided with the
headset. Alon the heads=t batt=ry to charge for at lesst 15 minutes before trying again,

Step 3 Venfy that the Vrsless Signal reception is reported ac Geod by locking at the Enaine
Status box N the Emotv Control Fanel. If it k5 not, mske sure that ths Emotw Dongle ks nserted
into a USS port on your computer and that the single LED on the top half of the dongle s cn
contiruoudy or fickerng very rapdly. If the LED & biicking siowly luminated, then
remove the dongle from the computer, reinsertit, and try agan. Remove any metalic o dense
physcal obstructions kcated near the dorgle or the hesdset, and move away from any powerful
sources of clectromagnetic interference, such as micronave ovens or high-pawerad radic
traremitters,

Figure 6.1 Emotiv Epoc control panel
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The left side image is display the representation of the sensor and contact quality.
Each circle represent one sensor and approximate location. The sensor colors give

the contact quality. To achieve the the best signal, all sensors should be green.

Sensor colors indicate following results:

- Black : No Signal (Not Acceptable)

- Red: Very Poor Signal (Not Acceptable)
- Orange : Poor Signal

- Yellow : Fair Signal

- Green : Good Signal (Ideal Signal)

Green and some yellows can be acceptable but green and black/orange/red can not

acceptable.

6.1.1 Training Program

The Cognitive Suite panel is used for the training phase (Figure 6.2). This panel
uses a virtual 3D cube to display an animated representation of the detected
commands. The real time brainwave activity of the user is evaluated for physical

actions of real or virtual object according to user cognitive intent.

The detection is performed for 13 different cognitive actions: 6 directional
movements (pull, push, left, right, up adn down) and 6 rotations (clockwise, counter-
cockwise, left, right, forward, backward) and one additional action as disappear. The

cognitive suit allows 4 action option to the user.
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Figure 6.2 Emotive Cognitve Suite for training.

6.1.2 TestBench

Data set is recording by the Emotiv Epoc Test Bench. Emotiv neuro headset
captures users’ brainwave signals. Test Bench application independently collects
data packets from the USB device and processes them to display, analyse, record and

play-back time independent EEG signals (Figure 6.3).

The left side of TestBench Panel is the TestBench Status Pane. This pane shows
neuroheadset sensor contact quality. It also exposes other functions which are

described below.

The EEG Suite reports real time changes in the subjective emotional experiences
by the users. EEG shows brainwave signals of 14 channels (AF3, F7, F3, FC5, T7,
P7,01, 02, P8, T8, FC6, F4, F8, AF4).

In this section, the users can choose to display one or more channels, and if users

choose to display one channel, you can use AutoScale button. The main function of
AutoScale button is automatic alignment of the upper and lower limits consistent
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with the current channel values. You can set the vertical scale when more than one
channel is displayed by changing the Channel Spacing value, which changes the
vertical scale so that the difference between successive channel displays is equal to
the number displayed in the box (to double the vertical resolution, change the
number to 100 uV).
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Figure 6.3 Emotiv Test Bench display showing EEG suit.

The FFT Suite shows EEG graph in the frequency domain and the power of signal
in the frequency band. The FFT panel consists of a series of graphs.The first graph

shows the FFT signal of a selected channel.
The second graph displays the power of a signal in specific frequency bands:
Delta (0.1-3Hz); Theta (4-7Hz); Alpha (8-12Hz); Beta (12-30Hz); and one user-

defined Custom band.

The function buttons changing the parameters of the graphs are in the left side of
the FFT panel (Figure 6.4).
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Figure 6.4 Emotiv FFT suit

The Gyro Suite displays the rotational acceleration of the head in horizontal and
vertical axes (Figure 6.5). The gyro data used for the head movement based
applications.

The graph has two signal lines:

Gyro X: the upper signal shows signal moving in the horizontal axis

Gyro Y: the lower signal shows signal moving in the vertical axis
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Figure 6.5 Emotiv gyro suit

The Data Packets Suite shows the data packet counter and the lost packet
indicator (Figure 6.6). The wireless drop-outs can be clearly seen from this panel.
The graphs display the clearly reading signals and the number of packet lost,

respectively.
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Figure 6.6 Emotiv data packet counter and packet loss display
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Data File Format:

Data is saved by TestBench in a standard binary format, EDF, which is
compatible with many EEG analysis programs such as EEGLab. Following the initial
information line, each successive row in the data file corresponds to one data sample,
or 1/128 second time slice of data.

Successive rows correspond to successive time slices, so for example one second
of data is contained in 128 rows. Each column of the data file corresponds to an

individual sensor location or other information tag.
Data tag descriptions:

COUNTER : The counter is used as a timebase, and runs from 0 to 128.

INTERPOLATED: It shows if a packet was dropped and it gives the interpolated
value from surrounding values. When the interpolated value is equals to zero, this
means the sample was good.

AF3..AF4 : EEG channels data.

RAW_CQ: This is a multiplexed conductivity measurement used to derive the
contact quality indicator lights. It is possible to demultiplex this channel if more

accurate conductivity measurements are required.

CQ_A F3..CQ_A F4: These numbers show the colour of the each channel’s
signal quality, where 0=BLACK, 1 =RED, 2=ORANGE, 3=YELLOW, 4=GREEN.

CQ_CMS, CQ _DRL.: I gives the contact quality of the referance locations. The
values 1 and 4 mean RED and GREEN respectively.
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GYROX, GYROY: Horizontal and vertical difference readings since the previous
sample.

MARKER: Timing markers manually or automatically entered in the file. If no
marker was detected at the particular timing sample, a value of zero is added into the
file, otherwise the number associated with the marker button, or the byte transmitted
to the COM port, is entered in the MARKER column for that sample.

6.2 Sycamore BCI Software

In this thesis, the software Sycamore is developed for training, analyses and

testing processes. The test screen is designed as below (Figure 6.7) :

a5 Sycamore o || = || R

Subject Mame: ‘ Start Training ‘

Figure 6.7 Sycamore training screen.

First, the user name of the participant has been written to “Subject Name” field
and then push the “Start Training” button. The “Training Number” field shows the
training number. In this study, each image is displayed for 1 sec and the black screen
is displayed for 2 sec among the trainings because of the resting brain.
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In the noiseless room, participants are seated in the chair and the training process

Is explained to them. The training process starts with the plus image, means “training

will start and be ready” (Figure 6.8).

a5 Sycamore

|_|:| = (-

Subject Name:
Sezin|

Figure 6.8 Sycamore starting image of training screen.

After the starting image “Plus”, training screen shows the mental task images with

a random order (Figure 6.9-6.13). The participants are thinking the cognitive tasks

left, right, up, down and no movement, while they are watching the corresponding

images.
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o5l Sycamore

(Sl |

Subject Name:
Sezin|

Figure 6.9 Sycamore up image of training screen.

o' Sycamore

Subject Mame:
Sezin

Figure 6.10 Sycamore down image of training screen.
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& Sycamore | o

0
Subject Name:
Sezin
Figure 6.11 Sycamore right image of training screen.
ol Sycamore |ﬂ|ﬁj
0
Subject Name:
Sezin|

Figure 6.12 Sycamore left image of training screen.
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o Sycamore [y

Subject Name: Start Training

Sezin|

Figure 6.13 Sycamore no movement image of training screen.

The statistical similarity of the training data is measured by the following screen.

The Z, values are calculated for cognitive tasks.

o5 Sycamore || Statistical Signal Similarity | =N X

File Data Analysis Help

Statistical Similarity

Figure 6.14 Sycamore statistical similarity calculation screen.
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The multifractal detrended fluctuation analysis is calculated with the below
window (Figure 6.15). The initial parameters scale, g order and signal are inserted to

the corresponding fields and then mfdfa algorithm can be run.

o) Sycamore || Multifractal Detrended Fluctuation Analysis

File Data Analysis Help

Parameters Result

— |
=

sinyal =

MFDFAT MFDFA2

Bot = Series1

Figure 6.15 Sycamore MFDFA calculation screen.

