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EFFECTIVE SOFTWARE BUG LOCALIZATION USING 

INFORMATION RETRIEVAL AND MACHINE LEARNING ALGORITHMS 

 

ABSTRACT 

Software quality assurance is crucial for the success of software. In large scale 

software projects, bug localization is a difficult and costly process. Many issues or 

bugs may be reported at both the development and maintenance phases of the software 

development lifecycle. Bug fixing has an essential role in software quality assurance, 

and bug localization is the first step of this process. Bug localization (BL) is time-

consuming since the developers should understand the flow, coding structure, and 

logic of the program. Hence, it is crucial for developers to discover the location of the 

bug. In general, source codes and bug reports are used for identifying bug location 

with the help of many different techniques. Information retrieval-based bug 

localization (IRBL) also uses the information of bug reports and source code to locate 

the section of code in which the bug occurs. It is not possible to apply state-of-the-art 

approaches having a satisfactory performance to new projects according to the 

diversity of software development languages, design patterns and development 

standards.  

 

This thesis proposes a novel algorithm, Adaptive Attribute Weighting (AAW), to 

adopt a new software project for BL processes. This thesis also includes the 

development of a new BL tool, BugSTAiR, in order to work on with all software 

projects. Experimental studies demonstrate the capability of the AAW algorithm and 

also the BugSTAiR tool on both real-life and experimental datasets, including 

commercial software projects which are developed with different languages and 

improvement in performance compared to the existing algorithms. 

 

Keywords: Software engineering, bug localization, genetic algorithm, information 

retrieval, software process improvement 
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BİLGİ GERİ GETİRİMİ VE MAKİNE ÖĞRENMESİ ALGORİTMALARINI 

KULLANARAK YAZILIMDA HATA KONUMLANDIRILMASI 

ÖZ 

Yazılım kalite güvence yönetimi, yazılımın başarısı için çok önemlidir. Büyük 

ölçekli yazılım projelerinde, hata konumlandırma zor ve maliyetli bir süreçtir. Yazılım 

geliştirme yaşam döngüsünün hem geliştirme hem de bakım aşamasında birçok sorun 

veya hata rapor edilebilir. Hata düzeltmenin yazılım kalite güvencesinde önemli bir 

rolü vardır ve hata konumlandırma bu sürecin ilk adımıdır. Geliştiriciler programın 

akışını, kodlama yapısını ve mantığını anlaması gerektiği için zaman alıcı bir süreçtir. 

Bu nedenle, geliştiricilerin hatanın yerini keşfetmeleri önemlidir. Genel olarak, 

yazılım kaynak kodları ve hata kayıtları, farklı teknikler yardımıyla hata konumunun 

tanımlanması için kullanılır. Bilgi geri getirimi tabanlı hata konumlandırma, hatanın 

oluştuğu kod bölümünü bulmak için hata raporları ve kaynak kodu bilgilerini kullanır. 

Bilinen en iyi yöntemler, yazılım geliştirme dillerinin çeşitliliğine, tasarım 

örüntülerinin ve geliştirme standartlarının farklılıklarından dolayı yeni projelerde 

tatmin edici bir performans gösterecek şekilde uygulanmaları mümkün değildir. 

 

Bu tez, hata konumlandırma süreçlerini yeni bir yazılım projesine uyarlamak için 

yeni bir algoritma olan Adaptasyonlu Ağırlık Belirleme’yi önermektedir. Bu tez aynı 

zamanda tüm yazılım projeleri üzerinde çalışmak için yeni bir hata konumlandırma 

aracı olan BugSTAiR'nin geliştirilmesini de içermektedir. Deneysel çalışmalar, 

BugSTAiR aracının Adaptasyonlu Ağırlık Belirleme algoritmasının etkisiyle, farklı 

dillerle geliştirilen ticari yazılım projelerinde, hem gerçek yaşam hem de deneysel veri 

kümeleri dahil olmak üzere, mevcut algoritmalara göre performansının üst seviyede 

olduğunu göstermektedir. 

