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AUTOMATIZED TEST GENERATION AND EVALUATION TOOL FROM 

LECTURE NOTES FOR HIGH SCHOOL STUDENTS 

 

ABSTRACT 

 

 Education systems force the students to deal with numerous exams. It can be really 

difficult to keep motivation up while handling those exams. In today’s world, 

information technologies have spread over to all levels of business sectors and 

disciplines, including education. Therefore, to make studying more target-driven and 

catchy, it is a good approach to use information technologies on this issue. 

 

 Within this thesis, a software project, which includes the processing of text-based 

Turkish lecture notes of secondary education students in history and geography 

domains and automatic test generation, is developed. Main objective here is to provide 

a computer mediated self-study opportunity by simplifying an examination process 

with isolating students from the question preparation burden. Three question types are 

enabled for selection, which are true-false, fill in the blanks and multiple choice. 

 

 Proposed system allows users to define constraints like number of questions and 

included question types before an exam generation, save generated tests or specific 

questions for further usage, save their exam results to keep track of their progress. 

 

 Besides the educational software developed, this research draws conclusions and 

proposes solutions on some of the major natural language processing (NLP) tasks for 

Turkish like document classification, detection of sentence boundaries and headings, 

conversion of verbs based on their polarities after classifying them as positive and 

negative, constructing glossary of terms structures for history and geography domains 

using named entity recognition (NER) techniques. 

 

Keywords: Educational software, automatic test generation, natural language 

processing, Turkish, named entity recognition, glossary of terms, verb polarity 

conversion, sentence boundary detection, heading detection, document classification 
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LİSE ÖĞRENCİLERİ İÇİN DERS NOTLARINDAN OTOMATİK TEST 

OLUŞTURMA VE DEĞERLENDİRME ARACI 

 

ÖZ 

 

 Öğrenciler eğitimleri boyunca çok sayıda sınava tabi tutulmaktadır. Bu sınavlarda 

başarılı olmaya çalışan öğrencilerin motivasyonunu yüksek tutması gerçekten 

zorlayıcı olabilir. Bugünün dünyasında, tüm iş kollarında ve bilim dallarında bilgi 

teknolojilerinden faydalanılmaktadır. Eğitim alanında da, süreci daha hedefe yönelik 

ve ilgi çekici hale getirmek için teknolojiden yararlanmak güzel bir yaklaşımdır. 

 

 Bu tez kapsamında, ortaöğretim tarih ve coğrafya alanındaki metin içerikli Türkçe 

ders metinlerinin otomatik sınav oluşturmak için işlendiği bir yazılım projesi 

geliştirilmiştir. Ana hedef, öğrencileri soru hazırlama yükünden kurtararak test 

sürecini kolaylaştırmak ve onlara bilgisayar ortamında kendi kendilerini sınama 

imkânı sağlamaktır. Doğru-yanlış, boşluk doldurma ve çoktan seçmeli, kullanıcıların 

seçebileceği üç soru tipi olarak sistemde tanımlanmıştır. 

 

 Önerilen sistem kullanıcılara soru sayısı, dahil edilecek soru tipleri gibi kriterleri 

sınav oluşturmadan önce belirleme, oluşturulan sınavları ya da seçilen belirli soruları 

ileride kullanmak üzere kaydetme, sınav sonuçlarını kaydetme gibi olanaklar sağlar. 

 

 Geliştirilen eğitim yazılımın yanı sıra, araştırma Türkçe için bazı önemli doğal dil 

işleme (DDL) görevlerine yönelik sonuçlar ortaya koymuş ve çözüm önerileri 

geliştirmiştir. Bu görevler metin sınıflandırma, cümle sonu ve başlık belirleme, 

fiillerin olumlu ve olumsuz şeklinde sınıflandırılıp olumluların olumsuza, 

olumsuzların olumluya çevrilmesi, varlık ismi tanıma (VİT) teknikleri kullanarak tarih 

ve coğrafya alanları için terimler sözlüğü yapıları oluşturmaktır. 

 

Anahtar kelimeler: Eğitim yazılımı, otomatik test oluşturma, doğal dil işleme, 

Türkçe, varlık ismi tanıma, terimler sözlüğü, fiillerde olumluluk - olumsuzluk 

dönüşümü, cümle sonu belirleme, başlık belirleme, metin sınıflandırma 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Brief Description and Goals of Thesis 

 In today’s world, information technologies have spread over to all levels of business 

sectors and operational systems. Using them on educational issues is also a common 

approach, as they provide considerable advantages such as durability, flexibility, 

equality of opportunity via easier access and decent gain of time. In line with this 

purpose, developing a user-friendly and goal-oriented educational software is aimed. 

What is tried to be achieved by this project within the thesis is analyzing the text-based 

lecture notes provided by the user to derive reasonable and meaningful questions. 

Included domains for input lecture notes are history and geography, included question 

types are true-false, fill in the blanks and multiple choice. Under favour of the 

generated questions, it is projected to provide an opportunity for students to test and 

evaluate themselves and make progress on the courses or topics they need. Designed 

system also allows users to keep track of their progression in time and save the 

questions they selected. By collecting the meaningful and qualified questions in time, 

to create a question bank for further usage and allow users to benefit from this service 

is the long-term goal of the project. To meet these expectations, this research suggests 

natural language processing (NLP) methods for Turkish language. 

1.2 Brief Overview of NLP and Turkish Language 

 NLP is a field of computer science, artificial intelligence and computational 

linguistics concerned with the interactions between computers and human (natural) 

languages. Therefore, it can be defined as the art of solving (engineering) problems 

that need to analyze or generate natural language text. To understand the given input 

text in a language and propose solutions for different NLP task, different analysis 

levels are required: 

- Phonology: Concerned with how speech sounds are organized in a given 

language. 
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- Morphology: Concerned with how words are constructed from primitive units 

of meaning, which are called morphemes. 

- Syntax: Concerned with the structural relationships between words to form 

phrases and sentences. 

- Semantics: Concerned with the denotation of words or phrases within a context 

and how they combine to form sentence or document meaning. 

- Pragmatics: Concerned with the different usages and interpretations of 

sentences. 

 This research mostly deals with tasks in the scope of former three analysis levels 

for Turkish language. 

 

 Turkish is an agglutinative language (like Finnish, Hungarian and Estonian). In 

these languages, new words are primarily formed by adding suffixes or prefixes (called 

affixes in general) to a root word. This might lead to relatively long words, as Turkish 

can have words with 9 or 10 affixes, while English doesn’t tend to stack more than 4 

or 5 affixes (Jurafsky & Martin, 2000). In these cases, a Turkish word is frequently 

equivalent to a whole sentence in English. Figure 1.1 shows how the Turkish word 

“yapabileceksek”, which means “if we will be able to do (something)” in English, is 

parsed into 5 morphemes (root and 4 suffixes). 

 

Figure 1.1 An example Turkish word parsed into its morphemes 

 As Figure 1.1 shows, suffixes provide additional meanings like subject, tense, 

aspect (completed, still in progress etc.), polarity (affirmation or negation), mood (is 

necessary, possible, suggested or desired) when they are appended to a verb root. This 

is a key characteristic to be considered while selecting proper NLP algorithms to use. 
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 NLP algorithms are divided into three basic models: Statistical, rule-based and 

hybrid approaches. Main paradigm of statistical models is to automatically learn rules 

of a language through the analysis of a large corpus of typical real-world examples by 

dividing them into training and test data. The more user provides examples to train the 

system, the more reliable output from the test data can be derived. Rule-based models 

on the other hand, relies on pre-defined grammatical rules about the source language 

to find out solutions. Hybrid models aim to exploit advantages of both statistical and 

rule-based approaches with a combined structure. Turkish language suits well with 

rule-based models as its agglutinative nature leads to specific grammatical rules about 

suffixes (like which of them may follow which other, which of them may be appended 

to which root types etc.). In this research, generally rule-based methods are preferred, 

but statistical methods are also used in some cases. 

1.3 Task Distribution of Thesis 

 The workflow of the test generation process starts when a user loads desired text-

based lecture notes in Turkish to the system, then specifies constraints like number of 

questions and question types to include. Thus, a proper test is generated. So, 

automatized question and test generation is the primary task of thesis. However, there 

exist four sub-tasks as pre-requisites to be carried out to fulfill primary task which are 

document classification, detection of sentence boundaries and headings, detection and 

conversion of verb polarity and named entity recognition (NER) to detect terms and 

construct glossary of terms structures for history and geography domains. 

1.4 Development Environment of Thesis 

 Proposed educational software and all sub-modules within the thesis are developed 

as Windows Forms Application in Microsoft .NET Visual Studio 2017 environment 

by using .NET framework 4.6.1 and C# programming language. MS SQL Server is 

used for data storage and management purposes. 

 

 Three external libraries are utilized on document classification phase. Open source 

Turkish NLP framework Zemberek is used for stemming purposes. Data mining and 



4 
 

machine learning library Weka is used to perform experiments. IKVM.NET, which 

provides .NET implementation of Java class libraries is also included to migrate 

required Weka libraries to .NET platform, as Weka is developed in Java language. 

 

 Another external library named iTextSharp, which provides PDF generation and 

manipulation functionalities on .NET projects, is used within test generation phase. 

Using this library, users are allowed to get a single PDF document version of generated 

tests for a neat and printer-friendly view. 

1.5 Organization of Thesis 

 This thesis is divided into 9 chapters and 5 appendices. Brief description of the 

thesis, its scope and task distribution are given in Chapter 1. Tasks within the thesis 

are briefly explained in Chapter 2. Previous academic studies and research on related 

subjects are mentioned in Chapter 3. Document classification, detection of sentence 

boundaries and headings, detection and conversion of verb polarity, NER to detect 

terms and construct glossary of term structures, and automatized question and test 

generation phases are detailed in chapters 4, 5, 6, 7 and 8 respectively. Finally, a brief 

summary of the complete thesis is given in consideration of the derived results in 

Chapter 9. 
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CHAPTER TWO 

TASK DEFINITION 

 

 Proposed framework is comprised of four NLP-related sub-modules that make the 

primary examination module practicable when combined. This makes a total of five 

tasks in the scope of thesis, which are briefly explained in this section. 

2.1 Document Classification 

 Given a set of classes, document classification (or text classification, text 

categorization) seeks to determine which class an input document belongs to. 

Automatic spam detection, sentiment detection, personal email sorting and vertical 

search engines are some of the real world applications that benefit from classification 

task (Manning, Raghavan & Schütze, 2009). In statistical text classification, a dataset 

of documents is divided into training and test sets and documents in training set are 

labeled to indicate their class information. Decision criterion of the text classifier is 

learned automatically from training data and experiments are performed on test set. 

Figure 2.1 represents of an example document classification operation. 

 

Figure 2.1 Example document classification setup with six classes, each with three training documents 

and a test set document 
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 Using a weighting scheme, words (or tokens) of documents are converted into 

feature vectors to represent documents and train the system. Tf-idf, which exploits 

term frequency (number of times a token occurs in a document) to get term weight 

information and inverse document frequency (inverse function of the number of 

documents in which a token occurs) to get term specifity information is a widely 

preferred scheme, as it reflects the importance of a token to document. Tf-idf formula 

is given below. (t: term, d: document, D: corpus (dataset), N: total number of 

documents in the corpus, tft,d: term frequency of term t in document d, dft: document 

frequency of term t) 

 

(2.1) 

 Selection of the classification algorithm has direct effect on the success rate, but 

many other approaches like document standardization (in terms of text file format and 

used character set), document preprocessing (removal of punctuation marks, 

eliminating stop words), using n-gram tokens, stemming or lemmatization, using 

feature selection methods (to reduce number of features) might also have an impact on 

accuracy, depending on the used dataset and included domains. 

 

 In this thesis, document classification is used to automatically detect the domain 

(history and geography) of an input document, which is a beneficial approach for 

filtering glossary of terms on test generation phase, filtering existing exams on test 

selection phase and filtering exam results on test evaluation phase. 

2.2 Detection of Sentence Boundaries and Headings 

 Sentence boundary detection (SBD) is the task of automatically dividing a stream 

of text or speech into grammatical sentences and a prerequisite for proper sentence 

processing, as further syntactic and semantic analysis are dependent on this task (Tür, 

Hakkani-Tür & Oflazer, 2003). Rule-based or machine learning approaches are used 

on different SBD studies. In formal text, punctuation, capitalization and usage of 

whitespace characters are utilizable to detect common patterns and generate rules to 
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state sentence boundary conditions, while speech recognizer output lacks these textual 

cues and highly depends on machine learning approaches, where actual sentence 

boundaries are labeled on training data. Identification of abbreviations, initials, ordinal 

numbers, fractions are important sub-tasks as these expressions mostly contain a 

period within, which might be considered as a sentence boundary incorrectly. To 

overcome obstacles arising from abbreviations, using abbreviation lists about source 

language or automatically detecting abbreviations before SBD (Kiss & Strunk, 2006) 

are two studied approaches. 

 

 Detection of headings can be considered as a task in the scope of classifying 

document text data into separate sections, but it is also an essential requirement for 

SBD, especially for studies on raw text data where distinctive tags to separate headings 

and actual text are not existent. For example, correctly detecting headings with ordinal 

numbers (like “2. Task Definition”) prevents incorrect sentence boundary detections, 

when pre-defined rules are not single-handedly sufficient. 

 

 In this thesis, sentence boundary detection is the primary task to obtain meaningful 

sentences and put them into service for other tasks. Heading detection on the other 

hand aims to detect all primary and sub-headings within a document and assign a 

heading for each sentence or combine a sub-heading with sentences in necessary cases. 

2.3 Detection and Conversion of Verb Polarity 

 Verb polarity detection (in terms of morphology, not semantics) for Turkish is a 

sub-task of stemming via morphological analysis, as a negation suffix (-m/-me/-ma) is 

appended to a verb stem before tense, aspect and mood suffixes on negative predicates 

in most conditions, differently from affirmative predicates. Therefore, successfully 

parsing a predicate word into its morphemes implies the polarity information. 

 

 Stemming and morphological analysis accuracy is crucial to convert a verb to its 

opposite polarity, as this task remodels the suffix sequence appended to detected stem 

by transforming required suffixes. Classification of detected stem as verb typed or 

noun typed is also important, as it is possible to obtain more than a single morpheme 
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sequence for the same word and this information is essential to eliminate irrelevant 

morphologic analysis results. Besides, Turkish phonetic rules based on vowel 

harmony, consonant harmony and root deformation conditions must be considered on 

this process, as alteration on characters might be required both for stem and suffixes. 

 

 While Table 2.1 shows different suffix sequences appended to the same verb root 

“koş” (run) to form a predicate for both polarity conditions, derived morphemes are 

explained on Table 2.2. Predicates with different polarity but same tense, person, 

aspect and mood suffixes are paired up with same index values. Negation suffixes on 

morpheme sequences of predicates with negative polarity are emphasized with bold. 

As it is seen, if negation suffixes are opted out, morpheme sequences look alike the 

sequence of corresponding affirmative predicate with same index value. Changes on 

some characters arise from Turkish phonetic rules, which will be explained in detail 

on Chapter 6. 

 

 In this thesis, a finite-state machine (FSM) structure is constructed for verb 

stemming purpose and detection of verb polarity is an embedded task in this module. 

After all sentences obtained from SBD module are processed through FSM, verb 

polarity conversion operations are applied on a sentence only if morphological 

disambiguation is achieved. Main goal of this complete process is to generate a true – 

false question for the processed sentence. 

Table 2.1 Changes on morpheme sequences based on the polarity condition of a predicate 

Predicate 

Index 
Turkish Predicate English Meaning Polarity Morpheme 

Sequence 

1 Koştum I ran. Affirmative koş – tu - m 

1 Koşmadım I didn’t run. Negative koş – ma – dı - m 

2 Koşuyor He/She is running. Affirmative koş – uyor 

2 Koşmuyor He/She is not running. Negative koş – m – uyor 

3 Koşmalıyız We should run. Affirmative koş – malı – yız 

3 Koşmamalıyız We should not run. Negative koş – ma – malı - yız 

4 Koşalım Let’s run. Affirmative koş – a – lım 

4 Koşmayalım Let’s not run. Negative koş – ma -ya - lım 
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Table 2.2 Explanation of morphemes used on Table 2.1 

Predicate 

Index 
Polarity Stem 

Morpheme 
Suffix Morphemes 

1 Affirmative koş tu (past tense with -di) – m (1st person singular) 

1 Negative koş 
ma (negation) – 

dı (past tense with -di) - m (1st person singular) 

2 Affirmative koş uyor (present tense) 

2 Negative koş 
m (negation) –  

uyor (present tense) 

3 Affirmative koş malı (necessitative) – yız (1st person plural) 

3 Negative koş 
ma (negation) - 

malı (necessitative) – yız (1st person plural) 

4 Affirmative koş a (optative) – lım (1st person plural) 

4 Negative koş 
ma (negation) – 

ya (optative) – lım (1st person plural) 

 

2.4 Named Entity Recognition to Detect Terms 

 The term named entity (NE) is used to define anything that can be referred to with 

a proper name. The process named entity recognition (NER), which is a subtask of 

information extraction, aims to locate and classify named entities in text into pre-

defined categories. This is a combined task, as it must fulfill two requirements 

respectively: To find bounds of text that constitute proper names and to classify them 

according to their types correctly. 

 

 Generic news-oriented NER systems focus on detecting expressions that indicate 

people, places and organizations, while specialized applications may be concerned 

with many other types of entities, including commercial products, works of art, 

proteins, genes and other biological entities (Jurafksy & Martin, 2009). In most NER 

systems, it is a common approach to extend the scope of a NE to include things that 

aren’t proper names but have characteristic meanings within the text. This generally 

leads the inclusion of temporal expressions like dates, times, named events and 

numerical expressions like dates, times, named events and numerical expressions like 
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measurements, counts, prices to the NE categories (also called as tags). Table 2.3 

shows example NE types and possible instances in the scope of these types. 

Table 2.3 A list of NE types with the kinds of entities they refer to 

NE Type Tag Sample Categories 

Person PER Individuals, fictional categories, small groups 

Organization ORG Companies, agencies, political parties, sports teams 

Location LOC Physical extents, mountains, lakes, seas 

Geo-Political Entity GPE Countries, states, provinces, counties 

Facility FAC Bridges, buildings, airports 

Vehicle VEH Planes, trains, automobiles 

 NER systems mostly take an unannotated block of text as input and produce an 

annotated block of text that points the names of named entities. For example, the 

projected output for the unannotated input text “Mustafa Kemal Atatürk 1881 yılında 

Selanik’te doğdu.” (Mustafa Kemal Atatürk was born in Thessaloniki in 1881.) is 

“[Mustafa Kemal Atatürk]Person [1881]Date yılında [Selanik]Location’te doğdu.” 

 

 Word ambiguity is a major concern for NER systems, like most of the other natural 

language processing (NLP) tasks. For example, the word “Washington” might indicate 

a person, a location, an organization (a sports club) or a facility (a ship). Or the word 

occurrence “Ural” in Turkish text can refer to a location (a river) or a person. 

 

 NER algorithms are divided into three models: Statistical, rule-based, hybrid 

approaches. Main paradigm of statistical models is to automatically learn rules and 

patterns of named entities through a pre-annotated training data. Besides, training data 

has to be labeled to provide information about selected features if used. Most common 

statistical models are Hidden Markov Models (HMM), Maximum Entropy (ME) and 

Conditional Random Fields (CRF). Rule-based models rely on orthographical, 

morphological and lexical information derived from feature sets. Syllabication, 

tokenization, morphological analysis or lexicon lookups are the main operations to 

assign feature values. Using lexicons to store person, location and organization names 

that imply a NE existence is a common approach. Pre-defined grammatical rules and 

character transformation conditions about the source language are also beneficial, 
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especially for agglutinative languages which require intensive suffix usage. Hybrid 

models aim to exploit advantages of both statistical and rule-based approaches with a 

combined structure. It is a serviceable approach to reduce effects of domain changes, 

but storage requirements and possible system overhead should not be neglected. 

 

 A NER system with high success rate might be serviceable for many applications 

and use case scenarios in today’s world, like classifying content for news providers, 

recommender systems, customer support, media analysis, sentiment detection, email 

scanning, more accurate literature search or educational purposes which the proposed 

NER model within this thesis is developed for. This model is specialized for Turkish 

lecture notes within history and geography domains to detect named entities. Detected 

characteristic terms are used as sources to build glossary of terms structures for 

geography and history domains, which are used on question generation phase. 

 

2.5. Automatized Question and Test Generation 

 

 Four sub-modules with different NLP tasks developed within this thesis are 

combined to carry out automatized question and test generation on input text-based 

lecture notes provided by the users, which is the main educational task. Users are also 

allowed to specify constraints about the test to be generated, which are number of 

questions, included question types, preserved or shuffled sentence order. System is 

specialized for history and geography domains. True - false, fill in the blanks and 

multiple choice are the question types enabled for selection. Figure 2.2 shows the 

relationships between the tasks defined within this thesis. 

 

Figure 2.2 A diagram showing relationships between the tasks defined within the thesis 
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CHAPTER THREE 

PREVIOUS WORK 

 

 As stated previously, developed examination system is a combination of different 

modules, each with a different NLP task to deal with. Therefore, this study touches 

upon document classification, sentence boundary detection (SBD), stemming (with 

morphological analysis), named entity recognition (NER) subjects alongside exam and 

question generation. A comprehensive literature review is made to cover all. 

3.1 Document Classification 

 Lewis (1992) investigated the effect of feature set size for word-based indexing for 

text categorization task on Reuters and MUC-3 data sets and optimal feature set size 

is identified as 10 to 15. Used statistical model is evaluated by breakeven point metric, 

the highest value that precision and recall are equal and 0.65 is reached on Reuters 

data set with 10 features. Besides, word features are found out to be more effective 

than extracted features by syntactic analysis and feature clustering. 

 

 Fürnkranz (1998) investigated the effect of using n-gram words features for text 

categorization, after removal of stop words. Study revealed that word sequences of 

length 2 or 3 is the most beneficial, while using longer sequences reduces classification 

performance.  Besides, it is stated that unigrams give higher precision that multi-

grams. Inductive rule learning algorithm Ripper is used for experiments in news 

domain and 81.18% is the highest f-measure value recorded. 

 

 Han & Karypis (2000) determined that using a centroid-based classifier with 

averaged similarity measure for each pre-defined document category (using weighted 

tf-idf representation to represent a document) is a preferable method for document 

classification. In 17 out of 23 experiments with different data sets, centroid-based 

classifier was superior to Naïve Bayes (NB), k-nearest neighbor (kNN) and decision 

tree algorithms. 
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 Manevitz & Yousef (2001) implemented a one-class support vector machine 

(SVM) for document classification task and compared it with other one-class 

classification algorithms. Experiments on Reuters data set showed that SVM approach 

outperformed all methods except neural network classifier. SVM performance also 

turned out to be sensitive to changes on selected data representation and kernel 

function. 

 

 Slonim, Friedman & Tishby (2002) proposed a greedy sequential information 

bottleneck (sIB) clustering algorithm to unsupervised document classification. 

Experiments are performed on small and medium scaled datasets collected from 

20Newsgroups and Reuters-2000 corpora. Algorithm resulted in 83.3% precision on 

small-scale dataset and 76.6% precision on medium-scaled dataset on average. It is 

stated that sIB outperformed other clustering algorithms, even seemed to be almost 

competitive with supervised NB classifier. Table 3.1 shows the results over medium 

scaled datasets. 

Table 3.1 Averaged precision results over the medium scaled datasets (Slonim et al., 2002) 

Dataset sIB sK-means K-means sL1 sKL NB 

NG10 79.5 76.3 70.3 27.7 58.8 80.8 

NG20 57.5 54.1 53.4 15.3 28.8 65.0 

Reuters 85.8 64.9 66.4 70.1 59.4 90.8 

New-Reuters 83.5 66.9 67.3 73.0 81.0 85.8 

Average 76.6 65.6 64.4 46.5 57.0 80.6 

 Amasyalı & Diri (2006) worked on text classification for Turkish using n-gram 

model. To evaluate system success, three tasks are defined as detecting the author, 

genre and the gender of author of a text document. Used dataset contains 630 

newspaper articles written by 18 authors on 3 different subjects (political, popular 

interest and sport). 83.3% by NB for author identification, 93.6% by SVM for genre 

identification and 96.3% by SVM for gender identification are the highest success 

rates. 

 

 Yıldız, Gençtav, Usta, Diri & Amasyalı (2007) proposed to exploit Turkish 

morphology and use word stems instead of a bag-of-words approach for text 
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classification task. Used dataset contains newspaper articles from three daily Turkish 

newspaper and categorized in five classes (economy, health, magazine, sport and 

politics). Turkish NLP library Zemberek is used for the stemming phase. Words that 

occur only once on the entire dataset are excluded when selecting feature vectors. 

Experiments showed that using stemming mostly improves the success rate. Highest 

accuracy score is stated as 96.25% via NB classification algorithm. 

 

 Kesgin (2007) developed correlated stemmer and text classifier structures for 

Turkish text documents. It is stated that Turkish phonics rules might require character 

level transformation for a more accurate stemming operation. Developed software 

allows users to load training documents and define categories to be used for 

classification. Vector representations for words that are derived after training phase 

are stored in database for further operations. 

 

 Isa, Lee, Kallimani & RajKumar (2008) proposed a hybrid text classification 

method that uses Bayes formula to derive vectors that represents a document, then uses 

SVM to classify the documents. This method reported significant reduction in training 

time and improvement in classification accuracy compared to single NB or TF-

IDF/SVM hybrids on 20Newsgrops, Vehicles (Wikipedia), Automobiles (Wikipedia) 

datasets. However, NB outperformed NB-SVM hybrid on Mathematics (Arxiv.org) 

dataset, on which defined classes share many common keywords. 

 

 Amasyalı & Beken (2009) proposed to locate words on a multi-dimensional 

semantic space and use this vector space for text classification task. Their study based 

upon the hypothesis that two words’ semantic similarity is related with the number of 

documents which the words co-occur. 15K web pages are scanned to locate 

approximately 4500 different stems on space. Best results are reached when linear 

regression is used for classification on 100-dimensional space with 93.25% accuracy. 

Figure 3.1 shows distribution of news text in 5 categories (economy, magazine, health, 

politic, sport) on first two dimensions. 

 

 Tantuğ (2010) focused on document categorization for agglutinative languages with 

statistical models and compared different approaches like using standard word forms, 
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root forms, root forms with part-of-speech (POS) info, truncated word forms and 

character sequences.  Dataset contains 20K news documents in eight categories. Using 

truncated word forms (when first 4 characters of each word are taken) resulted in 81% 

and character based modeling resulted in 82% f-measure on their best individual 

performances and proven to be preferable methods to deal with possible data 

sparseness problems on agglutinative languages. Best f-measure values obtained from 

tested approaches are shown on Table 3.2 (n denotes language model order parameter). 

 

Figure 3.1 Distribution of news text on first two dimensions 

Table 3.2 Best classification performances of different language model types 

n Word form Root Root + POS First4Char CharBased 

1 0.7721 0.8017 0.7749 0.7924 0.6023 

2 0.7767 0.8181 0.7891 0.8133 0.7488 

3 0.7772 0.8192 0.7838 0.8139 0.8078 

4 0.7772 0.8192 0.7859 0.8134 0.8212 

5 0.7769 0.8192 0.7850 0.8134 0.8209 

 Ting, Ip & Tsang (2011) inspected the sufficiency of NB as a document 

classification algorithm. Experimental dataset contains 4000 documents equally 

divided into four categories (business, politics, sport, travel) and %30 of them is used 

for training. NB turned out to have best accuracy result with SVM, compared to neural 

network (NN) and decision tree (DT). NB classifier is better in terms of computational 

efficiency though, as it required only 0.19 seconds to build the model, while SVM 

required 2.69 seconds. Table 3.3 shows the classification results of different classifiers. 
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Table 3.3 Classification accuracy of different classifiers 

 

Correctly 

Classified 

Instances 

Incorrectly 

Classified 

Instances 

Precision Recall F-Measure 

Naïve 

Bayes 
2717 (97.0%) 83 (3.0%) 0.970 0.970 0.970 

SVM 2712 (96.9%) 88 (3.1%) 0.969 0.969 0.969 

NN 2605 (93.0%) 195 (7.0%) 0.931 0.930 0.930 

DT 2551 (91.1%) 249 (8.9%) 0.911 0.911 0.911 

 Uysal, Günal, Ergin & Günal (2012) developed an SMS spam message filter 

application using text and pattern classification techniques and effective feature 

selection. kNN is used as classifier, while Gini index is the chosen approach for feature 

selection. For training, a database that contains English SMS messages (747 spam and 

4827 normal) is used. Experiments showed that using only the 10 most distinctive 

terms as feature set gave the best results. 