In the online test screen, participants wear the Emotiv Epoc neuroheadset and
captured signals are classify with the K-nearest neighbor and CxK-nearest neighbor
algorithm according to extracted features (Figure 6.16). In the left side of the screen,
electrode locations are displayed, and the feature extraction and classification method

options are listed.
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Figure 6.16 Sycamore BCI online test screen.
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CHAPTER SEVEN
FEATURE EXTRACTION METHODS

The feature extraction of the specific features is the most important phase in BCI
because of the complexity of the EEG signals. Different mental tasks have different
characteristics. The feature vector consists of this specific information about the

different mental tasks.
7.1 Multifractal Detrended Fluctuation analysis

In recent years the detrended fluctuation analysis (DFA) method (Kantelhardt et
al., 2002) has become a widely-used technique for the determination of (mono-)
fractal scaling properties and the detection of long-range correlations in noisy,
nonstationary time series (Taqqu et al., 1995; Kantelhardt et al., 2001). It has
successfully been applied to diverse fields such as DNA sequences (Buldyrev et al.,
1998), heart rate dynamics (Ashkenazy et al., 2001), neuron spiking (Bahar et al.,
2001), human gait (Hausdorff et al., 1997), long-time weather records (Talkner &
Weber, 2000), economics time series (Mantegna & Stanley, 2000). One reason to
employ the DFA method is to avoid spurious detection of correlations that are

artifacts of non-stationarities in the time series.

Different mental tasks have different characteristics. The feature vector consists of

this specific information about the different mental tasks.

Kantelhardt’s MFDFA mathematical notation is used for the analysis. The steps
required to calculate the MFDFA estimates are summarized below (Kantelhardt et
al., 2002):

Input: Let, X, is a time series of length N of compact support that X, = Ofor an

insignificant amount of values.

Step 1: First, compute the sequence of summary displacements

P(i):iz[xk—ﬂ, i=1,...N. (7.1)
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Step 2:  Then, partition P(i) in a number of non-overlapping segments denoted

by N,=N / |, of equal length 1. The same process is repeated from end to start to
the series to consider the small parts that can remain at the end of the series. Thus we

obtain total 2N, segments.
Step 3: In this step, detrend the profile P(i), i=1,..., N, for each segment of

length |, by applying least square fit on each segment and calculating their

respective variance, which is given as
F2(1,v) :I}izl_l:{P[(v—l)l +i]-y, (i)} (7.2)
where v is a segment such that V=1,...,N, , and
F*(,v) =%§{P[N —(v=N)I+i]-y, ()Y (7.3)

for V=N, +1,...,2N,, where Y, (i) is the fitting polynomial in the segment V.

Step 4: Then, calculate the gth order fluctuation function by averaging over all

segments, as follows,

F, (1) ={%§[F2(Lv)]‘*’2} (7.4)

| v=1

where q can take value different from zero. To determine the dependency of

generalized g dependent fluctuations on time scale |, repeat steps 2 to 4.

Step 5: Lastly, determine the scaling behavior of the fluctuating functions by

analyzing the log-log plots of F,(I) versus | for each value of .
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Fqo(l) ~ 1" (7.5)

where, h(q) is the (-dependent generalized Hurst exponent (Kantelhardt et al.,

2002). It is to be noted that for long-range power-law corrected series X;, F,(l)

increases as power-law for large values of | .

For each order of g, the scaling behavior of the fluctuation functions can be
determined by the logarithmic chart of F,(I) versus I. The slope of log F, (1) and logs

Is the generalized Hurst exponent h(q) .

The Hurst exponent H , varies between 0 and 1 (Feder & Fractals, 1988). The
Hurst exponents can be interpreted as the correlation anlaysis of the time series.

The scaling exponent H ;
- H =0.5 means that the time series are uncorrelated,
- 0.5<H <1 implies long-term persistence,

- 0<H <0.5 implies short-term persistence (Movahed et al., 2003).
7.2 Brain Bandpowers Extraction

The EEG data is collected in time-domain space. Because of the EEG signal
complexity, signals seems like noise and irrelavent, but it is possible the obtain
information from the data in frequency-domain. In the signal analysis working with

the frequency-domain is more usefull rather than the time domain.

The time-domain data show a signal changes over time, whereas a frequency-
domain data shows how much of the signal lies within each frequency band over a
range of frequencies. The signal can be converted between the time-domain and

frequency-domain with a mathematical tranformation methods, such as Fourier
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transform. The Fourier trasnform converts the time function into a sum of sine waves

of different frequencies.

The spectrum of the frequencies is the frequency domain representaiton of the
signal. In the Fourier trasnform, data separated to window length intervals. The fast
fourier transform is faster if the signal window length is the power of two. Therefore,

window lengths should be the power of two.

The algorithm 1 gives the frequency components of the offline signal. Emotiv
Epoc amplifer collect data with 256Hz, and ocular, muscle and motion artefacts are

not treated.

Algorithm 1 Steps:
Stepl : Remove any residual common mode signals with median subtraction.
Step2 : Limit slew rate to remove occasional noise spikes.
Step3 : Apply IR High-pass filter.
Step4 : Select epoch length for FFT (256 = 2 seconds in this example).
Step5 : Grab next epoch .

(step forward 0.25 seconds in this example, using trailing 2 second sample)
Step6 : Apply Hanning window filter .

(removes wrap-around step artefact from FFT)
Step7 : Run the FFT.
Step8 : Calculate bin power for each frequency step.

(square of magnitude of the complex FFT output value)

Step9 : Add up the power in each frequency range.
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7.2.1 Fast Fourier Transform

The fast Fourier transform (FFT) measure the discrete Fourier transform (DFT) of
the complex valued series (Duhamel & Vetterli, 1990). It has been transformed the

time domain data to the frequency domain data (Figure 7.1).

The discrete Fourier transform can be applied to the complex series but in large
series the computation takes very long time. The fast Fourier transform method is
faster than the DFT. So, the fast fourier algorithm is generalt used method (Brigham,
1988).
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Figure 7.1 A discrete Fourier analysis of a sum of cosine waves at 10, 20, 30, 40, and 50 Hz.

The fast fourier transform is firstly mentioned in unpublished work of the Gauss
(Bergland, 1969; Strang 1993). Then, Cooley & Tukey (1965) have developed the

much faster algorithm as fast fourier transform.

There are many transformation algorithms but the fast Fourier transnform is the

more efficient than the other methods. The fast Hartley transform is as fast as fast
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fourier transform (Bracewell, 1999). Also, Winograd transform algorithm improves
the speed of discrete Fourier transform (Press et al., 1992; pp. 412-413, Arndt).

Fast fourier Transform function explained as follows:

Let f() be the continuous signal. Let N samples are denoted:
f[o], f[a, fra2l, ..., f[kl, ..., f[N-1].
The Fourier transform of the signal f (t);

F(jo)= j f (t)e i dt (7.6)

7.2.2 Hanning Window

The Hanning function is typically used as a window function in digital signal
processing to select a subset of a series of samples in order to perform a Fourier

transform or other calculations (Rangayyan, 2002).

w(n) = %{1— cos(si_nlﬂ (7.7)

The Hanning window is generally satisfactory in 95% of cases. It has good
frequency resolution and reduced spectral leakage (Anurag & Anand, 2016). When
the nature of the signal is unknown but a smoothing window is wanted to apply, the

Hanning window can be used.
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Figure 7.2 Hanning window.
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CHAPTER EIGHT
CLASSIFICATION AND VALIDATION METHODS

In this chapter, the methods used in this study are detail explained. The statistical
signal similarity method is used for the validation of the dataset. The K-Nearest
Neighbor Algorithm and CxK — Nearest Algorithm are used as classification method.