 

Anahtar kelimeler: Yazılım mühendisliği, hata konumlandırma, genetik algoritma, 

bilgi geri getirimi, yazılım süreç iyileştirme   
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CHAPTER 1  

INTRODUCTION 

 

1.1 General  

 

Many studies have been conducted to reduce maintenance costs in software 

development processes and to improve the quality of software, considering different 

metrics. The typical Software Development Life Cycle (SDLC) process consists of 

iterative phases ranging from requirements analysis to maintenance. There can be 

various issues in each step that threaten the quality of the software. Software bugs are 

one of the most critical threats in this process since they are visible to the end-user and 

reduce customer’s confidence in the software. The maintenance phase of the SDLC 

starts after the release of the software, and its cost is generally more than development 

costs for large scale software projects. For larger software projects, catching and fixing 

implementation errors becomes more difficult. Therefore, it is important to find a 

buggy source to reduce maintenance time and cost. Bug Localization (BL) is one of 

the ways in which developers use bug reports from bug tracking systems. The bug 

tracking system is a part of the issue tracking, which is dedicated to the software 

development process. All stakeholders, such as developers and quality assurance 

engineers, use these tools to track progress on bug fixing. Then, they have to overcome 

the time-consuming challenges such as reproducing the bug as specified in the bug 

report, understanding the coding structure, programming logic, and goal of the related 

flow, etc. For this reason, there should be some efficient methods to automate BL 

according to the bug reports. 

In general, there are two different methods used in BL. One of them is called 

dynamic BL, in which dynamic methods have some processes during the execution 

such as runtime traces, data monitoring, tracking execution flows, etc. Researchers 

have developed many spectrum-based BL methods by inspecting parts of source code. 

Gopinath et al. implemented a different technique that combines spectrum-based BL 

with specification-based analysis to overcome the spectrum-based BL method’s 

limitations. The other approach is static BL, which uses bug reports and source code 

to locate bugs. Static BL methods are easy to apply on any phase of the SDLC since 
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they have few external dependencies and relatively low computational costs owing to 

Information Retrieval (IR) algorithms. FindBug is a popular static BL tool that has 

been proposed by Hovemeyer and Pugh.  

 

1.2 Purpose 
 

The purpose of this research and thesis is to build a new bug localization algorithm 

that runs on different datasets that are implemented with various software development 

languages.  

 

Both the previous methods and implementation of approaches are evaluated on well-

known open-source datasets like Eclipse, AspectJ, SWT. All of them are developed 

with the Java programming language. Some implementation details of Java can help 

the IR process to have better accuracy. For example, a stack trace of an exception is a 

valuable input to indicate the buggy file and its function directly. In addition, the 

filename is always the same as the class name that is publicly declared. Unlike Java, 

JavaScript (JS) is very flexible and does not force any naming convention. Moreover, 

there is no experimental result on JS-based software and datasets in the literature. 

Another important issue is that development standards and implementation details may 

vary for the same programming languages depending on the company’s coding 

standards. Besides, differences in project structures and language-specific keywords 

have forced us to understand the characteristics of a project. All the previous IRBL 

tools assign attribute weights intuitively or experimentally while retrieving data. For 

this reason, none of these tools can be a part of a commercial application or a service. 

 

In short, there is a need for a software tool in order to run the proposed algorithm. 

BugSTAiR is a tool that this thesis also proposes, and it can be used as an on-premise 

application to track and support bug localization processes of a software company. 

BugSTAiR can integrate with project management systems to become a part of 

companies’ SDLC.  
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1.3 Novel Contributions of this Thesis 

 
This thesis has contributions on three levels;  

 

First, we proposed a novel optimization algorithm, called Adaptive Attribute 

Weighting (AAW), to create an adaptive bug localization for every software project. 

