

DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

AUTOMATIZED TEST GENERATION AND

EVALUATION TOOL FROM LECTURE NOTES

FOR HIGH SCHOOL STUDENTS

by

Önder Can SARI

March, 2019

İZMİR

AUTOMATIZED TEST GENERATION AND

EVALUATION TOOL FROM LECTURE NOTES

FOR HIGH SCHOOL STUDENTS

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Master of

Science in Computer Engineering

by

Önder Can SARI

March, 2019

İZMİR

iii

ACKNOWLEDGEMENTS

 I would like to thank my supervisor Asst. Prof. Dr. Özlem AKTAŞ for her guidance,

support and encouragement throughout the development of this project.

 I would also thank Prof. Dr. Yalçın ÇEBİ who introduced natural language

processing (NLP) field to me, and Dr. Emel ALKIM for her precious help at the earlier

stages of the project.

 We had started working on NLP tasks for Turkish in our undergraduate education

with a group of three, so I would like to thank my friends Caner ALTUNTAŞ and

Ahmet Erdem KAHVECİ for their valuable ideas and contributions to this project.

 This project is supported by Dokuz Eylül University Department of Scientific

Research Projects (DEÜBAP), numbered as 2018.KB.FEN.015.

 I have special thanks to my family for their endless support all along.

Önder Can SARI

iv

AUTOMATIZED TEST GENERATION AND EVALUATION TOOL FROM

LECTURE NOTES FOR HIGH SCHOOL STUDENTS

ABSTRACT

 Education systems force the students to deal with numerous exams. It can be really

difficult to keep motivation up while handling those exams. In today’s world,

information technologies have spread over to all levels of business sectors and

disciplines, including education. Therefore, to make studying more target-driven and

catchy, it is a good approach to use information technologies on this issue.

 Within this thesis, a software project, which includes the processing of text-based

Turkish lecture notes of secondary education students in history and geography

domains and automatic test generation, is developed. Main objective here is to provide

a computer mediated self-study opportunity by simplifying an examination process

with isolating students from the question preparation burden. Three question types are

enabled for selection, which are true-false, fill in the blanks and multiple choice.

 Proposed system allows users to define constraints like number of questions and

included question types before an exam generation, save generated tests or specific

questions for further usage, save their exam results to keep track of their progress.

 Besides the educational software developed, this research draws conclusions and

proposes solutions on some of the major natural language processing (NLP) tasks for

Turkish like document classification, detection of sentence boundaries and headings,

conversion of verbs based on their polarities after classifying them as positive and

negative, constructing glossary of terms structures for history and geography domains

using named entity recognition (NER) techniques.

Keywords: Educational software, automatic test generation, natural language

processing, Turkish, named entity recognition, glossary of terms, verb polarity

conversion, sentence boundary detection, heading detection, document classification

v

LİSE ÖĞRENCİLERİ İÇİN DERS NOTLARINDAN OTOMATİK TEST

OLUŞTURMA VE DEĞERLENDİRME ARACI

ÖZ

 Öğrenciler eğitimleri boyunca çok sayıda sınava tabi tutulmaktadır. Bu sınavlarda

başarılı olmaya çalışan öğrencilerin motivasyonunu yüksek tutması gerçekten

zorlayıcı olabilir. Bugünün dünyasında, tüm iş kollarında ve bilim dallarında bilgi

teknolojilerinden faydalanılmaktadır. Eğitim alanında da, süreci daha hedefe yönelik

ve ilgi çekici hale getirmek için teknolojiden yararlanmak güzel bir yaklaşımdır.

 Bu tez kapsamında, ortaöğretim tarih ve coğrafya alanındaki metin içerikli Türkçe

ders metinlerinin otomatik sınav oluşturmak için işlendiği bir yazılım projesi

geliştirilmiştir. Ana hedef, öğrencileri soru hazırlama yükünden kurtararak test

sürecini kolaylaştırmak ve onlara bilgisayar ortamında kendi kendilerini sınama

imkânı sağlamaktır. Doğru-yanlış, boşluk doldurma ve çoktan seçmeli, kullanıcıların

seçebileceği üç soru tipi olarak sistemde tanımlanmıştır.

 Önerilen sistem kullanıcılara soru sayısı, dahil edilecek soru tipleri gibi kriterleri

sınav oluşturmadan önce belirleme, oluşturulan sınavları ya da seçilen belirli soruları

ileride kullanmak üzere kaydetme, sınav sonuçlarını kaydetme gibi olanaklar sağlar.

 Geliştirilen eğitim yazılımın yanı sıra, araştırma Türkçe için bazı önemli doğal dil

işleme (DDL) görevlerine yönelik sonuçlar ortaya koymuş ve çözüm önerileri

geliştirmiştir. Bu görevler metin sınıflandırma, cümle sonu ve başlık belirleme,

fiillerin olumlu ve olumsuz şeklinde sınıflandırılıp olumluların olumsuza,

olumsuzların olumluya çevrilmesi, varlık ismi tanıma (VİT) teknikleri kullanarak tarih

ve coğrafya alanları için terimler sözlüğü yapıları oluşturmaktır.

Anahtar kelimeler: Eğitim yazılımı, otomatik test oluşturma, doğal dil işleme,

Türkçe, varlık ismi tanıma, terimler sözlüğü, fiillerde olumluluk - olumsuzluk

dönüşümü, cümle sonu belirleme, başlık belirleme, metin sınıflandırma

vi

CONTENTS

Page

M.Sc THESIS EXAMINATION RESULT FORM ……………………………..…... ii

ACKNOWLEDGEMENTS ………………………………………………………... iii

ABSTRACT ……………………………………………………………………...… iv

ÖZ …………………………………………………………………………………… v

LIST OF FIGURES ……………………………………………………………...… xii

LIST OF TABLES …………………………………………………………….…… xv

CHAPTER ONE – INTRODUCTION …………………………....……………… 1

 1.1 Brief Description and Goals of Thesis ……………………………………….. 1

 1.2 Brief Overview of NLP and Turkish Language ……………………………… 1

 1.3 Task Distribution of Thesis …………………………………………………... 3

 1.4 Development Environment of Thesis ………………………………………… 3

 1.5 Organization of Thesis ……………………………………………………….. 4

CHAPTER TWO – TASK DEFINITION ………………………………………... 5

 2.1 Document Classification …………………………………………………...… 5

 2.2 Detection of Sentence Boundaries and Headings ……………………………. 6

 2.3 Detection and Conversion of Verb Polarity ………………………………….. 7

 2.4 Named Entity Recognition to Detect Terms ……………………………….… 9

 2.5 Automatized Question and Test Generation ………………………………… 11

CHAPTER THREE – PREVIOUS WORK ……………………………………... 12

 3.1 Document Classification ……………………………………………………. 12

 3.2 Sentence Boundary Detection ………………………………………………. 17

 3.3 Stemming ………………………………………………………………….... 22

 3.4 Named Entity Recognition ………………………………………………….. 29

vii

 3.5 Exam and Question Generation ……………………………………………... 35

CHAPTER FOUR – COURSE DOCUMENT CLASSIFICATION …………... 39

 4.1 Overview and Dataset Introduction …………………………………………. 39

 4.2 Compared Approaches ……………………………………………………… 39

 4.2.1 Existence of Stop Words ……………………………………………..... 39

 4.2.2 Stemming Approaches ……………………………………………..….. 40

 4.2.3 Classification Algorithms …………………………………………….... 40

 4.2.4 Feature Selection Methods …………………………………………...... 40

 4.3 Experimentation Phase ……………………………………………………… 40

 4.3.1 Document Preprocessing …………………………………………….… 41

 4.3.2 ARFF File Generation …………………………………………….....… 42

 4.3.3 Interpretation of Experiment Results ………………………………....... 43

 4.3.4 Selected Classification Model …………………………………………. 47

 4.4 Classification Model Integration with Exam Module ……………………….. 49

CHAPTER FIVE – SENTENCE BOUNDARY AND HEADING

DETECTION……………………………………………………………………… 51

 5.1 Overview ………………………………………………………..…………... 51

 5.2 Regular Expression Usage …………………………………………………... 52

 5.3 Software Structure of the Model …………………………………………….. 53

 5.3.1 Initial Operations ………………………………………………………. 54

 5.3.2 Irrelevant Text Controls ………………………………………………... 54

 5.3.3 Heading Format Controls ……………………………………………… 54

 5.3.4 Paragraph Format Controls …………………………………………….. 55

 5.3.5 Colon Character Controls …………………………………………….... 55

 5.3.6 Head Character Controls ……………………………………………….. 56

 5.3.7 Operations to Join Itemized Text Parts ………………………………… 57

 5.3.8 Text Normalization …………………………………………………….. 59

 5.3.9 Generation of Heading and Paragraph Objects ………………………… 59

viii

 5.3.10 Sentence Boundary Detection ………………………………………… 60

 5.3.10.1 Division of Paragraphs ………………………………………...… 60

 5.3.10.2 Abbreviation Controls …………………………………………... 61

 5.3.10.3 Quote Controls …………………………………………………... 61

 5.3.10.4 Generation of Sentence Objects …………………………………. 62

 5.4 Experimentation Phase …………………………………………………….... 62

 5.4.1 Used Dataset …………………………………………………………… 62

 5.4.2 Sentence Boundary and Heading Detection ………………………….… 63

 5.4.3 Observation of Itemized Text Part Cases …………………………….… 65

CHAPTER SIX – VERB POLARITY DETECTION AND CONVERSION …. 66

 6.1 Overview ……………………………………………………………………. 66

 6.2 Classification Phase ………………………………………………………… 67

 6.2.1 Finite State Machine Structure …………………………………………. 67

 6.2.2 Base Class Definitions …………………………………………………. 70

 6.2.2.1 State ………………………………………………………………. 70

 6.2.2.2 Suffix ……………………………………………………………... 71

 6.2.2.3 Transition …………………………………………………………. 72

 6.2.2.4 SuffixInWord ……………………………………………………... 72

 6.2.2.5 Path ……………………………………………………………….. 73

 6.2.2.6 FSM ………………………………………………………………. 74

 6.2.3 Parse Operations ……………………………………………………..… 74

 6.2.4 Path Elimination Operations ………………………………………….... 75

 6.2.4.1 Elimination of Irrelevant Results …………………………………. 75

 6.2.4.2 Elimination of Meaningless Stems ………………………………... 75

 6.2.4.3 Elimination by Root Type ………………………………………… 76

 6.2.4.4 Elimination by Supervised Learning ……………………………… 76

 6.3 Conversion Phase ………………………………………………………….... 77

 6.3.1 Controls for Phonetic Rules ……………………………………………. 77

 6.3.2 Suffix Formats ……………………………………………………….… 80

 6.3.3 Conversion from Affirmative to Negative ……………………………... 82

ix

 6.3.4 Conversion from Negative to Affirmative ……………………………... 82

 6.3.5 Optimal Result Decision ……………………………………………….. 84

 6.4 Use Case Example ………………………………………………………...… 84

 6.5 Experimental Results ……………………………………………………….. 86

CHAPTER SEVEN – NAMED ENTITY RECOGNITION MODEL TO BUILD

GLOSSARY OF TERMS STRUCTURE ……………………………………..… 89

 7.1 Overview ……………………………………………………………………. 89

 7.2 Tokenizer and Tokens ………………………………………………………. 90

 7.3 Generated Sources for Lookup Operations ………………………………….. 92

 7.3.1 Lexical Model Sources ……………………………………………….... 92

 7.3.1.1 Final Exclusions from Lexical Sources ………………………….... 93

 7.3.2 Contextual Model Sources ……………………………………………... 94

 7.4 Labeling by Lexical and Contextual Models ………………………………... 95

 7.5 Named Entities and Recognizer Model ……………………………………... 97

 7.6 Building Glossary of Terms Structure …………………………………….… 99

 7.6.1 NER Execution on Complete Dataset ………………………………….. 99

 7.6.2 Fine Grained Categorization ………………………………………….. 100

 7.6.3 Database Model ………………………………………………………. 102

 7.6.3.1 NamedEntityType Table ………………………………………… 103

 7.6.3.2 Category Table …………………………………………………... 104

 7.6.3.3 Term Table ………………………………………………………. 105

 7.6.3.4 SynonymTerm Table ………………………………………….… 106

 7.7 Experimental Results …………………………………………………….... 107

 7.8 Encountered Challenges ………………………………………………….... 111

CHAPTER EIGHT – AUTOMATIZED QUESTION AND TEST

GENERATION ………………………………………………………………..… 113

 8.1 Overview …………………………………………………………………... 113

 8.2 Automatized Question Generation ………………………………………… 113

x

 8.2.1 Contribution of SBD Model …………………………………………... 113

 8.2.2 Contribution of Document Classification Model ……………………... 114

 8.2.3 Using Verb Polarity for Question Generation ……………………….... 114

 8.2.4 Using Glossary of Terms for Question Generation …………………… 115

 8.2.5 Question Type Decision …………………………………………….... 117

 8.3 Test Generation ……………………………………………………………. 119

 8.3.1 Specifiable Criteria ………………………………………………….... 119

 8.3.2 Test Generation on New Document …………………………………... 120

 8.3.3 Test Generation on Existing Document ………………………………. 120

 8.4 Other Features of iTest …………………………………………………..… 121

 8.5 Database Model ………………………………………………………….… 126

 8.5.1 SystemUser Table …………………………………………………….. 127

 8.5.2 UserLogin Table ……………………………………………………… 128

 8.5.3 Document Table ……………………………………………………… 128

 8.5.4 Exam Table …………………………………………………………… 129

 8.5.5 Question Table ……………………………………………………...… 130

 8.5.6 FitbAnswer Table …………………………………………………..… 131

 8.5.7 ExamQuestion Table …………………………………………………. 132

 8.5.8 ExamResult Table ……………………………………………………. 132

CHAPTER NINE – CONCLUSION …………………………………………… 133

 9.1 Results and Evaluation …………………………………………………..… 133

 9.2 Future Enhancement ……………………………………………………….. 135

REFERENCES ………………………………………………………………..… 136

APPENDICES …………………………………………………………………... 148

 APPENDIX-1: Turkish Stop Words …………………………………………... 148

 APPENDIX-2: Most Distinctive 100 Words for Classification ……………..… 150

 APPENDIX-3: Turkish Abbreviation List …………………………………..… 152

xi

 APPENDIX-4: Exceptional Verb Roots Affected by Consonant Lenition …….. 153

 APPENDIX-5: Example Lecture Note and Generated Test …………………… 154

xii

LIST OF FIGURES

 Page

Figure 1.1 An example Turkish word parsed into its morphemes ……..…..….....… 2

Figure 2.1 Example document classification setup with six classes, each with three

training documents and a test set document ……………………….…..... 5

Figure 2.2 A diagram showing relationships between the tasks defined within the

thesis…………………………………….……………………………... 11

Figure 3.1 Distribution of news text on first two dimensions …….…...…………... 15

Figure 3.2 Dependency links and POS tags on an example sentence …….……….. 25

Figure 3.3 Ontology used in experiments and classification results (detected

 hypernyms) for 7-unknown concepts ……...…………...……...………. 30

Figure 3.4 Information sources used for rule-based NER system ………...….…..... 32

Figure 3.5 The exam testing page with an example generated question ………...… 36

Figure 4.1 Example output on different preprocessing stages of a raw document

text…………………………………………………………….……….. 41

Figure 4.2 Standardized document example with No Stop Words and No Stemming

approach ……………………………….…………….………………… 42

Figure 4.3 Standardized document example with No Stop Words and F5 stemming

approach ………………………….…………………………….…….... 42

Figure 4.4 ARFF file example for F6 stemming and no stop word removal

approaches……………..……………..……….……………………….. 43

Figure 4.5 Result screen of NB-B, F5, IG, NSW experiment (10% training – 90%

test)…………..…………………………………………...………….… 48

Figure 4.6 Result screen of NB-M, ZS, CC, NSW experiment (50% training – 50%

test) ……………………………………….……………………………. 48

Figure 5.1 Flow diagram of the proposed sentence boundary and heading detection

model ……………………………………………….…………………. 53

Figure 5.2 Detection of headings with ordinal numbers ………..…………………. 55

Figure 5.3 Detection of sub-headings at the beginning of paragraphs ……...……... 56

Figure 5.4 Detection of sub-heading formatted itemized text parts …...…………... 57

Figure 5.5 Example itemized text parts join operation output …………..………… 58

xiii

Figure 5.6 Representation of how paragraphs are linked with headings ……..….... 60

Figure 5.7 Example output when a sentence boundary is detected between a dot and

an apostrophe ………………………………………………………….. 60

Figure 5.8 Output when a not-sentence boundary case is detected between a dot and

an apostrophe ………………………………………………………….. 61

Figure 5.9 Example output when inner-sentence quote controls are disabled …..… 62

Figure 5.10 Example output when inner-sentence quote controls are enabled ……... 62

Figure 6.1 Sample FSM execution on a word with a proper predicate format …..... 69

Figure 6.2 Example system output for verb polarity classification and stem detection

tasks …………………………………….……………………………... 76

Figure 6.3 Example system output for verb polarity classification and conversion

tasks……………………………………….…………………………… 86

Figure 6.4 Example case where multiple results remain after FSM execution and path

 elimination ………………………………………...………….……..… 88

Figure 7.1 Flow diagram of the proposed named entity recognition model …....…. 90

Figure 7.2 Example system output after tokenization and token labeling on an input

sentence ……………………………………………………………..… 97

Figure 7.3 Example system output that shows named entity detection on an input

sentence ……………………………………………………………….. 98

Figure 7.4 Diagram of the GlossaryOfTerms database …..…………..………..… 103

Figure 7.5 Data stored in NamedEntityType table ………………..…..……….… 104

Figure 7.6 Sample data stored in Category table ………..……………..……….... 105

Figure 7.7 Sample data stored in Term table ………..…………………..……….. 106

Figure 7.8 Sample data stored in SynonymTerm table ……...…………..………... 107

Figure 8.1 Example verb polarity detection and conversion output on a complete

document …………………………………...…….……….………..… 115

Figure 8.2 Example GoT lookup output to detect terms and their siblings within a

sentence ……...…………………………………….………….…….... 116

Figure 8.3 Three types of questions generated from the same sentence ………..… 117

Figure 8.4 Generate test using new input document screen ……..………..…….... 120

Figure 8.5 Generate test using existing document screen ………..………..…...… 121

Figure 8.6 Register screen …………………………..……………………..…….. 122

xiv

Figure 8.7 Login screen …………………..……………………..……………….. 122

Figure 8.8 Examination screen ……………..……………………..……………... 123

Figure 8.9 After examination screen ………………………………..…..……….. 124

Figure 8.10 Find test screen with no filters are applied ………………………….... 124

Figure 8.11 Exam results screen when filter and sort operations are applied ……... 125

Figure 8.12 Preferences screen …………………………………………………… 126

Figure 8.13 Diagram of the ITEST2018 database used for examination model

 operations ……………………….……………………………….….... 127

Figure 8.14 Sample data stored in Exam table …………………………………….. 129

Figure 8.15 Example case where a synonym term is accepted as the correct answer.131

xv

LIST OF TABLES

 Page

Table 2.1 Changes on morpheme sequences based on the polarity condition of a

predicate .……………………..………….……………………………….. 8

Table 2.2 Explanation of morphemes used on Table 2.1 ……….………………..…. 9

Table 2.3 A list of NE types with the kinds of entities they refer to ….………...….. 10

Table 3.1 Averaged precision results over the medium scaled datasets ……...….… 13

Table 3.2 Best classification performances of different language model types ……. 15

Table 3.3 Classification accuracy of different classifiers ……...…………………... 16

Table 3.4 The effect of the word-based language model on SBD ……………...….. 19

Table 3.5 The effect of the morphological language model on SBD ………………. 20

Table 3.6 Rewrite rules in first step and application examples …………………….. 23

Table 3.7 Some of the word property flags with example words …………...……... 23

Table 3.8 Example word stems that are correctly detected by Snowball stemmer 26

Table 3.9 Example usage of contextual model for unknown words ……...………... 30

Table 3.10 Tested feature description ……………………………………………… 33

Table 3.11 F-measure in MUC metrics on feature related experiments ……………. 34

Table 3.12 Possible questions derived from example sentences …………………… 38

Table 4.1 Course document classification experiment results (10% training – 90%

test) ………………………………………………………………...……. 44

Table 4.2 Course document classification experiment results (50% training – 50%

test) ……………………………………...………………………………. 46

Table 4.3 Most distinctive 10 words for classification task based on their IG scores..49

Table 5.1 Example pre-defined rules about sentence boundary conditions ………... 51

Table 5.2 Regular expressions defined and used in SBD module …………...…….. 52

Table 5.3 Heading and Paragraph class fields with their types …………………….. 59

Table 5.4 Suggestive numerical values derived from SBD and heading detection

experiments ……………………………………………………………... 63

Table 5.5 Precision and recall values derived from SBD and heading detection

experiments ……………………………………………………………………... 63

Table 5.6 Experiment results of itemized text parts detection and join operations ... 65

xvi

Table 6.1 Main FSM elements and their purposes …………………………………. 68

Table 6.2 Rules to diversify suffixes regarding the first vowel of the suffix ………. 70

Table 6.3 Description of State class fields ………………………...……………….. 70

Table 6.4 Description of Suffix class fields …………...…………………………… 71

Table 6.5 Description of Transition class fields …………………...………………. 72

Table 6.6 Description of SuffixInWord class fields ………...…………………….... 72

Table 6.7 Description of Path class fields …………...………………………….….. 73

Table 6.8 Phonetic rules considered in the program ……………...………………... 78

Table 6.9 Auxiliary terms to control phonetic rules ……………………………..…. 79

Table 6.10 Methods defined for phonetic rule controls ………...………………….. 79

Table 6.11 Exceptional verb roots for simple present tense conversion …………… 80

Table 6.12 Defined suffixes and their formats …………...………………………... 80

Table 6.13 Phonetic rule control methods used for each suffix in sequence ...…….. 83

Table 6.14 Experiment results of verb polarity detection (classification) and

 conversion model …………………………………………………….... 87

Table 7.1 Categorized tokenizer labels …………………………...……………….. 91

Table 7.2 Search patterns of a 7-token sentence for n-gram lexicon lookups …...… 96

Table 7.3 Lexical (L) and contextual (C) model labels …………………………….. 96

Table 7.4 Defined NE types with their explanations …………...………………….. 98

Table 7.5 Categories with most terms for each coarse grained named entity labels ..101

Table 7.6 Distribution of categories based on the number of terms they contain 102

Table 7.7 Suggestive numerical values derived from NER model experiments 109

Table 7.8 Precision and recall values derived from NER model experiments ...….. 109

Table 7.9 NER model experiment results for individual NE types …...…………... 110

Table 8.1 General approach for true – false question generation using verb polarity

information …………………………………………………………….. 114

Table 8.2 Specified question type probabilities if value of ContainsTerm property is

True ……………………………………………………………………. 118

Table 8.3 Specified question type probabilities if value of ContainsTerm property is

False …………………………………...………………………………. 118

1

CHAPTER ONE

INTRODUCTION

1.1 Brief Description and Goals of Thesis

 In today’s world, information technologies have spread over to all levels of business

sectors and operational systems. Using them on educational issues is also a common

approach, as they provide considerable advantages such as durability, flexibility,

equality of opportunity via easier access and decent gain of time. In line with this

purpose, developing a user-friendly and goal-oriented educational software is aimed.

What is tried to be achieved by this project within the thesis is analyzing the text-based

lecture notes provided by the user to derive reasonable and meaningful questions.

Included domains for input lecture notes are history and geography, included question

types are true-false, fill in the blanks and multiple choice. Under favour of the

generated questions, it is projected to provide an opportunity for students to test and

evaluate themselves and make progress on the courses or topics they need. Designed

system also allows users to keep track of their progression in time and save the

questions they selected. By collecting the meaningful and qualified questions in time,

to create a question bank for further usage and allow users to benefit from this service

is the long-term goal of the project. To meet these expectations, this research suggests

natural language processing (NLP) methods for Turkish language.

1.2 Brief Overview of NLP and Turkish Language

 NLP is a field of computer science, artificial intelligence and computational

linguistics concerned with the interactions between computers and human (natural)

languages. Therefore, it can be defined as the art of solving (engineering) problems

that need to analyze or generate natural language text. To understand the given input

text in a language and propose solutions for different NLP task, different analysis

levels are required:

- Phonology: Concerned with how speech sounds are organized in a given

language.

2

- Morphology: Concerned with how words are constructed from primitive units

of meaning, which are called morphemes.

- Syntax: Concerned with the structural relationships between words to form

phrases and sentences.

- Semantics: Concerned with the denotation of words or phrases within a context

and how they combine to form sentence or document meaning.

- Pragmatics: Concerned with the different usages and interpretations of

sentences.

 This research mostly deals with tasks in the scope of former three analysis levels

for Turkish language.

 Turkish is an agglutinative language (like Finnish, Hungarian and Estonian). In

these languages, new words are primarily formed by adding suffixes or prefixes (called

affixes in general) to a root word. This might lead to relatively long words, as Turkish

can have words with 9 or 10 affixes, while English doesn’t tend to stack more than 4

or 5 affixes (Jurafsky & Martin, 2000). In these cases, a Turkish word is frequently

equivalent to a whole sentence in English. Figure 1.1 shows how the Turkish word

“yapabileceksek”, which means “if we will be able to do (something)” in English, is

parsed into 5 morphemes (root and 4 suffixes).

Figure 1.1 An example Turkish word parsed into its morphemes

 As Figure 1.1 shows, suffixes provide additional meanings like subject, tense,

aspect (completed, still in progress etc.), polarity (affirmation or negation), mood (is

necessary, possible, suggested or desired) when they are appended to a verb root. This

is a key characteristic to be considered while selecting proper NLP algorithms to use.

3

 NLP algorithms are divided into three basic models: Statistical, rule-based and

hybrid approaches. Main paradigm of statistical models is to automatically learn rules

of a language through the analysis of a large corpus of typical real-world examples by

dividing them into training and test data. The more user provides examples to train the

system, the more reliable output from the test data can be derived. Rule-based models

on the other hand, relies on pre-defined grammatical rules about the source language

to find out solutions. Hybrid models aim to exploit advantages of both statistical and

rule-based approaches with a combined structure. Turkish language suits well with

rule-based models as its agglutinative nature leads to specific grammatical rules about

suffixes (like which of them may follow which other, which of them may be appended

to which root types etc.). In this research, generally rule-based methods are preferred,

but statistical methods are also used in some cases.

1.3 Task Distribution of Thesis

 The workflow of the test generation process starts when a user loads desired text-

based lecture notes in Turkish to the system, then specifies constraints like number of

questions and question types to include. Thus, a proper test is generated. So,

automatized question and test generation is the primary task of thesis. However, there

exist four sub-tasks as pre-requisites to be carried out to fulfill primary task which are

document classification, detection of sentence boundaries and headings, detection and

conversion of verb polarity and named entity recognition (NER) to detect terms and

construct glossary of terms structures for history and geography domains.

1.4 Development Environment of Thesis

 Proposed educational software and all sub-modules within the thesis are developed

as Windows Forms Application in Microsoft .NET Visual Studio 2017 environment

by using .NET framework 4.6.1 and C# programming language. MS SQL Server is

used for data storage and management purposes.

 Three external libraries are utilized on document classification phase. Open source

Turkish NLP framework Zemberek is used for stemming purposes. Data mining and

4

machine learning library Weka is used to perform experiments. IKVM.NET, which

provides .NET implementation of Java class libraries is also included to migrate

required Weka libraries to .NET platform, as Weka is developed in Java language.

 Another external library named iTextSharp, which provides PDF generation and

manipulation functionalities on .NET projects, is used within test generation phase.

Using this library, users are allowed to get a single PDF document version of generated

tests for a neat and printer-friendly view.

1.5 Organization of Thesis

 This thesis is divided into 9 chapters and 5 appendices. Brief description of the

thesis, its scope and task distribution are given in Chapter 1. Tasks within the thesis

are briefly explained in Chapter 2. Previous academic studies and research on related

subjects are mentioned in Chapter 3. Document classification, detection of sentence

boundaries and headings, detection and conversion of verb polarity, NER to detect

terms and construct glossary of term structures, and automatized question and test

generation phases are detailed in chapters 4, 5, 6, 7 and 8 respectively. Finally, a brief

summary of the complete thesis is given in consideration of the derived results in

Chapter 9.

5

CHAPTER TWO

TASK DEFINITION

 Proposed framework is comprised of four NLP-related sub-modules that make the

primary examination module practicable when combined. This makes a total of five

tasks in the scope of thesis, which are briefly explained in this section.

2.1 Document Classification

 Given a set of classes, document classification (or text classification, text

categorization) seeks to determine which class an input document belongs to.

Automatic spam detection, sentiment detection, personal email sorting and vertical

search engines are some of the real world applications that benefit from classification

task (Manning, Raghavan & Schütze, 2009). In statistical text classification, a dataset

of documents is divided into training and test sets and documents in training set are

labeled to indicate their class information. Decision criterion of the text classifier is

learned automatically from training data and experiments are performed on test set.

Figure 2.1 represents of an example document classification operation.

Figure 2.1 Example document classification setup with six classes, each with three training documents

and a test set document

6

 Using a weighting scheme, words (or tokens) of documents are converted into

feature vectors to represent documents and train the system. Tf-idf, which exploits

term frequency (number of times a token occurs in a document) to get term weight

information and inverse document frequency (inverse function of the number of

documents in which a token occurs) to get term specifity information is a widely

preferred scheme, as it reflects the importance of a token to document. Tf-idf formula

is given below. (t: term, d: document, D: corpus (dataset), N: total number of

documents in the corpus, tft,d: term frequency of term t in document d, dft: document

frequency of term t)

(2.1)

 Selection of the classification algorithm has direct effect on the success rate, but

many other approaches like document standardization (in terms of text file format and

used character set), document preprocessing (removal of punctuation marks,

eliminating stop words), using n-gram tokens, stemming or lemmatization, using

feature selection methods (to reduce number of features) might also have an impact on

accuracy, depending on the used dataset and included domains.

 In this thesis, document classification is used to automatically detect the domain

(history and geography) of an input document, which is a beneficial approach for

filtering glossary of terms on test generation phase, filtering existing exams on test

selection phase and filtering exam results on test evaluation phase.

2.2 Detection of Sentence Boundaries and Headings

 Sentence boundary detection (SBD) is the task of automatically dividing a stream

of text or speech into grammatical sentences and a prerequisite for proper sentence

processing, as further syntactic and semantic analysis are dependent on this task (Tür,

Hakkani-Tür & Oflazer, 2003). Rule-based or machine learning approaches are used

on different SBD studies. In formal text, punctuation, capitalization and usage of

whitespace characters are utilizable to detect common patterns and generate rules to

7

state sentence boundary conditions, while speech recognizer output lacks these textual

cues and highly depends on machine learning approaches, where actual sentence

boundaries are labeled on training data. Identification of abbreviations, initials, ordinal

numbers, fractions are important sub-tasks as these expressions mostly contain a

period within, which might be considered as a sentence boundary incorrectly. To

overcome obstacles arising from abbreviations, using abbreviation lists about source

language or automatically detecting abbreviations before SBD (Kiss & Strunk, 2006)

are two studied approaches.