8.1 Statistical Signal Similarity

Measure of similarity has been used for the comparison of one signal or image
with another. Many basic processing operations, such as matched filtering, cross
correlation, and beam formation, may be interpreted as being based on measures of
similarity. These related operations typically form the foundation of the detection,
classification, localization, association and registration algorithms employed in

semiautonomous sensor systems (Kennedy, 2007).

A hypothesis test is performed with the null hypothesis being that there is no
signal present and that the waveforms entering the beam former contain only zero-

mean Gaussian-distributed noise.

The test statistic for all possible lag combinations corresponding to all physically
measurable angles is computed. The most likely direction of the source is set equal to
the angular coordinate for which the null hypothesis is least likely, i.e. the test

statistic is maximized.

The delay-and-sum beam-former is applied as

Y= x, (),
o 8.1)

where xm(n) is the nth sample output from the m™ delay channel and y(n) is the

beam-formed output. The noise statistics of every sample from all sensors are
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assumed to be identical, so the n™ sample in each delay channel is assumed to be an
independent observation of the random variable X.

Analyzing the digitized waveforms (in x) over a window of length N, gives a total

of N different random variables, with M observations of each variable. Under the
null hypothesis the variables have a Gaussian (Normal) distribution,

Xn - N(;un’o-r?)' (8.2)

At a given n, using the data from all M channels, the Maximum Likelihood
Estimates (MLEs) £, and &’ of the (true) mean and variance 4, and o, are

computed using,

™M 8.3)

and

Az_i = 2_y(n)2
O, = M {mz_oxm(n) M }

(8.4)
Under the null hypothesis the following relationships hold:
~ 2
If Z, =M M then Z, ~ 72(L);
“n (8.5)
&2
If Z,=M—2 then Z, ~ »*(M -1).
On (8.6)
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Under the null hypothesis it is also assumed that the noise statistics of the sensor
outputs are zero mean and time invariant so the parameters of each distribution are

the same:
=ty == Hy =u=0 (8.7)
and

0,=0,=,..,=0y =0". (8.9)

Using the reproductive property of zzvariables, the following aggregate test

statistics can be formed and analyzed:

NZ then Z, ~ z*(N);
"0 (8.9)

If Z, =

Q|§

If Z, :—NZ then Z, ~ y*(N(M -1)).
O n=0 (8.10)

So far it has been assumed that the true variance (2 o) of the (white) noise is
known. This is an inconvenient and unnecessary assumption. It can be eliminated by
dividing (8.9) by (8.10); furthermore, if the numerator and the denominator are

scaled by the inverse of their respective degrees of freedom, i.e.

_ Z,IN
" Z, [(N(M -1)

(8.11)

Then a variable distributed according to Snedecor’s F distribution results; that is,

after substituting (8.9) and (8.10) into, (8.11):
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Zy =(M-1)

n=0
N-1 !

n=0 (8.12)
with

Z,, ~F(N,N(M -1)). (8.13)
Substituting the expressions for f, and 65, given in (8.13) and (8.14)

respectively, into (8.12) yields,

1 N-1 5

— n

Y nZ:;y( )
M-1N-1

3 3 x, (ny? —;2 y(n)?

m=0 n=0

Z,=(M-1

(8.14)

The Z,, test statistic is the ratio of two sum-of-squares quantities (8.12). If the

square of the estimated mean (numerator) is regarded as the (delay-and-sum) signal

power, and the variance (denominator) the noise power, then it may be convenient to
convert Z,, into a Signal-to-Noise Ratio (SNR) in dB Images may then be formed

using many closely-spaced beams, and presented to an operator for visual inspection.

The hypothesis test is performed with the null hypothesis as below.

H,: There is no signal present.

The statistical similarity algorithm steps are in Algorithm 2:

Input; X is the input signal, x=1,...,N .

Step 1: Calculate the differences of the signals as following equation.
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X=(X1—X%) (8.15)
Step 2: Calculate de similarity measurement value with the equation (8.14).

The Z,, test statistic is F distributed under the null hypothesis. The F distribution
value is determined based on the degrees of freedom. The degrees of freedom

parameters depend on the data window length (N) and the signal count which is the

number of the inserted signal. The determined F value is used as threshold. If the
calculated Z,, value bigger than the thereshold, the null hypothesis is rejected and

the signals are assumed to be present.
8.2 K-Nearest Neighbor Algorithm

The k-nearest neighbor (Hart et al., 2001) algorithm is a supervised classification
method. Classes are determined before classification and characterized by sets of
elements. The number of elements can be different among classes. This algorithm

has been used to associate the sample to the class containing more neighbors.

It has been successfully used in many applications, such as pattern recognition
(Mahmoud & Al-Khatib, 2011) and machine learning task (Malek et al., 2012). The

classification method involves a two-step process:

1. Constructing a classification model from data,

2. Applying the model to test examples

The k-nearest neighbors of a given example z refer to the k points that are closest
to z. The data point is classified based on the class labels of its neighbors. In the case
where the neighbors have more than one label, the data point is assigned to the

majority class of its nearest neighbors.
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The choosing of the right value of key is important. If key is too small, than the
nearest-neighbor classifier may be susceptible to over feeting because of noise in the
training data. On the other hand, if k is too large, the nearest-neighbor classifier may
miss classify the test instance because its list of nearest neighbors may include data

points that are located far away from its neighborhood.

The nearest-neighbor classification method is given in algorithm 3. The algorithm
computes the distance between each test example and all the training examples to
determine its nearest-neighbor list. Such computation can be costly if the number of
training examples is large. The aim of this method is to find the nearest neighbors of

a test example (Figure 8.1).

Figure 8.1 K-nearest neighbor

Algorithm 3 Steps:
Step 1: Let k be the number of nearest neighbors and D be the set of training
examples.

Step 2: For each test example z =(x',y") do,

Step3: Computed = (x', x), the distance between z and ever example, (x,y)eD.
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Step 4: Select D, € D, the set of k closest training examples to z.

Step 4: Classified the test examples based on the majority class of its nearest

neighbors.
y' = argmax Z(xi,y,)eDz I(v=y,) (8.16)

End for.

8.3 C x K-Nearest Neighbor Algorithm

In the artificial intelligence and other fields, the fundamental problem is
recognition of patterns. Nearest neighbor (NN) algorithms are simple but effective
methods for performing general and non-parametric classification (Cover & Hart,
1967). The empirical evaluation to data in various fields shows that NN is robust and
has asymptotic error rate that is at most twice the Bayes error rate (Cover & Hart,
1967).

The problem is that predicting the class label of an unknown sample according to
given known class labels which can be separated into C classes (Gao & Wang,
2007).

CxK- nearest neighbor algorithm is described as follows:
Algorihtm 4:

Inputs: Unclassified data of trainingX, the set of labeled test samples

X ={X,%,,.... X.}, the priori known classes j=1,2,...,C, the number of elements of

each class Cj asn;.

Output: Classified data of training X.
Step 1: Set K neighbors, 1<K <n.

Step 2: Calculate the distance between X and x{ according to the K number for each

class Cj .
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d(x,x7) =[x —x° (8.17)

Where [*] is the Euclidean norm.
Step 3: For each classC;,

If i <K then assign x{ to the set of K-nearest neighbors inC;

Else

Delete the farthest sample the set of K-nearest neighbors and assign x; to the set

of K-nearest neighbors inC;.
Step 4: Calculate the average distance d ; of X from K-nearest neighbors of classC;

Step 5: Mark the class with minimum distance d, = minj X; and classify classify X

in class r of the last minimum found.
8.4 k-fold Cross Validation Method

The Cross-Validation is a statistical method and used for the model evaluation.
The basic form of the cross-validation is k-fold cross-validation. Also, the k-fold
cross-validation is used for the performance estimation of the classifier. In k-fold
cross-validation method, the data is partitioned to the k segments or folds. The one
of these folds is used to train a model and the remaining folds are used as learning.
Afterwards, in each iteration different fold of the dataset is held out for validations
while the others k-1 folds are used for learning. The cross-validation process is then
repeated k times, with each of the k subsamples used only once as the validation
data.

