

DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

EFFECTIVE SOFTWARE BUG LOCALIZATION

USING INFORMATION RETRIEVAL AND

MACHINE LEARNING ALGORITHMS

by

Mustafa ERŞAHİN

December, 2020

İZMİR

EFFECTIVE SOFTWARE BUG LOCALIZATION

USING INFORMATION RETRIEVAL AND

MACHINE LEARNING ALGORITHMS

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Doctor of

Philosophy in Computer Engineering

by

Mustafa ERŞAHİN

December, 2020

İZMİR

ii

Ph.D. THESIS EXAMINATION RESULT FORM

We have read the thesis entitled “EFFECTIVE SOFTWARE BUG

LOCALIZATION USING INFORMATION RETRIEVAL AND MACHINE

LEARNING ALGORITHMS” completed by MUSTAFA ERŞAHİN under

supervision of ASSOC. PROF. DR. SEMİH UTKU and we certify that in our opinion

it is fully adequate, in scope and in quality, as a thesis for the degree of Doctor of

Philosophy.

Assoc Prof. Dr. Semih UTKU

Supervisor

Prof. Dr. Alp KUT Assoc. Prof. Dr. Derya Eren AKYOL

Thesis Committee Member Thesis Committee Member

 Assoc. Prof. Dr. Deniz KILINÇ Assoc. Prof. Dr. Gıyasettin ÖZCAN

 Examining Committee Member Examining Committee Member

Prof. Dr. Özgür ÖZÇELİK
Director

Graduate School of Natural and Applied Sciences

iii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisors, Assoc. Prof. Dr. Semih

UTKU and Assoc. Prof. Dr. Deniz KILINC for their support, patient guidance,

supervision and useful suggestions throughout this study. Their guidance helped me in

all the time of research and writing of this thesis.

Mustafa ERŞAHİN

iv

EFFECTIVE SOFTWARE BUG LOCALIZATION USING

INFORMATION RETRIEVAL AND MACHINE LEARNING ALGORITHMS

ABSTRACT

Software quality assurance is crucial for the success of software. In large scale

software projects, bug localization is a difficult and costly process. Many issues or

bugs may be reported at both the development and maintenance phases of the software

development lifecycle. Bug fixing has an essential role in software quality assurance,

and bug localization is the first step of this process. Bug localization (BL) is time-

consuming since the developers should understand the flow, coding structure, and

logic of the program. Hence, it is crucial for developers to discover the location of the

bug. In general, source codes and bug reports are used for identifying bug location

with the help of many different techniques. Information retrieval-based bug

localization (IRBL) also uses the information of bug reports and source code to locate

the section of code in which the bug occurs. It is not possible to apply state-of-the-art

approaches having a satisfactory performance to new projects according to the

diversity of software development languages, design patterns and development

standards.

This thesis proposes a novel algorithm, Adaptive Attribute Weighting (AAW), to

adopt a new software project for BL processes. This thesis also includes the

development of a new BL tool, BugSTAiR, in order to work on with all software

projects. Experimental studies demonstrate the capability of the AAW algorithm and

also the BugSTAiR tool on both real-life and experimental datasets, including

commercial software projects which are developed with different languages and

improvement in performance compared to the existing algorithms.

Keywords: Software engineering, bug localization, genetic algorithm, information

retrieval, software process improvement

v

BİLGİ GERİ GETİRİMİ VE MAKİNE ÖĞRENMESİ ALGORİTMALARINI

KULLANARAK YAZILIMDA HATA KONUMLANDIRILMASI

ÖZ

Yazılım kalite güvence yönetimi, yazılımın başarısı için çok önemlidir. Büyük

ölçekli yazılım projelerinde, hata konumlandırma zor ve maliyetli bir süreçtir. Yazılım

geliştirme yaşam döngüsünün hem geliştirme hem de bakım aşamasında birçok sorun

veya hata rapor edilebilir. Hata düzeltmenin yazılım kalite güvencesinde önemli bir

rolü vardır ve hata konumlandırma bu sürecin ilk adımıdır. Geliştiriciler programın

akışını, kodlama yapısını ve mantığını anlaması gerektiği için zaman alıcı bir süreçtir.

Bu nedenle, geliştiricilerin hatanın yerini keşfetmeleri önemlidir. Genel olarak,

yazılım kaynak kodları ve hata kayıtları, farklı teknikler yardımıyla hata konumunun

tanımlanması için kullanılır. Bilgi geri getirimi tabanlı hata konumlandırma, hatanın

oluştuğu kod bölümünü bulmak için hata raporları ve kaynak kodu bilgilerini kullanır.

Bilinen en iyi yöntemler, yazılım geliştirme dillerinin çeşitliliğine, tasarım

örüntülerinin ve geliştirme standartlarının farklılıklarından dolayı yeni projelerde

tatmin edici bir performans gösterecek şekilde uygulanmaları mümkün değildir.

Bu tez, hata konumlandırma süreçlerini yeni bir yazılım projesine uyarlamak için

yeni bir algoritma olan Adaptasyonlu Ağırlık Belirleme’yi önermektedir. Bu tez aynı

zamanda tüm yazılım projeleri üzerinde çalışmak için yeni bir hata konumlandırma

aracı olan BugSTAiR'nin geliştirilmesini de içermektedir. Deneysel çalışmalar,

BugSTAiR aracının Adaptasyonlu Ağırlık Belirleme algoritmasının etkisiyle, farklı

dillerle geliştirilen ticari yazılım projelerinde, hem gerçek yaşam hem de deneysel veri

kümeleri dahil olmak üzere, mevcut algoritmalara göre performansının üst seviyede

olduğunu göstermektedir.

Anahtar kelimeler: Yazılım mühendisliği, hata konumlandırma, genetik algoritma,

bilgi geri getirimi, yazılım süreç iyileştirme

vi

CONTENTS
Page

Ph.D. THESIS EXAMINATION RESULT FORM ... ii

ACKNOWLEDGEMENTS .. iii

ABSTRACT .. iv

ÖZ ... v

LIST OF FIGURES ... ix

LIST OF TABLES ... x

CHAPTER 1 – INTRODUCTION .. 1

1.1 General .. 1

1.2 Purpose ... 2

1.3 Novel Contributions of this Thesis ... 3

1.4 Organization of the Thesis .. 3

CHAPTER 2 – RELATED WORK .. 5

2.1 Literature Review ... 5

2.2 Field Review ... 8

CHAPTER 3 – BACKGROUND INFORMATION ... 9

3.1 Bug Localization .. 9

3.2 Deep Learning-Based Approaches to Bug Localization 10

3.3 Information-Based Approaches to Bug Localization 11

3.3.1 Common Bug Localization Process .. 12

3.3.2 BugLocator .. 13

3.3.4 BLUIR ... 15

3.3.5 BLIA .. 16

vii

CHAPTER 4 – ADAPTIVE ATTRIBUTE WEIGHTING ALGORITHM 18

4.1 Adaptation Process ... 18

4.1.1 IRBL Processes in BugSTAiR .. 19

4.1.2 Source Code – Bug Report Pre-processing ... 22

4.1.3 Indexing ... 23

4.1.4 Query Construction .. 24

4.1.5 In-memory Source Index (IMSI) ... 26

4.1.6 AAW .. 26

CHAPTER 5 – A NEW BUG LOCALIZATION TOOL: BugSTAiR 34

5.1 BugSTAiR .. 34

5.1.1 BugSTAiR Core Services .. 34

5.1.2 BugSTAiR UI Dashboard .. 36

CHAPTER 6 – EXPERIMENTAL STUDY .. 42

6.1 Subject Systems .. 42

6.1.1 Dataset Statistics .. 43

6.1.2 Evaluation Metrics ... 45

6.1.3 Experimental Results ... 46

6.1.4 Threats to Validity ... 50

CHAPTER 7 – CONCLUSION AND FUTURE WORK 52

7.1 Conclusion .. 52

7.2 Future Work .. 53

REFERENCES ... 55

viii

APPENDICES ... 58

APPENDIX: LIST OF ACRONYMS ... 58

ix

LIST OF FIGURES
Page

Figure 3.1 The overall architecture of DeepLoc .. 11

Figure 3.2 Bug summary of a real-world application ... 12

Figure 3.3 General view of IRBL processes .. 13

Figure 3.4 The overall architecture of BugLocator .. 14

Figure 3.5 The overall architecture of BLUIR ... 15

Figure 3.6 BLIA’s workflow .. 16

Figure 4.1 General view of BugSTAiR architecture .. 19

Figure 5.1 Login Page of BugSTAiR ... 39

Figure 5.2 Home page of BugSTAiR ... 39

Figure 5.3 Previous search list of a user ... 40

Figure 5.4 File search and search results according to file score 40

Figure 5.5 Similar bug search and result list .. 41

Figure 5.6 Developer feedback list for fixed issue ... 41

Figure 6.1 Experimental setup architecture for a software project…………...............42

x

LIST OF TABLES
Page

Table 4.1 Results before and after AAW ... 32

Table 5.1 Features of BugSTAiR Core Services .. 35

Table 5.2 Features of BugSTAiR Core Services .. 36

Table 6.1 Dataset Statistics ... 43

Table 6.2 Comparison of IRBL tools ... 44

Table 6.3 Comparison of experimental results ... 46

Table 6.4 Execution Time Statistics of BugSTAiR .. 48

1

CHAPTER 1

INTRODUCTION

1.1 General

Many studies have been conducted to reduce maintenance costs in software

development processes and to improve the quality of software, considering different

metrics. The typical Software Development Life Cycle (SDLC) process consists of

iterative phases ranging from requirements analysis to maintenance. There can be

various issues in each step that threaten the quality of the software. Software bugs are

one of the most critical threats in this process since they are visible to the end-user and

reduce customer’s confidence in the software. The maintenance phase of the SDLC

starts after the release of the software, and its cost is generally more than development

costs for large scale software projects. For larger software projects, catching and fixing

implementation errors becomes more difficult. Therefore, it is important to find a

buggy source to reduce maintenance time and cost. Bug Localization (BL) is one of

the ways in which developers use bug reports from bug tracking systems. The bug

tracking system is a part of the issue tracking, which is dedicated to the software

development process. All stakeholders, such as developers and quality assurance

engineers, use these tools to track progress on bug fixing. Then, they have to overcome

the time-consuming challenges such as reproducing the bug as specified in the bug

report, understanding the coding structure, programming logic, and goal of the related

flow, etc. For this reason, there should be some efficient methods to automate BL

according to the bug reports.