 Detection of headings can be considered as a task in the scope of classifying

document text data into separate sections, but it is also an essential requirement for

SBD, especially for studies on raw text data where distinctive tags to separate headings

and actual text are not existent. For example, correctly detecting headings with ordinal

numbers (like “2. Task Definition”) prevents incorrect sentence boundary detections,

when pre-defined rules are not single-handedly sufficient.

 In this thesis, sentence boundary detection is the primary task to obtain meaningful

sentences and put them into service for other tasks. Heading detection on the other

hand aims to detect all primary and sub-headings within a document and assign a

heading for each sentence or combine a sub-heading with sentences in necessary cases.

2.3 Detection and Conversion of Verb Polarity

 Verb polarity detection (in terms of morphology, not semantics) for Turkish is a

sub-task of stemming via morphological analysis, as a negation suffix (-m/-me/-ma) is

appended to a verb stem before tense, aspect and mood suffixes on negative predicates

in most conditions, differently from affirmative predicates. Therefore, successfully

parsing a predicate word into its morphemes implies the polarity information.

 Stemming and morphological analysis accuracy is crucial to convert a verb to its

opposite polarity, as this task remodels the suffix sequence appended to detected stem

by transforming required suffixes. Classification of detected stem as verb typed or

noun typed is also important, as it is possible to obtain more than a single morpheme

8

sequence for the same word and this information is essential to eliminate irrelevant

morphologic analysis results. Besides, Turkish phonetic rules based on vowel

harmony, consonant harmony and root deformation conditions must be considered on

this process, as alteration on characters might be required both for stem and suffixes.

 While Table 2.1 shows different suffix sequences appended to the same verb root

“koş” (run) to form a predicate for both polarity conditions, derived morphemes are

explained on Table 2.2. Predicates with different polarity but same tense, person,

aspect and mood suffixes are paired up with same index values. Negation suffixes on

morpheme sequences of predicates with negative polarity are emphasized with bold.

As it is seen, if negation suffixes are opted out, morpheme sequences look alike the

sequence of corresponding affirmative predicate with same index value. Changes on

some characters arise from Turkish phonetic rules, which will be explained in detail

on Chapter 6.

 In this thesis, a finite-state machine (FSM) structure is constructed for verb

stemming purpose and detection of verb polarity is an embedded task in this module.

After all sentences obtained from SBD module are processed through FSM, verb

polarity conversion operations are applied on a sentence only if morphological

disambiguation is achieved. Main goal of this complete process is to generate a true –

false question for the processed sentence.

Table 2.1 Changes on morpheme sequences based on the polarity condition of a predicate

Predicate

Index
Turkish Predicate English Meaning Polarity Morpheme

Sequence

1 Koştum I ran. Affirmative koş – tu - m

1 Koşmadım I didn’t run. Negative koş – ma – dı - m

2 Koşuyor He/She is running. Affirmative koş – uyor

2 Koşmuyor He/She is not running. Negative koş – m – uyor

3 Koşmalıyız We should run. Affirmative koş – malı – yız

3 Koşmamalıyız We should not run. Negative koş – ma – malı - yız

4 Koşalım Let’s run. Affirmative koş – a – lım

4 Koşmayalım Let’s not run. Negative koş – ma -ya - lım

9

Table 2.2 Explanation of morphemes used on Table 2.1

Predicate

Index
Polarity Stem

Morpheme
Suffix Morphemes

1 Affirmative koş tu (past tense with -di) – m (1st person singular)

1 Negative koş
ma (negation) –

dı (past tense with -di) - m (1st person singular)

2 Affirmative koş uyor (present tense)

2 Negative koş
m (negation) –

uyor (present tense)

3 Affirmative koş malı (necessitative) – yız (1st person plural)

3 Negative koş
ma (negation) -

malı (necessitative) – yız (1st person plural)

4 Affirmative koş a (optative) – lım (1st person plural)

4 Negative koş
ma (negation) –

ya (optative) – lım (1st person plural)

2.4 Named Entity Recognition to Detect Terms

 The term named entity (NE) is used to define anything that can be referred to with

a proper name. The process named entity recognition (NER), which is a subtask of

information extraction, aims to locate and classify named entities in text into pre-

defined categories. This is a combined task, as it must fulfill two requirements

respectively: To find bounds of text that constitute proper names and to classify them

according to their types correctly.

 Generic news-oriented NER systems focus on detecting expressions that indicate

people, places and organizations, while specialized applications may be concerned

with many other types of entities, including commercial products, works of art,

proteins, genes and other biological entities (Jurafksy & Martin, 2009). In most NER

systems, it is a common approach to extend the scope of a NE to include things that

aren’t proper names but have characteristic meanings within the text. This generally

leads the inclusion of temporal expressions like dates, times, named events and

numerical expressions like dates, times, named events and numerical expressions like

10

measurements, counts, prices to the NE categories (also called as tags). Table 2.3

shows example NE types and possible instances in the scope of these types.

Table 2.3 A list of NE types with the kinds of entities they refer to

NE Type Tag Sample Categories

Person PER Individuals, fictional categories, small groups

Organization ORG Companies, agencies, political parties, sports teams

Location LOC Physical extents, mountains, lakes, seas

Geo-Political Entity GPE Countries, states, provinces, counties

Facility FAC Bridges, buildings, airports

Vehicle VEH Planes, trains, automobiles

 NER systems mostly take an unannotated block of text as input and produce an

annotated block of text that points the names of named entities. For example, the

projected output for the unannotated input text “Mustafa Kemal Atatürk 1881 yılında

Selanik’te doğdu.” (Mustafa Kemal Atatürk was born in Thessaloniki in 1881.) is

“[Mustafa Kemal Atatürk]Person [1881]Date yılında [Selanik]Location’te doğdu.”

 Word ambiguity is a major concern for NER systems, like most of the other natural

language processing (NLP) tasks. For example, the word “Washington” might indicate

a person, a location, an organization (a sports club) or a facility (a ship). Or the word

occurrence “Ural” in Turkish text can refer to a location (a river) or a person.

 NER algorithms are divided into three models: Statistical, rule-based, hybrid

approaches. Main paradigm of statistical models is to automatically learn rules and

patterns of named entities through a pre-annotated training data. Besides, training data

has to be labeled to provide information about selected features if used. Most common

statistical models are Hidden Markov Models (HMM), Maximum Entropy (ME) and

Conditional Random Fields (CRF). Rule-based models rely on orthographical,

morphological and lexical information derived from feature sets. Syllabication,

tokenization, morphological analysis or lexicon lookups are the main operations to

assign feature values. Using lexicons to store person, location and organization names

that imply a NE existence is a common approach. Pre-defined grammatical rules and

character transformation conditions about the source language are also beneficial,

11

especially for agglutinative languages which require intensive suffix usage. Hybrid

models aim to exploit advantages of both statistical and rule-based approaches with a

combined structure. It is a serviceable approach to reduce effects of domain changes,

but storage requirements and possible system overhead should not be neglected.

 A NER system with high success rate might be serviceable for many applications

and use case scenarios in today’s world, like classifying content for news providers,

recommender systems, customer support, media analysis, sentiment detection, email

scanning, more accurate literature search or educational purposes which the proposed

NER model within this thesis is developed for. This model is specialized for Turkish

lecture notes within history and geography domains to detect named entities. Detected

characteristic terms are used as sources to build glossary of terms structures for

geography and history domains, which are used on question generation phase.

2.5. Automatized Question and Test Generation

 Four sub-modules with different NLP tasks developed within this thesis are

combined to carry out automatized question and test generation on input text-based

lecture notes provided by the users, which is the main educational task. Users are also

allowed to specify constraints about the test to be generated, which are number of

questions, included question types, preserved or shuffled sentence order. System is

specialized for history and geography domains. True - false, fill in the blanks and

multiple choice are the question types enabled for selection. Figure 2.2 shows the

relationships between the tasks defined within this thesis.

Figure 2.2 A diagram showing relationships between the tasks defined within the thesis

12

CHAPTER THREE

PREVIOUS WORK

 As stated previously, developed examination system is a combination of different

modules, each with a different NLP task to deal with. Therefore, this study touches

upon document classification, sentence boundary detection (SBD), stemming (with

morphological analysis), named entity recognition (NER) subjects alongside exam and

question generation. A comprehensive literature review is made to cover all.

3.1 Document Classification

 Lewis (1992) investigated the effect of feature set size for word-based indexing for

text categorization task on Reuters and MUC-3 data sets and optimal feature set size

is identified as 10 to 15. Used statistical model is evaluated by breakeven point metric,

the highest value that precision and recall are equal and 0.65 is reached on Reuters

data set with 10 features. Besides, word features are found out to be more effective

than extracted features by syntactic analysis and feature clustering.

 Fürnkranz (1998) investigated the effect of using n-gram words features for text

categorization, after removal of stop words. Study revealed that word sequences of

length 2 or 3 is the most beneficial, while using longer sequences reduces classification

performance. Besides, it is stated that unigrams give higher precision that multi-

grams. Inductive rule learning algorithm Ripper is used for experiments in news

domain and 81.18% is the highest f-measure value recorded.

 Han & Karypis (2000) determined that using a centroid-based classifier with

averaged similarity measure for each pre-defined document category (using weighted

tf-idf representation to represent a document) is a preferable method for document

classification. In 17 out of 23 experiments with different data sets, centroid-based

classifier was superior to Naïve Bayes (NB), k-nearest neighbor (kNN) and decision

tree algorithms.

13

 Manevitz & Yousef (2001) implemented a one-class support vector machine

(SVM) for document classification task and compared it with other one-class

classification algorithms. Experiments on Reuters data set showed that SVM approach

outperformed all methods except neural network classifier. SVM performance also

turned out to be sensitive to changes on selected data representation and kernel

function.

 Slonim, Friedman & Tishby (2002) proposed a greedy sequential information

bottleneck (sIB) clustering algorithm to unsupervised document classification.

Experiments are performed on small and medium scaled datasets collected from

20Newsgroups and Reuters-2000 corpora. Algorithm resulted in 83.3% precision on

small-scale dataset and 76.6% precision on medium-scaled dataset on average. It is

stated that sIB outperformed other clustering algorithms, even seemed to be almost

competitive with supervised NB classifier. Table 3.1 shows the results over medium

scaled datasets.

Table 3.1 Averaged precision results over the medium scaled datasets (Slonim et al., 2002)

Dataset sIB sK-means K-means sL1 sKL NB

NG10 79.5 76.3 70.3 27.7 58.8 80.8

NG20 57.5 54.1 53.4 15.3 28.8 65.0

Reuters 85.8 64.9 66.4 70.1 59.4 90.8

New-Reuters 83.5 66.9 67.3 73.0 81.0 85.8

Average 76.6 65.6 64.4 46.5 57.0 80.6

 Amasyalı & Diri (2006) worked on text classification for Turkish using n-gram

model. To evaluate system success, three tasks are defined as detecting the author,

genre and the gender of author of a text document. Used dataset contains 630

newspaper articles written by 18 authors on 3 different subjects (political, popular

interest and sport). 83.3% by NB for author identification, 93.6% by SVM for genre

identification and 96.3% by SVM for gender identification are the highest success

rates.

 Yıldız, Gençtav, Usta, Diri & Amasyalı (2007) proposed to exploit Turkish

morphology and use word stems instead of a bag-of-words approach for text

14

classification task. Used dataset contains newspaper articles from three daily Turkish

newspaper and categorized in five classes (economy, health, magazine, sport and

politics). Turkish NLP library Zemberek is used for the stemming phase. Words that

occur only once on the entire dataset are excluded when selecting feature vectors.

Experiments showed that using stemming mostly improves the success rate. Highest

accuracy score is stated as 96.25% via NB classification algorithm.

 Kesgin (2007) developed correlated stemmer and text classifier structures for

Turkish text documents. It is stated that Turkish phonics rules might require character

level transformation for a more accurate stemming operation. Developed software

allows users to load training documents and define categories to be used for

classification. Vector representations for words that are derived after training phase

are stored in database for further operations.

 Isa, Lee, Kallimani & RajKumar (2008) proposed a hybrid text classification

method that uses Bayes formula to derive vectors that represents a document, then uses

SVM to classify the documents. This method reported significant reduction in training

time and improvement in classification accuracy compared to single NB or TF-

IDF/SVM hybrids on 20Newsgrops, Vehicles (Wikipedia), Automobiles (Wikipedia)

datasets. However, NB outperformed NB-SVM hybrid on Mathematics (Arxiv.org)

dataset, on which defined classes share many common keywords.

 Amasyalı & Beken (2009) proposed to locate words on a multi-dimensional

semantic space and use this vector space for text classification task. Their study based

upon the hypothesis that two words’ semantic similarity is related with the number of

documents which the words co-occur. 15K web pages are scanned to locate

approximately 4500 different stems on space. Best results are reached when linear

regression is used for classification on 100-dimensional space with 93.25% accuracy.

Figure 3.1 shows distribution of news text in 5 categories (economy, magazine, health,

politic, sport) on first two dimensions.

 Tantuğ (2010) focused on document categorization for agglutinative languages with

statistical models and compared different approaches like using standard word forms,

15

root forms, root forms with part-of-speech (POS) info, truncated word forms and

character sequences. Dataset contains 20K news documents in eight categories. Using

truncated word forms (when first 4 characters of each word are taken) resulted in 81%

and character based modeling resulted in 82% f-measure on their best individual

performances and proven to be preferable methods to deal with possible data

sparseness problems on agglutinative languages. Best f-measure values obtained from

tested approaches are shown on Table 3.2 (n denotes language model order parameter).

Figure 3.1 Distribution of news text on first two dimensions

Table 3.2 Best classification performances of different language model types

n Word form Root Root + POS First4Char CharBased

1 0.7721 0.8017 0.7749 0.7924 0.6023

2 0.7767 0.8181 0.7891 0.8133 0.7488

3 0.7772 0.8192 0.7838 0.8139 0.8078

4 0.7772 0.8192 0.7859 0.8134 0.8212

5 0.7769 0.8192 0.7850 0.8134 0.8209

 Ting, Ip & Tsang (2011) inspected the sufficiency of NB as a document

classification algorithm. Experimental dataset contains 4000 documents equally

divided into four categories (business, politics, sport, travel) and %30 of them is used

for training. NB turned out to have best accuracy result with SVM, compared to neural

network (NN) and decision tree (DT). NB classifier is better in terms of computational

efficiency though, as it required only 0.19 seconds to build the model, while SVM

required 2.69 seconds. Table 3.3 shows the classification results of different classifiers.

16

Table 3.3 Classification accuracy of different classifiers

Correctly

Classified

Instances

Incorrectly

Classified

Instances

Precision Recall F-Measure

Naïve

Bayes
2717 (97.0%) 83 (3.0%) 0.970 0.970 0.970

SVM 2712 (96.9%) 88 (3.1%) 0.969 0.969 0.969

NN 2605 (93.0%) 195 (7.0%) 0.931 0.930 0.930

DT 2551 (91.1%) 249 (8.9%) 0.911 0.911 0.911

 Uysal, Günal, Ergin & Günal (2012) developed an SMS spam message filter

application using text and pattern classification techniques and effective feature

selection. kNN is used as classifier, while Gini index is the chosen approach for feature

selection. For training, a database that contains English SMS messages (747 spam and

4827 normal) is used. Experiments showed that using only the 10 most distinctive

terms as feature set gave the best results.

 Tüfekçi, Uzun & Sevinç (2012) proposed to exploit Turkish grammatical rules to

reduce the dimension of feature vector without decreasing text classification success.

Experiment results on web based news articles indicate that including only noun typed

word stems to feature set reduced the initial dimension size by %97.46 and reached to

92.73% accuracy with NB usage.

 Uysal & Günal (2014) proposed latent semantic features (GALSF) to represent

documents in text classification and latent semantic indexing (LSI) for feature

transformation approach. Expected contribution from LSI is stated as revealing

underlying hidden concepts such as synonym and polysemy while transforming term-

document matrix into a new subspace.

 Çoban, Özyer & Özyer (2015) worked on a dataset of Turkish Twitter messages

and applied document classification methods to correctly guess whether the sentiment

of context is positive or negative. Differently from other studies, extraction of recurrent

characters in a word for normalization is applied on preprocessing phase. For example,

the word “günaaydıııınnn” is translated to “günaydın”. System also benefits from

17

emoticon usage. Best accuracy score is recorded as 66.06%, which is achieved by the

n-gram model with multi-nominal NB (M-NB) as classifier.

 Yang et al. (2016) proposed a hierarchical attention network (HAN) to reveal more

informative words to be used as features for document classification. Their study based

on the observation that same word or sentence may be differentially informative in

different documents, so system uses context unlike a bag-of-words approach. Datasets

consist on user reviews (On Yelp, IMDB, Yahoo Answers, Amazon) and system is

expected to guess the given rating score (5 or 10 classes on each dataset). Best accuracy

is reached on Yahoo Answers dataset (with 10 classes) with 75.8%.

 Yıldırım & Yıldız (2018) compared traditional bag-of-words approaches to neural

network language models (NNLM) for Turkish text classification task. Considering

experiment results, it is stated that a bag-of-words model utilized with an effective

feature selection reaches comparable performance with NNLM. Using Information

Gain (IG) or chi-square (X2) as feature selection method with M-NB algorithm is

indicated as a successful combination.

3.2 Sentence Boundary Detection

 Riley (1989) described a regression tree model for many pattern recognition and

natural language processing problems. End of sentence detection for English is one of

the tasks. The problem is defined as classifying a period as "end of sentence", "end of

abbreviation" or both conditions at the same time. Model is constructed with 25

million words of news text sources and resulted in 99.8% accuracy on Brown corpus.

 Aberdeen et al. (1995) introduced Alembic system, which benefits from rule

sequences for many tasks. SBD is defined as a supportive zoner task for part-of-speech

(POS) tagging task in UNIX preprocess module. Punctoker (to find word boundaries

that are not whitespace), title-tagger (to mark personal titles and honorifics) and

parasenter (to zone text for paragraph and sentence boundaries) are the main

preprocessors used for SBD on the system.

18

 Palmer & Hearst (1997) presented an adaptive multilingual sentence boundary

model. Offered system, called Satz, uses a small lexicon and training corpus to

estimate the POS distribution of surrounding words of a punctuation mark. Neural

network and decision tree are the used algorithms to classify the punctuation mark.

System is tested on Wall Street Journal (WSJ) corpus for English and best results gave

near 99% accuracy.

 Reynar & Ratnaparkhi (1997) presented two Maximum Entropy (ME) models to

detect sentence boundaries. Both models seek to classify each occurrence of candidate

characters {., ? ,!} as valid or invalid sentence boundary. First model is targeted at high

performance for English and uses some language specific features, while second model

is aimed at being more portable across languages. System automatically produces the

abbreviation list from training data and uses this list to provide contextual information

for contextual features. Portable model tests reached 98% accuracy on WSJ corpus and

97.5% accuracy on Brown corpus.

 Temizsoy & Çiçekli (1998) developed an ontology-based approach for Turkish

sentence parsing task. System also benefits from morphological marks (suffixation) of

Turkish to handle ambiguity problems on text. Using these rule-based resources,

methodology aims to detect interaction between syntactic and semantic information

instead of building a syntactic tree structure. Used ontology represents entities

(atemporal individuals), events (temporal phenomena) and relationships between them

in a hierarchical structure.

 Stamatatos, Fakotakis & Kokkinakis (1999) used transformation-based learning

(TBL) to extract sentence boundary rules automatically. System is trained with a

corpus of Greek newspaper articles. In the first learning stage, it is assumed that all

candidate sentence-ending punctuation mark is actually a sentence boundary. Then,

using characteristics like capitalization of the token with possible end-of-sentence

boundary marker and the following token, triggering conditions to remove a sentence

boundary are tried to be detected. In the second stage, triggering conditions to insert a

sentence boundary are searched. System produced an error rate of 0.6%.

19

 Gotoh & Renals (2000) are worked on SBD in broadcast speech transcripts. They

introduced an n-gram language model via sentence boundary information derived from

finite state models, and an alternative model estimated from pause duration

information derived from speech recognizer outputs. Later model outperformed the

former one while combination of two improved precision and recall scores over 70%.

 Mikheev (2000) proposed a model that combines SBD, proper name identification

and abbreviation detection in one system. Additionally, the model treats the SBD

problem as a sub-task of POS tagger which is built as a Hidden Markov Model (HMM)

and ME combination. Main idea on this study is to classify a candidate upper-cased

token as a proper name or an abbreviation based on instances of that type within an

unambiguous context; which would also help to disambiguate sentence boundaries.

 Tür et al. (2003) used a statistical HMM with two inner models to handle SBD task.

System doesn't benefit from punctuation marks considering the usability of speech

recognition output. Task is considered as a boundary classification problem, so each

word boundary in training set is labeled as sentence-boundary (YB) or non-sentence

boundary (NB). Word-based model uses surface forms of words and checks the

probability of sentence boundary between words, while morphological model benefits

from final inflectional groups derived from morphological analyses of words and

checks the probability of sentence boundary after an inflectional group sequence.

When system is trained with 18 million words from Milliyet newspaper dataset and

both models are included, error rate is calculated as 4.34%.

 Table 3.4 shows probability values of being NB and YB between words “geldi”

(came) and “çünkü” (because) according to the word-based model. Based on these

values, it can be said that it is 30 times more possible to have a sentence boundary

between these 2 words.

 Table 3.4 The effect of the word-based language model on SBD

Output sequence Probability

geldi NB çünkü 0.00028166

geldi YB çünkü 0.00614714

20

 Table 3.5 shows probabilities of being NB and YB after the word “geldi” (came)

according to the morpheme sequence obtained by morphological model (Pos indicates

positive polarity, A3sg indicates third person singular agreement).

 Table 3.5 The effect of the morphological language model on SBD

Output sequence Probability

Verb+Pos+Past+A3sg NB 0.24849

Verb+Pos+Past+A3sg YB 0.751505

 Wang & Huang (2003) introduced Bondec system, which consists of three

independent applications (rule-based, HMM and ME) for SBD task. Annotated train

and test data, which are constructed from WSJ corpus are obtained from Palmer &

Hearst's (1997) study. System also uses lexical resources for common last names, first

names and honorifics; but automatically extracts abbreviations. Rule-based model

gave best results for precision with 99.56%, but uncommon cases led a lower recall

resulted in 76.95%. ME model is defined as the central part of the system and reached

best results among the three with an error rate less than 2%, using eight binary features;

while HMM resulted in 10%.

 Dinçer & Karaoğlan (2004) used Turkish syllabication and phonetic rules

collectively to disambiguate dots that indicates an end-of-sentence (EOS) from the

ones that are used for other purposes. Rules are represented as trigram combinations

which includes a dot and its adjacent character sequences. For example, [W * W]

which is one of the ambiguous cases, denotes the situation where a letter sequence W

which starts with an uppercase character, is followed by a dot and then followed by a

letter sequence W which starts with an uppercase character. Syllabication is proposed

to detect abbreviations and make progress on disambiguation. As a Turkish word may

be composed of a sequence of one or more six predefined syllable patterns: V, VC,

VCC, CV, CVC and CVCC (C indicates a consonant, V indicates a vowel); it is stated

that if a dot follows an abbreviation, the sequence is expected not to be a valid Turkish

word hence it does not have a valid syllabication. Test results show that proposed

system reached 96.02% accuracy.

21

 Kiss & Strunk (2006) presented Punkt system, a language-independent model for

SBD, which is also one of the most successful approaches for Turkish. Main

assumption is that most ambiguities in SBD can be overcome once abbreviations have

been identified. In this direction, system mainly tries to detect abbreviations by using

log-likelihood ratio algorithm. System also shows the potential of detecting initials and

ordinal numbers as subtasks. Newspaper corpora for eleven languages are used for

system evaluation and METU Turkish Corpus is the one used for Turkish. For Turkish,

system accuracy reached up to 98.69%, while mean accuracy for eleven languages is

calculated as 98.74%.

 Liu & Shriberg (2007) compared alternative evaluation metrics (like classification

error rate per word boundary, precision-recall (PR) curves, ROC curves, area under

the curves etc.) for SBD task instead of using a single error metric. The study showed

that decision curves might provide useful information to choose more preferable

models for specific regions. Another finding is that using PR curves for an imbalanced

data set generally provides better visualization for viewing differences among different

algorithms.

 Güz, Favre, Hakkani-Tür & Tür (2009) introduced generative, discriminative and

hybrid classification methods and lexical, morphological and prosodic features for

Turkish SBD task on speech data. Turkish broadcast news speech corpus collected at

Boğaziçi University BUSIM Laboratory is used for experiments. System used about

200 word-level prosodic features like pause duration at boundary and normalized

phone durations of the word preceding the boundary. When conditional random fields

(CRF) using all features is combined with factored hidden language modeling

(fHELM), system reached 0.926 f-measure value.

 Read, Dridan, Oepen & Solberg (2012) evaluated several publicly available SBD

systems both in edited, formal language text and user-generated web content in

English. As expected, decrease on success rates of all tested systems is observed. Using

unsupervised learning combined with heuristic rules, also tools to automatically

acquire domain-adapted lists of abbreviations is proposed for the future work.

22

 Aktaş & Çebi (2013) described SBD task as the process of generation a corpus.

They offered a rule-based sentence detection method for Turkish. System uses 21

sentence boundary rules which are determined by linguists and an abbreviation file

which has been taken from Turkish Linguistic Association. Each rule consists of a

character that indicates the first character of the word before punctuation mark that is

used to end sentences, a character to state the punctuation mark itself and a character

that indicates the first character after punctuation mark. System provides success rate

in a range of 99.6% and 99.8% on randomly selected columns from two Turkish

newspapers.

 Xu et al. (2014) worked on SBD in broadcast news. System uses prosodic feature

inputs on a deep neural network (DNN) model and maps them into boundary or non-

boundary posterior probability outputs. CRF is used to combine these probability

outputs with lexical features derived from text and to label inter-word positions as

boundary or non-boundary. This DNN-CRF model reached 81% f-measure on

reference transcripts (REF) and 64.9% f-measure on speech recognition output (ASR).

 Bektaş & Özel (2018) studied on the effects of using POS tag information on SBD

task for Turkish. Proposed system uses two features that indicates the POS tag of

words before and after the candidate end-of-sentence character along with initial nine

features taken from rule-based models. Used dataset is derived from a subset of

Turkish National Corpus. Five different supervised learning methods are tested, and

experiments showed that including POS tag features increased the success rate on four

of them (except Radial Basis Function (RBF) network) and using decision trees gave

the best accuracy result with 86.2% (improved from 84.7%).

3.3 Stemming

 Porter (1980) introduced one of the most widely used stemming algorithms for

English. This study depends on a lexicon-free model and uses a series of rewrite rules

for automatic removal of suffixes from words. Algorithm executes on a sequential

basis and different sets of rules are controlled on each step. Longest matching rule is

23

considered if more than one rule is matched. For example, first step contains four rules

to normalize plural nouns and third person singular verbs, shown on Table 3.6.

Table 3.6 Rewrite rules in first step and application examples

Rule Example Application

SSES → SS caresses → caress

IES → I carries → carri

SS → SS caress → caress

S →  cares → care

 Solak & Oflazer (1993) proposed a morphological root-driven parser for a Turkish

spelling checker module. System is provided with a dictionary of about 23.000 words,

which contains root morphemes and some irregular stems based on Turkish New

Writing Guide. 41 flags, that indicates certain word properties are used to detail each

dictionary entry. Some of the used flags are shown on Table 3.7.

Table 3.7 Some of the word property flags with example words

Flag Property of the word if flag is set Examples

CL_ISIM Is a nominal root BEYAZ, OKUL

CL_FIIL Is a verbal root SEV, GEZ

IS_OA Is a proper noun AYŞE, TÜRK

IS_OC Is a proper noun which has a homonym that is not a proper noun MISIR, SEVGİ

IS_SD
Is a nominal root ending with a consonant which is softened when a

suffix beginning with a vowel is attached

AMAÇ, PARMAK,

PSİKOLOG

F_UD
Is a verb root which has a vowel {I} in its last syllable that drops

when the passiveness suffix –{I}L is affixed
AYIR, SAVUR

 The root of a word is searched in the dictionary using a maximal match algorithm,

by removing a letter from the right until a matched substring is found. This approach

is backed up with parser execution considering checked flags, as longest matched

substring might lead to incorrect roots if single-handedly used. For example, correct

root of the word “yapıldın" (you were made) is the verbal root “yap” (do, make), not

nominal root “yapı” (structure).

 Solak & Can (1994) developed a similar approach for stemming in Turkish, using

a lexicon with actively used stems, describing records using 64 tags and searching for

24

the word stem by pruning a letter from right end at each step, applying morphological

analysis for each candidate stem and finally returning a possible stem set for the word.

 Xu & Croft (1998) proposed using corpus-based word co-occurrence statistics for

stemming and tested the approach on English and Spanish text. Main ideas behind

their study is that words with multiple meanings may state a different primary meaning

on different corpora and word variants that should be conflated will occur in the same

text windows. Used technique aims to prevent irrelevant conflations like “policy /

police” and “addition / additive”, as such unrelated words co-occur rarely. Experiment

results show that co-occurrence analysis is a good technique to improve average

precision of a stemmer.

 Cebiroğlu (2002) introduced a rule-based model to find out a Turkish word’s root

without using a lexicon. It is stated that Turkish suffix sequences can be defined with

stable rules and using these rules, a word can be morphologically parsed to reach its

root. Suffixes are divided into five sets (derivational suffixes, name inflectional

suffixes, affix-verbs, verb tense suffixes, verb inflectional suffixes) and a finite state

machine (FSM) that contains suffix order rules (from end to the beginning of a word)

is defined for each set. Separate FSM structures are combined with predefined work

order rules. After system execution, possible roots of a word with their type (as noun

or verb) are detected.

 Oflazer (2003) proposed a dependency parsing model with extended FSM for

Turkish by dividing words into inflectional groups (IG) which are separated by

derivational boundaries (^DB). A sentence is represented as a sequence of IGs, which

are used to define syntactic relation links. It is observed that a link starts only from the

last IG of a (dependent) word and land on one of the IGs of a (head) word on the right.

10 syntactic relations are defined on the model: Subject, Object, Modifier (adverb/

adjective), Possessor, Classifier, Determiner, Dative adjunct, Ablative adjunct,

Locative adjunct, Instrumental adjunct. Syntactic relation (dependency) rules are

stored as regular expressions that indicate the dependent IG, head IG and IGs in

between to be skipped over. Figure 3.2 shows dependency links on an example

25

sentence which is represented as an IG sequence. POS information of each IG is also

included (Abbreviations: Det for determiner, Subj for subject, Obj for object, Mod for

modifier, Adj for adjective, Adv for adverb, Pron for pronoun).

Figure 3.2 Dependency links and POS tags on an example sentence

 Sever & Bitirim (2003) introduced FindStem algorithm to find the root, apply

morphological analysis and choose the stem of the examined word respectively on

three different components. This approach starts the root search phase from the

beginning of a word and appends a letter on each step. A lexicon with root words and

possible root changes is used as an auxiliary structure. Afterwards, morphological

analysis is applied to eliminate irrelevant roots and derive candidate stems. Finally, a

word stem is selected among candidate derivations list. To test the algorithm, average

number of relevant documents retrieved is compared over stemmed and unstemmed

data, when 15 queries are executed on a dataset with about 2500 documents.

Unstemmed index resulted in 23.3, while stemmed index outperformed it with 28.4

(350 to 426 respectively in totals).