The average of the results measured from the k steps is calculated to produce a
one estimation. The each observation is used for both training and validation, and
each observation only used for validation. This is the benefit of the k- fold cross-
validation method.

In the literature, 10-fold cross-validation is commonly used (Zhang et al.,

2015). The 10-fold cross-validation is the standard way of measuring the error rate of
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a learning scheme on a particular dataset; for reliable results, 10 times 10-fold cross-
validation (Figure 8.2).

! }Testing set

1-fold Training set

1 }Tesling set
Feature <

2-fold Training set ——»| Model |—— Results
vectors  ———m|

10-fold

2 Training set

}Testing set

Figure 8.2 10-fold cross validation.

The two aim of the cross-validation is as follows:
1) The measuring performance estimation of the validation model.
2) The comparison of the performance between two or more different algorithms

and determination of the best algorithm.

The above two goals are highly related, since the second goal is automatically

achieved if one knows the accurate estimates of performance.
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CHAPTER NINE
EXPERIMENTAL RESULTS

In this section, the data validation is made before the experiments. For this
purpose, the statistical signal similarity is measured both within tasks and within
sections. After the data validation process, the extracted features are classified by the

soft computing methods.

9.1 Data Validation

The statistical similarity measure as Zp, statistics has been used for the each
session and session means. Each sesion consists of 24 trainings and in each training
the cognitive task images are shown for 1 sec. The statistical similarity between each
mental task is measured for sessions. Also, the similarity within the sessions means
for the same tasks has been measured. We expect that all tasks in each session is
different from each other and the same tasks are similar for all sessions. The aim of

this process, providing the consistancy of the subject’s data.

As it is seen from the measurement of the statistical similarity between mental
tasks for all three sessions, Z,, statistics values of mental tasks are above or below
from the threshold value which is F distiribution value. But there is no channel which
is all similarity values below the thereshold (Table 9.1-9.3). Therefore, all channels

are used for the further works.

58



Table 9.1 The statistical similarity between mental tasks for session 1.

Session 1
Comparison

AF3 F7 F3 FC5 T7 P7 O1 O2 P8 T8 F4 F8 AF4

of Mental
Tasks

Down-Blank

Left-Blank 1.29
Left-Down 1.12

Left-Right | 151 |1.21(1.40| 2.09
Right-Blank | 2.31(1.09|1.48| 1.30

1.07 1.09

1.08]1.35| 1.35

1.181.16 1.16|1.17| 1.17

Right-Down 1.14(1.01] 1.01]1.30|1.02| 1.02

Up-Blank 1.07| 1.69|1.16|1.16| 1.16

Up-Down 1.05

Up-Left 1.02
.

Up-Right

1.13|1.16| 1.16

Table 9.2 The statistical similarity between mental tasks for session 2.

ompa 0 A N O O fe g 6 / g AF/
0

Down-Blank | 1.18|1.15 1.38]1.19 1.12|1.54

Left-Blank | 1.40|1.16 1.02|1.52 1.02 1.16| 1.46
Left-Down 1.12 1.07 1.39(1.53|1.13]|1.39| 1.41]1.13|1.16| 1.16
Left-Right | 151/1.21|1.40| 2.09 1.03]1.02 1.05|1.08|1.35| 1.35
Right-Blank | 1.00 1.05(1.42 1.17- 1.05
Right-Down 1.21]1.43 1.14/1.01] 1.01|1.30]1.02| 1.02
Up-Blank | 105 1.41| 1.18|1.10|1.12|1.07 1.08|1.44|1.03| 1.05
Up-Down | 102 |1.47 1.90|1.67 | 1.39 1.35|1.55|1.08| 1.42|1.05|1.25| 1.25
Up-Left 1.13]1.03 1.10 1.33 1.27]1.29 1.51|1.47| 1.47
Up-Right 1.15 1.12|1.41|1.52 1.19| 1.07
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Table 9.3 The statistical similarity between mental tasks for session 3.

Session 3
Comparison

of Mental
Tasks

AF3 F7 F3 FC5| T7 P7 O1 ©O2 P8 T8  FC6 F4 F8 AF4

0.77 \ 1.08]1.60| 1.60
167 1.26 | 1.27 1.04| 1.04

1.56 1.23] 1.34

\ 1.17

116

1.09 ‘
Up-Right ) ‘

Down-Blank | 135| 1.15| 1.03 | 1.63
Left-Blank 1.08| 1.19| 1.31
Left-Down

Left-Right 1.22| 1.19
Right-Blank | o .94

1.24| 1.67| 1.40 117

Right-Down | 1 35
Up-Blank

According to the similarity results, each cognitive task is similar in all sessions
(Table 9.4). Also, each cognitive task are different from each other in session
avearege (Table 9.5). This shows that the handled signals are consistant for the

following analysis.

Table 9.4 The statistical similarity of same mental tasks between sessions.

AF3 F7 F3 FC5 T7 P7 Ol 02 P8 T8 FC6 F4 AF4
128 | 1.19| 1.07
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Table 9.5 The statistical similarity of different mental tasks for session’s average.

g;vr\]lﬂ- 0.41 | 0.82 | 0.663 | 0.247 | 0.361 | 0.81 [0.8510.231| 0.865 | 0.116 | 0.092 [ 0.146 |0.225]0.134
II;IE;tr;k 09 | 0.11 |6.288]0.081| 0.3 |0.867 | 0.753]0.207 | 0.296 | 0.249 | 0.025 | 0.846 | 0.057 | 0.625
Igf)f\f\;n 016 | 1.5 |0.839( 0.16 | 0.9 [0.892]0.2820.733 | 0.164 | 0.571 | 0.516 | 0.002 | 0.259 | 0.198
Left-Right | 0.28 ] 0.012 | 0.19 | 0.173| 0.4 |0.094 | 0.47 | 0.165| 0.306 | 0.031 | 0.707 | 0.518 | 0.984 | 0.353
E:grr:tk- 0.06 | 0.18 | 0.27 | 0.045| 0.18 | 0.051 [ 0.01 | 0.25 | 0.435 | 0.265 | 0.162 [ 0.25 | 0.269 | 0.645
BI(?VCL 0.69 | 0.72 | 0.757 | 0.98 | 0.771]0.014 [ 0.25 | 0.055| 0.204 | 0.068 | 0.405 | 0.182 | 0.051 | 0.04

Up-Blank | 0.002 | 1.22 | 0.16 | 1.317 | 0.158 | 0.56 1 10.001| 0.007 | 0.195 | 32.87 | 0.0025 | 1.216 | 0.132

Up-Down | 0.221 | 0.002 | 0.264 | 0.436 | 0.165 [ 0.012 | 0.716 [ 0.439 | 1.129 | 0.029 | 0.018 | 0.556 | 2.706 | 0.142

Up-Left 0.14 | 0.67 [ 0.475| 0.61 | 1.297]0.153 | 1.69 | 0.498 | 0.762 | 0.071 | 0.105 | 0.149 | 0.727 | 1.9

Up-Right | 025 | 1.37 | 0.3 | 0.65 |0.127 | 19.3 | 0.029 | 3.907 | 2.008 | 0.113 | 0.979 | 0.469 | 0.538 | 0.051

In this thesis dissertation, we work an online data. Before the online test the
subject is taken to training phase. Training phase is consist of sessions and each
session has 24 trainings. The subject has attended to three sessions in different days.