In general, there are two different methods used in BL. One of them is called

dynamic BL, in which dynamic methods have some processes during the execution

such as runtime traces, data monitoring, tracking execution flows, etc. Researchers

have developed many spectrum-based BL methods by inspecting parts of source code.

Gopinath et al. implemented a different technique that combines spectrum-based BL

with specification-based analysis to overcome the spectrum-based BL method’s

limitations. The other approach is static BL, which uses bug reports and source code

to locate bugs. Static BL methods are easy to apply on any phase of the SDLC since

2

they have few external dependencies and relatively low computational costs owing to

Information Retrieval (IR) algorithms. FindBug is a popular static BL tool that has

been proposed by Hovemeyer and Pugh.

1.2 Purpose

The purpose of this research and thesis is to build a new bug localization algorithm

that runs on different datasets that are implemented with various software development

languages.

Both the previous methods and implementation of approaches are evaluated on well-

known open-source datasets like Eclipse, AspectJ, SWT. All of them are developed

with the Java programming language. Some implementation details of Java can help

the IR process to have better accuracy. For example, a stack trace of an exception is a

valuable input to indicate the buggy file and its function directly. In addition, the

filename is always the same as the class name that is publicly declared. Unlike Java,

JavaScript (JS) is very flexible and does not force any naming convention. Moreover,

there is no experimental result on JS-based software and datasets in the literature.

Another important issue is that development standards and implementation details may

vary for the same programming languages depending on the company’s coding

standards. Besides, differences in project structures and language-specific keywords

have forced us to understand the characteristics of a project. All the previous IRBL

tools assign attribute weights intuitively or experimentally while retrieving data. For

this reason, none of these tools can be a part of a commercial application or a service.

In short, there is a need for a software tool in order to run the proposed algorithm.

BugSTAiR is a tool that this thesis also proposes, and it can be used as an on-premise

application to track and support bug localization processes of a software company.

BugSTAiR can integrate with project management systems to become a part of

companies’ SDLC.

3

1.3 Novel Contributions of this Thesis

This thesis has contributions on three levels;

First, we proposed a novel optimization algorithm, called Adaptive Attribute

Weighting (AAW), to create an adaptive bug localization for every software project.

Second, we developed a bug localization tool, named BugSTAiR, which is the first

tool that uses an adaptive weight calculation approach based on genetic algorithms. To

the best of our knowledge, there is not any tool that works for software projects except

well-known benchmark datasets. BugSTAiR makes this possible with the help of

adaptation processes via the AAW algorithm. Therefore, any kind of software project

can take advantage of BL.

Third, a new Eclipse dataset, which includes source code histories and bug reports

of three major repositories, has been shared in open-source platforms for BL

researchers. Eclipse project contains lots of different modules in different repositories.

Therefore, any of the previous studies and works which use source code history did

not use this dataset for their experiments. Our contribution will help future BL studies

to compare their work to another benchmark dataset.

In short, in this thesis, (i) a novel adaptive attribute weighting algorithm, AAW,

was developed, (ii) a novel BL tool named BugSTAiR is developed, (iii) a new dataset

to BL study was introduced.

1.4 Organization of the Thesis

This thesis consists of seven chapters and the rest of this thesis is organized as

follows.

4

Chapter 2 provides general information about relevant studies, literature review and

field research on bug localization.

In Chapter 3, background information about bug localization processes, advantages,

state-of-art algorithms, different approaches, and tools.

In Chapter 4, the new bug localization approach, AAW, and implementation details

are explained.

In Chapter 5, the new bug localization tool, BugSTAiR, is detailly explained. The

developed application is tested with different case study datasets.

In Chapter 6, many experiments were executed for the proposed bug localization

approach with well-known and widely used benchmark datasets.

Finally, in Chapter 7, a summary of the thesis and proposed tool, conclusions, and

future works are presented.

5

CHAPTER 2

RELATED WORK

In this chapter, literature, and field reviews are explained. Results of the research

are discussed.

2.1 Literature Review

Along with the rapid development in the software industry, the importance of

software maintainability and software quality has increased significantly. Software

quality is evaluated with many different metrics. Software development lifecycle has

iterative phases from requirements analysis to maintenance. There can be various

issues in each phase that threats the quality of software. Software bugs are one of the

most important threats to this process since they are visible and reduce customer’s

confidence in the software.

The maintenance phase of the software development lifecycle starts after the

software is released, and sometimes maintenance cost can be more than development

phases in large scale software projects. When the scale of the software project getting

bigger, it is difficult to find and fix coding/implementation errors. Therefore, it is

important to find the buggy source to reduce maintenance time and cost.

There are some steps established during the bug fixing processes. The first step is

bug localization. In this step, developers use a bug report/information from the

bug/issue tracking system. After they have to overcome the time-consuming

challenges such as reproducing the bug according to the bug report, understanding the

coding structure, programming logic and goal of the related flow, etc. Therefore, there

should be some efficient methods to automate bug localization according to the bug

reports.

In general, there are two different approaches in bug localization. One of them is

6

dynamic bug localization. Dynamic methods have some processes on the applications’

execution time, such as runtime traces, data monitoring, tracking execution flows, etc.

Researchers have proposed various spectrum-based bug localization methods by

inspecting a small part of source code. Gopinath et al. proposed a technique that

combines spectrum-based bug localization with specification-based analysis to

overcome the spectrum-based bug localization method’s limitations. The other

approach is static bug localization. Static methods use bug reports and source code for

analysis processes to locate buggy sources.

Static bug localization methods are easy to apply on any phase of software

development since they have few external dependencies and have relatively low

computational cost with the help of Information Retrieval (IR) algorithms. FindBug is

a popular static bug localization tool that has been proposed by Hovemeyer and Pugh

(2004).

Recently, many researchers have worked on IR-based bug localization techniques.

IR is the science that deals with the representation, storage, organization of and access

to information items. IR approaches have two important concepts, such as query and

document collection. Each bug report represents a query and the source files to be

searched indicate the document collection. IR techniques use these inputs to rank

documents by relevance, according to the ranked list of candidate source files that may

contain the bug. The ranking process has consecutive phases that start with bug report

creation. Then the user enters a bug report query into the system then IR techniques

compute a numeric score for all candidate source files that match the bug query.

Finally, top-ranking candidate source files are listed for developer consideration.

The success of an IR technique is highly dependent on algorithms used in retrieval

processes. Rao et al. have compared the main IR techniques; Unigram, Vector Space

Model (VSM), Cluster-Based, Latent Dirichlet Allocation, Latent Semantic Analysis

(LSA), and some various combinations.

7

Poshyvanyk et al. have developed PROMESIR, which uses a probabilistic ranking

method and a data acquisition method called Latent Semantic Indexing (LSI). Ngyuen

et al. customized the LDA approach and proposed BugScout. Therefore, different

approaches and techniques are proposed to improve the efficiency of information

retrieval and bug localization processes. According to these improvements, BugScout

took the lead because of its good performance on some large-scale datasets because

most of the researchers used a few bugs in the evaluation process before BugScout.

Zhou et al. proposed BugLocator that used rVSM(revised Vector Space Model) and

performed on some large-scale open-source projects. BugLocator uses text similarity

between source files and bug reports. Also, it uses information about previously fixed

bugs to improve bug localization accuracy.

BugLocator has better experimental results than BugScout on compared datasets.

Then, another approach is introduced by Saha et al. BLUIR (Bug Localization Using

Information Retrieval) uses structured information analysis of source code such as

class names, method names, etc. BLUIR has located more bugs than BugLocator,

according to the experimental results on the same datasets. Thus, using structured

information of a source file is more efficient than a simple source file as a document.

Youm et al. has proposed BLIA (Bug Localization using Integrated Analysis) by

using some other information about bugs. In addition to the bug similarity information

that BugLocator used, BLIA uses stack traces, comments in the bug report, and change

the history of the source code to have better accuracy. Also, BLIA is a bug localization

algorithm that provides multi-level scoring such as method-level scoring, file-level

scoring, etc. In order to compare, BLIA was evaluated on the same datasets, which

was used to evaluate for both BugLocator and BLUIR. According to the evaluation

results, BLIA was better than both BLUIR and BugLocator in those datasets.

8

All these approaches are evaluated on well-known open-source datasets. These

datasets are Eclipse, AspectJ, SWT and etc. All of these software’s are developed with

Java programming language. Some of the implementation details of Java programming

language can help to information retrieval process to have better accuracy.