 

 Tüfekçi, Uzun & Sevinç (2012) proposed to exploit Turkish grammatical rules to 

reduce the dimension of feature vector without decreasing text classification success. 

Experiment results on web based news articles indicate that including only noun typed 

word stems to feature set reduced the initial dimension size by %97.46 and reached to 

92.73% accuracy with NB usage. 

 

 Uysal & Günal (2014) proposed latent semantic features (GALSF) to represent 

documents in text classification and latent semantic indexing (LSI) for feature 

transformation approach. Expected contribution from LSI is stated as revealing 

underlying hidden concepts such as synonym and polysemy while transforming term-

document matrix into a new subspace. 

 

 Çoban, Özyer & Özyer (2015) worked on a dataset of Turkish Twitter messages 

and applied document classification methods to correctly guess whether the sentiment 

of context is positive or negative. Differently from other studies, extraction of recurrent 

characters in a word for normalization is applied on preprocessing phase. For example, 

the word “günaaydıııınnn” is translated to “günaydın”. System also benefits from 
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emoticon usage. Best accuracy score is recorded as 66.06%, which is achieved by the 

n-gram model with multi-nominal NB (M-NB) as classifier. 

 

 Yang et al. (2016) proposed a hierarchical attention network (HAN) to reveal more 

informative words to be used as features for document classification. Their study based 

on the observation that same word or sentence may be differentially informative in 

different documents, so system uses context unlike a bag-of-words approach. Datasets 

consist on user reviews (On Yelp, IMDB, Yahoo Answers, Amazon) and system is 

expected to guess the given rating score (5 or 10 classes on each dataset). Best accuracy 

is reached on Yahoo Answers dataset (with 10 classes) with 75.8%. 

 

 Yıldırım & Yıldız (2018) compared traditional bag-of-words approaches to neural 

network language models (NNLM) for Turkish text classification task. Considering 

experiment results, it is stated that a  bag-of-words model utilized with an effective 

feature selection reaches comparable performance with NNLM. Using Information 

Gain (IG) or chi-square (X2) as feature selection method with M-NB algorithm is 

indicated as a successful combination. 

3.2 Sentence Boundary Detection 

 Riley (1989) described a regression tree model for many pattern recognition and 

natural language processing problems. End of sentence detection for English is one of 

the tasks. The problem is defined as classifying a period as "end of sentence", "end of 

abbreviation" or both conditions at the same time.  Model is constructed with 25 

million words of news text sources and resulted in 99.8% accuracy on Brown corpus. 

 

 Aberdeen et al. (1995) introduced Alembic system, which benefits from rule 

sequences for many tasks. SBD is defined as a supportive zoner task for part-of-speech 

(POS) tagging task in UNIX preprocess module. Punctoker (to find word boundaries 

that are not whitespace), title-tagger (to mark personal titles and honorifics) and 

parasenter (to zone text for paragraph and sentence boundaries) are the main 

preprocessors used for SBD on the system. 
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 Palmer & Hearst (1997) presented an adaptive multilingual sentence boundary 

model. Offered system, called Satz, uses a small lexicon and training corpus to 

estimate the POS distribution of surrounding words of a punctuation mark. Neural 

network and decision tree are the used algorithms to classify the punctuation mark. 

System is tested on Wall Street Journal (WSJ) corpus for English and best results gave 

near 99% accuracy. 

 

 Reynar & Ratnaparkhi (1997) presented two Maximum Entropy (ME) models to 

detect sentence boundaries. Both models seek to classify each occurrence of candidate 

characters {., ? ,!} as valid or invalid sentence boundary. First model is targeted at high 

performance for English and uses some language specific features, while second model 

is aimed at being more portable across languages. System automatically produces the 

abbreviation list from training data and uses this list to provide contextual information 

for contextual features. Portable model tests reached 98% accuracy on WSJ corpus and 

97.5% accuracy on Brown corpus. 

 

 Temizsoy & Çiçekli (1998) developed an ontology-based approach for Turkish 

sentence parsing task. System also benefits from morphological marks (suffixation) of 

Turkish to handle ambiguity problems on text. Using these rule-based resources, 

methodology aims to detect interaction between syntactic and semantic information 

instead of building a syntactic tree structure. Used ontology represents entities 

(atemporal individuals), events (temporal phenomena) and relationships between them 

in a hierarchical structure. 

 

 Stamatatos, Fakotakis & Kokkinakis (1999) used transformation-based learning 

(TBL) to extract sentence boundary rules automatically. System is trained with a 

corpus of Greek newspaper articles. In the first learning stage, it is assumed that all 

candidate sentence-ending punctuation mark is actually a sentence boundary. Then, 

using characteristics like capitalization of the token with possible end-of-sentence 

boundary marker and the following token, triggering conditions to remove a sentence 

boundary are tried to be detected. In the second stage, triggering conditions to insert a 

sentence boundary are searched. System produced an error rate of 0.6%. 
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 Gotoh & Renals (2000) are worked on SBD in broadcast speech transcripts. They 

introduced an n-gram language model via sentence boundary information derived from 

finite state models, and an alternative model estimated from pause duration 

information derived from speech recognizer outputs. Later model outperformed the 

former one while combination of two improved precision and recall scores over 70%. 

 

 Mikheev (2000) proposed a model that combines SBD, proper name identification 

and abbreviation detection in one system. Additionally, the model treats the SBD 

problem as a sub-task of POS tagger which is built as a Hidden Markov Model (HMM) 

and ME combination. Main idea on this study is to classify a candidate upper-cased 

token as a proper name or an abbreviation based on instances of that type within an 

unambiguous context; which would also help to disambiguate sentence boundaries. 

 

 Tür et al. (2003) used a statistical HMM with two inner models to handle SBD task. 

System doesn't benefit from punctuation marks considering the usability of speech 

recognition output. Task is considered as a boundary classification problem, so each 

word boundary in training set is labeled as sentence-boundary (YB) or non-sentence 

boundary (NB). Word-based model uses surface forms of words and checks the 

probability of sentence boundary between words, while morphological model benefits 

from final inflectional groups derived from morphological analyses of words and 

checks the probability of sentence boundary after an inflectional group sequence. 

When system is trained with 18 million words from Milliyet newspaper dataset and 

both models are included, error rate is calculated as 4.34%. 

 

 Table 3.4 shows probability values of being NB and YB between words “geldi” 

(came) and “çünkü” (because) according to the word-based model. Based on these 

values, it can be said that it is 30 times more possible to have a sentence boundary 

between these 2 words. 

 Table 3.4 The effect of the word-based language model on SBD 

Output sequence Probability 

geldi NB çünkü 0.00028166 

geldi YB çünkü 0.00614714 
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 Table 3.5 shows probabilities of being NB and YB after the word “geldi” (came) 

according to the morpheme sequence obtained by morphological model (Pos indicates 

positive polarity, A3sg indicates third person singular agreement). 

 Table 3.5 The effect of the morphological language model on SBD 

Output sequence Probability 

Verb+Pos+Past+A3sg NB 0.24849 

Verb+Pos+Past+A3sg YB 0.751505 

 Wang & Huang (2003) introduced Bondec system, which consists of three 

independent applications (rule-based, HMM and ME) for SBD task. Annotated train 

and test data, which are constructed from WSJ corpus are obtained from Palmer & 

Hearst's (1997) study. System also uses lexical resources for common last names, first 

names and honorifics; but automatically extracts abbreviations. Rule-based model 

gave best results for precision with 99.56%, but uncommon cases led a lower recall 

resulted in 76.95%. ME model is defined as the central part of the system and reached 

best results among the three with an error rate less than 2%, using eight binary features; 

while HMM resulted in 10%. 

 

 Dinçer & Karaoğlan (2004) used Turkish syllabication and phonetic rules 

collectively to disambiguate dots that indicates an end-of-sentence (EOS) from the 

ones that are used for other purposes. Rules are represented as trigram combinations 

which includes a dot and its adjacent character sequences. For example, [W * W] 

which is one of the ambiguous cases, denotes the situation where a letter sequence W 

which starts with an uppercase character, is followed by a dot and then followed by a 

letter sequence W which starts with an uppercase character. Syllabication is proposed 

to detect abbreviations and make progress on disambiguation. As a Turkish word may 

be composed of a sequence of one or more six predefined syllable patterns: V, VC, 

VCC, CV, CVC and CVCC (C indicates a consonant, V indicates a vowel); it is stated 

that if a dot follows an abbreviation, the sequence is expected not to be a valid Turkish 

word hence it does not have a valid syllabication. Test results show that proposed 

system reached 96.02% accuracy. 
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 Kiss & Strunk (2006) presented Punkt system, a language-independent model for 

SBD, which is also one of the most successful approaches for Turkish. Main 

assumption is that most ambiguities in SBD can be overcome once abbreviations have 

been identified. In this direction, system mainly tries to detect abbreviations by using 

log-likelihood ratio algorithm. System also shows the potential of detecting initials and 

ordinal numbers as subtasks. Newspaper corpora for eleven languages are used for 

system evaluation and METU Turkish Corpus is the one used for Turkish. For Turkish, 

system accuracy reached up to 98.69%, while mean accuracy for eleven languages is 

calculated as 98.74%. 

 

 Liu & Shriberg (2007) compared alternative evaluation metrics (like classification 

error rate per word boundary, precision-recall (PR) curves, ROC curves, area under 

the curves etc.) for SBD task instead of using a single error metric. The study showed 

that decision curves might provide useful information to choose more preferable 

models for specific regions. Another finding is that using PR curves for an imbalanced 

data set generally provides better visualization for viewing differences among different 

algorithms. 

 

 Güz, Favre, Hakkani-Tür & Tür (2009) introduced generative, discriminative and 

hybrid classification methods and lexical, morphological and prosodic features for 

Turkish SBD task on speech data. Turkish broadcast news speech corpus collected at 

Boğaziçi University BUSIM Laboratory is used for experiments. System used about 

200 word-level prosodic features like pause duration at boundary and normalized 

phone durations of the word preceding the boundary. When conditional random fields 

(CRF) using all features is combined with factored hidden language modeling 

(fHELM), system reached 0.926 f-measure value. 

 

 Read, Dridan, Oepen & Solberg (2012) evaluated several publicly available SBD 

systems both in edited, formal language text and user-generated web content in 

English. As expected, decrease on success rates of all tested systems is observed. Using 

unsupervised learning combined with heuristic rules, also tools to automatically 

acquire domain-adapted lists of abbreviations is proposed for the future work. 
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 Aktaş & Çebi (2013) described SBD task as the process of generation a corpus. 

They offered a rule-based sentence detection method for Turkish. System uses 21 

sentence boundary rules which are determined by linguists and an abbreviation file 

which has been taken from Turkish Linguistic Association. Each rule consists of a 

character that indicates the first character of the word before punctuation mark that is 

used to end sentences, a character to state the punctuation mark itself and a character 

that indicates the first character after punctuation mark. System provides success rate 

in a range of 99.6% and 99.8% on randomly selected columns from two Turkish 

newspapers. 

 

 Xu et al. (2014) worked on SBD in broadcast news. System uses prosodic feature 

inputs on a deep neural network (DNN) model and maps them into boundary or non-

boundary posterior probability outputs. CRF is used to combine these probability 

outputs with lexical features derived from text and to label inter-word positions as 

boundary or non-boundary. This DNN-CRF model reached 81% f-measure on 

reference transcripts (REF) and 64.9% f-measure on speech recognition output (ASR). 

 

 Bektaş & Özel (2018) studied on the effects of using POS tag information on SBD 

task for Turkish. Proposed system uses two features that indicates the POS tag of 

words before and after the candidate end-of-sentence character along with initial nine 

features taken from rule-based models. Used dataset is derived from a subset of 

Turkish National Corpus. Five different supervised learning methods are tested, and 

experiments showed that including POS tag features increased the success rate on four 

of them (except Radial Basis Function (RBF) network) and using decision trees gave 

the best accuracy result with 86.2% (improved from 84.7%). 

3.3 Stemming 

 Porter (1980) introduced one of the most widely used stemming algorithms for 

English. This study depends on a lexicon-free model and uses a series of rewrite rules 

for automatic removal of suffixes from words. Algorithm executes on a sequential 

basis and different sets of rules are controlled on each step. Longest matching rule is 
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considered if more than one rule is matched. For example, first step contains four rules 

to normalize plural nouns and third person singular verbs, shown on Table 3.6. 

Table 3.6 Rewrite rules in first step and application examples 

Rule Example Application 

SSES → SS caresses → caress 

IES → I carries → carri 

SS → SS caress → caress 

S →  cares → care 

 Solak & Oflazer (1993) proposed a morphological root-driven parser for a Turkish 

spelling checker module. System is provided with a dictionary of about 23.000 words, 

which contains root morphemes and some irregular stems based on Turkish New 

Writing Guide. 41 flags, that indicates certain word properties are used to detail each 

dictionary entry. Some of the used flags are shown on Table 3.7. 

Table 3.7 Some of the word property flags with example words 

Flag Property of the word if flag is set Examples 

CL_ISIM Is a nominal root BEYAZ, OKUL 

CL_FIIL Is a verbal root SEV, GEZ 

IS_OA Is a proper noun AYŞE, TÜRK 

IS_OC Is a proper noun which has a homonym that is not a proper noun MISIR, SEVGİ 

IS_SD 
Is a nominal root ending with a consonant which is softened when a 

suffix beginning with a vowel is attached 

AMAÇ, PARMAK, 

PSİKOLOG 

F_UD 
Is a verb root which has a vowel {I} in its last syllable that drops 

when the passiveness suffix –{I}L is affixed 
AYIR, SAVUR 

 The root of a word is searched in the dictionary using a maximal match algorithm, 

by removing a letter from the right until a matched substring is found. This approach 

is backed up with parser execution considering checked flags, as longest matched 

substring might lead to incorrect roots if single-handedly used. For example, correct 

root of the word “yapıldın" (you were made) is the verbal root “yap” (do, make), not 

nominal root “yapı” (structure). 

 

 Solak & Can (1994) developed a similar approach for stemming in Turkish, using 

a lexicon with actively used stems, describing records using 64 tags and searching for 
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the word stem by pruning a letter from right end at each step, applying morphological 

analysis for each candidate stem and finally returning a possible stem set for the word. 

 

 Xu & Croft (1998) proposed using corpus-based word co-occurrence statistics for 

stemming and tested the approach on English and Spanish text. Main ideas behind 

their study is that words with multiple meanings may state a different primary meaning 

on different corpora and word variants that should be conflated will occur in the same 

text windows. Used technique aims to prevent irrelevant conflations like “policy / 

police” and “addition / additive”, as such unrelated words co-occur rarely. Experiment 

results show that co-occurrence analysis is a good technique to improve average 

precision of a stemmer. 

 

 Cebiroğlu (2002) introduced a rule-based model to find out a Turkish word’s root 

without using a lexicon. It is stated that Turkish suffix sequences can be defined with 

stable rules and using these rules, a word can be morphologically parsed to reach its 

root. Suffixes are divided into five sets (derivational suffixes,  name inflectional 

suffixes,  affix-verbs, verb tense suffixes, verb inflectional suffixes) and a finite state 

machine (FSM) that contains suffix order rules (from end to the beginning of a word) 

is defined for each set. Separate FSM structures are combined with predefined work 

order rules. After system execution, possible roots of a word with their type (as noun 

or verb) are detected. 

 

 Oflazer (2003) proposed a dependency parsing model with extended FSM for 

Turkish by dividing words into inflectional groups (IG) which are separated by 

derivational boundaries (^DB). A sentence is represented as a sequence of IGs, which 

are used to define syntactic relation links. It is observed that a link starts only from the 

last IG of a (dependent) word and land on one of the IGs of a (head) word on the right. 

10 syntactic relations are defined on the model: Subject, Object, Modifier (adverb/ 

adjective), Possessor, Classifier, Determiner, Dative adjunct, Ablative adjunct, 

Locative adjunct, Instrumental adjunct. Syntactic relation (dependency) rules are 

stored as regular expressions that indicate the dependent IG, head IG and IGs in 

between to be skipped over. Figure 3.2 shows dependency links on an example 
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sentence which is represented as an IG sequence. POS information of each IG is also 

included (Abbreviations: Det for determiner, Subj for subject, Obj for object, Mod for 

modifier, Adj for adjective, Adv for adverb, Pron for pronoun). 

 

Figure 3.2 Dependency links and POS tags on an example sentence 

 Sever & Bitirim (2003) introduced FindStem algorithm to find the root, apply 

morphological analysis and choose the stem of the examined word respectively on 

three different components. This approach starts the root search phase from the 

beginning of a word and appends a letter on each step. A lexicon with root words and 

possible root changes is used as an auxiliary structure. Afterwards, morphological 

analysis is applied to eliminate irrelevant roots and derive candidate stems. Finally, a 

word stem is selected among candidate derivations list. To test the algorithm, average 

number of relevant documents retrieved is compared over stemmed and unstemmed 

data, when 15 queries are executed on a dataset with about 2500 documents. 

Unstemmed index resulted in 23.3, while stemmed index outperformed it with 28.4 

(350 to 426 respectively in totals). 

 

 Dinçer & Karaoğlan (2003) developed a lexicon free, probabilistic stemmer for 

Turkish, while it is stated as applicable for other agglutinative languages like Finnish, 

Hungarian etc. Proposed model benefits from probabilities of an ordered pair of letters 

(h1,h2) being in the stem part, suffix part or between the stem and suffix part of the 

given word to correctly determine a substring as stem. Experiments are done on 

Turkish news texts and stemmer achieved to get correct stems with 95.8% success rate. 

 

 Çilden (2006) implemented a stemmer for Turkish language using Snowball 

language which is commonly used to develop stemmers for (mostly agglutinative) 

many languages. Main focus is to make progress on information retrieval (IR) 
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purposes, so proposed model is focused on finding noun stems in text and covers only 

suffixes that are appended to noun stems (which are noun suffixes and nominal verb 

suffixes). Right-to-left FSM rules to derive noun stems are translated into Snowball 

expressions to generate stemmer. Table 3.8 represents some successful results. 

Table 3.8 Example word stems that are correctly detected by Snowball stemmer 

Word Morphological Analysis Meaning Stem 

Kalelerimizdekilerden 
Kale-lAr-UmUz-DA-ki-lAr-

DAn 

From the ones at one of our 

castles 
Kale 

Çocuğuymuşumcasına 
Çocuk-(s)U-(y)mUş-(y)Um-

cAsInA 
As if I were her child Çocuk 

Kedileriyle Kedi-lAr-(s)U-(y)lA With their cats Kedi 

Çocuklarımmış Çocuk-lAr-(U)m-(y)mUş 
Someone told me that they were 

my children 
Çocuk 

Kitabımızdı Kitap-UmUz-(y)DU It was our book Kitap 

 Akın & Akın (2007) introduced open source NLP framework Zemberek for Turkic 

languages, which provides operations including morphological parsing and stemming. 

For each language implementation, system uses predefined grammar requirements and 

language data like alphabet, suffixes, root tree, special root and suffix cases etc. 

Morphological parser and stemmer operations use a dictionary based top-down 

approach where root candidates are found firstly, then possible suffix combinations 

are investigated. 

 

 Sak, Güngör & Saraçlar (2008) developed a finite-state implementation of a 

morphologic parser and applied Viterbi decoding using averaged perceptron algorithm 

for morphological disambiguator. A lexicon with 54.267 root words is also included 

using TDK dictionary. Used feature set takes the morphosyntactic information of 

current and previous two tags to allow left and right Viterbi decoding to find out best 

morphological parse sequence for a sentence. Accuracy of the proposed disambiguator 

is calculated as 97.81%. 

 

 Aktaş (2010) proposed rule-based methods for different NLP tasks like sentence 

boundary detection, POS-tagging and morphological analysis. System uses rules to 

specify which suffixes can be appended to which root - stem types (noun or verb), 

besides 85 syntactic (word order) rules based on word types. Rules list is stored in 
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XML format to provide easier modification. Project includes a complete lexicon with 

the list of words in Turkish dictionary, provided by Turkish Linguistic Association 

(Türk Dil Kurumu, TDK). Using this lexicon, a database structure is built, and possible 

words, stems and suffixes are stored in 7 different tables which are: Kokler (Roots), 

KoklerSanal (Modified roots by vowel changing rules), Govde (Stems), Kelimeler 

(Words), Grup (Information about suffix groups), Ek (Suffixes), Ekler (All suffix 

versions according to morphophonemic rules). 

- Kokler table holds Boolean attributes to store information of whether a root 

can be a noun or not, also verb or not.  

- Govde table stores a list of stems in Turkish with Boolean attributes to indicate 

possible POS tag info with related attributes like isNoun, isAdj, isAdv. 

- Grup table stores the meaning of tags, which are used to define the rules in the 

process of parsing stem or root and indicates the word types that the suffix 

group can be added to. 

 

     Öztürkmenoğlu & Alpkoçak (2012) compared no-lemmatization approach with 

three different lemmatization approaches for Turkish (morphological analyzer based 

on FSM, dictionary-based lemmatization (DTL) and stemmer module of open-source 

Zemberek tool) and fixed length truncation for information retrieval (IR) over Milliyet 

newspaper articles collection. Experiment results demonstrated that using 

lemmatization increases IR performance and using maximum length lemmas instead 

of minimum is more beneficial. Also, DTL has reached more effective IR performance 

than other approaches with highest mean average precision (MAP) value in 34.86%. 

 

 Şahin, Sulubacak & Eryiğit (2013) introduced a two-level Turkish morphological 

analyzer based on a lexicon and analyzed  the effects of using flag diacritics to deal 

with exceptions in phonetic and morphological rules. Flag diacritics are beneficial to 

allow or disallow exceptional conditions or certain affix concatenations which may be 

impossible or impractical to attain by updating finite state transducer (FST) 

implementation. Flag diacritic types are defined as unification, positive setting, 

negative setting, require test, disallow test and clear feature. For example, 

@U.Hş.var@ and @U.Hş.yok@ are unification type flags that indicate whether a verb 
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(like “döv”, “gül”, “it”) is allowed to take a reciprocal suffix (-Uş) or not (like “yolla”, 

“salla”, “havalan”). 

 

 Moral, Antonio, Imbert & Ramirez (2014) assessed benefits and drawbacks of 

stemming approaches on IR process on different languages. It is stated that there is not 

a wide agreement about the usefulness of stemming on IR, as many other factors can 

have an influence on performance. Also using performance metrics like compress ratio 

of input vocabulary, types of generated error (like over-stemming and under-

stemming) are suggested for a more accurate evaluation instead of using precision and 

recall metrics. Even so, many researchers agree on benefits of using a stemmer for IR 

purposes on highly inflective languages (like Turkish), on datasets with short 

documents or when there are data storage limitations. 

 

 Proposed model in this report uses stemming to detect polarity of verbs and 

accurately convert affirmative to negative or negative to affirmative. Most of the 

morphological analyzers developed for Turkish are able to detect the polarity 

information (affirmation or negation) of a verb. However, there is no published study 

on conversion of polarity between each other for Turkish verbs, as far as we know. 

Instead, polarity information is widely used for sentiment analysis purposes in the 

literature.  

 

 Vural, Cambazoglu, Senkul & Tokgoz (2012) proposed a framework for 

unsupervised sentiment analysis in Turkish text documents, using a movie reviews 

dataset obtained from Beyazperde, a well-known website about movies. Özsert & 

Özgür (2013) constructed a word relatedness graph by using relations in WordNet and 

proposed a random walk model using commute time as proximity measure for 

multilingual word polarity detection. Dehkharghani, Saygin, Yanikoglu & Oflazer 

(2016) introduced SentiTurkNet, a comprehensive polarity resource for Turkish by 

assigning three polarity scores for each synset in Turkish WordNet, to designate its 

positivity, negativity and neutrality levels. 
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3.4 Named Entity Recognition 

 Message Understanding Conferences (MUC) are designed to promote and evaluate 

research in information extraction. These conferences were initiated by NOSC (Navy 

Operational Support Center) to assess research on the automated analysis of military 

messages containing textual information. Two primary evaluation metrics precision 

and recall are detailed and used for IE tasks in MUC-2. Named-entity recognition for 

English is one of the tasks of MUC-6 which is organized in 1996. Training corpus is 

generated by annotating Wall Street Journal articles. ENAMEX (for people, 

organization, location) and NUMEX (time, currency, percentage) tags are introduced 

in this conference. 15 participants enrolled for the NER task and most of the results 

are successful with precision and recall values over 90%. Most successful system 

reached %97 precision, 96% recall values. (Grishman & Sundheim, 1996) 

 

 Cucerzan & Yarowsky (1999) is the first published NER research that includes 

Turkish. System is language independent and depends on bootstrapping algorithm with 

iterative learning on a character-based tree structure. System is built after the 

acceptance that words strongly tend to exhibit only one sense in a document. It uses a 

small named entity list about the source language as training seeds and morphological 

and contextual patterns as features. For example, “-escu” is stated as an almost perfect 

indicator for a last name in Romanian. This study reports 60% precision, 47% recall 

and 53% f-measure for Turkish. 

 

 Alfonseca & Manandhar (2002) built a general named entity recognition (GNER) 

system to find the most accurate generalization (hypernym) for an unknown concept 

or instance, by using WordNet ontology (lexical database). To classify an unknown 

instance, system runs queries on search engines to derive similarity scores for 

candidate words. Used notion here is that words semantically related must co-occur 

with the same kinds of words. This research extends the scope of NER with a more 

complex taxonomy structure. Domain specific documents are taken from the electronic 

version of “The Lord of the Rings” for experiments. Figure 3.3 shows the ontology 



30 
 

used and the classification results for concepts hobbit, Mordor, Isengard, Hobbiton, 

wizard, horse and eagle. 

 

Figure 3.3 Ontology used in experiments and classification results (detected hypernyms) for 7-unknown 

concepts 

 Tür et al. (2003) developed an information extraction system for Turkish and NER 

is one of the tasks they worked on (other two are sentence and topic segmentation). 

Their NER approach is based on n-gram language models embedded in HMM. The 

study consists of four models: Lexical model uses boundary flags between word tokens 

to indicate name entity borders with yes, no and mid flags. Contextual model is used 

to capture information from surrounding context of word tokens. Morphological model 

uses case information (initial-upper, all-lower, all-upper, mixed etc.) alongside with a 

proper name database that stores common Turkish person, location and organization 

names. Tag model is only concerned with trigram possibilities for name entity tag 

(person, location, organization, else) and boundary flag (yes, no, mid) combinations. 

Newspaper articles are used for experiments. When all models combined, system has 

a success rate with 90.4% NE text accuracy, 92.73% NE type accuracy and 91.56% f-

measure. Table 3.9 shows the NE tag probabilities calculated on contextual model for 

an unknown word following the word “Dr.” and a word boundary. Person appears to 

be the most suitable NE tag with 99% probability value. 

Table 3.9 Example usage of contextual model for unknown words 

Output Sequence  Probability  

Dr./else boundary/yes unk/person  0.990119  

Dr./else boundary/yes unk/location  0.000690  

Dr./else boundary/yes unk/organization  0.000880  

Dr./else boundary/yes unk/else  0002688  
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 Like MUC, CoNLL events also give shared tasks about computational linguistics 

to participants and evaluate final results. Task in CoNLL-2003 is to build a language 

independent NER (English and German are the test languages); with a special 

challenge which is to include unannotated data to the training phase of the system. 