Then the statistical similarity measure as Z,, statistics of sessions’ mean signal has

been used for the determining the better channel which has the distinctive features of
mental tasks. We expect that all tasks in sessions’ mean signal is different from each

other.

The subject has trained with the visual stimuli. In Sycamore training screen, when
plus image appeared the subject knowing that the training will start. When the
arrows appear, the subject both follows the arrows and thinks the control right hand
according to the arrow rotation. In the blank screen, the subject thinks nothing. There
is the break for two second among trainings. In a section, trainings are repeated 24

times.
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The plot of the all channels for the mental tasks is as follows (Figure 9.1).
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Figure 9.1 The signals of mental tasks for the electrode locations of Subjectl.

The understanding of the difference of the mental tasks is very difficult from the

above plot. Therefore, the features are classified by the soft computing algorithms.

The data validation is supplied by the measuring EEG band power frequency

analysis.

In the thinking and focusing situations, the power of the beta signals is

higher than the other specific band powers (delta, theta, alpha, gamma). The alpha

signals are active when the relaxing mode. Therefore, the data set is valuable when

the power of the beta signals are higher than the alpha signals. It is show that the

participant is focusing and thinking.

According to the beta and alpha signals power of the Subject 1 (Figure 9.2),

the almost all power of the beta signals are higher than the power of the alpha

signals. The difference of the power of beta and alpha signals are shows that the

Subject 1 is thinking and concentrating in the training. The both maximum power

of the signals have changed in a range 30-70 dB.

62

150



LEFT RIGHT

W Beta
B Alpha

AF3 F7 F3 F(5 T7 P7 01 02 P8 T8 F(6 F4 FE AR AF3 F7 F3 FC5 T7 P7 OL 02 P8 T8 F(6 F4 F& AF4

N Beta

B Alpha

up DOWN

W Beta

B Alpha

AF3 F7 F3 FC5 T7 P7 Ol 02 P8 T8 FC6 F4 F8 AF4 AF3 F7 F3 FC5 T7 P7 Ol 02 P8 T8 FC6 F4 F8 AF4

M Beta

B Alpha

W Beta
B Alpha

AF3 F7 F3 FC5 T7 P7T 01 02 P8 T8 F6 F4 FB AR

Figure 9.2 The power of the Beta and Alpha signals of Subject1.

In Figure 9.3 the beta and alpha signals power of the Subject 2, the almost all
power of the beta signals are higher than the power of the alpha signals. There is a
little difference between the power of beta and alpha signals. This is show that the
Subject 2 is not full thinking and concentrating in the training. The both maximum

power of the signals have changed in a range 30-60 dB.
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Figure 9.3 The power of the Beta and Alpha signals of Subject2.

In Figure 9.4, the beta and alpha signals power of the Subject 3, the almost all

power of the beta signals are higher than the power of the alpha signals. The

difference of the power of beta and alpha signals are shows that the Subject 3 is

thinking and concentrating in the training. The both maximum power of the signals

have changed in a range 30-70 dB.

64



LEFT

AF3 F7 F3 FC3 T7 P7 01 02 P8

T8 FCe F4

M Beta

B Alpha

F8 AR

AR FT R RS T7

P70l 02 P8 T8 FC6 F4 FB AR

W Beta

B Alpha

up

AF3 F7 F3 FC3 T7 P7 01 02 P8 T8 FC6 F4

W Betz

F8 AF4

B Alpha 30 1

DOWN

——— ||
e s e e o

AF3 7 F3 PGS T7

]|
meS——— ||

P70l 02 P8 TE FC6 F4 F& AF4

N eta
B Alpha

AF3 F7 R OFGS T7

P7 0L 02 P8

T8 FCe F4 FB AF4

W Beta

B Alpha

Figure 9.4 The power of the Beta and Alpha signals of Subject3.

In Figure 9.5 the beta and alpha signals power of the Subject 4, the almost all
power of the beta signals are higher than the power of the alpha signals. There is a
little difference between the power of beta and alpha signals. This is show that the
Subject 4 is not full thinking and concentrating in the training. The both maximum
power of the signals have changed in a range 20-50 dB. The range of the powers is

lower than the other subjects.
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Figure 9.5 The power of the Beta and Alpha signals of Subject4.

In Figure 9.6, the beta and alpha signals power of the Subject 5, the almost all

power of the beta signals are higher than the power of the alpha signals. There is a
little difference between the power of beta and alpha signals. This is show that the
Subject 4 is not full thinking and concentrating in the training. The both maximum
power of the signals have changed in a range 30-60 dB.
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Figure 9.6 The power of the Beta and Alpha signals of Subject5.

9.2 Offline and Online Results

The electroencephalography (EEG) signals is non-linear, and non-stationary
signals. Therefore, traditional methods of EEG analysis may overlook many
properties of signals. Similarly, fractal analysis of EEG signals has shown scaling

behaviors that may not be consistent with pure monofractal processes.

In this study, we have used MFDFA of 2" order fitting polynomial, varied ¢ in

the range —5 to 5 with 101 discrete intervals and scaling 128. The 2" order local
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Hurst exponents (H,), probability distribution of local Hurst exponents (P,) and

multifractal spectrum of local Hurst components (D, ) of the electrode locations are

calculated. The probability distribution of Hurst exponents is used as feature vector.
The Hurst exponent values of all mental tasks are in the interval of U = H < (0.5,

This indicates a long-range dependence.

The EEG data acquired from the Emotiv Epoc Neuro Headset for five subjects: 2
female and 3 male, age between 20 and 50, 2 left handed and 3 right handed, and all
of them healthy people. Subjects have been seat on the chair with open eyes and they
are relaxed. They both think of the movement of the right hand on left, right, up and
down directions and also watch the images in the training screen. Each training data
is collected for 24 times and the dimension of the each cognitive task is consists of 1

sec data for 14 channels, therefore 24x14x128 dimension data is captured.

In the preprocessing phase, the dataset is normalized by the min-max

normalization method. The distribution of the Hurst exponent P, , calculated by the
MFDFA method, is handled from the normalized dataset. The P, values are
calculated separately for each cognitive task. Also, P, values calculated for the raw

dataset. The P, values calculated from normalized dataset give better results;

therefore normalized data is used for MFDFA calculations in further works.

The collected time-domain signal converted to the frequency-domain space with
the fast Fourier transform method. Before the Fourier transform, the preprocessing
methods are applied to the raw dataset. The Hanning window method, median
filtering and high pass filtering methods are applied to the raw data respectively.
Also, normalization preprocessing method is applied before the above preprocessing
methods but the results has not found good. Therefore, normalization preprocessing

phase is not used in the beta signal extraction process.
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Midrange Beta and Beta signals are taken as features. The Midrange Beta signal is
between 16 and 20 Hz. It is active in thinking and aware of the self and surrounding.
The Beta signal is between 12 and 30 Hz.

The midrange beta and beta frequency bands, and Py, values are classified by the
K-nearest neighbor and CxK-nearest neighbor algorithms. The offline classification

results are handled for the 10-fold cross validation.

The Py distribution of the Hurst exponent calculated by the MFDFA method,
Midrange Beta and Beta signals are obtained and they are used as features. The
classification of these features is made subject based and each cognitive task based.
The 10% of the data set is randomly chosen as test set, and the rest of the data is

chosen as train set in the 10-fold cross validation method.

The K-nearest classification results are shown in Table 9.6 for subject 1.
According to the K-nearest neighbor classification results of the Py, values for each
cognitive task, no movement, left and right cognitive tasks are the highest accuracy

rates. The mean accuracy rate of Py, feature classification is 93%.

