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USING KALMAN FILTERING METHODS FOR IMAGE RESTORATION 

 

ABSTRACT 
 

 

A common problem in image processing is the restoration of an image from a given 

corrupted version. This problem is generally known as image restoration. There are 

various approaches to solve this problem like using restoration models or linear filtering. 

In this thesis, one of the linear filtering methods named Kalman filtering has been used 

for image restoration. For this purpose, two different image restoration scenarios have 

been defined and two different versions of Kalman filtering methods have been used for 

each of the scenarios. In the first part of the thesis, a simple scalar Kalman filter method 

is used for an image that contains multiple frames. In the second part of the thesis, a    

two-dimensional (2-D) full-plane block Kalman filter is used to restore noisy images. 

Simulation results are compared with some of the other restoration techniques.  

 

Keywords: Image restoration, linear dynamical systems, state-space model, Kalman 

filtering, scalar Kalman filtering, full-plane block Kalman filtering. 
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KALMAN SÜZGECİ KULLANARAK İMGE ONARIMI 

 

ÖZ 

 

 

Görüntü işlemede karşılaşılan yaygın problemlerden biri verilen bozuk bir görüntüyü 

kullanarak onarım yapmaktır. Bu problem genelde görüntü onarımı olarak adlandırılır. 

Görüntü onarımı problemini çözmek için onarım modellerinin ya da doğrusal 

süzgeçlerin kullanılması gibi bir çok yaklaşım vardır. Bu tezde, görüntü onarımı için 

doğrusal süzgeç yöntemlerinden biri olan Kalman süzgeci yöntemi kullanılmıştır. Bu 

amaçla, iki farklı görüntü onarım problemi tanımlanmış ve her bir problem için farklı 

Kalman süzgeci yöntemi kullanılmıştır. Tezin birinci bölümünde, çoklu çerçeveden 

oluşan bir görüntü için basit bir skalar Kalman süzgeci yöntemi uygulanmıştır. Tezin 

ikinci bölümünde ise gürültülü görüntüler üzerinde iki boyutlu tam düzlemli blok 

Kalman süzgeci yöntemi kullanılmıştır. Benzetim sonuçları görüntü onarımında 

kullanılan diğer yöntemlerden bir kaçıyla karşılaştırılmıştır. 

 

Anahtar sözcükler: Görüntü onarımı, doğrusal dinamik sistemler, durum-uzay 

modeli, Kalman süzgeci, skalar Kalman süzgeci, tam düzlemli blok Kalman süzgeci.  
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CHAPTER ONE 

INTRODUCTION 
  

1.1 Image Restoration  
 

Image restoration aims to recover an image that has been corrupted or degraded. 

Therefore, all the improved techniques used in image restoration are used to 

eliminate or minimize the corruptions or degradations on images. Most of the time, 

image restoration is confused with the image enhancement. Although, there are 

common areas, image enhancement is largely a subjective process as compared to the 

image restoration. In fact, image enhancement techniques are mostly used to get a 

better visualization, extracting of image features or to manipulate an image in order 

to apply a predefined process. On the other hand, image restoration is used for 

eliminating degradations. Image restoration problems can be quantified precisely, 

whereas enhancement criteria are difficult to represent mathematically. 

Consequently, restoration techniques often depend only on the class or ensemble 

properties of a data set, whereas image enhancement techniques are much more 

image dependent. 

 

Degradations may be caused by physical phenomena or the problems of sensing 

environment such as random atmospheric turbulence, sensor noise, camera misfocus, 

relative object-camera motion. Therefore, optics, electro-optics and electronics have 

a connection with the image restoration, because of their relation with the image 

acquiring processes. Basically, the first problem in image restoration is to model the 

optic and physical environment considering the image acquiring process. After 

finding an efficient representative model of the process, the inverse filtering method 

is applied in order to recover the original image. Consequently, the effectiveness of 

image restoration filters depends on the extent and accuracy of the knowledge of the 

degradation process as well as on the filter design criterion (Jain, 1988). 

 

There are a lot of techniques and models used in image restoration. Any of these 

techniques can be applied to the images for image restoration by considering their 
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effectiveness, restrictions and complexities. Figure 1.1 shows widely used models in 

image restoration and the techniques according to whether it is a linear filtering 

method or not.  

 

 

 

 

 
•  Image formation models 

•  Detector and recorder 

•  Noise models 

•  Sampled observation models 

• Inverse/pseudoinverse filter 

• Wiener filter 

• FIR filter 

• Generalized Wiener filter 

• Spline 

interpolation/smoothing 

• Least squares and SVD 

methods 

• Recursive (Kalman) filter 

• Semirecursive filter 

• Speckle noise reduction 

• Maximum entropy 

restoration 

• Bayesian methods 

• Coordinate transformation 

and geometric correction 

• Blind deconvolution 

• Extrapolation and super-

resolution 

Figure 1.1 Hierarchy of image restoration. 

 

As can be seen from Figure 1.1, Kalman filter is one of the available techniques 

used in image restoration. Although, it is considered as a linear filtering method, it 

can also be applied to nonlinear image models by using Extended Kalman filter 

formulation.  

 

1.2 Introduction to Kalman Filter 

 

Kalman filter is simply an optimal recursive data processing algorithm. There are 

many ways of defining optimal, dependent upon the criteria chosen to evaluate 

performance. One aspect of this optimality is that Kalman filter incorporates all 

information that can be provided to it. It processes all available measurements, 

regardless of their precision, to estimate the current value of the variables of interest, 

with use of knowledge of the process and measurement device dynamics, the 

Restoration models Linear filtering Other Methods 

Image Restoration 
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statistical description of the process noise, measurement errors, and uncertainty of 

dynamic models, and any available information about initial conditions of the 

variables of interest.  

 

The word recursive in the previous description means that, unlike certain data 

processing concepts, Kalman filter does not require all previous data to be kept in 

storage and reprocessed every time a new measurement is taken. This will be of vital 

importance to the practically of filter implementation. The filter is actually a data 

processing algorithm. Despite the typical connotation of a filter as a black box 

containing electrical networks, the fact is that in most practical applications, the filter 

is just a computer program in a central processor. As such, it inherently incorporates 

discrete-time measurement samples rather than continuous-time inputs (Maybeck, 

1979). 

 

The Figure 1.2 depicts a typical situation in which Kalman filter could be used 

advantageously. A system of some sort is driven by some known controls, and 

measuring devices provide the value of certain pertinent quantities. Knowledge of 

these system inputs and outputs is all that is explicitly available from the physical 

system for estimation purposes.  

 

The parameters called as controls and observed measurements shown in Figure 

1.2 are known variables. The other parameters, system error sources and 

measurement error sources, can be measured during the process and updated at each 

step. One of the important points of Kalman filter application is to model the system 

box. At this point, modeling of linear systems will be explained by using state-space 

model. 

 

1.3 Discrete-Time Linear Systems 

 

A linear system is a mathematical model of a system based on the use of a linear 

operator. Linear systems typically exhibit features and properties that are much 

simpler than the general, nonlinear case. As a mathematical abstraction or 

http://en.wikipedia.org/wiki/System
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idealization, linear systems find important applications in automatic control theory, 

signal processing, and telecommunications. 

 

 
Figure 1.2 Typical Kalman filter application. 

 

Typical differential equations of linear time-invariant systems are well adapted to 

analysis using the Laplace transform in the continuous case, and the Z-transform in 

the discrete case (especially in computer implementations). 

 

The output of any discrete-time linear system is related to the input by the time-

varying convolution sum; 

[ ] [ , ] [ ]
k

y n h n k x k
∞

=−∞
= ∑ ,                                                                                         (1.1) 

or equivalently, 

[ ] [ , ] [ ]
m

y n h n n m x n m
∞

=−∞

= − −∑ ,                                                                            (1.2) 

where k n m= − represents the time lag between the stimulus at time m and the 

response at time n. 

 System error 
sources

System 

Measurement 
error sources 

Measuring 
devices 

System state 
(desired but 
not known) 

Kalman 
filter 

Observed 
measurements 

Optimal 
estimate of 
system state

Controls 
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1.4 State Space Model of Discrete Time Linear Systems 
 

In control engineering, a state space representation is a mathematical model of a 

physical system as a set of input, output and state variables related by first-order 

differential equations. To abstract from the number of inputs, outputs and states, the 

variables are expressed as vectors and the differential and algebraic equations are 

written in matrix form (the last one can be done when the dynamical system is linear 

and time-invariant). The state space representation (also known as the "time-domain 

approach") provides a convenient and compact way to model and analyze systems 

with multiple inputs and outputs. 

 

The internal state variables are the smallest possible subset of system variables 

that can represent the entire state of the system at any given time. State variables 

must be linearly independent; a state variable cannot be a linear combination of other 

state variables. The minimum number of state variables required to represent a given 

system, n, is usually equal to the order of the system's defining differential equation. 

If the system is represented in transfer function form, the minimum number of state 

variables is equal to the order of the transfer function's denominator after it has been 

reduced to a proper fraction. It is important to understand that converting a state 

space realization to a transfer function form may lose some internal information 

about the system, and may provide a description of a system which is stable, when 

the state-space realization is unstable at certain points.  

 

The most general discrete-time state space representation of a linear system with p 

inputs, q outputs and n state variables is written in the following form; 

Discrete time-invariant:  

( 1) ( ) ( )x k Ax k Bu k+ = + ,                                                                                     (1.3) 

( ) ( ) ( )y k Cx k Du k= + ,                                                                                          (1.4) 

 

Discrete time-variant:  

( 1) ( ) ( ) ( ) ( )x k A k x k B k u k+ = + ,                                                                          (1.5) 

( ) ( ) ( ) ( ) ( )y k C k x k D k u k= + .                                                                              (1.6) 
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CHAPTER TWO 

KALMAN FILTER THEORY 
 

2.1 Estimation Problem 
 

The problem we consider in this section is about estimating the state of a linear 

stochastic system by using measurements that are linear functions of the state. 

 

We suppose that stochastic systems can be represented by plant and measurement 

discrete-time models as shown in Equations 2.1-2.4 in Table 2.1, with dimensions of 

the vector and matrix quantities shown in Table 2.2. The symbol ( )k lΔ − stands for 

Kronecker delta function (Grewal & Andrews, 2001).  

 

Table 2.1 Linear plant and measurement models. 