 Dinçer & Karaoğlan (2003) developed a lexicon free, probabilistic stemmer for

Turkish, while it is stated as applicable for other agglutinative languages like Finnish,

Hungarian etc. Proposed model benefits from probabilities of an ordered pair of letters

(h1,h2) being in the stem part, suffix part or between the stem and suffix part of the

given word to correctly determine a substring as stem. Experiments are done on

Turkish news texts and stemmer achieved to get correct stems with 95.8% success rate.

 Çilden (2006) implemented a stemmer for Turkish language using Snowball

language which is commonly used to develop stemmers for (mostly agglutinative)

many languages. Main focus is to make progress on information retrieval (IR)

26

purposes, so proposed model is focused on finding noun stems in text and covers only

suffixes that are appended to noun stems (which are noun suffixes and nominal verb

suffixes). Right-to-left FSM rules to derive noun stems are translated into Snowball

expressions to generate stemmer. Table 3.8 represents some successful results.

Table 3.8 Example word stems that are correctly detected by Snowball stemmer

Word Morphological Analysis Meaning Stem

Kalelerimizdekilerden
Kale-lAr-UmUz-DA-ki-lAr-

DAn

From the ones at one of our

castles
Kale

Çocuğuymuşumcasına
Çocuk-(s)U-(y)mUş-(y)Um-

cAsInA
As if I were her child Çocuk

Kedileriyle Kedi-lAr-(s)U-(y)lA With their cats Kedi

Çocuklarımmış Çocuk-lAr-(U)m-(y)mUş
Someone told me that they were

my children
Çocuk

Kitabımızdı Kitap-UmUz-(y)DU It was our book Kitap

 Akın & Akın (2007) introduced open source NLP framework Zemberek for Turkic

languages, which provides operations including morphological parsing and stemming.

For each language implementation, system uses predefined grammar requirements and

language data like alphabet, suffixes, root tree, special root and suffix cases etc.

Morphological parser and stemmer operations use a dictionary based top-down

approach where root candidates are found firstly, then possible suffix combinations

are investigated.

 Sak, Güngör & Saraçlar (2008) developed a finite-state implementation of a

morphologic parser and applied Viterbi decoding using averaged perceptron algorithm

for morphological disambiguator. A lexicon with 54.267 root words is also included

using TDK dictionary. Used feature set takes the morphosyntactic information of

current and previous two tags to allow left and right Viterbi decoding to find out best

morphological parse sequence for a sentence. Accuracy of the proposed disambiguator

is calculated as 97.81%.

 Aktaş (2010) proposed rule-based methods for different NLP tasks like sentence

boundary detection, POS-tagging and morphological analysis. System uses rules to

specify which suffixes can be appended to which root - stem types (noun or verb),

besides 85 syntactic (word order) rules based on word types. Rules list is stored in

27

XML format to provide easier modification. Project includes a complete lexicon with

the list of words in Turkish dictionary, provided by Turkish Linguistic Association

(Türk Dil Kurumu, TDK). Using this lexicon, a database structure is built, and possible

words, stems and suffixes are stored in 7 different tables which are: Kokler (Roots),

KoklerSanal (Modified roots by vowel changing rules), Govde (Stems), Kelimeler

(Words), Grup (Information about suffix groups), Ek (Suffixes), Ekler (All suffix

versions according to morphophonemic rules).

- Kokler table holds Boolean attributes to store information of whether a root

can be a noun or not, also verb or not.

- Govde table stores a list of stems in Turkish with Boolean attributes to indicate

possible POS tag info with related attributes like isNoun, isAdj, isAdv.

- Grup table stores the meaning of tags, which are used to define the rules in the

process of parsing stem or root and indicates the word types that the suffix

group can be added to.

 Öztürkmenoğlu & Alpkoçak (2012) compared no-lemmatization approach with

three different lemmatization approaches for Turkish (morphological analyzer based

on FSM, dictionary-based lemmatization (DTL) and stemmer module of open-source

Zemberek tool) and fixed length truncation for information retrieval (IR) over Milliyet

newspaper articles collection. Experiment results demonstrated that using

lemmatization increases IR performance and using maximum length lemmas instead

of minimum is more beneficial. Also, DTL has reached more effective IR performance

than other approaches with highest mean average precision (MAP) value in 34.86%.

 Şahin, Sulubacak & Eryiğit (2013) introduced a two-level Turkish morphological

analyzer based on a lexicon and analyzed the effects of using flag diacritics to deal

with exceptions in phonetic and morphological rules. Flag diacritics are beneficial to

allow or disallow exceptional conditions or certain affix concatenations which may be

impossible or impractical to attain by updating finite state transducer (FST)

implementation. Flag diacritic types are defined as unification, positive setting,

negative setting, require test, disallow test and clear feature. For example,

@U.Hş.var@ and @U.Hş.yok@ are unification type flags that indicate whether a verb

28

(like “döv”, “gül”, “it”) is allowed to take a reciprocal suffix (-Uş) or not (like “yolla”,

“salla”, “havalan”).

 Moral, Antonio, Imbert & Ramirez (2014) assessed benefits and drawbacks of

stemming approaches on IR process on different languages. It is stated that there is not

a wide agreement about the usefulness of stemming on IR, as many other factors can

have an influence on performance. Also using performance metrics like compress ratio

of input vocabulary, types of generated error (like over-stemming and under-

stemming) are suggested for a more accurate evaluation instead of using precision and

recall metrics. Even so, many researchers agree on benefits of using a stemmer for IR

purposes on highly inflective languages (like Turkish), on datasets with short

documents or when there are data storage limitations.

 Proposed model in this report uses stemming to detect polarity of verbs and

accurately convert affirmative to negative or negative to affirmative. Most of the

morphological analyzers developed for Turkish are able to detect the polarity

information (affirmation or negation) of a verb. However, there is no published study

on conversion of polarity between each other for Turkish verbs, as far as we know.

Instead, polarity information is widely used for sentiment analysis purposes in the

literature.

 Vural, Cambazoglu, Senkul & Tokgoz (2012) proposed a framework for

unsupervised sentiment analysis in Turkish text documents, using a movie reviews

dataset obtained from Beyazperde, a well-known website about movies. Özsert &

Özgür (2013) constructed a word relatedness graph by using relations in WordNet and

proposed a random walk model using commute time as proximity measure for

multilingual word polarity detection. Dehkharghani, Saygin, Yanikoglu & Oflazer

(2016) introduced SentiTurkNet, a comprehensive polarity resource for Turkish by

assigning three polarity scores for each synset in Turkish WordNet, to designate its

positivity, negativity and neutrality levels.

29

3.4 Named Entity Recognition

 Message Understanding Conferences (MUC) are designed to promote and evaluate

research in information extraction. These conferences were initiated by NOSC (Navy

Operational Support Center) to assess research on the automated analysis of military

messages containing textual information. Two primary evaluation metrics precision

and recall are detailed and used for IE tasks in MUC-2. Named-entity recognition for

English is one of the tasks of MUC-6 which is organized in 1996. Training corpus is

generated by annotating Wall Street Journal articles. ENAMEX (for people,

organization, location) and NUMEX (time, currency, percentage) tags are introduced

in this conference. 15 participants enrolled for the NER task and most of the results

are successful with precision and recall values over 90%. Most successful system

reached %97 precision, 96% recall values. (Grishman & Sundheim, 1996)

 Cucerzan & Yarowsky (1999) is the first published NER research that includes

Turkish. System is language independent and depends on bootstrapping algorithm with

iterative learning on a character-based tree structure. System is built after the

acceptance that words strongly tend to exhibit only one sense in a document. It uses a

small named entity list about the source language as training seeds and morphological

and contextual patterns as features. For example, “-escu” is stated as an almost perfect

indicator for a last name in Romanian. This study reports 60% precision, 47% recall

and 53% f-measure for Turkish.

 Alfonseca & Manandhar (2002) built a general named entity recognition (GNER)

system to find the most accurate generalization (hypernym) for an unknown concept

or instance, by using WordNet ontology (lexical database). To classify an unknown

instance, system runs queries on search engines to derive similarity scores for

candidate words. Used notion here is that words semantically related must co-occur

with the same kinds of words. This research extends the scope of NER with a more

complex taxonomy structure. Domain specific documents are taken from the electronic

version of “The Lord of the Rings” for experiments. Figure 3.3 shows the ontology

30

used and the classification results for concepts hobbit, Mordor, Isengard, Hobbiton,

wizard, horse and eagle.

Figure 3.3 Ontology used in experiments and classification results (detected hypernyms) for 7-unknown

concepts

 Tür et al. (2003) developed an information extraction system for Turkish and NER

is one of the tasks they worked on (other two are sentence and topic segmentation).

Their NER approach is based on n-gram language models embedded in HMM. The

study consists of four models: Lexical model uses boundary flags between word tokens

to indicate name entity borders with yes, no and mid flags. Contextual model is used

to capture information from surrounding context of word tokens. Morphological model

uses case information (initial-upper, all-lower, all-upper, mixed etc.) alongside with a

proper name database that stores common Turkish person, location and organization

names. Tag model is only concerned with trigram possibilities for name entity tag

(person, location, organization, else) and boundary flag (yes, no, mid) combinations.

Newspaper articles are used for experiments. When all models combined, system has

a success rate with 90.4% NE text accuracy, 92.73% NE type accuracy and 91.56% f-

measure. Table 3.9 shows the NE tag probabilities calculated on contextual model for

an unknown word following the word “Dr.” and a word boundary. Person appears to

be the most suitable NE tag with 99% probability value.

Table 3.9 Example usage of contextual model for unknown words

Output Sequence Probability

Dr./else boundary/yes unk/person 0.990119

Dr./else boundary/yes unk/location 0.000690

Dr./else boundary/yes unk/organization 0.000880

Dr./else boundary/yes unk/else 0002688

31

 Like MUC, CoNLL events also give shared tasks about computational linguistics

to participants and evaluate final results. Task in CoNLL-2003 is to build a language

independent NER (English and German are the test languages); with a special

challenge which is to include unannotated data to the training phase of the system.

Participants are provided with different features (pos tag, chunk tags, affix

information, gazetteers etc.) and given freedom to decide among them. It is observed

that most participants used unannotated data to find out additional gazetteer terms.

Interestingly enough, generally using only gazetteers seemed to provide more error

reduction than systems that tried to find additional terms. On the other hand, using

unannotated data to obtain capitalization information seemed to have positive effect

on results (Sang & Meulder, 2003).

 Wentland, Knopp, Silberer & Hartung (2008) built a multilingual named entity

resource called HeiNER. Wikipedia is used as the main resource, as it contains a large

amount of NEs compared to other commonly used lexical resources like WordNet.

English is selected as the source language and Wikipedia cross-language links are used

to build a translation dictionary to convert detected NEs to target languages. System

also builds a disambiguation dictionary using redirect pages (for example “USA” and

“United States of America” points to the same link) and disambiguation pages (for

example term “Python” may indicate “Monty Python” or “Python” (programming

language). Another advantage of using Wikipedia articles is that, there is a high

probability for an article heading to describe a NE. This surpasses some of the common

NER problems like NE boundary detection or necessity of morphological

normalization.

 Küçük & Yazıcı (2009a) built a rule-based NER system for Turkish and tested its

success on different domains (news articles, child stories, history texts). System uses

lexical resources like dictionary of Turkish person names, list of well-known political

people, list of well-known organizations and pre-defined pattern bases to detect

possible NEs. Resulted f-measure is 78% for news articles domain; but it drops down

to 69% for child stories and 55% for historical texts. Existence of foreign person names

in child stories and absence of historical person and organization names in lexical

32

resources are determined to be leading causes for performance drops Results are in

line with the general opinion that performance decrease is possible when rule-based

NER systems are ported to other domains. Figure 3.4 shows the system’s information

source schema.

Figure 3.4 Information sources used for rule-based NER system

 Küçük & Yazıcı (2009b) also tested their system on transcription test derived from

video texts. 16 news videos from Turkish Radio and Television Company (TRT)

archive are selected for experiments. Videos are manually transcribed as no automatic

speech recognizer exists for Turkish back then. Evaluation resulted in a precision of

73%, recall of 77% and f-measure of 75%.

 Tatar & Çiçekli (2011) described an automatic rule learning method using

supervised learning. System starts with a set of named entities collected from a training

dataset and generates rules from them. Main goal here is to get through domain

adaptability problems, which is common for rule-based systems. System utilized from

orthographical, contextual, lexical and morphological features. 2-level gazetteer

structures are used in lexical model. For example, location is a higher level, more

general categorization while location.country, location.city are secondary level, more

specific classification. System is tested on Turkish news articles (TurkIE dataset) and

resulted in a precision of 91.7%, recall of 90% f-measure of 91%.

 Küçük & Yazıcı (2012) moved through their rule-based model and developed a

hybrid system. 2 statistical features n (denotes the number of occurrences of an entity

33

text) and p (denoted the number of occurrences which happen to be annotated) are

defined and p/n is used as a confidence value for each entity. In training phase, entities

with high confidence values are extracted and added to the resources of recognizer.

Significant performance improvement over rule-based system is observed with f-

measure values of 85.9% on news data set, 85% on child stories and 66.9% on

historical texts.

 Şeker & Eryiğit (2012) used conditional random fields (CRF) as their statistical

model. Alongside with gazetteers, they used generator gazetteers (22 person, 44

location, 60 organization) that holds tokens that could come after or before regular

words and construct NEs. 14 features are defined in 3 categories (morphological,

lexical, gazetteer lookup). Windows width for CRF features is defined as {-3,+3}

where 0 is current token, +1 is next, -1 is previous token etc. Features are tested by

including them one by one to the system. Experiments showed that all features but SS

(start of sentence) had improved performance of the system. When all features

included, system had reached 94.6% final f-measure in MUC metrics and 91.9% final

f-measure in CoNLL metrics. Table 3.10 gives information about tested features and

Table 3.11 shows the experiment results in MUC TYPE, MUC TEXT and MUC

metrics.

Table 3.10 Tested feature description

Feature Code Category Description

STEM Morphological Stem information of the word’s surface form

POS Morphological Part-of-speech tag information

NCS Morphological Noun case information (nominal or non-nominal)

PROP Morphological Proper noun information

INF Morphological All inflectional tags from morphological analysis

CS Lexical
Case feature (lowercase, uppercase, proper name,

mixed)

SS Lexical
Start of the sentence information (is beginning or

not)

BG Gazetteer lookup Indicates if token exists in a base gazetteer or not

GG Gazetteer lookup
Indicates if token exists in generator gazetteer or

not

34

Table 3.11 F-measure in MUC metrics on feature related experiments

 Küçük, Jacquet & Steinberger (2014) performed NER experiments on Turkish

tweets. 2320 tweets are collected to form data set. Besides seven basic types (person,

location, organization [these three are also called as PLO], date, time, money, percent),

a misc type (product names, tv shows, music bands etc.) is also used for annotation.

Hashtag usage is also suggestive as it is common to have NEs in hashtags. Two lists

for person and organization names, which are detected to be used as single tokens in

news articles (at least 30 times in Europe Media Monitor database) are built and used

in system. Results show that 25% of PLO initial letters are not properly capitalized,

only 32% of person names are composed of first name-surname pairs and %10 of PLO

text has affected from normalization of Turkish characters. Another problem is the

multiword NE tokens in hashtags that are written without whitespace. System reached

66% precision, 31.5% recall and 42.6% f-measure values.

 Küçük, Küçük & Arıcı (2016) composed and shared a dataset comprising news

articles in Turkish with named entities annotated, for general use of NER studies. 10

news articles from METU Turkish Corpus are selected and final annotation document

consists of 1425 named entities (398 person, 567 location, 460 organization).

 Şeker & Eryiğit (2016) moved through their study in 2012 and added TIMEX and

NUMEX entity types. They also worked on a new dataset (Web2.0 domain) with user

generated content (UGC). Additional features like numeric value, percentage sign etc.

are defined and used for new entity types. A lexicon named Auto Capitalization

35

Gazetteer (CAP) is constructed, which contains gazetteer terms that are unlikely to be

used as common noun. Unlike their previous study, this time feature performances are

tested by removing them from the complete model one by one. This way SS (start of

sentence) feature is determined have 2.11% positive effect on performance.

Experiments on UGC data set resulted with 67.9% success on best model. When CAP

feature is removed it causes more than 20% performance loss.

 Sahin, Tirkaz, Yildiz, Eren & Sonmez (2017) automatically classified Turkish

Wikipedia pages to construct a corpus for NER task. Constructed corpus contains

approximately 300K entities. Entities are categorized in 77 different domains to

provide fine-grained classification, and those domains are grouped in four coarse-

grained types (person, location, organization, misc). A semantic knowledge base

named Freebase is used to overcome noisy data and ambiguities on text. Highest f-

measure is calculated as 84% for the system.

 Güneş & Tantuğ (2018) proposed a bidirectional long short-term memory neural

network structure and tested it on six different models. When base input set that only

contains word vectors is used, highest f-measure value is calculated as 91.59%. When

orthographical and morphological attributes are included in input set and used on a

multilayer neural network model, system reached 93.69% f-measure value.

 Güngör, Üsküdarlı & Güngör (2018) proposed a neural network model for Turkish

NER task, which creates a context vector for every position in the sentence by

processing the words in forward and backward directions. It is aimed to detect inner-

word relations with these vectors as they provide character level information unlike

distributional word vectors. Success of the system, which is calculated as 90.96% f-

measure when only distributional word vectors are used, has shown improvement with

93.37% f-measure when character level word vectors are included.

3.5 Exam and Question Generation

 Studies about exam and question generation is generally centered around two

approaches: Effectively using large scale question banks containing categorized

36

questions and using question templates with numeric parameters to produce dynamic

questions, mostly for math and science subjects. Some of the remarkable studies are

mentioned on this section. On the other hand, generating exam questions using the

context of an input document on time, which is aimed to accomplish by the proposed

educational software, is not a well-studied area with very few studies.

 Baklavas, Economides & Roumeliotis (1999) compared web-based test tools with

respect to the supported question type variety, multimedia usage, security, easiness of

development, maintenance and delivery of tests and automatic grading and analysis of

results. Test questions are created by instructors via on-screen instructions or selected

from a question bank on these tools. Cyber Exam and QuestionMark Perception are

stated as best choices based on the criteria and practical experience.

 Instead of choosing from an existing set of problems, Lee (2000) proposed using a

set of templates to generate different variables for the same question. System is tested

on 120 test questions (each with numeric variables over graphics), from The

Fundamentals of Engineering (FE) examination using over 500 templates. The

generator program changes problem variables, correct answers, wrong answers (in a

reasonable range) and order of exam questions. Figure 3.5 shows an example testing

page with a generated question.

Figure 3.5 The exam testing page with an example generated question

37

 DePiero (2001) proposed NetExam, a web-based testing engine, which generates

exams on demand by randomly selecting questions from given subject categories from

a database. Study also worked on the assessment process after a group of students

completed an exam, with computed statistics over submitted and automatically graded

exams and the provided bulletin board style comments section.

 Shende, Dalch & Warner (2002) projected to unite exam administrators, examinees,

question providers and question approvers on an exam distribution server with inner

modules like exam generation, exam question approval, exam scoring etc. Proposed

model benefits from a database of exam questions grouped in predetermined sections.

To collect meaningful questions, system is designed not to add suggested questions to

database before an approval process.

 Using R programming, Grun & Zeileis (2009) developed the package exams, to

provide a framework for automatic generation of statistical exams. System exploits a

pool of exercises and a master file to identify the layout of the final PDF document.

Solutions of the provided types of exercises are either multiple-choice answers,

numeric values and short text answers. A separate Sweave file, which contains R code

for data generation and solution calculation, and LaTeX code to store metadata about

question and solution environment, is used to specify each exercise in the pool.

 Ugurdag et al. (2009) worked on converting a static multiple choice math/science

question (with constant numbers and choices) to a dynamic question using parameters

and proposed the concept smart question (sQ) in line with this purpose. A parameter

is used to express the initial numbers given in a question. A smart question generation

starts with assigning an unaltered image file (the original question) and continues with

parameter definition, parameter specification and question generation phases. Using

this concept, a range of values or a formula is specified for each parameter and variety

in answer set is provided.

 Özkul (2009) presented a technique to automate test preparation of quiz questions,

answer keys and student feedback. The project mainly aims to standardize questions

38

and their numerical answer set. For this purpose, past quiz questions written in

Microsoft Word and answer keys in Microsoft Excel are used to create templates.

Afterwards, problem generator is executed to generate random numbers within defined

limits to be used on templates. It is stated that the system has been used at Operations

Management course at the State University of New York (SUNY) College successfully

since 2004 for eleven quizzes including 22 questions.

 Liu, Shi, Liu & Li (2010) focused on to enhance question selection from a question

bank for an automatic test generation process and proposed a multi-constrained model

based on genetic algorithm. Constraints defined for a test paper include score, answer

time, questions forms, difficulty, chapters and teaching requirement. Out of 7-

dimensional variable space, difficulty, chapters and teaching requirement are selected

to construct a 3-dimensional model to achieve a test paper that meets the user’s needs.

 Hussein, Elmogy & Guirguis (2014) proposed a model for English question

generation task that selects one sentence at a time, extracts sections of it and uses

patterns and transformation rules to construct a question. System uses OpenNLP

statistical parser for training purposes, mainly to tokenize sentences into phrases and

detect part-of-speech (POS) tags for these phrases. Template rules are scanned to find

a suitable question phrase (what, where, who, when, how much) for tagged phrases.

Users are also allowed for modification (which adds a new template rule to database),

as they can edit generated question text, choose a level of hardness and change the

question phrase. Table 3.12 shows some of the possible questions derived from a

sentence.

Table 3.12 Possible questions derived from example sentences

Given Statement Possible Question

Ali is going to London.
Where is Ali going to?

Who is going to London?

Ahmet plays football in Egypt team.
Where does Ahmet play football?

Who play football in Egypt team?

Ali played football in Cairo.
Where did Ali play football?

Who play football in Cairo?

I found my books on the table. Unmatched (New template rule needed)

39

CHAPTER FOUR

COURSE DOCUMENT CLASSIFICATION

4.1 Overview and Dataset Introduction

 In the earlier phases of the project, user is expected to indicate the course of the

provided lecture note (as History or Geography) to the system. This is thought to be

an improvable approach later, with the automatic classification of the documents. Aim

here is to find out effective ways to auto-identify the class label of Turkish lectures

notes by comparing many aspects of a complete document classification process with

many experiments. CGR (for Geography) and TRH (for History) are the specified

document labels. 1200 proper documents (600 for CGR and 600 for TRH) are collected

from various publicly available web-based or written sources to construct a lecture

notes dataset to be used on experimentation phase. This is the only module in this

thesis that uses a bag-of-words approach, in which occurrence and frequency of words

within a document is the main concern and word order is disregarded. Therefore it

doesn’t require an initial sentence boundary detection service.

4.2 Compared Approaches

 Four aspects of a document classification task specialized for geography and history

domains are compared to find out the most suitable model to be used on exam module.

4.2.1 Existence of Stop Words

 The most common words in a language, which have very little meaning (like “a, an,

the, on, in, at” in English) are called as stop words. Dataset is used both with (SW) and

without Turkish stop words (No-SW) to see how presence – absence of them effects

the results. The stop word list of an open source project name “TrStop” is used for this

assignment (Aksoy & Öztürk, 2016). This is a comprehensive and up-to-date source

for this purpose with a total of 285 words. 278 of them are selected for usage and stored

as a text document. Complete stop word list is given in Appendix-1.

40

4.2.2 Stemming Approaches

 Stemming in agglutinative languages refers to a heuristic process that aims to reach

to the stem (or root in some approaches) of a word by extracting inflectional suffixes

(also derivational suffixes in some approaches), instead of using its surface form. Five

approaches are compared on this module, which are No Stemming (keeping words in

their surface forms) (No-S), F4 (truncating words after 4 characters), F5, F6 and

Zemberek Stemmer (ZS).

4.2.3 Classification Algorithms

 Classification is taken as a machine learning task to be handled with supervised

learning approach in this thesis. Accordingly, seven different classification algorithms

are compared here. They are Naïve Bayes Multinomial (NB-M), Naïve Bayes

Bernoulli (NB-B), k-NN (k-Nearest Neighbor) by taking k as 1,3 and 5 separately,

Decision Trees (DT) and Support Vector Machines (SVM).

4.2.4 Feature Selection Methods

 Feature selection is the process of selecting a subset of features to be used in model

construction, based on their scores in statistical tests for their correlation with the

outcome variable, instead of using all features. In document classification, to reduce

the number of input words to be used for analysis and find most distinguishing ones,

feature selection can be applied. Four different approaches are compared here, which

are No Feature Selection (No-FS), Information Gain (IG) with ranker, Correlation

Coefficient (CC) and taking the most frequent 500 words (MF-500) for each class.

4.3 Experimentation Phase

 Besides the compared approaches, using different sizes for different – test data set

is another observation. First, complete data set is split as 10% training and 90% test,

then 50% training and 50% test. This makes a total of 560 experiments. Weka is the

used platform to perform experiments, after preprocessing of collected raw documents.

41

4.3.1 Document Preprocessing

 Preprocessing phase includes punctuation and symbol removal, excessive

whitespace corrections, lowercase transformation, extraction of single digit numbers

and letters. It is observed that some of the raw documents also had control characters

which are irrelevant and also removed.

 If it’s a requirement for the particular experiment, stop word elimination and the

related stemming operation are also applied to put the text into its final form. Figure

4.1 shows an example output from a three staged preprocessing (text normalization,

stop word removal and stemming using Zemberek respectively) applied on a raw

document text.

Figure 4.1 Example output on different preprocessing stages of a raw document text

 Afterwards, the prepared text is used to create UTF-8 encoded XML formatted text

files with 3 tags (Course, Title, Text + “_StemmingApproachUsed”) to derive a

standardized format. Example standardized documents derived from the same history

lecture note after preprocessing phase are shown on following two figures. Figure 4.2

represents the output when No Stemming approach is applied, and Figure 4.3

represents the output when F5 stemming approach is applied. Stop words are removed

on both documents.

42

Figure 4.2 Standardized document example with No Stop Words and No Stemming approach

Figure 4.3 Standardized document example with No Stop Words and F5 stemming approach

4.3.2 ARFF File Generation

 ARFF (Attribute-Relation File Format) is the required file format to carry out

machine learning experiments on Weka. An ARFF file is a text file that describes the

instances sharing a set of attributes. ARFF files are composed of two sections: Header

section contains the name of the relation, a list of the attributes and their types, while

data section contains the data instances denoted with the defined attributes. While data

mining tasks with numeric values often exploit high numbers of attributes, ARFF files

used for this task contains 2 attributes for each document instance as text (string typed)

and class (nominal typed with possible values {CGR, TRH}).

 Weka allows using separate ARFF files for training and test data or using a single

ARFF file with combined data. If second option is selected, proportion of training to

test data has to be specified before experiments. In this task, preprocessed and

43

standardized lecture notes are gathered up to obtain a single ARFF file for each five

stemming approaches, with or without stop words in text, which makes a total of 10

files. Thus, each ARFF file contains a total of 1200 data instances to denote every

lecture note with its class label. Words of document instances collected in ARFF files

are used to derive feature vectors for experiments. Every ARFF file is used to perform

28 experiments (for 50% training – 50% test distribution), as selection from among

seven classification algorithms and four feature selection methods are made on Weka

interface. Figure 4.4 shows header section and first two instances from data section of

an example ARFF file that is generated for F6 stemming with no stop word removal

approaches.

Figure 4.4 ARFF file example for F6 stemming and no stop word removal approaches

4.3.3 Interpretation of Experiment Results

 Precision (fraction of relevant instances among the retrieved instances), recall

(fraction of relevant instances that have been retrieved over the total amount of

relevant instances), f-measure (accuracy measure that takes harmonic mean of

44

precision and recall) and incorrectly classified instance percentage are the metrics used

for comparisons. First, only 10% of the complete dataset is used for training (120

documents) and 90% is used for test (1020 documents) to check whether any

combination of approaches yields satisfactory results. Table 4.1 shows the results in f-

measure, with best scores highlighted.

Table 4.1 Course document classification experiment results (10% training – 90% test)

 Highest f-measure value is observed as 97% and 20 different combinations of

approaches have reached that peak score. All of these 20 experiments are executed

under NB-M or NB-B algorithms, used a stemming approach and used a feature

selection method. Other observed results are listed as follows:

No-S F4 F5 F6 ZS No-S F4 F5 F6 ZS

No-FS 0.96 0.95 0.95 0.95 0.96 0.96 0.95 0.95 0.95 0.95

IG 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.96

CC 0.96 0.96 0.96 0.97 0.96 0.96 0.96 0.97 0.97 0.96

MF-500 0.96 0.96 0.96 0.95 0.95 0.96 0.96 0.96 0.95 0.95

No-FS 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

IG 0.96 0.97 0.97 0.97 0.97 0.96 0.97 0.97 0.96 0.97

CC 0.96 0.97 0.97 0.97 0.97 0.96 0.97 0.97 0.97 0.96

MF-500 0.96 0.97 0.96 0.96 0.97 0.96 0.96 0.96 0.96 0.96

No-FS 0.38 0.45 0.40 0.39 0.81 0.38 0.41 0.38 0.41 0.75

IG 0.43 0.46 0.47 0.43 0.51 0.43 0.45 0.46 0.42 0.49

CC 0.42 0.46 0.45 0.40 0.50 0.40 0.45 0.45 0.40 0.49

MF-500 0.64 0.65 0.68 0.63 0.67 0.61 0.63 0.62 0.59 0.62

No-FS 0.36 0.42 0.40 0.38 0.81 0.35 0.37 0.39 0.37 0.58

IG 0.38 0.40 0.42 0.39 0.44 0.37 0.39 0.40 0.38 0.43

CC 0.37 0.41 0.41 0.39 0.44 0.36 0.40 0.40 0.37 0.42

MF-500 0.59 0.60 0.61 0.57 0.61 0.60 0.59 0.57 0.52 0.56

No-FS 0.35 0.39 0.39 0.37 0.75 0.35 0.39 0.38 0.36 0.60

IG 0.36 0.38 0.40 0.37 0.41 0.36 0.38 0.39 0.37 0.40

CC 0.36 0.39 0.38 0.37 0.43 0.35 0.38 0.39 0.36 0.42

MF-500 0.56 0.58 0.56 0.54 0.61 0.54 0.57 0.53 0.51 0.55

No-FS 0.79 0.84 0.88 0.83 0.84 0.76 0.84 0.87 0.83 0.84

IG 0.85 0.88 0.89 0.88 0.84 0.85 0.88 0.90 0.88 0.84

CC 0.85 0.88 0.90 0.88 0.84 0.82 0.88 0.89 0.88 0.84

MF-500 0.76 0.86 0.88 0.83 0.87 0.76 0.87 0.89 0.83 0.87

No-FS 0.94 0.92 0.93 0.93 0.94 0.93 0.92 0.93 0.93 0.94

IG 0.92 0.92 0.94 0.93 0.94 0.92 0.92 0.93 0.94 0.94

CC 0.94 0.94 0.93 0.93 0.95 0.93 0.94 0.93 0.93 0.93

MF-500 0.94 0.94 0.94 0.93 0.94 0.95 0.94 0.94 0.93 0.93

SW No-SW

NB-M

NB-B

1-NN

3-NN

5-NN

DT

(J48)

SVM

F - MEASURE

(10% Training -

90% Test)

45

• NB-B and NB-M are capable to classify the instances very accurately using

only 10% training data.