Participants are provided with different features (pos tag, chunk tags, affix 

information, gazetteers etc.) and given freedom to decide among them. It is observed 

that most participants used unannotated data to find out additional gazetteer terms. 

Interestingly enough, generally using only gazetteers seemed to provide more error 

reduction than systems that tried to find additional terms. On the other hand, using 

unannotated data to obtain capitalization information seemed to have positive effect 

on results (Sang & Meulder, 2003). 

 

 Wentland, Knopp, Silberer & Hartung (2008) built a multilingual named entity 

resource called HeiNER. Wikipedia is used as the main resource, as it contains a large 

amount of NEs compared to other commonly used lexical resources like WordNet. 

English is selected as the source language and Wikipedia cross-language links are used 

to build a translation dictionary to convert detected NEs to target languages. System 

also builds a disambiguation dictionary using redirect pages (for example “USA” and 

“United States of America” points to the same link) and disambiguation pages (for 

example term “Python” may indicate “Monty Python” or “Python” (programming 

language). Another advantage of using Wikipedia articles is that, there is a high 

probability for an article heading to describe a NE. This surpasses some of the common 

NER problems like NE boundary detection or necessity of morphological 

normalization. 

 

 Küçük & Yazıcı (2009a) built a rule-based NER system for Turkish and tested its 

success on different domains (news articles, child stories, history texts). System uses 

lexical resources like dictionary of Turkish person names, list of well-known political 

people, list of well-known organizations and pre-defined pattern bases to detect 

possible NEs. Resulted f-measure is 78% for news articles domain; but it drops down 

to 69% for child stories and 55% for historical texts. Existence of foreign person names 

in child stories and absence of historical person and organization names in lexical 
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resources are determined to be leading causes for performance drops Results are in 

line with the general opinion that performance decrease is possible when rule-based 

NER systems are ported to other domains. Figure 3.4 shows the system’s information 

source schema. 

 

Figure 3.4 Information sources used for rule-based NER system 

 Küçük & Yazıcı (2009b) also tested their system on transcription test derived from 

video texts. 16 news videos from Turkish Radio and Television Company (TRT) 

archive are selected for experiments. Videos are manually transcribed as no automatic 

speech recognizer exists for Turkish back then. Evaluation resulted in a precision of 

73%, recall of 77% and f-measure of 75%. 

 

 Tatar & Çiçekli (2011) described an automatic rule learning method using 

supervised learning. System starts with a set of named entities collected from a training 

dataset and generates rules from them. Main goal here is to get through domain 

adaptability problems, which is common for rule-based systems. System utilized from 

orthographical, contextual, lexical and morphological features. 2-level gazetteer 

structures are used in lexical model. For example, location is a higher level, more 

general categorization while location.country, location.city are secondary level, more 

specific classification. System is tested on Turkish news articles (TurkIE dataset) and 

resulted in a precision of 91.7%, recall of 90% f-measure of 91%. 

 

 Küçük & Yazıcı (2012) moved through their rule-based model and developed a 

hybrid system. 2 statistical features n (denotes the number of occurrences of an entity 
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text) and p (denoted the number of occurrences which happen to be annotated) are 

defined and p/n is used as a confidence value for each entity. In training phase, entities 

with high confidence values are extracted and added to the resources of recognizer. 

Significant performance improvement over rule-based system is observed with f-

measure values of 85.9% on news data set, 85% on child stories and 66.9% on 

historical texts. 

 

 Şeker & Eryiğit (2012) used conditional random fields (CRF) as their statistical 

model. Alongside with gazetteers, they used generator gazetteers (22 person, 44 

location, 60 organization) that holds tokens that could come after or before regular 

words and construct NEs. 14 features are defined in 3 categories (morphological, 

lexical, gazetteer lookup). Windows width for CRF features is defined as {-3,+3} 

where 0 is current token, +1 is next, -1 is previous token etc. Features are tested by 

including them one by one to the system. Experiments showed that all features but SS 

(start of sentence) had improved performance of the system. When all features 

included, system had reached 94.6% final f-measure in MUC metrics and 91.9% final 

f-measure in CoNLL metrics. Table 3.10 gives information about tested features and 

Table 3.11 shows the experiment results in MUC TYPE, MUC TEXT and MUC 

metrics. 

Table 3.10 Tested feature description 

Feature Code Category Description 

STEM Morphological Stem information of the word’s surface form 

POS Morphological Part-of-speech tag information 

NCS Morphological Noun case information (nominal or non-nominal) 

PROP Morphological Proper noun information 

INF Morphological All inflectional tags from morphological analysis 

CS Lexical 
Case feature (lowercase, uppercase, proper name, 

mixed) 

SS Lexical 
Start of the sentence information (is beginning or 

not) 

BG Gazetteer lookup Indicates if token exists in a base gazetteer or not 

GG Gazetteer lookup 
Indicates if token exists in generator gazetteer or 

not 
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Table 3.11 F-measure in MUC metrics on feature related experiments 

 

 Küçük, Jacquet & Steinberger (2014) performed NER experiments on Turkish 

tweets. 2320 tweets are collected to form data set. Besides seven basic types (person, 

location, organization [these three are also called as PLO], date, time, money, percent), 

a misc type (product names, tv shows, music bands etc.) is also used for annotation. 

Hashtag usage is also suggestive as it is common to have NEs in hashtags. Two lists 

for person and organization names, which are detected to be used as single tokens in 

news articles (at least 30 times in Europe Media Monitor database) are built and used 

in system. Results show that 25% of PLO initial letters are not properly capitalized, 

only 32% of person names are composed of first name-surname pairs and %10 of PLO 

text has affected from normalization of Turkish characters. Another problem is the 

multiword NE tokens in hashtags that are written without whitespace. System reached 

66% precision, 31.5% recall and 42.6% f-measure values. 

 

 Küçük, Küçük & Arıcı (2016) composed and shared a dataset comprising news 

articles in Turkish with named entities annotated, for general use of NER studies. 10 

news articles from METU Turkish Corpus are selected and final annotation document 

consists of 1425 named entities (398 person, 567 location, 460 organization). 

 

 Şeker & Eryiğit (2016) moved through their study in 2012 and added TIMEX and 

NUMEX entity types. They also worked on a new dataset (Web2.0 domain) with user 

generated content (UGC). Additional features like numeric value, percentage sign etc. 

are defined and used for new entity types. A lexicon named Auto Capitalization 



35 
 

Gazetteer (CAP) is constructed, which contains gazetteer terms that are unlikely to be 

used as common noun. Unlike their previous study, this time feature performances are 

tested by removing them from the complete model one by one. This way SS (start of 

sentence) feature is determined have 2.11% positive effect on performance. 

Experiments on UGC data set resulted with 67.9% success on best model. When CAP 

feature is removed it causes more than 20% performance loss. 

 

 Sahin, Tirkaz, Yildiz, Eren & Sonmez (2017) automatically classified Turkish 

Wikipedia pages to construct a corpus for NER task. Constructed corpus contains 

approximately 300K entities. Entities are categorized in 77 different domains to 

provide fine-grained classification, and those domains are grouped in four coarse-

grained types (person, location, organization, misc). A semantic knowledge base 

named Freebase is used to overcome noisy data and ambiguities on text. Highest f-

measure is calculated as 84% for the system. 

 

 Güneş & Tantuğ (2018) proposed a bidirectional long short-term memory neural 

network structure and tested it on six different models. When base input set that only 

contains word vectors is used, highest f-measure value is calculated as 91.59%. When 

orthographical and morphological attributes are included in input set and used on a 

multilayer neural network model, system reached 93.69% f-measure value. 

 

 Güngör, Üsküdarlı & Güngör (2018) proposed a neural network model for Turkish 

NER task, which creates a context vector for every position in the sentence by 

processing the words in forward and backward directions. It is aimed to detect inner-

word relations with these vectors as they provide character level information unlike 

distributional word vectors. Success of the system, which is calculated as 90.96% f-

measure when only distributional word vectors are used, has shown improvement with 

93.37% f-measure when character level word vectors are included. 

3.5 Exam and Question Generation 

 Studies about exam and question generation is generally centered around two 

approaches: Effectively using large scale question banks containing categorized 
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questions and using question templates with numeric parameters to produce dynamic 

questions, mostly for math and science subjects. Some of the remarkable studies are 

mentioned on this section. On the other hand, generating exam questions using the 

context of an input document on time, which is aimed to accomplish by the proposed 

educational software, is not a well-studied area with very few studies. 

 

 Baklavas, Economides & Roumeliotis (1999) compared web-based test tools with 

respect to the supported question type variety, multimedia usage, security, easiness of 

development, maintenance and delivery of tests and automatic grading and analysis of 

results. Test questions are created by instructors via on-screen instructions or selected 

from a question bank on these tools. Cyber Exam and QuestionMark Perception are 

stated as best choices based on the criteria and practical experience. 

 

 Instead of choosing from an existing set of problems, Lee (2000) proposed using a 

set of templates to generate different variables for the same question. System is tested 

on 120 test questions (each with numeric variables over graphics), from The 

Fundamentals of Engineering (FE) examination using over 500 templates. The 

generator program changes problem variables, correct answers, wrong answers (in a 

reasonable range) and order of exam questions. Figure 3.5 shows an example testing 

page with a generated question. 

 

Figure 3.5 The exam testing page with an example generated question 
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 DePiero (2001) proposed NetExam, a web-based testing engine, which generates 

exams on demand by randomly selecting questions from given subject categories from 

a database. Study also worked on the assessment process after a group of students 

completed an exam, with computed statistics over submitted and automatically graded 

exams and the provided bulletin board style comments section. 

 

 Shende, Dalch & Warner (2002) projected to unite exam administrators, examinees, 

question providers and question approvers on an exam distribution server with inner 

modules like exam generation, exam question approval, exam scoring etc. Proposed 

model benefits from a database of exam questions grouped in predetermined sections. 

To collect meaningful questions, system is designed not to add suggested questions to 

database before an approval process. 

 

 Using R programming, Grun & Zeileis (2009) developed the package exams, to 

provide a framework for automatic generation of statistical exams. System exploits a 

pool of exercises and a master file to identify the layout of the final PDF document. 

Solutions of the provided types of exercises are either multiple-choice answers, 

numeric values and short text answers. A separate Sweave file, which contains R code 

for data generation and solution calculation, and LaTeX code to store metadata about 

question and solution environment, is used to specify each exercise in the pool. 

 

 Ugurdag et al. (2009) worked on converting a static multiple choice math/science 

question (with constant numbers and choices) to a dynamic question using parameters 

and proposed the concept smart question (sQ) in line with this purpose. A parameter 

is used to express the initial numbers given in a question. A smart question generation 

starts with assigning an unaltered image file (the original question) and continues with 

parameter definition, parameter specification and question generation phases. Using 

this concept, a range of values or a formula is specified for each parameter and variety 

in answer set is provided. 

 

 Özkul (2009) presented a technique to automate test preparation of quiz questions, 

answer keys and student feedback. The project mainly aims to standardize questions 
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and their numerical answer set. For this purpose, past quiz questions written in 

Microsoft Word and answer keys in Microsoft Excel are used to create templates. 

Afterwards, problem generator is executed to generate random numbers within defined 

limits to be used on templates. It is stated that the system has been used at Operations 

Management course at the State University of New York (SUNY) College successfully 

since 2004 for eleven quizzes including 22 questions. 

 

 Liu, Shi, Liu & Li (2010) focused on to enhance question selection from a question 

bank for an automatic test generation process and proposed a multi-constrained model 

based on genetic algorithm. Constraints defined for a test paper include score, answer 

time, questions forms, difficulty, chapters and teaching requirement. Out of 7-

dimensional variable space, difficulty, chapters and teaching requirement are selected 

to construct a 3-dimensional model to achieve a test paper that meets the user’s needs. 

 

 Hussein, Elmogy & Guirguis (2014) proposed a model for English question 

generation task that selects one sentence at a time, extracts sections of it and uses 

patterns and transformation rules to construct a question. System uses OpenNLP 

statistical parser for training purposes, mainly to tokenize sentences into phrases and 

detect part-of-speech (POS) tags for these phrases. Template rules are scanned to find 

a suitable question phrase (what, where, who, when, how much) for tagged phrases. 

Users are also allowed for modification (which adds a new template rule to database), 

as they can edit generated question text, choose a level of hardness and change the 

question phrase. Table 3.12 shows some of the possible questions derived from a 

sentence. 

Table 3.12 Possible questions derived from example sentences 

Given Statement Possible Question 

Ali is going to London. 
Where is Ali going to? 

Who is going to London? 

Ahmet plays football in Egypt team. 
Where does Ahmet play football? 

Who play football in Egypt team? 

Ali played football in Cairo. 
Where did Ali play football? 

Who play football in Cairo? 

I found my books on the table. Unmatched (New template rule needed) 
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CHAPTER FOUR 

COURSE DOCUMENT CLASSIFICATION 

 

4.1 Overview and Dataset Introduction 

 In the earlier phases of the project, user is expected to indicate the course of the 

provided lecture note (as History or Geography) to the system. This is thought to be 

an improvable approach later, with the automatic classification of the documents. Aim 

here is to find out effective ways to auto-identify the class label of Turkish lectures 

notes by comparing many aspects of a complete document classification process with 

many experiments. CGR (for Geography) and TRH (for History) are the specified 

document labels. 1200 proper documents (600 for CGR and 600 for TRH) are collected 

from various publicly available web-based or written sources to construct a lecture 

notes dataset to be used on experimentation phase. This is the only module in this 

thesis that uses a bag-of-words approach, in which occurrence and frequency of words  

within a document is the main concern and word order is disregarded. Therefore it 

doesn’t require an initial sentence boundary detection service. 

4.2 Compared Approaches 

 Four aspects of a document classification task specialized for geography and history 

domains are compared to find out the most suitable model to be used on exam module. 

4.2.1 Existence of Stop Words 

 The most common words in a language, which have very little meaning (like “a, an, 

the, on, in, at” in English) are called as stop words. Dataset is used both with (SW) and 

without Turkish stop words (No-SW) to see how presence – absence of them effects 

the results. The stop word list of an open source project name “TrStop” is used for this 

assignment (Aksoy & Öztürk, 2016). This is a comprehensive and up-to-date source 

for this purpose with a total of 285 words. 278 of them are selected for usage and stored 

as a text document. Complete stop word list is given in Appendix-1. 
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4.2.2 Stemming Approaches 

 Stemming in agglutinative languages refers to a heuristic process that aims to reach 

to the stem (or root in some approaches) of a word by extracting inflectional suffixes 

(also derivational suffixes in some approaches), instead of using its surface form. Five 

approaches are compared on this module, which are No Stemming (keeping words in 

their surface forms) (No-S), F4 (truncating words after 4 characters), F5, F6 and 

Zemberek Stemmer (ZS). 

4.2.3 Classification Algorithms 

 Classification is taken as a machine learning task to be handled with supervised 

learning approach in this thesis. Accordingly, seven different classification algorithms 

are compared here. They are Naïve Bayes Multinomial (NB-M), Naïve Bayes 

Bernoulli (NB-B), k-NN (k-Nearest Neighbor) by taking k as 1,3 and 5 separately, 

Decision Trees (DT) and Support Vector Machines (SVM). 

4.2.4 Feature Selection Methods 

 Feature selection is the process of selecting a subset of features to be used in model 

construction, based on their scores in statistical tests for their correlation with the 

outcome variable, instead of using all features. In document classification, to reduce 

the number of input words to be used for analysis and find most distinguishing ones, 

feature selection can be applied. Four different approaches are compared here, which 

are No Feature Selection (No-FS), Information Gain (IG) with ranker, Correlation 

Coefficient (CC) and taking the most frequent 500 words (MF-500) for each class. 

4.3 Experimentation Phase 

 Besides the compared approaches, using different sizes for different – test data set 

is another observation. First, complete data set is split as 10% training and 90% test, 

then 50% training and 50% test. This makes a total of 560 experiments. Weka is the 

used platform to perform experiments, after preprocessing of collected raw documents. 
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4.3.1 Document Preprocessing 

 Preprocessing phase includes punctuation and symbol removal, excessive 

whitespace corrections, lowercase transformation, extraction of single digit numbers 

and letters. It is observed that some of the raw documents also had control characters 

which are irrelevant and also removed. 

 

 If it’s a requirement for the particular experiment, stop word elimination and the 

related stemming operation are also applied to put the text into its final form. Figure 

4.1 shows an example output from a three staged preprocessing (text normalization, 

stop word removal and stemming using Zemberek respectively) applied on a raw 

document text. 

 

Figure 4.1 Example output on different preprocessing stages of a raw document text 

 Afterwards, the prepared text is used to create UTF-8 encoded XML formatted text 

files with 3 tags (Course, Title, Text + “_StemmingApproachUsed”) to derive a 

standardized format. Example standardized documents derived from the same history 

lecture note after preprocessing phase are shown on following two figures. Figure 4.2 

represents the output when No Stemming approach is applied, and Figure 4.3 

represents the output when F5 stemming approach is applied. Stop words are removed 

on both documents. 
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Figure 4.2 Standardized document example with No Stop Words and No Stemming approach 

 

Figure 4.3 Standardized document example with No Stop Words and F5 stemming approach 

4.3.2 ARFF File Generation 

 ARFF (Attribute-Relation File Format) is the required file format to carry out 

machine learning experiments on Weka. An ARFF file is a text file that describes the 

instances sharing a set of attributes. ARFF files are composed of two sections: Header 

section contains the name of the relation, a list of the attributes and their types, while 

data section contains the data instances denoted with the defined attributes. While data 

mining tasks with numeric values often exploit high numbers of attributes, ARFF files 

used for this task contains 2 attributes for each document instance as text (string typed) 

and class (nominal typed with possible values {CGR, TRH}). 

 

 Weka allows using separate ARFF files for training and test data or using a single 

ARFF file with combined data. If second option is selected, proportion of training to 

test data has to be specified before experiments. In this task, preprocessed and 
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standardized lecture notes are gathered up to obtain a single ARFF file for each five 

stemming approaches, with or without stop words in text, which makes a total of 10 

files. Thus, each ARFF file contains a total of 1200 data instances to denote every 

lecture note with its class label. Words of document instances collected in ARFF files 

are used to derive feature vectors for experiments. Every ARFF file is used to perform 

28 experiments (for 50% training – 50% test distribution), as selection from among 

seven classification algorithms and four feature selection methods are made on Weka 

interface. Figure 4.4 shows header section and first two instances from data section of 

an example ARFF file that is generated for F6 stemming with no stop word removal 

approaches. 

 

Figure 4.4 ARFF file example for F6 stemming and no stop word removal approaches 

4.3.3 Interpretation of Experiment Results 

 Precision (fraction of relevant instances among the retrieved instances), recall 

(fraction of relevant instances that have been retrieved over the total amount of 

relevant instances), f-measure (accuracy measure that takes harmonic mean of 
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precision and recall) and incorrectly classified instance percentage are the metrics used 

for comparisons. First, only 10% of the complete dataset is used for training (120 

documents) and 90% is used for test (1020 documents) to check whether any 

combination of approaches yields satisfactory results. Table 4.1 shows the results in f-

measure, with best scores highlighted. 

Table 4.1 Course document classification experiment results (10% training – 90% test) 

 

 Highest f-measure value is observed as 97% and 20 different combinations of 

approaches have reached that peak score. All of these 20 experiments are executed 

under NB-M or NB-B algorithms, used a stemming approach and used a feature 

selection method. Other observed results are listed as follows: 

No-S F4 F5 F6 ZS No-S F4 F5 F6 ZS

No-FS 0.96 0.95 0.95 0.95 0.96 0.96 0.95 0.95 0.95 0.95

IG 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.96

CC 0.96 0.96 0.96 0.97 0.96 0.96 0.96 0.97 0.97 0.96

MF-500 0.96 0.96 0.96 0.95 0.95 0.96 0.96 0.96 0.95 0.95

No-FS 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

IG 0.96 0.97 0.97 0.97 0.97 0.96 0.97 0.97 0.96 0.97

CC 0.96 0.97 0.97 0.97 0.97 0.96 0.97 0.97 0.97 0.96

MF-500 0.96 0.97 0.96 0.96 0.97 0.96 0.96 0.96 0.96 0.96

No-FS 0.38 0.45 0.40 0.39 0.81 0.38 0.41 0.38 0.41 0.75

IG 0.43 0.46 0.47 0.43 0.51 0.43 0.45 0.46 0.42 0.49

CC 0.42 0.46 0.45 0.40 0.50 0.40 0.45 0.45 0.40 0.49

MF-500 0.64 0.65 0.68 0.63 0.67 0.61 0.63 0.62 0.59 0.62

No-FS 0.36 0.42 0.40 0.38 0.81 0.35 0.37 0.39 0.37 0.58

IG 0.38 0.40 0.42 0.39 0.44 0.37 0.39 0.40 0.38 0.43

CC 0.37 0.41 0.41 0.39 0.44 0.36 0.40 0.40 0.37 0.42

MF-500 0.59 0.60 0.61 0.57 0.61 0.60 0.59 0.57 0.52 0.56

No-FS 0.35 0.39 0.39 0.37 0.75 0.35 0.39 0.38 0.36 0.60

IG 0.36 0.38 0.40 0.37 0.41 0.36 0.38 0.39 0.37 0.40

CC 0.36 0.39 0.38 0.37 0.43 0.35 0.38 0.39 0.36 0.42

MF-500 0.56 0.58 0.56 0.54 0.61 0.54 0.57 0.53 0.51 0.55

No-FS 0.79 0.84 0.88 0.83 0.84 0.76 0.84 0.87 0.83 0.84

IG 0.85 0.88 0.89 0.88 0.84 0.85 0.88 0.90 0.88 0.84

CC 0.85 0.88 0.90 0.88 0.84 0.82 0.88 0.89 0.88 0.84

MF-500 0.76 0.86 0.88 0.83 0.87 0.76 0.87 0.89 0.83 0.87

No-FS 0.94 0.92 0.93 0.93 0.94 0.93 0.92 0.93 0.93 0.94

IG 0.92 0.92 0.94 0.93 0.94 0.92 0.92 0.93 0.94 0.94

CC 0.94 0.94 0.93 0.93 0.95 0.93 0.94 0.93 0.93 0.93

MF-500 0.94 0.94 0.94 0.93 0.94 0.95 0.94 0.94 0.93 0.93

SW No-SW

NB-M

NB-B

1-NN

3-NN

5-NN

DT 

(J48)

SVM

F - MEASURE                                                  

(10% Training - 

90% Test)
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• NB-B and NB-M are capable to classify the instances very accurately using 

only 10% training data. 

• NB-B’s overall performance is slightly better than NB-M. 16 out of 20 most 

successful experiments are performed with this algorithm. 

• SVM results are also satisfactory in general, as it never dropped below 90% in 

none of the experiments. Generally, SVM performance is increased with ZS. 

• DT algorithm reached its highest success with F5 stemming approach. 

• Using ZS alongside with No-FS makes a huge impact on kNN algorithm’s f-

measure values. Using MF-500 as feature selection approach also has a good 

effect on kNN algorithm success. 

• But within the scope of this dataset, kNN can’t be considered as an effective 

classification algorithm, as its lowest incorrectly classified instances score is 

17.96% (with k=3, SW, No-FS and ZS as stemming approach) and generally 

this score is resulted to be around 40%. 

• In most of the cases, using a feature selection method seems to have a good 

impact on general success rate. 

• Among the 10 stemming and stop word existence approach combinations, there 

are no significant performance differences but ZS with SW seems to be a 

slightly better pair. 

• Among the 28 classification algorithm and feature selection method 

combinations, using NB-B with IG has the best success rate. 

• In most cases, NSW approach didn’t make a good impact. 

• When F4, F5 or F6 stemming is performed, 1-NN gives better results than 3-

NN and 5-NN. 

• Using a stemmer gave better results rather than No-S approach for most cases. 

• Comparing F4, F5 and F6 stemmers is not a very feasible task with close f-

measure scores. 

• Half of the 20 most successful combinations use CC as feature selection 

method, while 8 of them use IG and 2 of them use MF-500. 

 

 When the small training size is considered, some remarkable experiment results are 

observed. However, their sufficiency is still questionable to be used on examination 
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module. So experiments are repeated with increased training set size as 50% of the 

complete dataset is used for training and 50% is used for test (600 documents for each). 

Table 4.2 shows the results in f-measure, with best scores highlighted.  

Table 4.2 Course document classification experiment results (50% training – 50% test) 

 

 Highest f-measure value is observed as 99% and 3 different combinations of 

approaches have reached that peak score. All of these 3 experiments are executed 

under NB-M algorithm, used ZS as stemming approach and used a feature selection 

method. Other observed results are listed as follows: 

 

No-S F4 F5 F6 ZS No-S F4 F5 F6 ZS

No-FS 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

IG 0.98 0.98 0.98 0.98 0.99 0.98 0.98 0.98 0.98 0.99

CC 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.99

MF-500 0.97 0.98 0.98 0.98 0.98 0.97 0.98 0.98 0.98 0.98

No-FS 0.96 0.96 0.97 0.97 0.96 0.97 0.96 0.97 0.97 0.97

IG 0.97 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

CC 0.97 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

MF-500 0.96 0.96 0.97 0.96 0.97 0.96 0.96 0.97 0.96 0.96

No-FS 0.46 0.55 0.54 0.48 0.57 0.43 0.53 0.51 0.48 0.55

IG 0.58 0.63 0.62 0.57 0.65 0.57 0.64 0.61 0.57 0.65

CC 0.57 0.63 0.59 0.55 0.65 0.53 0.60 0.58 0.54 0.67

MF-500 0.74 0.77 0.80 0.77 0.81 0.72 0.73 0.78 0.76 0.77

No-FS 0.42 0.49 0.44 0.43 0.49 0.40 0.44 0.42 0.41 0.43

IG 0.50 0.54 0.54 0.50 0.58 0.47 0.54 0.51 0.48 0.56

CC 0.49 0.55 0.53 0.46 0.60 0.44 0.54 0.52 0.46 0.58

MF-500 0.70 0.74 0.75 0.70 0.78 0.67 0.69 0.73 0.70 0.72

No-FS 0.40 0.46 0.42 0.41 0.44 0.37 0.41 0.41 0.39 0.41

IG 0.46 0.50 0.49 0.45 0.54 0.44 0.50 0.48 0.44 0.51

CC 0.45 0.51 0.48 0.44 0.55 0.41 0.49 0.47 0.43 0.53

MF-500 0.68 0.71 0.73 0.68 0.77 0.64 0.66 0.69 0.66 0.69

No-FS 0.87 0.88 0.91 0.91 0.92 0.88 0.88 0.91 0.91 0.93

IG 0.89 0.89 0.90 0.92 0.92 0.89 0.89 0.90 0.92 0.92

CC 0.89 0.89 0.90 0.92 0.91 0.89 0.89 0.91 0.92 0.92

MF-500 0.88 0.88 0.91 0.91 0.90 0.89 0.88 0.91 0.90 0.93

No-FS 0.96 0.95 0.96 0.95 0.96 0.96 0.94 0.97 0.96 0.95

IG 0.96 0.95 0.96 0.96 0.97 0.95 0.95 0.96 0.96 0.97

CC 0.95 0.95 0.95 0.94 0.97 0.96 0.95 0.94 0.95 0.97

MF-500 0.95 0.95 0.95 0.96 0.96 0.96 0.95 0.95 0.96 0.96

3-NN

5-NN

DT 

(J48)

SVM

F - MEASURE                                                  

(50% Training - 

50% Test)

SW No-SW

NB-M

NB-B

1-NN



47 
 

• After the training portion is increased, NB-M classification algorithm took the 

lead from NB-B with slightly more accurate results. 

• SVM also caught up with NB-B. These three algorithms are still the most 

reliable selections. 

• DT algorithm is not far behind them with passing 90% f-measure in many 

experiments. 

• No consistent positive impact is observed from NSW approach. 

• Using MF-500 as feature selection approach has a good effect on kNN 

algorithm success. 