Model Discrete Time Equation Number 

Plant 1 1 1k k k kx x w− − −= Φ +  (2.1) 

Measurement  k k k kz H x v= +  (2.2) 

Plant Noise 
( ) 0

( ) ( )
k

T
k i k

E w

E w w k i Q

=

= Δ −
 (2.3) 

Observation Noise 
( ) 0

( ) ( )
k

T
k i k

E v

E v v k i R

=

= Δ −
 (2.4) 

  

Table 2.2 Dimensions of vectors and matrices in linear model. 

Symbol Dimension Symbol Dimension 

,x w  1n×  ,QΦ  n n×  

,z v  1×  H  n×  

R  ×  Δ  scalar  
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The measurement and plant noise kv and kw are assumed to be zero-mean Gaussian 

processes, and the initial value of the state 0x  is a Gaussian random variable with 

known mean, 0x  , and known error covariance matrix, 0P .  

 

The objective will be to find an estimate of the n state vector kx  represented by a 

linear function of the measurements, 1, , kz z… , that minimize the weighted mean-

square error;  

ˆ ˆ[ ] [ ]T
k k k kE x x M x x− −                                                                                       (2.5) 

where E represents the expected value and M is any symmetric nonnegative-definite 

weighting matrix. 

 

The parameters , , ,H QΦ and R appearing in Equations 2.1-2.4 are called transition 

matrix, observation matrix, process noise covariance matrix, and measurement noise 

covariance matrix, respectively. 

 

2.2 Kalman Filter  

 
2.2.1 Estimator in Linear Form 

 

Suppose that a measurement has been made at time kt and that the information it 

provides is to be applied in updating the estimate of the state x  of a stochastic 

system at time kt . It is assumed that the measurement is linearly related to the state 

by an equation of the form k k kz Hx v= + , where H is the measurement sensitivity 

matrix or the observation matrix and kv is the measurement noise.  

 

The optimal linear estimate is equivalent to the general (nonlinear) optimal 

estimator if the variables x and z are jointly Gaussian. Therefore, it suffices to seek an 

updated estimate ˆ( )x + based on the observation kz that is a linear function of the a 

priori estimate and the measurement z ; 
1ˆ ˆ( ) ( )k k k k kx K x K z+ = − + ,                                                                                       (2.6) 
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where ˆ ( )kx − is the a priori estimate of kx  and ˆ ( )kx +  is the a posteriori value of the 

estimate.  

 

2.2.2 Optimization Problem 

 

The matrices 1
kK and kK are as yet unknown. We seek those values of 

1
kK and kK such that the new estimate ˆ ( )kx + will satisfy the orthogonality principle. 

This orthogonality condition can be written in the form  

[ ]ˆ ( ) 0T
k k iE x x z− + = ,    1,2, ,i k= … ,                                                               (2.7) 

[ ]ˆ ( ) 0T
k k kE x x z− + = .                                                                                         (2.8) 

where E   shows the expectation. 

 

If one substitutes the formula for kx  from Equation 2.1 (in Table 2.1) and 

for ˆ ( )kx + from Equation 2.6 into Equation 2.7, then one will observe from Equations 

2.1 and 2.2 that data 1, , kz z… do not involve the noise term kw . Therefore, because 

the random sequences kw and kv are uncorrelated, it follows that ( ) 0T
k iE w z =  for 

1 i k≤ ≤ .  

 

Using this result, one can obtain the following relation, 

1
1 1 1 ˆ ( ) 0T

k k k k k k k iE x w K x K z z− − −⎡ ⎤Φ + − − − =⎣ ⎦ ,    1,2, , 1i k= −… .                   (2.9) 

 

Because k k kz Hx v= + , Equation 2.9 can be rewritten as 

1
1 1 ˆ ( ) 0T

k k k k k k k k k iE x K x K H x K v z− −⎡ ⎤Φ − − − − =⎣ ⎦ .                                         (2.10) 

 

We also know that Equations 2.7 and 2.8 hold at the previous step, that is, 

[ ]1 1ˆ ( ) 0T
k k iE x x z− −− + = ,    1,2, , 1i k= −…        

and 
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0T
k iE v z = ,    1,2, , 1i k= −… . 

 

Equation 2.10 can be reduced to the form  
1

1 1 1 1ˆ ( ) 0T T T T
k k i k k i k k k k i k k iE x z K E x z K H E x z K E v z− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤Φ − − − Φ − =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ , 

1
1 1 1 1ˆ ( ) 0T T T

k k i k k i k k k k iE x z K E x z K H E x z− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤Φ − − − Φ =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ , 

( )1 1 ˆ ( ) 0T
k k k k k k k k k iE x K H x K x K x x z⎡ ⎤− − − − − =⎣ ⎦ , 

1 0T
k k k k iI K K H E x z⎡ ⎤ ⎡ ⎤− − =⎣ ⎦ ⎣ ⎦ .                                                                          (2.11) 

 

Equation 2.11 can be satisfied for any given kx if 

1
k k kK I K H= − .                                                                                                    (2.12) 

 

Clearly, this choice of 1
kK causes Equation 2.6 to satisfy a portion of the condition 

given by Equation 2.7. The choice of 1
kK is such that Equation 2.8 is satisfied. 

 

Let the errors be defined as 

ˆ( ) ( )k k kx x x+ + − ,                                                                                              (2.13) 

ˆ( ) ( )k k kx x x− − − ,                                                                                              (2.14) 

ˆ( ) ( )k k k k k kz z z H x z− − = − − .                                                                          (2.15) 

where vectors ( )kx + and ( )kx − are the estimation errors after and before updates, 

respectively. 

 

The parameter ˆkx  depends linearly on kx , which depends linearly on kz . 

Therefore, from Equation 2.8, we have  

[ ]ˆ ( ) ( ) 0T
k k kE x x z− + − = ,                                                                                     (2.16) 

and also (by subtracting Equation 2.8 from Equation 2.16) 

[ ]ˆ ( ) 0T
k k kE x x z− + = .                                                                                          (2.17) 
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Substitute for kx  , ˆ ( )kx + and kz from Equations 2.1, 2.6, and 2.15, respectively. 

Then, we have 

[ ]1
1 1 1 ˆ( ) ( ) 0T

k k k k k k k k kE x w K K z H x z− − −⎡ ⎤Φ + − − − − − =⎣ ⎦ . 

 

However, by system structure  

ˆ ( ) 0T T
k k k kE w z E w x⎡ ⎤ ⎡ ⎤= + =⎣ ⎦ ⎣ ⎦ , 

[ ]1
1 1 ˆ ˆ( ) ( ) 0T

k k k k k k k k kE x K x K z H x z− −⎡ ⎤Φ − − − − − =⎣ ⎦ . 

 

Substituting for 1
kK , kz ,and ( )kx − and using the fact that ( ) 0T

k kE x v⎡ ⎤− =⎣ ⎦ , this 

last result can be modified as follows; 

[ ]1 1 ˆ ˆ ˆ0 ( ) ( ) ( ) T
k k k k k k k k k k k k k k k kE x x K H x K H x K v H x H x v− −⎡ ⎤= Φ − − + − − − − − −⎣ ⎦

( ) ( ) [ ]ˆ ˆ( ) ( ) ( ) T
k k k k k k k k k k kE x x K H x x K v H x v⎡ ⎤= − − − − − − − −⎣ ⎦  

[ ]( ) ( ) ( ) T
k k k k k k k k kE x K H x K v H x v⎡ ⎤= − − + − − − −⎣ ⎦ . 

 

By definition, the a priori covariance (the error covariance matrix before the 

update) is  

( ) ( ) ( )T
k k kP E x x⎡ ⎤− = − −⎣ ⎦ . 

 

It satisfies the equation 

( ) 0T
k k k k k kI K H P H K R⎡ ⎤− − − =⎣ ⎦ , 

and therefore the gain can be expressed as 
1

( ) ( )T T
k k k k k k kK P H H P H R

−
⎡ ⎤= − − +⎣ ⎦ ,                                                                (2.18) 

which is the solution we seek for the gain as a function of the a priori covariance. 
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One can derive a similar formula for the a posteriori covariance (the error 

covariance matrix after update), which is defined as 

( ) ( ) ( )T
k k kP E x x⎡ ⎤+ = + +⎣ ⎦ .                                                                                    (2.19) 

 

By substituting Equation 2.12 into Equation 2.6, one obtains the equations  

( )ˆ ˆ( ) ( )k k k k k kx I K H x K z+ = − − + , 

[ ]ˆ ˆ ˆ( ) ( ) ( )k k k k k kx x K z H x+ = − + − − .                                                                   (2.20) 

 

Subtract kx from both sides of the latter equation and substitute kz  with Equation 

2.2 to obtain the equations 

ˆ ˆ ˆ( ) ( ) ( )k k k k k k k k k k k kx x x K H x K v K H x x+ − = − + + − − − , 

( ) ( ) ( )k k k k k k kx x K H x K v+ = − − − + .                                                                   (2.21) 

 

By substituting Equation 2.21 into Equation 2.19 and noting 

that ( ) 0T
k kE x v⎡ ⎤− =⎣ ⎦ , one obtains 

( ) ( ) ( )
TT T T

k k k k k k k k k k kP E I K H x x I K H K v v K⎡ ⎤ ⎡ ⎤+ = − − − − +⎣ ⎦ ⎣ ⎦  

( ) ( )( )
T T

k k k k k k k kI K H P I K H K R K= − − − + .                                                    (2.22) 

 

By substituting for kK from Equation 2.18, Equation 2.22 can be put in the 

following forms; 

( ) ( ) ( ) ( ) ( )T T T T
k k k k k k k k k k k k kP P K H P P H K K H P H K+ = − − − − − + −  

      T
k k kK R K+  

 

          

( ) ( )k k kI K H P= − − .                                                                                            (2.23) 

 

( ) ( )( ) ( ) ( )T T T T
k k k k k k k k k k k kI K H P P H K K H P H R K= − − − − + − +

( ) T
k kP H−
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The last of which is the one most often used in computation. This implements the 

effect that conditioning on the measurement has on the covariance matrix of 

estimation uncertainty.  