• NB-B’s overall performance is slightly better than NB-M. 16 out of 20 most

successful experiments are performed with this algorithm.

• SVM results are also satisfactory in general, as it never dropped below 90% in

none of the experiments. Generally, SVM performance is increased with ZS.

• DT algorithm reached its highest success with F5 stemming approach.

• Using ZS alongside with No-FS makes a huge impact on kNN algorithm’s f-

measure values. Using MF-500 as feature selection approach also has a good

effect on kNN algorithm success.

• But within the scope of this dataset, kNN can’t be considered as an effective

classification algorithm, as its lowest incorrectly classified instances score is

17.96% (with k=3, SW, No-FS and ZS as stemming approach) and generally

this score is resulted to be around 40%.

• In most of the cases, using a feature selection method seems to have a good

impact on general success rate.

• Among the 10 stemming and stop word existence approach combinations, there

are no significant performance differences but ZS with SW seems to be a

slightly better pair.

• Among the 28 classification algorithm and feature selection method

combinations, using NB-B with IG has the best success rate.

• In most cases, NSW approach didn’t make a good impact.

• When F4, F5 or F6 stemming is performed, 1-NN gives better results than 3-

NN and 5-NN.

• Using a stemmer gave better results rather than No-S approach for most cases.

• Comparing F4, F5 and F6 stemmers is not a very feasible task with close f-

measure scores.

• Half of the 20 most successful combinations use CC as feature selection

method, while 8 of them use IG and 2 of them use MF-500.

 When the small training size is considered, some remarkable experiment results are

observed. However, their sufficiency is still questionable to be used on examination

46

module. So experiments are repeated with increased training set size as 50% of the

complete dataset is used for training and 50% is used for test (600 documents for each).

Table 4.2 shows the results in f-measure, with best scores highlighted.

Table 4.2 Course document classification experiment results (50% training – 50% test)

 Highest f-measure value is observed as 99% and 3 different combinations of

approaches have reached that peak score. All of these 3 experiments are executed

under NB-M algorithm, used ZS as stemming approach and used a feature selection

method. Other observed results are listed as follows:

No-S F4 F5 F6 ZS No-S F4 F5 F6 ZS

No-FS 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

IG 0.98 0.98 0.98 0.98 0.99 0.98 0.98 0.98 0.98 0.99

CC 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.99

MF-500 0.97 0.98 0.98 0.98 0.98 0.97 0.98 0.98 0.98 0.98

No-FS 0.96 0.96 0.97 0.97 0.96 0.97 0.96 0.97 0.97 0.97

IG 0.97 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

CC 0.97 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

MF-500 0.96 0.96 0.97 0.96 0.97 0.96 0.96 0.97 0.96 0.96

No-FS 0.46 0.55 0.54 0.48 0.57 0.43 0.53 0.51 0.48 0.55

IG 0.58 0.63 0.62 0.57 0.65 0.57 0.64 0.61 0.57 0.65

CC 0.57 0.63 0.59 0.55 0.65 0.53 0.60 0.58 0.54 0.67

MF-500 0.74 0.77 0.80 0.77 0.81 0.72 0.73 0.78 0.76 0.77

No-FS 0.42 0.49 0.44 0.43 0.49 0.40 0.44 0.42 0.41 0.43

IG 0.50 0.54 0.54 0.50 0.58 0.47 0.54 0.51 0.48 0.56

CC 0.49 0.55 0.53 0.46 0.60 0.44 0.54 0.52 0.46 0.58

MF-500 0.70 0.74 0.75 0.70 0.78 0.67 0.69 0.73 0.70 0.72

No-FS 0.40 0.46 0.42 0.41 0.44 0.37 0.41 0.41 0.39 0.41

IG 0.46 0.50 0.49 0.45 0.54 0.44 0.50 0.48 0.44 0.51

CC 0.45 0.51 0.48 0.44 0.55 0.41 0.49 0.47 0.43 0.53

MF-500 0.68 0.71 0.73 0.68 0.77 0.64 0.66 0.69 0.66 0.69

No-FS 0.87 0.88 0.91 0.91 0.92 0.88 0.88 0.91 0.91 0.93

IG 0.89 0.89 0.90 0.92 0.92 0.89 0.89 0.90 0.92 0.92

CC 0.89 0.89 0.90 0.92 0.91 0.89 0.89 0.91 0.92 0.92

MF-500 0.88 0.88 0.91 0.91 0.90 0.89 0.88 0.91 0.90 0.93

No-FS 0.96 0.95 0.96 0.95 0.96 0.96 0.94 0.97 0.96 0.95

IG 0.96 0.95 0.96 0.96 0.97 0.95 0.95 0.96 0.96 0.97

CC 0.95 0.95 0.95 0.94 0.97 0.96 0.95 0.94 0.95 0.97

MF-500 0.95 0.95 0.95 0.96 0.96 0.96 0.95 0.95 0.96 0.96

3-NN

5-NN

DT

(J48)

SVM

F - MEASURE

(50% Training -

50% Test)

SW No-SW

NB-M

NB-B

1-NN

47

• After the training portion is increased, NB-M classification algorithm took the

lead from NB-B with slightly more accurate results.

• SVM also caught up with NB-B. These three algorithms are still the most

reliable selections.

• DT algorithm is not far behind them with passing 90% f-measure in many

experiments.

• No consistent positive impact is observed from NSW approach.

• Using MF-500 as feature selection approach has a good effect on kNN

algorithm success.

• Using a stemmer increases the performance for most of the cases.

• Again, using ZS with SW has the best performance among all stemming and

stop word existence approach combinations.

• This time, using NB-M with IG has the best success rate among all

classification algorithm and feature selection method combinations. Actually,

all combinations with NB-M turned out to be top four approaches within 28.

• All 10 most successful experiments are executed under NB-M algorithm and

nine of them used a feature selection method (IG or CC).

• All 5 most successful experiments used ZS. Among the top 10, F5 is also used

3 times.

4.3.4 Selected Classification Model

 Figure 4.5 shows the result screen of one of the most successful experiments (NB-

B, F5, IG, NSW) when 10% of the dataset is used for training. Figure 4.6 shows the

result screen of one of the most successful experiments (NB-M, ZS, CC, NSW) when

50% of the dataset is used for training. As expected, percentage of incorrectly

classified instances is decreased from 2.68% (29 out of 1080) to 0.83% (5 out of 600)

when training portion is increased. Therefore, classification model to be used on final

educational software is selected from the second experiment set. Based on

observations and used approaches on the most successful experiments, NB-M as

classification algorithm, ZS as stemming approach, IG as feature selection method is

selected. NSW approach had minor impact on this dataset but doing a stop word

48

elimination is mostly preferred as it reduces the amount of unrelated words. Also it is

used on 2 of the 3 most successful combinations, so NSW is selected as the stop word

existence approach.

Figure 4.5 Result screen of NB-B, F5, IG, NSW experiment (10% training – 90% test)

Figure 4.6 Result screen of NB-M, ZS, CC, NSW experiment (50% training – 50% test)

49

 Besides increasing classification accuracy by using a more relevant set of word

features, using a feature selection method also has a decent effect on execution time.

Experiments on the selected model are executed on 0.03 seconds, while performance

of the model with same classification algorithm, stemming approach and stop word

existence choice, used with no feature selection method is measured as 0.07 seconds.

 Selected feature selection method IG assigns a score between 0 and 1 for each word

feature to indicate how much information it gives about the classification decision.

Highest scored features indicate the most distinctive words. To perform experiments,

threshold value is selected as 0.015 to eliminate features with lower scores. 1226 word

features passed this limit and remained to build classifier. 10 highest scored words are

shown on Table 4.3. Extended list with the most distinctive 100 words is given in

Appendix-2.

Table 4.3 Most distinctive 10 words for classification task based on their IG scores

Word IG Score

devlet 0.52314

savaş 0.3528

karşı 0.208

fazla 0.20644

yağ 0.19711

sıcaklık 0.19198

ordu 0.18133

iklim 0.18096

iste 0.17603

birlik 0.17435

4.4 Classification Model Integration with Exam Module

 Weka, the machine learning library used to perform course document classification

experiments is originally developed for Java platforms. To enable its usage in .NET

platform and integrate with exam module, system benefits from IKVM.NET project

that provides .NET implementation of Java class libraries. Weka libraries are used to

set classification algorithm (NB-M) and feature selection method (IG) properties and

perform the classification job based on the input course document supplied by user.

50

 To add external packages of compiled codes (DLL) about a specific task on a

Microsoft Visual Studio project, using NuGet packages that support code sharing

between developers is a common approach. As ZS is the selected stemming approach,

the NuGet package named NZemberek which provides the required libraries to include

Zemberek features to .NET platform is installed on the target project.

 ARFF file is prepared dynamically by preparing and appending the input course

document context at the end of training document instances. Final ARFF file contains

601 instances of documents, as 600 of them (300 with CGR, 300 with TRH labels) are

used for training and the last one, which is expected to be classified successfully. is

used for test.

 Documents classification operation is started when user loads a text-based lecture

note in Turkish to the system, on new test screen. This screen also contains the

changeable exam constraints like question types to include and number of questions,

so classification operation is expected not to lock other controls when executed.

Multithreading approach is used to provide this, as document classification operation

is treated as a separate task. Example screenshots on exam module use case scenarios,

including new test screen after document classification execution are given under

Chapter 8.

 Information about every document that is loaded to the system and classified based

on its domain is stored in database. This allows to prevent redundant document

classification overhead, if recently loaded document is already analyzed and classified

before. However, comparing filenames of documents can’t guarantee a duplication

single-handedly. So filenames along with number of sentences and number of headings

are specified to be the distinctive property set for a document when comparisons are

made. Database structure is explained in more detail in Chapter 8.

51

CHAPTER FIVE

SENTENCE BOUNDARY AND HEADING DETECTION

5.1 Overview

 As most of the tasks within this thesis require sentence-level operations, sentence

boundary detection (SBD) is a top priority and its accuracy directly effects the success

rate of other tasks. Besides, SBD is not considered as a stand-alone task as developed

module also works on detection of headings and itemized text parts in given course

document. Proposed model is a rule-based approach that is based on pre-defined

sentence boundary rules along with a range of controls about in-text conditions.

Instead of directly applying SBD rules on raw input text, deriving headings and

paragraphs is the initial sub-task here. Correlations between headings and paragraphs

are also examined on this stage and a heading is assigned for each paragraph. SBD

operations are applied on obtained paragraphs to derive sentences afterwards. Some of

the pre-defined sentence boundary rules are shown on Table 5.1 (LC → lowercase

character, UC → uppercase character, WS → whitespace, NWS → not whitespace, D

→ digit, true → indicates a sentence boundary condition, false → indicates a not

sentence boundary condition, other characters are self-explanatory).

Table 5.1 Example pre-defined rules about sentence boundary conditions

Condition Output

LC . UC True

LC . D True

LC . WS UC True

LC . WS D True

LC) . UC True

LC ? UC True

LC ! D True

LC . “ NWS True

LC . LC False

UC . LC False

LC . ” WS False

LC : “ UC False

D . D False

(!) False

52

5.2 Regular Expression Usage

 A regular expression (RegExp) is a pattern used to match character combinations

in strings. Rules defined for sentence boundary conditions are translated into a single

RegExp on back-end side for system usage. Apart from that, SBD module benefits

from different RegExps used for separate tasks. Table 5.2 shows the RegExps defined

and what they are used for. They are enumerated for easier mention on later sections.

(Note that given RegExps are used on .NET platform and minor changes might require

for different working environments.)

Table 5.2 Regular expressions defined and used in SBD module

Regular expression details (Name – text – short description)

RegExp1

Sentence boundary rule
(?<=[a-zıüğçşö][\)]?\s*?[\.|!|?][\s]*)(?=[A-Z0-9İÜÖÇŞ]|-|–|[""|“][\S])

Derived from pre-defined rules and used as main separator for SBD task.

RegExp2

Reference format

(\s?)(\(\s?\w+,\s?\d{2,4})(\s?:\s?\d+)?(\))

Used to indicate in-text reference format.

Example → (Behar, 1996: 63)

RegExp3

Irrelevant separator format

^(-|_|*|#){5,}

Used to detect and remove irrelevant text used to separate other text parts.

RegExp4

Abbreviation control format

vs\.|vb\.|ör\.|Ör\.|[M|İ][\.]*[Ö|S]\.|\d{1,2}\.

Used to make the initial abbreviation and ordinal number control.

RegExp5

Roman numbers rule

\b(X{1,3}(IX|IV|V?I{0,3})|X{0,3}(IX|I?V|V?I{1,3}))\b

Used to indicate roman number format.

RegExp6

SW-Numeric heading format

^\s*\d{1,2}[\.|\)|\-]

Indicates format of sub-headings that starts with a number

Example → “3. Sub heading”

RegExp7

SW-Uppercase heading format

^\s*[A-H]{1,2}[\.|\)|\-]

Indicates format of sub-headings that starts with an uppercase character

Example → A- Sub heading

RegExp8

SW-Lowercase heading format

^\s*[a-h][\.|\)|\-]

Indicates format of sub-headings that starts with a lowercase character

Example → b) Sub heading

53

5.3 Software Structure of the Model

 Using RegExps that indicate possible sentence boundaries or specific textual

formats to catch error-prone conditions is beneficiary, but not sufficient on its own.

Considering SBD is combined with different tasks (detection of headings, detection

and connection of itemized text parts, assigning a heading for paragraphs) and input

files are chosen to be raw text documents, a model to meet the task-specific

preprocessing and string control requirements is developed. Figure 5.1 represents the

flow diagram of the proposed model.

Figure 5.1 Flow diagram of the proposed sentence boundary and heading detection model

54

5.3.1 Initial Operations

 After a text file of lecture notes is loaded to the system and raw text is collected,

the filename is assigned as the main heading. Then RegExp2 is used to locate and

remove reference formatted text if exists, as they are not needed for the test generation

process. Afterwards, a split operation is applied on text content using initial paragraph

separators (\n\n\t, \n\n, \n\t, \r\n\r\n\t, \r\n\r\n, \r\n\t), followed by using initial heading

separators (\r\n, \n). \n indicates a new line, \r indicates a carriage return and \t indicates

a tab within target text. Split operation returns a list of strings to be worked on, as they

are the initial paragraph and heading candidates.

5.3.2 Irrelevant Text Controls

 Initial list of strings is checked to eliminate meaningless or non-functional

elements. Empty strings, strings consist of whitespace characters only, or strings

matched with RegExp3 and detected to be in irrelevant separator format (for example

“########” or “*************”) are extracted from the list in this phase.

5.3.3 Heading Format Controls

 Remaining list of strings is checked to find out heading formatted elements. This

phase consists of controls for dot characters, upper-lowercase condition of first

character and detection of text with abbreviation format, roman number format and

sub-heading format. If a string variable doesn’t end with a dot and doesn’t start with a

lowercase character, it must fulfill one of the following conditions to be considered as

a heading:

• When inner text parts matched with RegExp4 and RegExp5 + ‘.’ formats are

extracted, remaining text should not contain a dot character. Aim here is to

prevent erroneous split operations resulted by misleading conditions that

contain a dot character like “vs. (etc.)”, “vb. (etc.), “III.”, “V.”. Figure 5.2

shows an example system output, where ordinal number (in roman number

format) existences within different headings are handled successfully.

55

• Text should match either a numeric or an uppercase heading format beginning,

which are controlled by RegExp6 and RegExp7 rules. Apart from the matched

beginning part, text should not contain a dot character.

Figure 5.2 Detection of headings with ordinal numbers

 Additionally, if a string that doesn’t end with a dot but starts with a lowercase

character matches a lowercase heading format beginning, which is controlled by

RegExp8 rule, it is also considered as a heading formatted text. All other conditions

violate the heading format in this phase. If a string is not detected to be in heading

format, paragraph format controls are applied afterwards.

5.3.4 Paragraph Format Controls

• If a string matches a lowercase heading format beginning and ends with a dot

character, it fits the paragraph format.

• If a string starts with a lowercase character but upper condition is not satisfied,

it doesn’t fit the paragraph format.

• If a string doesn’t contain a dot character, it doesn’t fit the paragraph format.

• All other conditions are considered to be in a proper paragraph format.

5.3.5 Colon Character Controls

 Even though a candidate string fits in paragraph format, it can still contain a sub-

heading. Additional operations are needed to detect them, starting with colon character

(‘:’) controls. A colon character can either indicate a sub-heading occurrence or just

56

be a regular text part within a paragraph. Candidate string is split on colon characters

for analysis. System approaches on different conditions are explained below:

• If split operation results in multiple strings, text parts that contain a single

quotation mark can’t be a sub-heading.

• A colon character can be used in a time expression as a delimiter between

numeric hour, minute or second values (like “17:39” or “23:59:59”). Divided

text parts are joined again when a conforming condition is detected.

• If upper two conditions are not met, heading format controls are applied on

each text part. Matched text parts are possible sub-headings. Head character

expressions at the beginning of sub-headings (like “A.”, “3)”, “c-“) are

removed if any exists.

 Figure 5.3 shows an example system output where sub-headings are correctly

detected and head character expressions are removed, using colon character controls.

Figure 5.3 Detection of sub-headings at the beginning of paragraphs

5.3.6 Head Character Controls

 Using itemization to present information via a list of contextually connected text

parts is a common approach in lecture notes. However, itemized text parts can

mistakenly be considered as sub-headings if they don’t contain a dot character. This

requires a disambiguation phase for all string objects in the list that are previously

detected as a sub-heading candidate.

57

• If consecutive strings obey the same sub-heading format rule (RegExp6,

RegExp7 or RegExp8), they are considered as itemized text parts.

• If consecutive strings with sub-heading format start with the same head

character symbol (like “#, *, ♦, ►, ○, ●, →, □” etc.), they are considered as

itemized text parts. A total of 27 head character symbols are defined in the

system.

• If a string with sub-heading format ends with a comma character, it is a

probable itemized text part and needs to be joined with the following string in

the list.

 Figure 5.4 shows an example system output, where sub-heading formatted itemized

text parts are correctly handled and joined together, as they share the same RegExp6

format. Join operations are detailed on the next section.

Figure 5.4 Detection of sub-heading formatted itemized text parts

5.3.7 Operations to Join Itemized Text Parts

 If disambiguation phase resulted with detection of itemized text parts, a join

operation using comma characters is performed. To transform the first character of an

itemized string to lowercase or not is one decision to make on this phase. If first word

of the string contains an apostrophe character, or second word starts with an upper

character, this implicates first word being a proper name, so its first character is not

transformed and left as an uppercase character. In all other conditions, first character

is converted into lowercase. This operation is critical for named entity recognition

(NER) module success.

58

 Where to start and stop the join operation is the other decision to make. Initially, all

of the detected itemized text parts are joined using a comma character and a combined

string is obtained, but preceding and following string objects are also checked to

complete join operation.

• If the preceding string is not detected as a sub-heading, combined string is

appended to this string using a whitespace character as delimiter.

• If the following string starts with a head character symbol and ends with a dot,

it is appended to the combined string after the symbol is removed, using a

whitespace character as delimiter.

• If the following string begins with the same sub-heading format used in

itemized text parts, and ends with a dot, it is appended to the combined string

after head characters are removed, using a whitespace character as delimiter.

• If combined string consists of itemized text parts each ends with a comma

character:

o If following string fits the paragraphs format, it is appended to the

combined string using a whitespace character as delimiter.

o If following string doesn’t fit the paragraph format, last character of

combined string is transformed into a dot.

 Figure 5.5 shows an example system output for itemized text parts join operation.

As preceding string is not a heading, combined string is appended to this text. Besides,

first characters of each itemized text are properly transformed into lowercase, as none

of the first words expresses a proper noun.

Figure 5.5 Example itemized text parts join operation output

59

5.3.8 Text Normalization

 Text normalization is the last phase before creating Paragraph and Heading objects

from candidate strings. Main reason for not doing normalization up to this point is to

benefit from suggestive textual cues as much as possible. Included adjustments in text

normalization are stated below:

• Hyphens on new line beginnings are removed.

• New lines and tabs are removed.

• Control characters are removed.

• Irrelevant characters like symbols are removed.

• Triple dot characters are translated into a single dot character, if any exists.

• Multiple adjacent whitespaces are replaced with a single one.

5.3.9 Generation of Heading and Paragraph Objects

 After the normalization of a candidate string is completed, final classification

decision is given on adjusted text and either a Heading or Paragraph class object is

created. Information about these two classes are shown on Table 5.3. This operation is

repeated for every candidate string. Thus, two separate lists for paragraphs and

headings are obtained.

 Besides, every Paragraph object is correlated with a Heading object. If the input

document text doesn’t contain any sub-headings, then the main heading (input

filename) is assigned to every Paragraph object. This task is the main reason for not

separating paragraph and heading detection jobs, as running them together preserves

the order of text parts and makes the heading assignment operation easier, as nearest

preceding heading is searched. Figure 5.6 shows the logic behind this operation.

Table 5.3 Heading and Paragraph class fields with their types

Class Name Class Fields

Heading ID (int), Text (string), IsMain (bool), IsSub (bool)

Paragraph ID (int), Text (string), OwnerTitle (Heading)

60

Figure 5.6 Representation of how paragraphs are linked with headings

5.3.10 Sentence Boundary Detection

 5.3.10.1 Division of Paragraphs

 Next step is to derive sentences by dividing paragraphs. First, paragraphs are split

using the sentence boundary rule (RegExp1). Split operation returns a list of strings to

be worked on, as they are the initial sentence candidates. Next two figures show how

RegExp1 handles apostrophe after dot character condition in two different cases.

Figure 5.7 shows a system output where a sentence boundary is detected between dot

and apostrophe characters. Figure 5.8 shows a not sentence boundary case output.

Figure 5.7 Example output when a sentence boundary is detected between a dot and an apostrophe

61

Figure 5.8 Output when a not-sentence boundary case is detected between a dot and an apostrophe

 5.3.10.2 Abbreviation Controls

 Although an initial abbreviation control is done on earlier stages, abbreviations with

[UPPER | lower] [lower]+ [\.] format are still prone to error as they fit the sentence

boundary rule. To overcome this, publicly available abbreviation list of Turkish

Linguistic Association (Türk Dil Kurumu, TDK) is scanned for a subset that matches

with the problematic format. Finally, a Turkish abbreviation list with a total of 204

elements is generated for the system usage. Complete list is given in Appendix-3.

 Candidate sentence strings are checked for abbreviations in the list and if any match

is found, abbreviation text is joined with the following string in the list. Besides, some

abbreviations consist of multiple words (like “Dz. Kuv. K.” (Commander of Naval

Forces) require to be regrouped before a join operation.

 5.3.10.3 Quote Controls

 Last operation before generation of Sentence objects is quotes controls. System

approach is to avoid dividing inner-sentence quotes even if they state one or more

sentence boundaries. Main goal of this approach is to preserve content integrity and

provide better question quality for further phases.

 Number of quotation marks is the decision metric used. A candidate string is not

considered as a sentence if it contains odd number of quotation marks and joined with

following strings until number of quotation marks in the combined string becomes an

even number. This operation is applied just for inner-sentence quotes and quotes of a

whole paragraph are divided based on the initial sentence boundary detections.

62

 Figure 5.9 and Figure 5.10 show how system output changes when inner-sentence

quote controls are disabled or enabled.

Figure 5.9 Example output when inner-sentence quote controls are disabled

Figure 5.10 Example output when inner-sentence quote controls are enabled

 5.3.10.4 Generation of Sentence Objects

 Using the final forms of remaining candidate strings, Sentence objects are created.

Sentence class consists of Text (string), OwnerTitle (Heading) and EndsWithDot

(bool) fields. Owner title information of a recently created Sentence object is taken

from the outer Paragraph object’s field with the same name. Eventually, a list of

sentences is obtained from an input text document.

5.4 Experimentation Phase

5.4.1 Used Dataset

 Success of the system is tested via experiments on actual lecture notes. 30 history

and 30 geography documents are selected out of the primary lecture notes dataset

which is introduced in section 4.1.

63

5.4.2 Sentence Boundary and Heading Detection

 Precision and recall metrics are used to evaluate both sentence boundary detection

and heading detection success. Experiments for geography domain and history domain

are separated to allow comparisons and conclusive results are calculated by combining

these two experiment sets. Precision values are calculated by dividing number of

correct guesses to number of all detections, recall values are calculated by dividing

number of correct guesses to number of actual occurrences. Evaluation metrics used

on experiments are formulated below on equations 5.1, 5.2, 5.3 and 5.4. Combined

experimental results are shown on Table 5.4 and Table 5.5.

Precision Sentences (%) =
100 (# of Correct Sentences)

of Detected Sentences
 (5.1)

Precision Headings (%) =
100 (# of Correct Headings)

of Detected Headings
 (5.2)

Recall Sentences (%) =
100 (# of Correct Sentences)

of Actual Sentences
 (5.3)

Recall Headings (%) =
100 (# of Correct Headings)

of Actual Headings
 (5.4)

Table 5.4 Suggestive numerical values derived from SBD and heading detection experiments

Table 5.5 Precision and recall values derived from SBD and heading detection experiments

 As Table 5.4 shows, average number of sentences in the combined dataset

documents is stated as 38.90 and 38.23 of them are correctly detected. When domain

DOMAIN
of Actual

Sentences

of Detected

Sentences

of Correct

Sentences

of Actual

Headings

of Detected

Headings

of Correct

Headings

History Documents (30) 1241 1233 1208 175 173 170

Geography Documents (30) 1093 1089 1086 292 290 290

TOTAL 2334 2322 2294 467 463 460

AVG 38.90 38.70 38.23 7.78 7.72 7.67

DOMAIN
Precision

Sentences (%)

Recall

Sentences (%)

Precision

Headings (%)

Recall

Headings (%)

History Documents (30) 97.97 97.34 98.27 97.14

Geography Documents (30) 99.72 99.36 100.00 99.32

TOTAL 98.79 98.29 99.35 98.50

64

specific experiments are observed, average number of sentences is stated as 41.37 for

history course and 36.43 for geography course documents, while 40.27 and 36.20 of

them are correctly detected respectively.

 Average number of headings in the combined dataset documents is stated as 7.78

while 7.67 of them are correctly detected. Domain specific results show that average

number of headings is stated as 5.83 for history course and 9.73 for geography course

documents, while 5.67 and 9.67 of them are correctly detected respectively.

 Based on these values, it is possible to say that most history course text documents

tend to contain lower numbers of headings and higher numbers of sentences compared

to geography course documents.

 Table 5.5 shows the individual and combined experiment results based on the

selected performance metrics. Experiments on history course text documents resulted

in 97.97% precision for sentences, 97.34% recall for sentences, 98.27% precision for

headings and 97.14% recall for headings. Experiments on geography course text

documents resulted in 99.72% precision for sentences, 99.36% recall for sentences,

100% precision for headings and 99.32% recall for headings.

 Combined results are stated as 98.79% precision for sentences, 98.29% recall for

sentences, 99.35% precision for headings and 98.50% recall for headings.

 Results show that success rate for geography domain is slightly better than history

domain in all metrics. This difference is understandable, as the amount of textual

context in a history document is observed to be more than a geography document and

this increases the variety in text and uncommon use cases.

 Apart from that, precision values are determined to be slightly higher than recall

values on same experiment sets. But in general, results are satisfactory, especially if

the approach to combine different tasks is considered.

65

5.4.3 Observation of Itemized Text Part Cases

 Detection and connection of itemized text parts is one of the sub-tasks the model

deals with. Correctly making the upper-lowercase adjustments for the first characters

of text parts on join operation is also an important job within this task, especially for

NER module success. Table 5.6 shows the experiment results.

Table 5.6 Experiment results of itemized text parts detection and join operations

 Results show that all of the 27 cases where a join operation is needed on itemized

text parts are correctly detected. First character upper-lowercase adjustments are

correctly handled on 148 text parts out of the total 158 detected. All 10 incorrectly

converted cases are resulted from single-word proper nouns in nominative case, as

neither a following apostrophe or following word with uppercase clue exists.

66

CHAPTER SIX

VERB POLARITY DETECTION AND CONVERSION

6.1 Overview

 Two consecutive tasks will be detailed on this chapter: Verb polarity detection

(which will be mentioned as “classification” after this point) phase and conversion

phase. Classification phase is where the input sentence is analyzed and classified as

affirmative (positive) or negative. Conversion phase is where the classified sentence

is translated into the corresponding opposite form. Both tasks deal with the verb of the

given sentence. As it is a morphological approach, semantics is not the concern. For

example, the Turkish word “endişelenmek” (to be worried) is semantically negative,

but the sentence “Senin için endişelendim.” (I am worried about you) is

morphologically positive and classified as an affirmative sentence.

 Stem type identification is an essential sub-task within this model, which aims to

correctly label the predicate (main verb) of a sentence as verb-typed or noun-typed,

after a morphological analysis phase.

 General flow of the algorithm is like below:

I. Take the verb of the input sentence.

II. Do the classification operations and decide whether the sentence is affirmative

or negative.

III. If AFFIRMATIVE: Convert the sentence into the corresponding negative

form.

IV. IF NEGATIVE: Convert the sentence into the corresponding affirmative form.

 Algorithm is implemented in a way to deal with canonical sentences (in which the

predicate is located at the end of the sentence). So, the input lecture notes are expected

to contain meaningful and canonical sentences for proper results. Also, using UTF-8

encoding in text files is recommended to handle special Turkish characters correctly.

67

6.2 Classification Phase

 Turkish is a complex language with its grammar and phonetic rules. As it is an

agglutinative language, a bare infinite (base) form of a verb can gain additional

meanings with the addition of several suffixes, like subject, tense etc. Implemented

algorithm deals with verb polarity, which is one of these derivable meanings.

 As mentioned on Chapter One, Turkish words might have relatively long words

with 9-10 affixes. Nevertheless, circumstances are much more reasonable in general.

Studies on Turkish language specifies the average number of morphemes per word as

3 (including the root), while high-frequency words usually have a single morpheme.

Average number of morphological interpretations per word in written language is

specified as 2 on same studies, while 65% of words have a single morphological

interpretation (Oflazer, 2014). Additionally, there exists phonetic rules for certain

circumstances with few irregularities and grammatical rules for suffixes. Due to these

reasons, rule-based approaches are formed the basis of this task.

6.2.1 Finite State Machine Structure

 To handle the classification task, a Finite State Machine (FSM) structure is

implemented. Main idea on that is to teach the system all possible verb + suffix

combinations and expect it to give correct output. The FSM in this project shows the

rules to combine different types of suffixes and a verb/noun stem to form a

morphologically correct verb. The reasons why FSM is selected as the model for this

process are listed below:

I. Compatibility with the agglutinative aspect of Turkish.

II. Running once at the execution of the program is enough for further usage.

III. Simplicity in modification and add-delete data operations.

IV. The repetitive parts of different rules are joined where possible, which

minimizes the rules to learn.

V. Provides a convenient environment to find the verb’s stem.

68

 Determined rules on FSM are interpreted from the verb’s right to left to reach the

stem of the word. So, in the classification phase, the stem of the verb, which will be

used in the conversion phase afterwards, is also found besides the verb polarity. Main

FSM elements and how they are adapted for the model usage is detailed on Table 6.1.