• Using a stemmer increases the performance for most of the cases. 

• Again, using ZS with SW has the best performance among all stemming and 

stop word existence approach combinations. 

• This time, using NB-M with IG has the best success rate among all 

classification algorithm and feature selection method combinations. Actually, 

all combinations with NB-M turned out to be top four approaches within 28. 

• All 10 most successful experiments are executed under NB-M algorithm and 

nine of them used a feature selection method (IG or CC). 

• All 5 most successful experiments used ZS. Among the top 10, F5 is also used 

3 times. 

4.3.4 Selected Classification Model 

 Figure 4.5 shows the result screen of one of the most successful experiments (NB-

B, F5, IG, NSW) when 10% of the dataset is used for training. Figure 4.6 shows the 

result screen of one of the most successful experiments (NB-M, ZS, CC, NSW) when 

50% of the dataset is used for training. As expected, percentage of incorrectly 

classified instances is decreased from 2.68% (29 out of 1080) to 0.83% (5 out of 600) 

when training portion is increased. Therefore, classification model to be used on final 

educational software is selected from the second experiment set. Based on 

observations and used approaches on the most successful experiments, NB-M as 

classification algorithm, ZS as stemming approach, IG as feature selection method is 

selected. NSW approach had minor impact on this dataset but doing a stop word 
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elimination is mostly preferred as it reduces the amount of unrelated words. Also it is 

used on 2 of the 3 most successful combinations, so NSW is selected as the stop word 

existence approach. 

 

Figure 4.5 Result screen of NB-B, F5, IG, NSW experiment (10% training – 90% test) 

 

Figure 4.6 Result screen of NB-M, ZS, CC, NSW experiment (50% training – 50% test) 
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 Besides increasing classification accuracy by using a more relevant set of word 

features, using a feature selection method also has a decent effect on execution time. 

Experiments on the selected model are executed on 0.03 seconds, while performance 

of the model with same classification algorithm, stemming approach and stop word 

existence choice, used with no feature selection method is measured as 0.07 seconds. 

 

 Selected feature selection method IG assigns a score between 0 and 1 for each word 

feature to indicate how much information it gives about the classification decision. 

Highest scored features indicate the most distinctive words. To perform experiments, 

threshold value is selected as 0.015 to eliminate features with lower scores. 1226 word 

features passed this limit and remained to build classifier. 10 highest scored words are 

shown on Table 4.3. Extended list with the most distinctive 100 words is given in 

Appendix-2. 

Table 4.3 Most distinctive 10 words for classification task based on their IG scores 

Word IG Score 

devlet 0.52314 

savaş 0.3528 

karşı 0.208 

fazla 0.20644 

yağ 0.19711 

sıcaklık 0.19198 

ordu 0.18133 

iklim 0.18096 

iste 0.17603 

birlik 0.17435 

 

4.4 Classification Model Integration with Exam Module 

 Weka, the machine learning library used to perform course document classification 

experiments is originally developed for Java platforms. To enable its usage in .NET 

platform and integrate with exam module, system benefits from IKVM.NET project 

that provides .NET implementation of Java class libraries. Weka libraries are used to 

set classification algorithm (NB-M) and feature selection method (IG) properties and 

perform the classification job based on the input course document supplied by user. 
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 To add external packages of compiled codes (DLL) about a specific task on a 

Microsoft Visual Studio project, using NuGet packages that support code sharing 

between developers is a common approach. As ZS is the selected stemming approach, 

the NuGet package named NZemberek which provides the required libraries to include 

Zemberek features to .NET platform is installed on the target project. 

 

 ARFF file is prepared dynamically by preparing and appending the input course 

document context at the end of training document instances. Final ARFF file contains 

601 instances of documents, as 600 of them (300 with CGR, 300 with TRH labels) are 

used for training and the last one, which is expected to be classified successfully. is 

used for test. 

 

 Documents classification operation is started when user loads a text-based lecture 

note in Turkish to the system, on new test screen. This screen also contains the 

changeable exam constraints like question types to include and number of questions, 

so classification operation is expected not to lock other controls when executed. 

Multithreading approach is used to provide this, as document classification operation 

is treated as a separate task. Example screenshots on exam module use case scenarios, 

including new test screen after document classification execution are given under 

Chapter 8. 

 

 Information about every document that is loaded to the system and classified based 

on its domain is stored in database. This allows to prevent redundant document 

classification overhead, if recently loaded document is already analyzed and classified 

before. However, comparing filenames of documents can’t guarantee a duplication 

single-handedly. So filenames along with number of sentences and number of headings 

are specified to be the distinctive property set for a document when comparisons are 

made. Database structure is explained in more detail in Chapter 8. 
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CHAPTER FIVE 

SENTENCE BOUNDARY AND HEADING DETECTION 

 

5.1 Overview 

 As most of the tasks within this thesis require sentence-level operations, sentence 

boundary detection (SBD) is a top priority and its accuracy directly effects the success 

rate of other tasks. Besides, SBD is not considered as a stand-alone task as developed 

module also works on detection of headings and itemized text parts in given course 

document. Proposed model is a rule-based approach that is based on pre-defined 

sentence boundary rules along with a range of controls about in-text conditions. 

Instead of directly applying SBD rules on raw input text, deriving headings and 

paragraphs is the initial sub-task here. Correlations between headings and paragraphs 

are also  examined on this stage and a heading is assigned for each paragraph. SBD 

operations are applied on obtained paragraphs to derive sentences afterwards. Some of 

the pre-defined sentence boundary rules are shown on Table 5.1 (LC → lowercase 

character, UC → uppercase character, WS → whitespace, NWS → not whitespace, D 

→ digit, true → indicates a sentence boundary condition, false → indicates a not 

sentence boundary condition, other characters are self-explanatory). 

Table 5.1 Example pre-defined rules about sentence boundary conditions 

Condition Output 

LC . UC True 

LC . D True 

LC . WS  UC True 

LC . WS  D True 

LC ) . UC True 

LC ? UC True 

LC ! D True 

LC . “ NWS True 

LC . LC False 

UC . LC False 

LC . ”  WS False 

LC : “ UC False 

D . D False 

( ! ) False 
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5.2 Regular Expression Usage 

 A regular expression (RegExp) is a pattern used to match character combinations 

in strings. Rules defined for sentence boundary conditions are translated into a single 

RegExp on back-end side for system usage. Apart from that, SBD module benefits 

from different RegExps used for separate tasks. Table 5.2 shows the RegExps defined 

and what they are used for. They are enumerated for easier mention on later sections. 

(Note that given RegExps are used on .NET platform and minor changes might require 

for different working environments.) 

Table 5.2 Regular expressions defined and used in SBD module 

# Regular expression details (Name – text – short description) 

RegExp1 

Sentence boundary rule 
(?<=[a-zıüğçşö][\)]?\s*?[\.|!|?][\s]*)(?=[A-Z0-9İÜÖÇŞ]|-|–|[""|“][\S]) 

Derived from pre-defined rules and used as main separator for SBD task. 

RegExp2 

Reference format 

(\s?)(\(\s?\w+,\s?\d{2,4})(\s?:\s?\d+)?(\)) 

Used to indicate in-text reference format. 

Example → (Behar, 1996: 63) 

RegExp3 

Irrelevant separator format 

^(-|_|\*|#){5,} 

Used to detect and remove irrelevant text used to separate other text parts. 

RegExp4 

Abbreviation control format 

vs\.|vb\.|ör\.|Ör\.|[M|İ][\.]*[Ö|S]\.|\d{1,2}\. 

Used to make the initial abbreviation and ordinal number control. 

RegExp5 

Roman numbers rule 

\b(X{1,3}(IX|IV|V?I{0,3})|X{0,3}(IX|I?V|V?I{1,3}))\b 

Used to indicate roman number format. 

RegExp6 

SW-Numeric heading format 

^\s*\d{1,2}[\.|\)|\-] 

Indicates format of sub-headings that starts with a number 

Example → “3. Sub heading” 

RegExp7 

SW-Uppercase heading format 

^\s*[A-H]{1,2}[\.|\)|\-] 

Indicates format of sub-headings that starts with an uppercase character 

Example → A- Sub heading 

RegExp8 

SW-Lowercase heading format 

^\s*[a-h][\.|\)|\-] 

Indicates format of sub-headings that starts with a lowercase character 

Example → b) Sub heading 
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5.3 Software Structure of the Model 

 Using RegExps that indicate possible sentence boundaries or specific textual 

formats to catch error-prone conditions is beneficiary, but not sufficient on its own. 

Considering SBD is combined with different tasks (detection of headings, detection 

and connection of itemized text parts, assigning a heading for paragraphs) and input 

files are chosen to be raw text documents, a model to meet the task-specific 

preprocessing and string control requirements is developed. Figure 5.1 represents the 

flow diagram of the proposed model.  

 

Figure 5.1 Flow diagram of the proposed sentence boundary and heading detection model 
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5.3.1 Initial Operations 

 After a text file of lecture notes is loaded to the system and raw text is collected, 

the filename is assigned as the main heading. Then RegExp2 is used to locate and 

remove reference formatted text if exists, as they are not needed for the test generation 

process. Afterwards, a split operation is applied on text content using initial paragraph 

separators (\n\n\t, \n\n, \n\t, \r\n\r\n\t, \r\n\r\n, \r\n\t), followed by using initial heading 

separators (\r\n, \n). \n indicates a new line, \r indicates a carriage return and \t indicates 

a tab within target text. Split operation returns a list of strings to be worked on, as they 

are the initial paragraph and heading candidates. 

5.3.2 Irrelevant Text Controls 

 Initial list of strings is checked to eliminate meaningless or non-functional 

elements. Empty strings, strings consist of whitespace characters only, or strings 

matched with RegExp3 and detected to be in irrelevant separator format (for example 

“########” or “*************”) are extracted from the list in this phase. 

5.3.3 Heading Format Controls 

 Remaining list of strings is checked to find out heading formatted elements. This 

phase consists of controls for dot characters, upper-lowercase condition of first 

character and detection of text with abbreviation format, roman number format and 

sub-heading format. If a string variable doesn’t end with a dot and doesn’t start with a 

lowercase character, it must fulfill one of the following conditions to be considered as 

a heading: 

 

• When inner text parts matched with RegExp4 and RegExp5 + ‘.’ formats are 

extracted, remaining text should not contain a dot character. Aim here is to 

prevent erroneous split operations resulted by misleading conditions that 

contain a dot character like “vs. (etc.)”, “vb. (etc.), “III.”, “V.”. Figure 5.2 

shows an example system output, where ordinal number (in roman number 

format) existences within different headings are handled successfully. 
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• Text should match either a numeric or an uppercase heading format beginning, 

which are controlled by RegExp6 and RegExp7 rules. Apart from the matched 

beginning part, text should not contain a dot character. 

 

Figure 5.2 Detection of headings with ordinal numbers 

 Additionally, if a string that doesn’t end with a dot but starts with a lowercase 

character matches a lowercase heading format beginning, which is controlled by 

RegExp8 rule, it is also considered as a heading formatted text. All other conditions 

violate the heading format in this phase. If a string is not detected to be in heading 

format, paragraph format controls are applied afterwards. 

5.3.4 Paragraph Format Controls 

• If a string matches a lowercase heading format beginning and ends with a dot 

character, it fits the paragraph format.  

• If a string starts with a lowercase character but upper condition is not satisfied, 

it doesn’t fit the paragraph format. 

• If a string doesn’t contain a dot character, it doesn’t fit the paragraph format. 

• All other conditions are considered to be in a proper paragraph format. 

 

5.3.5 Colon Character Controls 

 Even though a candidate string fits in paragraph format, it can still contain a sub-

heading. Additional operations are needed to detect them, starting with colon character 

(‘:’) controls. A colon character can either indicate a sub-heading occurrence or just 



56 
 

be a regular text part within a paragraph. Candidate string is split on colon characters 

for analysis. System approaches on different conditions are explained below: 

 

• If split operation results in multiple strings, text parts that contain a single 

quotation mark can’t be a sub-heading. 

• A colon character can be used in a time expression as a delimiter between 

numeric hour, minute or second values (like “17:39” or “23:59:59”). Divided 

text parts are joined again when a conforming condition is detected. 

• If upper two conditions are not met, heading format controls are applied on 

each text part. Matched text parts are possible sub-headings. Head character 

expressions at the beginning of sub-headings (like “A.”, “3)”, “c-“) are 

removed if any exists.  

 

 Figure 5.3 shows an example system output where sub-headings are correctly 

detected and head character expressions are removed, using colon character controls. 

 

Figure 5.3 Detection of sub-headings at the beginning of paragraphs 

5.3.6 Head Character Controls 

 Using itemization to present information via a list of contextually connected text 

parts is a common approach in lecture notes. However, itemized text parts can 

mistakenly be considered as sub-headings if they don’t contain a dot character. This 

requires a disambiguation phase for all string objects in the list that are previously 

detected as a sub-heading candidate. 
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• If consecutive strings obey the same sub-heading format rule (RegExp6, 

RegExp7 or RegExp8), they are considered as itemized text parts. 

• If consecutive strings with sub-heading format start with the same head 

character symbol (like “#, *, ♦, ►, ○, ●, →, □” etc.), they are considered as 

itemized text parts. A total of 27 head character symbols are defined in the 

system. 

• If a string with sub-heading format ends with a comma character, it is a 

probable itemized text part and needs to be joined with the following string in 

the list. 

 

 Figure 5.4 shows an example system output, where sub-heading formatted itemized 

text parts are correctly handled and joined together, as they share the same RegExp6 

format. Join operations are detailed on the next section. 

 

Figure 5.4 Detection of sub-heading formatted itemized text parts 

5.3.7 Operations to Join Itemized Text Parts 

 If disambiguation phase resulted with detection of itemized text parts, a join 

operation using comma characters is performed. To transform the first character of an 

itemized string to lowercase or not is one decision to make on this phase. If first word 

of the string contains an apostrophe character, or second word starts with an upper 

character, this implicates first word being a proper name, so its first character is not 

transformed and left as an uppercase character. In all other conditions, first character 

is converted into lowercase. This operation is critical for named entity recognition 

(NER) module success. 
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 Where to start and stop the join operation is the other decision to make. Initially, all 

of the detected itemized text parts are joined using a comma character and a combined 

string is obtained, but preceding and following string objects are also checked to 

complete join operation.  

 

• If the preceding string is not detected as a sub-heading, combined string is 

appended to this string using a whitespace character as delimiter. 

• If the following string starts with a head character symbol and ends with a dot, 

it is appended to the combined string after the symbol is removed, using a 

whitespace character as delimiter. 

• If the following string begins with the same sub-heading format used in 

itemized text parts, and ends with a dot, it is appended to the combined string 

after head characters are removed, using a whitespace character as delimiter. 

• If combined string consists of itemized text parts each ends with a comma 

character: 

o If following string fits the paragraphs format, it is appended to the 

combined string using a whitespace character as delimiter. 

o If following string doesn’t fit the paragraph format, last character of 

combined string is transformed into a dot. 

 

 Figure 5.5 shows an example system output for itemized text parts join operation. 

As preceding string is not a heading, combined string is appended to this text. Besides, 

first characters of each itemized text are properly transformed into lowercase, as none 

of the first words expresses a proper noun. 

 

Figure 5.5 Example itemized text parts join operation output 
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5.3.8 Text Normalization 

 Text normalization is the last phase before creating Paragraph and Heading objects 

from candidate strings. Main reason for not doing normalization up to this point is to 

benefit from suggestive textual cues as much as possible. Included adjustments in text 

normalization are stated below: 

 

• Hyphens on new line beginnings are removed. 

• New lines and tabs are removed. 

• Control characters are removed. 

• Irrelevant characters like symbols are removed. 

• Triple dot characters are translated into a single dot character, if any exists. 

• Multiple adjacent whitespaces are replaced with a single one. 

5.3.9 Generation of Heading and Paragraph Objects 

 After the normalization of a candidate string is completed, final classification 

decision is given on adjusted text and either a Heading or Paragraph class object is 

created. Information about these two classes are shown on Table 5.3. This operation is 

repeated for every candidate string. Thus, two separate lists for paragraphs and 

headings are obtained.  

 

 Besides, every Paragraph object is correlated with a Heading object. If the input 

document text doesn’t contain any sub-headings, then the main heading (input 

filename) is assigned to every Paragraph object. This task is the main reason for not 

separating paragraph and heading detection jobs, as running them together preserves 

the order of text parts and makes the heading assignment operation easier, as nearest 

preceding heading is searched. Figure 5.6 shows the logic behind this operation. 

Table 5.3 Heading and Paragraph class fields with their types 

Class Name Class Fields 

Heading ID (int), Text (string), IsMain (bool), IsSub (bool) 

Paragraph ID (int), Text (string), OwnerTitle (Heading) 
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Figure 5.6 Representation of how paragraphs are linked with headings 

5.3.10 Sentence Boundary Detection 

 5.3.10.1 Division of Paragraphs 

 Next step is to derive sentences by dividing paragraphs. First, paragraphs are split 

using the sentence boundary rule (RegExp1). Split operation returns a list of strings to 

be worked on, as they are the initial sentence candidates. Next two figures show how 

RegExp1 handles apostrophe after dot character condition in two different cases. 

Figure 5.7 shows a system output where a sentence boundary is detected between dot 

and apostrophe characters. Figure 5.8 shows a not sentence boundary case output. 

 

Figure 5.7 Example output when a sentence boundary is detected between a dot and an apostrophe 
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Figure 5.8 Output when a not-sentence boundary case is detected between a dot and an apostrophe 

 5.3.10.2 Abbreviation Controls 

 Although an initial abbreviation control is done on earlier stages, abbreviations with 

[UPPER | lower] [lower]+ [\.] format are still prone to error as they fit the sentence 

boundary rule. To overcome this, publicly available abbreviation list of Turkish 

Linguistic Association (Türk Dil Kurumu, TDK) is scanned for a subset that matches 

with the problematic format. Finally, a Turkish abbreviation list with a total of 204 

elements is generated for the system usage. Complete list is given in Appendix-3. 

 

 Candidate sentence strings are checked for abbreviations in the list and if any match 

is found, abbreviation text is joined with the following string in the list. Besides, some 

abbreviations consist of multiple words (like “Dz. Kuv. K.” (Commander of Naval 

Forces) require to be regrouped before a join operation. 

 5.3.10.3 Quote Controls 

 Last operation before generation of Sentence objects is quotes controls. System 

approach is to avoid dividing inner-sentence quotes even if they state one or more 

sentence boundaries. Main goal of this approach is to preserve content integrity and 

provide better question quality for further phases. 

 

 Number of quotation marks is the decision metric used. A candidate string is not 

considered as a sentence if it contains odd number of quotation marks and joined with 

following strings until number of quotation marks in the combined string becomes an 

even number. This operation is applied just for inner-sentence quotes and quotes of a 

whole paragraph are divided based on the initial sentence boundary detections. 



62 
 

 Figure 5.9 and Figure 5.10 show how system output changes when inner-sentence 

quote controls are disabled or enabled. 

 

Figure 5.9 Example output when inner-sentence quote controls are disabled 

 

Figure 5.10 Example output when inner-sentence quote controls are enabled 

 5.3.10.4 Generation of Sentence Objects 

 Using the final forms of remaining candidate strings, Sentence objects are created. 

Sentence class consists of Text (string), OwnerTitle (Heading) and EndsWithDot 

(bool) fields. Owner title information of a recently created Sentence object is taken 

from the outer Paragraph object’s field with the same name. Eventually, a list of 

sentences is obtained from an input text document. 

5.4 Experimentation Phase 

5.4.1 Used Dataset 

 Success of the system is tested via experiments on actual lecture notes. 30 history 

and 30 geography documents are selected out of the primary lecture notes dataset 

which is introduced in section 4.1. 
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5.4.2 Sentence Boundary and Heading Detection 

 Precision and recall metrics are used to evaluate both sentence boundary detection 

and heading detection success. Experiments for geography domain and history domain 

are separated to allow comparisons and conclusive results are calculated by combining 

these two experiment sets. Precision values are calculated by dividing number of 

correct guesses to number of all detections, recall values are calculated by dividing 

number of correct guesses to number of actual occurrences. Evaluation metrics used 

on experiments are formulated below on equations 5.1, 5.2, 5.3 and 5.4. Combined 

experimental results are shown on Table 5.4 and Table 5.5. 

Precision Sentences (%)   =   
100 (# of Correct Sentences)

# of Detected Sentences
 (5.1) 

Precision Headings (%)    =   
100 (# of Correct Headings)

# of Detected Headings
 (5.2) 

Recall Sentences (%)        =   
100 (# of Correct Sentences)

# of Actual Sentences
 (5.3) 

Recall Headings (%)         =   
100 (# of Correct Headings)

# of Actual Headings
 (5.4) 

Table 5.4 Suggestive numerical values derived from SBD and heading detection experiments 

 

Table 5.5 Precision and recall values derived from SBD and heading detection experiments 

 

 As Table 5.4 shows, average number of sentences in the combined dataset 

documents is stated as 38.90 and 38.23 of them are correctly detected. When domain 

DOMAIN
# of Actual 

Sentences

# of Detected 

Sentences

# of Correct 

Sentences

# of Actual 

Headings

# of Detected 

Headings

# of Correct 

Headings

History Documents (30) 1241 1233 1208 175 173 170

Geography Documents (30) 1093 1089 1086 292 290 290

TOTAL 2334 2322 2294 467 463 460

AVG 38.90 38.70 38.23 7.78 7.72 7.67

DOMAIN
Precision 

Sentences (%)

Recall 

Sentences (%)

Precision 

Headings (%)

Recall 

Headings (%)

History Documents (30) 97.97 97.34 98.27 97.14

Geography Documents (30) 99.72 99.36 100.00 99.32

TOTAL 98.79 98.29 99.35 98.50
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specific experiments are observed, average number of sentences is stated as 41.37 for 

history course and 36.43 for geography course documents, while 40.27 and 36.20 of 

them are correctly detected respectively.  

 

 Average number of headings in the combined dataset documents is stated as 7.78 

while 7.67 of them are correctly detected. Domain specific results show that average 

number of headings is stated as 5.83 for history course and 9.73 for geography course 

documents, while 5.67 and 9.67 of them are correctly detected respectively. 

 

 Based on these values, it is possible to say that most history course text documents 

tend to contain lower numbers of headings and higher numbers of sentences compared 

to geography course documents. 

 

 Table 5.5 shows the individual and combined experiment results based on the 

selected performance metrics. Experiments on history course text documents resulted 

in 97.97% precision for sentences, 97.34% recall for sentences, 98.27% precision for 

headings and 97.14% recall for headings. Experiments on geography course text 

documents resulted in 99.72% precision for sentences, 99.36% recall for sentences, 

100% precision for headings and 99.32% recall for headings.  

 

 Combined results are stated as 98.79% precision for sentences, 98.29% recall for 

sentences, 99.35% precision for headings and 98.50% recall for headings. 

 

 Results show that success rate for geography domain is slightly better than history 

domain in all metrics. This difference is understandable, as the amount of textual 

context in a history document is observed to be more than a geography document and 

this increases the variety in text and uncommon use cases. 

 

 Apart from that, precision values are determined to be slightly higher than recall 

values on same experiment sets. But in general, results are satisfactory, especially if 

the approach to combine different tasks is considered. 
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5.4.3 Observation of Itemized Text Part Cases 

 Detection and connection of itemized text parts is one of the sub-tasks the model 

deals with. Correctly making the upper-lowercase adjustments for the first characters 

of text parts on join operation is also an important job within this task, especially for 

NER module success. Table 5.6 shows the experiment results. 

Table 5.6 Experiment results of itemized text parts detection and join operations 

 

 Results show that all of the 27 cases where a join operation is needed on itemized 

text parts are correctly detected. First character upper-lowercase adjustments are 

correctly handled on 148 text parts out of the total 158 detected. All 10 incorrectly 

converted cases are resulted from single-word proper nouns in nominative case, as 

neither a following apostrophe or following word with uppercase clue exists. 

 

 

 

 

 

 

 



66 
 

CHAPTER SIX 

VERB POLARITY DETECTION AND CONVERSION 

 

6.1 Overview 

 Two consecutive tasks will be detailed on this chapter: Verb polarity detection 

(which will be mentioned as “classification” after this point) phase and conversion 

phase. Classification phase is where the input sentence is analyzed and classified as 

affirmative (positive) or negative. Conversion phase is where the classified sentence 

is translated into the corresponding opposite form. Both tasks deal with the verb of the 

given sentence. As it is a morphological approach, semantics is not the concern. For 

example, the Turkish word “endişelenmek” (to be worried) is semantically negative, 

but the sentence “Senin için endişelendim.” (I am worried about you) is 

morphologically positive and classified as an affirmative sentence. 

 

 Stem type identification is an essential sub-task within this model, which aims to 

correctly label the predicate (main verb) of a sentence as verb-typed or noun-typed, 

after a morphological analysis phase. 

 

 General flow of the algorithm is like below: 

 

I. Take the verb of the input sentence. 

II. Do the classification operations and decide whether the sentence is affirmative 

or negative. 

III. If AFFIRMATIVE: Convert the sentence into the corresponding negative 

form. 

IV. IF NEGATIVE: Convert the sentence into the corresponding affirmative form. 

 

 Algorithm is implemented in a way to deal with canonical sentences (in which the 

predicate is located at the end of the sentence). So, the input lecture notes are expected 

to contain meaningful and canonical sentences for proper results. Also, using UTF-8 

encoding in text files is recommended to handle special Turkish characters correctly. 
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6.2 Classification Phase 

 Turkish is a complex language with its grammar and phonetic rules. As it is an 

agglutinative language, a bare infinite (base) form of a verb can gain additional 

meanings with the addition of several suffixes, like subject, tense etc. Implemented 

algorithm deals with verb polarity, which is one of these derivable meanings. 

 

 As mentioned on Chapter One, Turkish words might have relatively long words 

with 9-10 affixes. Nevertheless, circumstances are much more reasonable in general. 

Studies on Turkish language specifies the average number of morphemes per word as 

3 (including the root), while high-frequency words usually have a single morpheme. 

Average number of morphological interpretations per word in written language is 

specified as 2 on same studies, while 65% of words have a single morphological 

interpretation (Oflazer, 2014). Additionally, there exists phonetic rules for certain 

circumstances with few irregularities and grammatical rules for suffixes. Due to these 

reasons, rule-based approaches are formed the basis of this task. 

6.2.1 Finite State Machine Structure 

 To handle the classification task, a Finite State Machine (FSM) structure is 

implemented. Main idea on that is to teach the system all possible verb + suffix 

combinations and expect it to give correct output. The FSM in this project shows the 

rules to combine different types of suffixes and a verb/noun stem to form a 

morphologically correct verb. The reasons why FSM is selected as the model for this 

process are listed below: 

 

I. Compatibility with the agglutinative aspect of Turkish. 

II. Running once at the execution of the program is enough for further usage. 

III. Simplicity in modification and add-delete data operations. 

IV. The repetitive parts of different rules are joined where possible, which 

minimizes the rules to learn. 

V. Provides a convenient environment to find the verb’s stem. 
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 Determined rules on FSM are interpreted from the verb’s right to left to reach the 

stem of the word. So, in the classification phase, the stem of the verb, which will be 

used in the conversion phase afterwards, is also found besides the verb polarity. Main 

FSM elements and how they are adapted for the model usage is detailed on Table 6.1. 

Table 6.1 Main FSM elements and their purposes 

Name Purpose 

State 

Different conditions are represented with different states in the FSM. Each 

state stores information about the possible past actions that lead to that state 

and possible future actions allowed on the model. The machine can only be in 

one state at a time. Start state is the initial state where the machine is started. 

Goal state is the state that indicates that the input string, as processed so far, 

is in a form that that the machine language accepts. Final state is a goal state 

with a dead end, which means FSM can’t move any further from these states. 

In this model, start state is the initial form of a given word and final (or goal) 

states are the conditions where the verb fits the provided morphological rules, 

therefore a possible word stem is reached. 

- 50 states are used in this model (18 of them are goal states and 6 of 

them are final states). 