In the midrange beta classification results, left, up, and no movement cognitive
tasks are the highest accuracy rates. The mean accuracy rate of midrange beta feature

is equals to 85%.
Finally, in the beta feature classification results, no movement, up, right and down
cognitive tasks have better accuracy rates. The mean accuracy rate of the beta feature

is found as 92%.

From this table, we can say that the Py, values as a feature is very good rather than

the midrange beta and beta features for subject 1.
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Table 9.6 The accuracy rates of K — nearest neighbor algorithm for subject 1.

Subject 1 K — Nearest Neighbor Classification Method
Task Ph Midrange Beta Beta
Left 93% 89% 80%
Right 89% 82% 93%
Up 89% 87% 97%
Down 93% 83% 93%
No Movement 99% 85% 99%
Average 93% 85% 92%

Table 9.7 gives the K-nearest classification results of subject 2 for Ph, midrange
beta and beta features. According to the K-nearest neighbor classification results of
the Py, values for each cognitive task, no movement, left and down cognitive tasks are
the highest accuracy rates. The mean accuracy rate of P, feature classification is
89%.

In the midrange beta classification results, up, right and no movement cognitive
tasks are the highest accuracy rates. The mean accuracy rate of midrange beta feature

is equals to 84%.

Finally, in the beta feature classification results, no movement and left cognitive
tasks have better accuracy rates. The mean accuracy rate of the beta feature is found
as 84%. From this table, we can say that the Ph values as a feature is very good

rather than the midrange beta and beta features for subject 2.

Table 9.7 The accuracy rates of K — nearest neighbor algorithm for subject 2.

Subject 2 K — Nearest Neighbor Classification

Task Ph Midrange Beta Beta
Left 91% 76% 84%
Right 86% 88% 83%
Up 83% 97% 82%
Down 89% 73% 83%
No Movement 97% 85% 86%
Average 89% 84% 84%

Table 9.8 gives the K-nearest classification results of subject 3 for Ph, midrange
beta and beta features. According to the K-nearest neighbor classification results of

70




the Py, values for each cognitive task, almost the entire cognitive task has very good

results. The mean accuracy rate of Py, feature classification is 95%.

In the midrange beta classification results, no movement, right and left cognitive
tasks are the highest accuracy rates. The mean accuracy rate of midrange beta feature

is equals to 80%.

Finally, in the beta feature classification results, no movement and right cognitive
tasks have better accuracy rates. The mean accuracy rate of the beta feature is found
as 82%. From this table, we can say that the Ph values as a feature is very good

rather than the midrange beta and beta features for subject 3.

Table 9.8 The accuracy rates of K — nearest neighbor algorithm for subject 3.

Subject 3 K — Nearest Neighbor Classification

Task Ph Midrange Beta Beta
Left 93% 82% 78%
Right 91% 83% 83%
Up 95% 73% 81%
Down 95% 76% 80%
No Movement 100% 85% 86%
Average 95% 80% 82%

The K-nearest classification results are shown in Table 9.9 for subject 4.
According to the K-nearest neighbor classification results of the Py, values for each
cognitive task, all left signals are correctly classified, and also up, down and no
movement signals are the high accuracy rates. The mean accuracy rate of Py, feature

classification is 91%.

In the midrange beta classification results, up, left and down cognitive tasks are
the highest accuracy rates. The mean accuracy rate of midrange beta feature is equals
to 82%.

Finally, in the beta feature classification results, no movement, right and up

cognitive tasks have better accuracy rates. The mean accuracy rate of the beta feature
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Is found as 84%. From this table, we can say that the Ph values as a feature is very

good rather than the midrange beta and beta features for subject 4.

Table 9.9 The accuracy rates of K — nearest neighbor algorithm for subject 4.

Subject 4 K — Nearest Neighbor Classification

Task Ph Midrange Beta Beta
Left 100% 84% 80%
Right 82% 78% 87%
Up 93% 85% 84%
Down 91% 81% 82%
No Movement 91% 80% 88%
Average 91% 82% 84%

Table 9.10 gives the K-nearest classification results of subject 5 for Py, midrange
beta and beta features. According to the K-nearest neighbor classification results of
the Py, values for each cognitive task, almost the entire cognitive task has very good

results. The mean accuracy rate of Py, feature classification is 92%.

In the midrange beta classification results, up, left and down cognitive tasks are
the highest accuracy rates. The mean accuracy rate of midrange beta feature is equals
to 82%.

Finally, in the beta feature classification results, down, up and no movement
cognitive tasks have better accuracy rates. The mean accuracy rate of the beta feature
is found as 84%. From this table, we can say that the Py, values as a feature is very

good rather than the midrange beta and beta features for subject 5.

Table 9.10 The accuracy rates of K — nearest neighbor algorithm for subject 5.

Subject 5 K — Nearest Neighbor Classification

Task Ph Midrange Beta Beta
Left 93% 84% 82%
Right 91% 78% 80%
Up 91% 85% 84%
Down 85% 81% 90%
No Movement 99% 80% 83%
Average 92% 82% 84%
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Also, the new classification method CxK — nearest neighbor algorithm, proposed
by the Ulutagay & Nasibov, 2016 is used for the classification of the P, midrange

beta and beta features.

The CxK-nearest classification results are shown in Table 9.11 for subject 1.
According to the CxK-nearest neighbor classification results of the Py, values for each
cognitive task is very good. The entire cognitive task has over 90% accuracy rates.

The mean accuracy rate of Py, feature classification is 95%.

In the midrange beta classification results, left, no movement and up cognitive
tasks are the highest accuracy rates. The mean accuracy rate of midrange beta feature

is equals to 86%.

Finally, in the beta feature classification results, all cognitive tasks have high
accuracy rates. The mean accuracy rate of the beta feature is found as 94%. From this
table, we can say that the Py, values as a feature has higher accuracy rates than the
midrange beta and beta features for subject 1.

Table 9.11 The accuracy rates of CxK — nearest neighbor algorithm for subject 1.

Subject 1 C x K — Nearest Neighbor Classification

Task Ph Midrange Beta Beta
Left 95% 91% 88%
Right 93% 83% 95%
Up 93% 85% 97%
Down 94% 84% 94%
No Movement 99% 88% 95%
Average 95% 86% 94%

The CxK-nearest classification results are shown in Table 9.12 for subject 2.
According to the CxK -nearest neighbor classification results of the Py values for
each cognitive task is very good. The almost entire cognitive task has over 90%
accuracy rates. The mean accuracy rate of Py, feature classification is 91%.
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In the midrange beta classification results, no movement, up and right cognitive
tasks are the highest accuracy rates. The mean accuracy rate of midrange beta feature

is equals to 90%.

Finally, in the beta feature classification results, all cognitive tasks have high
accuracy rates. The mean accuracy rate of the beta feature is found as 89%. From this
table, we can say that the Py, values as a feature has better accuracy rates than the

midrange beta and beta features for subject 2.

Table 9.12 The accuracy rates of CxK — nearest neighbor algorithm for subject 2.

Subject 2 C x K — Nearest Neighbor Classification

Task Ph Midrange Beta Beta
Left 95% 82% 88%
Right 90% 93% 90%
Up 86% 95% 86%
Down 91% 84% 87%
No Movement 94% 95% 94%
Average 91% 90% 89%

The CxK-nearest classification results are shown in Table 9.13 for subject 3.
According to the CxK-nearest neighbor classification results of the Py, values for each
cognitive task is very good. The entire cognitive task has over 90% accuracy rates.
The mean accuracy rate of Py, feature classification is 96%.

In the midrange beta classification results, no movement, left and right cognitive
tasks are the highest accuracy rates. The mean accuracy rate of midrange beta feature

is equals to 90%.