2.2 Field Review

There are some academic tools that have been developed for bug localization

techniques. All of these tools are used for only academic purposes. There is not any

commercial tool for software bug localization due to the diversity of software

development languages, design patterns, and coding standards that are used in different

companies. Therefore, all bug localization tools and researches use some well-known

datasets and compare their experimental results with each other. Table 2.1 presents the

comparison of bug localization tools and key contributions of their approaches.

The proposed tool, BugSTAiR, uses Adaptive Attribute Weighting (AAW) process

to adopt a new software project for bug localization process. BugSTAiR can optimize

the retrieval results by generating project-specific coefficients, which are used in the

query to retrieve. The differences between bug localization tools shown in Table 2.1

are used algorithms and data source while dealing with the source code.

 Table 2.1 Comparison of bug localization tools

Approach BLUIR BRTracer BLIA BugLocator BugSTAiR

Published 2013 2012 2015 2012 2020

IR Method TF.IDF rVSM rVSM rVSM Lucene

Structured Information O X O X O

Bug Similarity O O O O O

Version History X X O X O

Stack Trace Analysis X O O X X

Adaptive Attribute

Weighting

X X X X O

9

CHAPTER 3

BACKGROUND INFORMATION

Software engineering is an engineering discipline that applies software

development processes to improve development efficiency, quality assurance, and

provide better project management. Software development lifecycle (SDLC) has

several steps to ensure all these improvements. This thesis focuses mostly on the

development and maintenance phases of SDLC. Bugs can occur both in the

development and maintenance phases. Therefore, a bug can be caught by quality

assurance engineers or end-users, and they report the bug. A customer reported bug

should be fixed as fast as possible to provide customer satisfaction. Catching and fixing

the bug is very important. Therefore, automatically detecting and locating bugs in

software projects can improve to a great extent the software quality as it eases the

effort in fixing bugs and increases the efficiency of quality assurance. Useful data in

achieving this can be found in source code comments and bug report tickets but are

mostly overlooked in some of the existing methodologies.

In this chapter, we are going to explain and discuss background information about

some of the recent popular methodologies proposed for bug localization.

3.1 Bug Localization

Bug localization is a process to find a bug in software source code according to the

given bug report. Bug reports provided by a customer or a test engineer have much

information about the bug, such as; necessary information about flow, steps to

reproduce, given inputs, etc. There are several approaches that deal with bug

localization. These approaches are information retrieval-based bug localization

(IRBL), neural network-based bug localization (via convolutional neural network or

deep learning), and some experimental studies on hybrid solutions. In this chapter,

brief information about some well-known and performing tools on each approach is

given.

10

3.2 Deep Learning-Based Approaches to Bug Localization

Manually locating bugs in large software projects could introduce a great deal of

time and effort for software developers. In recent history, there have been a number of

significant state-of-the-art approaches proposed for bug localization that would aid

software developers in the process of bug fixing. On the contrary, practitioners have

been in search of such a model that could satisfy their requirements in terms of

reliability, scalability, and efficiency. Most of the currently proposed approaches

hardly meet these requirements and causes practitioners to steer away from adopting

them in their software development life cycles. However, some recent advances in

deep learning-based techniques have proven to outperform existing state-of-the-art

models in bug localization.

Polisetty et al. have composed a CNN and a Simple Logistic model to experiment

and compare the efficiency of deep learning-based models to state-of-the-art models

used in bug localization. They have trained their deep-learning based models with a

number of five different open-source software projects, all of which are written in Java,

and compared their performance to some of the state-of-the-art models trained on the

same datasets.

Their work has shown higher performance results when compared to conventional

machine learning-based state-of-the-art approaches. However, they have proven that

deep learning-based methodologies are still yet to fully satisfy the requirements of

practitioners. Their work also has proven a need for a standardized performance

benchmark among bug localization methodologies for a realistic and fair evaluation.

DeepLoc is one of the well-known bug localization approaches listed in Polisetty

et al.’s comparison. DeepLoc is a project that has been conceived in recent years, has

been being experimented on software projects like AspectJ, Eclipse, JDT, SWT and

Tomcat. It consists of an enhanced convolutional neural network (CNN). This network

takes into account the recent bug fixes and their frequency and utilizes word-

11

embeddings and feature-detecting to compose a prediction. A set of purpose-specific

CNNs use these bug reports and the source code semantics represented in the word-

embeddings to detect patterns features in them. Figure 3.1 below depicts the overall

architecture of DeepLoc, revealing the offline training stage as well as how a trained

model predicts the faulty source files from new bug reports.

Figure 3.1 The overall architecture of DeepLoc

The results of experiments have proven that DeepLoc achieves a higher MAP

(mean average precision) score by 10.87%–13.4% than conventional CNNs. It also

outperforms four of the state-of-the-art approaches in bug localization (DeepLocator,

HyLoc, LR+WE, and BugLocator) in terms of Accuracy@k, MAP, and MRR (mean

reciprocal rank) scores. Accuracy@k stands for the bug reports percent in which at

least an actual file with a bug located in it is placed somewhere within the top-k rank.

3.3 Information-Based Approaches to Bug Localization

In the literature, there are many open-source software products with datasets that

include lots of bug summaries. However, it is difficult to find web applications that

are developed by JS-based frameworks having a bug report dataset. Figure 3.2

illustrates a real-world bug report from a commercial application developed for a bank.

12

IRBL approaches rely on calculating similarity scores between bug reports and

source code files according to the results of similarity matching algorithms. All source

code files have a computed similarity score for each bug report. BL has some steps

which should be executed in a predefined sequence. Detailed information about these

steps is given in Chapter 4.

Figure 3.2 Bug summary of a real-world application

3.3.1 Common Bug Localization Process

IRBL approaches have five main steps, as shown in Figure 3.3. They are pre-

processing, indexing, query construction, similarity computation, and retrieval.

• Pre-processing: This step is related to both source code files and bug reports. All

of them should be pre-processed to improve the efficiency of the retrieval

process. In this step, all stop-words such as language-specific identifiers and

punctuations are removed from the source code. In addition, some syntactic

operations are performed, such as camel case splitting, lowercase

transformation, word stemming, and tokenization.

• Indexing: IRBL approaches are used to index a dataset that is ready when both

source file and bug reports are pre-processed and the dataset is prepared. The

VSM is one of the well-known IR techniques, but there are also some other

13

probabilistic models such as LSI. The Eclipse dataset includes source code

histories and bug reports.

• Query Construction: Query is one of the most important parts in IR processes.

In general, summary and description fields of bug reports are used as input.

• Similarity Computation: There are several methods to compute the similarity

between bug reports and source code files. Every IRBL approach applies one of

these methods to compute relevance.

• Retrieval: After all steps are performed, each IRBL approach applies its

proposed algorithm or method to obtain better accuracy on the retrieval process.

Figure 3.3 General view of IRBL processes

General information about IRBL processes and steps are given. The well-known IRBL

tools such as BugLocator, BLUIR and BLIA and their approaches are discussed.

3.3.2 BugLocator

BugLocator is an Information Retrieval (IR) based approach to bug localization. It

predicts the relevant files that would potentially help to fix a software bug.

14

BugLocator utilizes a revised Vector Space Model (rVSM) to rank all the source

code files in terms of the textual similarity between the initially reported description

of the bug and the source code itself while using the previous information on similar

bug reports that have been resolved as well. In Figure 3.4, the overview of

BugLocator’s structure is shown.

Figure 3.4 The overall architecture of BugLocator

The model has been experimented on a number of four different large-scale open-

source software projects to predict the location of more than 3,000 bugs. The

experiment results have proven that BugLocator can predict the source code files that

are potentially contaminated with software bugs with high accuracy. For the software

project Eclipse 3.1, 62.60% of the estimated buggy files are ranked in the top ten

among 12,863 files. The experiments have shown that BugLocator outperforms the

existing state-of-the-art bug localization models with high accuracy.

15

3.3.4 BLUIR

BLUIR is another approach in bug localization that utilized information retrieval

techniques. While these information retrieve-based bug localization systems are highly

scalable for larger software projects, their performance inaccurately narrowing down

their prediction to a small number of potential source files remain relatively low in

localizing bugs.

The novelty of BLUIR is its captured insight that the use of structural information

retrieved from the code constructs, namely, class names and method names, allows for

a more accurate and highly performant prediction of bug localization. As previously

mentioned, approaches BugLocator and DeepLoc, Bluir makes use of bug report

descriptions along with the actual source code to conducts its prediction. It also takes

advantage of previous bug similarities when applicable to further fine-tune the

localization. Figure 3.5 is the overall architecture of BLUIR.

Figure 3.5 The overall architecture of BLUIR

The approach constructed in BLUIR provides a ground basis for information

retrieval-based approaches in fundamental bug localization researches in terms of both

16

theoretical and empirical knowledge. BLUIR is evaluated on a number of four

different large-scale open-source software projects on a number of approximately

3,400 bugs. The results have proved that BLUIR matches and even outperforms

existing state-of-the-art models even for the cases where BLUIR does not utilize the

bug similarity data used in other models.

3.3.5 BLIA

BLIA is another information retrieval-based bug localization model that aims to

increase accuracy in predicting faulty source files by incorporating in bug reports,

structured data from source files, and the source code change history.