Input 

A triggering event or a condition, which leads the machine to move from a 

state to another state. In this project, inputs are suffixes that can be attached 

to a verb or noun stem to form a predicate. 

- 35 suffixes are defined and used in this model. 

Transition 

A connection between two state variables via an input variable. So, a transition 

consists of a start state, input value and a finish state. Transitions are main 

elements to generate rules to control whether a given word fits the predicate 

format in terms of  Turkish morphology or not. 

- 263 transitions are used in this model. 

 Figure 6.1 shows an example FSM execution on the word “okutmalıdırlar” (They 

should educate (them)), in which system is reached one of the final states. A is the start 

state, F3 is the final state, C and T are other states involved. 
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Figure 6.1 Sample FSM execution on a word with a proper predicate format 

 Example word given in Figure 6.1 is examined by FSM with following steps: 

 

- Suffix “-lar” moves the machine from A to C state.  

Stem: okutmalıdır 

- Suffix  “-dur (-dır)” moves the machine from C to T state.  

Stem: okutmalı 

- Suffix “-malı” moves the machine from T to F3 state, the process is stopped. 

Stem: okut 

 

 Since F3 state is a final state, the word “okutmalıdırlar” is parsed in a form “okut-

malı-dır-lar” and the possible stem is found as “okut” (To educate/teach sb.) in this 

example.  

 

 Main purpose is to find the stem of the verb, not root. Because derivational suffixes 

are not useful for conversion phase, but inflectional suffixes are. For example “okut” 

is the desired result on the upper example, not “oku” (to read or to study). “-t” is a 

derivational suffix here that changes the meaning of the word. 

 

 The vowels of the same suffix may vary in different words, so actually an input 

value is a collection of suffix values. For example, the input value 5 (“Üçüncü Çoğul 

Kişi Eki Birinci Grup” – Third Person Plural, First Group) can indicate “-lar”, “-ler”. 

In the same manner, input value 10 (“Bildirme Eki” – Copula) can indicate “-dir”, “-

dır”, “-dur”, “-dür”. The diversify rules depend on the first vowel of the suffix, which 

is showed on Table 6.2. 
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Table 6.2 Rules to diversify suffixes regarding the first vowel of the suffix 

First Vowel (To Variate) Alternative Vowels 

ı ı, i, u, ü 

a a, e 

 

6.2.2 Base Class Definitions 

 6.2.2.1 State 

 State class objects are used to represent current condition during a verb parse 

operation. Changes on states depend on the found suffix at the end of the word. Each 

change means a suffix match is found and the word will be parsed. Consequently, 

every parse operation generates a shorter stem value. Table 6.3 shows the State class 

fields along with their types and purposes. 

Table 6.3 Description of State class fields 

Field Name Type Description 

Name string 

Used to assign a unique name for each State variable. 

Most of them are a single character. Some exceptions 

are final states (like F1, F2), states of infinitive suffix 

conditions (like MA, MB) and states of ability suffix 

conditions (like YA, YB). 

IsGoal bool 

Indicates that whether the state is goal state or not. Note 

that every final state is a goal state, but every goal state 

may not be a final state. Final states are named as F1, 

F2, F3, F4, where the digit at the end implies the level 

of state. Final states are absolute dead ends for the FSM, 

while suffix parse operations can continue from other 

goal states. 

Level integer 
Indicates the number of steps to reach to that particular 

state from start state. 
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 6.2.2.2 Suffix 

 Suffix class objects are used to hold information of the (mostly inflectional) suffixes 

that can generate a predicate when appended to a word in bare infinitive form in certain 

conditions. Suffix objects are the input variables for FSM. Table 6.4 shows the Suffix 

class fields along with their types and purposes. 

Table 6.4 Description of Suffix class fields 

Field Name Type Description 

Definition string 

An explanatory name for the suffix. Examples: 

- “SimdikiZamanEki” (Present continuous tense 

suffix) 

- “GelecekZamanEki” (Simple future tense 

suffix) 

PositiveValues List<string> 

Holds the possible affirmative (positive) values for the 

suffix. 

- For SimdikiZamanEki: {“(i)yor”,”(u)yor”, 

“(ı)yor”, “(ü)yor”} 

NegativeValues List<string> 

Holds the possible negative values for the suffix, if 

exists. 

- For SimdikiZamanEki: {“miyor”, “muyor”, 

“mıyor”, “müyor”} 

Format string 

Holds a format string to specify the changeable and 

helper characters of the suffix, for the situations where 

phonetic controls are necessary. Changeable characters 

are shown with a dot, helper characters are shown 

between parenthesis. 

- For SimdikiZamanEki: “.yor” 

- For GelecekZamanEki: “(y ).c.k” 
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 6.2.2.3 Transition 

 Transition class objects are used to connect State variables with an input Suffix 

variable. Transitions are used to store predicate format rules and essential to find out 

possible stems of the input word. Table 6.5 shows the Transition class fields along 

with their types and purposes. 

Table 6.5 Description of Transition class fields 

Field Name Type Description 

StartState State The initial state for the transition. 

InputSuffix Suffix The trigger suffix value which changes the initial state. 

FinishState State 

When a triggering suffix value is perceived, current 

state value is changed from StartState to FinishState and 

this this transition is completed. 

  

 6.2.2.4 SuffixInWord 

 SuffıxInWord class can be considered as an extended version of Suffix class. Class 

objects are used after a transition is succeeded and aims to provide some 

disambiguation for the verb polarity classification operation. Table 6.6 shows the 

SuffixInWord class fields along with their types and purposes. 

Table 6.6 Description of SuffixInWord class fields 

Field Name Type Description 

Suffix Suffix 
The Suffix object found in the given word and leads to 

a transition execution.  

Index Integer 
The index value of the found suffix among the all 

possible values of the suffix. 

IsPositive Bool 
Is set true if the found suffix value is one of the 

affirmative (positive) values. 

IsNegative Bool 
Is set true if the found suffix value is one of the negative 

values. 



73 
 

 6.2.2.5 Path 

 A SuffixInWord object holds information after a successful transition execution. 

However, it doesn’t provide enough information for a complete FSM process. Path 

class is defined for this purpose, as it holds the complete information about a verb 

parse and classification operation. Every allocated Path variable offers a possible 

solution for the verb parse and polarity classification task. Table 6.7 shows the 

SuffixInWord class fields along with their types and purposes. 

Table 6.7 Description of Path class fields 

Field Name Type Description 

StatesString string 

Holds the names of all states where the 

FSM passed through, from the start state up 

to current state. 

CurrentState State Holds the current state variable of the path. 

WordRoot string 
The part of the word which is separated 

from the suffix part. (Stem or Root) 

WordSuffixPart string 
Holds the suffix part of the word with using 

a separator ‘-’ between suffixes. 

WordSuffixList List<SuffixInWord> 
Holds the detailed information about each 

detected suffix in the word. 

TranslateIndex integer 

Shows the index of the suffix in 

WordSuffixList, which should be 

translated in conversion phase. 

IsRootNoun bool 
Is set true if the word class of the found 

stem (or root) is noun. 

IsRootVerb bool 
Is set true if the word class of the found 

stem (or root) is verb. 

IsRootBothNameAndVerb bool 
Is set true if the word class of the found 

stem (or root) may be a noun or verb. 

IsPositive bool 
Is set true if the Path object classifies the 

given predicate as positive. 

IsNegative bool 
Is set true if the Path object classifies the 

given predicate as negative. 
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 6.2.2.6 FSM 

 FSM is a static class where the FSM initialization operations are executed and suffix 

list with 35 elements, state list with 50 elements and transition list with 263 elements 

are prepared for usage. Two lists to contain exceptional verb roots, which will be 

detailed later, are also stored within this class. 

 6.2.3 Parse Operations 

 After an input text file is loaded to the system and FSM initialization is completed, 

parse operations are started to detect verb polarity and the most suitable stems of 

predicates. Each parse operation works on a sentence which are obtained from 

sentence boundary module. The step-by-step process for the parse operations are given 

below: 

 

1) Mutual variables which are used on each iteration are reset before a new 

sentence parse operation. 

2) The predicate of the sentence is found on the assumption that user loaded a text 

file with meaningful and canonical sentences. 

3) Start state is set as current state. 

4) Initial predicate value is assigned as the stem candidate. 

5) FSM is activated by scanning through transition list considering current state. 

6) If a transition’s start state matches with the current state, stem candidate is sent 

for the suffix control. 

7) If the stem candidate ends with the transition’s input suffix, current state is set 

as the transition’s finish state and process continues with Step 9. 

8) If the predicate doesn’t end with the transition’s input suffix, process returns 

to Step 5. 

9) The predicate is separated from the found suffix, which is added to the current 

word’s suffix list. A new stem candidate is derived by removal of found suffix. 

10) If the new current state is a goal state (but not a final state), process stops by 

Step 13 for verb polarity detection and Path object creation, then returns to Step 

5 by sending the stem candidate to FSM again. 
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11) If the new current state is a final state, process continues with Step 13 for verb 

polarity detection and Path object creation, then it’s completed for this 

condition. 

12) If the new current state is not in a goal state, process returns to Step 5 by 

sending the stem candidate to FSM again. 

13) Verb polarity classification is done regarding to IsPositive and IsNegative 

fields of the SuffixInWord object created for the last detected suffix. Using 

collected information, a new Path object is created and added to the result path 

list. 

14) After all operations are completed, a number of paths are obtained. 

 

 All of the resulted paths are possible solutions, as they are in a format that obeys 

the rules provided from transitions, and the reached state is a goal state. Parse 

operations are completed, but the number of paths should be reduced before the 

conversion phase if possible. 

6.2.4 Path Elimination Operations 

 6.2.4.1 Elimination of Irrelevant Results 

 Actually, this step is used to prevent creation of incorrect paths, not to eliminate 

already created paths. To show effects of all consecutive path reduction operations, it 

is explained under this section. After a candidate stem is found with a transition 

execution on FSM, if the new current state is not a goal state, process continues to scan 

using new candidate stem, but a Path object is not created at this point. For example, 

for the predicate “kaçacağım” (I will flee/escape), 4 irrelevant results are eliminated 

out of the 6 initial results, as they are not in a goal state. 

 6.2.4.2 Elimination of Meaningless Stems 

 For the next two steps, system benefits from the database structure built in the study 

of Aktaş (2010). As detailed in Chapter 3, database model is built using a complete 

lexicon with the list of words in Turkish dictionary, provided by TDK on that study. 
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Govde table stores a stem list for Turkish which is a serviceable resource on this 

elimination step. Remaining paths, which don’t exist in Govde table are detected and 

eliminated. “kaçacağ-ım”, which is one of the two remaining paths from the upper 

example is eliminated on this step. Figure 6.2 shows the system output for the given 

example and depicts how FSM execution for suffix parse operations and following 

path elimination steps work on verb polarity classification and stem detection tasks. 

 

Figure 6.2 Example system output for verb polarity classification and stem detection tasks 

 

 6.2.4.3 Elimination by Root Type 

 Another path elimination method in classification phase is done by root type 

restraints. Govde table also holds Boolean attributes to indicate possible POS tag info 

with related attributes like isNoun, isAdj, isAdv. Some goal states in FSM are 

meaningful for only noun or verb root types, so Govde table is used to find out the 

candidate types of remaining stems (or roots) in search of extractable paths. For 

example, Turkish root “düş” can indicate either a noun (“dream” in English) or verb 

(“to fall” in English). But it can’t be a verb in the predicate “düş-tür” (It is a dream), 

while it can’t be a noun in “düş-müş-tür” (He/She must have fallen). 

 6.2.4.4 Elimination by Supervised Learning 

 In some conditions, found stem (or root) might be either a verb or noun and both 

conditions are meaningful and in a goal state. A probabilistic supervised learning 
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approach is used here to overcome the ambiguity in those cases. A basic database table 

is created to store numbers of verb and noun occurrences of an ambiguous word. While 

training the model with real text-based lecture notes, every time when this type of an 

ambiguity occurs, noun/verb decision for the problematic root is given, then its related 

index in the database was increased. Results show that noun occurrences of ambiguous 

word roots are very few, even neglectable for this project’s domain. For example, root 

“düş” within the predicate “düştü” (which means “He/She/It has fallen” with verb root, 

or “It was a dream” with noun root) is prone to be classified as verb, as it is used as a 

verb-typed root in all 24 occurrences of this predicate within the dataset. So, system is 

designed to eliminate paths that determined the root to be a noun when this kind of 

ambiguations are encountered. 

6.3 Conversion Phase 

 Up to now, the program took a text file from the user, separated it to sentences on 

sentence boundary detection (SBD) module, used FSM structure as a morphological 

analyzer to parse the sentences and get candidate paths, eliminated the unsuitable paths 

and classified remaining paths in terms of verb polarity (as affirmative or negative). 

Conversion phase continues with the remaining paths and aims to find out the optimal 

result. The information needed for a complete conversion of a path (which is a probable 

solution for a particular sentence) is the found stem of the predicate, classification 

result for the predicate, suffix list of the path, index of the suffix to be translated in the 

suffix list, type and format of that suffix, opposite values of that suffix and the phonetic 

rules to be considered. 

6.3.1 Controls for Phonetic Rules 

 The main complexity of the conversion phase is the obligation of dealing with the 

Turkish phonetic rules. Sometimes it may be enough to simply change the suffix value 

with its opposite form to fulfill the conversion, but it’s a very rare condition. Effects 

of the phonetic rules can be generalized in two main categories: The stem of a predicate 

can be changed with the addition of a suffix, or the suffix needs to be formed according 

to stem of the predicate and previously appended suffixes to the stem. 
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 Table 6.8 briefly explains the Turkish phonetic rules considered within the model, 

while Table 6.9 describes auxiliary terms to control phonetic rules and Table 6.10 

introduces the phonetic rule control methods defined in the program. 

Table 6.8 Phonetic rules considered in the program 

Name Description Example 

Consonant 

assimilation  

(Ünsüz 

benzeşmesi)  

If the stem ends with a strong consonant 

(sert ünsüz), first letter of the suffix is 

changed to ‘t’ if it is initially ‘d’. 

karış + (y)dı 

karış + tı 

karıştı 

(It is mixed/joined) 

Consonant lenition  

(Ünsüz 

yumuşaması) 

If the stem ends with the strong consonant 

‘k’, it is changed to ‘ğ’, when stem is a 

noun type and the suffix starts with a 

vowel. Also, the ending strong consonant 

‘t’ is changed to ‘d’ on some exceptional 

verb roots (like “git” (go), “farket” 

(realize)) in certain conditions. These verb 

roots are stored under a string list defined 

on FSM class, also given in Appendix-4. 

kaçak + (y)ım 

kaçağ + ım 

kaçağım 

(I am fugitive) 

 

farket + (e)r 

farked + er  

farkeder 

(He/She realizes) 

Helper letter 

addition in front of 

the suffix  

Controls to add the helper letter ‘y’ at the 

beginning of the suffix, when the stem 

ends with a vowel. 

uyu + (y)acak 

uyuyacak 

(He/She will sleep) 

Removal of the 

first letter of suffix 

Controls to remove the first letter of suffix, 

when the root ends with a vowel. 

uyu + (i)yor 

uyu + yor 

uyuyor 

(He/She is sleeping) 

Vowel reduction  

(Ünlü daralması) 

on root 

In some conditions, if last vowel of the 

stem is a wide vowel (geniş ünlü), it is 

changed to a narrow vowel (dar ünlü). 

a → ı             e → i 

ağla – (i)yor – um 

ağlı – yor – um 

ağlıyorum 

(I am crying) 

Vowel reduction  

(Ünlü daralması) 

on suffix 

In some conditions, the suffix vowel is 

formed as a narrow vowel, according to 

the last vowel of the stem. 

a, ı → ı                e, i → i 

o, u → u             ö, ü → ü 

Format: -(y)m.ş 

kazan – mış 

(He/She had won) 

dokun – muş 

(He/She had touched) 

Back – front vowel  

(Kalın – ince ünlü)  

decision for the 

suffix  

In some conditions, the suffix vowel is 

formed as a back vowel or a front vowel, 

according to the last vowel of the stem. 

a, ı, o, u → a 

e, i, ö, ü → e 

Format: -(y)s. 

uyu – sa – m 

(If I could sleep) 

gör- se – k 

(If we could see) 
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Table 6.9 Auxiliary terms to control phonetic rules 

Name Description 

Last vowel of the root 
Used for phonetic rules where the stem (or root) needs an 

alteration. 

First letter of the suffix Used for phonetic rules where the suffix needs an alteration. 

Syllable count 
Indicates the number of syllables in a given word. The number 

of vowels is equal to the syllable count in a Turkish word. 

 

Table 6.10 Methods defined for phonetic rule controls 

ID Method Name Method Explanation 

1 BasitOlumsuzdanOlumluyaSuffixDegistirme 
Used to change the suffix value with its 

corresponding opposite form. 

2 BenzesmeKontrolu Used for consonant assimilation controls. 

3 SuffixBasinaYardimciSesEklenmesiKontrolu 
Used for helper letter addition in front of 

the suffix controls. 

4 SuffixIlkHarfSilinmesiKontrolu 
Used for removal of the first letter of 

suffix controls. 

5 KokYumusamaKontrolu 
Used for consonant lenition on stem 

controls. 

6 KokunDaralmasiKontrolu 
Used for vowel reduction on root 

controls. 

7 SuffixDaralmasiKontrolu 
Used for vowel reduction on suffix 

controls. 

8 KokunSonSesliHarfiniBulma Used to find the last vowel of the root. 

9 SuffixKalinInceKontrolu 
Used to make the back – front vowel 

decision for the suffix. 

10 YumusamayaUgrayanFiilKokleriKontrolu 
Used for exceptional verb roots on 

consonant lenition controls. 

11 GenisZamanOperasyonlari 

Used for conversion operations on simple 

present tense, which requires syllable 

count and exceptional verb root controls. 

12 HeceSayisiBulma 

Used to get the syllable count of the stem. 

This is an auxiliary method mainly used 

for GenisZamanOperasyonlari method. 

13 IsimFiilKokYardimciSesKontrolu 

Additional helper letter addition controls 

for past tense suffixes, as they require a 

helper letter addition when they come 

after desiderative, optative and necessity 

suffixes, even if they are not the suffix to 

be translated. 
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 Conversion operations on simple present tense suffixes needs additional controls, 

as there are 12 exceptional verb roots with a single syllable in Turkish that always 

conjugated with the format -ır (-ir, -ur, -ür). Table 6.11 lists those exceptional verb 

roots, which are stored under a string list defined on FSM class. All the other verb 

roots with a single syllable are conjugated with the format -ar (-er). If the root has 

more than one syllable, than it’s always conjugated with the format -ır (-ir, -ur, -ür). 

Table 6.11 Exceptional verb roots for simple present tense conversion 

al-ır ol-ur öl-ür bil-ir bul-ur gel-ir 

kal-ır ver-ir var-ır vur-ur gör-ür dur-ur 

 

6.3.2 Suffix Formats 

 Required phonetic rule controls are correlated with different types of suffixes. As 

the possible changes after phonetic rule controls are known, each suffix is provided a 

format value, which clarifies the changeable letters, also helper letters which are used 

on certain occasions. Changeable letter locations are shown with a dot and helper 

letters are shown in parenthesis in the format of a suffix. If the format value isn’t set 

or set but doesn’t contain any special characters, it indicates that either the conversion 

can be done with a simple affirmative to negative or vice versa change of the suffix 

value at the given index, or that particular suffix is changeless and conversion 

operations don’t affect its value. Table 6.12 lists the suffixes with their formats. 

Table 6.12 Defined suffixes and their formats 

ID Suffix Name Description Format 

1 Birinci Tekil Kişi Eki Birinci Grup 1st person singular, 1st group -(y).m 

2 İkinci Tekil Kişi Eki Birinci Grup 2nd person singular, 1st group -s.n 

3 Birinci Çoğul Kişi Eki Birinci Grup 1st person plural, 1st group -(y).z 

4 İkinci Çoğul Kişi Eki Birinci Grup 2nd person plural, 1st group -s.n.z 

5 Üçüncü Çoğul Kişi Eki Birinci Grup 3rd person plural, 1st group -l.r 

6 Birinci Tekil Kişi Eki İkinci Grup 1st person singular, 2nd group -m 

7 İkinci Tekil Kişi Eki İkinci Grup 2nd person singular, 2nd group -n 

8 Birinci Çoğul Kişi Eki İkinci Grup 1st person plural, 2nd group -k 

9 İkinci Çoğul Kişi Eki İkinci Grup 2nd person plural, 2nd group -n.z 
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Table 6.12 continues 

ID Suffix Name Description Format 

10 Bildirme Eki Copula -d.r 

11 Durum Ulacı 
Verbal adverb suffix, gives “as 

if” meaning 
- 

12 Bilinen Geçmiş Zaman Eki Known past tense suffix -(y)d. 

13 Dilek Şart Kipi Desiderative -(y)s. 

14 Öğrenilen Geçmiş Zaman Eki Narrative past tense suffix -(y)m.ş 

15 Zaman Ulacı 
Verbal adverb suffix, gives 

“while” meaning 
-(y)ken 

16 Birinci Çoğul Kişi, Dilek Kipi Çekimi 
1st person plural suffix  

after optative 
-l.m 

17 Dilek Kipi Optative -(y). 

18 Geniş Zaman Eki Simple present tense suffix -.r 

19 Şimdiki Zaman Eki Present continuous tense suffix -.yor 

20 Gelecek Zaman Eki Future tense suffix -(y).c.k 

21 Gereklilik Kipi Necessity -m.l. 

22 İkinci Çoğul Kişi Emir Kipi Imperative (2nd person plural) -(y).n 

23 Üçüncü Çoğul Kişi Emir Kipi Imperative (3rd person plural) -s.nlar 

24 Birinci Tekil Kişi Geniş Zaman Eki 
Simple present tense suffix  

(1st person singular) 
-.r.m 

25 Birinci Çoğul Kişi Geniş Zaman Eki 
Simple present tense suffix  

(1st person plural) 
-.r.z 

26 Mastar Eki Infinitive suffix -m.k 

27 Kısa Mastar İyelik Çekimi Tekil 

Infinitive suffix (short form), 

followed by 3rd person singular 

possession suffix 

-m.s. 

28 Bulunma – Ayrılma Hal Eki Locative – Ablative suffix - 

29 Yeterlilik Kipi Geniş Zaman 
Ability/Probability suffix 

(Simple present tense) 
-(y).bilir 

30 Yeterlilik Kipi Ability/Probability suffix -(y).bil 

31 Yeterlilik Kipi Şimdiki Zaman 
Ability/probability suffix 

(Present continuous tense) 
-(y).biliyor 

32 
Birinci Tekil - Birinci Çoğul Kişi 

Yeterlilik Kipi Geniş Zaman 

Ability/Probability suffix 

(Simple present tense, 1st person 

singular or 1st person plural) 

-(y).bilirim 

33 Olumsuzluk Koşacı Negative copula - 

34 Kısa Mastar İyelik Çekimi Çoğul 

Infinitive suffix (short form), 

followed by 3rd person plural 

possession suffix 

-m.l.r. 

35 Üçüncü Tekil Kişi İyelik Eki 
3rd person singular possession 

suffix 
-(s). 
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 Highlighted IDs on Table 6.12 points the suffixes that are not a single suffix, but a 

combination of suffixes gathered together for conversion phase operations. 

6.3.3 Conversion from Affirmative to Negative 

 If the input path is affirmative, conversion operation should be towards negative. 

Formats for suffixes have a role, but they are not used in every condition in this 

conversion type. The step-by-step process for the operation is given below:  

 

1) Get the appropriate suffix to translate out of the word suffix list located in the 

Path object. 

2) The index of the detected affirmative value of the suffix, out of the 

PositiveValues list is known, so negative value with the same index out of the 

NegativeValues list is taken. 

3) If necessary, related phonetic rules are applied for the suffix and stem. 

4) If multiple suffixes exist, all other suffixes will remain as affirmative, so their 

format values are used to obtain the final suffix string. Giving the final forms 

of format values according to its suffix are described in the next section. 

6.3.4 Conversion from Negative to Affirmative 

 If the input path is negative, conversion operation should be towards affirmative. 

Formats for suffixes has the main role in this conversion type. The process for the 

algorithm shows similarities with conversion from affirmative to negative process, but 

one main difference is to treat all suffixes within the suffix list equally this time, as the 

purpose is to obtain a positive predicate which needs all suffixes to be in positive form. 

Therefore, although the index of the detected negative value of the suffix, out of 

NegativeValues list is known, it is not single-handedly enough, and the conversion 

process deals with the formats of all suffixes. To give the final forms of format values, 

related phonetic rule controls should be made depending on the suffix type. Phonetic 

rules are checked via methods, which are enumerated on Table 6.10. Used methods 

for each suffix is sequentially listed on Table 6.13. Between methods in parenthesis, 

first one is used if the found stem is noun-typed, second one is used if it is verb-typed. 
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Table 6.13 Phonetic rule control methods used for each suffix in sequence 

ID Suffix Name 
Phonetic Rule 

Method IDs 

1 Birinci Tekil Kişi Eki Birinci Grup 3 – 5 – 7 

2 İkinci Tekil Kişi Eki Birinci Grup 7 

3 Birinci Çoğul Kişi Eki Birinci Grup 3 – 5 – 7 

4 İkinci Çoğul Kişi Eki Birinci Grup 7 

5 Üçüncü Çoğul Kişi Eki Birinci Grup 9 

6 Birinci Tekil Kişi Eki İkinci Grup 1 

7 İkinci Tekil Kişi Eki İkinci Grup 1 

8 Birinci Çoğul Kişi Eki İkinci Grup 1 

9 İkinci Çoğul Kişi Eki İkinci Grup 7 

10 Bildirme Eki 2 – 7 

11 Durum Ulacı 1 

12 Bilinen Geçmiş Zaman Eki (3 | 13) – 2 – 7 

13 Dilek Şart Kipi (3 | 13) – 9 

14 Öğrenilen Geçmiş Zaman Eki (3 | 13) – 7 

15 Zaman Ulacı 1 – 3 

16 Birinci Çoğul Kişi, Dilek Kipi Çekimi 7 

17 Dilek Kipi 7 – 9 

18 Geniş Zaman Eki 4 – 11 – 10 

19 Şimdiki Zaman Eki 10 – 4 – 6 – 7 

20 Gelecek Zaman Eki 10 – 9 – 3 

21 Gereklilik Kipi 9 – 7 

22 İkinci Çoğul Kişi Emir Kipi 3 – 7 

23 Üçüncü Çoğul Kişi Emir Kipi 7 – 9 

24 Birinci Tekil Kişi Geniş Zaman Eki 4 – 11 – 10 – 7 

25 Birinci Çoğul Kişi Geniş Zaman Eki 4 – 11 – 10 – 7 

26 Mastar Eki 9 

27 Kısa Mastar İyelik Çekimi Tekil 9 – 7 

28 Bulunma – Ayrılma Hal Eki 1 – 9 

29 Yeterlilik Kipi Geniş Zaman 10 – 1 – 3 

30 Yeterlilik Kipi 10 – 1 – 3 

31 Yeterlilik Kipi Şimdiki Zaman 10 – 1 – 3 

32 
Birinci Tekil - Birinci Çoğul Kişi Yeterlilik Kipi Geniş 

Zaman 
10 – 1 – 3 

33 Olumsuzluk Koşacı 1 

34 Kısa Mastar İyelik Çekimi Çoğul 9 – 7 

35 Üçüncü Tekil Kişi İyelik Eki 1 – 3 
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 For example, 4 different phonetic rules must be checked for the suffix type “şimdiki 

zaman eki” (present continuous tense suffix), which are possible consonant lenition on 

verb root controls (denoted as 10), removal of the first letter of suffix controls (as 4), 

vowel reduction on root controls (as 6) and vowel reduction on suffix controls (as 7). 