 

Second, we developed a bug localization tool, named BugSTAiR, which is the first 

tool that uses an adaptive weight calculation approach based on genetic algorithms. To 

the best of our knowledge, there is not any tool that works for software projects except 

well-known benchmark datasets. BugSTAiR makes this possible with the help of 

adaptation processes via the AAW algorithm. Therefore, any kind of software project 

can take advantage of BL. 

 

Third, a new Eclipse dataset, which includes source code histories and bug reports 

of three major repositories, has been shared in open-source platforms for BL 

researchers. Eclipse project contains lots of different modules in different repositories. 

Therefore, any of the previous studies and works which use source code history did 

not use this dataset for their experiments. Our contribution will help future BL studies 

to compare their work to another benchmark dataset.  

 

In short, in this thesis, (i) a novel adaptive attribute weighting algorithm, AAW, 

was developed, (ii) a novel BL tool named BugSTAiR is developed, (iii) a new dataset 

to BL study was introduced. 

 

1.4 Organization of the Thesis 

 

This thesis consists of seven chapters and the rest of this thesis is organized as 

follows. 
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Chapter 2 provides general information about relevant studies, literature review and 

field research on bug localization. 

 

In Chapter 3, background information about bug localization processes, advantages, 

state-of-art algorithms, different approaches, and tools.  

 

In Chapter 4, the new bug localization approach, AAW, and implementation details 

are explained.  

 

In Chapter 5, the new bug localization tool, BugSTAiR, is detailly explained. The 

developed application is tested with different case study datasets.  

 

In Chapter 6, many experiments were executed for the proposed bug localization 

approach with well-known and widely used benchmark datasets. 
 

Finally, in Chapter 7, a summary of the thesis and proposed tool, conclusions, and 

future works are presented. 
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CHAPTER 2  

RELATED WORK 

 

In this chapter, literature, and field reviews are explained. Results of the research 

are discussed.  

 

2.1 Literature Review 
 

Along with the rapid development in the software industry, the importance of 

software maintainability and software quality has increased significantly. Software 

quality is evaluated with many different metrics. Software development lifecycle has 

iterative phases from requirements analysis to maintenance. There can be various 

issues in each phase that threats the quality of software. Software bugs are one of the 

most important threats to this process since they are visible and reduce customer’s 

confidence in the software.  

 

The maintenance phase of the software development lifecycle starts after the 

software is released, and sometimes maintenance cost can be more than development 

phases in large scale software projects. When the scale of the software project getting 

bigger, it is difficult to find and fix coding/implementation errors. Therefore, it is 

important to find the buggy source to reduce maintenance time and cost.  

 

There are some steps established during the bug fixing processes. The first step is 

bug localization. In this step, developers use a bug report/information from the 

bug/issue tracking system. After they have to overcome the time-consuming 

challenges such as reproducing the bug according to the bug report, understanding the 

coding structure, programming logic and goal of the related flow, etc. Therefore, there 

should be some efficient methods to automate bug localization according to the bug 

reports.  

 

In general, there are two different approaches in bug localization. One of them is 
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dynamic bug localization. Dynamic methods have some processes on the applications’ 

execution time, such as runtime traces, data monitoring, tracking execution flows, etc. 

Researchers have proposed various spectrum-based bug localization methods by 

inspecting a small part of source code. Gopinath et al. proposed a technique that 

combines spectrum-based bug localization with specification-based analysis to 

overcome the spectrum-based bug localization method’s limitations. The other 

approach is static bug localization. Static methods use bug reports and source code for 

analysis processes to locate buggy sources. 

 

Static bug localization methods are easy to apply on any phase of software 

development since they have few external dependencies and have relatively low 

computational cost with the help of Information Retrieval (IR) algorithms. FindBug is 

a popular static bug localization tool that has been proposed by Hovemeyer and Pugh 

(2004).  

 

Recently, many researchers have worked on IR-based bug localization techniques. 

IR is the science that deals with the representation, storage, organization of and access 

to information items. IR approaches have two important concepts, such as query and 

document collection. Each bug report represents a query and the source files to be 

searched indicate the document collection. IR techniques use these inputs to rank 

documents by relevance, according to the ranked list of candidate source files that may 

contain the bug. The ranking process has consecutive phases that start with bug report 

creation. Then the user enters a bug report query into the system then IR techniques 

compute a numeric score for all candidate source files that match the bug query. 