BLIA introduces a novel approach to information retrieval-based models, a so-

called Integrated Analysis, wherein a plethora of structured and unstructured data is

aggregated to form a more accurate prediction of potential faults in source files. To

do so, BLIA utilizes textual descriptions and comments that are fetched from bug

reports while analyzing the stack trace of the program, the structured information

gathered from the source files, and finally, the source code change history. This

approach helps BLIA to narrow its localization of the bugs from a file-level down to a

function scope level using data from the previous bug repository. It can be seen the

workflow BLIA employs from Figure 3.6.

Figure 3.6 BLIA’s workflow

17

BLIA has been evaluated on a number of three large-scale open-source software

projects, namely, AspectJ, SWT, and ZXing. BLIA surpassed some of the state-of-the-

art approaches in bug localization in terms of mean average precision (MAP), such as

BugLocator, Bluir, and BRTracer by 54%, 42%, and 30%, respectively.

The new approach proposed in BLIA not only outperforms its existing counterparts

but also allowed for an improved granularity level of bug localization, from the file

level to a function level.

18

CHAPTER 4

ADAPTIVE ATTRIBUTE WEIGHTING ALGORITHM

In this thesis, we propose a new approach to widen bug localization process to all

software projects. Bug localization is a process to discover information from source

codes and bug reports. There are several types of research on bug localization area.

Although all of the studies are useful academic researches, they do not offer a solution

for use in production. Therefore, the software industry needs a bug localization tool

that is capable of adapting any software project and able to be successful in localizing

new bugs. The aim of the proposed algorithm, titled Adaptive Attribute Weighting

(AAW), is to adapt and prepare a software project for bug localization, an adaptation

process is constructed based on genetic algorithms. Therefore, we defined an

adaptation process that actually lies on the AAW algorithm to prepare the basis of a

software project to bug localization. In this chapter, detailed information and

implementation of the adaptation process and AAW are given.

4.1 Adaptation Process

Software projects can be developed with different programming languages such as

Java, Javascript, C++, Swift, Kotlin, etc. Therefore, there is not only one language

while dealing with bug localization as previous researches did. Every language has its

own structure and standards to follow. Moreover, every software company has internal

software development standards such as coding notations, design patterns, styles, etc.

The adaptation process provides us to handle this diversity in the bug localization

process.

 Adaptation processes have iterative steps to prepare newcomer projects to bug

localization such as pre-processing, indexing, query construction, retrieval, and

optimization. The first four steps of adaptation are also basics steps of IR-based bug

localization. In this chapter, the proposed adaptation process and AAW algorithm are

presented.

19

4.1.1 IRBL Processes in BugSTAiR

All of the previous researchers that are pointed out in Chapter 2 have studied on

software projects implemented with Java. According to this fact, all benchmark

datasets have Java-specific information. The proposed model has generic processes

because Java is not the only programming language in real life. JS is the leader among

the list of most popular programming, scripting, and markup languages. Therefore, this

study focuses on the applications of not only Java-based but also JS-based to build a

generic retrieval model. A new “Adaptation” step is defined to provide this generic

architecture. The aim of this step is to build IRBL basis for newcomer software and

optimizing the retrieval process.

Figure 4.1 General view of BugSTAiR architecture

20

IRBL in JS-based web applications is hard to implement, and retrieval results are

not as accurate as in Java-based software applications. The main reason is that the user

interface (UI) of an application is related with more than one file at the same time.

Furthermore, a web application may have many files with the same name but with

different file extensions such as featurex.html, featurex.css and featurex.js. This

situation causes extra complexity for all computations in the process. Thus, the

proposed approach focuses on locating non-UI related bugs such as logic and flow in

web applications. Therefore, BugSTAiR evaluates only source files with “.js”

extension while working on JS-based applications. The other UI-related project files

such as “HTML” and “CSS” are out of the scope for this study. Figure 4.1 shows the

general architecture of the proposed approach.

In our proposed work, it is considered that the change history of the source code is

as important as current source code because any change in the source code has a

history. This history can be related to a feature or a bug fix. There may be many source

code files depending on the change. Evaluating the information obtained from the

history, the impact analysis between the features and source code has been identified.

Therefore, the history of source code is valuable and is used to locate the potential

buggy file. The steps of the proposed approach are given in Figure 4.2.

Figure 4.2 Steps of BugSTAiR

21

In Chapter 3, common bug localization steps are explained. In this section, the

implementation details of the proposed approach’s steps are considered. The

adaptation step starts with pre-processing. In this step, different stop-words lists are

defined for different programming languages. Then, different source code parsers have

been used to understand the source code structure. The same stop-word list and

language parser are used with BLIA when processing on Java-based applications.

However, the new stop-word list and JS parser have been created to process JS-

based applications. The stop-word list contains a list of words that are commonly found

in languages that carry very little or no significant semantic context in a sentence. The

JS-based stop-word list contains natural language words that are already in Java-based

stop-word lists and also JS language-specific keywords. Details of pre-processing are

covered in Chapter 3.2. The adaptation step includes three AAW execution to get ready

for retrieval. The first two execution run after the pre-processing step in which two

different indexes have been built, such as source code index and change history index.

The structures of these indexes are different. Source code index has five attributes,

which are: class names, methods, variables, file content, and object keys. Change

history index has three attributes, which are commit messages, changed files, and

changed methods.

The proposed work has been built on a service-oriented architecture. Each web

service can run asynchronously in different instances. All necessary services are also

packaged in a container to scale if needed. Therefore, these two indexes could be

created simultaneously. At this point, AAW processes run for both indexes to identify

the best weights for retrieval. Next, the retrieval query is built as the query construction

algorithm given in Section 3.5. Then, the first retrieval is performed based on the

change history index with AAW on all attributes. Also, another retrieval is performed

based on the source code index. Apache Lucene provides us similarity scores between

commit messages and bug reports. Every commit may have files that are changed more

than once. Therefore, scores of the files that are found in the retrieval processes have

to be consolidated. Finally, a buggy file list is gathered according to the first level of

22

the IR process output. Then, the second level of the IR processes starts by creating a

structural in-memory index including files in the consolidated list. The proposed

structure includes class names, method names, variables, object keys and file content

from the source code index. In addition, filename, file path, and commit messages are

included from the source code history index as an attribute to the in-memory index to

combine all information in one index. Then, the optimum attribute weights are

calculated according to the output of the genetic algorithm in the third execution of

AAW. File scores that come from the third execution of AAW are used for re-ranking

between candidate files coming from the first level IR. After the re-ranking process, a

final score is generated for each file. So, they can be used for any application that helps

software development teams to find bugs earlier in the maintenance period of the

SDLC.

The idea behind including GA in the approach is to reduce the impact of changing

project standards and application development standards on the model and to achieve

more precise results.

The multi-dimensional search on different fields, and combining these results

conducted using IR techniques requires a dynamic calculation of the coefficients

/weights that affect the search process and retrieval results. Another approach to find

and use weights to produce the best results is the Brute Force Search algorithm. As the

size of the dataset grows, it is better to use optimization methods since the time for

calculation is high, and this has to be repeated in specific periods (new records, daily,

etc.).

4.1.2 Source Code – Bug Report Pre-processing

During the BL process, HTML and CSS files are excluded from the source code

repository, and JS files are the only accepted input to be processed. Moreover, all UI-

related bugs are eliminated while getting bug reports from the issue tracking system.

Then, all stop-words are removed from the source code files and bug reports. Stop-

23

word removal is most common process to reduce dimensionality. (Kılınç, 2019) Stop-

words include keywords such as;

• English stop-words: “a”, “the”, “to” etc.

• Syntactic symbols/identifiers: “null”, “undefined”, “alert”, “init” etc.

• Operators / Punctuations: “==”, “!=”, “<”, “>” etc.

There are some different naming conventions in software companies. Identifiers

may consist of more than one word. In order to increase the accuracy of the retrieval,

identifiers are tokenized. To achieve this, individual tokens are used, but there might

be some conflicts between bug reports and source code with regard to case sensitivity.

To resolve these conflicts, all texts are transformed to lowercase.

In addition, to be the first study on the web front-end side, the model is tested in

Java-based systems so that the pre-processing step can be done similarly. A language-

based stop-word list has also been created to build a generic infrastructure. The

language parsers are used to understand the written code structurally. JS parser and

Java parser are included in the proposed approach. To support different software

development languages, the language-based stop-word list is included in the

collection, and a language parser is added to the project to understand the structure of

the new language.

4.1.3 Indexing

In this section, the source code indexing approach is presented. Lucene (Apache,

2020) is used to index the source code files. Lucene is one of the most widely used and

well-known open-source IR systems. In the proposed approach, Lucene evaluates a

relevance score between source code files and bug reports. There are two ways for

multi-parameter indexing. Some researchers prefer building a different index for each

attribute, and the others use one index including all attributes. In this study, building

an index with all attributes is preferred with Lucene’s powerful APIs.

24

Before the indexing step, the source codes have to be parsed to index them in a

structured way. After the source codes are parsed, important information such as class,

method, variable and function names are extracted. All source code files are analyzed

structurally by using specific language parsers. Each source code file is called

“document” in the index structure and any valuable parts of the source code are called

“attributes”. These attributes are added to the document as a field. Both filenames and

attribute names are usually written in camelCase naming convention. In this way, all

the filenames and attribute names which have more than one word are added to the

related field of the document by using the camelCase notation. It is also discovered

that these names may be included in the bug records and they are also indexed as a

separate field in the document to increase success. For example,

“securityQuestionsPageHelper” method name is added to the method field of the index

with five inputs which are security, question, page, helper,

“securityQuestionPageHelper”. In addition to these structural fields in the document,

unprocessed and flat text of the source code file is stored in the document.