Finally, in the beta feature classification results, right, no movement and up
cognitive tasks have higher accuracy rates. The mean accuracy rate of the beta
feature is found as 84%. From this table, we can say that the Ph values as a feature is

very good rather than the midrange beta and beta features for subject 3.
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Table 9.13 The accuracy rates of CxK — nearest neighbor algorithm for subject 3.

Subject 3 C x K — Nearest Neighbor Classification

Task Ph Midrange Beta Beta
Left 95% 93% 83%
Right 93% 92% 88%
Up 97% 85% 84%
Down 98% 88% 81%
No Movement 99% 94% 85%
Average 96% 90% 84%

The CxK-nearest classification results are shown in Table 9.14 for subject 4.
According to the CxK-nearest neighbor classification results of the Py, values for each
cognitive task is very good. The almost entire cognitive task has over 90% accuracy

rates. The mean accuracy rate of Py, feature classification is 94%.

In the midrange beta classification results, left, down and no movement cognitive
tasks are the highest accuracy rates. The mean accuracy rate of midrange beta feature
is equals to 89%.

Finally, in the beta feature classification results, no movement and right cognitive
tasks have high accuracy rates. The mean accuracy rate of the beta feature is found as
89%. From this table, we can say that the Py, values as a feature is very good rather

than the midrange beta and beta features for subject 4.

Table 9.14 The accuracy rates of CxK — nearest neighbor algorithm for subject 4.

Subject 4 C x K — Nearest Neighbor Classification

Task Ph Midrange Beta Beta
Left 98% 93% 87%
Right 88% 85% 92%
Up 95% 88% 88%
Down 93% 91% 86%
No Movement 94% 90% 93%
Average 94% 89% 89%

The CxK-nearest classification results are shown in Table 9.15 for subject 5.

According to the CxK-nearest neighbor classification results of the Py, values for each
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cognitive task is very good. The entire cognitive task has over 90% accuracy rates.

The mean accuracy rate of Py, feature classification is 92%.

In the midrange beta classification results, no movement, up and left cognitive

tasks are the highest accuracy rates. The mean accuracy rate of midrange beta feature

is equals to 89%.

Finally, in the beta feature classification results, all cognitive tasks have high

accuracy rates. The mean accuracy rate of the beta feature is found as 89%. From this

table, we can say that the Ph values as a feature is very good rather than the midrange

beta and beta features for subject 5.

Table 9.15 The accuracy rates of CxK — nearest neighbor algorithm for subject 5.

Subject 5 C x K — Nearest Neighbor Classification

Task Ph Midrange Beta Beta
Left 96% 90% 89%
Right 94% 88% 92%
Up 91% 91% 85%
Down 90% 87% 94%
No Movement 97% 92% 90%
Average 92% 89% 89%

The overall average classification accuracy for each cognitive task has been

calculated for k-nearest neighbor and CxK-nearest neighbor algorithm (Table 9.16).

The comparison of the classification accuracies:

The classification accuracies change between 94% and %96 for left EEG
signals.

The classification accuracies change between 88% and %92 for right EEG
signals.

The classification accuracies change between 90% and %92 for up EEG
signals.

The classification accuracies change between 90% and %93 for down EEG
signals.

The classification accuracies change between 97% and %97 for no movement
EEG signals.
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Table 9.16 The overall accuracy rates of CxK and K — nearest neighbor algorithm for all cognitive

tasks.
K-NN CxK-NN

Ph MidrangeBeta | Beta Ph MidrangeBeta | Beta
Left 94% 83% 81% 96% 90% 87%
Right 88% 82% 85% 92% 88% 91%
Up 90% 85% 85% 92% 89% 88%
Down 90% 79% 86% 93% 87% 88%
No Movement | 97% 83% 88% 97% 92% 91%

The Table 9.17 shows that the K-nearest neighbor classification accuracy rates of
all subjects. Subject 1 and Subject 3 have Silva Mind Control education. The Silva
mind control method has been founded and developed in 1960 through
parapsychologist Jose Silva to help his children do better in school and increase their
chance of success in life. This method is dynamic meditation technique. It consists of
mental training method. The Silva Method teaches people control their subconscious

and negative programming.

Therefore subject 1 and subject 3 has better in cognitive tests. The P, feature has

higher accuracy rate (92%) than midrange beta (82%) and beta signal (85%) features

for overall accuracy.

According to the overall average classification results of K-nearest neighbor

algorithm:

- The classification accuracy rate is ranges between 89% and 95% for P,.

- The classification accuracy rate is ranges between 80% and 85% for
midrange beta.

- The classification accuracy rate is ranges between 82% and 92% for beta.
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Table 9.17 The accuracy rates of K — nearest neighbor algorithm for all subjects.

K — Nearest Neighbor Algorithm

MFDFA - Ph Midrange Beta Beta
Subject 1 93% 85% 92%
Subject 2 89% 84% 84%
Subject 3 95% 80% 82%
Subject 4 91% 82% 84%
Subject 5 90% 82% 83%
Average 92% 82% 85%

In the CxK — nearest neighbor algorithm results for all subjects is displayed in

Table 9.18. Subject 1 and subject 3 have higher accuracy results for P, features

again. According to the total classification accuracy results of subjects, P, has higher

accuracy rate (94%) than midrange beta (8%) and beta signal (89%) features.

According to the overall avarege classification results of CxK-nearest neighbor

algorithm:

- The classification accuracy rate is ranges between 92% and 95% for P, .

- The classification accuracy rate is ranges between 86% and 90% for
midrange beta.

- The classification accuracy rate is ranges between 84% and 94% for beta.

Table 9.18 The accuracy rates of CxK — nearest neighbor algorithm for all subjects.

C x K—Nearest Neighbor Algorithm

MFDFA - Ph | Midrange Beta Beta
Subject 1 95% 86% 94%
Subject 2 92% 90% 89%
Subject 3 96% 88% 84%
Subject 4 94% 89% 89%
Subject 5 92% 89% 89%
Average 94% 88% 89%

When the k-nearest neighbor algorithm and CxK-nearest neighbor algorithm

results are compared:
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- The k-nearest neighbor classification accuracy rate is 92% while CxK-nearest
neighbor classification rate is 94% for P, signals.

- The k-nearest neighbor classification accuracy rate is 82% while CxK-nearest
neighbor classification rate is 88% for P, signals.

- The k-nearest neighbor classification accuracy rate is 85% while CxK-nearest

neighbor classification rate is 89% for P, signals.

Because of the sensitivity to the dimensionality of the feature vector, K-nearest
neighbor algorithm is not very common in BCI research (Borisoff et al., 2004).
However, it has been efficient with low dimension feature vectors. Also, k-nearest
neighbor algorithm has been used in a multiclass environment (Schlogl et al., 2005)
and applied to cursor movements on a vertical axis, when classifying slow cortical

potentials (Kayikcioglu & Aydemir, 2010).

The CxK-nearest neighbor algorithm has given better results in our offline

analysis. This classification method is newly used method in EEG classification.

In the online analysis, subjects seat on the chair and relax before the online test.
The test is beginning with the “Start” button and the online test is ended with the
“Stop” button (Figure 6.16). The 1 sec data is captured in online analysis. The
features are extracted from this 1sec with dimension 128 data and then classified by
the C-KNN and K-NN algorithms. The session’s average data set (128 x 5 = 640 for

five class) taken in the training phase is used as test set and the online captured data

is used as training set. The P, values are used as feature in online analysis.

The classification accuracy is measured by true classification number of the
training count. In the online analysis, the overall average classification results of K-

nearest neighbor algorithm:

- The overall classification accuracy rate is 78% for left movement. The almost

all subject has the same and good succes rate for the left command.
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- The overall classification accuracy rate is 64% for right movement. The
subject 1 and subject 5 have higher performance than the others. The overall
accuracy rate of the right movement command has the lowest accuracy rate.
The K-NN classifier is not good for right movement command as the
remaining commands.