Finally, top-ranking candidate source files are listed for developer consideration.  

 

The success of an IR technique is highly dependent on algorithms used in retrieval 

processes. Rao et al. have compared the main IR techniques; Unigram, Vector Space 

Model (VSM), Cluster-Based, Latent Dirichlet Allocation, Latent Semantic Analysis 

(LSA), and some various combinations.  
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Poshyvanyk et al. have developed PROMESIR, which uses a probabilistic ranking 

method and a data acquisition method called Latent Semantic Indexing (LSI). Ngyuen 

et al. customized the LDA approach and proposed BugScout. Therefore, different 

approaches and techniques are proposed to improve the efficiency of information 

retrieval and bug localization processes. According to these improvements, BugScout 

took the lead because of its good performance on some large-scale datasets because 

most of the researchers used a few bugs in the evaluation process before BugScout.  

 

Zhou et al. proposed BugLocator that used rVSM(revised Vector Space Model) and 

performed on some large-scale open-source projects. BugLocator uses text similarity 

between source files and bug reports. Also, it uses information about previously fixed 

bugs to improve bug localization accuracy.  

 

BugLocator has better experimental results than BugScout on compared datasets. 

Then, another approach is introduced by Saha et al. BLUIR (Bug Localization Using 

Information Retrieval) uses structured information analysis of source code such as 

class names, method names, etc. BLUIR has located more bugs than BugLocator, 

according to the experimental results on the same datasets. Thus, using structured 

information of a source file is more efficient than a simple source file as a document.  

 

Youm et al. has proposed BLIA (Bug Localization using Integrated Analysis) by 

using some other information about bugs. In addition to the bug similarity information 

that BugLocator used, BLIA uses stack traces, comments in the bug report, and change 

the history of the source code to have better accuracy. Also, BLIA is a bug localization 

algorithm that provides multi-level scoring such as method-level scoring, file-level 

scoring, etc. In order to compare, BLIA was evaluated on the same datasets, which 

was used to evaluate for both BugLocator and BLUIR. According to the evaluation 

results, BLIA was better than both BLUIR and BugLocator in those datasets.  
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All these approaches are evaluated on well-known open-source datasets. These 

datasets are Eclipse, AspectJ, SWT and etc. All of these software’s are developed with 

Java programming language. Some of the implementation details of Java programming 

language can help to information retrieval process to have better accuracy. 

 

2.2 Field Review 

 
There are some academic tools that have been developed for bug localization 

techniques. All of these tools are used for only academic purposes. There is not any 

commercial tool for software bug localization due to the diversity of software 

development languages, design patterns, and coding standards that are used in different 

companies. Therefore, all bug localization tools and researches use some well-known 

datasets and compare their experimental results with each other. Table 2.1 presents the 

comparison of bug localization tools and key contributions of their approaches. 

 

The proposed tool, BugSTAiR, uses Adaptive Attribute Weighting (AAW) process 

to adopt a new software project for bug localization process. BugSTAiR can optimize 

the retrieval results by generating project-specific coefficients, which are used in the 

query to retrieve. The differences between bug localization tools shown in Table 2.1 

are used algorithms and data source while dealing with the source code.  