Table 6.1 Main FSM elements and their purposes

Name Purpose

State

Different conditions are represented with different states in the FSM. Each

state stores information about the possible past actions that lead to that state

and possible future actions allowed on the model. The machine can only be in

one state at a time. Start state is the initial state where the machine is started.

Goal state is the state that indicates that the input string, as processed so far,

is in a form that that the machine language accepts. Final state is a goal state

with a dead end, which means FSM can’t move any further from these states.

In this model, start state is the initial form of a given word and final (or goal)

states are the conditions where the verb fits the provided morphological rules,

therefore a possible word stem is reached.

- 50 states are used in this model (18 of them are goal states and 6 of

them are final states).

Input

A triggering event or a condition, which leads the machine to move from a

state to another state. In this project, inputs are suffixes that can be attached

to a verb or noun stem to form a predicate.

- 35 suffixes are defined and used in this model.

Transition

A connection between two state variables via an input variable. So, a transition

consists of a start state, input value and a finish state. Transitions are main

elements to generate rules to control whether a given word fits the predicate

format in terms of Turkish morphology or not.

- 263 transitions are used in this model.

 Figure 6.1 shows an example FSM execution on the word “okutmalıdırlar” (They

should educate (them)), in which system is reached one of the final states. A is the start

state, F3 is the final state, C and T are other states involved.

69

Figure 6.1 Sample FSM execution on a word with a proper predicate format

 Example word given in Figure 6.1 is examined by FSM with following steps:

- Suffix “-lar” moves the machine from A to C state.

Stem: okutmalıdır

- Suffix “-dur (-dır)” moves the machine from C to T state.

Stem: okutmalı

- Suffix “-malı” moves the machine from T to F3 state, the process is stopped.

Stem: okut

 Since F3 state is a final state, the word “okutmalıdırlar” is parsed in a form “okut-

malı-dır-lar” and the possible stem is found as “okut” (To educate/teach sb.) in this

example.

 Main purpose is to find the stem of the verb, not root. Because derivational suffixes

are not useful for conversion phase, but inflectional suffixes are. For example “okut”

is the desired result on the upper example, not “oku” (to read or to study). “-t” is a

derivational suffix here that changes the meaning of the word.

 The vowels of the same suffix may vary in different words, so actually an input

value is a collection of suffix values. For example, the input value 5 (“Üçüncü Çoğul

Kişi Eki Birinci Grup” – Third Person Plural, First Group) can indicate “-lar”, “-ler”.

In the same manner, input value 10 (“Bildirme Eki” – Copula) can indicate “-dir”, “-

dır”, “-dur”, “-dür”. The diversify rules depend on the first vowel of the suffix, which

is showed on Table 6.2.

70

Table 6.2 Rules to diversify suffixes regarding the first vowel of the suffix

First Vowel (To Variate) Alternative Vowels

ı ı, i, u, ü

a a, e

6.2.2 Base Class Definitions

 6.2.2.1 State

 State class objects are used to represent current condition during a verb parse

operation. Changes on states depend on the found suffix at the end of the word. Each

change means a suffix match is found and the word will be parsed. Consequently,

every parse operation generates a shorter stem value. Table 6.3 shows the State class

fields along with their types and purposes.

Table 6.3 Description of State class fields

Field Name Type Description

Name string

Used to assign a unique name for each State variable.

Most of them are a single character. Some exceptions

are final states (like F1, F2), states of infinitive suffix

conditions (like MA, MB) and states of ability suffix

conditions (like YA, YB).

IsGoal bool

Indicates that whether the state is goal state or not. Note

that every final state is a goal state, but every goal state

may not be a final state. Final states are named as F1,

F2, F3, F4, where the digit at the end implies the level

of state. Final states are absolute dead ends for the FSM,

while suffix parse operations can continue from other

goal states.

Level integer
Indicates the number of steps to reach to that particular

state from start state.

71

 6.2.2.2 Suffix

 Suffix class objects are used to hold information of the (mostly inflectional) suffixes

that can generate a predicate when appended to a word in bare infinitive form in certain

conditions. Suffix objects are the input variables for FSM. Table 6.4 shows the Suffix

class fields along with their types and purposes.

Table 6.4 Description of Suffix class fields

Field Name Type Description

Definition string

An explanatory name for the suffix. Examples:

- “SimdikiZamanEki” (Present continuous tense

suffix)

- “GelecekZamanEki” (Simple future tense

suffix)

PositiveValues List<string>

Holds the possible affirmative (positive) values for the

suffix.

- For SimdikiZamanEki: {“(i)yor”,”(u)yor”,

“(ı)yor”, “(ü)yor”}

NegativeValues List<string>

Holds the possible negative values for the suffix, if

exists.

- For SimdikiZamanEki: {“miyor”, “muyor”,

“mıyor”, “müyor”}

Format string

Holds a format string to specify the changeable and

helper characters of the suffix, for the situations where

phonetic controls are necessary. Changeable characters

are shown with a dot, helper characters are shown

between parenthesis.

- For SimdikiZamanEki: “.yor”

- For GelecekZamanEki: “(y).c.k”

72

 6.2.2.3 Transition

 Transition class objects are used to connect State variables with an input Suffix

variable. Transitions are used to store predicate format rules and essential to find out

possible stems of the input word. Table 6.5 shows the Transition class fields along

with their types and purposes.

Table 6.5 Description of Transition class fields

Field Name Type Description

StartState State The initial state for the transition.

InputSuffix Suffix The trigger suffix value which changes the initial state.

FinishState State

When a triggering suffix value is perceived, current

state value is changed from StartState to FinishState and

this this transition is completed.

 6.2.2.4 SuffixInWord

 SuffıxInWord class can be considered as an extended version of Suffix class. Class

objects are used after a transition is succeeded and aims to provide some

disambiguation for the verb polarity classification operation. Table 6.6 shows the

SuffixInWord class fields along with their types and purposes.

Table 6.6 Description of SuffixInWord class fields

Field Name Type Description

Suffix Suffix
The Suffix object found in the given word and leads to

a transition execution.

Index Integer
The index value of the found suffix among the all

possible values of the suffix.

IsPositive Bool
Is set true if the found suffix value is one of the

affirmative (positive) values.

IsNegative Bool
Is set true if the found suffix value is one of the negative

values.

73

 6.2.2.5 Path

 A SuffixInWord object holds information after a successful transition execution.

However, it doesn’t provide enough information for a complete FSM process. Path

class is defined for this purpose, as it holds the complete information about a verb

parse and classification operation. Every allocated Path variable offers a possible

solution for the verb parse and polarity classification task. Table 6.7 shows the

SuffixInWord class fields along with their types and purposes.

Table 6.7 Description of Path class fields

Field Name Type Description

StatesString string

Holds the names of all states where the

FSM passed through, from the start state up

to current state.

CurrentState State Holds the current state variable of the path.

WordRoot string
The part of the word which is separated

from the suffix part. (Stem or Root)

WordSuffixPart string
Holds the suffix part of the word with using

a separator ‘-’ between suffixes.

WordSuffixList List<SuffixInWord>
Holds the detailed information about each

detected suffix in the word.

TranslateIndex integer

Shows the index of the suffix in

WordSuffixList, which should be

translated in conversion phase.

IsRootNoun bool
Is set true if the word class of the found

stem (or root) is noun.

IsRootVerb bool
Is set true if the word class of the found

stem (or root) is verb.

IsRootBothNameAndVerb bool
Is set true if the word class of the found

stem (or root) may be a noun or verb.

IsPositive bool
Is set true if the Path object classifies the

given predicate as positive.

IsNegative bool
Is set true if the Path object classifies the

given predicate as negative.

74

 6.2.2.6 FSM

 FSM is a static class where the FSM initialization operations are executed and suffix

list with 35 elements, state list with 50 elements and transition list with 263 elements

are prepared for usage. Two lists to contain exceptional verb roots, which will be

detailed later, are also stored within this class.

 6.2.3 Parse Operations

 After an input text file is loaded to the system and FSM initialization is completed,

parse operations are started to detect verb polarity and the most suitable stems of

predicates. Each parse operation works on a sentence which are obtained from

sentence boundary module. The step-by-step process for the parse operations are given

below:

1) Mutual variables which are used on each iteration are reset before a new

sentence parse operation.

2) The predicate of the sentence is found on the assumption that user loaded a text

file with meaningful and canonical sentences.

3) Start state is set as current state.

4) Initial predicate value is assigned as the stem candidate.

5) FSM is activated by scanning through transition list considering current state.

6) If a transition’s start state matches with the current state, stem candidate is sent

for the suffix control.

7) If the stem candidate ends with the transition’s input suffix, current state is set

as the transition’s finish state and process continues with Step 9.

8) If the predicate doesn’t end with the transition’s input suffix, process returns

to Step 5.

9) The predicate is separated from the found suffix, which is added to the current

word’s suffix list. A new stem candidate is derived by removal of found suffix.

10) If the new current state is a goal state (but not a final state), process stops by

Step 13 for verb polarity detection and Path object creation, then returns to Step

5 by sending the stem candidate to FSM again.

75

11) If the new current state is a final state, process continues with Step 13 for verb

polarity detection and Path object creation, then it’s completed for this

condition.

12) If the new current state is not in a goal state, process returns to Step 5 by

sending the stem candidate to FSM again.

13) Verb polarity classification is done regarding to IsPositive and IsNegative

fields of the SuffixInWord object created for the last detected suffix. Using

collected information, a new Path object is created and added to the result path

list.

14) After all operations are completed, a number of paths are obtained.

 All of the resulted paths are possible solutions, as they are in a format that obeys

the rules provided from transitions, and the reached state is a goal state. Parse

operations are completed, but the number of paths should be reduced before the

conversion phase if possible.

6.2.4 Path Elimination Operations

 6.2.4.1 Elimination of Irrelevant Results

 Actually, this step is used to prevent creation of incorrect paths, not to eliminate

already created paths. To show effects of all consecutive path reduction operations, it

is explained under this section. After a candidate stem is found with a transition

execution on FSM, if the new current state is not a goal state, process continues to scan

using new candidate stem, but a Path object is not created at this point. For example,

for the predicate “kaçacağım” (I will flee/escape), 4 irrelevant results are eliminated

out of the 6 initial results, as they are not in a goal state.

 6.2.4.2 Elimination of Meaningless Stems

 For the next two steps, system benefits from the database structure built in the study

of Aktaş (2010). As detailed in Chapter 3, database model is built using a complete

lexicon with the list of words in Turkish dictionary, provided by TDK on that study.

76

Govde table stores a stem list for Turkish which is a serviceable resource on this

elimination step. Remaining paths, which don’t exist in Govde table are detected and

eliminated. “kaçacağ-ım”, which is one of the two remaining paths from the upper

example is eliminated on this step. Figure 6.2 shows the system output for the given

example and depicts how FSM execution for suffix parse operations and following

path elimination steps work on verb polarity classification and stem detection tasks.

Figure 6.2 Example system output for verb polarity classification and stem detection tasks

 6.2.4.3 Elimination by Root Type

 Another path elimination method in classification phase is done by root type

restraints. Govde table also holds Boolean attributes to indicate possible POS tag info

with related attributes like isNoun, isAdj, isAdv. Some goal states in FSM are

meaningful for only noun or verb root types, so Govde table is used to find out the

candidate types of remaining stems (or roots) in search of extractable paths. For

example, Turkish root “düş” can indicate either a noun (“dream” in English) or verb

(“to fall” in English). But it can’t be a verb in the predicate “düş-tür” (It is a dream),

while it can’t be a noun in “düş-müş-tür” (He/She must have fallen).

 6.2.4.4 Elimination by Supervised Learning

 In some conditions, found stem (or root) might be either a verb or noun and both

conditions are meaningful and in a goal state. A probabilistic supervised learning

77

approach is used here to overcome the ambiguity in those cases. A basic database table

is created to store numbers of verb and noun occurrences of an ambiguous word. While

training the model with real text-based lecture notes, every time when this type of an

ambiguity occurs, noun/verb decision for the problematic root is given, then its related

index in the database was increased. Results show that noun occurrences of ambiguous

word roots are very few, even neglectable for this project’s domain. For example, root

“düş” within the predicate “düştü” (which means “He/She/It has fallen” with verb root,

or “It was a dream” with noun root) is prone to be classified as verb, as it is used as a

verb-typed root in all 24 occurrences of this predicate within the dataset. So, system is

designed to eliminate paths that determined the root to be a noun when this kind of

ambiguations are encountered.

6.3 Conversion Phase

 Up to now, the program took a text file from the user, separated it to sentences on

sentence boundary detection (SBD) module, used FSM structure as a morphological

analyzer to parse the sentences and get candidate paths, eliminated the unsuitable paths

and classified remaining paths in terms of verb polarity (as affirmative or negative).

Conversion phase continues with the remaining paths and aims to find out the optimal

result. The information needed for a complete conversion of a path (which is a probable

solution for a particular sentence) is the found stem of the predicate, classification

result for the predicate, suffix list of the path, index of the suffix to be translated in the

suffix list, type and format of that suffix, opposite values of that suffix and the phonetic

rules to be considered.

6.3.1 Controls for Phonetic Rules

 The main complexity of the conversion phase is the obligation of dealing with the

Turkish phonetic rules. Sometimes it may be enough to simply change the suffix value

with its opposite form to fulfill the conversion, but it’s a very rare condition. Effects

of the phonetic rules can be generalized in two main categories: The stem of a predicate

can be changed with the addition of a suffix, or the suffix needs to be formed according

to stem of the predicate and previously appended suffixes to the stem.

78

 Table 6.8 briefly explains the Turkish phonetic rules considered within the model,

while Table 6.9 describes auxiliary terms to control phonetic rules and Table 6.10

introduces the phonetic rule control methods defined in the program.

Table 6.8 Phonetic rules considered in the program

Name Description Example

Consonant

assimilation

(Ünsüz

benzeşmesi)

If the stem ends with a strong consonant

(sert ünsüz), first letter of the suffix is

changed to ‘t’ if it is initially ‘d’.

karış + (y)dı

karış + tı

karıştı

(It is mixed/joined)

Consonant lenition

(Ünsüz

yumuşaması)

If the stem ends with the strong consonant

‘k’, it is changed to ‘ğ’, when stem is a

noun type and the suffix starts with a

vowel. Also, the ending strong consonant

‘t’ is changed to ‘d’ on some exceptional

verb roots (like “git” (go), “farket”

(realize)) in certain conditions. These verb

roots are stored under a string list defined

on FSM class, also given in Appendix-4.

kaçak + (y)ım

kaçağ + ım

kaçağım

(I am fugitive)

farket + (e)r

farked + er

farkeder

(He/She realizes)

Helper letter

addition in front of

the suffix

Controls to add the helper letter ‘y’ at the

beginning of the suffix, when the stem

ends with a vowel.

uyu + (y)acak

uyuyacak

(He/She will sleep)

Removal of the

first letter of suffix

Controls to remove the first letter of suffix,

when the root ends with a vowel.

uyu + (i)yor

uyu + yor

uyuyor

(He/She is sleeping)

Vowel reduction

(Ünlü daralması)

on root

In some conditions, if last vowel of the

stem is a wide vowel (geniş ünlü), it is

changed to a narrow vowel (dar ünlü).

a → ı e → i

ağla – (i)yor – um

ağlı – yor – um

ağlıyorum

(I am crying)

Vowel reduction

(Ünlü daralması)

on suffix

In some conditions, the suffix vowel is

formed as a narrow vowel, according to

the last vowel of the stem.

a, ı → ı e, i → i

o, u → u ö, ü → ü

Format: -(y)m.ş

kazan – mış

(He/She had won)

dokun – muş

(He/She had touched)

Back – front vowel

(Kalın – ince ünlü)

decision for the

suffix

In some conditions, the suffix vowel is

formed as a back vowel or a front vowel,

according to the last vowel of the stem.

a, ı, o, u → a

e, i, ö, ü → e

Format: -(y)s.

uyu – sa – m

(If I could sleep)

gör- se – k

(If we could see)

79

Table 6.9 Auxiliary terms to control phonetic rules

Name Description

Last vowel of the root
Used for phonetic rules where the stem (or root) needs an

alteration.

First letter of the suffix Used for phonetic rules where the suffix needs an alteration.

Syllable count
Indicates the number of syllables in a given word. The number

of vowels is equal to the syllable count in a Turkish word.

Table 6.10 Methods defined for phonetic rule controls

ID Method Name Method Explanation

1 BasitOlumsuzdanOlumluyaSuffixDegistirme
Used to change the suffix value with its

corresponding opposite form.

2 BenzesmeKontrolu Used for consonant assimilation controls.

3 SuffixBasinaYardimciSesEklenmesiKontrolu
Used for helper letter addition in front of

the suffix controls.

4 SuffixIlkHarfSilinmesiKontrolu
Used for removal of the first letter of

suffix controls.

5 KokYumusamaKontrolu
Used for consonant lenition on stem

controls.

6 KokunDaralmasiKontrolu
Used for vowel reduction on root

controls.

7 SuffixDaralmasiKontrolu
Used for vowel reduction on suffix

controls.

8 KokunSonSesliHarfiniBulma Used to find the last vowel of the root.

9 SuffixKalinInceKontrolu
Used to make the back – front vowel

decision for the suffix.

10 YumusamayaUgrayanFiilKokleriKontrolu
Used for exceptional verb roots on

consonant lenition controls.

11 GenisZamanOperasyonlari

Used for conversion operations on simple

present tense, which requires syllable

count and exceptional verb root controls.

12 HeceSayisiBulma

Used to get the syllable count of the stem.

This is an auxiliary method mainly used

for GenisZamanOperasyonlari method.

13 IsimFiilKokYardimciSesKontrolu

Additional helper letter addition controls

for past tense suffixes, as they require a

helper letter addition when they come

after desiderative, optative and necessity

suffixes, even if they are not the suffix to

be translated.

80

 Conversion operations on simple present tense suffixes needs additional controls,

as there are 12 exceptional verb roots with a single syllable in Turkish that always

conjugated with the format -ır (-ir, -ur, -ür). Table 6.11 lists those exceptional verb

roots, which are stored under a string list defined on FSM class. All the other verb

roots with a single syllable are conjugated with the format -ar (-er). If the root has

more than one syllable, than it’s always conjugated with the format -ır (-ir, -ur, -ür).

Table 6.11 Exceptional verb roots for simple present tense conversion

al-ır ol-ur öl-ür bil-ir bul-ur gel-ir

kal-ır ver-ir var-ır vur-ur gör-ür dur-ur

6.3.2 Suffix Formats

 Required phonetic rule controls are correlated with different types of suffixes. As

the possible changes after phonetic rule controls are known, each suffix is provided a

format value, which clarifies the changeable letters, also helper letters which are used

on certain occasions. Changeable letter locations are shown with a dot and helper

letters are shown in parenthesis in the format of a suffix. If the format value isn’t set

or set but doesn’t contain any special characters, it indicates that either the conversion

can be done with a simple affirmative to negative or vice versa change of the suffix

value at the given index, or that particular suffix is changeless and conversion

operations don’t affect its value. Table 6.12 lists the suffixes with their formats.

Table 6.12 Defined suffixes and their formats

ID Suffix Name Description Format

1 Birinci Tekil Kişi Eki Birinci Grup 1st person singular, 1st group -(y).m

2 İkinci Tekil Kişi Eki Birinci Grup 2nd person singular, 1st group -s.n

3 Birinci Çoğul Kişi Eki Birinci Grup 1st person plural, 1st group -(y).z

4 İkinci Çoğul Kişi Eki Birinci Grup 2nd person plural, 1st group -s.n.z

5 Üçüncü Çoğul Kişi Eki Birinci Grup 3rd person plural, 1st group -l.r

6 Birinci Tekil Kişi Eki İkinci Grup 1st person singular, 2nd group -m

7 İkinci Tekil Kişi Eki İkinci Grup 2nd person singular, 2nd group -n

8 Birinci Çoğul Kişi Eki İkinci Grup 1st person plural, 2nd group -k

9 İkinci Çoğul Kişi Eki İkinci Grup 2nd person plural, 2nd group -n.z

81

Table 6.12 continues

ID Suffix Name Description Format

10 Bildirme Eki Copula -d.r

11 Durum Ulacı
Verbal adverb suffix, gives “as

if” meaning
-

12 Bilinen Geçmiş Zaman Eki Known past tense suffix -(y)d.

13 Dilek Şart Kipi Desiderative -(y)s.

14 Öğrenilen Geçmiş Zaman Eki Narrative past tense suffix -(y)m.ş

15 Zaman Ulacı
Verbal adverb suffix, gives

“while” meaning
-(y)ken

16 Birinci Çoğul Kişi, Dilek Kipi Çekimi
1st person plural suffix

after optative
-l.m

17 Dilek Kipi Optative -(y).

18 Geniş Zaman Eki Simple present tense suffix -.r

19 Şimdiki Zaman Eki Present continuous tense suffix -.yor

20 Gelecek Zaman Eki Future tense suffix -(y).c.k

21 Gereklilik Kipi Necessity -m.l.

22 İkinci Çoğul Kişi Emir Kipi Imperative (2nd person plural) -(y).n

23 Üçüncü Çoğul Kişi Emir Kipi Imperative (3rd person plural) -s.nlar

24 Birinci Tekil Kişi Geniş Zaman Eki
Simple present tense suffix

(1st person singular)
-.r.m

25 Birinci Çoğul Kişi Geniş Zaman Eki
Simple present tense suffix

(1st person plural)
-.r.z

26 Mastar Eki Infinitive suffix -m.k

27 Kısa Mastar İyelik Çekimi Tekil

Infinitive suffix (short form),

followed by 3rd person singular

possession suffix

-m.s.

28 Bulunma – Ayrılma Hal Eki Locative – Ablative suffix -

29 Yeterlilik Kipi Geniş Zaman
Ability/Probability suffix

(Simple present tense)
-(y).bilir

30 Yeterlilik Kipi Ability/Probability suffix -(y).bil

31 Yeterlilik Kipi Şimdiki Zaman
Ability/probability suffix

(Present continuous tense)
-(y).biliyor

32
Birinci Tekil - Birinci Çoğul Kişi

Yeterlilik Kipi Geniş Zaman

Ability/Probability suffix

(Simple present tense, 1st person

singular or 1st person plural)

-(y).bilirim

33 Olumsuzluk Koşacı Negative copula -

34 Kısa Mastar İyelik Çekimi Çoğul

Infinitive suffix (short form),

followed by 3rd person plural

possession suffix

-m.l.r.

35 Üçüncü Tekil Kişi İyelik Eki
3rd person singular possession

suffix
-(s).

82

 Highlighted IDs on Table 6.12 points the suffixes that are not a single suffix, but a

combination of suffixes gathered together for conversion phase operations.

6.3.3 Conversion from Affirmative to Negative

 If the input path is affirmative, conversion operation should be towards negative.

Formats for suffixes have a role, but they are not used in every condition in this

conversion type. The step-by-step process for the operation is given below:

1) Get the appropriate suffix to translate out of the word suffix list located in the

Path object.

2) The index of the detected affirmative value of the suffix, out of the

PositiveValues list is known, so negative value with the same index out of the

NegativeValues list is taken.

3) If necessary, related phonetic rules are applied for the suffix and stem.

4) If multiple suffixes exist, all other suffixes will remain as affirmative, so their

format values are used to obtain the final suffix string. Giving the final forms

of format values according to its suffix are described in the next section.

6.3.4 Conversion from Negative to Affirmative

 If the input path is negative, conversion operation should be towards affirmative.

Formats for suffixes has the main role in this conversion type. The process for the

algorithm shows similarities with conversion from affirmative to negative process, but

one main difference is to treat all suffixes within the suffix list equally this time, as the

purpose is to obtain a positive predicate which needs all suffixes to be in positive form.

Therefore, although the index of the detected negative value of the suffix, out of

NegativeValues list is known, it is not single-handedly enough, and the conversion

process deals with the formats of all suffixes. To give the final forms of format values,

related phonetic rule controls should be made depending on the suffix type. Phonetic

rules are checked via methods, which are enumerated on Table 6.10. Used methods

for each suffix is sequentially listed on Table 6.13. Between methods in parenthesis,

first one is used if the found stem is noun-typed, second one is used if it is verb-typed.

83

Table 6.13 Phonetic rule control methods used for each suffix in sequence

ID Suffix Name
Phonetic Rule

Method IDs

1 Birinci Tekil Kişi Eki Birinci Grup 3 – 5 – 7

2 İkinci Tekil Kişi Eki Birinci Grup 7

3 Birinci Çoğul Kişi Eki Birinci Grup 3 – 5 – 7

4 İkinci Çoğul Kişi Eki Birinci Grup 7

5 Üçüncü Çoğul Kişi Eki Birinci Grup 9

6 Birinci Tekil Kişi Eki İkinci Grup 1

7 İkinci Tekil Kişi Eki İkinci Grup 1

8 Birinci Çoğul Kişi Eki İkinci Grup 1

9 İkinci Çoğul Kişi Eki İkinci Grup 7

10 Bildirme Eki 2 – 7

11 Durum Ulacı 1

12 Bilinen Geçmiş Zaman Eki (3 | 13) – 2 – 7

13 Dilek Şart Kipi (3 | 13) – 9

14 Öğrenilen Geçmiş Zaman Eki (3 | 13) – 7

15 Zaman Ulacı 1 – 3

16 Birinci Çoğul Kişi, Dilek Kipi Çekimi 7

17 Dilek Kipi 7 – 9

18 Geniş Zaman Eki 4 – 11 – 10

19 Şimdiki Zaman Eki 10 – 4 – 6 – 7

20 Gelecek Zaman Eki 10 – 9 – 3

21 Gereklilik Kipi 9 – 7

22 İkinci Çoğul Kişi Emir Kipi 3 – 7

23 Üçüncü Çoğul Kişi Emir Kipi 7 – 9

24 Birinci Tekil Kişi Geniş Zaman Eki 4 – 11 – 10 – 7

25 Birinci Çoğul Kişi Geniş Zaman Eki 4 – 11 – 10 – 7

26 Mastar Eki 9

27 Kısa Mastar İyelik Çekimi Tekil 9 – 7

28 Bulunma – Ayrılma Hal Eki 1 – 9

29 Yeterlilik Kipi Geniş Zaman 10 – 1 – 3

30 Yeterlilik Kipi 10 – 1 – 3

31 Yeterlilik Kipi Şimdiki Zaman 10 – 1 – 3

32
Birinci Tekil - Birinci Çoğul Kişi Yeterlilik Kipi Geniş

Zaman
10 – 1 – 3

33 Olumsuzluk Koşacı 1

34 Kısa Mastar İyelik Çekimi Çoğul 9 – 7

35 Üçüncü Tekil Kişi İyelik Eki 1 – 3

84

 For example, 4 different phonetic rules must be checked for the suffix type “şimdiki

zaman eki” (present continuous tense suffix), which are possible consonant lenition on

verb root controls (denoted as 10), removal of the first letter of suffix controls (as 4),

vowel reduction on root controls (as 6) and vowel reduction on suffix controls (as 7).

6.3.5 Optimal Result Decision

 After the elimination operations on classification phase, if there are still more than

one existing path as possible solutions, a final elimination method is used to find the

optimal result by checking the maximum level. As mentioned, every state has a level

property, which indicates the required number of suffix parse operations to be executed

on a predicate to reach that state. Accordingly, if found stem is semantically

meaningful, the paths with a lower level goal state should be eliminated.

6.4 Use Case Example

 A complete flow when developed model is executed on an example sentence is

detailed on this section. File operations are not needed as a single sentence is handled.

Sample sentence is “Meyve suyunu içmeden önce çalkalamıyordu.” (He/She was not

shaking the fruit juice before drinking it.)

- The predicate of the sentence is found as “çalkalamıyordu”.

- 7 initial paths are derived from the FSM execution and one of them is directly

eliminated as it is not in a goal state.

- Details of the remaining 6 paths are given below:

o Word stem: çalkalamıyor Word suffix part: -du

Current state: F1 Current state level: 1

o Word stem: çalkalamıyo Word suffix part: -r-du

Current state: F2 Current state level: 2

o Word stem: çalkalam Word suffix part: -ıyor-du

Current state: F2 Current state level: 2

o Word stem: çalkalamı Word suffix part: -yor-du

Current state: F2 Current state level: 2

85

o Word stem: çalkala Word suffix part: -mıyor-du

Current state: F2 Current state level: 2

o Word stem: çalkal Word suffix part: -amıyor-du

Current state: F3 Current state level: 3

- When paths with meaningless stem elimination is applied, paths numbered as

1,2,3 and 6 are eliminated and number of paths are reduced to two. Meanwhile,

the classification phase is completed. Remaining paths:

4) çalkalama – yor -du Detected stem type: Noun

 Classified as: Affirmative

5) çalkala – mıyor – du Detected stem type: Verb

 Classified as: Negative

- When elimination by root type is applied, the path numbered as 4 is eliminated

as the current state of this path is F2, which requires a verb-typed stem, but the

detected stem is a noun. So after the path elimination operations on

classification phase, a single path is remained as possible solution.

- Conversion phase begins. Only remaining path (numbered as 5) is classified as

negative, so conversion operation should be executed towards affirmative.

- First suffix in the suffix part of the word is taken and program perceives that

the suffix type is SimdikiZamanEki (present continuous tense suffix).

- Format value for SimdikiZamanEki is "-.yor”.

- Four phonetic rule control methods should be used to complete the transition

centered around SimdikiZamanEki, which are:

o YumusamayaUgrayanFiilKokleriKontrolu (10)

o SuffixIlkHarfSilinmesiKontrolu (4)

o KokunDaralmasiKontrolu (6)

o SuffixDaralmasiKontrolu (7)

- KokunDaralmasiKontrolu (6) method causes a change on word stem property.

Updated property is “çalkalı”.

- The converted affirmative predicate result is “çalkalıyordu”.

 The conversion phase is over. The resulted sentence is “Meyve suyunu içmeden

önce çalkalıyordu.” (He/She was shaking the fruit juice before drinking it.)

86

 Figure 6.3 shows how the system moved through the first FSM results and found

the optimal result for this given example.

Figure 6.3 Example system output for verb polarity classification and conversion tasks

6.5 Experimental Results

 Success of the proposed model is tested via experiments on actual lecture notes.

The dataset with 60 documents (30 history and 30 geography), which is used on SBD

module experiments is used again.

 Developed model works on sentences derived from SBD model and generates a

result for each sentence. This result can either be a translated sentence derived from

the single remaining path (correct or incorrect), a warning text if no meaningful result

is found, or a warning text if paths could not be reduced to a single one and there exists

multiple candidate sentences. Besides, initial sentences without a predicate (like

sentences derived by join operations on itemized text parts) are not received for

consideration, as tested operations within this model are unfeasible on them. So an

accuracy value, which is calculated by dividing number of correct guesses to number

87

of all sentences with a predicate is used for evaluation. Accuracy value is calculated

for both classification and conversion phases. Also, experiments for geography and

history domains are separated to allow comparisons and conclusive results are

calculated by combining these two experiment sets. Evaluation metrics used on

experiments are formulated below on equations 6.1 and 6.2. Combined experimental

results are shown on Table 6.14.