 

Error covariance extrapolation models the effects of time on the covariance 

matrix of estimation uncertainty, which is reflected in the a priori values of the 

covariance and state estimates 

( ) ( ) ( )T
k k kP E x x⎡ ⎤− = − −⎣ ⎦ , 

1 1ˆ ˆ( ) ( )k k kx x− −− = Φ + ,                                                                                            (2.24) 

respectively. Subtract kx from both sides of the last equation to obtain the equations 

1 1ˆ ˆ( ) ( )k k k k kx x x x− −− − = Φ + − , 

[ ]1 1 1 1ˆ( ) ( )k k k k kx x x w− − − −− = Φ + − − , 

1 1 1( )k k kx w− − −= Φ + −  

for the propagation of the estimation error, x . Postmultiply it by ( )T
kx −  (on both 

sides of the equation) and take the expected values. Using the fact that 

1 1 0T
k kE x w− −⎡ ⎤ =⎣ ⎦ , we obtain the results 

( ) ( ) ( )T
k k kP E x x⎡ ⎤− = − −⎣ ⎦  

1 1 1 1 1 1( ) ( )T T T
k k k k k kE x x E w w− − − − − −⎡ ⎤ ⎡ ⎤= Φ + + Φ +⎣ ⎦ ⎣ ⎦  

1 1 1 1( ) T
k k k kP Q− − − −= Φ + Φ + ,                                                                                    (2.25) 

which gives the a priori value of the covariance matrix of estimation uncertainty as a 

function of the previous a posteriori value.  

 

2.3 Summary of Equations for the Discrete-Time Kalman Estimator 
 

The equations derived in the previous section are summarized in Table 2.3. The 

relation of the filter to the system is illustrated in the block diagram of Figure 2.1. 

The basic steps of the computational procedure for the discrete-time Kalman 

estimator are as follows; 
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1. Compute ( )kP − using 1( )kP − + , 1k−Φ , and 1kQ − , 

2. Compute kK using ( )kP − (computed in step 1), kH , and kR , 

3. Compute ( )kP + using kK (computed in step 2) and ( )kP − (from step 1), 

4. Compute successive values of ˆ ( )kx + recursively using the computed 

values of kK (from step 3), the given initial estimate 0x̂  , and the input 

data kz . 

 

Step 4 of the Kalman filter implementation (computation of ˆ ( )kx + ) can be 

implemented only for state vector propagation where simulator or real data sets are 

available. 

 

In the design trade-offs, the covariance matrix update (steps 1 and 3) should be 

checked for symmetry and positive definiteness. Failure to attain either condition is a 

sign that something is wrong – either a program “bug” or an ill-conditioned problem. 

In order to overcome ill-conditioning, another equivalent expression for ( )kP + , 

called the “Joseph form” as shown in Equation 2.22 and given below, 

( ) ( )
T T

k k k k k k k k kP I K H P I K H K R K⎡ ⎤ ⎡ ⎤+ = − − − +⎣ ⎦ ⎣ ⎦ ,  

can also be adopted. 

 

Note that the right-hand side of the above equation is the summation of two 

symmetric matrices. The first of these is positive definite and the second is 

nonnegative definite, thereby making ( )kP + a positive definite matrix. 

 

There are many other forms for kK and ( )kP + that might not be as useful for 

robust computation. It can be shown that state vector update, Kalman gain, and error 

covariance equations represent an asymptotically stable system, and therefore, the 

estimate of state ˆkx  becomes independent of the initial estimate 0x̂  , 0P as k is 

increased (Grewal & Andrews, 2001).   
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+ 
Σ 

 Delay 

+ 

1kw −
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1kx −

1k−Φ

 Σ 
+

+
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Σ  Σ 

Delay  

+
+kz kz

kK

kH
ˆ ( )kx − 1ˆ ( )kx − +

ˆ ( )kx +

1k−Φ

Table 2.3 Discrete-time Kalman filter equations. 

1 1 1k k k kx x w− − −= Φ +  
System dynamic model ( )0,k kw QΝ∼  

k k k kz H x v= +  
Measurement model ( )0,k kv RΝ∼  

[ ]0 0ˆE x x=  
Initial conditions 

0 0 0
TE x x P⎡ ⎤ =⎣ ⎦  

Independence assumption 0T
k jE w v⎡ ⎤ =⎣ ⎦  for all k and j 

State estimate extrapolation 1 1ˆ ˆ( ) ( )k k kx x− −− = Φ +  

Error covariance extrapolation 1 1 1 1( ) ( ) T
k k k k kP P Q− − − −− = Φ + Φ +  

State estimate observational update [ ]ˆ ˆ ˆ( ) ( ) ( )k k k k k kx x K z H x+ = − + − −  

Error covariance update ( )( ) ( )k k k kP I K H P+ = − −  

Kalman gain matrix 
1

( ) ( )T T
k k k k k k kK P H H P H R

−
⎡ ⎤= − − +⎣ ⎦  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Block diagram of system, measurement model, and discrete-time Kalman filter. 
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CHAPTER THREE 

IMAGE DENOISING VIA KALMAN FILTERING USING MULTIPLE 

FRAMES OF IMAGES 

 

The subject of this chapter is to realize an image denoising algorithm by using one 

dimensional Kalman filter method applied to images that contain multiple frames. 

Since the most important part of the problem is the definition of the state space 

model and Kalman filter equations, it is better to look at how a scalar estimate is 

realized by using Kalman filter.  

  

3.1 Scalar Estimation by Using One Dimensional Kalman Filter 
 

Kalman filter is a multiple-input, multiple-output digital filter that can optimally 

estimate, in real time, the states of a system based on its noisy outputs. These states 

are all the variables needed to completely describe the system behavior as a function 

of time (such as position, velocity, voltage levels, and so forth). In fact, one can think 

of the multiple noisy outputs as a multidimensional signal plus noise, with the system 

states being the desired unknown signals. The Kalman filter then filters the noisy 

measurements to estimate the desired signals. The estimates are statistically optimal 

in the sense that they minimize the mean-square estimation error. This has been 

shown to be a very general criterion in that many other reasonable criteria (the mean 

of any monotonically increasing, symmetric error function such as the absolute 

value) would yield the same estimator.  

 

Figure 3.1 illustrates the Kalman filter algorithm itself. Because the state (or 

signal) is typically a vector of scalar random variables (rather than a single variable), 

the state uncertainty estimate is a covariance matrix. Each diagonal term of the 

matrix is the variance of a scalar random variable (a description of its uncertainty). 

The matrix's off-diagonal terms are the covariances that describe any correlation 

between pairs of variables. 
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The multiple measurements (at each time point) are also vectors that a 

recursive algorithm processes sequentially in time. This means that the algorithm 

iteratively repeats itself for each new measurement vector, using only values stored 

from the previous cycle. This procedure distinguishes itself from batch-processing 

algorithms, which must save all past measurements. 

 

 

 
Figure 3.1 The cycle of a recursive Kalman filter. 

 

 

Starting with an initial predicted state estimate (as shown in Figure 3.1) and its 

associated covariance obtained from past information, the filter calculates the 

weights to be used when combining this estimate with the first measurement vector 

to obtain an updated "best" estimate. If the measurement noise covariance is much 

smaller than that of the predicted state estimate, the measurement's weight will be 

high and the predicted state estimate's will be low.  

 

Because the filter calculates an updated state estimate using the new 

measurement, the state estimate covariance must also be changed to reflect the 

information just added, resulting in a reduced uncertainty. The updated state 

estimates and their associated covariances form the Kalman filter outputs.  

 

Finally, to prepare for the next measurement vector, the filter must project the 

updated state estimate and its associated covariance to the next measurement time. 

The actual system state vector is assumed to change with time according to a 

deterministic linear transformation plus an independent random noise. Therefore, the 
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predicted state estimate follows only the deterministic transformation, because the 

actual noise value is unknown. The covariance prediction accounts for both, because 

the random noise's uncertainty is known. Therefore, the prediction uncertainty will 

increase, as the state estimate prediction cannot account for the added random noise. 

This last step completes the Kalman filter's cycle.  

 

One can see that as the measurement vectors are recursively processed, the state 

estimate's uncertainty should generally decrease (if all states are observable) because 

of the accumulated information from the measurements. However, because 

information is lost (or uncertainty increases) in the prediction step, the uncertainty 

will reach a steady state when the amount of uncertainty increase in the prediction 

step is balanced by the uncertainty decrease in the update step. If no random noise 

exists in the actual model when the state evolves to the next step, then the uncertainty 

will eventually approach zero. Because the state estimate uncertainty changes with 

time, so too will the weights. Generally speaking, the Kalman filter is a digital filter 

with time-varying gains.  

 

If the state of a system is constant, the Kalman filter reduces to a sequential form 

of deterministic, classical least squares with a weight matrix equal to the inverse of 

the measurement noise covariance matrix. In other words, the Kalman filter is 

essentially a recursive solution of the least-squares problem (Levy, 2002). 

 

A scalar estimation process like a DC voltage estimation or resistor value 

estimation can be given as a simple example of using Kalman filter. In this case, the 

scalar value does not change with time, but the measured values of scalar change 

because of the process and measurement noises.  

 

Then, the linear state space model can be defined as the following equation set 

1 1 1k k k kx x w− − −= Φ + ,    

( )0,k kw QΝ∼ , 

k k k kz H x v= + , 
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( )0,k kv RΝ∼ . 

where 1k kH I−Φ = = ( I  shows the identity matrix), kw is the process noise, kv  is the 

measurement noise, and 0,1,k = … . 

 

If the unknown parameters and initial conditions are defined properly, the 

recursive Kalman filter equation set starts to work and the result of the filter becomes 

closer to the actual output value of the system at each time step.  

 

Let the unknown scalar parameter represent a DC voltage with a 5V value. Also, 

let the process noise and measurement noise covariances be given as 

0.01kQ = and 0.1kR = . Finally, the initial estimate of the state and the error 

covariance matrix are determined as 1 0x− = and 0 ( ) 1P + = . 

 

A simple software algorithm is written with MATLAB to realize such a problem. 

First of all, the state space model is defined and the noisy measurements are realized 

by adding process and measurement noises to the actual value. Then, the Kalman 

filter algorithm is executed and its outputs are compared with the actual value. Figure 

3.2 shows the output signal of the Kalman filter.  
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Figure 3.2 The comparison of the actual signal (shown as      ), the measured signal (shown as ) and 

the estimated signal (shown as        ). 

 

Figure 3.3 shows the Kalman gain and the error variance with respect to iteration 

number. 

 
Figure 3.3 Kalman gain and the error variance.  
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As shown in Figure 3.2, the actual signal is constant and the measured value 

differs according to the noise covariance parameters. The output of the filter becomes 

closer to the actual value at about 10th iteration. Then, the error variance and the 

Kalman gain become stable.  