 
 Table 2.1 Comparison of bug localization tools 

 
Approach BLUIR BRTracer BLIA BugLocator BugSTAiR 

Published 2013 2012 2015 2012 2020 

IR Method TF.IDF rVSM rVSM rVSM Lucene 

Structured Information O X O X O 

Bug Similarity O O O O O 

Version History X X O X O 

Stack Trace Analysis X O O X X 

Adaptive Attribute 

Weighting 

X X X X O 
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CHAPTER 3  

BACKGROUND INFORMATION 

 

Software engineering is an engineering discipline that applies software 

development processes to improve development efficiency, quality assurance, and 

provide better project management. Software development lifecycle (SDLC) has 

several steps to ensure all these improvements. This thesis focuses mostly on the 

development and maintenance phases of SDLC. Bugs can occur both in the 

development and maintenance phases. Therefore, a bug can be caught by quality 

assurance engineers or end-users, and they report the bug. A customer reported bug 

should be fixed as fast as possible to provide customer satisfaction. Catching and fixing 

the bug is very important. Therefore, automatically detecting and locating bugs in 

software projects can improve to a great extent the software quality as it eases the 

effort in fixing bugs and increases the efficiency of quality assurance. Useful data in 

achieving this can be found in source code comments and bug report tickets but are 

mostly overlooked in some of the existing methodologies. 

 

In this chapter, we are going to explain and discuss background information about 

some of the recent popular methodologies proposed for bug localization. 

 

3.1 Bug Localization 
 

Bug localization is a process to find a bug in software source code according to the 

given bug report. Bug reports provided by a customer or a test engineer have much 

information about the bug, such as; necessary information about flow, steps to 

reproduce, given inputs, etc. There are several approaches that deal with bug 

localization. These approaches are information retrieval-based bug localization 

(IRBL), neural network-based bug localization (via convolutional neural network or 

deep learning), and some experimental studies on hybrid solutions. In this chapter, 

brief information about some well-known and performing tools on each approach is 

given.  
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3.2 Deep Learning-Based Approaches to Bug Localization 
 

Manually locating bugs in large software projects could introduce a great deal of 

time and effort for software developers. In recent history, there have been a number of 

significant state-of-the-art approaches proposed for bug localization that would aid 

software developers in the process of bug fixing. On the contrary, practitioners have 

been in search of such a model that could satisfy their requirements in terms of 

reliability, scalability, and efficiency. Most of the currently proposed approaches 

hardly meet these requirements and causes practitioners to steer away from adopting 

them in their software development life cycles. However, some recent advances in 

deep learning-based techniques have proven to outperform existing state-of-the-art 

models in bug localization.  

 

Polisetty et al. have composed a CNN and a Simple Logistic model to experiment 

and compare the efficiency of deep learning-based models to state-of-the-art models 

used in bug localization. They have trained their deep-learning based models with a 

number of five different open-source software projects, all of which are written in Java, 

and compared their performance to some of the state-of-the-art models trained on the 

same datasets.  

 

Their work has shown higher performance results when compared to conventional 

machine learning-based state-of-the-art approaches. However, they have proven that 

deep learning-based methodologies are still yet to fully satisfy the requirements of 

practitioners. Their work also has proven a need for a standardized performance 

benchmark among bug localization methodologies for a realistic and fair evaluation. 

 

DeepLoc is one of the well-known bug localization approaches listed in Polisetty 

et al.’s comparison. DeepLoc is a project that has been conceived in recent years, has 

been being experimented on software projects like AspectJ, Eclipse, JDT, SWT and 

Tomcat. It consists of an enhanced convolutional neural network (CNN). This network 

takes into account the recent bug fixes and their frequency and utilizes word-
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embeddings and feature-detecting to compose a prediction. A set of purpose-specific 

CNNs use these bug reports and the source code semantics represented in the word-

embeddings to detect patterns features in them. Figure 3.1 below depicts the overall 

architecture of DeepLoc, revealing the offline training stage as well as how a trained 

model predicts the faulty source files from new bug reports. 

 

 
Figure 3.1 The overall architecture of DeepLoc  

 

The results of experiments have proven that DeepLoc achieves a higher MAP 

(mean average precision) score by 10.87%–13.4% than conventional CNNs. It also 

outperforms four of the state-of-the-art approaches in bug localization (DeepLocator, 

HyLoc, LR+WE, and BugLocator) in terms of Accuracy@k, MAP, and MRR (mean 

reciprocal rank) scores. Accuracy@k stands for the bug reports percent in which at 

least an actual file with a bug located in it is placed somewhere within the top-k rank. 