First, the bug report is searched for commit messages in the source code history

index. In this way, it is aimed to find the most similar solution set from the previous

commitments to the solution of this error. The source code files obtained from this set

of solutions are indexed by the method described above. After these indexes are

formed, the process of finding the weights of the attributes begins. By means of the

genetic algorithm, the optimum values of the attributes on both indexes are determined

to be used in the next step. The obtained values help in-memory index to achieve the

best result on the entire data set.

4.1.4 Query Construction

Source code files are called as document collection and bug reports are evaluated as

query in IRBL process. Since the bug reports are pre-processed in the first step, query

construction is performed in the retrieval. According to the previous studies, it is

understood that the query construction process is very important and critical for

retrieval accuracy. Many researchers use special weights for fields on documents while

25

constructing the retrieval query according to their empirical studies on each dataset. In

our approach, outputs of the AAW process are used to set weights while constructing

the retrieval queries. In addition, all words of bug report summaries that are tokenized

and pre-processed in the previous steps are used in the queries. In general, bug

summary contains useful information to localize bugs. Moreover, the description parts

of the bug reports are examined to verify whether they have valuable information about

bug or not. Then, it is decided to include bug descriptions to queries. Bag of words

algorithm (BoW) is applied to extract more valuable information from the bug

description and to reduce complexity of query construction. Finally, ten words are

selected according to the word counts to be added to the query.

Apache Lucene is used for indexing, so the Lucene APIs are used in the retrieval

phase. Lucene API provides some methods to retrieve data according to the query that

has multiple attributes with different coefficients. Figure 4.3 shows query construction

approach.

Figure 4.3 Query construction approach

26

4.1.5 In-memory Source Index (IMSI)

IMSI has an important role in the project. As a result of retrieval on source code

history, the most similar change set is determined according to the similarity between

commit messages and bug reports. Every commit may include more than one file.

Therefore, unique source files are created by evaluating the changes. On the other

hand, the code pieces that may potentially contain bugs are determined as a result of

the IR process on structured information of source codes.

The merge operation in adaptation process is executed simultaneously. The

candidate bug resources selected after the IR process on source file are merged with

the candidate file names according to the IR results on the source code history. All

files in the merged list are re-indexed in a more complex structured information during

the execution of the application. It is thought that indexing is a time-consuming

process. Therefore, lists of candidate source files to index are filtered. Through,

building an IMSI does not affect the retrieval process dramatically.

After IMSI is constructed, there are more attributes for query construction in IRBL

process. New weights for each attribute are required. By executing the AAW process

on the attributes, new weights are determined for all attributes. So all prerequisites get

ready for the second level of IR.

4.1.6 Adaptive Attribute Weighting

GA is a widely used search and optimization method that works in a manner similar

to the evolutionary process observed in nature. It seeks the best holistic solution based

on the principle of survival in complex multi-dimensional search space. GA has three

main steps: crossover, mutation, and selection.

27

In this section, all configurations and strategies which are chosen for

implementation explained in detail. Initially, each chromosome is designed to have

eight genes which can take double values (0.0 – 1.0). Each gene is represented by 16-

bits and can have fractions up to two decimal points. A set of chromosomes are defined

as population, also population is subset of a solutions in current generation. There are

some limitations while defining the size of population. The diversity of the population

should be maintained otherwise it might lead to premature convergence. The

population size should not be kept very large as it can cause to GA to slow down, while

a smaller population might not be enough for a good crossing pool. As mentioned

before, diversity of the population effects optimality and initial population is

important. Random initial populations which is increasing the diversity of the

chromosomes in the population. In this approach, the initial population is generated

completely random with minimum sample size of 100 and maximum sample size of

200. General view of GA flow is shown in Figure 4.4.

Figure 4.4 GA flow

After a brief information about population which is used in GA, crossover strategy

and rate are implemented in the proposed approach. Crossover step is similar to

reproduction and biological crossover. More than one parent is selected and one or

more off-springs are produced using the genetic material of parents. Crossover has two

internal steps as following;

28

• Sort the parents according to fitness scores from large to small

• Divide them into groups of two and cross them among themselves to generate

new off-springs

Uniform crossover strategy is used to generate new off-springs with the mix

probability of 0.75. In uniform crossover, each gene is evaluated separately while

deciding it to be included in the off-springs.

Second important process that provides diversity is mutation. Flip Bit Mutation

(FBM) strategy is used in the proposed approach. FBM is a mutation approach which

has two steps such as selecting one or more bits randomly and flip them with a given

probability. In this approach, 0.1 is given as mutation probability. As mentioned

before, crossover and mutation are two critical methods to create a new chromosome

using existing genes. The selection of the genes which occurs with respect to crossover

and mutation is called the selection process. Consequently, complex problems are

solved to inform the GA of which gene is good using a fitness function and coding

variables. The steps of GA can be summarized as follows:

• Generate the initial population randomly

• Find the fitness score for each chromosome in the population

• Perform gene reproduction using crossover and mutation operations.

• Eliminate chromosomes having inadequate fitness score.

• Repeat Step 3 through 5. The process is terminated after the configured number

of chromosomes are generated.

In this approach, GA is used to find a common solution for all datasets to solve

attribute weighting problems. GA must have a fitness function to optimize the given

problem. Therefore, a customized fitness function has been implemented to solve the

current problem. This function is problem dependent and each problem has its own

fitness function. For example, error measures such as Eucledian, Manhattan have been

29

widely adopted in classification problems. On the other hand, entropy-based

approaches can be used to solve different problems. Details of proposed fitness

function are explained. The Gene/Population selection algorithm is the most important

part in GA. Elite selection (elitism) is the most successful and preferred method in the

literature. Especially, elitism strategy has been widely used in different evolutionary

algorithms. Therefore, the Elite selection algorithm is used for the selection process.

This selection method is optimized to choose the best chromosomes. The custom

fitness function executes the required number of multiples and keeps the result in

memory. After the required number of chromosomes are generated (min 100, max 200

is used in the application), the existing population is evaluated. The evaluation step is

done considering the termination function. This function decides whether the new

generation should be produced or not. The application is terminated if the best

chromosome value is not changed after the configured number of iterations are

executed. Otherwise, new chromosomes and populations continue to be produced by

the GA iteratively.

30

Figure 4.5 Termination condition of GA

In this study, GA is used to optimize IR efficiency by finding the best coefficients

for any given dataset. There are three AAW execution to optimize three IR processes.

The main difference of these executions is the number of parameters which will be

optimized. In this study, AAW algorithm is designed to support variable length

parameters, and can take 3 to 8 parameters as input and returns optimized values for

each parameter as output. Therefore, only one AAW implementation can be used in

these three executions. Across to this, fitness function is different according to the

index which is used for retrieval. AAW can switch a fitness function according to the

number of input parameters. BugSTAiR performs the first execution of AAW on

multi-field source code index. Therefore, fitness function evaluates the result for only

this index. This index has five fields such as class names, methods, variables, file

content and object keys. Fitness function evaluates every bug report in given dataset

and compares the ranked files with Ground Truth Data (GTD). After all bug reports

31

are evaluated, fitness function returns Top 1 ratio of the IR which has coefficients from

GA. The formula to calculate the base similarity score 𝑅"(𝑗) is represented in the

Equation 4.1.

𝑅"(𝑗) = ∑ (𝑤1+, ×	𝑞+0 + (𝑤2+, ×	𝑞+0 + ⋯+	(𝑤5+, ×	𝑞+)5
+6" (4.1)

where, 𝑅"(𝑗) is the similarity score of 𝑗78 source file, n is length of the vocabulary

and, 𝑤1+,	and 𝑞+ represents the weight of 𝑗78 class name and query of 𝑖78 bug report,

respectively. 𝑤2+, , 	𝑤3+, , 	𝑤4+, and 𝑤5+, represents the weight of 𝑗78 methods,

variables, file content and object key.

The second execution of AAW is performed on a multi-field source code history

index. This index has only three fields such as commit messages, changed files and

changed methods. Therefore, the fitness function in this execution can be represented

in Equation 4.2.

𝑅<(𝑗) = ∑ (𝑤1+, ×	𝑞+0 + (𝑤2+, ×	𝑞+0 + (𝑤3+, ×	𝑞+)5
+6" (4.2)

where, 𝑅<(𝑗) is the similarity score of 𝑗78 commit message, n is the length of the

vocabulary and, 𝑤1+,, 𝑤2+,, 𝑤3+, and 𝑞+ represents the weight of 𝑗78 commit message,

changed files, changed methods and query of 𝑖78 bug report, respectively.

The third execution of AAW is performed on the in-memory index. Details of in-

memory indexing are given in section 3.6. There are eight fields on this index and

evaluation method is the same as previous executions. The formula to calculate the

base similarity score 𝑅>(𝑗) is represented in Equation 4.3.

𝑅>(𝑗) = ∑ (𝑤1+, ×	𝑞+0 + (𝑤2+, ×	𝑞+0 + ⋯+	(𝑤8+, ×	𝑞+)5
+6" (4.3)

where, 𝑅>(𝑗) is the similarity score of 𝑗78 source file, n is length of the vocabulary

and 𝑞+ represents query 𝑖78 bug report. 𝑤1+,	to	𝑤8+, are represents the weight of

32

related fields. The calculation algorithm is the same for all functions. The only

difference among them is number of weights which used for each field included in

query.