6.3.5 Optimal Result Decision 

 After the elimination operations on classification phase, if there are still more than 

one existing path as possible solutions, a final elimination method is used to find the 

optimal result by checking the maximum level. As mentioned, every state has a level 

property, which indicates the required number of suffix parse operations to be executed 

on a predicate to reach that state. Accordingly, if found stem is semantically 

meaningful, the paths with a lower level goal state should be eliminated. 

6.4 Use Case Example 

 A complete flow when developed model is executed on an example sentence is 

detailed on this section. File operations are not needed as a single sentence is handled. 

Sample sentence is “Meyve suyunu içmeden önce çalkalamıyordu.” (He/She was not 

shaking the fruit juice before drinking it.) 

 

- The predicate of the sentence is found as “çalkalamıyordu”. 

- 7 initial paths are derived from the FSM execution and one of them is directly 

eliminated as it is not in a goal state. 

- Details of the remaining 6 paths are given below: 

o Word stem: çalkalamıyor  Word suffix part: -du 

Current state: F1   Current state level: 1 

o Word stem: çalkalamıyo  Word suffix part: -r-du 

Current state: F2   Current state level: 2 

o Word stem: çalkalam   Word suffix part: -ıyor-du 

Current state: F2   Current state level: 2 

o Word stem: çalkalamı   Word suffix part: -yor-du 

Current state: F2   Current state level: 2 
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o Word stem: çalkala   Word suffix part: -mıyor-du 

Current state: F2   Current state level: 2 

o Word stem: çalkal   Word suffix part: -amıyor-du 

Current state: F3   Current state level: 3 

- When paths with meaningless stem elimination is applied, paths numbered as 

1,2,3 and 6 are eliminated and number of paths are reduced to two. Meanwhile, 

the classification phase is completed. Remaining paths: 

4)   çalkalama – yor -du   Detected stem type: Noun 

      Classified as: Affirmative 

5)   çalkala – mıyor – du   Detected stem type: Verb  

      Classified as: Negative 

- When elimination by root type is applied, the path numbered as 4 is eliminated 

as the current state of this path is F2, which requires a verb-typed stem, but the 

detected stem is a noun. So after the path elimination operations on 

classification phase, a single path is remained as possible solution.  

- Conversion phase begins. Only remaining path (numbered as 5) is classified as 

negative, so conversion operation should be executed towards affirmative. 

- First suffix in the suffix part of the word is taken and program perceives that 

the suffix type is SimdikiZamanEki (present continuous tense suffix). 

- Format value for SimdikiZamanEki is "-.yor”. 

- Four phonetic rule control methods should be used to complete the transition 

centered around SimdikiZamanEki, which are: 

o YumusamayaUgrayanFiilKokleriKontrolu (10) 

o SuffixIlkHarfSilinmesiKontrolu (4) 

o KokunDaralmasiKontrolu (6) 

o SuffixDaralmasiKontrolu (7) 

- KokunDaralmasiKontrolu (6) method causes a change on word stem property. 

Updated property is “çalkalı”. 

- The converted affirmative predicate result is “çalkalıyordu”. 

 

 The conversion phase is over. The resulted sentence is “Meyve suyunu içmeden 

önce çalkalıyordu.” (He/She was shaking the fruit juice before drinking it.) 
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 Figure 6.3 shows how the system moved through the first FSM results and found 

the optimal result for this given example. 

 

Figure 6.3 Example system output for verb polarity classification and conversion tasks 

 

6.5 Experimental Results 

 Success of the proposed model is tested via experiments on actual lecture notes. 

The dataset with 60 documents (30 history and 30 geography), which is used on SBD 

module experiments is used again. 

 

 Developed model works on sentences derived from SBD model and generates a 

result for each sentence. This result can either be a translated sentence derived from 

the single remaining path (correct or incorrect), a warning text if no meaningful result 

is found, or a warning text if paths could not be reduced to a single one and there exists 

multiple candidate sentences. Besides, initial sentences without a predicate (like 

sentences derived by join operations on itemized text parts) are not received for 

consideration, as tested operations within this model are unfeasible on them. So an 

accuracy value, which is calculated by dividing number of correct guesses to number 
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of all sentences with a predicate is used for evaluation. Accuracy value is calculated 

for both classification and conversion phases. Also, experiments for geography and 

history domains are separated to allow comparisons and conclusive results are 

calculated by combining these two experiment sets. Evaluation metrics used on 

experiments are formulated below on equations 6.1 and 6.2. Combined experimental 

results are shown on Table 6.14.  

Classification Accuracy (%)   =    (6.1) 

Conversion Accuracy (%)    =    (6.2) 

Table 6.14 Experiment results of verb polarity detection (classification) and conversion model 

 

 As Table 6.14 shows, average number of sentences with predicate in the combined 

dataset documents is stated as 38.13 and 35.85 of them are correctly classified in terms 

of verb polarity, while 35.27 of them are correctly converted to the opposite polarity. 

When domain specific experiments are observed, average number of sentences with 

predicate is stated as 40.27 for history course and 36.00 for geography course 

documents. For history domain, 37.83 of them are correctly classified and 37.23 of 

them are correctly converted. For geography domain, 33.87 are correctly classified and 

33.30 are correctly converted. 

 

 Experiments on history course text documents resulted in 93.96% classification 

accuracy and 92.47% conversion accuracy, while experiments on geography course 

text documents resulted in 94.07% classification accuracy and 92.50% conversion 

DOMAIN

# of 

Sentences 

from SBD 

Model

# of 

Sentences 

with 

Predicate

# of Correct 

Classifications

# of Correct 

Conversions

# of No 

Meaningful 

Result 

Cases

# of More 

Than a 

Single Result 

Cases

Clasification 

Accuracy    

(%)

Conversion 

Accuracy      

(%)

History 

Documents 

(30)

1233 1208 1135 1117 81 5 93.96 92.47

Geography 

Documents 

(30)

1089 1080 1016 999 60 3 94.07 92.50

TOTAL 2322 2288 2151 2116 141 8 94.01 92.48
AVG 38.70    38.13 35.85 35.27 2.35 0.13
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accuracy. Combined results are stated as 94.01% classification accuracy and 92.48% 

conversion accuracy. 

 

 Results show that there is not a considerable difference between the success rates 

of history and geography domains. Among the history documents, average number of 

cases where no meaningful result is found is 2.70 and more than a single result is found 

is 0.17. Numbers are calculated as 2.00 and 0.10 respectively for geography 

documents. When more than a single result is found, that means the system is unable 

to resolve the ambiguation as there exists two different meaningful stems followed by 

appropriate suffix lists for each. Figure 6.4 shows an example condition, where a single 

path could not be gathered as both candidate verbal stems (“sür” (drive, lead, continue) 

and “sürü” (drag, herd)) are meaningful and appended suffixes lead both of them to a 

proper goal state in FSM. This is an example condition which exceeds the limits of 

morphology and entered the scope of semantics. 

 

Figure 6.4 Example case where multiple results remain after FSM execution and path elimination 
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CHAPTER SEVEN 

NAMED ENTITY RECOGNITION MODEL TO BUILD 

A GLOSSARY OF TERMS STRUCTURE 

 

7.1 Overview 

 Proposed named entity recognition (NER) model is an information extraction 

software developed for educational purposes and specialized for Turkish lecture notes 

within geography and history domains. Primary goal of the model is to detect named 

entities from the context of input text documents with high accuracy. Using qualified 

named entities among the detected, building a steady and satisfying glossary of terms 

structure for history and geography domains is defined as the next step. Later on, this 

structure is used to support the test preparation process.  

 

 Implemented NER model exploits a rule-based approach. It takes a text document 

as input and returns detected named entities with their types as output. System is 

developed to work on sentences, so sentence boundary detection (SBD) model is 

executed on input text file first. This operation provides sentences and headings of 

input text for NER system usage. Therefore, the success of NER model also depends 

on the success of SBD model.  

 

 Each sentence is handed to NER respectively and processed with the tokenizer, 

lexical model and contextual model. These three sub-models prepare given sentence 

by providing informative labels. Finally, the recognizer model is executed and the 

sentence with labeled tokens is analyzed to detect named entities. Figure 7.1 shows a 

representation of the proposed framework. 

 

 Building the glossary of terms task is handled after the execution of NER model on 

numerous text-based lecture notes within history and geography documents. Resulted 

named entities of different types are observed and the ones that might be used for an 

examination process are specified. A more specific categorization for selected terms 

is also done on this stage to combine interchangeable terms with each other. 
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Figure 7.1 Flow diagram of the proposed named entity recognition model 

 

7.2 Tokenizer and Tokens 

 Derived sentences of the input text file are first processed by tokenizer. Tokenizer 

scans through the input sentence and detects word boundaries and punctuation marks 

to get the list of tokens. A token might indicate a complete word, a punctuation mark 

or a morpheme after a punctuation mark. Tokens of a sentence are stored in a double 

linked list structure as a Token class object is designed to hold the information of 

previous and next tokens. A token object also holds a list of boolean variables that 

indicate states (labels). Labeling a token provides useful background information to be 

used while detecting named entities. Tokenizer applies the initial labeling on collected 

tokens. Considering the system requirements on further stages, 15 tokenizer labels 

divided to four different categories are defined. Case, numeric, punctuation and 

location information are provided by labeling on this stage. Labels used by tokenizer 

are shown on Table 7.1. 
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Table 7.1 Categorized tokenizer labels 

Case 

Information 

Numeric 

Information 

Punctuation 

Information 

Location 

Information 

SW_CAPITAL 

 

 

ALL_CAPITAL 

 

 

EW_DOT 

NUM 

 

ROMAN_NUM 

 

ORD_NUM 

 

DAY_NUM 

 

MONTH_NUM 

 

YEAR_NUM 

PUNCT_ 

APOSTR 

 

PUNCT_ 

OTHER_MID 

 

PUNCT_ 

OTHER_END 

 

PERCT 

BEFORE_ 

APOST 

 

 

 

AFTER_ 

APOST 

 

o SW_CAPITAL: Indicates whether the token text starts with a capital letter or not. 

o ALL_CAPITAL: Indicates whether all characters of the token text are capitalized 

or not. 

o EW_DOT: Indicates whether the last character of the token is a dot or not. 

o NUM: If set to true, indicates that the token text denotes a numeric value. 

o ROMAN_NUM: If set to true, indicates that the token text denotes a roman 

number. 

o ORD_NUM: If set to true, indicates that the token text denotes an ordinal number. 

o DAY_NUM: If set to true, indicates that the token holds a numeric value in [1,31] 

range. 

o MONTH_NUM: If set to true, indicates that the token holds a numeric value in 

[1,12] range. 

o YEAR_NUM: If set to true, indicates that the token holds a numeric value in [100, 

5500] range. 

o PUNCT_APOSTR: Indicates whether the token text is an apostrophe character or 

not. 

o PUNCT_OTHER_MID: Indicates whether the token text holds a punctuation mark 

used in the middle of a sentence, like comma, semi colon, parenthesis etc. 

o PUNCT_OTHER_END: Indicates whether the token text holds a sentence ending 

punctuation mark (except dot) or not. 

o PERCT: Indicates whether the token text is a percentage sign or not. 

o BEFORE_APOST: If set to true on a token, points that next token is an apostrophe. 
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o AFTER_APOST: If set to true on a token, points that previous token is an 

apostrophe. 

 

7.3 Generated Sources for Lookup Operations 

7.3.1 Lexical Model Sources 

 Lexical and contextual models are used to label tokens with additional information 

using the generated lexicon structures. Lexicons used by lexical model indicates 

possible proper names (of a person or a location-region) except the auxiliary list which 

contains Turkish conjunctions. Lexical model sources are detailed below: 

 

o TR_FirstNames: Stores Turkish first names based on a database that contains 

Turkish Language Association (TDK) person names dictionary terms. Initial list 

holds 9699 elements, but the number is reduced to 9619 after some elimination, 

which will be detailed on Section 7.3.1.1. 

o TR_CommonSurnames: Stores a comprehensive list of Turkish surnames which 

are extracted from Wikipedia lists for Turkish actors – actresses, Turkish 

politicians (from 20th and 21st centuries), Turkish writers and Turkish commanders 

in Turkish War of Independence. Multiple occurrences of the same person (for 

example a politician who has served on both 20th and 21st centuries) and the 

duplicates of frequent surnames are eliminated. Final list contains 3039 elements. 

o FRGN_FirstNames: Stores a list of foreign (not Turkish) first names, derived 

from a wiki list projected to be expanded by user provided entries, published on 

ranker.com (“The Most Influential People of All Time”, n.d.). This list consists of 

a total 2762 people in a wide spectrum like scientists, politicians, artists, athletes, 

philosophers etc. from different countries. Data is extracted as an XML file, then 

normalized to get plain lists of first names, surnames and mid names. 

Normalization phase includes the removal of prepositions or articles like “of, the”, 

ordinal numbers, roman numbers and words that indicate a title or a nickname (like 

“St, Holy, Crazy, King, Queen, Baron, Prince, Princess”). Duplicate occurrences 

of a name are also excluded. Final list contains 1489 elements.  
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o FRGN_CommonSurnames: Stores a list of foreign surnames. Foreign surnames 

and mid names are also derived from the source list from ranker.com. Final list 

contains 1864 elements. 

o FRGN_MidNames: Stores a list of foreign mid names like “de, von, bin” or 

shortened forms which is an initial upper-case letter trailed by a dot. Final list 

contains 34 elements. 

o Countries: Stores the names of 193 member states of Unites Nations (UN), states 

consisting in these members (like England, Wales, Scotland, Northern Ireland) and 

self-governing states (like Puerto Rico, Virgin Islands. New Caledonia). Palestine, 

Taiwan and TRNC (Turkish Republic of Northern Cyprus) are the other states 

included. Some former country names that are likely to occur in historical texts 

(like Yugoslavia, USSR) are also included. Final list contains 257 elements. 

o TR_Cities: Stores the names of 81 cities of Turkey and common different usages 

for them (like Afyon for Afyonkarahisar). Final list contains 86 elements. 

o TR_Districts: Stores the names of districts of Turkey. Initial list holds 984 

elements but after districts with same names and central districts named after their 

inclusive city are eliminated, final list contains 897 elements. 

o FRGN_StatesCities: Stores the names of capital cities of all countries and states-

cities with high population, or historical and touristic significance. Cities that are 

named after their countries are excluded and the final list contains 380 elements. 

o GeographicRegions: Stores the names of continents or well-known geographic 

regions. The list contains 22 elements. 

o Conjunctions: Stores conjunctions used in Turkish language. This auxiliary list is 

used to detect conjunction usage at the beginning of a sentence to avoid misleading 

named entity (NE) detections. 

7.3.1.1 Final Exclusions from Lexical Sources 

 Initial list taken from ranker.com contains some Turkish people like Mustafa Kemal 

Atatürk, Halide Edip Adıvar, Orhan Veli Kanık, Yunus Emre. This led some 

intersection between Turkish name lists and foreign name lists. 29 mutual words are 

detected between TR_FirstNames and FRGN_FirstNames lists, while 13 mutual 

words are detected between TR_CommonSurnames and FRGN_CommonSurnames 
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lists. Leaving some of them on both lists are considered appropriate but some of them 

are excluded from one of the lists, as detailed below: 

 

o Words like “Abdullah, Selma, Selman, Zakir” etc. are left on both lists. 

o Words like “Edip, Evliya, Halide, Hamdi, Kemal, Mustafa, Orhan, Yunus, 

Ziya” etc. are excluded from FRGN_FirstNames lists. 

o Words like “Adam, Alan, Boy, Sun, San” etc. are excluded from 

TR_FirstNames list. 

o Words like “Adıvar, Çelebi, Emre, Kanık, Pamuk, Atatürk, Tanpınar” etc. are 

excluded from FRGN_CommonSurnames list. 

o Words like “Bradley, Reynaud, Spence” are excluded from 

TR_CommonSurnames list. These elements came from the names of Turkish 

people of foreign origin or married to a foreign person. 

o In lexical sources, there also exists some overlap with contextual model sources. 

These overlapping words are excluded from lexical sources to give them their 

final forms. 

7.3.2 Contextual Model Sources 

 Source lists used by contextual model indicates possible neighbor expressions for 

proper names. These expressions might be in the NE text or not, their case information 

is mostly the criteria looked for this decision. Contextual model sources are detailed 

below: 

 

o Before Person lists: Stores words or word groups that might come before a person 

name. Four lists are used for this purpose. Lists include profession titles like “Lord, 

Gazi, Albay” (Lord, Veteran, Colonel), honorifics like “Bay, Bayan, Madam” 

(Mister, Missis, Madam), abbreviations like “Asb., Prof., Yzb.” (Sgt., Prof., Capt.) 

and mid-expressions like “komutanı, padişahı, valisi” (commander of, sultan of, 

governor of). 

o After Person: Stores profession titles in Turkish like “Efendi, Hatun, Han, Paşa” 

that possibly come after a person name. 
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o After State or Country lists: Stores words or word groups that might come after 

a state or country name. Two lists are used for this purpose. One list includes 

ending expressions like “Krallığı, Cumhuriyeti” (Kingdom, Republic), other 

includes mid-expression like “başbakanı, halifesi, imparatoru” (prime minister of, 

emperor of, khalifa of). 

o After Location: Stores words or word groups that might come after a location 

name other than a state or country. The list includes expressions like “belediye 

başkanı, Bölgesi, valisi” (mayor of, Region, governor of). 

o After Organization: The list includes expressions like “Derneği, Meclisi, 

Kurumu” (Association, Council, Institution). 

o After Geographical Formations: The list includes expressions like “Gölü, Dağı, 

Irmağı” (Lake, Mountain, River). There also exists a list which holds possible 

expressions that a geographical formation ends with in Turkish like “ırmak, 

dağlar” etc.  

o After Geographical Events: The list includes expressions like “Depremi, 

Yangını” (Earthquake, Fire). 

o After Historic Events: The list includes expressions like “Savaşı, Devrimi, 

İsyanı” (War, Revolution, Riot). 

o After Historic Buildings: The list includes expressions like “Sarayı, Köprüsü” 

(Palace, Bridge). 

o Months: Holds the names of the months. 

7.4 Labeling by Lexical and Contextual Models 

 Tokenizer parses a sentence, generates tokens and initially labels them. Unlike 

tokenizer, lexical and contextual models don’t label tokens one by one, as some 

lexicon terms might contain multiple words. Thus, tokens are passed to these models 

with n-grams. Initial token window width is defined as 4 and it decreases on every 

iteration until it reaches to zero. Multi-word lexicon terms are not missed and labeled 

correctly this way. Table 7.2 shows how the n-gram search patterns are modeled on a 

sentence of 7 tokens. 
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Table 7.2 Search patterns of a 7-token sentence for n-gram lexicon lookups 

N Value Search Patterns 

4 1234 – 2345 – 3456 – 4567 

3 123 – 234 – 345 – 456 – 567 

2 12 – 23 – 34 – 45 – 56 – 67 

1 1 – 2 – 3 – 4 – 5 – 6 - 7 

 

 Tokens are labeled via n-gram lexicon lookups in lexical and contextual models to 

get their final forms before the execution of recognizer model. Table 7.3 shows the 

labels used in lexical and contextual models. 

Table 7.3 Lexical (L) and contextual (C) model labels 

Model Label Name Description 

L LEX_TR_FN Lexical term, Turkish first name 

L LEX_TR_LN Lexical term, Turkish last name 

L LEX_FRGN_FN Lexical term, foreign first name 

L LEX_FRGN_MN Lexical term, foreign mid-name 

L LEX_FRGN_LN Lexical term, foreign last name 

L LEX_CTRY Lexical term, country name 

L LEX_TR_CITY Lexical term, Turkish city name 

L LEX_TR_DIST Lexical term, Turkish district name 

L LEX_FRGN_CITY Lexical term, foreign city name 

L CONJ_SWC Conjunction that starts with capital 

L NOT_LEX_SWC Not a lexical term but starts with capital 

C B_PERSON Before person expression 

C A_PERSON After person expression 

C A_LOC_CTRY After location – country expression 

C A_LOC_OTH After location (other) expression 

C A_ORG After organization expression 

C A_HIST_BLDG After historic building expression 

C A_HIST_EVNT After historic event expression 

C A_GEO_FORM After geographic formation expression 

C A_GEO_EVNT After geographic event expression 

C EW_GEO_FORM 
Indicates a possible geographic formation with its 

ending 

C MONTH_NAME Indicates a month name 



97 
 

 Figure 7.2 shows a use case example of tokenization and token labeling with three 

different models on the sentence “Dünya’da 23 Eylül günü, Türkiye Cumhuriyeti’nde 

ve tüm Kuzey Yarım Küre’de sonbahar başlar.” (On the day of 23 September in the 

world, it is the beginning of autumn in Turkey and the whole Northern Hemisphere.). 

Token labels from different models are shown with different colors. 

 

Figure 7.2 Example system output after tokenization and token labeling on an input sentence 

 

7.5 Named Entities and Recognizer Model 

 As developed NER system is specialized for lecture notes in the scope of history 

and geography courses, extent of a NE is adjusted to meet the requirements. 13 NE 

types are defined, which are explained on Table 7.4. 

 

 After token derivation and labeling is completed, recognizer is executed to find out 

named entities. System can both be tested on a single sentence or a complete text 

document. Figure 7.3 shows a use case example where the system is tested with the 

input sentence “Bornova Anadolu Lisesi ve İzmir Atatürk Lisesi öğrencileri, 

Cumhuriyet Bayramı’nı kutlamak için Gündoğdu Meydanı’nda toplandı.” (Students of 

Bornova Anatolian High School and İzmir Atatürk High School are gathered in 

Gündoğdu Square to celebrate Republic Day.). Execution resulted in four NE 

detections. Tokens “Bornova, İzmir, Atatürk, Gündoğdu” are all lexicon terms and 

might be named entities on their own in different sentences. On the example though, 
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these terms are correctly found to be parts of longer named entities. System is designed 

to consider the container named entities instead of single lexicon terms in such 

circumstances. 

Table 7.4 Defined NE types with their explanations 

Label Name Description 

Person Turkish Indicates a Turkish person name 

Person Foreign Indicates a foreign (not Turkish) person name 

Location State - Country Indicates a country, state, continent or geographic region 

Location Other Indicates a city or district 

Historic Term Building Indicates a historic building or structure 

Historic Term Event Indicates a historical event 

Geographic Term Formation Indicates a specific geographical formation 

Geographic Term Event Indicates a specific geographical event such as a natural disaster 

Organization 
Indicates an organization within a wide range of fields (politics, 

education, military, media, law, medical etc.) 

Percentage Indicates a percentage or fraction expression 

Date 
Indicates a single date expression in multiple formats, or a date 

range expression 

Date or Number 
Indicates a clock expression or a numeric value below 1200 or 

above 2000. 

Other 
Indicates a detected NE which is not classified as one of the 

distinctive types. 

 

 

Figure 7.3 Example system output that shows named entity detections on an input sentence 
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7.6 Building Glossary of Terms Structure 

7.6.1 NER Execution on Complete Dataset 

 To construct glossary of terms structure, developed NER model is executed on the 

complete dataset of 1200 documents (600 geography and 600 history) which is 

introduced on Section 4.1. At the first stage, repetitive occurrences are not eliminated 

to derive suggestive results about the distribution of named entities between different 

domains and the total counts. This led to 42442 initial named entities, which makes an 

average 35.37 per document. 

 

 When the resulted named entities are observed, country names are specified to be 

among the most homogenously distributed terms. For example, the term “Hindistan” 

(India) is seen on 70 different documents, 30 of them are in geography domain while 

40 of them are in history domain. On the other hand, European and Asian countries 

are more frequently mentioned in history documents, while African, South American 

and Australian countries are mostly seen in geography documents. Former country 

names like Yugoslavia and USSR are nearly always mentioned in history documents. 

Making generalized statements for terms where country and continent names are used 

with a direction is not feasible, as some of them like “Güney Asya” (South Asia),  

“Güney Afrika” (South Africa) are mostly seen on geography documents, while some 

terms like “Doğu Avrupa” (Eastern Europe) are mostly seen on history documents. 

 

 When distributions of city and district names are observed, it can be said that their 

occurrence in geography documents is more frequent, but making a generalization is 

not possible. Especially, some of the foreign city names like “Beyrut” (Beirut), 

“Bağdat” (Baghdad), “Gazze” (Gaza), “Hiroşima” (Hiroshima), “Kudüs” (Jerusalem), 

“Moskova” (Moscow) only exist in history document. On the other hand, the most 

homogenously distributed terms mostly seem to be Turkish city names like “Şanlıurfa” 

(17 G – 17 H) , “Bitlis” (17 G – 17 H), “Karaman” (7 G – 7 H), “Çanakkale” (35 G – 

36 H), “Erzurum” (46 G – 48 T), “Diyarbakır” (22 G – 24 H), “Kastamonu” (11 G – 

12 H), “İzmir” (45 G – 51 H), where ‘G’ stands for geography and ‘H’ stands for 

history documents. 
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 Another observation is that, some of the Turkish district names in TR_Districts 

lexicon might lead to misleading named entity type detections as they can refer to 

different types. For example district names like “Eyüp, Fatih, İnönü, Çelebi, Selim” 

are prone to be used as person names, while “Perşembe (Thursday), Pazar (Sunday), 

Aralık (December)” mostly indicate name of a day or month, or terms like “Bor 

(Boron), Bozkır (Steppe), Çay (Tea), Çeltik (Paddy), Maden (Mine)” mostly indicate 

a geographical term like an agricultural product, a vegetation cover or a mineral type. 

46 district names in TR_Districts lexicon are stated to be misleading and are not 

included in glossary of terms structure. 

 

 After elimination of duplicate and irrelevant named entities, distinctive named 

entities that might be serviceable for an exam preparation process are specified. This 

resulted in a total of 3939 primary terms and 921 synonym terms. Each synonym term 

represents a different spelling variation that actually indicates the same entity with a 

primary term. 

7.6.2 Fine Grained Categorization 

 13 NE types which are defined within NER model provides an initial classification 

of terms. On the glossary of terms structure, Date and Date or Number types or 

combined as a single Date type, while Percentage type is excluded. Person Turkish 

type is renamed as Person Group 1 to extend the initial scope with people from 

communities that have considerable cultural affinity and historical interactions with 

Turkish communities, like Mongols and Huns. Person Foreign type is also renamed  as 

Person Group 2 in this direction. An additional <Generic> type is included for some 

more general terms that are mostly observed on heading texts. After all, 12 NE labels 

for coarse grained classification is defined. 

 

 To increase the question quality and provide a more specific classification, 311 fine 

grained categories are defined within the outer 12 labels. With this approach, more 

related terms, which are interchangeable in true-false and multiple choice questions 

are gathered together. For example, if this second level categorization wasn’t applied, 

different Person Group 1 terms that indicate an Ottoman sultan, a member of 
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parliament in Turkish Republic era and a minstrel would all be in consideration as a 

candidate term for the same question, which is not an optimal circumstance. Table 7.5 

shows categories with most terms for each 12 NE label. 

Table 7.5 Categories with most terms for each coarse grained named entity labels 

NE Label Categories 

<Generic> 
<History Term> → 18 terms 

<Geography Term> → 3 terms 

Date 

Turkish War of Independence Era Event → 156 terms 

World History Event – 20th Century (After 1950) → 88 terms 

First World War Era Event → 78 terms 

Location Other 

Marmara Region District → 62 terms 

Aegean Region District → 56 terms 

Black Sea Region District → 56 terms 

Location State - 

Country 

Middle East and North Africa Countries → 22 terms 

Geographical Area of a Continent → 20 terms 

Second Period Anatolian Beylics → 19 terms 

Person Group 1 

Ottoman Sultan → 34 terms 

Ottoman Grand Vizier → 32 terms 

Ottoman and Turkish Republic Era Soldier and Politician → 29 terms 

Person Group 2 

European Scientist (19th Century and After) → 27 terms 

American Scientist (19th Century and After) → 26 terms 

Medieval Era European Emperor and Military Leader → 24 terms 

Organization 

World Economical – Political Community → 31 terms 

Turkish War of Independence Era Helpful Union → 18 terms 

Ottoman Era Military Organization → 17 terms 

Geographic Term 

Formation 

Turkey Lake Name → 52 terms 

Turkey Mountain Chain Name → 34 terms 

Mountain Name → 27 terms 

Geographic Term 

Event 

Climate Type → 8 terms 

Geological Period → 5 terms 

Historic Term 

Building 

Mosque Name → 24 terms 

Castle Name → 19 terms 

Bridge Name (Turkey and Ottoman) → 11 terms 

Historic Term Event 

Historical Treaty Name (20th Century) → 24 terms 

Historical Treaty Name (Before 20th Century) → 29 terms 

Historical Congress Name → 25 terms 

Other 

Religion and Sect Name → 16 terms 

Book Name → 10 terms 

Language Name → 8 terms 
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 Fine grained categorization approach resulted in an average of 12.66 terms per 

category. Table 7.6 shows the distribution of categories based on the number of terms 

they contain. [5,10) is identified to be the most frequent range for number of terms 

with 83 categories. 