 

3.3 Information-Based Approaches to Bug Localization 
 

In the literature, there are many open-source software products with datasets that 

include lots of bug summaries. However, it is difficult to find web applications that 

are developed by JS-based frameworks having a bug report dataset. Figure 3.2 

illustrates a real-world bug report from a commercial application developed for a bank. 
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IRBL approaches rely on calculating similarity scores between bug reports and 

source code files according to the results of similarity matching algorithms. All source 

code files have a computed similarity score for each bug report. BL has some steps 

which should be executed in a predefined sequence. Detailed information about these 

steps is given in Chapter 4. 

 

Figure 3.2 Bug summary of a real-world application  

 

3.3.1 Common Bug Localization Process 
 

IRBL approaches have five main steps, as shown in Figure 3.3. They are pre-

processing, indexing, query construction, similarity computation, and retrieval. 

• Pre-processing: This step is related to both source code files and bug reports. All 

of them should be pre-processed to improve the efficiency of the retrieval 

process. In this step, all stop-words such as language-specific identifiers and 

punctuations are removed from the source code. In addition, some syntactic 

operations are performed, such as camel case splitting, lowercase 

transformation, word stemming, and tokenization. 

• Indexing: IRBL approaches are used to index a dataset that is ready when both 

source file and bug reports are pre-processed and the dataset is prepared. The 

VSM is one of the well-known IR techniques, but there are also some other 
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probabilistic models such as LSI. The Eclipse dataset includes source code 

histories and bug reports. 

• Query Construction: Query is one of the most important parts in IR processes. 

In general, summary and description fields of bug reports are used as input. 

• Similarity Computation: There are several methods to compute the similarity 

between bug reports and source code files. Every IRBL approach applies one of 

these methods to compute relevance. 

• Retrieval: After all steps are performed, each IRBL approach applies its 

proposed algorithm or method to obtain better accuracy on the retrieval process. 

 

 
Figure 3.3 General view of IRBL processes 

 

General information about IRBL processes and steps are given. The well-known IRBL 

tools such as BugLocator, BLUIR and BLIA and their approaches are discussed.  

 

3.3.2 BugLocator 
 

BugLocator is an Information Retrieval (IR) based approach to bug localization. It 

predicts the relevant files that would potentially help to fix a software bug. 
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BugLocator utilizes a revised Vector Space Model (rVSM) to rank all the source 

code files in terms of the textual similarity between the initially reported description 

of the bug and the source code itself while using the previous information on similar 

bug reports that have been resolved as well. In Figure 3.4, the overview of 

BugLocator’s structure is shown. 

 

 
Figure 3.4 The overall architecture of BugLocator 

 

The model has been experimented on a number of four different large-scale open-

source software projects to predict the location of more than 3,000 bugs. The 

experiment results have proven that BugLocator can predict the source code files that 

are potentially contaminated with software bugs with high accuracy. For the software 

project Eclipse 3.1, 62.60% of the estimated buggy files are ranked in the top ten 

among 12,863 files. The experiments have shown that BugLocator outperforms the 

existing state-of-the-art bug localization models with high accuracy. 
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3.3.4 BLUIR 
 

BLUIR is another approach in bug localization that utilized information retrieval 

techniques. While these information retrieve-based bug localization systems are highly 

scalable for larger software projects, their performance inaccurately narrowing down 

their prediction to a small number of potential source files remain relatively low in 

localizing bugs.  

 

The novelty of BLUIR is its captured insight that the use of structural information 

retrieved from the code constructs, namely, class names and method names, allows for 

a more accurate and highly performant prediction of bug localization. As previously 

mentioned, approaches BugLocator and DeepLoc, Bluir makes use of bug report 

descriptions along with the actual source code to conducts its prediction. It also takes 

advantage of previous bug similarities when applicable to further fine-tune the 

localization. Figure 3.5 is the overall architecture of BLUIR. 