- The overall classification accuracy rate is 74% for up movement. The subject
3 and subject 4 have better accuracy performance.

- The overall classification accuracy rate is 74% for down movement.

- The overall classification accuracy rate is 78% for no movement movement.

The better accuracy rates have been found for the left and no movement
commands (78%). Then down and up accuracy rates follow them (74%). The

accuracy rate of the right command has the lowest classification accuracy (64%).

Table 9.19 The accuracy rates of the online analysis for K-NN classifier.

K-NN
Left | Right Up Down No Movemet
Subject 1 80% 70% 70% 80% 80%
Subject 2 80% 60% 70% 80% 80%
Subject 3 70% 60% 80% 80% 80%
Subject 4 80% 60% 80% 70% 70%
Subject 5 80% 70% 70% 60% 80%
Average 78% | 64% | 74% 74% 78%

The online classification results for CxK - nearest neighbor algorithm of all

subjects is displayed in Table 9.20.

According to the overall avarege classification results of CxK-nearest neighbor

algorithm:

- The overall classification accuracy rate is 84% for left movement.

- The overall classification accuracy rate is 70% for right movement.
- The overall classification accuracy rate is 74% for up movement.

- The overall classification accuracy rate is 78% for down movement.

- The overall classification accuracy rate is 86% for blank movement.
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Table 9.20 The accuracy rates of the online analysis for CxK-NN classifier.

CxK-NN
Left | Right Up Down No Movement
Subject 1 80% 60% 70% 70% 90%
Subject 2 80% 70% 60% 70% 80%
Subject 3 80% 70% 80% 90% 90%
Subject 4 90% 70% 90% 80% 80%
Subject 5 90% 80% 70% 80% 90%
Average 84% | 70% | 74% 78% 86%

In the literature, there are many BCI applications. The results are compared with
the other works. Bashar & Bhuiyan, (2016) is applied the k-nearest neighbor
algorithm to the BCI competition Il Graz motor imagery EEG data set. It has 140
trials each for left and right hand. In their work, the classes of the neighbors are
weighted according to the similarity of each neighbor where the similarity index is
the cosine value between two sample vectors of Euclidean distance. They have found
the accuracy rates 86% and 96% for left and right cognitive task classification.

The many classifiers are used on the BCI competition Graz motor imagery data
set. The classifiers are probabilistic neural network (PNN), support vector machine
(SVM), generalized regression neural network (GRNN), adaptive neuro fuzzy
inference system (ANFIS), discriminant analysis (DA), Naive Bayes (Sakthivel et
al., 2014) and k-nearest neighbor algorithm. The below methods have been classified

two cognitive tasks left and right (Table 9.21).
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Table 9.21 The accuracy rates of the different classifiers in the literature.

Methods Proposed by Classifier Classification
Accuracy (%)
(MEMD + STFT) Bashar and Bhuiyan, | KNN 90.71
2016
DWT and AR model | Xuetal., 2008 LDA 90
Multiple auto Wang et al., 2014 LVQ 90
correlation
Neural 90
network
Higher order features | Zhou et al., 2008 LDA 89.29
Morlet wavelet Lemm et al., 2004 Bayes 89.29
quadratic
Wavelet based Xu et al., 2009 FSVM 87.86
features
MLP 84.29
BGN 83.57
Discriminative area Hsu, 2015 FHNN 83.1
selection
AAR Tavakolian et al., Bayes 82.86
2007 quadratic
LDA 65.6
Gaussian 65.4
classifiers
PSD Solhjoo et al.,2004 Mahalanobis 63.1
distance
KNN Hari et al., 2016 75
SVM Hari et al., 2016 72
NB Hari et al., 2016 60
LDA Hari et al., 2016 73
DT Hari et al., 2016 75
Cross Correlation Hari et al., 2016 74

Bhattacharyya et al. (2015) is proposed “Interval type-2 fuzzy logic based
multiclass ANFIS algorithm for real-time EEG based movement control of a robot
arm” study. In this paper, Bhattacharyya et al. (2015) have used the MFDFA method
for feature extraction and then they classify the feature by the methods in Table 9.20.

They, classify 5 cognitive tasks: forward, backward, left, right and no movement.
The classification accuracy rates are displayed in Table 9.22 for offline analysis.
OVO-IT2FLF-ANFIS with 90.93%.

According to the results, the best classifier is
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In our proposed study, K-nearest neighbor algorithm classifies 5 cognitive tasks with
92% and CxK-nearest neighbor algorithm classifies the same tasks with 94%

accuracy rate.

Table 9.22 The offline analysis accuracy rates of the different classifiers of the Bhattacharyya et al.
(2015) method.

Classifier algorithm Accuracy Rate
OVA-IT2FLF-ANFIS 88.91
OVO-IT2FLF-ANFIS 90.93
OVA-LDA 78.57
OVO-LDA 79.43
OVA-KNN 82.67
OVO-KNN 82.13
OVA-SVM 85.16
OVO-SVM 86.25
OVA-NB 85.75
OVO-NB 85.75

The online classification results of proposed method by Bhattacharyya et al.
(2015) are shown in Table 9.23.

Table 9.23 The online analysis accuracy rates of the different classifiers of the Bhattacharyya et al.
(2015) method.

Subject ID | OVA-IT2FLF-ANFIS (%) OVO-IT2FLF-ANFIS (%)

1 75 80

2 60 80

3 50 60

4 60 65

5 60 70

6 65 65

7 70 75

8 70 70

9 60 65

10 70 65

11 70 75
Mean 64.5 70
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CHAPTER TEN
CONCLUSION

In this thesis EEG signals are acquired and classified using k-nearest neighbor and
CxK- nearest neighbor algorithms. The training, analysis and online test applications
are developed with C# language. The developed program Sycamore BCI is
consolidated with accepted programs, MATLAB and WEKA. The MATLAB

program is used for extracting P, values and brain wave signals, and preprocessing.

The WEKA program is used for the K-NN classification. Also, these processes are

developed in Sycamore BCI program.

The data set is captured with our program from the Emotiv Epoc Neuroheadset.
Up, down, left, right and no movement features are extracted and they are used for
classification. The classification performance is measured by the classification
accuracy rate. The different BCI applications are developed for obtaining a higher
performance. Any device can be controlled using EEG data with the successful

classification application.

To compare the accuracy rates of the classifications, participants of different ages
and gender are selected and the data set acquired from the different participants is
classified. The performance of classification has varied due to the subjects. The

effect of the user in BCI experience is discussed in detail.

The factor analysis is used to prevent the curse of dimensionality for each
cognitive task. But the experimented factors are not same for left, right, up, down
and no movement cognitive tasks. We need to use all the channels because
intersection of the cognitive tasks factors corresponds to all the channels. The

extracted features also decrease the dimension of the dataset.
The k-nearest neighbor algorithm is used for the classification of the EEG signals,

but the CxK-nearest neighbor algorithm is not used before for the classification of

the cognitive tasks. This method gives a more acceptable accuracy rate than the k-
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nearest neighbor algorithm. In recent years, there is a serious competition between
many methods which are developed for the BCI analysis. There is also a competition
between the successful algorithms. We suppose a new method to the BCI literature.
We successfully develop a software application which can perform data acquisition,

online and offline analysis simultaneously.

The multi-class classification of cognitive EEG signal is done and the
classification results are found acceptable. Also, the recently developed method, CxK

nearest neighbor algorithm could be used for the multi-class classification of the

cognitive EEG signal. The classification is done for the P, midrange beta and beta

features. The P, features with the CxK-NN algorithm classification gives much

better results (94%) compared with the literature. Finally, The CxK-NN method
improves the accuracy rate of motor imagery EEG signal classification.

It seems every improvement in BCI studies may rapidly present a better life

quality for mankind.
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