 

3.2 Denoising of Multiple Frame Image 

 

In this part, the problem of denoising images with multiple frames will be defined 

and it will be shown how the solution of the problem can be realized by using one 

dimensional Kalman filter method explained in the previous section.  

 

First of all, the term “frame” represents images taken at different times 

consecutively with different noise realizations. If the content of the image does not 

change quickly and the images are taken fast enough, then one can get the same 

image with different noise realizations. As a result, even if the pixel values of the 

obtained noisy images are not equal to each other, original image is the same. The 

position of a pixel and the process of taking images to form frames are given in 

Figure 3.4 and Figure 3.5, respectively. 

 

 

 

   

 

 
 
 
 
 
  
 

Figure 3.4 The position of a pixel at (m,n). The size of the image is MxN. 
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Figure 3.5 The process of forming frames by taking images consecutively. 

 

The process of image taking starts at time 1t  and goes on until time Lt . This means 

that L frames are taken between times 1t  and Lt . 

 

The important isssue at this point is that how can one dimensional Kalman filter 

can be applied for an image. Naturally, an image is a two dimensional spatial 

representation in most applications. But, 2D to 1D conversion should be realized to 

be able to apply 1D Kalman filter method. For this purpose, various methods are 

suggested like scanning the image in horizontal and vertical directions. In our case, it 

is known that the deniosed images should be equal to each other. Therefore, the pixel 

values of the same spatial positions –at the same horizontal and vertical coordinates- 

of each frame should have the same values. By using this fact, the following equation 

set can be written for an image of size MxN; 

( , , ) ( , , ) ( , , )x m n k Ax m n k Bw m n k= + ,                                                                 (3.1) 

( , , ) ( , , ) ( , , )z m n k Cx m n k v m n k= +                                                                       (3.2) 

where 1,2, ,k L= … , 1,2, ,m M= … , and 1,2, ,n N= … . As a result, the problem 

becomes a scalar estimation of specific coordinates.  

 

M 

N 

t1 
t2 

tL 

t3 
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If a specific pixel value is wanted to be estimated, the formulation can be 

rearranged. For example, for m a=  and n b= the formulation becomes, 

( , , ) ( , , ) ( , , )x a b k Ax a b k Bw a b k= + ,                                                                    (3.3) 

( , , ) ( , , ) ( , , )z a b k Cx a b k v a b k= + ,                                                                        (3.4) 

where 1 a M≤ ≤ and1 b N≤ ≤ . 

 

Since the pixel positions are constant, the following formulation can be written, 

( ) ( ) ( )x k Ax k Bw k= + ,                                                                                          (3.5) 

( ) ( ) ( )z k Cx k v k= + .                                                                                              (3.6) 

 

Therefore, the problem becomes an estimation of one dimensional constant signal 

for a specific pixel position along the frames taken at different times.  

 

The algorithm for the system defined above is realized in MATLAB environment. 

A grayscale Lena image is used for the experiments with its range changing between 

0 and 1. The value of ‘0’ corresponds to black and the value of ‘1’ corresponds to 

white. The image consists of 256 gray levels.  The results are obtained by changing 

three parameters which are number of frames, process noise and measurement noise. 

At each experiment, the value of one parameter –number of frames, process noise or 

measurement noise- is changed and the others are held constant. The results obtained 

for different number of frames, process and measurement noise values are given in 

Tables 3.1, 3.2 and 3.3, respectively. 

 

PSNR (Peak Signal to Noise Ratio) is used for performance comparison instead of 

SNR. PSNR is most easily defined via the mean squared error (MSE). For two M×N 

monochrome images I and K, with one of them considered as a noisy approximation 

of the other, MSE is defined as, 
1 1

2

0 0

1 ( , ) ( , )
M N

i j

MSE I i j K i j
MN

− −

= =

= −∑ ∑ ,                                                             (3.7) 

 

 

http://en.wikipedia.org/wiki/Mean_squared_error
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Then, PSNR is defined using MSE as, 
2

10 1010log 20logI IMAX MAXPSNR
MSE MSE

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

                                                 (3.8) 

where IMAX is the maximum possible pixel value of the image. Typical PSNR 

value range is between 20 and 40 dB. 

 

Table 3.1 PSNR values of the noisy and estimated images obtained for different number of frames. 

Number of Frames Noisy Image 
(dB) 

Estimated Image 
(dB) 

1 13.894 13.894 

2 13.894 16.409 

3 13.894 17.983 

4 13.894 19.314 

5 13.894 20.221 

10 13.894 23.079 

20 13.894 25.615 

30 13.894 26.830 

40 13.894 27.439 

50 13.894 27.779 

75 13.894 28.063 

100 13.894 28.136 

 

The results in Table 3.1 are obtained by using fixed process and measurement 

noise values. Process and measurement noise variances are taken as 0.05 and 0.0001, 

respectively.  

 

As shown in Table 3.1, PSNR value of the estimated image becomes higher as the 

number of frames increases. This result is parallel to the explanation of the filter 

characteristics in Section 3.1; that is “the result of the filter becomes closer to the 

actual output value of the system at each time step”. Using greater number of frames 

reduces the error covariance and therefore PSNR measurement at the output is 
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improved with more frames. Accordingly, it can also be said that the error covariance 

decreases with more number of frames.  

 

On the other hand, there is a trade-off in this algorithm as is the case in most of 

the sciences. If the used number of frames increases, the processing time of the 

algorithm will be longer. In this case, it can be said that if the processing time of the 

algorithm using only one frame takes T times, the processing time of the algorithm 

using two frames takes 2T times.  

 

The output images of the filter with some of the given parameter values in Table 

3.1 are shown in Figure 3.6. The resulting images show the correspondence of Table 

3.1 and Figure 3.6. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Figure 3.6 (a) Original Image, (b) Noisy Image (PSNR = 13,894 dB), (c) 5L = frames,                          
(d) 10L = frames, (e) 20L = frames, (f) 50L = frames. 
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As can be seen from Figure 3.6, if the number of frames increases, the output 

image becomes clearer and noise free for this image. 

Table 3.2 PSNR values of the noisy and estimated images obtained for different measurement noise 

variances. 

Measurement 
Noise Variance 

Noisy Image 
(dB) 

Estimated Image 
(dB) 

Difference between 
Noisy and 

Estimated Image 
(dB) 

0.2 9.651 19.631 9.980 

0.1 11.573 22.563 10.990 

0.05 13.869 25.650 11.781 

0.025 16.523 28.668 12.145 

0.01 20.207 32.206 11.999 

0.005 23.062 34.300 11.238 

0.0025 25.925 35.842 9.917 

0.001 29.650 37.652 8.002 
 

The results in Table 3.2 are obtained by using fixed number of frames and process 

noise. Number of frames and the process noise variance are defined as 20 and 

0.0001, respectively. 

 

In Table 3.2, PSNR values of the filter output are compared with the measurement 

noise change. It is known that the characteristics of Kalman filter is determined by 

the value of its Kalman gain. If the noise variance gets larger, the filter output is 

closer to the estimated value as determined by the Kalman gain. On the contrary, if 

the noise variance gets smaller, the filter output is closer to the measured values. It 

can easily be seen that the PSNR of the noisy image gets closer to the PSNR of the 

image at the filter output. This result shows that the pixel values of the noisy image 

becomes closer to the pixel values of the image at the output of the filter as the 

measurement noise variance gets smaller. Therefore, the measured values become 

more reliable compared to the estimated values. Another important point is that the 

difference between the noisy and the estimated image gets smaller as the noise 
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variance takes smaller values. The cause of this result is related with the noise level 

of the image. If the noise level is low in an image, PSNR improvement of the filtered 

image takes a value in a smaller range according to an image corrupted with a high 

noise level.  

 

 Table 3.3 PSNR values of the noisy and estimated images obtained for different process noise 

variances. 

Process Noise 
Variance 

Noisy Image 
(dB) 

Estimated Image
(dB) 

Difference between 
Noisy and 

Estimated Image 
(dB) 

0.2 9.060 10.415 1.355 

0.1 10.366 12.521 2.155 

0.05 11.571 14.823 3.252 

0.025 12.528 16.998 4.470 

0.01 13.292 19.520 6.228 

0.005 13.615 21.133 7.518 

0.001 13.872 24.337 10.465 

0.0005 13.884 25.117 11.233 

0.0001 13.869 25.650 11.781 
 

The results in Table 3.3 are obtained by using fixed number of frames and 

measurement noise variance. Number of frames and the measurement noise variance 

are taken as 20 and 0.05, respectively. 

 

The effect of changing the process noise variance on the PSNR value at the output 

can be observed in Table 3.3. As was the case with the measurement noise, the 

output PSNR value improves as the process noise decreases for this image.  

 

Some other image restoration techniques can also be used for solving this 

problem. For example, Wiener filter method and averaging method can be used for 

restoring the noisy image.  
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Wiener filter is a noise filter based on Fourier iteration. Its main advantage is the 

short computational time it takes to find a solution.  

Consider a situation such that there is some underlying, uncorrupted signal u(t) 

that is required to measure. Error occur in the measurement due to imperfection in 

equipments, thus the output signal is corrupted. There are two ways the signal can be 

corrupted. First, the equipment can convolve, or 'smear' the signal. This occurs when 

the equipment doesn't have a perfect, delta function response to the signal. Let s(t) be 

the smear signal and r(t) be the known response that cause the convolution. Then s(t) 

is related to u(t) by, 

( ) ( ) ( )s t r t u dτ τ τ
∞

−∞

= −∫ , 

or, 

( ) ( ) ( )S f R f U f= .                                                                                               (3.9) 

where S , R ,U  are Fourier transform of s , r , and u .  

 

The second source of signal corruption is the unknown background noise n(t). 

Therefore, the measured signal c(t) is a sum of s(t) and n(t). 

 

( ) ( ) ( )c t s t n t= +                                                                                                   (3.10) 

 

To deconvolve s to find u, simply divide S(f) by R(f), i.e. 
( )( )
( )

S fU f
R f

=  in the 

absence of noise n. To deconvolve c where n is present then one need to find an 

optimum filter function ( )tφ , or ( )fΦ , which filters out the noise and gives a signal 

u  by:  

( ) ( )( )
( )

C f fU f
R f
Φ

=                                                                                              (3.11) 

where u  is as close to the original signal as possible.  
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For u  to be similar to u, their differences squared is as close to zero as possible, 

i.e.  