 

Figure 3.5 The overall architecture of BLUIR 
 

The approach constructed in BLUIR provides a ground basis for information 

retrieval-based approaches in fundamental bug localization researches in terms of both 
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theoretical and empirical knowledge. BLUIR is evaluated on a number of four 

different large-scale open-source software projects on a number of approximately 

3,400 bugs. The results have proved that BLUIR matches and even outperforms 

existing state-of-the-art models even for the cases where BLUIR does not utilize the 

bug similarity data used in other models. 

 

3.3.5 BLIA 
 

BLIA is another information retrieval-based bug localization model that aims to 

increase accuracy in predicting faulty source files by incorporating in bug reports, 

structured data from source files, and the source code change history. 

 

BLIA introduces a novel approach to information retrieval-based models, a so-

called Integrated Analysis, wherein a plethora of structured and unstructured data is 

aggregated to form a more accurate prediction of potential faults in source files. To 

do so, BLIA utilizes textual descriptions and comments that are fetched from bug 

reports while analyzing the stack trace of the program, the structured information 

gathered from the source files, and finally, the source code change history. This 

approach helps BLIA to narrow its localization of the bugs from a file-level down to a 

function scope level using data from the previous bug repository. It can be seen the 

workflow BLIA employs from Figure 3.6. 

 

 
Figure 3.6 BLIA’s workflow  
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BLIA has been evaluated on a number of three large-scale open-source software 

projects, namely, AspectJ, SWT, and ZXing. BLIA surpassed some of the state-of-the-

art approaches in bug localization in terms of mean average precision (MAP), such as 

BugLocator, Bluir, and BRTracer by 54%, 42%, and 30%, respectively. 

 

The new approach proposed in BLIA not only outperforms its existing counterparts 

but also allowed for an improved granularity level of bug localization, from the file 

level to a function level. 
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CHAPTER 4  

ADAPTIVE ATTRIBUTE WEIGHTING ALGORITHM 

 

In this thesis, we propose a new approach to widen bug localization process to all 

software projects. Bug localization is a process to discover information from source 

codes and bug reports. There are several types of research on bug localization area. 

Although all of the studies are useful academic researches, they do not offer a solution 

for use in production. Therefore, the software industry needs a bug localization tool 

that is capable of adapting any software project and able to be successful in localizing 

new bugs. The aim of the proposed algorithm, titled Adaptive Attribute Weighting 

(AAW), is to adapt and prepare a software project for bug localization, an adaptation 

process is constructed based on genetic algorithms. Therefore, we defined an 

adaptation process that actually lies on the AAW algorithm to prepare the basis of a 

software project to bug localization. In this chapter, detailed information and 

implementation of the adaptation process and AAW are given.  

 

4.1 Adaptation Process 

 
Software projects can be developed with different programming languages such as 

Java, Javascript, C++, Swift, Kotlin, etc. Therefore, there is not only one language 

while dealing with bug localization as previous researches did. Every language has its 

own structure and standards to follow. Moreover, every software company has internal 

software development standards such as coding notations, design patterns, styles, etc. 

The adaptation process provides us to handle this diversity in the bug localization 

process. 

 

 Adaptation processes have iterative steps to prepare newcomer projects to bug 

localization such as pre-processing, indexing, query construction, retrieval, and 

optimization. The first four steps of adaptation are also basics steps of IR-based bug 

localization. In this chapter, the proposed adaptation process and AAW algorithm are 

presented.  
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4.1.1 IRBL Processes in BugSTAiR 
 

All of the previous researchers that are pointed out in Chapter 2 have studied on 

software projects implemented with Java. According to this fact, all benchmark 

datasets have Java-specific information. The proposed model has generic processes 

because Java is not the only programming language in real life. JS is the leader among 

the list of most popular programming, scripting, and markup languages. Therefore, this 

study focuses on the applications of not only Java-based but also JS-based to build a 

generic retrieval model. A new “Adaptation” step is defined to provide this generic 

architecture. The aim of this step is to build IRBL basis for newcomer software and 

optimizing the retrieval process.  