To summarize, all of the AAW executions are executed step by step including as

fitness functions, selections, crossover and mutation configurations. All the parameters

such as crossover, mutation probability and population size used in GA are selected

with Grid Search (GS). It is a technique that scans the dataset to select optimal

parameters for the constructed model. GS works iteratively on each data and compares

the results for each value. Then, the best value for each parameter is found. The

configurable parameters of the applied solution are mutation, crossover rate and the

number of chromosomes. In order to understand whether the AAW algorithm performs

better, basic IR tests have executed on benchmark datasets. The experiments are

performed on four different datasets which are formed as initial structure on source

code. The aim is to see better accuracies on benchmark datasets and apply the AAW

to the IRBL model. After applying the AAW algorithm, retrieval results are better than

retrieval results without AAW in the same conditions. The results of IRBL processes

for each dataset are given in Table 4.1. AAW provides better accuracy on all four

datasets that are used for benchmarking in bug localization. AAW achieves better

accuracy compared to our previous experiments that have no specific

coefficient/weight for each attribute. According to the accuracy results, improvements

on benchmark projects such as SWT, Eclipse and AspectJ are 20%, 21%, and 62%

respectively. These improvements on benchmark datasets show that the AAW

improves the IRBL process results significantly.

Table 4.1 Results before and after AAW

Dataset Before AAW (%) After AAW (%)

SWT 47.00 56.32

Eclipse 26.19 31.61

AspectJ 20.84 33.80

Web Application 27.72 32.18

33

34

CHAPTER 5

A NEW BUG LOCALIZATION TOOL: BugSTAiR

Software quality is very important for project success. There are several projects

that continue simultaneously in software companies. Each of them may be

implemented in a different language but state-of-the-art bug localization tools do not

provide a general or adaptive solution to handle this problem. Identifying the root

cause of the bug and finding the possible buggy file is getting more time-consuming.

Especially, larger projects are become more complex to manage and maintain

according to the number of stakeholders in the project or size of the project. Therefore,

industry needs a software tool in order to apply proposed adaptation process by AAW

to real-word software projects. BugSTAiR is a tool which a software company can

easily deploy and can integrate it to its SDLC. BugSTAiR also can be integrated to

project management systems such as Atlassian Jira by the help of jira plugin. There

are some other features that BugSTAiR have. All of them are discussed in this chapter.

5.1 BugSTAiR

The name of BugSTAiR is comes from “bug” and “stair”. The main idea is that

developed tool should the first step of the bug localization processes. BugSTAiR has

enough features to cover all parts of the processes.

BugSTAiR tool has three main component such as core services, ui dashboard and

backend services. Details of each component is given in this chapter.

5.1.1 BugSTAiR Core Services

BugSTAiR Core services module can include features about adaptation processes.

We prepared a statement-of-work (SoW) document to identify all the needs. Feature

specifications is given in Table 5.1.

35

 Table 5.1 Features of BugSTAiR Core Services

No Feature Epic Description

1 Operations Indexing

The system works on independent services.

There must be two kind of indexing mechanism.

• Source Code Indexing

• Source Code History Indexing

2 Operations Configurations

User can manually configure the BugSTAiR parameters.

Parameters can be;

• Source Code Language (Java/Javascript)

• Natural Language Processing (Stemming)

• Time interval for historical evaluation

3 Operations
Source Code

Indexing
User can select a path for source code to work.

4 Operations
Source Code

Indexing

Source code should be parsed with structural information

such as;

• FileContent

• Class

• Variables

• Function

• -ObjectKey

5 Operations

Source Code

History

Indexing

Source code history should be indexed in structured way.

Following fields must be created;

• CommitId

• CommitMessage

• ModifiedFiles

6 Operations

Adaptive

Attribute

Weighting

An optimization algorithm must be implemented to

support project specific weights on query fields.

• AAW algorithm must be implemented based on

Genetic algorithms

7 Operations
Query

Construction

Dynamic query construction algorithm must be

implemented.

Fields and Coefficients should be selected according to

index which retrieval process executed.

36

 Table 5.1 continues

8 Operations Retrieval

Queries must be executed by service calls.

Response must include:

• Potentially buggy file name

• File score

9 General Internalization

Application can support languages below;

• English

• Turkish

All of these features are implemented and published.

5.1.2 BugSTAiR UI Dashboard

BugSTAiR UI dashboard module can include features about user interface and

administrative reporting processes. We prepared a statement-of-work (SoW)

document to identify all the needs. Feature specifications is given in Table 5.2.

 Table 5.2 Features of BugSTAiR Core Services

No Feature Epic Description

1 General Internalization

Application can support languages below;

• English

• Turkish

2 Onboarding Onboarding

Onboarding screens should be shown to user at first

login.

Onboarding screens should have max 5 screenshots.

37

 Table 5.2 continues

3 Homepage
Session

Management

Application should check the session if there is an active

session or not.

• Navigate to login page if there is not active

session.

• Navigate to main page if there is an active

session.

4 Homepage
Homepage -

Pre login

The homepage should be viewed with the following

component unless a session created.

• Login

• Remember Password

5 Login Login Page

Users can login with username and password.

Login information must be validated on-prem database

or active directory.

6 Homepage
Homepage –

Post Login

User should be redirect to homepage if login cridentials
are validated.

• User can only see projects which are already
authorized. This authorization inherits from
Project management system.

• Project listing must be implemented in two
ways such as List View and Grid View

• User can switch between views by a toggle.
• List must have pagination, user can navigate a

page via page number

7 Homepage
Project Detail

List View

List view must include some basic statistics about the
project on mouse hover action. These are ;

• Project summary
• Bug Count
• Last Index Information

8 Homepage
Project Detail

Grid view

Grid view must include some basic statistics about the
project such as;

• Project summary
• Bug Count
• Search Statistics
• Last Index Information

38

Table 5.2 continues

9 Operations Search

• User can open search page by a button.
• User can see previous searches in a list under

the search bar.
o Previous search list must have

pagination and user can navigate by
page number

• User can create a query by using a text area and
submit query by using search button.

• Search can be done in two ways such as;
o Similar bug list
o Buggy file prediction

According to the IR scores

10 Operations Search Result

User can see search results according to the operation.

• If user searches for similar bugs, result list must
contain previous similar bugs and file list which
were fixed.

• If user searches for bug prediction, result list
must contain possible buggy files with score.

11 Operations
Query

Feedback

Developer can search its own previous queries and

provide a feedback for application success.

Developer can see predicted files according to search

and select the real fixed files after the bug fixed.

12 Plugin Jira Plugin

A jira plugin must be implemented which uses search

and feedback services. Therefore, developers can see the

search result and feedback file list via Jira field.

Core services do not have any user interface related outputs. All the features

implemented as independent services. Therefore, it is easy to scale up for new projects.

Some screenshots are given to introduce BugSTAiR UI Dashboard application below.

39

Figure 5.1 Login Page of BugSTAiR

Figure 5.2 Home page of BugSTAiR

40

Figure 5.3 Previous search list of a user

Figure 5.4 File search and search results according to file score

41

Figure 5.5 Similar bug search and result list

Figure 5.6 Developer feedback list for fixed issue

42

CHAPTER 6

EXPERIMENTAL STUDY

6.1 Subject Systems

To evaluate the success of the proposed approach, all experimental results of IR on

well-known benchmark datasets such as Eclipse, AspectJ, SWT are presented. These

datasets are used in the bug localization field by researchers. All of them are open-

source software projects that are developed with Java. The source code and change

history of the subject projects are collected from Git repository of the projects. All the

bug reports which have already been fixed are collected from bug tracking systems.

Besides, a commercial web application is used to evaluate the performance of the

proposed approach on JS-based application since there is no open-source benchmark

dataset for JS-based applications. The detailed information about commercial web

application is as follows;

• Responsive Web Application is developed with AngularJs framework.

• Development language (Method names, variables etc.) is English.

• Bug summaries and descriptions are in English.

• The number of JS file related bugs is 313.

• JIRA is used as bug tracking system.

• On-premise Git is used as source/version control system.

43

Figure 6.1 Experimental setup architecture for a software project

6.1.1 Dataset Statistics

In this section, brief information about datasets which are used to test the proposed

approach is given. Some important statistics collected from datasets are shown in

Table 6.1.

 Table 6.1 Dataset Statistics

Dataset Indexed Source Code Files # of Commits # of Bug Reports

SWT 738 33,994 98

Eclipse 12,302 37,687 1,174

AspectJ 3,692 8,291 284

Web Application 724 2,543 313

Indexed source files are different according to the dataset. Javascript files that have

“js” extension are indexed in the web application dataset. Additionally, files that have

“java” extension are indexed in AspectJ, SWT and Eclipse dataset. These statistics

directly affect the IR result and accuracy. Also, these statistics are important for

44

evaluating the success of tools. Some datasets cannot be evaluated depending on the

approach which the tool has adopted. Therefore, it is important to compare approaches

of IRBL tools.

BLUIR+, BRTracer+, BLIA and BugLocator are well-known IRBL tools that have

better accuracies on BL. Detailed comparison of these tools and BugSTAiR is shown

in Table 3. Each row of the table is a property of the BL approaches. IR Method,

Information Structure, Bug Similarity, Version History usage, Stack Trace usage and

Adaptive Attribute Weighting are evaluated in comparison. “O” means that tools have

related property and “X” means do not have related property in their approaches.