2( ) ( )u t u t dt
∞

−∞

−∫ , 

or 

2
( ) ( )U f U f df

∞

−∞

−∫ .                                                                                          (3.12) 

 

Substituting equation (3.9), (3.10) and (3.11), the Fourier version becomes,  

2 2 2 2 2( ) ( ) 1 ( ) ( ) ( )R f S f f N f f df
∞

− − − − −

−∞

−Φ + Φ∫ .                                     (3.13) 

 

The best filter is one where the above integral is a minimum at every value of f. 

This is when,  
2

2 2

( )
( )

( ) ( )
S f

f
S f N f

Φ =
+

                                                                                   (3.14) 

 

By using the below equation,  
2 2 2( ) ( ) ( )S f N f C f+ ≈                                                                                  (3.15) 

where 2( )C f , 2( )S f  and 2( )N f  are the power spectrum of C, S, and N.  

Therefore,  
2

2

( )
( )

( )
S f

f
C f

Φ ≈ .                                                                                                  (3.16) 

 

On the other hand, averaging method is simpler than Wiener method. By 

considering the formulations between Equation 3.1 and Equation 3.6, averaging 

method can be formulized as, 

1

1ˆ( , ) ( , , )
L

k
x m n x m n k

L =

= ∑                                                                                 (3.17) 

where ˆ( , )x m n  is the estimated image. 
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Some experiments are performed with Wiener filter and the averaging methods 

and their results are tabulated in Table 3.4 and compared with the results of Kalman 

filter method in Figure 3.7.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 3.7 (a) Noisy Image (PSNR = 13,894 dB), (b) Kalman filtered image (L=20 & PSNR = 25.615),       

(c) Wiener filtered image (PSNR = 21.848), (d) Averaging method (L=20 & PSNR = 25.738). 

 

The results in Figure 3.7 are obtained by using 20 frames, and for measurement 

noise variance of 0.05 and process noise variance of 0.0001.  

 

It can be observed from Figure 3.7 that different image restoration methods 

produce different output images. However, the results show that Kalman filtering and 
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averaging methods give similar output images and similar PSNR values for Lena 

image. On the other hand, even if the PSNR value of the Wiener method seems close 

to the other methods, its output image quality is quite low visually, compared to the 

Kalman filtering and averaging methods (see Figure 3.7).  

Table 3.4 PSNR values of the noisy and estimated images using different image restoration 

techniques.  

Number of 
Frame  

Noisy Image 
(dB) 

Kalman 
Estimated 

Image 
(dB) 

Wiener 
Estimated 

Image 
(dB) 

Estimated 
Image with 
Averaging 

Method  
(dB) 

1 13.894 13.894 21.848 13.894 

2 13.894 16.409 21.848 16.858 

3 13.894 17.983 21.848 18.515 

4 13.894 19.314 21.848 19.747 

5 13.894 20.221 21.848 20.591 

10 13.894 23.079 21.848 23.372 

20 13.894 25.615 21.848 25.738 

30 13.894 26.830 21.848 27.011 

40 13.894 27.439 21.848 27.804 

50 13.894 27.779 21.848 28.347 

75 13.894 28.063 21.848 29.270 

100 13.894 28.136 21.848 29.789 
 

The results in Table 3.4 are obtained by using fixed process and measurement 

noises. Process and measurement noise variances are taken as 0.0001 and 0.05, 

respectively. 

 

As can be seen from Table 3.4, all of the methods have their distinct advantages 

within some parameter value ranges for Lena image. If the number of frames is less 

than or equal to 5, then the best way for the restoration is to use Wiener filter 

method. On the other hand, if the number of frames is greater than 5, then Kalman 

filter and averaging methods give better results.  
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Another important point is the processing times. The processing times of the 

algorithms are given in Table 3.5. 

 

Table 3.5 Processing times of Kalman filter, Wiener filter and averaging methods.  

Number of 
Frame  

Kalman 
Estimated Image 

(seconds) 

Wiener 
Estimated Image 

(seconds) 

Estimated Image 
with 

Averaging 
Method  

(seconds) 
1 2 0.031 0.0003 

2 4 0.031 0.0006 

3 6 0.031 0.0010 

4 9 0.031 0.0013 

5 11 0.031 0.0016 

10 21 0.031 0.0032 

20 41 0.031 0.0064 

30 62 0.031 0.0096 

40 83 0.031 0.0128 

50 104 0.031 0.0160 

75 155 0.031 0.0240 

100 207 0.031 0.0320 
 

If three methods are compared according to their processing times, it can be said 

that averaging method has the shortest processing time and Kalman filter method has 

the longest processing time. Naturally, the number of frames affects the processing 

times of Kalman filter and the averaging methods because, more operations are 

performed with more number of frames. Since Wiener filter always uses only one 

frame, the frame number does not affect its processing time.  
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CHAPTER FOUR 

A FULL-PLANE BLOCK KALMAN FILTER FOR IMAGE RESTORATION 

 

In this chapter, a 2-D block Kalman filtering method is used for image restoration 

that is based on (Citrin & Azimi-Sadjadi, 1992). For this purpose, an algorithm is 

written in MATLAB. Simulation results, output figures and processing times are 

given at the end of this chapter. 

 

4.1 Usage of 2-D Kalman Filtering in Image Restoration 
 

Although the concepts of classical filter theory and its extensions have been 

successfully exploited, the recursive estimation techniques (Kalman filters) have 

only recently been applied in image processing (Nahi & Assefi, 1972), (Habibi, 

1972), (Jain, 1977), (Woods & Radewan, 1977), (Hart, 1975), (Aboutalib, 1977). 

Most of the reported techniques using Kalman algorithms have either considered the 

degradation due to random noise only (no blurring), thus simplifying the computing 

requirements, or degradation due to both blurring and random noise but requiring 

extensive computing power due to the very long system state vectors needed to 

account for blurring.  

 

(Nahi & Assefi, 1972), in their pioneering work, demonstrated the feasibility of 

applying Kalman algorithms to restore noisy images by using the scalar scanner 

output as the output of a dynamic system whose input consisted of white noise. Such 

a system model was developed by transforming the planar brightness distribution to a 

form suitable for use in Kalman one-step predictor algorithms. (Habibi, 1972) has 

suggested a two-dimensional recursive filter which gives a Bayesian estimate of an 

image from a two-dimensional noise observation, eliminating the non-stationary 

effects due to the scanner approach of (Nahi & Assefi, 1972). (Jain, 1977) developed 

a semi-causal representation of images and deduced scalar recursive filtering 

equations (first order Markov processes), thus reducing the number of computations 

required to estimate images degraded by white additive noise. In an interesting paper 
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by (Woods & Radewan, 1977), a Kalman vector processor has been used in strips in 

order to reduce the computational load. The resulting filter, called a strip processor, 

is based on the assumption that correlation in an image decreases substantially at 

large distances. 

 

The use of a reduced update filter (which is scalar) as an approximation to a 

Kalman vector processor has also been suggested and shown to be optimum in that it 

minimizes the post update mean-square error under the constraint of updating only 

the nearby previously processed neighbors (Dikshit, 1982). Although above methods 

in employing Kalman filters are encouraging, they are limited in application to the 

noisy images only. 

 

To maintain the proper state dynamics within the state and the error covariance 

equations (Sage & Melsa, 1971) and to design an optimal Kalman filter, a large state 

vector and correspondingly large error covariance matrices would be involved. This, 

obviously, leads to an excessively large amount of storage and computations. A 

number of researchers introduced various filtering schemes (Woods & Ingle, 1981), 

(Suresh & Shenoi, 1981), (Azimi-Sadjadi, Bannour, & Citrin, 1989), (Azimi-Sadjadi, 

& Bannour, 1991) to overcome these problems.  

 

The idea of the reduced update Kalman filtering (RUKF) (Suresh & Shenoi, 

1981), (Azimi-Sadjadi, Bannour, & Citrin, 1989), (Azimi-Sadjadi, & Bannour, 1991) 

is to partition the state vector into two segments; the “local state” and the “global 

state.” The “local state” propagates in both dimensions during the filtering process 

and consists of a group of pixels, in the region of support of the model, which are 

spatially close to the points being estimated. The “global state,” however, contains 

those previously estimated pixels needed to estimate the future ones. Substantial 

computational saving is achieved by using only the local state in the filtering process 

and by transferring the data from the global state into the local state whenever the 

initial estimate is generated. Pixels which are not included in the local state tend to 

be less correlated and provide little information for generating the initial estimate due 

to the Markovian assumption.  
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The region of support of the 2-D model can have various geometry and types, 

namely, causal, semi-causal (or half-plane), and non-causal (or full plane) 

(Ranganath & Jain, 1985). Although non-causal models are shown (Ranganath & 

Jain, 1985) to provide better match to the actual image correlations, causal support 

was widely used in almost all of the previous methods. However, when a causal 

model is used more than half of the pixels in the adjoining support are ignored in 

generating the initial estimate. Therefore, it is desirable to devise a way to generate a 

full-plane model for more accurate estimation while maintaining the causality within 

the filtering process. 

 

4.2 Two-Dimensional State-Space Modelling and Full-Plane Block Kalman 

Filter Definitions 

 

Consider an image of size MxM which is scanned vectorially from left to right 

and top to bottom in block rows of width 1N . The image is assumed to be represented 

by a zero-mean vector Markov process. Each block within a block row is of 

size 1 2N N xN= , where 1N is the number of rows of pixels within a block, 2N is the 

number of columns in a block, and N is the number of pixels in each block. A block 

row is defined as a strip of blocks extending across the image from left to right and is 

of size 1N xM . A block row contains 2/M N blocks, assuming that M is divisible 

by 2N . The process is illustrated in Figure 4.1. The pixels within a block are arranged 

in row ordered form. A processing strip, hereafter called a strip, consists of three 

block rows. The goal is to estimate the blocks in the middle block row. The upper 

and lower block rows consist of block estimates generated to provide support for the 

blocks in the middle block row. Two estimates of the blocks in the middle block row 

need to be generated. The first estimates are generated solely to provide support to 

the second estimator. The second block estimates in the middle block row will be 

saved as the final filtered estimate. 
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The local state-space model for the image process is given by 

0 0 0

1 1 1

8 8 8

( ) ( 1) ( )
( ) ( 1) ( )
. . .
. . .
. . .
( ) ( 1) ( )

X k X k U k
X k X k U k

A

X k X k U k

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                                                                  (4.1a) 

or 

( ) ( 1) ( )X k AX k BU k= − +                                                                                 (4.1b) 

where ( )X k  is the current state vector consisting of 9 blocks ( )iX k , [0,8]i∈ ; 

( 1)X k − is the past state vector consisting of 9 blocks ( 1), [0,8]iX k i− ∈ , and ( )U k  

is a zero mean white driving noise vector process and is of size (9 ) 1xN x . The 

first5xN elements of ( )U k are equal to zero. 