Table 7.6 Distribution of categories based on the number of terms they contain 

Number of Terms (Within a Range) Number of Categories 

[2,5) 78 

[5,10) 83 

[10,15) 60 

[15,20) 35 

[20,25) 19 

[25,30) 18 

[30,50) 11 

[50,100) 6 

100 and more 1 

 Additional to the primary 311 categories, 3 exceptional categories are defined in 

the scope of the NE labels. A term can both have a primary and exceptional category, 

but exceptional categories override the primary category when encountered. For 

example, exceptional category “District Name Which is Also a Lowland” is defined 

under Location Other type and contains 9 terms (like “Pamukova, Karlıova, Taşova”) 

with a variety of primary categories. 

7.6.3 Database Model 

 To store the specified terms within geography and history domains and provide 

suggestive information about them, a database model is constructed. Data is stored in 

4 different tables: 

• NamedEntityType 

• Category 

• Term 

• SynonymTerm 

 

 Database diagram of the model is given in Figure 7.4. 
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Figure 7.4 Diagram of the GlossaryOfTerms database 

 

 7.6.3.1 NamedEntityType Table 

 Information about the named entity labels used for coarse grained classification of 

terms is stored under NamedEntityType table. 9 fields are defined within this table: 

• ID: Unique index value for the NE type 

• Name: Explanatory name of the NE type 

• IsActive: A bit field which indicates whether the NE type is enabled for lookup 

search operations or not. If set to 0 (false), terms of this NE type are excluded 

from the initial list of terms to be used on test preparation process.  

• CategoryCount: Indicates total number of categories defined within this NE 

type. 

• TermCount: Indicates total number of terms defined within this NE type. 
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• SynonymTermCount: Indicates total number of synonym terms defined within 

this NE type. 

• MutualTermCount: Indicates total number of terms within this NE type that 

are encountered on both history and geography documents. 

• HistoryOnlyTermCount: Indicates total number of terms within this NE type 

that are encountered only on history documents. 

• GeographyOnlyTermCount: Indicates total number of terms within this NE 

type that are encountered only on geography documents. 

 

 Figure 7.5 shows data stored in this table. 

 

Figure 7.5 Data stored in NamedEntityType table 

 

 7.6.3.2 Category Table 

 Information about the category labels used for fine grained classification of terms 

is stored under Category table. 10 fields are defined within this table: 

• ID: Unique index value for the category entity. 

• OwnerTypeID: Index value of the container NE type of the category. 

• Name: Explanatory name of the category 

• IsActive: A bit field which indicates whether the category is enabled for lookup 

search operations or not. If set to 0 (false), terms of this category are excluded 

from the initial list of terms to be used on test preparation process. 

• IsExceptional: A bit field which indicates the category is an exceptional type 

or not. 

• TermCount: Indicates total number of terms defined within this category. 
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• SynonymTermCount: Indicates total number of synonym terms defined within 

this category. 

• MutualTermCount: Indicates total number of terms within this category that 

are encountered on both history and geography documents. 

• HistoryOnlyTermCount: Indicates total number of terms within this category 

that are encountered only on history documents. 

• GeographyOnlyTermCount: Indicates total number of terms within this 

category that are encountered only on geography documents. 

 

 Figure 7.6 shows sample data stored in this table. 

 

Figure 7.6 Sample data stored in Category table 

 

 7.6.3.3 Term Table 

 Information about the primary terms specified after NER operations is stored under 

Term table. 11 fields are defined within this table: 

• ID: Unique index value for the term entity. 

• OwnerTypeID: Index value of the container NE type of the term. 

• CategoryID: Index value of the container category of the term. 

• ExceptionalCategoryID: Index value of the exceptional category of the term, 

if one is assigned. NULL is the default value of this field if an exceptional 

category is not assigned to the term. 

• HasExceptionalCategory: A bit field which indicates whether an exceptional 

category is assigned to the term or not. 

• Text: Complete textual representation of the term. 
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• DomainInfo: Nchar(1) field which provides insight about the distribution of 

the term within the domains. ‘H’ is assigned if the term only exists on history 

documents, ‘G’ is assigned if the term only exists on geography documents, 

‘M’ is assigned if the term is encountered on both history and geography 

documents. 

• IsActive: A bit field which indicates whether the term is enabled for lookup 

search operations or not. If set to 0 (false), that particular term is excluded from 

the initial list of terms to be used on test preparation process. 

• SynonymCount: Indicates total number of synonym terms related with that 

particular term. 

• HasSynonym: A bit field which indicates whether the term has a synonym term 

or not. 

• NgramCount: Indicates total number of n-grams of the term, which is 

calculated by adding 1 to the number of whitespaces within the Text field of 

the term. 

 

 Figure 7.7 shows sample data stored in this table. 

 

Figure 7.7 Sample data stored in Term table 

 

 7.6.3.4 SynonymTerm Table 

 Information about the synonym terms of primary terms is stored under 

SynonymTerm table. 6 fields are defined within this table: 

• OwnerTermID: Index value of the parent primary term of the synonym term. 
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• Text: Complete textual representation of the synonym term. 

• OwnerTypeID: Index value of the container NE type of the synonym term. 

• CategoryID: Index value of the container category of the synonym term.  

• IsActive: A bit field which indicates whether the synonym term is enabled for 

lookup search operations or not. 

• NgramCount: Indicates total number of n-grams of the synonym term.  

 

 Figure 7.8 shows sample data stored in this table. 

 

Figure 7.8 Sample data stored in SynonymTerm table 

 

7.7 Experimental Results 

 Success of the NER model is tested on the dataset with 60 documents (30 history 

and 30 geography), which is used on SBD module experiments. Precision and recall 

metrics for TEXT (to correctly detect borders of NE) and TYPE (to correctly detect 

type of NE) attributes are used for evaluation. Experiments on geography and history 

domains are separated to allow comparisons, conclusive results are calculated by 

combining these two experiment sets. Detected NE types are also counted among 

correctly guessed type values to compare distributions between different domains. 

 

 Precision values are calculated by dividing number of correct guesses to number of 

all detections, recall values are calculated by dividing number of correct guesses to 

number of actual named entities. Evaluation metrics used on experiments are 

formulated below on equations 7.1, 7.2, 7.3 and 7.4. 
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Precision TEXT (%)   =    (7.1) 

Precision TYPE (%)    =    (7.2) 

Recall TEXT (%)   =    (7.3) 

Recall TYPE (%)   =    (7.4) 

 Actual number of named entities are determined before performing the 

experiments. 30 history documents contain 1654, 30 geography documents contain 

991 named entities, which makes a grand total of 2645 named entities on 60 

documents. Average number of named entities per document is calculated as 55.13 for 

history domain, 33.03 for geography domain and 44.98 for the combined dataset. 

 

 NE type distribution on the test documents are also determined before 

experimentation. On 30 history documents, there exist 133 Person Turkish, 48 Person 

Foreign, 273 Location State – Country, 126 Location Other, 101 Organization, 9 

Historic Term Building, 127 Historic Term Event, 39 Geographic Term Formation, 

221 Date, 26 Date or Number, 5 Percentage and 546 Other tagged named entities. It is 

observed that no NE with Geographic Term Event tag exists on these documents. 

 

 On 30 geography documents, there exist 8 Person Foreign, 225 Location State 

Country, 200 Location Other, 4 Organization, 3 Historic Term Building, 3 Historic 

Term Event, 209 Geographic Term Formation, 27 Geographic Term Event, 47 Date, 

62 Date or Number, 20 Percentage and 183 Other tagged named entities. It is observed 

that no NE with Person Name Turkish exists on these documents. 

 

 Experiments on history domain resulted in 96.06% precision for TEXT, 92.67% 

precision for TYPE, 95.83% recall for TEXT and 92.44% recall for TYPE. 

Experiments on geography domain resulted in 96.59% precision for TEXT, 93.37% 

precision for TYPE, 97.07% recall for TEXT and 93.84% recall for TYPE. Combined 

results are 96.26% precision for TEXT, 92.93% precision for TYPE, 96.29% recall 

for TEXT and 92.97% recall for TYPE. Table 7.7 and 7.8 shows the combined results. 
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Table 7.7 Suggestive numerical values derived from NER model experiments 

 

 

Table 7.8 Precision and recall values derived from NER model experiments 

 

 Results show that success rate for geography domain is slightly better than history 

domain. But the fact that average number of named entities in a history document is 

way higher than average number of named entities in a geography document (more 

than 22) should not be avoided. In both domains, accuracy on TEXT resulted to be 

higher than accuracy on TYPE, for both precision and recall metrics. Main reason for 

this is, when the boundaries of a NE is not correctly distinguished, predicting the type 

of this incorrect text turns out to be an unfeasible task. Ambiguous lexicon terms and 

person names that can also be used as common nouns are two other issues that cause 

erroneous detections. 

 

 An analysis to detect success rate of the model for individual NE types is also made 

on experiment results. Table 7.9 compares number of correctly detected NEs for each 

type with the actual number in history and geography domains, also in the combined 

data set with 60 documents. For each NE type, average numbers of detected and actual 

named entities in 60 documents are also included. Accuracy (Acc) value for each NE 

type t, which is formulated on equation 7.5 is used for evaluation.  

DOMAIN
# of Actual 

NE

# of Detected 

NE

# of Correct 

TEXT

# of Correct 

TYPE

# of Missed 

NE

HISTORY Documents (30) 1654 1650 1585 1529 69

GEOGRAPHY Documents (30) 991 996 962 930 25

TOTAL (60 documents) 2645 2646 2547 2459 94

AVG 44.08 44.10 42.45 40.98 1.57

DOMAIN
Precision TEXT 

(%)

Precision TYPE 

(%)

Recall TEXT 

(%)

Recall TYPE 

(%)

HISTORY Documents (30) 96.06 92.67 95.83 92.44

GEOGRAPHY Documents (30) 96.59 93.37 97.07 93.84

TOTAL (60 documents) 96.26 92.93 96.29 92.97
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 System success at detection NEs with Percentage, Date, Location State – Country, 

Historic Term Event and Other types reached highest accuracy values with 100%, 

98.88%, 96.79%, 93.85% and 92.87% respectively. Lowest accuracy value among 13 

NE types is observed on Geographic Term Event with 88.89% (24 out of 27). 

Acct (%)   =    
(7.5) 

Table 7.9 NER model experiment results for individual NE types 

 

 Distribution of correctly detected NE types for both domains is also shown on Table 

7.9. Other, Location State – Country, Date, Person Turkish and Historic Term Event 

are the five most encountered NE types for history documents. Location State – 

Country, Location Other, Geographic Term Formation, Other and Date or Number are 

the five most encountered NE types for geography documents. Absence of any Person 

Turkish tagged NE in geography domain and absence of any Geographic Term Event 

tagged NE in history domain are remarkable results. Location State – Country appears 

to be the most homogenously distributed NE tag among the complete experiment set. 
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7.8 Encountered Challenges 

 Problems and restrictions, mostly in connection with Turkish language or common 

violations in input documents are encountered during the development process of NER 

model. 

 

 Using a wide Turkish first name lexicon provides a high recall in detecting in person 

names, but it is possible to lead decreases in precision. This is because of the nature of 

Turkish, as some of the person name words might also indicate common nouns that 

are frequently used in lecture notes like “Savaş (War), Barış (Peace), Nehir (River), 

Irmak (River)”. Neighbor token controls mostly avoid erroneous detection when these 

terms are in the beginning of the sentence. In some conditions, these controls are not 

single-handedly enough. For example, CONJ_SWC lexicon is also beneficial when 

the first word of a sentence is a conjunction and followed by a NE. 

 

 Some expressions like “Sultan (Sultan), Şah (Shah)” in contextual model might 

occur both before or after a person name, in fact it is also possible for two conditions 

to occur at the same time, for example “Kanuni Sultan Süleyman” (Suleiman the 

Magnificent). System used to detect two different named entities in these situations (as 

“Kanuni Sultan” and “Sultan Süleyman”), then this is corrected and detected partial 

expressions are merged to reach the correct NE. 

 

 Heading texts are handled with additional controls, as traditionally all heading 

words (except conjunctions) starts with a capital, even it doesn’t indicate a proper 

noun. This caused to limit the usage of Other tag for a NE and raised the significance 

of apostrophe controls. 

 

 Separating a commonly used “Person” NE type into two (as Person Turkish and 

Person Foreign) seems to cause TYPE mistakes in some occasions (which wouldn’t 

happened if two types are merged as a single Person type). Especially because some 

first names used in Turkish like “Musa, Enver, Zeynel, Süleyman” are also common in 

Arab countries. Experiments show the performance drops are acceptable though, as 
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differentiating Turkish and foreign person names is proven to be a rewarding approach 

for building glossary of term structure phase. 

 

 Absence of required punctuation marks (most frequently apostrophe and comma) 

and spelling errors on input text documents also has negative impacts on system 

success. It also decreases the quality of named entities and leads to an increased 

number of Other tagged named entities. For this reason, applying a spell check 

operation on the document before submitting it as an input is highly recommended.  
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CHAPTER EIGHT 

AUTOMATIZED QUESTION AND TEST GENERATION 

 

8.1 Overview 

 After the sub-modules, each with an NLP task (document classification, sentence 

boundary (SBD) and heading detection, verb polarity detection and conversion, named 

entity recognition (NER) to build a glossary of terms structure) are developed and 

proven to yield satisfactory results, they are combined to form a single DLL named 

ITESTCore and served for the examination module usage. This final software, which 

provides the expected automatized question and test generation functionalities, is 

named as iTest. This chapter gives detailed information about the contributions of NLP 

models on question generation process, how to decide between candidate question 

types, the features of educational software iTest and the infrastructure of this project. 

8.2 Automatized Question Generation 

8.2.1 Contribution of SBD Model 

 Every question generation operation is based on a sentence within an input 

document, which is provided by SBD model. This also gives the examination model 

idea about the possible number of questions within the constraints specified by criteria. 

If no constraints are specified, number of questions within a generated exam is the 

number of sentences derived by SBD model from the input document. 

 

 SBD model also provides information about the sub-headings of sentences. This 

contribution is essential as question text might be a bit vague on its own in some cases. 

Supporting it with a sub-heading mostly resolves this problem and increases the 

question quality. On the other hand, in some cases a sub-heading might be more 

explanatory than expected and implies the correct answer. For this reason, sub-heading 

feature is made optional and users are allowed to toggle sub-heading visibility any time 

on examination screen. 
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8.2.2 Contribution of Document Classification Model 

 Main contribution of the document classification operation is the automatic 

classification of the input text document as geography or history based on its domain. 

This allows system to filter glossary of terms structure and apply search operations on 

relevant terms instead of using the complete lexicon. Besides, classification result for 

every input document is stored in database to avoid re-classification of recently loaded, 

analyzed and classified documents. 

 

 Rather than question generation, document classification model is also beneficial 

for existing exam filtering on test selection phase and exam result filtering on test 

evaluation phase, as every exam is related to a single classified document. In example 

use cases, a user can select an existing exam to solve among the ones that are classified 

as history, or only list his/her exam results on geography course. 

8.2.3 Using Verb Polarity for Question Generation 

 Polarity of the predicate of a sentence directly states the polarity information of that 

sentence. Correctly classifying a sentence as affirmative or negative, then converting 

it to the opposite polarity is one of the two ways to obtain a true - false question on the 

examination model. Generated true - false question might be formed using either the 

input sentence itself or the converted sentence with the opposite polarity. Table 8.1 

shows the general idea behind this approach. 

Table 8.1 General approach for true – false question generation using verb polarity information 

Input  

Sentence 

Polarity 

Converted 

Sentence 

Polarity 

Generated  

Question 

Polarity 

Correct Answer of 

Generated 

Question 

Affirmative Negative Affirmative True 

Affirmative Negative Negative False 

Negative Affirmative Affirmative False 

Negative Affirmative Negative True 
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 Every sentence derived from a document by SBD model are processed by verb 

polarity detection and conversion model and specified to be classifiable or not. If no 

meaningful result is found or more than a single candidate result are derived, the 

sentence is specified to be not-classifiable. These sentences are not included in the 

process to form true - false questions via verb polarity information. This way, 

generation of a meaningless question is prevented. Figure 8.1 shows an example 

system output of a verb polarity detection and conversion operation execution on a 

complete document. As conversion of sentence with the ID value 30 gave multiple 

results, it won’t be used on true - false question generation based on verb polarity.  

 

Figure 8.1 Example verb polarity detection and conversion output on a complete document 

 

8.2.4 Using Glossary of Terms for Question Generation 

 Glossary of terms (GoT) structure, which is formed by NER model execution on 

600 history and 600 geography documents is used as a lexicon for lookup operations 

on examination model. Main approach here is to detect the terms within a sentence 

that exist in GoT, get the sibling terms of this terms with their total count information 
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and generate a question. “Sibling term” expression is used to indicate terms with the 

same fine-grained category and interchangeable with each other in question sentences. 

Figure 8.2 shows a GoT lookup output on a selected sentence derived from the input 

document. Two terms are detected within this sentence and the selected one “Pankuş 

Meclisi” (Pankush Council) has 10 sibling terms that are in the scope of the same 

category named “Türk ve Dünya Tarihi Meclis” (Council in Turkish and World 

History). 

 

Figure 8.2 Example GoT lookup output to detect terms and their siblings within a sentence 

 GoT structure is practicable for question generation for all three question types (true 

- false, fill in the blanks, multiple choice) if the source sentence fits in the required 

conditions. If at least one term is detected within the source sentence text, that sentence 

can be considered in generation of a true - false and a fill in the blanks question with 

GoT, but controls for multiple choice question is still in progress. If a sentence contains 

at least one term and this term has at least 3 sibling terms, than the conditions for a  

multiple choice question generation are fulfilled. Figure 8.3 shows three different types 

of questions generated from the same example sentence shown on Figure 8.2 by GoT 

lookup operations. 
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Figure 8.3 Three types of questions generated from the same sentence 

 

8.2.5 Question Type Decision 

 A probabilistic approach is used for question type specification. Five properties, 

which are collected by verb polarity detection and GoT lookup operations on an input 

sentence is used as metrics to decide which question type to be selected on question 

generation based on that sentence: 

 

• ContainsTerm: Is set true if at least one term from GoT structure is detected 

within input sentence. 

• SuitableForMc: Is set true if at least one detected term has three or more 

sibling terms. 

• IsClassifiable: Is set true if verb polarity detection and conversion operation 

on input sentence yielded a single accurate result.    

• IsPos: Is set true if input sentence is classified as affirmative. 

• IsNeg: Is set true if input sentence is classified as negative. 
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 Table 8.2 and Table 8.3 shows the pre-defined question type probabilities based on 

the values of these five boolean metrics. (IsPos and IsNeg columns indicate the 

conditions where the value of that property is True.) Probability values are specified 

for six question types, which are: True – False (Tf) question using verb polarity 

conversion with answer is set to True,  Tf question using verb polarity conversion with 

answer is set to False, Tf question using a term with answer is set to True, Tf question 

using a term with answer is set to False, fill in the blanks (Fitb) question using a term 

as the answer and multiple choice (Mc) question using a term as the answer. 

Table 8.2 Specified question type probabilities if value of ContainsTerm property is True 

 

 

Table 8.3 Specified question type probabilities if value of ContainsTerm property is False 

 

 For example, if ContainsTerm and SuitableForMc properties of an input sentence 

are set to True and IsClassifiable property is set to False, IsPos and IsNeg properties 

are not checked. As true - false question generation using verb polarity conversion is 

not feasible, probability values of two Tf-UseConversion types are set to 0%. 

Probability values for Tf-UseTerm with answer is set to True is specified as 20%, Tf-

IsPos IsNeg IsPos IsNeg IsPos IsNeg IsPos IsNeg

Tf-UseConversion True 5% 10% 0% 0% 10% 15% 0% 0%

Tf-UseConversion False 5% 25% 0% 0% 10% 30% 0% 0%

Tf-UseTerm True 15% 10% 20% 20% 20% 15% 30% 30%

Tf-UseTerm False 25% 15% 25% 25% 30% 20% 35% 35%

Fitb Term 25% 20% 25% 25% 30% 20% 35% 35%

Mc Term 25% 20% 30% 30% 0% 0% 0% 0%

Answer
QUESTION TYPE 

PROBABILITIES IsClassifiable-True IsClassifiable-False

ContainsTerm-True

SuitableForMc-True SuitableForMc-False

IsClassifiable-True IsClassifiable-False

Tf-UseConversion True

Tf-UseConversion False

Tf-UseTerm True

Tf-UseTerm False

Fitb Term

Mc Term

Answer
QUESTION TYPE 

PROBABILITIES IsClassifiable-True IsClassifiable-False

SuitableForMc-False

IsPos IsNeg IsPos

ContainsTerm-False

IsNeg

50%

50%

0%

0%

0%

0%

0%

0%

0%

0%

30%

70%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%
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UseTerm with answer is set to False is specified as 25%, Fitb is specified as 25% and 

Mc is specified as 30%. If user deselects a question type on test preparation phase, 

probability values of that question type is equally distributed over the included 

question types. Using the final probability values, question type to be generated for a 

sentence is randomly determined. 

8.3 Test Generation 

 Test generation is the process where questions that are generated (or selected) 

considering the specified criteria are combined to obtain a test. Test generation can be 

done on a new input document or a previously processed document. 

8.3.1 Specifiable Criteria 

 Before starting the test generation process, user is allowed to specify some criteria 

to adjust the test for his/her needs. Three criteria are defined within the system: 

 

• Question Types to Include: By default, all of the possible question types are 

included for an exam generation, but users are allowed to make changes. For 

example, if a user wants to generate a test of multiple choice questions only, 

then he/she can exclude true - false and fill in the blanks question options. 

• Question Limit: By default, all of the sentences that can be used in question 

generation are included for an exam generation, but users are allowed to put a 

limit and specify the desired number of questions. This number should not 

exceed the maximum number of possible questions, which is determined by 

the total number of sentences and the included question types. For example, if 

a user wants a test of multiple choice questions only, and 12 of 25 derived 

sentences can be used for this purpose, user is not allowed to specify the 

question limit as 13 or more.   

• Question Order: By default, order of sentences in their source document is 

preserved while placing the generated questions into the test. Users are allowed 

to change it and ignore the sentence order. This can be useful for the conditions 

where a question text implies the answer of its adjacent question. 
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8.3.2 Test Generation on New Document 

 First way to generate a test is to load a text-based course document to the system 

and specify the criteria based on the user needs. This operation leads to new questions, 

from which user can select to store for further usage on exam result screen. Document 

classification of the new document is also done on this stage. New test screen after the 

classification of input document is completed is shown on Figure 8.4. 

 

Figure 8.4 Generate test using new input document screen 

8.3.3 Test Generation on Existing Document 

 Second way to generate a test is to use a question pool of a previously loaded and 

processed text-based course document. Question pool is formed by the previously 

stored questions by users, after an examination process based on that document. 

Information about the total number of usable questions for each question type is given 

to user, so user specifies the criteria considering those constraints. Thus, a proper test 

is prepared. As this operation uses existing questions and doesn’t generate new ones, 

question save functionality is disabled this time to prevent duplicate questions. Figure 

8.5 shows the test generation on an existing document screen. 
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Figure 8.5 Generate test using existing document screen 

8.4 Other Features of iTest 

 Examination model iTest is developed as a complete user-based educational 

software and many features are provided in this direction. 

 

• Register - Login Operations: A user is expected to register and login to the 

system to benefit from the functionalities of iTest. To complete a registration, 

user needs to provide a username and a password, to select a profile image 

between 12 alternatives and check or uncheck the “Show password” and 

“Remember me” options. Advanced Encryption Standard (AES) is used for 

encryption and decryption of password. On login screen, users can check the 

“Keep login info” option to preserve the username and password information 

for the next login, even after the program is terminated. Figure 8.6 and 8.7 

show register and login screens respectively. 

• Functionalities During Examination: On examination screen, users can 

navigate through questions using Previous and Next buttons or selecting 

desired question from the related combobox. There also exists a Next Empty 

button that allows users to see the nearest unanswered question and a Clear 
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Answer button to reset the answer of active question. Users can also change 

the visibility of sub-heading of the active question (if exists) with a trackbar. 

Active question panel shows the index value of the active question and total 

number of answered questions. Figure 8.8 shows examination screen. Export 

as PDF is another functionality within this phase, which is detailed separately. 

 

Figure 8.6 Register screen 

 

 

Figure 8.7 Login screen 
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Figure 8.8 Examination screen 

• Export Test as PDF File: Besides providing a user interface for examination, 

iTest also allows users to export the generated (or selected) test as a PDF file 

for a printer friendly review. Pdf files are named by concatenating the related 

document name, an indicator for the test type (as Mixed, Tf, Fitb, Mc) and the 

short form of the current date, using a ‘_’ character as a separator. An example 

text-based course document and the PDF version of one generated test out of 

that document is given in Appendix-5. 

• Functionalities After Examination: Exam result screen shows the total 

number of correct, wrong, unanswered questions and the achieved score. User 

is allowed to navigate through questions with Previous and Next buttons, also 

with a combobox. There is also a Next Incorrect button that allows users to see 

the nearest incorrect (wrong or unanswered) question. Question text, given 

answer and correct answer of the active question are all displayed on the screen. 

Users are allowed to save the complete test with all its questions, or select the 

questions using checkboxes to save for further usage. Note that checkboxes of 

the previously saved questions are disabled. Saving the exam result is another 

provided option. Figure 8.9 shows after examination screen. 
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Figure 8.9 After examination screen 

• Find Test Option: Instead of generating a new exam, users are allowed to 

choose among the previously stored exams. Available tests can be filtered by 

domain and test type. Figure 8.10 shows find test screen without filter usage. 

 

Figure 8.10 Find test screen with no filters are applied 
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• Random Test Option: Another option is to open a random test among the 

previously stored exams. This feature provides a quick examination 

opportunity to users without a specification phase. 

• Exam Results Screen: Users are provided with their saved exam results, 

which can be filtered by domain and sorted by date (as newest or oldest first) 

or score (as highest or lowest first). Scores are displayed with different colors 

depending on the level of success defined by intervals. For example score 

above 84 are displayed as dark green. Figure 8.11 shows exam results screen 

when domain filter is applied, and results are sorted by score (as highest first). 

 

Figure 8.11 Exam results screen when filter and sort operations are applied 

• User-Based Preferences: Preferences screen allows users to change their 

profile image, clear their login history and delete their exam results. They can 

also check or uncheck the “Show redirect screens on page navigation” option, 

which is checked by default on recently registered users. Redirect screens are 

used to inform users before page navigation on certain cases. For example, if a 

user tries to open New Test screen without logging in, system is redirected to 

Login screen. If the option is enabled, a redirect screen is shown on screen for 

2 seconds to inform user before redirect. Figure 8.12 shows preferences screen. 
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Figure 8.12 Preferences screen 

 

8.5 Database Model 

 Operations on examination model are highly dependent on a wide range of data, 

which are stored within the database named ITEST2018. Related data is stored in 8 

different tables, which are: 

 

• SystemUser 

• UserLogin 

• Document 

• Exam 

• Question 

• FitbAnswer 

• ExamQuestion 

• ExamResult 

 

 Database diagram of the model is given in Figure 8.13. 
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Figure 8.13 Diagram of the ITEST2018 database used for examination model operations 

 

8.5.1 SystemUser Table 

 Information about the registered users and their preferences is stored under 

SystemUser table. 7 fields are defined within this table: 

• ID: Unique index value of the registered system user. 