 Table 6.2 Comparison of IRBL tools

Approach BLUIR BRTracer BLIA BugLocator BugSTAiR

Published 2013 2012 2015 2012 2020

IR Method TF.IDF rVSM rVSM rVSM Lucene

Structured Information O X O X O

Bug Similarity O O O O O

Version History X X O X O

Stack Trace Analysis X O O X X

Adaptive Attribute

Weighting

X X X X O

Bug similarity is the standard feature that is used by all IRBL tools. Structured

information of source code is another common feature. BRTracer+ and BLIA use

information about stack traces to improve IR accuracy. Stack trace is one of the most

important features because it mostly contains direct reference of buggy source. Effects

of the stack trace is up to 47\% according to the reports in BLIA.

The only tool which uses source code version history except for BugSTAiR is BLIA.

Source code history threats experimental results on datasets. It is not possible to have

source code histories on all benchmark datasets. Specifically, source code architecture

45

of Eclipse is different from any other datasets. Its source code is based on different

repositories, so it is difficult to match which bug is related to which repository. To

avoid this mismatch, the top three repositories that cover most bug reports are analyzed

and selected. The source code history information and bug report dataset are shared in

open-source platforms such as Github. This new dataset is third contribution of this

study to BL research.

Current state of the IRBL tools, their approaches and details of datasets with

statistics are introduced and the experimental results of the retrieval process on these

datasets are explained in Section 4.4.

6.1.2 Evaluation Metrics

There are some standard evaluation metrics on IR research such as Top N Rank

accuracies, Mean Average Precision (MAP) and Mean Reciprocal Rank (MRR). All

of the compared tools use the same metrics to evaluate IR results.

Top N Rank: This metric is used to calculate the number of the bug reports in which

at least one source file is ranked in list of retrieval results. A higher value for this metric

indicates better BL performance. [30]. Responsive Web Application is developed with

AngularJs framework.

MAP: This metric is used to find average precision, is the primary metric in IR

evaluation. MAP can be formulated as:

𝑀𝐴𝑃(𝑄) = "
|G|
∑ "

HI
∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑅P)
HI
P6"

|G|
,6" (6.1)

46

MRR: This metric is based on early precision over recall logic. Reciprocal Rank is

a value that is inversely proportional to the rank given by the retrieval method to a

single relevant item. Shortly, the MRR is the average RR of all queries. MRR can be

formulated as:

𝑀𝑅𝑅 = "
|G|
∑ "

QR5PS

|𝑄|
𝑖 = 1 (6.2)

These three metrics are used to evaluate the experiments of this study. Therefore, it

is possible to compare our results to the results of other tools.

6.1.3 Experimental Results

In this section, experimental results of BugSTAiR are compared to the previous bug

localization tools and the overall performance of the proposed approach are presented.

The main purpose of this study is to define a generic model to localize bugs in software

projects. As mentioned before, a commercial JS-based responsive web application and

one of open-source JS-based projects are used as dataset to execute the proposed

model. The other benchmark tools cannot work for WebApp due to development

language limitations. Therefore, there are no Top N rank or MAP statistics related to

WebApp for these tools. All the processes that are already defined in the proposed

architecture are executed on Java-based benchmark datasets and JS-based web

applications.

All the previous approaches are only work for Java-based applications such as

BLIA, BRTracer+, BugLocator, BLUIR+, Locus are IRBL tools. As mentioned, there

are three common metrics on BL studies such as Top 1 accuracy, MAP and MRR.

BLIA is the state-of-the-art tool while we are working on proposed approach. In BL

literature, BLIA had the best performance on benchmark datasets except Eclipse.

Indeed, BLIA does not have any experiment on Eclipse dataset because of BLIA’s

47

approach. BLIA uses source code history but there is not any open-sourced Eclipse

dataset that includes necessary items such as source code, source code history and

related bug reports. In addition, BLIA uses stack trace to have better accuracy. The

effect of the stack trace on experimental results is over 40% according to BLIA’s

statistics. Therefore, success of the tool over other tools related to this input, but this

input may not be ready for many benchmark or industrial datasets. The overall

experimental results of all these tools and BugSTAiR are summarized in Table 3.

Table 6.3 Comparison of experimental results

48

Colums in Table 6.3 are Dataset, Approach, Top 1 %, Top 5 %, Top 10%, MAP

and MRR. Dataset column indicates names of benchmark datasets that the proposed

approach has already experimented. Approach column indicates names of tools that

proposed approach is compared. The Top 1% value is the ratio of the number of queries

in which the first ranked source code file is the correct file to the total number of

queries. The Top 5% value is the ratio of the number of queries in which any of the

first five ranked source code files in are correct files to the total number of queries.

The Top 10% value is the ratio of the number of queries in which any of the first ten

ranked source code files in are correct files to the total number of queries. MAP and

MRR columns are common IRBL metrics that are mentioned in Chapter 6.1.2.

The experimental result shows that BLIA’s Top 1% is 67.3% in SWT dataset, and

this score makes difference among BugLocator, BLUIR and BRTracer. MAP score is

0.65 and MRR score of BLIA is 0.75 BugSTAiR locates more bugs in the first ranked

source file than BLIA in this dataset. Therefore, BugSTAiR’s Top 1% score is better

than BLIA. MAP score is also better than BLIA. MRR scores of these tools are very

close to each other. Performance of BL tools are different in Eclipse dataset. BLUIR+

has 32.9% in Top 1% score, and this score was the best in IRBL tools before

BugSTAiR. BLIA and Locus do not have any experiments on Eclipse dataset.

BugSTAiR’s Top 1% score is 39.52%, MAP is 0.43 and MRR is 0.46 on this dataset.

Therefore, BugSTAiR outperforms all IRBL tools on Eclipse. The general view of tool

performances is the same on AspectJ dataset. BLIA was the best performance in IRBL

tools by 41.5% Top 1% score, 0.39 MAP and 0.55 MRR score. BugSTAiR locates

more bugs in the first ranked result than BLIA. Experimental results of BugSTAiR in

AspectJ in Top 1%, MAP and MRR are 42.3%, 0.43 and 0.51 respectively. Tomcat

dataset has been used in recent studies. Therefore, older studies do not have an

experimental result on this data set. Locus had the best performance scores in IRBL

tool by 53.9% on Top1%, 0.57 on MAP and 0.64 MRR scores. BugSTAiR’s

performance metrics are 55.1%, 0.61 and 0.65 on Top1%, MAP and MRR

respectively. Hence, BugSTAiR has the best performance in Tomcat dataset. Since the

last two data sets are developed with the JS-based software development language,

they do not have any experimental results with other bug localization tools.

49

In short, experimental results show that BugSTAiR performs better than all the

previous studies that use IRBL. BugSTAiR Top 1 rank is 2% and MAP is 10% better

than BLIA metrics on AspectJ. BugSTAiR has localized 4.6% bugs in Top 1 and its

precision is 6.1% better than BLIA in SWT. As mentioned, there is no performance

metric on Eclipse for BLIA, so BLUIR+ had the best scores. Then, BugSTAiR’s

performance is compared to BLUIR+. Experimental results show that performance of

BugSTAiR is 20% better than BLUIR+ in Top 1 metric and its precision is also 30%

better than BLUIR+

On the other hand, there is another tool on the comparison table which did not

compared to IRBL tools, DNNLoc. DNNLoc is a BL tool that uses a deep neural

network while locating a buggy source. Experimental results of DNNLoc are better

than BugSTAiR in both Eclipse and AspectJ on Top 1 and MAP metrics. These metrics

are essential, but MRR scores of DNNLoc are remarkably less than all other tools.

Ideally, the MRR score should be better than the MAP score in the IR process. In

detail, the MAP metric deals with the first predicted item and true positive values over

all positives. MRR metric deals with the only actual rank of the prediction. MRR

metric could be less than MAP if many predicted results are not found in the actual

results. Unless a tool is not consistent for all queries in given dataset, the tool can cause

extra costs in BL processes. According to this fact, BugSTAiR could be more preferred

tool than DNNLoc.

There are some statistics about the proposed approach that cannot compared to the

other tools. Execution time of each processes which are source code indexing, change

history indexing and query retrieval processes is calculated. Number of source files

and number of changes affect the execution time. All of these statistics are shown in

Table 6.4.

50

 Table 6.4 Execution Time Statistics of BugSTAiR

Dataset # of Source

Files

of Commits Indexing Time

(sec)

Avg IR Time

(sec)

SWT 738 33,994 618.8 2.01

Eclipse 12,302 37,687 11,544 0.71

AspectJ 3,692 8,291 287 1.7

Web Application 724 2,543 35.6 0.38

Tomcat 2,485 62,783 24,348 1.21

angular-translate 48 1,712 219 0.67

6.1.4 Threats to Validity

This section considers threats to validity. Four types of them are explained: Threats

to internal validity, threats to external validity, threats to construct validity and

reliability.

Threats to internal validity is biases that may be done by experimenters. In the

proposed approach, the same dataset as BugLocator and BLIA have used. These are

well-known datasets which are used to minimize threats to internal validity. The source

files and change histories are downloaded from Git repositories of the projects.

Afterwards, all extended properties such as fixed files and commit logs are verified for

each dataset.

Threats to external validity is about the generalizability of the results. Most bug

localization tools only work for well-known open-source datasets. Our approach is

tested on four datasets of different sizes, different domains and different languages.

One of these datasets is from an internally developed project for commercial use.