Classification Accuracy (%) = (6.1)

Conversion Accuracy (%) = (6.2)

Table 6.14 Experiment results of verb polarity detection (classification) and conversion model

 As Table 6.14 shows, average number of sentences with predicate in the combined

dataset documents is stated as 38.13 and 35.85 of them are correctly classified in terms

of verb polarity, while 35.27 of them are correctly converted to the opposite polarity.

When domain specific experiments are observed, average number of sentences with

predicate is stated as 40.27 for history course and 36.00 for geography course

documents. For history domain, 37.83 of them are correctly classified and 37.23 of

them are correctly converted. For geography domain, 33.87 are correctly classified and

33.30 are correctly converted.

 Experiments on history course text documents resulted in 93.96% classification

accuracy and 92.47% conversion accuracy, while experiments on geography course

text documents resulted in 94.07% classification accuracy and 92.50% conversion

DOMAIN

of

Sentences

from SBD

Model

of

Sentences

with

Predicate

of Correct

Classifications

of Correct

Conversions

of No

Meaningful

Result

Cases

of More

Than a

Single Result

Cases

Clasification

Accuracy

(%)

Conversion

Accuracy

(%)

History

Documents

(30)

1233 1208 1135 1117 81 5 93.96 92.47

Geography

Documents

(30)

1089 1080 1016 999 60 3 94.07 92.50

TOTAL 2322 2288 2151 2116 141 8 94.01 92.48
AVG 38.70 38.13 35.85 35.27 2.35 0.13

88

accuracy. Combined results are stated as 94.01% classification accuracy and 92.48%

conversion accuracy.

 Results show that there is not a considerable difference between the success rates

of history and geography domains. Among the history documents, average number of

cases where no meaningful result is found is 2.70 and more than a single result is found

is 0.17. Numbers are calculated as 2.00 and 0.10 respectively for geography

documents. When more than a single result is found, that means the system is unable

to resolve the ambiguation as there exists two different meaningful stems followed by

appropriate suffix lists for each. Figure 6.4 shows an example condition, where a single

path could not be gathered as both candidate verbal stems (“sür” (drive, lead, continue)

and “sürü” (drag, herd)) are meaningful and appended suffixes lead both of them to a

proper goal state in FSM. This is an example condition which exceeds the limits of

morphology and entered the scope of semantics.

Figure 6.4 Example case where multiple results remain after FSM execution and path elimination

89

CHAPTER SEVEN

NAMED ENTITY RECOGNITION MODEL TO BUILD

A GLOSSARY OF TERMS STRUCTURE

7.1 Overview

 Proposed named entity recognition (NER) model is an information extraction

software developed for educational purposes and specialized for Turkish lecture notes

within geography and history domains. Primary goal of the model is to detect named

entities from the context of input text documents with high accuracy. Using qualified

named entities among the detected, building a steady and satisfying glossary of terms

structure for history and geography domains is defined as the next step. Later on, this

structure is used to support the test preparation process.

 Implemented NER model exploits a rule-based approach. It takes a text document

as input and returns detected named entities with their types as output. System is

developed to work on sentences, so sentence boundary detection (SBD) model is

executed on input text file first. This operation provides sentences and headings of

input text for NER system usage. Therefore, the success of NER model also depends

on the success of SBD model.

 Each sentence is handed to NER respectively and processed with the tokenizer,

lexical model and contextual model. These three sub-models prepare given sentence

by providing informative labels. Finally, the recognizer model is executed and the

sentence with labeled tokens is analyzed to detect named entities. Figure 7.1 shows a

representation of the proposed framework.

 Building the glossary of terms task is handled after the execution of NER model on

numerous text-based lecture notes within history and geography documents. Resulted

named entities of different types are observed and the ones that might be used for an

examination process are specified. A more specific categorization for selected terms

is also done on this stage to combine interchangeable terms with each other.

90

Figure 7.1 Flow diagram of the proposed named entity recognition model

7.2 Tokenizer and Tokens

 Derived sentences of the input text file are first processed by tokenizer. Tokenizer

scans through the input sentence and detects word boundaries and punctuation marks

to get the list of tokens. A token might indicate a complete word, a punctuation mark

or a morpheme after a punctuation mark. Tokens of a sentence are stored in a double

linked list structure as a Token class object is designed to hold the information of

previous and next tokens. A token object also holds a list of boolean variables that

indicate states (labels). Labeling a token provides useful background information to be

used while detecting named entities. Tokenizer applies the initial labeling on collected

tokens. Considering the system requirements on further stages, 15 tokenizer labels

divided to four different categories are defined. Case, numeric, punctuation and

location information are provided by labeling on this stage. Labels used by tokenizer

are shown on Table 7.1.

91

Table 7.1 Categorized tokenizer labels

Case

Information

Numeric

Information

Punctuation

Information

Location

Information

SW_CAPITAL

ALL_CAPITAL

EW_DOT

NUM

ROMAN_NUM

ORD_NUM

DAY_NUM

MONTH_NUM

YEAR_NUM

PUNCT_

APOSTR

PUNCT_

OTHER_MID

PUNCT_

OTHER_END

PERCT

BEFORE_

APOST

AFTER_

APOST

o SW_CAPITAL: Indicates whether the token text starts with a capital letter or not.

o ALL_CAPITAL: Indicates whether all characters of the token text are capitalized

or not.

o EW_DOT: Indicates whether the last character of the token is a dot or not.

o NUM: If set to true, indicates that the token text denotes a numeric value.

o ROMAN_NUM: If set to true, indicates that the token text denotes a roman

number.

o ORD_NUM: If set to true, indicates that the token text denotes an ordinal number.

o DAY_NUM: If set to true, indicates that the token holds a numeric value in [1,31]

range.

o MONTH_NUM: If set to true, indicates that the token holds a numeric value in

[1,12] range.

o YEAR_NUM: If set to true, indicates that the token holds a numeric value in [100,

5500] range.

o PUNCT_APOSTR: Indicates whether the token text is an apostrophe character or

not.

o PUNCT_OTHER_MID: Indicates whether the token text holds a punctuation mark

used in the middle of a sentence, like comma, semi colon, parenthesis etc.

o PUNCT_OTHER_END: Indicates whether the token text holds a sentence ending

punctuation mark (except dot) or not.

o PERCT: Indicates whether the token text is a percentage sign or not.

o BEFORE_APOST: If set to true on a token, points that next token is an apostrophe.

92

o AFTER_APOST: If set to true on a token, points that previous token is an

apostrophe.

7.3 Generated Sources for Lookup Operations

7.3.1 Lexical Model Sources

 Lexical and contextual models are used to label tokens with additional information

using the generated lexicon structures. Lexicons used by lexical model indicates

possible proper names (of a person or a location-region) except the auxiliary list which

contains Turkish conjunctions. Lexical model sources are detailed below:

o TR_FirstNames: Stores Turkish first names based on a database that contains

Turkish Language Association (TDK) person names dictionary terms. Initial list

holds 9699 elements, but the number is reduced to 9619 after some elimination,

which will be detailed on Section 7.3.1.1.

o TR_CommonSurnames: Stores a comprehensive list of Turkish surnames which

are extracted from Wikipedia lists for Turkish actors – actresses, Turkish

politicians (from 20th and 21st centuries), Turkish writers and Turkish commanders

in Turkish War of Independence. Multiple occurrences of the same person (for

example a politician who has served on both 20th and 21st centuries) and the

duplicates of frequent surnames are eliminated. Final list contains 3039 elements.

o FRGN_FirstNames: Stores a list of foreign (not Turkish) first names, derived

from a wiki list projected to be expanded by user provided entries, published on

ranker.com (“The Most Influential People of All Time”, n.d.). This list consists of

a total 2762 people in a wide spectrum like scientists, politicians, artists, athletes,

philosophers etc. from different countries. Data is extracted as an XML file, then

normalized to get plain lists of first names, surnames and mid names.

Normalization phase includes the removal of prepositions or articles like “of, the”,

ordinal numbers, roman numbers and words that indicate a title or a nickname (like

“St, Holy, Crazy, King, Queen, Baron, Prince, Princess”). Duplicate occurrences

of a name are also excluded. Final list contains 1489 elements.

93

o FRGN_CommonSurnames: Stores a list of foreign surnames. Foreign surnames

and mid names are also derived from the source list from ranker.com. Final list

contains 1864 elements.

o FRGN_MidNames: Stores a list of foreign mid names like “de, von, bin” or

shortened forms which is an initial upper-case letter trailed by a dot. Final list

contains 34 elements.

o Countries: Stores the names of 193 member states of Unites Nations (UN), states

consisting in these members (like England, Wales, Scotland, Northern Ireland) and

self-governing states (like Puerto Rico, Virgin Islands. New Caledonia). Palestine,

Taiwan and TRNC (Turkish Republic of Northern Cyprus) are the other states

included. Some former country names that are likely to occur in historical texts

(like Yugoslavia, USSR) are also included. Final list contains 257 elements.

o TR_Cities: Stores the names of 81 cities of Turkey and common different usages

for them (like Afyon for Afyonkarahisar). Final list contains 86 elements.

o TR_Districts: Stores the names of districts of Turkey. Initial list holds 984

elements but after districts with same names and central districts named after their

inclusive city are eliminated, final list contains 897 elements.

o FRGN_StatesCities: Stores the names of capital cities of all countries and states-

cities with high population, or historical and touristic significance. Cities that are

named after their countries are excluded and the final list contains 380 elements.

o GeographicRegions: Stores the names of continents or well-known geographic

regions. The list contains 22 elements.

o Conjunctions: Stores conjunctions used in Turkish language. This auxiliary list is

used to detect conjunction usage at the beginning of a sentence to avoid misleading

named entity (NE) detections.

7.3.1.1 Final Exclusions from Lexical Sources

 Initial list taken from ranker.com contains some Turkish people like Mustafa Kemal

Atatürk, Halide Edip Adıvar, Orhan Veli Kanık, Yunus Emre. This led some

intersection between Turkish name lists and foreign name lists. 29 mutual words are

detected between TR_FirstNames and FRGN_FirstNames lists, while 13 mutual

words are detected between TR_CommonSurnames and FRGN_CommonSurnames

94

lists. Leaving some of them on both lists are considered appropriate but some of them

are excluded from one of the lists, as detailed below:

o Words like “Abdullah, Selma, Selman, Zakir” etc. are left on both lists.

o Words like “Edip, Evliya, Halide, Hamdi, Kemal, Mustafa, Orhan, Yunus,

Ziya” etc. are excluded from FRGN_FirstNames lists.

o Words like “Adam, Alan, Boy, Sun, San” etc. are excluded from

TR_FirstNames list.

o Words like “Adıvar, Çelebi, Emre, Kanık, Pamuk, Atatürk, Tanpınar” etc. are

excluded from FRGN_CommonSurnames list.

o Words like “Bradley, Reynaud, Spence” are excluded from

TR_CommonSurnames list. These elements came from the names of Turkish

people of foreign origin or married to a foreign person.

o In lexical sources, there also exists some overlap with contextual model sources.

These overlapping words are excluded from lexical sources to give them their

final forms.

7.3.2 Contextual Model Sources

 Source lists used by contextual model indicates possible neighbor expressions for

proper names. These expressions might be in the NE text or not, their case information

is mostly the criteria looked for this decision. Contextual model sources are detailed

below:

o Before Person lists: Stores words or word groups that might come before a person

name. Four lists are used for this purpose. Lists include profession titles like “Lord,

Gazi, Albay” (Lord, Veteran, Colonel), honorifics like “Bay, Bayan, Madam”

(Mister, Missis, Madam), abbreviations like “Asb., Prof., Yzb.” (Sgt., Prof., Capt.)

and mid-expressions like “komutanı, padişahı, valisi” (commander of, sultan of,

governor of).

o After Person: Stores profession titles in Turkish like “Efendi, Hatun, Han, Paşa”

that possibly come after a person name.

95

o After State or Country lists: Stores words or word groups that might come after

a state or country name. Two lists are used for this purpose. One list includes

ending expressions like “Krallığı, Cumhuriyeti” (Kingdom, Republic), other

includes mid-expression like “başbakanı, halifesi, imparatoru” (prime minister of,

emperor of, khalifa of).

o After Location: Stores words or word groups that might come after a location

name other than a state or country. The list includes expressions like “belediye

başkanı, Bölgesi, valisi” (mayor of, Region, governor of).

o After Organization: The list includes expressions like “Derneği, Meclisi,

Kurumu” (Association, Council, Institution).

o After Geographical Formations: The list includes expressions like “Gölü, Dağı,

Irmağı” (Lake, Mountain, River). There also exists a list which holds possible

expressions that a geographical formation ends with in Turkish like “ırmak,

dağlar” etc.

o After Geographical Events: The list includes expressions like “Depremi,

Yangını” (Earthquake, Fire).

o After Historic Events: The list includes expressions like “Savaşı, Devrimi,

İsyanı” (War, Revolution, Riot).

o After Historic Buildings: The list includes expressions like “Sarayı, Köprüsü”

(Palace, Bridge).

o Months: Holds the names of the months.

7.4 Labeling by Lexical and Contextual Models

 Tokenizer parses a sentence, generates tokens and initially labels them. Unlike

tokenizer, lexical and contextual models don’t label tokens one by one, as some

lexicon terms might contain multiple words. Thus, tokens are passed to these models

with n-grams. Initial token window width is defined as 4 and it decreases on every

iteration until it reaches to zero. Multi-word lexicon terms are not missed and labeled

correctly this way. Table 7.2 shows how the n-gram search patterns are modeled on a

sentence of 7 tokens.

96

Table 7.2 Search patterns of a 7-token sentence for n-gram lexicon lookups

N Value Search Patterns

4 1234 – 2345 – 3456 – 4567

3 123 – 234 – 345 – 456 – 567

2 12 – 23 – 34 – 45 – 56 – 67

1 1 – 2 – 3 – 4 – 5 – 6 - 7

 Tokens are labeled via n-gram lexicon lookups in lexical and contextual models to

get their final forms before the execution of recognizer model. Table 7.3 shows the

labels used in lexical and contextual models.

Table 7.3 Lexical (L) and contextual (C) model labels

Model Label Name Description

L LEX_TR_FN Lexical term, Turkish first name

L LEX_TR_LN Lexical term, Turkish last name

L LEX_FRGN_FN Lexical term, foreign first name

L LEX_FRGN_MN Lexical term, foreign mid-name

L LEX_FRGN_LN Lexical term, foreign last name

L LEX_CTRY Lexical term, country name

L LEX_TR_CITY Lexical term, Turkish city name

L LEX_TR_DIST Lexical term, Turkish district name

L LEX_FRGN_CITY Lexical term, foreign city name

L CONJ_SWC Conjunction that starts with capital

L NOT_LEX_SWC Not a lexical term but starts with capital

C B_PERSON Before person expression

C A_PERSON After person expression

C A_LOC_CTRY After location – country expression

C A_LOC_OTH After location (other) expression

C A_ORG After organization expression

C A_HIST_BLDG After historic building expression

C A_HIST_EVNT After historic event expression

C A_GEO_FORM After geographic formation expression

C A_GEO_EVNT After geographic event expression

C EW_GEO_FORM
Indicates a possible geographic formation with its

ending

C MONTH_NAME Indicates a month name

97

 Figure 7.2 shows a use case example of tokenization and token labeling with three

different models on the sentence “Dünya’da 23 Eylül günü, Türkiye Cumhuriyeti’nde

ve tüm Kuzey Yarım Küre’de sonbahar başlar.” (On the day of 23 September in the

world, it is the beginning of autumn in Turkey and the whole Northern Hemisphere.).

Token labels from different models are shown with different colors.

Figure 7.2 Example system output after tokenization and token labeling on an input sentence

7.5 Named Entities and Recognizer Model

 As developed NER system is specialized for lecture notes in the scope of history

and geography courses, extent of a NE is adjusted to meet the requirements. 13 NE

types are defined, which are explained on Table 7.4.

 After token derivation and labeling is completed, recognizer is executed to find out

named entities. System can both be tested on a single sentence or a complete text

document. Figure 7.3 shows a use case example where the system is tested with the

input sentence “Bornova Anadolu Lisesi ve İzmir Atatürk Lisesi öğrencileri,

Cumhuriyet Bayramı’nı kutlamak için Gündoğdu Meydanı’nda toplandı.” (Students of

Bornova Anatolian High School and İzmir Atatürk High School are gathered in

Gündoğdu Square to celebrate Republic Day.). Execution resulted in four NE

detections. Tokens “Bornova, İzmir, Atatürk, Gündoğdu” are all lexicon terms and

might be named entities on their own in different sentences. On the example though,

98

these terms are correctly found to be parts of longer named entities. System is designed

to consider the container named entities instead of single lexicon terms in such

circumstances.

Table 7.4 Defined NE types with their explanations

Label Name Description

Person Turkish Indicates a Turkish person name

Person Foreign Indicates a foreign (not Turkish) person name

Location State - Country Indicates a country, state, continent or geographic region

Location Other Indicates a city or district

Historic Term Building Indicates a historic building or structure

Historic Term Event Indicates a historical event

Geographic Term Formation Indicates a specific geographical formation

Geographic Term Event Indicates a specific geographical event such as a natural disaster

Organization
Indicates an organization within a wide range of fields (politics,

education, military, media, law, medical etc.)

Percentage Indicates a percentage or fraction expression

Date
Indicates a single date expression in multiple formats, or a date

range expression

Date or Number
Indicates a clock expression or a numeric value below 1200 or

above 2000.

Other
Indicates a detected NE which is not classified as one of the

distinctive types.

Figure 7.3 Example system output that shows named entity detections on an input sentence

99

7.6 Building Glossary of Terms Structure

7.6.1 NER Execution on Complete Dataset

 To construct glossary of terms structure, developed NER model is executed on the

complete dataset of 1200 documents (600 geography and 600 history) which is

introduced on Section 4.1. At the first stage, repetitive occurrences are not eliminated

to derive suggestive results about the distribution of named entities between different

domains and the total counts. This led to 42442 initial named entities, which makes an

average 35.37 per document.

 When the resulted named entities are observed, country names are specified to be

among the most homogenously distributed terms. For example, the term “Hindistan”

(India) is seen on 70 different documents, 30 of them are in geography domain while

40 of them are in history domain. On the other hand, European and Asian countries

are more frequently mentioned in history documents, while African, South American

and Australian countries are mostly seen in geography documents. Former country

names like Yugoslavia and USSR are nearly always mentioned in history documents.

Making generalized statements for terms where country and continent names are used

with a direction is not feasible, as some of them like “Güney Asya” (South Asia),

“Güney Afrika” (South Africa) are mostly seen on geography documents, while some

terms like “Doğu Avrupa” (Eastern Europe) are mostly seen on history documents.

 When distributions of city and district names are observed, it can be said that their

occurrence in geography documents is more frequent, but making a generalization is

not possible. Especially, some of the foreign city names like “Beyrut” (Beirut),

“Bağdat” (Baghdad), “Gazze” (Gaza), “Hiroşima” (Hiroshima), “Kudüs” (Jerusalem),

“Moskova” (Moscow) only exist in history document. On the other hand, the most

homogenously distributed terms mostly seem to be Turkish city names like “Şanlıurfa”

(17 G – 17 H) , “Bitlis” (17 G – 17 H), “Karaman” (7 G – 7 H), “Çanakkale” (35 G –

36 H), “Erzurum” (46 G – 48 T), “Diyarbakır” (22 G – 24 H), “Kastamonu” (11 G –

12 H), “İzmir” (45 G – 51 H), where ‘G’ stands for geography and ‘H’ stands for

history documents.

100

 Another observation is that, some of the Turkish district names in TR_Districts

lexicon might lead to misleading named entity type detections as they can refer to

different types. For example district names like “Eyüp, Fatih, İnönü, Çelebi, Selim”

are prone to be used as person names, while “Perşembe (Thursday), Pazar (Sunday),

Aralık (December)” mostly indicate name of a day or month, or terms like “Bor

(Boron), Bozkır (Steppe), Çay (Tea), Çeltik (Paddy), Maden (Mine)” mostly indicate

a geographical term like an agricultural product, a vegetation cover or a mineral type.

46 district names in TR_Districts lexicon are stated to be misleading and are not

included in glossary of terms structure.

 After elimination of duplicate and irrelevant named entities, distinctive named

entities that might be serviceable for an exam preparation process are specified. This

resulted in a total of 3939 primary terms and 921 synonym terms. Each synonym term

represents a different spelling variation that actually indicates the same entity with a

primary term.

7.6.2 Fine Grained Categorization

 13 NE types which are defined within NER model provides an initial classification

of terms. On the glossary of terms structure, Date and Date or Number types or

combined as a single Date type, while Percentage type is excluded. Person Turkish

type is renamed as Person Group 1 to extend the initial scope with people from

communities that have considerable cultural affinity and historical interactions with

Turkish communities, like Mongols and Huns. Person Foreign type is also renamed as

Person Group 2 in this direction. An additional <Generic> type is included for some

more general terms that are mostly observed on heading texts. After all, 12 NE labels

for coarse grained classification is defined.

 To increase the question quality and provide a more specific classification, 311 fine

grained categories are defined within the outer 12 labels. With this approach, more

related terms, which are interchangeable in true-false and multiple choice questions

are gathered together. For example, if this second level categorization wasn’t applied,

different Person Group 1 terms that indicate an Ottoman sultan, a member of

101

parliament in Turkish Republic era and a minstrel would all be in consideration as a

candidate term for the same question, which is not an optimal circumstance. Table 7.5

shows categories with most terms for each 12 NE label.

Table 7.5 Categories with most terms for each coarse grained named entity labels

NE Label Categories

<Generic>
<History Term> → 18 terms

<Geography Term> → 3 terms

Date

Turkish War of Independence Era Event → 156 terms

World History Event – 20th Century (After 1950) → 88 terms

First World War Era Event → 78 terms

Location Other

Marmara Region District → 62 terms

Aegean Region District → 56 terms

Black Sea Region District → 56 terms

Location State -

Country

Middle East and North Africa Countries → 22 terms

Geographical Area of a Continent → 20 terms

Second Period Anatolian Beylics → 19 terms

Person Group 1

Ottoman Sultan → 34 terms

Ottoman Grand Vizier → 32 terms

Ottoman and Turkish Republic Era Soldier and Politician → 29 terms

Person Group 2

European Scientist (19th Century and After) → 27 terms

American Scientist (19th Century and After) → 26 terms

Medieval Era European Emperor and Military Leader → 24 terms

Organization

World Economical – Political Community → 31 terms

Turkish War of Independence Era Helpful Union → 18 terms

Ottoman Era Military Organization → 17 terms

Geographic Term

Formation

Turkey Lake Name → 52 terms

Turkey Mountain Chain Name → 34 terms

Mountain Name → 27 terms

Geographic Term

Event

Climate Type → 8 terms

Geological Period → 5 terms

Historic Term

Building

Mosque Name → 24 terms

Castle Name → 19 terms

Bridge Name (Turkey and Ottoman) → 11 terms

Historic Term Event

Historical Treaty Name (20th Century) → 24 terms

Historical Treaty Name (Before 20th Century) → 29 terms

Historical Congress Name → 25 terms

Other

Religion and Sect Name → 16 terms

Book Name → 10 terms

Language Name → 8 terms

102

 Fine grained categorization approach resulted in an average of 12.66 terms per

category. Table 7.6 shows the distribution of categories based on the number of terms

they contain. [5,10) is identified to be the most frequent range for number of terms

with 83 categories.

Table 7.6 Distribution of categories based on the number of terms they contain

Number of Terms (Within a Range) Number of Categories

[2,5) 78

[5,10) 83

[10,15) 60

[15,20) 35

[20,25) 19

[25,30) 18

[30,50) 11

[50,100) 6

100 and more 1

 Additional to the primary 311 categories, 3 exceptional categories are defined in

the scope of the NE labels. A term can both have a primary and exceptional category,

but exceptional categories override the primary category when encountered. For

example, exceptional category “District Name Which is Also a Lowland” is defined

under Location Other type and contains 9 terms (like “Pamukova, Karlıova, Taşova”)

with a variety of primary categories.

7.6.3 Database Model

 To store the specified terms within geography and history domains and provide

suggestive information about them, a database model is constructed. Data is stored in

4 different tables:

• NamedEntityType

• Category

• Term

• SynonymTerm

 Database diagram of the model is given in Figure 7.4.

103

Figure 7.4 Diagram of the GlossaryOfTerms database

 7.6.3.1 NamedEntityType Table

 Information about the named entity labels used for coarse grained classification of

terms is stored under NamedEntityType table. 9 fields are defined within this table:

• ID: Unique index value for the NE type

• Name: Explanatory name of the NE type

• IsActive: A bit field which indicates whether the NE type is enabled for lookup

search operations or not. If set to 0 (false), terms of this NE type are excluded

from the initial list of terms to be used on test preparation process.

• CategoryCount: Indicates total number of categories defined within this NE

type.

• TermCount: Indicates total number of terms defined within this NE type.

104

• SynonymTermCount: Indicates total number of synonym terms defined within

this NE type.

• MutualTermCount: Indicates total number of terms within this NE type that

are encountered on both history and geography documents.

• HistoryOnlyTermCount: Indicates total number of terms within this NE type

that are encountered only on history documents.

• GeographyOnlyTermCount: Indicates total number of terms within this NE

type that are encountered only on geography documents.

 Figure 7.5 shows data stored in this table.

Figure 7.5 Data stored in NamedEntityType table

 7.6.3.2 Category Table

 Information about the category labels used for fine grained classification of terms

is stored under Category table. 10 fields are defined within this table:

• ID: Unique index value for the category entity.

• OwnerTypeID: Index value of the container NE type of the category.

• Name: Explanatory name of the category

• IsActive: A bit field which indicates whether the category is enabled for lookup

search operations or not. If set to 0 (false), terms of this category are excluded

from the initial list of terms to be used on test preparation process.

• IsExceptional: A bit field which indicates the category is an exceptional type

or not.

• TermCount: Indicates total number of terms defined within this category.

105

• SynonymTermCount: Indicates total number of synonym terms defined within

this category.

• MutualTermCount: Indicates total number of terms within this category that

are encountered on both history and geography documents.

• HistoryOnlyTermCount: Indicates total number of terms within this category

that are encountered only on history documents.

• GeographyOnlyTermCount: Indicates total number of terms within this

category that are encountered only on geography documents.

 Figure 7.6 shows sample data stored in this table.

Figure 7.6 Sample data stored in Category table

 7.6.3.3 Term Table

 Information about the primary terms specified after NER operations is stored under

Term table. 11 fields are defined within this table:

• ID: Unique index value for the term entity.

• OwnerTypeID: Index value of the container NE type of the term.

• CategoryID: Index value of the container category of the term.

• ExceptionalCategoryID: Index value of the exceptional category of the term,

if one is assigned. NULL is the default value of this field if an exceptional

category is not assigned to the term.

• HasExceptionalCategory: A bit field which indicates whether an exceptional

category is assigned to the term or not.

• Text: Complete textual representation of the term.

106

• DomainInfo: Nchar(1) field which provides insight about the distribution of

the term within the domains. ‘H’ is assigned if the term only exists on history

documents, ‘G’ is assigned if the term only exists on geography documents,

‘M’ is assigned if the term is encountered on both history and geography

documents.

• IsActive: A bit field which indicates whether the term is enabled for lookup

search operations or not. If set to 0 (false), that particular term is excluded from

the initial list of terms to be used on test preparation process.

• SynonymCount: Indicates total number of synonym terms related with that

particular term.

• HasSynonym: A bit field which indicates whether the term has a synonym term

or not.

• NgramCount: Indicates total number of n-grams of the term, which is

calculated by adding 1 to the number of whitespaces within the Text field of

the term.

 Figure 7.7 shows sample data stored in this table.

Figure 7.7 Sample data stored in Term table

 7.6.3.4 SynonymTerm Table

 Information about the synonym terms of primary terms is stored under

SynonymTerm table. 6 fields are defined within this table:

• OwnerTermID: Index value of the parent primary term of the synonym term.

107

• Text: Complete textual representation of the synonym term.

• OwnerTypeID: Index value of the container NE type of the synonym term.

• CategoryID: Index value of the container category of the synonym term.

• IsActive: A bit field which indicates whether the synonym term is enabled for

lookup search operations or not.

• NgramCount: Indicates total number of n-grams of the synonym term.

 Figure 7.8 shows sample data stored in this table.

Figure 7.8 Sample data stored in SynonymTerm table

7.7 Experimental Results

 Success of the NER model is tested on the dataset with 60 documents (30 history

and 30 geography), which is used on SBD module experiments. Precision and recall

metrics for TEXT (to correctly detect borders of NE) and TYPE (to correctly detect

type of NE) attributes are used for evaluation. Experiments on geography and history

domains are separated to allow comparisons, conclusive results are calculated by

combining these two experiment sets. Detected NE types are also counted among

correctly guessed type values to compare distributions between different domains.

 Precision values are calculated by dividing number of correct guesses to number of

all detections, recall values are calculated by dividing number of correct guesses to

number of actual named entities. Evaluation metrics used on experiments are

formulated below on equations 7.1, 7.2, 7.3 and 7.4.

108

Precision TEXT (%) = (7.1)

Precision TYPE (%) = (7.2)

Recall TEXT (%) = (7.3)

Recall TYPE (%) = (7.4)

 Actual number of named entities are determined before performing the

experiments. 30 history documents contain 1654, 30 geography documents contain

991 named entities, which makes a grand total of 2645 named entities on 60

documents. Average number of named entities per document is calculated as 55.13 for

history domain, 33.03 for geography domain and 44.98 for the combined dataset.

 NE type distribution on the test documents are also determined before

experimentation. On 30 history documents, there exist 133 Person Turkish, 48 Person

Foreign, 273 Location State – Country, 126 Location Other, 101 Organization, 9

Historic Term Building, 127 Historic Term Event, 39 Geographic Term Formation,

221 Date, 26 Date or Number, 5 Percentage and 546 Other tagged named entities. It is

observed that no NE with Geographic Term Event tag exists on these documents.

 On 30 geography documents, there exist 8 Person Foreign, 225 Location State

Country, 200 Location Other, 4 Organization, 3 Historic Term Building, 3 Historic

Term Event, 209 Geographic Term Formation, 27 Geographic Term Event, 47 Date,

62 Date or Number, 20 Percentage and 183 Other tagged named entities. It is observed

that no NE with Person Name Turkish exists on these documents.

 Experiments on history domain resulted in 96.06% precision for TEXT, 92.67%

precision for TYPE, 95.83% recall for TEXT and 92.44% recall for TYPE.

Experiments on geography domain resulted in 96.59% precision for TEXT, 93.37%

precision for TYPE, 97.07% recall for TEXT and 93.84% recall for TYPE. Combined

results are 96.26% precision for TEXT, 92.93% precision for TYPE, 96.29% recall

for TEXT and 92.97% recall for TYPE. Table 7.7 and 7.8 shows the combined results.

109

Table 7.7 Suggestive numerical values derived from NER model experiments

Table 7.8 Precision and recall values derived from NER model experiments

 Results show that success rate for geography domain is slightly better than history

domain. But the fact that average number of named entities in a history document is

way higher than average number of named entities in a geography document (more

than 22) should not be avoided. In both domains, accuracy on TEXT resulted to be

higher than accuracy on TYPE, for both precision and recall metrics. Main reason for

this is, when the boundaries of a NE is not correctly distinguished, predicting the type

of this incorrect text turns out to be an unfeasible task. Ambiguous lexicon terms and

person names that can also be used as common nouns are two other issues that cause

erroneous detections.