 
Figure 4.1 Size of blocks. Block row, state, and numbering of pixels within a block. 
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The spatial positions of ( )iX k at a given iteration" "k are shown in Figure 4.1. The 

peculiar numbering of these blocks is solely chosen to provide easier programming 

by getting all the blocks which are to be estimated, i.e., blocks 5, 6, 7, and 8, 

numerically close together and their support numerically adjacent. The blocks which 

are not filtered estimates are obtained by shifting the blocks within the state as the 

state advances to the right, so that the previously estimated blocks occupy the proper 

spatial positions within the state. Figure 4.2 illustrates the state propagation along 

horizontal direction with each iteration. 

 

The supports for blocks 5, 6, 7, and 8 are given in Table 4.1; 

Table 4.1 Support blocks corresponding to the filtered blocks. 

Filtered Block Support 

5( )X k  ( 1)iX k − , 4,5,6,7i =  

6 ( )X k  ( 1)iX k − , 6i =  

7 ( )X k  ( 1)iX k − , 4,5,6,7i =  

8 ( )X k  ( 1)iX k − , 0,1,2,3,4,5,6,7,8i =  

 

This results in an A matrix of size (9 ) (9 )xN x xN which is given by, 
 

54 55 56 57

66

74 75 76 77

80 81 82 83 84 85 86 87 88

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0

I
I

I
I

A I
A A A A

A
A A A A

A A A A A A A A A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

     (4.2) 

 
Each sub-matrix of A  is of size NxN . 
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Figure 4.2 Propagation of the state 0 ( )X k and 1( 1)X k − occupy the same spatial position. 
 

The procedure in each strip begins by advancing the strip one block row down. 

The propagation of the state along the boundaries will be discussed later. The state 

propagates along the strip from left to right and as it advances Blocks 0, 1, 2, 3, and 4 

are shifted from the previous state and Blocks 5, 6, 7, and 8 are estimated using four 

concurrent estimators. Block 5 is re-estimated to avoid the storage of this block from 

the previous block row, which could have resulted in large error covariance matrices. 

Block 7 is an intermediate estimate of data that will again be estimated as Blocks 6 

and 8 when the strip is advanced to the next block row. Block 6, which is ahead of 

Block 8, is estimated based upon the past Block 6 in the same block row to provide 
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the right side support of Block 8. The filtered estimate of Block 8 with a full-plane of 

support is the only block estimate which is saved.  

 

As can be seen, by using these multiple concurrent block estimators causality is 

maintained within the actual filtering process. Furthermore, re-estimating those 

blocks along the upper and lower block rows avoids the need to store large error 

covariances associated with these states, thus resulting in substantial reduction in 

computation efforts and storage requirements. The only disadvantage is that the 

recursion occurs in one direction. 

 

4.3 Parameter Estimation for the Image Modelling 

 

In this section a procedure is given to obtain the model parameters for the four 

estimators ( ( ), 5,6,7,8iX k i = ) described in Section 4.2. The model parameters to be 

estimated are iA , i.e., the ith block row of the A  matrix and the correlation 

matrices [ ( ) ( )]
ij

T
U i jQ E U k U k , , 0,1,...,8i j = , where [ ]E ⋅  is the expectation 

operator. These are the diagonal sub-matrices of the covariance matrix, UQ , of the 

driving process, ( )U k .  

 

Let us begin by considering the first block estimator 6 ( )X k which has only one 

support block. To obtain the model parameters 6A , and
66UQ , for this block estimator 

we extract the corresponding row of (4.1) i.e.; 

6 6 6( ) ( 1) ( )X k A X k U k= − + .                                                                             (4.3.a) 

 

Ignoring the zero portion of 6A , we simply obtain 

6 66 6 6( ) ( 1) ( )X k A X k U k= − +                                                                       (4.3b) 

where 6 ( )X k and 6 ( )U k are of size 1Nx and 66A , which is the seventh sub-matrix of 

6A , is of size NxN .  
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By post-multiplying by 6 ( 1)TX k − , taking the expectation, and using the 

orthogonality principle (Sage & Melsa, 1971); 

6 6[ ( ) ( )] 0TE U k U k =                                                                                                (4.4) 

yields 

6666 66 66( ) ( 1) ( )Ul A l Q lρ ρ δ= − +                                                                          (4.5a) 

where  

( ) [ ( ) ( )]T
ij i jl E X n X n lρ − .                                                                                (4.5b) 

 

Transposing (4.5a) and using the property ( ) ( )T
ij ijl lρ ρ= − gives, 

6666 66 66( ) (1 ) ( )T
Ul l A Q lρ ρ δ− = − +                                                                         (4.6) 

which is the normal equation for this estimator. Plugging 0,1l =  in this equation 

gives the following vector Yule-Walker equation, 

6666 66

66 66 66

(0) (1)
(1) (0) 0

U
T T

QI
A

ρ ρ
ρ ρ

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                                                                       (4.7) 

which can be rearranged and solved to give
66UQ and 66A . 

 

To obtain the parameters 5A and
55UQ for the second block estimator 5( )X k , 

and 7A and
77UQ for the third estimator 7 ( )X k , the same procedure can be repeated. 

For example, for the second estimator the state equation is, 

5 5 5( ) ( 1) ( )X k A X k U k= − +                                                                                  (4.8) 

which is obtained by extracting the sixth block row of (4.1). Alternatively, we have 

[ ]
4

5
5 54 55 56 57 5

6

7

( 1)
( 1)

( ) ( )
( 1)
( 1)

X k
X k

X k A A A A U k
X k
X k

−⎡ ⎤
⎢ ⎥−⎢ ⎥= +
⎢ ⎥−
⎢ ⎥−⎣ ⎦

.                                         (4.9) 
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Using a similar procedure and invoking the orthogonality principle gives the 

relevant vector Yule-Walker equation as, 

55 54 55 56 57

54 44 45 46 47 54

55 54 55 56 57 55
1
56 64 65 66 67 56

57 74 75 76 77 57

(0) (1) (1) (1) (1)
(1) (0) (0) (0) (0)
(1) (0) (0) (0) (0)
(1) (0) (0) (0) (0)
(1) (0) (0) (0) (0)

T T

T T

T

T T

I
A
A
A
A

ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢−⎢ ⎥ ⎢
⎢ ⎥ ⎢−
⎢ ⎥ ⎢−⎢ ⎥ ⎢
⎢ ⎥ ⎢−⎣ ⎦ ⎣

55

0
0
0
0

UQ⎡ ⎤
⎢ ⎥⎥
⎢ ⎥⎥
⎢ ⎥⎥ =
⎢ ⎥⎥
⎢ ⎥⎥
⎢ ⎥⎥⎦ ⎣ ⎦

.                       (4.10) 

 

The solution of this system of equations provides
55UQ and 5iA , 4,5,6,7i = . For 

the third estimator, 7 ( )X k , we simply replace 5 ( )X k  with 7 ( )X k , 5 ( )U k  with 

7 ( )U k , 5iA with 7iA and 5iρ with 7iρ ( 4,5,6,7i = ) in (4.9) and (4.10). 

 

For the estimation of the model parameters for the last block estimator, 8 ( )X k , we 

form 

88 80 81 82 83 84 85 86 87 88

80 00 01 02 03 04 05 06 07 08

81 10 11 12 13 14 15 16 17 18

82 20 21

(0) (1) (1) (1) (1) (1) (1) (1) (1) (1)
(1) (0) (0) (0) (0) (0) (0) (0) (0) (0)
(1) (0) (0) (0) (0) (0) (0) (0) (0) (0)
(1) (0) (0

T

T

T

ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ
ρ ρ ρ 22 23 24 25 26 27 28

83 30 31 32 33 34 35 36 37 38

84 40 41 42 43 44 45 46 47 48

85 50 51 52 53 54

) (0) (0) (0) (0) (0) (0) (0)
(1) (0) (0) (0) (0) (0) (0) (0) (0) (0)
(1) (0) (0) (0) (0) (0) (0) (0) (0) (0)
(1) (0) (0) (0) (0) (

T

T

T

ρ ρ ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ ρ 55 56 57 58

86 60 61 62 63 64 65 66 67 68

87 70 71 72 73 74 75 76 77 78

88 80 81 82 83 84 85 86 87

0) (0) (0) (0) (0)
(1) (0) (0) (0) (0) (0) (0) (0) (0) (0)
(1) (0) (0) (0) (0) (0) (0) (0) (0) (0)
(1) (0) (0) (0) (0) (0) (0) (0)

T

T

T

ρ ρ ρ ρ
ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ ρ ρ ρ ρ

88

80

81

82

83

84

85

86

87

88 88

0
0
0
0
0
0
0
0

(0) (0) 0

U
T

T

T

T

T

T

T

T

T

QI
A
A
A
A
A
A
A
A
Aρ

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥−
⎢ ⎥⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥−
⎢ ⎥⎢ ⎥ ⎢ ⎥ =

− ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥−⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

(4.11) 

which can be solved to give
88UQ and 8iA , [0,8]i∈ .  

 

So far we have obtained all the required sub-matrices of matrix A and also 

identified the diagonal sub-matrices of UQ , 
ijUQ , i j= . In order to complete the 

modeling process, the off-diagonal sub-matrices
ijUQ , i j≠ , have to be determined. 