Therefore, our approach is generalizable to any other open-source or commercial

project with different languages. A potential threat to validity is the quality of bug

reports. Bug reports contain many crucial information about the issue for developers

to fix the bugs. If a bug report has misleading information or does not provide enough

information, the accuracy of the BugSTAiR is affected poorly.

51

Threats to construct validity is about the qualification of the evaluation metrics. In

our experiments, three evaluation metrics such as Top N rank, MAP and MRR are

used. These metrics have been widely used for bug localization benchmarks and are

well-known IR metrics. Therefore, it is obvious that our research has strong construct

validity.

In previous bug localization tools, various combinations of control parameters have

been used to find the best accuracy for each project. Every parameter has been defined

according to the number of experiments for each dataset. In our approach, the AAW

process is proposed to optimize the control parameters. All the parameters are

automatically selected via GA. Therefore, there are no heuristic or experimental tests

in our approach.

52

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

Software quality and maintainability are getting more important in the last decade

due to improvements on software development technologies. Quality of a software is

directly related with processes and practices that are used in SDLC. Typical SDLC has

iterative phases such as requirement analysis, design, development, testing and

maintenance. Software engineering discipline defines several activities and techniques

for each phases of these lifecycle. Although following all defined activities, all

software’s have bugs in production. Therefore, dealing with bugs is a process that

always in SDLC.

Bugs can be reported by three different profiles, such as developers, testers, and end-

users. Then, a developer must locate the buggy source to fix it. This process is

generally difficult and time-consuming. Many researchers studied in this area to

automate the bug localization process. Bug localization is one of the critical points in

bug fixing processes. Several approaches are proposed to improve bug localization

efficiency and accuracy in the last decade. Information retrieval-based BL, machine

learning based BL, and neural network-based BL are common approaches in BL

literature. All of the previous studies include state-of-the-art algorithms works for only

Java-based applications. There is no proposed solution to other popular software

development languages such as Javascript, Kotlin, and Swift. Besides, all of these

studies are academic purposes. Therefore, there is not any study or tool that is ready

for industrial use.

In this research, the proposed approach uses information retrieval and genetic

algorithms on both JS-based web applications and Java-based back-end applications.

It is the first BL work that works for JS-based web applications by using IR and ML

to the best of our knowledge. Lack of the bug report dataset of open-source web

53

applications has made us use one of our commercial web applications. Its bug report

dataset is used to experiment the proposed approach. Thus, there is no result to

compare the success of the proposed approach in this area. On the other hand, results

of experiments show that BugSTAiR has promising performance on Java-based

applications, so BugSTAiR outperforms any other BL tool. The experimental results

indicate that BugSTAiR has better performance than BLUIR+ and BLIA. The

proposed tool localized 20% bugs in Eclipse, 4.6% bugs in SWT and 2% bugs in

AspectJ. Besides our system has better performance (on the MAP metric) than any

other tool with all datasets. MAP metrics of BugSTAiR are 6.1%, 10% and 30% higher

compared to BLIA and BLUIR+.

In addition to this, BugSTAiR is the first generic BL tool with the AAW process,

which is the most valuable contribution to the state-of-the-art on BL. Adaptation step

prevents numerous manual experiments to reach optimum weights for all datasets. This

generic implementation of the BL process provides us to enlarge our datasets easily.

At last, BugSTAiR is the first BL tool that is ready for industrial usage. All of the

previous tools are based on academic purposes.

7.2 Future Work

In the future, we would like to integrate image processing features to handle

screenshots that are taken when a bug or error is occurred. As it is possible to extract

more valuable text information from images to localize bugs, this feature will help us

to improve localization accuracy in two ways. First, we can localize only JS files in

web applications. Second, it will be possible to localize UI related bugs more

accurately with the help of this feature. In addition to this, we would like to integrate

the proposed model with ML algorithms such as clustering. It is possible for a bug to

be related with another bug which was fixed before. Therefore, clusters which are

created according to the relevance of textual similarity between bug reports can help

to improve the accuracy of IR results. Finally, configurable software systems and

microservice architectures will be preferred in both front-end and back-end in the

54

future. If there are any open-source projects like this, we will test the BugSTAiR and

share experimental results.

55

REFERENCES

Apache Lucene. (2020). Retrieved March 4, 2020, from http://lucene.apache.org/core/.

Developer Survey Results. (2020). Retrieved March 4, 2020, from

https://insights.stackoverflow.com/survey/2019/

Du, H., Wang, Z., & Zhan W. (2018). Elitism and distance strategy for selection of

evolutionary algorithms. IEEE Access Digital Object Identifier, 44531-44541

Ersahin, B., Aktas, O., Kilinc D., & Ersahin, M (2019). A hybrid sentiment analysis

method for Turkish, Turkish Journal of Electrical Engineering & Computer

Science, 1780 – 1793

Goldberg, D.E. (1989). Genetic algorithms in search optimization and machine

learning. Boston: Addison-Wesley Longman Publishing Company.

Gopinath, D., Zaeem, R.N., & S. Khurshid. (2012). Improving the effectiveness of

spectra-based fault localization using specification, Automated Software

Engineering (ASE),2012 Proceedings of the 27th IEEE/ACM International

Conference, 40-49

Hovemeyer, D., & Pugh, W. (2004). Finding bug is easy, ACM Sigplan Notices, 39,

92-106

Kim, D., Tao, Y., & Kim S. (2013). Where should we fix this bug? a two-phase

recommendation model. IEEE Transactions on Software Engineering, 1597-1610

Kılınc, D. (2019). A spark‐based big data analysis framework for real‐time sentiment

prediction on streaming data. Journal of Software: Practice and Experience, 49,

1352-1364

Kılınc, D., Yucalar, F., Borandag, E., & Aslan, E. (2016). Multi-level re-ranking

approach for bug localization. Expert Systems, 33, (3), 286-294

Moreno, L., Treadway, J., & Marcus, A. (2014). On the use of stack traces to improve

text retrieval-based bug localization. IEEE International Conference on Software

Maintenance and Evolution (ICSME’14), 151-160

56

Nguyen, A.T., Nguyen, T.T., & Al-Kofahi, J. (2011). A topic-based approach for

narrowing the search space of buggy files from a bug report, 26th IEEE/ACM

International Conference on Automated Software Engineering, 263-272

Polisetty, S., Miranskyy, A., & Başar A. (2017). On usefulness of the deep-learning-

based bug localization models to practitioners, 15th International Conference on

Predictive Models and Data Analytics in Software Engineering (PROMISE’19), 16-

25

Poshyvanyk, D., Gueheneuc, Y.G., Marcus, A., Antoniol, G., & Rajlich, V. (2006).

Combining probabilistic ranking and latent semantic indexing for feature

identification, 14th IEEE International Conference on Program Comprehension

(ICPC 2006), 137-146

Poshyvanyk, D., Gueheneuc, Y.G., Marcus, A., Antoniol, G., & Rajlich, V. (2007).

Feature location using probabilistic ranking of methods based on execution

scenarios and information retrieval, IEEE Transactions on Software Engineering,

33, 420-342.

Rao, S., & Kak, A. (2011). Retrieval from software libraries for bug localization: a

comparative study of generic and composite text models. 15th IEEE International

Conference on Program Comprehension, ICPC’07, 37-48.

Raulji, J.K., & Jatinderkumar, R.S. (2016). Stop-word removal algorithm and its

implementation for Sanskrit language. International Journal of Computer

Applications, 15-17

Ricardo, B.Y., & Berthier, R.N. (2013). Modern information retrieval. New York:

ACM Press.

Saha, R.K., Lease, M., Khurshid, S., & Perry, D.E. (2013) Improving bug localization

using structured information retrieval. Automated Software Engineering (ASE),

2013 IEEE/ACM 28th International Conference, 345–355.

Schroter, A., Bettenburg, N., & Premraj, R. (2010). Do stack traces help developers

fix bugs?, 7th IEEE Working Conference, 118-121

Thisted, R.A. (1988). Elements of statistical computing: Numerical computation.

Boston: Addison-Wesley Longman Publishing Company.

57

Voorhees, E.M., & Harman, D.K. (2002). Chapter appendix: common

evaluation measures. The Eleventh Text Retrieval Conference. Maryland,

USA: National Institute for Standards and Technology.

Wang, S., Lo D., & Lawall J. (2014). Compositional vector space models for improved

bug localization, International Conference on Software Maintenance and Evolution

(ICSME’14), 171-180

Xiao, Y., Keung, J., Mi, Q., & Bennin K.E. (2017). Improving bug localization with

an enhanced convolutional neural network, 24th Asia-Pacific Software Engineering

Conference (APSEC), 338-347

Youm, K. C., Ahn, J., & Lee, E. (2017). Improved bug localization based on code

change histories and bug reports. Information and Software Technology, 82, 177-

192.

Zhou, J., Zhang, H., & Lo, D. (2012). Where should the bugs be fixed? more accurate

information retrieval-based bug localization based on bug reports. Software

Engineering (ICSE), 2012 34th International Conference on, IEEE, 14–24 .

58

APPENDICES

APPENDIX: LIST OF ACRONYMS

Acronym Definition

VSM Vector Space Model

LDA Latent Dirichlet Allocation

AAW Adaptive Attribute Weighting

IR Information Retrieval

IRBL Information Retrieval-Based Bug Localization

MAP Mean Avarage Precision

MRR Mean Reciprocal Rank

GA Genetic Algorithm

LSA Latent Semantic Analysis