 An analysis to detect success rate of the model for individual NE types is also made

on experiment results. Table 7.9 compares number of correctly detected NEs for each

type with the actual number in history and geography domains, also in the combined

data set with 60 documents. For each NE type, average numbers of detected and actual

named entities in 60 documents are also included. Accuracy (Acc) value for each NE

type t, which is formulated on equation 7.5 is used for evaluation.

DOMAIN
of Actual

NE

of Detected

NE

of Correct

TEXT

of Correct

TYPE

of Missed

NE

HISTORY Documents (30) 1654 1650 1585 1529 69

GEOGRAPHY Documents (30) 991 996 962 930 25

TOTAL (60 documents) 2645 2646 2547 2459 94

AVG 44.08 44.10 42.45 40.98 1.57

DOMAIN
Precision TEXT

(%)

Precision TYPE

(%)

Recall TEXT

(%)

Recall TYPE

(%)

HISTORY Documents (30) 96.06 92.67 95.83 92.44

GEOGRAPHY Documents (30) 96.59 93.37 97.07 93.84

TOTAL (60 documents) 96.26 92.93 96.29 92.97

110

 System success at detection NEs with Percentage, Date, Location State – Country,

Historic Term Event and Other types reached highest accuracy values with 100%,

98.88%, 96.79%, 93.85% and 92.87% respectively. Lowest accuracy value among 13

NE types is observed on Geographic Term Event with 88.89% (24 out of 27).

Acct (%) =
(7.5)

Table 7.9 NER model experiment results for individual NE types

 Distribution of correctly detected NE types for both domains is also shown on Table

7.9. Other, Location State – Country, Date, Person Turkish and Historic Term Event

are the five most encountered NE types for history documents. Location State –

Country, Location Other, Geographic Term Formation, Other and Date or Number are

the five most encountered NE types for geography documents. Absence of any Person

Turkish tagged NE in geography domain and absence of any Geographic Term Event

tagged NE in history domain are remarkable results. Location State – Country appears

to be the most homogenously distributed NE tag among the complete experiment set.

111

7.8 Encountered Challenges

 Problems and restrictions, mostly in connection with Turkish language or common

violations in input documents are encountered during the development process of NER

model.

 Using a wide Turkish first name lexicon provides a high recall in detecting in person

names, but it is possible to lead decreases in precision. This is because of the nature of

Turkish, as some of the person name words might also indicate common nouns that

are frequently used in lecture notes like “Savaş (War), Barış (Peace), Nehir (River),

Irmak (River)”. Neighbor token controls mostly avoid erroneous detection when these

terms are in the beginning of the sentence. In some conditions, these controls are not

single-handedly enough. For example, CONJ_SWC lexicon is also beneficial when

the first word of a sentence is a conjunction and followed by a NE.

 Some expressions like “Sultan (Sultan), Şah (Shah)” in contextual model might

occur both before or after a person name, in fact it is also possible for two conditions

to occur at the same time, for example “Kanuni Sultan Süleyman” (Suleiman the

Magnificent). System used to detect two different named entities in these situations (as

“Kanuni Sultan” and “Sultan Süleyman”), then this is corrected and detected partial

expressions are merged to reach the correct NE.

 Heading texts are handled with additional controls, as traditionally all heading

words (except conjunctions) starts with a capital, even it doesn’t indicate a proper

noun. This caused to limit the usage of Other tag for a NE and raised the significance

of apostrophe controls.

 Separating a commonly used “Person” NE type into two (as Person Turkish and

Person Foreign) seems to cause TYPE mistakes in some occasions (which wouldn’t

happened if two types are merged as a single Person type). Especially because some

first names used in Turkish like “Musa, Enver, Zeynel, Süleyman” are also common in

Arab countries. Experiments show the performance drops are acceptable though, as

112

differentiating Turkish and foreign person names is proven to be a rewarding approach

for building glossary of term structure phase.

 Absence of required punctuation marks (most frequently apostrophe and comma)

and spelling errors on input text documents also has negative impacts on system

success. It also decreases the quality of named entities and leads to an increased

number of Other tagged named entities. For this reason, applying a spell check

operation on the document before submitting it as an input is highly recommended.

113

CHAPTER EIGHT

AUTOMATIZED QUESTION AND TEST GENERATION

8.1 Overview

 After the sub-modules, each with an NLP task (document classification, sentence

boundary (SBD) and heading detection, verb polarity detection and conversion, named

entity recognition (NER) to build a glossary of terms structure) are developed and

proven to yield satisfactory results, they are combined to form a single DLL named

ITESTCore and served for the examination module usage. This final software, which

provides the expected automatized question and test generation functionalities, is

named as iTest. This chapter gives detailed information about the contributions of NLP

models on question generation process, how to decide between candidate question

types, the features of educational software iTest and the infrastructure of this project.

8.2 Automatized Question Generation

8.2.1 Contribution of SBD Model

 Every question generation operation is based on a sentence within an input

document, which is provided by SBD model. This also gives the examination model

idea about the possible number of questions within the constraints specified by criteria.

If no constraints are specified, number of questions within a generated exam is the

number of sentences derived by SBD model from the input document.

 SBD model also provides information about the sub-headings of sentences. This

contribution is essential as question text might be a bit vague on its own in some cases.

Supporting it with a sub-heading mostly resolves this problem and increases the

question quality. On the other hand, in some cases a sub-heading might be more

explanatory than expected and implies the correct answer. For this reason, sub-heading

feature is made optional and users are allowed to toggle sub-heading visibility any time

on examination screen.

114

8.2.2 Contribution of Document Classification Model

 Main contribution of the document classification operation is the automatic

classification of the input text document as geography or history based on its domain.

This allows system to filter glossary of terms structure and apply search operations on

relevant terms instead of using the complete lexicon. Besides, classification result for

every input document is stored in database to avoid re-classification of recently loaded,

analyzed and classified documents.

 Rather than question generation, document classification model is also beneficial

for existing exam filtering on test selection phase and exam result filtering on test

evaluation phase, as every exam is related to a single classified document. In example

use cases, a user can select an existing exam to solve among the ones that are classified

as history, or only list his/her exam results on geography course.

8.2.3 Using Verb Polarity for Question Generation

 Polarity of the predicate of a sentence directly states the polarity information of that

sentence. Correctly classifying a sentence as affirmative or negative, then converting

it to the opposite polarity is one of the two ways to obtain a true - false question on the

examination model. Generated true - false question might be formed using either the

input sentence itself or the converted sentence with the opposite polarity. Table 8.1

shows the general idea behind this approach.

Table 8.1 General approach for true – false question generation using verb polarity information

Input

Sentence

Polarity

Converted

Sentence

Polarity

Generated

Question

Polarity

Correct Answer of

Generated

Question

Affirmative Negative Affirmative True

Affirmative Negative Negative False

Negative Affirmative Affirmative False

Negative Affirmative Negative True

115

 Every sentence derived from a document by SBD model are processed by verb

polarity detection and conversion model and specified to be classifiable or not. If no

meaningful result is found or more than a single candidate result are derived, the

sentence is specified to be not-classifiable. These sentences are not included in the

process to form true - false questions via verb polarity information. This way,

generation of a meaningless question is prevented. Figure 8.1 shows an example

system output of a verb polarity detection and conversion operation execution on a

complete document. As conversion of sentence with the ID value 30 gave multiple

results, it won’t be used on true - false question generation based on verb polarity.

Figure 8.1 Example verb polarity detection and conversion output on a complete document

8.2.4 Using Glossary of Terms for Question Generation

 Glossary of terms (GoT) structure, which is formed by NER model execution on

600 history and 600 geography documents is used as a lexicon for lookup operations

on examination model. Main approach here is to detect the terms within a sentence

that exist in GoT, get the sibling terms of this terms with their total count information

116

and generate a question. “Sibling term” expression is used to indicate terms with the

same fine-grained category and interchangeable with each other in question sentences.

Figure 8.2 shows a GoT lookup output on a selected sentence derived from the input

document. Two terms are detected within this sentence and the selected one “Pankuş

Meclisi” (Pankush Council) has 10 sibling terms that are in the scope of the same

category named “Türk ve Dünya Tarihi Meclis” (Council in Turkish and World

History).

Figure 8.2 Example GoT lookup output to detect terms and their siblings within a sentence

 GoT structure is practicable for question generation for all three question types (true

- false, fill in the blanks, multiple choice) if the source sentence fits in the required

conditions. If at least one term is detected within the source sentence text, that sentence

can be considered in generation of a true - false and a fill in the blanks question with

GoT, but controls for multiple choice question is still in progress. If a sentence contains

at least one term and this term has at least 3 sibling terms, than the conditions for a

multiple choice question generation are fulfilled. Figure 8.3 shows three different types

of questions generated from the same example sentence shown on Figure 8.2 by GoT

lookup operations.

117

Figure 8.3 Three types of questions generated from the same sentence

8.2.5 Question Type Decision

 A probabilistic approach is used for question type specification. Five properties,

which are collected by verb polarity detection and GoT lookup operations on an input

sentence is used as metrics to decide which question type to be selected on question

generation based on that sentence:

• ContainsTerm: Is set true if at least one term from GoT structure is detected

within input sentence.

• SuitableForMc: Is set true if at least one detected term has three or more

sibling terms.

• IsClassifiable: Is set true if verb polarity detection and conversion operation

on input sentence yielded a single accurate result.

• IsPos: Is set true if input sentence is classified as affirmative.

• IsNeg: Is set true if input sentence is classified as negative.

118

 Table 8.2 and Table 8.3 shows the pre-defined question type probabilities based on

the values of these five boolean metrics. (IsPos and IsNeg columns indicate the

conditions where the value of that property is True.) Probability values are specified

for six question types, which are: True – False (Tf) question using verb polarity

conversion with answer is set to True, Tf question using verb polarity conversion with

answer is set to False, Tf question using a term with answer is set to True, Tf question

using a term with answer is set to False, fill in the blanks (Fitb) question using a term

as the answer and multiple choice (Mc) question using a term as the answer.

Table 8.2 Specified question type probabilities if value of ContainsTerm property is True

Table 8.3 Specified question type probabilities if value of ContainsTerm property is False

 For example, if ContainsTerm and SuitableForMc properties of an input sentence

are set to True and IsClassifiable property is set to False, IsPos and IsNeg properties

are not checked. As true - false question generation using verb polarity conversion is

not feasible, probability values of two Tf-UseConversion types are set to 0%.

Probability values for Tf-UseTerm with answer is set to True is specified as 20%, Tf-

IsPos IsNeg IsPos IsNeg IsPos IsNeg IsPos IsNeg

Tf-UseConversion True 5% 10% 0% 0% 10% 15% 0% 0%

Tf-UseConversion False 5% 25% 0% 0% 10% 30% 0% 0%

Tf-UseTerm True 15% 10% 20% 20% 20% 15% 30% 30%

Tf-UseTerm False 25% 15% 25% 25% 30% 20% 35% 35%

Fitb Term 25% 20% 25% 25% 30% 20% 35% 35%

Mc Term 25% 20% 30% 30% 0% 0% 0% 0%

Answer
QUESTION TYPE

PROBABILITIES IsClassifiable-True IsClassifiable-False

ContainsTerm-True

SuitableForMc-True SuitableForMc-False

IsClassifiable-True IsClassifiable-False

Tf-UseConversion True

Tf-UseConversion False

Tf-UseTerm True

Tf-UseTerm False

Fitb Term

Mc Term

Answer
QUESTION TYPE

PROBABILITIES IsClassifiable-True IsClassifiable-False

SuitableForMc-False

IsPos IsNeg IsPos

ContainsTerm-False

IsNeg

50%

50%

0%

0%

0%

0%

0%

0%

0%

0%

30%

70%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

119

UseTerm with answer is set to False is specified as 25%, Fitb is specified as 25% and

Mc is specified as 30%. If user deselects a question type on test preparation phase,

probability values of that question type is equally distributed over the included

question types. Using the final probability values, question type to be generated for a

sentence is randomly determined.

8.3 Test Generation

 Test generation is the process where questions that are generated (or selected)

considering the specified criteria are combined to obtain a test. Test generation can be

done on a new input document or a previously processed document.

8.3.1 Specifiable Criteria

 Before starting the test generation process, user is allowed to specify some criteria

to adjust the test for his/her needs. Three criteria are defined within the system:

• Question Types to Include: By default, all of the possible question types are

included for an exam generation, but users are allowed to make changes. For

example, if a user wants to generate a test of multiple choice questions only,

then he/she can exclude true - false and fill in the blanks question options.

• Question Limit: By default, all of the sentences that can be used in question

generation are included for an exam generation, but users are allowed to put a

limit and specify the desired number of questions. This number should not

exceed the maximum number of possible questions, which is determined by

the total number of sentences and the included question types. For example, if

a user wants a test of multiple choice questions only, and 12 of 25 derived

sentences can be used for this purpose, user is not allowed to specify the

question limit as 13 or more.

• Question Order: By default, order of sentences in their source document is

preserved while placing the generated questions into the test. Users are allowed

to change it and ignore the sentence order. This can be useful for the conditions

where a question text implies the answer of its adjacent question.

120

8.3.2 Test Generation on New Document

 First way to generate a test is to load a text-based course document to the system

and specify the criteria based on the user needs. This operation leads to new questions,

from which user can select to store for further usage on exam result screen. Document

classification of the new document is also done on this stage. New test screen after the

classification of input document is completed is shown on Figure 8.4.

Figure 8.4 Generate test using new input document screen

8.3.3 Test Generation on Existing Document

 Second way to generate a test is to use a question pool of a previously loaded and

processed text-based course document. Question pool is formed by the previously

stored questions by users, after an examination process based on that document.

Information about the total number of usable questions for each question type is given

to user, so user specifies the criteria considering those constraints. Thus, a proper test

is prepared. As this operation uses existing questions and doesn’t generate new ones,

question save functionality is disabled this time to prevent duplicate questions. Figure

8.5 shows the test generation on an existing document screen.

121

Figure 8.5 Generate test using existing document screen

8.4 Other Features of iTest

 Examination model iTest is developed as a complete user-based educational

software and many features are provided in this direction.

• Register - Login Operations: A user is expected to register and login to the

system to benefit from the functionalities of iTest. To complete a registration,

user needs to provide a username and a password, to select a profile image

between 12 alternatives and check or uncheck the “Show password” and

“Remember me” options. Advanced Encryption Standard (AES) is used for

encryption and decryption of password. On login screen, users can check the

“Keep login info” option to preserve the username and password information

for the next login, even after the program is terminated. Figure 8.6 and 8.7

show register and login screens respectively.

• Functionalities During Examination: On examination screen, users can

navigate through questions using Previous and Next buttons or selecting

desired question from the related combobox. There also exists a Next Empty

button that allows users to see the nearest unanswered question and a Clear

122

Answer button to reset the answer of active question. Users can also change

the visibility of sub-heading of the active question (if exists) with a trackbar.

Active question panel shows the index value of the active question and total

number of answered questions. Figure 8.8 shows examination screen. Export

as PDF is another functionality within this phase, which is detailed separately.

Figure 8.6 Register screen

Figure 8.7 Login screen

123

Figure 8.8 Examination screen

• Export Test as PDF File: Besides providing a user interface for examination,

iTest also allows users to export the generated (or selected) test as a PDF file

for a printer friendly review. Pdf files are named by concatenating the related

document name, an indicator for the test type (as Mixed, Tf, Fitb, Mc) and the

short form of the current date, using a ‘_’ character as a separator. An example

text-based course document and the PDF version of one generated test out of

that document is given in Appendix-5.

• Functionalities After Examination: Exam result screen shows the total

number of correct, wrong, unanswered questions and the achieved score. User

is allowed to navigate through questions with Previous and Next buttons, also

with a combobox. There is also a Next Incorrect button that allows users to see

the nearest incorrect (wrong or unanswered) question. Question text, given

answer and correct answer of the active question are all displayed on the screen.

Users are allowed to save the complete test with all its questions, or select the

questions using checkboxes to save for further usage. Note that checkboxes of

the previously saved questions are disabled. Saving the exam result is another

provided option. Figure 8.9 shows after examination screen.

124

Figure 8.9 After examination screen

• Find Test Option: Instead of generating a new exam, users are allowed to

choose among the previously stored exams. Available tests can be filtered by

domain and test type. Figure 8.10 shows find test screen without filter usage.

Figure 8.10 Find test screen with no filters are applied

125

• Random Test Option: Another option is to open a random test among the

previously stored exams. This feature provides a quick examination

opportunity to users without a specification phase.

• Exam Results Screen: Users are provided with their saved exam results,

which can be filtered by domain and sorted by date (as newest or oldest first)

or score (as highest or lowest first). Scores are displayed with different colors

depending on the level of success defined by intervals. For example score

above 84 are displayed as dark green. Figure 8.11 shows exam results screen

when domain filter is applied, and results are sorted by score (as highest first).

Figure 8.11 Exam results screen when filter and sort operations are applied

• User-Based Preferences: Preferences screen allows users to change their

profile image, clear their login history and delete their exam results. They can

also check or uncheck the “Show redirect screens on page navigation” option,

which is checked by default on recently registered users. Redirect screens are

used to inform users before page navigation on certain cases. For example, if a

user tries to open New Test screen without logging in, system is redirected to

Login screen. If the option is enabled, a redirect screen is shown on screen for

2 seconds to inform user before redirect. Figure 8.12 shows preferences screen.

126

Figure 8.12 Preferences screen

8.5 Database Model

 Operations on examination model are highly dependent on a wide range of data,

which are stored within the database named ITEST2018. Related data is stored in 8

different tables, which are:

• SystemUser

• UserLogin

• Document

• Exam

• Question

• FitbAnswer

• ExamQuestion

• ExamResult

 Database diagram of the model is given in Figure 8.13.

127

Figure 8.13 Diagram of the ITEST2018 database used for examination model operations

8.5.1 SystemUser Table

 Information about the registered users and their preferences is stored under

SystemUser table. 7 fields are defined within this table:

• ID: Unique index value of the registered system user.

• Username: Defined username value of the user for system login.

• PasswordEncrypted: Encrypted password value of the user for system login.

• IsAdmin: A bit field indicates whether the system user is an admin or not.

• ProfileImageID: Indicates the index value of the profile image of that user.

• RememberMe: A bit field which indicates whether the user has enabled

Remember Me option or not. If enabled, password field is automatically filled

after username is correctly typed on login screen.

128

• ShowRedirectPage: A bit field which indicates whether the user has enabled

Show Redirect Page option or not.

8.5.2 UserLogin Table

 Login information of registered users is stored under UserLogin table. 3 fields are

defined within this table:

• UserID: Index value of the system user that logged in.

• EntranceTime: A datetime field to indicate when the user has logged in.

• KeepInfo: A bit field which indicates whether the user has enabled Keep Info

option or not.

8.5.3 Document Table

 Information about the documents once given as input and processed by the system

are stored under Document table. 9 fields are defined within this table:

• ID: Unique index value of the document entity.

• Name: Name of the input course document file.

• Domain: A nchar(1) field that indicates the domain of the document as ‘H’

(history) or ‘G’ (geography).

• TotalSentences: Indicates total number of sentences obtained from that

document.

• HasSavedTest: A bit field that indicates whether a complete test, which is

generated after processing this particular document, is stored in database or

not.

• HasSavedQuestion: A bit field that indicates whether any generated question

after processing this particular document is stored in database or not.

• CountSavedTest: Indicates total number of saved tests related with this

document.

• CountSavedQuestion: Indicates total number of saved questions related with

this document.

129

8.5.4 Exam Table

 Information about the generated exams are stored under Exam table. 12 fields are

defined within this table:

• ID: Unique index value of the exam entity.

• DocumentID: Index value of the document which is used to generate this exam.

• Domain: A nchar(1) field that indicates the domain of the exam as ‘H’ or ‘G’.

• IsMixed: A bit field that indicates whether the exam is mixed-type, as it

contains more than a single type of questions.

• IsTrueFalse: A bit field that indicates whether the exam contains one or more

true false questions.

• IsFillInTheBlanks: A bit field that indicates whether the exam contains one or

more fill in the blank questions.

• IsMultipleChoice: A bit field that indicates whether the exam contains one or

more multiple choice questions.

• QuestionCount: Indicates total number of questions the exam contains.

• QuestionTfCount: Indicates total number of true false questions the exam

contains.

• QuestionFitbCount: Indicates total number of fill in the blanks questions the

exam contains.

• QuestionMcCount: Indicates total number of multiple choice questions the

exam contains.

 Figure 8.14 shows sample data stored in this table.

Figure 8.14 Sample data stored in Exam table

130

8.5.5 Question Table

 Information about the generated questions are stored under Question table. 16 fields

are defined within this table:

• ID: Unique index value of the question entity.

• DocumentID: Index value of the document which is used to generate this

question.

• SentenceIndex: Indicates the index value of the used sentence which implies

its order within the owner document.

• SentenceText: Used sentence text which is used to generate question.

• SubHeading: Sub-heading value of the used sentence if one is assigned. NULL

is the default value of this field if a sub-heading is not assigned to the sentence.

• Text: Complete textual representation of the question.

• IsTrueFalse: A bit field that is set to 1 if type of the question is true - false and

0 if not.

• IsFillInTheBlanks: A bit field that is set to 1 if type of the question is fill in the

blanks and 0 if not.

• IsMultipleChoice: A bit field that is set to 1 if type of the question is multiple

choice and 0 if not.

• UsesTerm: A bit field that is set to 1 if the question is generated using a term

from GoT and 0 if it is generated by verb polarity information.

• CorrectTfAnswer: A bit field that indicates the correct answer if type of the

question is true - false, where 0 implies False and 1 implies True. NULL is the

default value if question type is different.

• CorrectMcOption: A nchar(1) field that indicates the correct answer as A, B,

C or D, if type of the question is multiple choice. NULL is the default value if

question type is different.

• OptionA: Text of Option A, if type of the question is multiple choice. NULL

is the default value for this and following 3 fields if question type is different.

• OptionB: Text of Option B, if type of the question is multiple choice.

• OptionC: Text of Option C, if type of the question is multiple choice.

• OptionD: Text of Option D, if type of the question is multiple choice.

131

8.5.6 FitbAnswer Table

 As mentioned before, there exists a table named SynonymTerm in

GlossaryOfTerms database that holds synonyms of primary terms. Every synonym

term represents a different variation that can be used instead of a primary term, so

multiple correct answers for a fill in the blanks question may exist. Acceptable answers

of a fill in the blanks question are stored under FitbAnswer table. 2 fields are defined

within this table:

• QuestionID: Index value of the parent question entity.

• Text: Complete textual representation of one possible answer.

 Figure 8.15 shows how FitbAnswer table is used to correctly evaluate the given

answer of a fill in the blanks question. As “Alemdar Mustafa Paşa” and “Alemdar

Mustafa” expressions both indicate the same person (an Ottoman grand vizier), system

tends to accept any of them as the correct answer. Maximum number of synonym terms

of a primary term is determined to be 4. For example, “Bizans İmparatorluğu”

(Byzantine Empire) can be stated as “Bizans Devleti” (Byzantine State), “Bizans”,

“Doğu Roma İmparatorluğu” (East Roman Empire) and “Doğu Roma”.

Figure 8.15 Example case where a synonym term is accepted as the correct answer

132

8.5.7 ExamQuestion Table

 As mentioned before, users can either save an exam with all its questions or only

save the selected questions with relating them to the source document. Questions of a

saved exam entity are stored under ExamQuestion table. 2 fields are defined within

this table:

• ExamID: Index value of the related exam entity.

• QuestionID: Index value of the related question entity.

8.5.8 ExamResult Table

 Information about exam results are stored under ExamResult table. 11 fields are

defined within this table:

• UserID: Index value of the related user entity.

• Username: Username value of the related user entity.

• DocumentID: Index value of the related document entity of which the exam is

generated.

• DocumentName: Name value of the related document.

• Domain: A nchar(1) field that indicates the domain of the exam as ‘H’ or ‘G’.

• ExamID: Index value of the related exam entity.

• NumberOfCorrectAnswers: Indicates total number of correct answers user

reached on the exam.

• NumberOfWrongAnswers: Indicates total number of wrong answers user did

on the exam.

• NumberOfUnansweredQuestions: Indicates total number of questions that user

did not give an answer on the exam.

• Score: Indicates the final evaluated score that user reached on the exam.

• SubmitTime: A datetime field to indicate when the user has submitted the exam

for evaluation.

133

CHAPTER NINE

CONCLUSION

9.1 Results and Evaluation

 Within this thesis, a computer based examination platform where text-based lecture

notes provided by users are analyzed to derive reasonable and meaningful questions

and generate an exam is developed. To carry out this goal, history and geography are

the included domains for input lecture notes, while true - false, fill in the blanks and

multiple choice are the included question types. Besides, users are allowed to specify

question types to include, put a limit for number of questions and decide to preserve

order of sentences or not while placing questions, before a test generation. Along with

the provided opportunities to take an exam, users are also allowed to keep track of

their progress by saving their exam results.

 Motivation behind the research is the possibility of simple but effective gains like

easier access, durability and considerable save of time. The choice of lecture notes is

in the user’s hands, so possible changes on syllabus won’t affect the validity of the

project in a negative way. As the generation and storage of the test questions are done

in the electronic environment, it offers a paperless self-education opportunity for the

students. It is also maintainable as most of the underlying NLP structures are easy to

modify.

 Besides the examination model, this research draws conclusions and proposes

solutions on some of the major NLP tasks for Turkish. Four models each with a

different NLP task are developed, tested and finally combined to form the

infrastructure of the educational software iTest. Course document classification model

is used to automatically detect the domain of the input lecture notes and apply filters

based on domain information when needed. Sentence boundary and heading detection

model is used to derive sentences and headings, also to join itemized text parts within

the input document text. Verb polarity detection and conversion model is one tool to

generate true - false questions, in which sentences are classified as affirmative or

134

negative, then converted to the opposite polarity. Specialized named entity recognition

(NER) model is executed on real text-based lecture notes to construct a glossary of

terms (GoT) structure in the scope of history and geography domains. GoT structure

is a tool to generate questions in all of the three question types.

 To perform document classification experiments, a dataset with 1200 text-based

course documents (600 geography, 600 history) is collected. In a total of 560

experiments, proportion of data used for training, effect of stop word removal,

different stemming approaches, classification algorithms and feature selection

methods are compared to select the most suitable model. Based on observations,

combination of using 50% of the dataset for training, Naïve Bayes Multinomial (NB-

M) as classification algorithm, Zemberek stemmer (ZS) as stemming approach,

Information Gain (IG) as feature selection method and removal of stop words (NSW)

as the stop word existence approach is chosen as the classification model with its

99.2% f-measure result.

 Combined results for sentence boundary and heading detection model experiments

on 60 documents (30 geography, 30 history) are stated as 98.79% precision for

sentences, 98.29% recall for sentences, 99.35% precision for headings and 98.50%

recall for headings. All of the 27 cases where a join operation is needed on itemized

text parts is are correctly detected and 148 of 158 first character upper - lowercase

adjustments are correctly handled.

 Combined results for verb polarity detection and conversion model experiments on

60 documents (30 geography, 30 history) are stated as 94.01% classification accuracy

and 92.48% conversion accuracy.

 Success of NER model is evaluated on TEXT (to correctly detect borders of a

named entity) and TYPE (to correctly detect type of a named entity) attributes.

Combined results for NER model experiments on 60 documents (30 geography, 30

history) are stated as 96.26% precision for TEXT, 92.93% precision for TYPE,

96.29% recall for TEXT and 92.97% recall for TYPE.

135

9.2 Future Enhancement

 As spelling errors and absence of punctuation marks within documents mostly

effect the success rates of the NLP tasks in a negative way, integrating a spell-checker

module to the system can be considered before processing the input document.

 Verb polarity detection task is handled with an FSM structure that aims to eliminate

the inflectional suffixes of a predicate to reach the stem, and a lexicon that holds a

wide list of Turkish stems for lookup operations. Even so, because of the agglutinative

structure of Turkish language, it is not a realistic approach to store all possible stems

in a lexicon structure. Applying derivational suffix controls on the detected stem with

a second FSM structure can be considered to reach the root this time, as system success

might be increased if lookup operations are executed on a Turkish roots lexicon, which

is a more stable list.

 On NER model, decreasing the number of named entities with “Other” tag should

be considered by additional named entity types. For example, a larger portion of these

kind of named entities in history documents have a “nation, nationality” meaning,

which can be encapsulated with different tag usage. Lexicons can also be extended

with ancient age location and person names.

 Working on the detection of word phrases in Turkish sentences, which is another

NLP related task, can be considered to increase the number of ways to generate

questions on examination model.

136

REFERENCES

Aberdeen, J., Burger, J., Day, D., Hirschman, L., Robinson, P., & Vilain, M. (1995).

MITRE: Description of the Alembic system used for MUC-6. In Proceedings of the

6th Conference on Message Understanding, 141-155. Stroudsburg, PA, USA: ACL.

Akın, A. A., & Akın, M. D. (2007). Zemberek, an open source NLP framework for

Turkic languages. Structure, 10, 1-5.

Aksoy, A., & Öztürk, T. (2016). TrStop. Retrieved January 18, 2017, from

https://github.com/ahmetax/trstop/blob/master/dosyalar/turkce-stop-words.

Aktaş, Ö. (2010). Rule-based natural language processing methods for Turkish. Ph.D.

Thesis, Dokuz Eylül University, İzmir.

Aktaş, Ö., & Çebi, Y. (2013). Rule-based sentence detection method (RBSDM) for

Turkish. International Journal of Language and Linguistics, 1 (1), 1-6.

Alfonseca, E., & Manandhar., S. (2002). An unsupervised method for general named

entity recognition and automated concept discovery. In Proceedings of the 1st

International Conference on General WordNet. Mysore, India: GWA.

Amasyalı, M. F., & Beken, A. (2009). A measurement of Turkish word semantic

similarity and text categorization application. In Proceedings of IEEE 17th Signal

Processing and Communications Applications Conference, 1-4. Antalya, Turkey:

IEEE.

Amasyalı, M. F., & Diri, B. (2006). Automatic Turkish text categorization in terms of

author, genre and gender. In C. Kop, G. Fliedl, H. C. Mayr, E. Métais (Eds.),

Proceedings of the 11th International Conference on Applications of Natural

Language to Information Systems, 221-226. Berlin, Heidelberg: Springer-Verlag.

137

Baklavas, G., Economides, A. A., & Roumeliotis, M. (1999). Evaluation and

comparison of web-based testing tools. In Proceedings of WebNet-99, World

Conference on WWW and Internet, 81-86. Honolulu, Hawaii: Association for the

Advancement of Computing in Education (AACE).

Bektaş, Y., & Özel, S. A. (2018). The effect of pos tag information on sentence

boundary detection in Turkish texts. In Proceedings of Innovations in Intelligent

Systems and Applications Conference (ASYU), 1-5. Adana, Turkey: IEEE.

Cebiroğlu, G. (2002). Root reaching method without dictionary. Master’s Thesis,

İstanbul Technical University, İstanbul.

Cucerzan, S., & Yarowsky, D. (1999). Language independent named entity

recognition combining morphological and contextual evidence. In P. Fung, J. Zhou

(Eds.), Proceedings of Joint SIGDAD Conference on Empirical Methods in NLP

and Very Large Corpora, 90-99. New Brunswick, NJ, USA: ACL.