For the 
56UQ matrix, post-multiply both sides of (4.9) by 6 ( )TX k and use the 

orthogonality principle, 5 6[ ( ) ( 1)] 0TE U k X k − =  which gives, 
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[ ]
56

46

56
56 54 55 56 57

66

76

( 1)
( 1)

(0)
( 1)
( 1)

UQ A A A A

ρ
ρ

ρ
ρ
ρ

−⎡ ⎤
⎢ ⎥−⎢ ⎥= −
⎢ ⎥−
⎢ ⎥−⎣ ⎦

,                                           (4.12a) 

and similarly, for
76UQ and

57UQ . For
58UQ we obtain, 

[
58 58 50 51 52 53 54 55 56(0) (1) (1) (1) (1) (1) (1) (1)UQ ρ ρ ρ ρ ρ ρ ρ ρ= −  

]57 58 8(1) (1) Aρ ρ ,   (4.12b) 

and similarly, for
78UQ and

68UQ . The remaining off-diagonal sub-matrices can be 

obtained by the relationship,
ji ij

T
U UQ Q= . For, [0,4], [0,8]i j∈ ∈  and 

[5,8], [0,4]i j∈ ∈  0
ijUQ = , i.e., zero sub-matrix as the corresponding blocks are 

obtained solely by the shifting process. 

 

4.4 Kalman Filtering Process 

 

Once all the model parameters are identified, the block dynamic (4.1) can be 

formed. The observation equation in block form is, 

( ) ( ) ( )Z k HX k V k= +                                                                                          (4.13) 

where ( )Z k is the corrupted image or observation vector of size (4 ) 1xN x , ( )V k  is 

the observation noise vector of the same size as ( )Z k containing a scalar zero mean 

white Gaussian additive noise ( )v k with variance 2
vσ , and H is a (4 ) (9 )xN x xN  

matrix containing the elements of the point spread function (PSF) of the non-causal 

blur.  

 

For the case of an image corrupted solely by additive noise H becomes, 

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

I
I

H
I

I

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

                                                              (4.14) 
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where 0 represents a zero sub-matrix each of size NxN . The Kalman filter equations 

for the system in (4.1) and (4.13) are, 

( ) ( 1) T T
b a UP k AP k A BQ B= − +                                                                        (4.15a) 

1( ) ( ) ( ( ) )T T
b b VK k P k H HP k H Q −= +                                                                (4.15b) 

ˆˆ ˆ( ) ( 1)X k AX k= −                                                                                              (4.15c) 

ˆ̂ ˆ ˆ( ) ( ) ( )( ( ) ( ))X k X k K k Z k HX k= + −                                                              (4.15d) 

( ) [ ( ) ] ( )a bP k I K k H P k= −                                                                                 (4.15e) 

where ˆ ( )X k is the a priori (before updating) estimate, ˆ̂ ( )X k is the a posteriori (after 

updating) estimate, ( )bP k is the a priori error covariance matrix defined by, 

ˆ ˆ( ) [( ( ) ( ))( ( ) ( )) ]T
bP k E X k X k X k X k− − ,                                                    (4.16a) 

( )aP k is the a posteriori error covariance matrix defined by, 

ˆ ˆˆ ˆ( ) [( ( ) ( ))( ( ) ( )) ]T
aP k E X k X k X k X k− − ,                                                    (4.16b) 

( )K k  is the Kalman gain matrix and UQ , and VQ , are correlation matrices of the 

independent processes U  and V , respectively. The state is reinitialized at the 

beginning of each strip. With the exception of the boundaries of the image, only the 

estimate 8
ˆ̂ ( )X k is saved as a final estimate. After a strip is processed, one advances a 

block row and starts a new strip without using any filtered estimates from the prior 

strip. Thus recursion only occurs along a strip. 

 

4.5 Boundary Conditions 

 

There are four boundary conditions to be considered, which correspond to top, 

bottom, left, and right edges of the image. The condition at the beginning of a strip 

(left boundary) is related to the state at iteration 1k = − . The blocks that are outside 

the image, i.e., ( 1)iX − , 0,2,8i =  are initialized to the mean of the image while 

those inside the image, i.e., ( 1)iX − , 1,3,4,5,6,7i = , are initialized to the observed 

noisy data corresponding to those in spatial position. 
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At the beginning of each strip one also needs to initialize ( 1)aP −  matrix. For 

those estimates spatially located outside the image, the diagonal elements of ( 1)aP −  

are chosen as the variance of the image since the mean is used as the estimate. For 

those estimates using the observation, the diagonal elements are the variance of the 

noise, since this corresponds to the squared error associated with these estimates. The 

off diagonal elements of ( 1)aP −  are expected to be zero. 

 

Next, we consider the boundary conditions at the right edge of the image, i.e., at 

the end of a strip. As the state approaches the right side boundary of the image at 

iteration 2( / 1) 3k M N= − −  the image is processed like the previous iterations, 

with block 8( )X k being saved as a final filtered estimate. For the three subsequent 

and final iterations in the strip, both 6 ( )X k and 8( )X k are saved as final estimates for 

their proper spatial positions. This ensures that all spatial positions of the final 

filtered image contain filtered data without having to contend with the fact that no 

observation exists outside the right boundary of the image. 

 

For the first strip of the image located spatially within the image, estimate 5( )X k  

is saved as the final filtered estimate for the first block row and estimate 8( )X k is 

saved as a final filtered estimate for the second block row. The first two blocks, and 

also the last block of the first block row are left unfiltered, i.e., the observation is 

used as the final estimate. The last block row is processed the same as the first block 

row except that 7 ( )X k  is saved as the final filtered estimate. The first two and last 

blocks of this block row are also left unfiltered. 

 

4.6 Simulation Results 

 

In this section, implementation of the algorithm and simulation results will be 

given along with some tables and figures. The experiments have been repeated for 

different block sizes. In this work, two different block sizes have been used. One of 
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them has been chosen as 1x1 and the other as 2x2. Also, the simulations results have 

been obtained for different measurement noise variance values and repeated many 

times. Since the process noise covariance matrix is calculated as part of the 

algorithm, we are not allowed to change its value. Finally, the algorithm has been 

tried for different images to be able to observe the performance of the filter for 

different inputs.  

 

In tables, both the PSNR and SNR results have been shown. SNR values have 

been calculated according to the formula shown below, 
2

10 210log S

N

SNR σ
σ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

                                                                                          (4.17) 

where 2
Sσ and 2

Nσ  shows the variance of the image and the noise, respectively.  

 

First of all, measurement noise variance has been chosen as a fixed value and a 

grayscale Lena image is used for the simulations. The range of the pixel values of the 

Lena image is between 0 and 1. The value of ‘0’ corresponds to black and the value 

of ‘1’ corresponds to white.  

 

Firstly, measurement noise variance value has been chosen as 0.01 and 1x1 block 

size has been used. The results are shown in Figure 4.3 and Table 4.2.      
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(a) 

 
(b) 

 
(c) 

Figure 4.3 (a) Original Lena image, (b) Noisy image (PSNR = 20.269dB, SNR = 6.5669),            
(c) Filtered image (Block size = 1x1). 

 

Table 4.2 Results of the simulation of Lena. The measurement noise variance is 0.01 and 1x1 block 

size is used. 

 Original image Noisy image Filtered image 

Mean of the image 0.3831 0.3855 0.3831 

Variance of the image 0.042635 0.009399 0.0029607 

SNR(dB) ∞  6.5669 11.5777 (+5,0108) 

PSNR(dB) ∞  20.2690 25.2798 (+5,0108) 

 

To be able to see the changing of the Kalman gain and a posteriori error, Kalman 

gain and a posteriori error values of “Block 8” are plotted for a random row in the 
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image (here it is selected as row 100). The results are shown in Figure 4.4 and Figure 

4.5. 
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Figure 4.4 Kalman gain of “Block 8” for the 100th row of the image (Block size = 1x1). 
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Figure 4.5 Aposteriori error of “Block 8” for the 100th row of the image (Block size = 1x1). 
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Results in Figure 4.4 and Figure 4.5 are similar with the results in Figure 3.3 in 

the previous section. Therefore, parallel comments can be made for Figure 4.4 and 

Figure 4.5. Kalman gain and a posteriori error values get smaller at the beginning 

and they stay constant after almost 10 iterations.  

 

Secondly, the same algorithm is used with 2x2 block size. The other parameters of 

the algorithm are the same with the previous experiment. The results of this 

experiment are shown in Figure 4.6 and Table 4.3. 

 
(a) 

 
(b) 

Figure 4.6 (a) Noisy image (PSNR = 20.269, SNR = 6.5668), (b) Filtered image (Block size = 2x2). 
 
 
 
Table 4.3 Results of the simulation of Lena. The measurement noise variance is 0.01 and 2x2 block 

size is used. 

 Noisy image Filtered image 

SNR(dB) 6.5668 11.159 (+4,5922) 

PSNR(dB) 20.269 24.861 (+4,5922) 

 

As can be seen from Figure 4.6 and Table 4.3, the filtered Lena image looks better 

visually compared to the noisy images. The resulting image is smoother than the 

noisy image and its PSNR and SNR values are better. If the effect of the block size is 

considered, it can be said that 1x1 block choice gives better results compared to the 

2x2 block.   
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On the other hand, experiments are also performed with different measurement 

noise variances. In the previous experiments, the value of the measurement noise 

variance was selected as 0.01. Now, the results of the experiments will be given for 

different noise variance values that are changing between 0.001 and 0.1. At first, the 

results of 1x1 block size are summarized in Table 4.4.  

 

Table 4.4 Results of the simulation of Lena. The measurement noise variance is changing between 

0.001 and 0.1 and 1x1 block size is used. 

Measurement 

Noise Variance 
 Noisy image Filtered image 

Difference 

(dB) 

PSNR(dB) 30.000 31.165 
0.001 

SNR(dB) 16.298 17.463 
+0.165 

PSNR(dB) 26.085 28.755 
0.0025 

SNR(dB) 12.382 15.053 
+2.671 

PSNR(dB) 23.115 26.965 
0.005 

SNR(dB) 9.413 13.262 
+3.850 

PSNR(dB) 21.469 25.975 
0.0075 

SNR(dB) 7.767 12.273 
+4.506 

PSNR(dB) 20,248 25,259 
0.01 

SNR(dB) 6,546 11,557 
+5,011 

PSNR(dB) 16.504 22.955 
0.025 

SNR(dB) 2.802 9.253 
+6.451 

PSNR(dB) 13.889 20.951 
0.05 

SNR(dB) 0.188 7.249 
+7.062 

PSNR(dB) 12.523 19.792 
0.075 

SNR(dB) -1.179 6.0895 
+7.269 

PSNR(dB) 11.503 18.787 
0.1 

SNR(dB) -2.1991 5.0845 
+7.284 

 

As can be seen from Table 4.4, the image at the filter output has always better 

PSNR and SNR values for Lena image. If the noise variance gets larger, then the 
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filter changes its output adaptively and estimated pixel values become more 

important. However, if the noise variance has a small value, the filter outputs rely 

more on to the input image pixel values and the output image becomes closer to the 

input image. As a result, PSNR and SNR differences between the input and output 

images become less.  