• Username: Defined username value of the user for system login. 

• PasswordEncrypted: Encrypted password value of the user for system login. 

• IsAdmin: A bit field indicates whether the system user is an admin or not. 

• ProfileImageID: Indicates the index value of the profile image of that user. 

• RememberMe: A bit field which indicates whether the user has enabled 

Remember Me option or not. If enabled, password field is automatically filled 

after username is correctly typed on login screen.    
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• ShowRedirectPage: A bit field which indicates whether the user has enabled 

Show Redirect Page option or not. 

8.5.2 UserLogin Table 

 Login information of registered users is stored under UserLogin table. 3 fields are 

defined within this table: 

• UserID: Index value of the system user that logged in. 

• EntranceTime: A datetime field to indicate when the user has logged in. 

• KeepInfo: A bit field which indicates whether the user has enabled Keep Info 

option or not. 

8.5.3 Document Table 

 Information about the documents once given as input and processed by the system 

are stored under Document table. 9 fields are defined within this table: 

• ID: Unique index value of the document entity. 

• Name: Name of the input course document file. 

• Domain: A nchar(1) field that indicates the domain of the document as ‘H’ 

(history) or ‘G’ (geography). 

• TotalSentences: Indicates total number of sentences obtained from that 

document. 

• HasSavedTest: A bit field that indicates whether a complete test, which is 

generated after processing this particular document, is stored in database or 

not. 

• HasSavedQuestion: A bit field that indicates whether any generated question 

after processing this particular document is stored in database or not. 

• CountSavedTest: Indicates total number of saved tests related with this 

document. 

• CountSavedQuestion: Indicates total number of saved questions related with 

this document. 
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8.5.4 Exam Table 

 Information about the generated exams are stored under Exam table. 12 fields are 

defined within this table: 

• ID: Unique index value of the exam entity. 

• DocumentID: Index value of the document which is used to generate this exam. 

• Domain: A nchar(1) field that indicates the domain of the exam as ‘H’ or ‘G’. 

• IsMixed: A bit field that indicates whether the exam is mixed-type, as it 

contains more than a single type of questions. 

• IsTrueFalse: A bit field that indicates whether the exam contains one or more 

true false questions. 

• IsFillInTheBlanks: A bit field that indicates whether the exam contains one or 

more fill in the blank questions. 

• IsMultipleChoice: A bit field that indicates whether the exam contains one or 

more multiple choice questions. 

• QuestionCount: Indicates total number of questions the exam contains. 

• QuestionTfCount: Indicates total number of true false questions the exam 

contains. 

• QuestionFitbCount: Indicates total number of fill in the blanks questions the 

exam contains. 

• QuestionMcCount: Indicates total number of multiple choice questions the 

exam contains. 

 

 Figure 8.14 shows sample data stored in this table. 

 

Figure 8.14 Sample data stored in Exam table 
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8.5.5 Question Table 

 Information about the generated questions are stored under Question table. 16 fields 

are defined within this table: 

• ID: Unique index value of the question entity. 

• DocumentID: Index value of the document which is used to generate this 

question. 

• SentenceIndex: Indicates the index value of the used sentence which implies 

its order within the owner document.  

• SentenceText: Used sentence text which is used to generate question. 

• SubHeading: Sub-heading value of the used sentence if one is assigned. NULL 

is the default value of this field if a sub-heading is not assigned to the sentence. 

• Text: Complete textual representation of the question. 

• IsTrueFalse: A bit field that is set to 1 if type of the question is true - false and 

0 if not. 

• IsFillInTheBlanks: A bit field that is set to 1 if type of the question is fill in the 

blanks and 0 if not. 

• IsMultipleChoice: A bit field that is set to 1 if type of the question is multiple 

choice and 0 if not. 

• UsesTerm: A bit field that is set to 1 if the question is generated using a term 

from GoT and 0 if it is generated by verb polarity information. 

• CorrectTfAnswer: A bit field that indicates the correct answer if type of the 

question is true - false, where 0 implies False and 1 implies True. NULL is the 

default value if question type is different. 

• CorrectMcOption: A nchar(1) field that indicates the correct answer as A, B, 

C or D, if type of the question is multiple choice. NULL is the default value if 

question type is different. 

• OptionA: Text of Option A, if type of the question is multiple choice. NULL 

is the default value for this and following 3 fields if question type is different. 

• OptionB: Text of Option B, if type of the question is multiple choice. 

• OptionC: Text of Option C, if type of the question is multiple choice. 

• OptionD: Text of Option D, if type of the question is multiple choice. 
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8.5.6 FitbAnswer Table 

 As mentioned before, there exists a table named SynonymTerm in  

GlossaryOfTerms database that holds synonyms of primary terms. Every synonym 

term represents a different variation that can be used instead of a primary term, so 

multiple correct answers for a fill in the blanks question may exist. Acceptable answers 

of a fill in the blanks question are stored under FitbAnswer table. 2 fields are defined 

within this table: 

• QuestionID: Index value of the parent question entity. 

• Text: Complete textual representation of one possible answer. 

 

 Figure 8.15 shows how FitbAnswer table is used to correctly evaluate the given 

answer of a fill in the blanks question. As “Alemdar Mustafa Paşa” and “Alemdar 

Mustafa” expressions both indicate the same person (an Ottoman grand vizier), system 

tends to accept any of them as the correct answer. Maximum number of synonym terms 

of a primary term is determined to be 4. For example, “Bizans İmparatorluğu” 

(Byzantine Empire) can be stated as “Bizans Devleti” (Byzantine State), “Bizans”, 

“Doğu Roma İmparatorluğu” (East Roman Empire) and “Doğu Roma”. 

 

Figure 8.15 Example case where a synonym term is accepted as the correct answer  
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8.5.7 ExamQuestion Table 

 As mentioned before, users can either save an exam with all its questions or only 

save the selected questions with relating them to the source document. Questions of a 

saved exam entity are stored under ExamQuestion table. 2 fields are defined within 

this table: 

• ExamID: Index value of the related exam entity. 

• QuestionID: Index value of the related question entity. 

8.5.8 ExamResult Table 

 Information about exam results are stored under ExamResult table. 11 fields are 

defined within this table: 

• UserID: Index value of the related user entity. 

• Username: Username value of the related user entity.  

• DocumentID: Index value of the related document entity of which the exam is 

generated. 

• DocumentName: Name value of the related document. 

• Domain: A nchar(1) field that indicates the domain of the exam as ‘H’ or ‘G’. 

• ExamID: Index value of the related exam entity. 

• NumberOfCorrectAnswers: Indicates total number of correct answers user 

reached on the exam. 

• NumberOfWrongAnswers: Indicates total number of wrong answers user did 

on the exam. 

• NumberOfUnansweredQuestions: Indicates total number of questions that user 

did not give an answer on the exam.  

• Score: Indicates the final evaluated score that user reached on the exam. 

• SubmitTime: A datetime field to indicate when the user has submitted the exam 

for evaluation. 
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CHAPTER NINE 

CONCLUSION 

 

9.1 Results and Evaluation 

 Within this thesis, a computer based examination platform where text-based lecture 

notes provided by users are analyzed to derive reasonable and meaningful questions 

and generate an exam is developed. To carry out this goal, history and geography are 

the included domains for input lecture notes, while true - false, fill in the blanks and 

multiple choice are the included question types. Besides, users are allowed to specify 

question types to include, put a limit for number of questions and decide to preserve 

order of sentences or not while placing questions, before a test generation. Along with 

the provided opportunities to take an exam, users are also allowed to keep track of 

their progress by saving their exam results. 

 

 Motivation behind the research is the possibility of simple but effective gains like 

easier access, durability and considerable save of time. The choice of lecture notes is 

in the user’s hands, so possible changes on syllabus won’t affect the validity of the 

project in a negative way. As the generation and storage of the test questions are done 

in the electronic environment, it offers a paperless self-education opportunity for the 

students. It is also maintainable as most of the underlying NLP structures are easy to 

modify.  

 

 Besides the examination model, this research draws conclusions and proposes 

solutions on some of the major NLP tasks for Turkish. Four models each with a 

different NLP task are developed, tested and finally combined to form the 

infrastructure of the educational software iTest. Course document classification model 

is used to automatically detect the domain of the input lecture notes and apply filters 

based on domain information when needed. Sentence boundary and heading detection 

model is used to derive sentences and headings, also to join itemized text parts within 

the input document text. Verb polarity detection and conversion model is one tool to 

generate true - false questions, in which sentences are classified as affirmative or 
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negative, then converted to the opposite polarity. Specialized named entity recognition 

(NER) model is executed on real text-based lecture notes to construct a glossary of 

terms (GoT) structure in the scope of history and geography domains. GoT structure 

is a tool to generate questions in all of the three question types. 

 

 To perform document classification experiments, a dataset with 1200 text-based 

course documents (600 geography, 600 history) is collected. In a total of 560 

experiments, proportion of data used for training, effect of stop word removal, 

different stemming approaches, classification algorithms and feature selection 

methods are compared to select the most suitable model. Based on observations, 

combination of using 50% of the dataset for training, Naïve Bayes Multinomial (NB-

M) as classification algorithm, Zemberek stemmer (ZS) as stemming approach, 

Information Gain (IG) as feature selection method and removal of stop words (NSW) 

as the stop word existence approach is chosen as the classification model with its 

99.2% f-measure result. 

 

 Combined results for sentence boundary and heading detection model experiments 

on 60 documents (30 geography, 30 history) are stated as 98.79% precision for 

sentences, 98.29% recall for sentences, 99.35% precision for headings and 98.50% 

recall for headings. All of the 27 cases where a join operation is needed on itemized 

text parts is are correctly detected and 148 of 158 first character upper - lowercase 

adjustments are correctly handled. 

 

 Combined results for verb polarity detection and conversion model experiments on 

60 documents (30 geography, 30 history) are stated as 94.01% classification accuracy 

and 92.48% conversion accuracy. 

 

 Success of NER model is evaluated on TEXT (to correctly detect borders of a 

named entity) and TYPE (to correctly detect type of a named entity) attributes. 

Combined results for NER model experiments on 60 documents (30 geography, 30 

history) are stated as 96.26% precision for TEXT, 92.93% precision for TYPE, 

96.29% recall for TEXT and 92.97% recall for TYPE. 
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9.2 Future Enhancement 

 As spelling errors and absence of punctuation marks within documents mostly 

effect the success rates of the NLP tasks in a negative way, integrating a spell-checker 

module to the system can be considered before processing the input document. 

 

 Verb polarity detection task is handled with an FSM structure that aims to eliminate 

the inflectional suffixes of a predicate to reach the stem, and a lexicon that holds a 

wide list of Turkish stems for lookup operations. Even so, because of the agglutinative 

structure of Turkish language, it is not a realistic approach to store all possible stems 

in a lexicon structure. Applying derivational suffix controls on the detected stem with 

a second FSM structure can be considered to reach the root this time, as system success 

might be increased if lookup operations are executed on a Turkish roots lexicon, which 

is a more stable list. 

 

 On NER model, decreasing the number of named entities with “Other” tag should 

be considered by additional named entity types. For example, a larger portion of these 

kind of named entities in history documents have a “nation, nationality” meaning, 

which can be encapsulated with different tag usage. Lexicons can also be extended 

with ancient age location and person names. 

 

 Working on the detection of word phrases in Turkish sentences, which is another 

NLP related task, can be considered to increase the number of ways to generate 

questions on examination model. 
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APPENDICES 

 

APPENDIX-1: Turkish Stop Words 

 

a 

acaba 

altı 

altmış 

ama 

ancak 

arada 

artık 

asla 

aslında 

ayrıca 

az 

bana 

bazen 

bazı 

bazıları 

belki 

ben 

benden 

beni 

benim 

beri 

beş 

bile 

bilhassa 

bin 

bir 

biraz 

birçoğu 

birçok 

biri  

birisi  

birkaç  

birşey  

biz  

bizden  

bize  

bizi  

bizim  

böyle  

böylece  

bu  

buna  

bunda  

bundan  

bunlar  

bunları  

bunların  

bunu  

bunun  

burada  

bütün  

çoğu  

çoğunu 

çok 

çünkü 

da 

daha 

dahi 

dan 

de  

defa  

değil  

diğer  

diğeri  

diğerleri  

diye  

doksan  

dokuz  

dolayı  

dolayısıyla  

dört  

e  

edecek  

eden  

ederek 

edilecek 

ediliyor 

edilmesi 

ediyor 

eğer 

elbette 

elli 

en 

etmesi 

etti 

ettiği 

ettiğini 

fakat 

falan 

filan  

gene  

gereği  

gerek  

gibi  

göre  

hala  

halde  

halen  

hangi  

hangisi  

hani  

hatta  

hem  

henüz  

hep  

hepsi  

her  

herhangi 

herkes 

herkese 

herkesi 

herkesin 

hiç 

hiçbir 

hiçbiri 

i 

ı 

için 

içinde 

iki 

ile 

ilgili 

ise 

işte 

itibaren 

itibariyle 

kaç 

kadar 

karşın 

kendi 

kendilerine 

kendine 

kendini 

kendisi 

kendisine 

kendisini 

kez 

ki 

kim 
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APPENDIX-1 continues 

 

kimse 

kırk 

madem 

mi 

mı 

milyar 

milyon 

mu 

mü 

nasıl 

ne 

neden 

nedenle 

nerde 

nerede 

nereye 

neyse 

niçin 

nin 

nın 

niye 

nun 

nün 

o 

öbür 

olan 

olarak 

oldu 

olduğu 

olduğunu 

 

olduklarını 

olmadı 

olmadığı 

olmak 

olması 

olmayan 

olmaz 

olsa 

olsun 

olup 

olur 

olursa 

oluyor 

on 

ön 

ona 

önce 

ondan 

onlar 

onlara 

onlardan 

onları 

onların 

onu 

onun 

orada 

öte 

ötürü 

otuz 

öyle 

 

oysa 

pek 

rağmen 

sana 

sanki 

şayet 

şekilde 

sekiz 

seksen 

sen 

senden 

seni 

senin 

şey 

şeyden 

şeye 

şeyi 

şeyler 

şimdi 

siz 

sizden 

size 

sizi 

sizin 

sonra 

şöyle 

şu 

şuna 

şunları 

şunu 

 

ta 

tabi 

tam 

tamam 

tamamen 

tarafından 

trilyon 

tüm 

tümü 

u 

ü 

üç 

un 

ün 

üzere 

var 

vardı 

ve 

veya 

ya 

yani 

yapacak 

yapılan 

yapılması 

yapıyor 

yapmak 

yaptı 

yaptığı 

yaptığını 

yaptıkları 

 

ye 

yedi 

yerine 

yetmiş 

yi 

yı 

yine 

yirmi 

yoksa 

yu 

yüz 

zaten 

zira 
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APPENDIX-2: Most Distinctive 100 Words for Classification 

 

Rank Word IG Score 

1 devlet 0.52314 

2 savaş 0.3528 

3 karşı 0.208 

4 fazla 0.20644 

5 yağ 0.19711 

6 sıcaklık 0.19198 

7 ordu 0.18133 

8 iklim 0.18096 

9 iste 0.17603 

10 birlik 0.17435 

11 ilk 0.16736 

12 bitki 0.1655 

13 yönetim 0.16336 

14 kur 0.16098 

15 antlaşma 0.16006 

16 başla 0.15773 

17 örtü 0.14888 

18 kurul 0.1443 

19 barış 0.14343 

20 karar 0.14219 

21 akarsu 0.14201 

22 su 0.14028 

23 kabul 0.13999 

24 askeri 0.13751 

25 işgal 0.13523 

 

Rank Word IG Score 

26 yüksek 0.12536 

27 yeni 0.12512 

28 yer 0.12491 

29 egemen 0.12348 

30 yeryüzü 0.12235 

31 halk 0.12004 

32 asker 0.11969 

33 katıl 0.1186 

34 siyasi 0.1186 

35 amaç 0.11776 

36 imzala 0.11636 

37 imparator 0.11458 

38 ver 0.11282 

39 başarı 0.11099 

40 dağ 0.11096 

41 son 0.1109 

42 bağım 0.11014 

43 görev 0.10852 

45 ilan 0.10826 

44 millet 0.10826 

46 kaldır 0.10761 

47 başkan 0.10582 

48 meclis 0.10511 

49 paşa 0.10485 

50 mevsim 0.10462 
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APPENDIX-2 continues 

 

Rank Word IG Score 

51 el 0.10278 

52 yükselti 0.10274 

53 kemal 0.09889 

54 gönder 0.09751 

55 saldırı 0.09697 

56 güven 0.09463 

57 anlaşma 0.09434 

58 kazan 0.09271 

59 aç 0.0923 

60 rüzgar 0.09149 

61 yönet 0.09096 

62 orman 0.09096 

63 er 0.08781 

64 milli 0.08768 

65 silah 0.08694 

66 kış 0.08634 

67 çıktı 0.0856 

68 kıyı 0.08509 

69 nem 0.08502 

70 ele 0.0828 

71 ortalama 0.08279 

72 yardım 0.08228 

73 düzenle 0.08227 

74 politika 0.08223 

75 kurak 0.08176 

 

 

 

Rank Word IG Score 

76 tanı 0.08162 

77 hak 0.08156 

78 sıcak 0.08153 

79 kurt 0.08131 

80 gir 0.07885 

81 padişah 0.07846 

82 girdi 0.07813 

83 komutan 0.07813 

84 din 0.07813 

85 yamaç 0.07752 

86 mücadele 0.07718 

87 yun 0.07697 

88 dönem 0.07607 

89 bey 0.07596 

90 oluş 0.07593 

91 getir 0.0758 

92 kutup 0.07561 

93 tarihi 0.07561 

94 doğal 0.07561 

95 üye 0.0756 

96 enlem 0.07536 

97 düşünce 0.07518 

98 yüzey 0.07475 

99 kral 0.07453 

100 al 0.07387 
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APPENDIX-3: Turkish Abbreviation List 

 

age. 

agm. 

agy. 

Alb. 

Alm. 

anat. 

ant. 

Apt. 

Ar. 

ark. 

Arş. Gör. 

As. İz. 

As. 

Asb. 

astr. 

astrol. 

Atğm. 

atm. 

Av. 

bağ. 

Bçvş. 

bit. b. 

biy. 

bk. 

bkz. 

bl. 

Bl. 

Bn. 

Bnb. 

bot. 

Böl. 

bs. 

Bşk. 

Bul. 

Bulg. 

Cad. 

cm. 

coğ. 

Cum. Bşk. 

çev. 

Çvş. 

dal. 

dam. 

db. 

dg. 

dil b. 

dk. 

dl. 

dm 

Doç. 

doğ. 

Dr. 

drl. 

Dz. Kuv. K. 

Dz. Kuv. 

dzl. 

Ecz. 

ed. 

e.  

ekon. 

Ens. 

Erm. 

f. 

Fak. 

Far. 

fel. 

fil. 

fiz. 

fizy. 

Fr. 

g. 

Gen. 

geom. 

gn. 

Gnkur. 

Gön. 

gr. 

hay. b. 

haz. 

hek. 

hl. 

hlk. 

hm. 

Hs. Uzm. 

huk. 

Hv. Kuv. K. 

Hv. Kuv. 

Hz. öz. 

Hz. 

İbr. 

İng. 

is. 

İsp. 

işl. 

İt. 

Jap. 

jeol. 

kal. 

kg. 

KHz. 

kim. 

km. 

koor. 

Kor. 

Kora. 

Korg. 

kr. 

krş. 

Kur. Bşk. 

Kur. 

l. 

lt. 

Lat. 

Ltd. 

m. 

Mac. 

Mah. 

man. 

mat. 

Md. 

mec. 

MHz. 

mim. 

min. 

mm. 

Müh. 

Mür. 

müz. 

No. 

Nö. 

Nö. Sb. 

Okt. 

Onb. 

Opr. 

Or. 

Ora. 

Ord. 

Org. 

Ort. 

Osm. T. 

öl. 

ör. 

Ör. 

öz. 

ped. 

Port. 

Prof. 

psikol. 

Rum. 

Rus. 

s. 

sa. 

Sb. 

SEFD Bşk. 

sf. 

Sl. 

Sn. 

snt. 

Sok. 

sos. 

sp. 

Srp. 

Şb. 

T.C. 

T. 

tar. 

Tb. 

tek. 

tel. 

telg. 

Tğm. 

tic. 

tiy. 

tlks. 

tls. 

Top. 

Tug. 

Tuğa. 

Tuğg. 

Tüm. 

Tüma. 

Tümg. 

Uzm. 

Üni. 

Ü. 

Üçvş. 

ünl. 

Ütğm. 

vb. 

vd. 

Vet. 

vs. 

Y. Mim. 

Y. Müh. 

Yay. 

Yb. 

Yd. Sb. 

Yrd. Doç. 

Yun. 

yy. 

Yzb. 

zf. 

zm. 

zool. 
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APPENDIX-4: Exceptional Verb Roots Affected by Consonant Lenition 

 

git 

et 

tat 

güt 

dit 

affet 

azlet 

kaybet 

farket 

süregit 

emret 

bahset 

hallet 

hapset 

hükmet 

sabret 

hisset 

devret 

zannet 

katlet 

naklet 

vadet 

mahvet 

cezbet 

şükret 

bahşet 

defet 

katet 

hazmet 

azmet 

vehmet 

vakfet 

zikret 

zehret 

zulmet 

cebret 

celbet 

resmet 

feshet 

haczet 

hamdet 

ahdet 

akdet 

akset 

atfet 

faslet 

fethet 

gasbet 

hatmet 

hicvet 

hazzet 

kahret 

kastet 

kaydet 

keşfet 

küfret 

lağvet 

methet 

meylet 

nakşet 

raptet 

reddet 

tabet 
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APPENDIX-5: Example Lecture Note and Generated Test 

 

FENİKE MEDENİYETİ – İBRANİ MEDENİYETİ 

 

FENİKE MEDENİYETİ  

 

Lübnan Dağları ile Akdeniz sahili arasındaki bölgede yaşamış, gemicilik ve ticarette gelişmiş bir 

medeniyettir. 

 

   * Doğu Akdeniz ve Batı Afrika sahillerinde ticaret kolonileri kurdular. Doğu ve Batı 

medeniyetlerinin kaynaşmasında taşıyıcı bir rol oynadılar. 

   * Mezopotamya çivi yazısından ve Mısır hiyeroglifinden etkilenerek HARF YAZISI'nı (alfabe) 

buldular.  

         ** Fenikeliler'in 22 harften oluşan yazıları, Yunanlılar'a, onlardan da Romalılar'a geçerek 

bugünkü Latin alfabesini oluşturmuştur.       

   * CAM'ı icat etmişler, Fildişi işlemeciliğinde ileri gitmişlerdir.  

 

                     İBRANİ MEDENİYETİ  

 

   MÖ. 1500'lerde Filistin ve Lübnan dolaylarında yaşayan İbraniler, Sami ırkındandırlar. 

 

   * Hz. Musa zamanında birlik haline geldiler, devlet haline gelmeleri Hz. Davud zamanında oldu. 

En güçlü dönemleri Hz. Süleyman zamanıdır. 

   * Hz. Süleyman'dan sonra İbrani Devleti İsrail ve Yahudi Devleti olmak üzere ikiye ayrılmıştır. 

İsrail devletine Asurlular, Yahudi (Yuda) devletine ise Babilliler son vermişlerdir. 

   * Dinleri tek tanrılıdır. (Yahudilik=Musevilik). İlk çağın tek tanrılı dine inanan ilk kavmidir. 

Kutsal kitapları Tevrat'dır.  

 

   ** İbraniler, Museviliği milli  bir din olarak kabul ettiklerinden bu din diğer  kavimler arasında 

fazla yayılmamıştır.  

   ** Dinlerinin etrafında milli bir birlik oluşturduklarından dünyanın dört bir yanına dağılmış 

olmalarına rağmen birbirleriyle dayanışma içinde olmuşlardır.   

 

   * II. Dünya Savaşı sonunda İngiltere ve Amerika'nın yardımıyla bugünkü Filistin'de İsrail devletini 

kurmuşlardır. 

   * En önemli eserleri Kudüs'teki Mescid-i Aksa (Süleyman Mabedi)'dir.    
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APPENDIX-5 continues 

 

 

Fenike Medeniyeti - İbrani Medeniyeti 

 
Mixed Test - 12.02.2019 

 
FENİKE MEDENİYETİ 

( 1 ) Lübnan Dağları ile ..................... sahili arasındaki bölgede yaşamış, gemicilik 

ve ticarette gelişmiş bir medeniyettir. 

 

FENİKE MEDENİYETİ 

( 2 ) ....... ve Batı Afrika sahillerinde ticaret kolonileri kurdular. 

A) Doğu Trakya 

B) Doğu Akdeniz 

C) Güney Marmara 

D) Batı Trakya 

 

FENİKE MEDENİYETİ 

( 3 ) Mezopotamya çivi yazısından ve Mısır hiyeroglifinden etkilenerek HARF 

YAZISI'nı (alfabe) buldular. 

A) True   B) False 

 

FENİKE MEDENİYETİ 

( 4 ) Hititler'in 22 harften oluşan yazıları, Yunanlılar'a, onlardan da Romalılar'a 

geçerek bugünkü Latin alfabesini oluşturmuştur. 

A) True   B) False 

 

FENİKE MEDENİYETİ 

( 5 ) CAM'ı icat etmişler, Fildişi işlemeciliğinde ileri gitmemişlerdir. 

A) True   B) False 

 

İBRANİ MEDENİYETİ 

( 6 ) MÖ. 1500'lerde Filistin ve ....... dolaylarında yaşayan İbraniler, Sami 

ırkındandırlar. 

A) Yemen 

B) Lübnan 

C) Tunus 

D) Pakistan 

 

İBRANİ MEDENİYETİ 

( 7 ) Hz. Musa zamanında birlik haline geldiler, devlet haline gelmeleri Hz. 

Muhammed zamanında oldu. 

A) True   B) False 
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APPENDIX-5 continues 

 

İBRANİ MEDENİYETİ 

( 8 ) En güçlü dönemleri ....... zamanıdır. 

A) Hz. Muhammed 

B) Hz. Süleyman 

C) Zeynelabidin 

D) Hz. Ali 

 

İBRANİ MEDENİYETİ 

( 9 ) .....................'dan sonra İbrani Devleti İsrail ve Yahudi Devleti olmak üzere 

ikiye ayrılmıştır. 

 

İBRANİ MEDENİYETİ 

( 10 ) ....... devletine Asurlular, Yahudi (Yuda) devletine ise Babilliler son 

vermişlerdir. 

A) İran 

B) Afganistan 

C) İsrail 

D) Tunus 

 

İBRANİ MEDENİYETİ 

( 11 ) (Yahudilik=.......). 

A) Vehhabilik 

B) Musevilik 

C) Müslümanlık 

D) Zerdüştlük 

 

İBRANİ MEDENİYETİ 

( 12 ) İbraniler, Museviliği milli bir din olarak kabul ettiklerinden bu din diğer 

kavimler arasında fazla yayılmıştır. 

A) True   B) False 

 

İBRANİ MEDENİYETİ 

( 13 ) Dinlerinin etrafında milli bir birlik oluşturduklarından dünyanın dört bir 

yanına dağılmış olmalarına rağmen birbirleriyle dayanışma içinde olmuşlardır. 

A) True   B) False 

 

İBRANİ MEDENİYETİ 

( 14 ) II. Dünya Savaşı sonunda İngiltere ve Kanada'nın yardımıyla bugünkü 

Filistin'de İsrail devletini kurmuşlardır. 

A) True   B) False 

 

İBRANİ MEDENİYETİ 

( 15 ) En önemli eserleri Kabil'teki Mescid-i Aksa (Süleyman Mabedi)'dir. 

A) True   B) False 