Çilden, E. K. (2006). Stemming Turkish words using Snowball. Retrieved December

29, 2018, from http://snowball.tartarus.org/algorithms/turkish/stemmer.html.

Çoban, Ö., Özyer, B., & Özyer, G. T. (2015). Sentiment analysis for Turkish Twitter

feeds. In Proceedings of IEEE 23rd Signal Processing and Communications

Applications Conference, 2388-2391. Malatya, Turkey: IEEE.

Dehkharghani, R., Saygin, Y., Yanikoglu, B., & Oflazer, K. (2016). SentiTurkNet: A

Turkish polarity lexicon for sentiment analysis. Language Resources and

Evaluation, 50, 667-685.

DePiero, F. (2001). NetExam: A web-based assessment tool for ABET2000. In

Proceedings of 31st Annual Frontiers in Education Conference, 2, F3A-F13. Reno,

NV, USA: IEEE.

138

Dinçer, B. T., & Karaoğlan, B. (2003). Stemming in agglutinative languages: A

probabilistic stemmer for Turkish. In A. Yazıcı, C. Şener (Eds.), Proceedings of

International Symposium on Computer and Information Sciences (ISCIS 2003),

Similarity for conceptual querying (LNCS 2869), 244-251. Berlin, Heidelberg:

Springer-Verlag.

Dinçer, B. T., & Karaoğlan, B. (2004). Sentence boundary detection in Turkish. In T.

Yakhno (Ed.), Proceedings of the Third International Conference on Advances in

Information Systems (ADVIS '04), 255-262. Berlin, Heidelberg: Springer-Verlag.

Fürnkranz, J. (1998). A study using n-gram features for text categorization (Report

No. OEFAI-TR-98-30). Wien, Austria: Austrian Research Institute for Artificial

Intelligence.

Gotoh, Y., & Renals, S. (2000). Sentence boundary detection in broadcast speech

transcripts. In Proceedings of ISCA Workshop: Automatic Speech Recognition:

Challenges for the New Millennium (ASR-2000), 228-235. Paris, France:

International Speech Commination Association (ISCA).

Grishman, R., & Sundheim, B. (1996). Message Understanding Conference-6: A brief

history. In Proceedings of the 16th Conference of Computational Linguistics

(COLING '96), 1, 466-471. Stroudsburg, PA, USA: ACL.

Grün, B., & Zeileis, A. (2009). Automatic generation of exams in R. Journal of

Statistical Software, 29 (10), 1-14.

Guz, U., Favre, B., Hakkani-Tur, D., & Tur, G. (2009). Generative and discriminative

methods using morphological information for sentence segmentation of Turkish.

IEEE Transactions on Audio, Speech, and Language Processing, 17, 895-903.

139

Güneş, A., Tantuğ, A. C. (2018). Turkish named entity recognition with deep learning.

In 26th Signal Processing and Communications Applications Conference (SIU), 1-

4. İzmir, Turkey: IEEE.

Güngör, O., Üsküdarlı, S., & Güngör, T. (2018). Recurrent neural networks for

Turkish named entity recognition. In 26th Signal Processing and Communications

Applications Conference (SIU), 1-4. İzmir, Turkey: IEEE.

Han, E., & Karypis, G. (2000). Centroid-based document classification: Analysis and

experimental results. In D. Zighed, H. Komorowski, J. Zytkow (Eds.), Proceedings

of the 4th European Conference on Principles of Data Mining and Knowledge

Discovery, 424-431. London, UK: Springer-Verlag.

Hussein, H., Elmogy, M., & Guirguis, S. (2014). Automatic English question

generation system based on template driven scheme. International Journal of

Computer Science Issues (IJCSI), 11 (6), 45-53.

Isa, D., Lee, L. H., Kallimani, V. P., & RajKumar, R. (2008). Text document

preprocessing with the Bayes formula for classification using the support vector

machine. IEEE Transaction on Knowledge and Data Engineering, 20, 1264-1272.

Jurafsky, D., & Martin, J. H. (2000). Morphology and finite-state transducers. In

Speech and language processing (57-90). Englewood Cliffs, New Jersey: Prentice-

Hall, Inc.

Jurafsky, D., & Martin, J. H. (2009). Named entity recognition. In Speech and

language processing (2nd ed.) (743-751). Upper Saddle River, New Jersey:

Prentice-Hall, Inc.

Kesgin, F. (2007). Türkçe metinler için konu belirleme sistemi. Master’s Thesis,

İstanbul Technical University, İstanbul.

140

Kiss, T., & Strunk, J. (2006). Unsupervised multilingual sentence boundary detection.

Computational Linguistics, 32, 485-525.

Küçük, D., & Yazıcı, A. (2009). Named entity recognition experiments on Turkish

texts. In T. Andreasen, R. R. Yager, H. Bulskov, H. Christiansen, H. L. Larsen

(Eds.), Proceedings of the 8th International Conference on Flexible Query

Answering Systems, 524-535. Berlin, Heidelberg: Springer-Verlag.

Küçük, D., & Yazıcı, A. (2009). Rule-based named entity recognition from Turkish

texts. In Proceedings of International Symposium on Innovations in Intelligent

Systems and Applications (INISTA 2009), 456-460. Trabzon, Turkey: Karadeniz

Technical University Press.

Küçük, D., & Yazıcı, A. (2012). A hybrid named entity recognizer for Turkish. Expert

Systems with Applications, 39, 2733-2742.

Küçük, D., Jacquet, G., & Steinberger, R. (2014). Named entity recognition on Turkish

tweets. In N. Calzolari et al. (Eds.), Proceedings of the Ninth International

Conference on Language Resources and Evaluation (LREC '14), 450-454.

Reykjavik, Iceland: ELRA.

Küçük, D., Küçük, D., & Arıcı, N. (2016). A named entity recognition dataset for

Turkish. In Proceedings of 24th Signal Processing and Communication Application

Conference (SIU), 329-332. Zonguldak, Turkey: IEEE.

Lee, J. (2000). Internet-based exam generator system for review of the fundamentals

of engineering exam. Master’s Thesis, University of Oklahoma, Oklahoma.

Lewis, D. D. (1992). Feature selection and feature extraction for text categorization.

In M. P. Marcus (Ed.), Proceedings of the workshop on Speech and Natural

Language (HLT '91), 212-217. Harriman, New York: Association for

Computational Linguistics (ACL).

141

Liu, Y., & Shriberg, E. (2007). Comparing evaluation metrics for sentence boundary

detection. In Proceedings of IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP '07), IV-185 – IV-188. Honolulu, HI, USA: IEEE.

Liu, Z., Shi, J., Liu, J., & Li, Y. (2010). Strategy and applied research of multi-

constrained model of automatic test paper based on genetic algorithm. Applied

Mechanics and Materials, 37-38, 1223-1230.

Manevitz, L. M., & Yousef, M. (2002). One-class SVMs for document classification.

The Journal of Machine Learning Research, 2 (3/1/2002), 139-154.

Manning, C. D., Raghavan, P., & Schütze, H. (2009). Determining the vocabulary of

terms. In An introduction to information retrieval (22-35). Cambridge, England:

Cambridge UP.

Mikheev, A. (2000). Tagging sentence boundaries. In Proceedings of the 1st North

American Chapter of the Association for Computational Linguistics Conference,

264-271. Stroudsburg, PA, USA: ACL.

Moral, C., de Antonio, A., Imbert, R., & Ramirez, J. (2014). A survey of stemming

algorithms in information retrieval. Information Research, 19 (1), paper 605.

Retrieved December 29, 2018, from http://www.informationr.net/ir/19-

1/paper605.html#.XGF7o1wzYdU.

Oflazer, K. (2003). Dependency parsing with an extended finite-state approach.

Computational Linguistics, 29, 515-544.

Oflazer, K. (2014). Turkish and its challenges for language processing. Language

Resources and Evaluation, 48, 639-653.

142

Ozkul, A. (2009). Using information technology to enhance assessment of learning:

Automating preparation of course exam materials and student feedback.

Information Technology, Learning and Performance Journal, 25 (1), 15-23.

Ozturkmenoglu, O., & Alpkocak, A. (2012). Comparison of different lemmatization

approaches for information retrieval on Turkish text collection. In 2012

International Symposium on Innovations in Intelligent Systems and Applications,

1-5. Trabzon, Turkey: IEEE.

Özsert, C. M., & Özgür, A. (2013). Word polarity detection using a multilingual

approach. In A. Gelbukh (Ed.), Computational Linguistics and Intelligent Text

Processing (CicLing 2013), Part II, Lecture Notes in Computer Science (LNCS

7817), 75-82. Berlin, Heidelberg: Springer-Verlag.

Palmer, D. D., & Hearst, M. A. (1997). Adaptive multilingual sentence boundary

disambiguation. Computational Linguistics, 23, 241-267.

Porter, M. F. (1980). An algorithm for suffix stripping. Program: Electronic Library

and Information Systems, 40, 130-137.

Read, J., Dridan, R., Oepen, S., & Solberg, L. J. (2012). Sentence boundary detection:

A long solved problem?. In Proceedings of 24th International Conference on

Computational Linguistics (COLING 2012), 985-994. Mumbai, India: ACL.

Reynar, J. C., & Ratnaparkhi, A. (1997). A maximum entropy approach to identifying

sentence boundaries. In Proceedings of the Fifth Conference on Applied Natural

Language Processing, 16-19. Stroudsburg, PA, USA: ACL.

Riley, M. D. (1989). Some applications of tree-based modelling to speech and

language. In Proceedings of the workshop on Speech and Natural Language (HLT

'89), 339-352. Stroudsburg, PA, USA: ACL.

143

Sahin, H. B., Tirkaz, C., Yildiz, E., Eren, M. T., & Sonmez, O. (2017). Automatically

annotated Turkish corpus for named entity recognition and text categorization

using large-scale gazetteers. Retrieved December 26, 2018, from

https://arxiv.org/abs/1702.02363.

Sak, H., Güngör, T., & Saraçlar, M. (2008). Turkish language resources:

Morphological parser, morphological disambiguator and web corpus. In B.

Nordström, A. Ranta (Eds.), Proceedings of the 6th International Conference on

Advances in Natural Language Processing, 417-427. Berlin, Heidelberg: Springer-

Verlag.

Sang, E., & Meulder, F. (2003). Introduction to CoNLL-2003 shared task: Language-

independent named entity recognition. In Proceedings of the 7th Conference on NLP

at Human Language Technology Conference of the North American Chapter of the

Association for Computational Linguistics (HLT-NAACL 2003), 4, 142-147.

Stroudsburg, PA, USA: ACL.

Sever, H., & Bitirim, Y. (2003). FindStem: Analysis and evaluation of a Turkish

stemming algorithm. In M. A. Nascimento, E. S. de Moura, A. L. Oliveira (Eds.),

Proceedings of String Processing and Information Retrieval (SPIRE 2003), Lecture

Notes in Computer Science (LNCS 2857), 238-251. Berlin, Heidelberg: Springer-

Verlag.

Shende, A. M., Dalch, L. N., & Warner, M. R. (2002). United States Patent No. US

6341212 B1. Retrieved from https://patents.google.com/patent/US6341212.

Slonim, N., Friedman, N., & Tishby, N. (2002). Unsupervised document classification

using sequential information maximization. In K. Jarvelin, M. Beaulieu, R. Baeza-

Yates, S. Myaeng (Eds.), Proceedings of the 25th annual international ACM SIGIR

conference on Research and development in information retrieval, 129-136. New

York, NY, USA: ACM.

144

Solak, A., & Can, F. (1994). Effects of stemming on Turkish text retrieval (Report No.

BUCEIS-94-20). Ankara, Turkey: Bilkent University.

Solak, A., & Oflazer, K. (1993). Design and implementation of a spelling checker for

Turkish. Literary and Linguistic Computing, 8, 113-130.

Stamatatos, E., Fakotakis, N., & Kokkinakis, G. (1999). Automatic extraction of rules

for sentence boundary disambiguation. In Proceedings of Workshop on Machine

Learning in Human Language Technology, Advance Course in Artificial

Intelligence (ACAI '99), 88-92. Crete, Greece: Mediterranean Agronomic Institute

of Chania.

Şahin, M., Sulubacak, U., & Eryiğit, G. (2013). Redefinition of Turkish morphology

using flag diacritics. In Proceedings of the 10th Symposium on Natural Language

Processing (SNLP-2013). Phuket, Thailand: SIIT, NECTEC.

Şeker, G., & Eryiğit, G. (2016). State of the art in Turkish named entity recognition.

Retrieved March 9, 2018, from

https://pdfs.semanticscholar.org/7e7f/ed9d21a3e3a36c4eb3c7df1ee8116e8ec2ce.p

df.

Şeker, G.A., & Eryiğit, G. (2012). Initial explorations on using CRFs for Turkish

named entity recognition. In Proceedings of 24th International Conference on

Computational Linguistics (COLING 2012), 2459-2574. Mumbai, India: The

COLING 2012 Organizing Committee.

Tantuğ, A. C. (2010). Document categorization with modified statistical language

models for agglutinative languages. International Journal of Computational

Intelligence System, 3, 632-645.

145

Tatar, S., & Cicekli, I. (2011). Automatic rule learning exploiting morphological

features for named entity recognition in Turkish. Journal of Information Science,

37, 137-151.

Temizsoy, M., & Cicekli, I. (1998). An ontology-based approach to parsing Turkish

sentences. In D. Farwell, L. Gerber, E. Hovy (Eds.), Proceedings of Antenna

Measurement Techniques Association 20th Annual Meeting and Symposium (AMTA

'98), 124-135. London, UK: Springer-Verlag.

The most influential people of all time. (n.d). Retrieved May 12, 2018, from

https://www.ranker.com/crowdranked-list/the-most-influential-people-of-all-time.

Ting, S. L., Ip, W. H., & Tsang, A. (2011). Is naïve bayes a good classifier for

document classification?. International Journal of Software Engineering and Its

Applications, 5 (3), 37-46.

Tüfekçi, P., Uzun, E., & Sevinç, B. (2012). Text classification of web based news

articles by using Turkish grammatical features. In Proceedings of IEEE 20th Signal

Processing and Communications Applications Conference, 1-4. Mugla, Turkey:

IEEE.

Tür, G., Hakkani-Tür, D., & Oflazer, K. (2003). A statistical information extraction

system for Turkish. Natural Language Engineering, 9, 181-210.

Ugurdag, H. F., Argali, E., Eker, O. E., Basaran, A., Goren, S., & Özcan, H. (2009).

Smart question (sQ): Tool for generating multiple-choice test questions. In R.

Revetria, V. Mladenov, N. Mastorakis (Eds.), Proceedings of the 8th WSEAS

International Conference on Education and Educational Technology, 173-177.

Genova, Italy: WSEAS Press.

Uysal, A. K., & Gunal, S. (2014). Text classification using genetic algorithm oriented

latent semantic features. Expert Systems with Applications, 41, 5938-5947.

146

Uysal, A. K., Günal, S., Ergin, S., & Günal, E. Ş. (2012). Detection of SMS spam

messages on mobile phones. In Proceedings of IEEE 20th Signal Processing and

Communications Applications Conference, 1-4. Mugla, Turkey: IEEE.

Vural, A. G., Cambazoglu, B. B., & Senkul, P. (2012) A framework for sentiment

analysis in Turkish: Application to polarity detection of movie reviews in Turkish.

In E. Gelenbe, R. Lent (Eds.), Computer and Information Sciences III, 437-445.

London, UK: Springer-Verlag.

Wang, H., & Huang, Y. (2003). Bondec – A Sentence Boundary Detector. Retrieved

March 13, 2018, from

https://nlp.stanford.edu/courses/cs224n/2003/fp/huangy/final_project.doc.

Wentland, W., Knopp, J., Silberer, C., & Hartung, M. (2008). Building a multilingual

lexical resource for named entity disambiguation, translation and transliteration. In

Proceedings of the 6th International Conference on Language Resources and

Evaluation, 3230-3237. Marrakech, Morocco: ELRA.

Xu, C., Xie, L., Huang, G., Xiao, X., Chng, E. S., & Li, H. (2014). A deep neural

network approach for sentence boundary detection in broadcast news. In

Proceedings of 15th Annual Conference of the International Speech Communication

Association (INTERSPEECH 2014), 2887-2891. Singapore: ISCA.

Xu, J., & Croft, W. B. (1998). Corpus-based stemming using co-occurrence of word

variants. ACM Transactions on Information Systems, 16 (1), 61-81.

Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., & Hovy, E. (2016). Hierarchical

attention networks for document classification. In K. Knight, A. Nenkova, O.

Rambow (Eds.), Proceedings of the 15th Annual Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language

Technologies (NAACL-HLT 2016), 1480-1489. San Diego, California: ACL.

147

Yıldırım, S., & Yıldız, T. (2018). A comparative analysis of text classification for

Turkish language. Pamukkale University Journal of Engineering Sciences, 24, 879-

886.

Yildiz, H. K., Gençtav, M., Usta, N., Diri, B. & Amasyalı, M. F. (2007). A new feature

extraction method for text classification. In Proceedings of IEEE 15th Signal

Processing and Communications Applications, 1-4. Eskisehir, Turkey: IEEE.

148

APPENDICES

APPENDIX-1: Turkish Stop Words

a

acaba

altı

altmış

ama

ancak

arada

artık

asla

aslında

ayrıca

az

bana

bazen

bazı

bazıları

belki

ben

benden

beni

benim

beri

beş

bile

bilhassa

bin

bir

biraz

birçoğu

birçok

biri

birisi

birkaç

birşey

biz

bizden

bize

bizi

bizim

böyle

böylece

bu

buna

bunda

bundan

bunlar

bunları

bunların

bunu

bunun

burada

bütün

çoğu

çoğunu

çok

çünkü

da

daha

dahi

dan

de

defa

değil

diğer

diğeri

diğerleri

diye

doksan

dokuz

dolayı

dolayısıyla

dört

e

edecek

eden

ederek

edilecek

ediliyor

edilmesi

ediyor

eğer

elbette

elli

en

etmesi

etti

ettiği

ettiğini

fakat

falan

filan

gene

gereği

gerek

gibi

göre

hala

halde

halen

hangi

hangisi

hani

hatta

hem

henüz

hep

hepsi

her

herhangi

herkes

herkese

herkesi

herkesin

hiç

hiçbir

hiçbiri

i

ı

için

içinde

iki

ile

ilgili

ise

işte

itibaren

itibariyle

kaç

kadar

karşın

kendi

kendilerine

kendine

kendini

kendisi

kendisine

kendisini

kez

ki

kim

149

APPENDIX-1 continues

kimse

kırk

madem

mi

mı

milyar

milyon

mu

mü

nasıl

ne

neden

nedenle

nerde

nerede

nereye

neyse

niçin

nin

nın

niye

nun

nün

o

öbür

olan

olarak

oldu

olduğu

olduğunu

olduklarını

olmadı

olmadığı

olmak

olması

olmayan

olmaz

olsa

olsun

olup

olur

olursa

oluyor

on

ön

ona

önce

ondan

onlar

onlara

onlardan

onları

onların

onu

onun

orada

öte

ötürü

otuz

öyle

oysa

pek

rağmen

sana

sanki

şayet

şekilde

sekiz

seksen

sen

senden

seni

senin

şey

şeyden

şeye

şeyi

şeyler

şimdi

siz

sizden

size

sizi

sizin

sonra

şöyle

şu

şuna

şunları

şunu

ta

tabi

tam

tamam

tamamen

tarafından

trilyon

tüm

tümü

u

ü

üç

un

ün

üzere

var

vardı

ve

veya

ya

yani

yapacak

yapılan

yapılması

yapıyor

yapmak

yaptı

yaptığı

yaptığını

yaptıkları

ye

yedi

yerine

yetmiş

yi

yı

yine

yirmi

yoksa

yu

yüz

zaten

zira

150

APPENDIX-2: Most Distinctive 100 Words for Classification

Rank Word IG Score

1 devlet 0.52314

2 savaş 0.3528

3 karşı 0.208

4 fazla 0.20644

5 yağ 0.19711

6 sıcaklık 0.19198

7 ordu 0.18133

8 iklim 0.18096

9 iste 0.17603

10 birlik 0.17435

11 ilk 0.16736

12 bitki 0.1655

13 yönetim 0.16336

14 kur 0.16098

15 antlaşma 0.16006

16 başla 0.15773

17 örtü 0.14888

18 kurul 0.1443

19 barış 0.14343

20 karar 0.14219

21 akarsu 0.14201

22 su 0.14028

23 kabul 0.13999

24 askeri 0.13751

25 işgal 0.13523

Rank Word IG Score

26 yüksek 0.12536

27 yeni 0.12512

28 yer 0.12491

29 egemen 0.12348

30 yeryüzü 0.12235

31 halk 0.12004

32 asker 0.11969

33 katıl 0.1186

34 siyasi 0.1186

35 amaç 0.11776

36 imzala 0.11636

37 imparator 0.11458

38 ver 0.11282

39 başarı 0.11099

40 dağ 0.11096

41 son 0.1109

42 bağım 0.11014

43 görev 0.10852

45 ilan 0.10826

44 millet 0.10826

46 kaldır 0.10761

47 başkan 0.10582

48 meclis 0.10511

49 paşa 0.10485

50 mevsim 0.10462

151

APPENDIX-2 continues

Rank Word IG Score

51 el 0.10278

52 yükselti 0.10274

53 kemal 0.09889

54 gönder 0.09751

55 saldırı 0.09697

56 güven 0.09463

57 anlaşma 0.09434

58 kazan 0.09271

59 aç 0.0923

60 rüzgar 0.09149

61 yönet 0.09096

62 orman 0.09096

63 er 0.08781

64 milli 0.08768

65 silah 0.08694

66 kış 0.08634

67 çıktı 0.0856

68 kıyı 0.08509

69 nem 0.08502

70 ele 0.0828

71 ortalama 0.08279

72 yardım 0.08228

73 düzenle 0.08227

74 politika 0.08223

75 kurak 0.08176

Rank Word IG Score

76 tanı 0.08162

77 hak 0.08156

78 sıcak 0.08153

79 kurt 0.08131

80 gir 0.07885

81 padişah 0.07846

82 girdi 0.07813

83 komutan 0.07813

84 din 0.07813

85 yamaç 0.07752

86 mücadele 0.07718

87 yun 0.07697

88 dönem 0.07607

89 bey 0.07596

90 oluş 0.07593

91 getir 0.0758

92 kutup 0.07561

93 tarihi 0.07561

94 doğal 0.07561

95 üye 0.0756

96 enlem 0.07536

97 düşünce 0.07518

98 yüzey 0.07475

99 kral 0.07453

100 al 0.07387

152

APPENDIX-3: Turkish Abbreviation List

age.

agm.

agy.

Alb.

Alm.

anat.

ant.

Apt.

Ar.

ark.

Arş. Gör.

As. İz.

As.

Asb.

astr.

astrol.

Atğm.

atm.

Av.

bağ.

Bçvş.

bit. b.

biy.

bk.

bkz.

bl.

Bl.

Bn.

Bnb.

bot.

Böl.

bs.

Bşk.

Bul.

Bulg.

Cad.

cm.

coğ.

Cum. Bşk.

çev.

Çvş.

dal.

dam.

db.

dg.

dil b.

dk.

dl.

dm

Doç.

doğ.

Dr.

drl.

Dz. Kuv. K.

Dz. Kuv.

dzl.

Ecz.

ed.

e.

ekon.

Ens.

Erm.

f.

Fak.

Far.

fel.

fil.

fiz.

fizy.

Fr.

g.

Gen.

geom.

gn.

Gnkur.

Gön.

gr.

hay. b.

haz.

hek.

hl.

hlk.

hm.

Hs. Uzm.

huk.

Hv. Kuv. K.

Hv. Kuv.

Hz. öz.

Hz.

İbr.

İng.

is.

İsp.

işl.

İt.

Jap.

jeol.

kal.

kg.

KHz.

kim.

km.

koor.

Kor.

Kora.

Korg.

kr.

krş.

Kur. Bşk.

Kur.

l.

lt.

Lat.

Ltd.

m.

Mac.

Mah.

man.

mat.

Md.

mec.

MHz.

mim.

min.

mm.

Müh.

Mür.

müz.

No.

Nö.

Nö. Sb.

Okt.

Onb.

Opr.

Or.

Ora.

Ord.

Org.

Ort.

Osm. T.

öl.

ör.

Ör.

öz.

ped.

Port.

Prof.

psikol.

Rum.

Rus.

s.

sa.

Sb.

SEFD Bşk.

sf.

Sl.

Sn.

snt.

Sok.

sos.

sp.

Srp.

Şb.

T.C.

T.

tar.

Tb.

tek.

tel.

telg.

Tğm.

tic.

tiy.

tlks.

tls.

Top.

Tug.

Tuğa.

Tuğg.

Tüm.

Tüma.

Tümg.

Uzm.

Üni.

Ü.

Üçvş.

ünl.

Ütğm.

vb.

vd.

Vet.

vs.

Y. Mim.

Y. Müh.

Yay.

Yb.

Yd. Sb.

Yrd. Doç.

Yun.

yy.

Yzb.

zf.

zm.

zool.

153

APPENDIX-4: Exceptional Verb Roots Affected by Consonant Lenition

git

et

tat

güt

dit

affet

azlet

kaybet

farket

süregit

emret

bahset

hallet

hapset

hükmet

sabret

hisset

devret

zannet

katlet

naklet

vadet

mahvet

cezbet

şükret

bahşet

defet

katet

hazmet

azmet

vehmet

vakfet

zikret

zehret

zulmet

cebret

celbet

resmet

feshet

haczet

hamdet

ahdet

akdet

akset

atfet

faslet

fethet

gasbet

hatmet

hicvet

hazzet

kahret

kastet

kaydet

keşfet

küfret

lağvet

methet

meylet

nakşet

raptet

reddet

tabet

154

APPENDIX-5: Example Lecture Note and Generated Test

FENİKE MEDENİYETİ – İBRANİ MEDENİYETİ

FENİKE MEDENİYETİ

Lübnan Dağları ile Akdeniz sahili arasındaki bölgede yaşamış, gemicilik ve ticarette gelişmiş bir

medeniyettir.

 * Doğu Akdeniz ve Batı Afrika sahillerinde ticaret kolonileri kurdular. Doğu ve Batı

medeniyetlerinin kaynaşmasında taşıyıcı bir rol oynadılar.

 * Mezopotamya çivi yazısından ve Mısır hiyeroglifinden etkilenerek HARF YAZISI'nı (alfabe)

buldular.

 ** Fenikeliler'in 22 harften oluşan yazıları, Yunanlılar'a, onlardan da Romalılar'a geçerek

bugünkü Latin alfabesini oluşturmuştur.

 * CAM'ı icat etmişler, Fildişi işlemeciliğinde ileri gitmişlerdir.

 İBRANİ MEDENİYETİ

 MÖ. 1500'lerde Filistin ve Lübnan dolaylarında yaşayan İbraniler, Sami ırkındandırlar.

 * Hz. Musa zamanında birlik haline geldiler, devlet haline gelmeleri Hz. Davud zamanında oldu.

En güçlü dönemleri Hz. Süleyman zamanıdır.

 * Hz. Süleyman'dan sonra İbrani Devleti İsrail ve Yahudi Devleti olmak üzere ikiye ayrılmıştır.

İsrail devletine Asurlular, Yahudi (Yuda) devletine ise Babilliler son vermişlerdir.

 * Dinleri tek tanrılıdır. (Yahudilik=Musevilik). İlk çağın tek tanrılı dine inanan ilk kavmidir.

Kutsal kitapları Tevrat'dır.

 ** İbraniler, Museviliği milli bir din olarak kabul ettiklerinden bu din diğer kavimler arasında

fazla yayılmamıştır.

 ** Dinlerinin etrafında milli bir birlik oluşturduklarından dünyanın dört bir yanına dağılmış

olmalarına rağmen birbirleriyle dayanışma içinde olmuşlardır.

 * II. Dünya Savaşı sonunda İngiltere ve Amerika'nın yardımıyla bugünkü Filistin'de İsrail devletini

kurmuşlardır.

 * En önemli eserleri Kudüs'teki Mescid-i Aksa (Süleyman Mabedi)'dir.

155

APPENDIX-5 continues

Fenike Medeniyeti - İbrani Medeniyeti

Mixed Test - 12.02.2019

FENİKE MEDENİYETİ

(1) Lübnan Dağları ile sahili arasındaki bölgede yaşamış, gemicilik

ve ticarette gelişmiş bir medeniyettir.

FENİKE MEDENİYETİ

(2) ve Batı Afrika sahillerinde ticaret kolonileri kurdular.

A) Doğu Trakya

B) Doğu Akdeniz

C) Güney Marmara

D) Batı Trakya

FENİKE MEDENİYETİ

(3) Mezopotamya çivi yazısından ve Mısır hiyeroglifinden etkilenerek HARF

YAZISI'nı (alfabe) buldular.

A) True B) False

FENİKE MEDENİYETİ

(4) Hititler'in 22 harften oluşan yazıları, Yunanlılar'a, onlardan da Romalılar'a

geçerek bugünkü Latin alfabesini oluşturmuştur.

A) True B) False

FENİKE MEDENİYETİ

(5) CAM'ı icat etmişler, Fildişi işlemeciliğinde ileri gitmemişlerdir.

A) True B) False

İBRANİ MEDENİYETİ

(6) MÖ. 1500'lerde Filistin ve dolaylarında yaşayan İbraniler, Sami

ırkındandırlar.

A) Yemen

B) Lübnan

C) Tunus

D) Pakistan

İBRANİ MEDENİYETİ

(7) Hz. Musa zamanında birlik haline geldiler, devlet haline gelmeleri Hz.

Muhammed zamanında oldu.

A) True B) False

156

APPENDIX-5 continues

İBRANİ MEDENİYETİ

(8) En güçlü dönemleri zamanıdır.

A) Hz. Muhammed

B) Hz. Süleyman

C) Zeynelabidin

D) Hz. Ali

İBRANİ MEDENİYETİ

(9)'dan sonra İbrani Devleti İsrail ve Yahudi Devleti olmak üzere

ikiye ayrılmıştır.

İBRANİ MEDENİYETİ

(10) devletine Asurlular, Yahudi (Yuda) devletine ise Babilliler son

vermişlerdir.

A) İran

B) Afganistan

C) İsrail

D) Tunus

İBRANİ MEDENİYETİ

(11) (Yahudilik=.......).

A) Vehhabilik

B) Musevilik

C) Müslümanlık

D) Zerdüştlük

İBRANİ MEDENİYETİ

(12) İbraniler, Museviliği milli bir din olarak kabul ettiklerinden bu din diğer

kavimler arasında fazla yayılmıştır.

A) True B) False

İBRANİ MEDENİYETİ

(13) Dinlerinin etrafında milli bir birlik oluşturduklarından dünyanın dört bir

yanına dağılmış olmalarına rağmen birbirleriyle dayanışma içinde olmuşlardır.

A) True B) False

İBRANİ MEDENİYETİ

(14) II. Dünya Savaşı sonunda İngiltere ve Kanada'nın yardımıyla bugünkü

Filistin'de İsrail devletini kurmuşlardır.

A) True B) False

İBRANİ MEDENİYETİ

(15) En önemli eserleri Kabil'teki Mescid-i Aksa (Süleyman Mabedi)'dir.

A) True B) False