 

Similar experiments are also done with 2x2 block size and the results are shown in 

Table 4.5.  

 

Table 4.5 Results of the simulation of Lena. The measurement noise variance is changing between 

0.001 and 0.1 and 2x2 block size is used. 

Measurement 

Noise Variance 
 Noisy image Filtered image 

Difference 

(dB) 

PSNR(dB) 30.042 26.880 
0.001 

SNR(dB) 16.340 13.178 
-3.162 

PSNR(dB) 26.072 26.782 
0.0025 

SNR(dB) 12.369 13.08 
+0.710 

PSNR(dB) 23.186 26.277 
0.005 

SNR(dB) 9.484 12.574 
+3.091 

PSNR(dB) 21.487 25.592 
0.0075 

SNR(dB) 7.785 11.889 
+4.105 

PSNR(dB) 20.269 24.861 
0.01 

SNR(dB) 6.567 11.159 
+4,592 

PSNR(dB) 16.469 22.354 
0.025 

SNR(dB) 2.766 8.652 
+5.885 

PSNR(dB) 13.855 20.456 
0.05 

SNR(dB) 0.153 6.754 
+6.602 

PSNR(dB) 12.457 19.457 
0.075 

SNR(dB) -1.245 5.755 
+7.000 

PSNR(dB) 11.549 18.828 
0.1 

SNR(dB) -2.154 5.126 
+7.279 
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As can be observed from Table 4.5, the filter output gives similar results 

compared with the filter of 1x1 block size. However, if the noise variance gets 

smaller, the SNR difference between the filtered and noisy images assumes a 

negative value (meaning output is worse than input) more quickly than the filter of 

1x1 block size. 

 

Finally, the experiment was performed with a different grayscale image named 

Coins to see the consistency of the algorithm. Like the previous experiments, 

measurement noise variance is selected 0.01 and 1x1 block size is used firstly. The 

results are shown in Figure 4.7. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4.7 (a) Original image, (b) Noisy image (PSNR = 20.109dB, SNR = 6.9548), (c) Filtered image 
(Block size = 1x1). 
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In this image, there are more constant valued regions compared to Lena image. 

Therefore, performance of the filter becomes better. Since the filter output makes the 

input image smoother, it is expected that PSNR and SNR values should be higher for 

an image with more constant valued regions. PSNR and SNR values of the output 

images for different noise variances are tabulated in Table 4.6 and Table 4.7. Results 

for 1x1 and 2x2 block sizes are given in Table 4.6 and Table 4.7, respectively. 

Measurement noise variance values are changing between 0.001 and 0.1. 

 

Table 4.6 Results of the simulation of Coins. The measurement noise variance is changing between 

0.001 and 0.1 and 1x1 block size is used. 

Measurement 

Noise Variance 
 Noisy image Filtered image 

Difference 

(dB) 

PSNR(dB) 29.980 30.924 
0.001 

SNR(dB) 16.826 17.770 
+0.943 

PSNR(dB) 26.026 30.590 
0.0025 

SNR(dB) 12.872 17.436 
+4.564 

PSNR(dB) 23.034 28.896 
0.005 

SNR(dB) 9.880 15.742 
+5.8623 

PSNR(dB) 21.329 27.852 
0.0075 

SNR(dB) 8.175 14.698 
+6.523 

PSNR(dB) 20.070 27.102 
0.01 

SNR(dB) 6.916 13.948 
+7.032 

PSNR(dB) 16.439 24.589 
0.025 

SNR(dB) 3.285 11.435 
+8.149 

PSNR(dB) 13.901 22.386 
0.05 

SNR(dB) 0.747 9.232 
+8.486 

PSNR(dB) 12.563 21.092 
0.075 

SNR(dB) -0.591 7.939 
+8.530 

PSNR(dB) 11.626 20.161 
0.1 

SNR(dB) -1.528 7.007 
+8.535 
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As can be seen from the tables, the filter has a better performance compared to the 

Lena image. It can be said that if the content of an image consists of more details, the 

performance of the filter becomes worse. The reason for this can be explained as 

removal of the details by the filter during the de-noising process.  

 

At the next table, the same experiment is realized by using 2x2 blocks and all of 

the other parameter values are kept the same with the previous experiment.  

 

Table 4.7 Results of the simulation of Coins. The measurement noise variance is changing between 

0.001 and 0.1 and 2x2 block size is used. 

Measurement 

Noise Variance 
 Noisy image Filtered image 

Difference 

(dB) 

PSNR(dB) 30.042 26.818 
0.001 

SNR(dB) 16.888 13.664 
-3.224 

PSNR(dB) 26.093 27.073 
0.0025 

SNR(dB) 12.939 13.919 
+0.981 

PSNR(dB) 23.049 26.865 
0.005 

SNR(dB) 9.895 13.712 
+3.817 

PSNR(dB) 21.305 26.271 
0.0075 

SNR(dB) 8.151 13.117 
+4.967 

PSNR(dB) 20.104 25.973 
0.01 

SNR(dB) 6.951 12.819 
+5.869 

PSNR(dB) 16.437 23.795 
0.025 

SNR(dB) 3.283 10.641 
+7.359 

PSNR(dB) 13.976 22.129 
0.05 

SNR(dB) 0.822 8.975 
+8.153 

PSNR(dB) 12.524 20.987 
0.075 

SNR(dB) -0.630 7.833 
+8.463 

PSNR(dB) 11.630 20.259 
0.1 

SNR(dB) -1.524 7.1047 
+8.629 
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Up to this point, noise removal performance of the algorithm is considered. 

Another important point to look at is the processing time of the algorithm. In the real 

world, this issue is much more important to be able to use the filter in a real-time 

application. Therefore, the processing times of the algorithm for 1x1 and 2x2 block 

sizes are calculated. Naturally, process time of the algorithm is parallel with how 

many processes are executed. Accordingly, the processing time can be affected only 

by the size of the image and blocks used for scanning.  

 

Up to now, two images named Lena and Coins are used for two different 

experiments. Those two example images have different sizes. As a result, they have 

different processing times. The size of Lena image is 200x200 and the size of Coins 

image is 245x297. The processing times for these two images are given for 1x1 and 

2x2 block sizes in Table 4.8. 

 

Table 4.8 Processing times of Lena and Coins images for 1x1 and 2x2 block sizes. 

 

Processing time  

for Lena image 

(seconds) 

Processing time  

for Coins image 

(seconds) 

1x1 Block 26.4 71 

2x2 Block 11.2 26 

 

The results in Table 4.8 have been obtained via an algorithm written in MATLAB 

environment. In this experiment, a computer with Intel(R) Core(TM)2 CPU T7200 

@ 2.0GHz processor and 1.00GB of RAM was used.  

 

From Table 4.8, it can easily be seen that the larger image requires more 

processing time. For the same block sizes, the process time of the experiment using 

Lena image takes a shorter time compared to the Coins image. On the other hand, 

block size affects the processing times. For the same image, performing the same 

experiment with a 2x2 block size requires a shorter time compared to 1x1 block size. 

This result shows that larger size block operations shorten the processing time. 
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However, if PSNR and SNR results are taken into consideration, it is seen that large 

size block operations produce worse performance results. As a result, there is a trade-

off between the processing times and SNR improvement of the filtered image when 

the block size is considered.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

56 

CHAPTER FIVE 

CONCLUSION 

 

In this thesis, Kalman filtering techniques have been used for the purpose of 

image restoration. 1-D and 2-D Kalman filtering methods are used for two different 

scenarios defined in Chapter 3 and Chapter 4. Even if it is hard to apply the Kalman 

filter to images because of the difficulty of modeling the image as a linear dynamic 

system and the excessive processing time, it has still been a worthy experience.  

 

In the first experiment, 1-D Kalman filter is used for de-noising of an image. A 

different scenario is defined for this problem. It is assumed that the same image is 

obtained within a short time period consecutively and saved using different noise 

realizations. Then, the resulting images with the same content and different noise 

realizations are de-noised with a 1-D Kalman filter. According to these assumptions, 

a model is constructed and the original image is attempted to be estimated by 

applying 1-D Kalman filter to each pixel of the image. In this work, the number of 

obtained images determines the iteration number. Therefore, more images mean 

more number of iterations and better results. It is shown that Kalman filter gives 

better results compared to the Wiener filtering method after a specific iteration 

number. However, the processing time of the algorithm is excessive. Even if the 

results of the averaging and Kalman filtering methods are close to each other, 

averaging method has a clear advantage because of its simplicity and short 

processing time. It is seen that, 1-D Kalman filtering can be applied in this scenario. 

However, it is not very practical to use especially when averaging method is 

considered. 

 

In the second experiment, de-noising of images is performed with a 2-D Kalman 

filtering method. This time a more complex modeling is realized by closely 

following the research paper titled “A Full-Plane Block Kalman Filter for Image 

Restoration” written by S. Citrin and M. R. A. Sadjadi as a reference. According to 

this work, a 2-D Kalman filtering method is presented which uses a full-plane image 
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model to generate a more accurate filtered estimate of an image that has been 

corrupted by additive noise and full-plane blur. Estimation of the original image is 

realized by using block processing. One block is estimated at each iteration by using 

supported blocks defined near the estimated block. The model provides causality 

within the filtering process by employing multiple concurrent block estimators. After 

modeling and simulation steps of the work are finished, performance of the filter is 

observed by changing different parameters. Firstly, the output of the filter is 

observed for different block sizes and then for different measurement noise 

variances. Finally, the performance of the filter is observed with a different example 

image to judge the consistency of the filter.  

 

It is seen that the filter performance changes for different block sizes. Smaller 

block sizes give better results. On the other hand, the experiments performed with 

smaller block sizes lengthen the processing time of the algorithm. Moreover, if the 

noise variance becomes larger, the filter adaptively changes its output and estimation 

process of the Kalman filter greatly affects the output. On the contrary, if the noise 

variance gets smaller, the effect of the estimation process decreases. Finally, 

experiments performed with different images show that the algorithm works suitably 

with various images. However, it is seen that images with more regions of constant 

value produce better results compared to more detailed images. 
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