 

 
Figure 4.1 General view of BugSTAiR architecture 

 



 

20 
 

IRBL in JS-based web applications is hard to implement, and retrieval results are 

not as accurate as in Java-based software applications. The main reason is that the user 

interface (UI) of an application is related with more than one file at the same time. 

Furthermore, a web application may have many files with the same name but with 

different file extensions such as featurex.html, featurex.css and featurex.js. This 

situation causes extra complexity for all computations in the process. Thus, the 

proposed approach focuses on locating non-UI related bugs such as logic and flow in 

web applications. Therefore, BugSTAiR evaluates only source files with “.js” 

extension while working on JS-based applications. The other UI-related project files 

such as “HTML” and “CSS” are out of the scope for this study. Figure 4.1 shows the 

general architecture of the proposed approach. 

 

In our proposed work, it is considered that the change history of the source code is 

as important as current source code because any change in the source code has a 

history. This history can be related to a feature or a bug fix. There may be many source 

code files depending on the change. Evaluating the information obtained from the 

history, the impact analysis between the features and source code has been identified. 

Therefore, the history of source code is valuable and is used to locate the potential 

buggy file. The steps of the proposed approach are given in Figure 4.2. 

 

 

Figure 4.2 Steps of BugSTAiR 
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In Chapter 3, common bug localization steps are explained. In this section, the 

implementation details of the proposed approach’s steps are considered. The 

adaptation step starts with pre-processing. In this step, different stop-words lists are 

defined for different programming languages. Then, different source code parsers have 

been used to understand the source code structure. The same stop-word list and 

language parser are used with BLIA when processing on Java-based applications.  

 

However, the new stop-word list and JS parser have been created to process JS-

based applications. The stop-word list contains a list of words that are commonly found 

in languages that carry very little or no significant semantic context in a sentence. The 

JS-based stop-word list contains natural language words that are already in Java-based 

stop-word lists and also JS language-specific keywords. Details of pre-processing are 

covered in Chapter 3.2. The adaptation step includes three AAW execution to get ready 

for retrieval. The first two execution run after the pre-processing step in which two 

different indexes have been built, such as source code index and change history index. 

The structures of these indexes are different. Source code index has five attributes, 

which are: class names, methods, variables, file content, and object keys. Change 

history index has three attributes, which are commit messages, changed files, and 

changed methods.  

 

The proposed work has been built on a service-oriented architecture. Each web 

service can run asynchronously in different instances. All necessary services are also 

packaged in a container to scale if needed. Therefore, these two indexes could be 

created simultaneously. At this point, AAW processes run for both indexes to identify 

the best weights for retrieval. Next, the retrieval query is built as the query construction 

algorithm given in Section 3.5. Then, the first retrieval is performed based on the 

change history index with AAW on all attributes. Also, another retrieval is performed 

based on the source code index. Apache Lucene provides us similarity scores between 

commit messages and bug reports. Every commit may have files that are changed more 

than once. Therefore, scores of the files that are found in the retrieval processes have 

to be consolidated. Finally, a buggy file list is gathered according to the first level of 
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the IR process output. Then, the second level of the IR processes starts by creating a 

structural in-memory index including files in the consolidated list. The proposed 

structure includes class names, method names, variables, object keys and file content 

from the source code index. In addition, filename, file path, and commit messages are 

included from the source code history index as an attribute to the in-memory index to 

combine all information in one index. Then, the optimum attribute weights are 

calculated according to the output of the genetic algorithm in the third execution of 

AAW. File scores that come from the third execution of AAW are used for re-ranking 

between candidate files coming from the first level IR. After the re-ranking process, a 

final score is generated for each file. So, they can be used for any application that helps 

software development teams to find bugs earlier in the maintenance period of the 

SDLC. 

 

The idea behind including GA in the approach is to reduce the impact of changing 

project standards and application development standards on the model and to achieve 

more precise results. 

 

The multi-dimensional search on different fields, and combining these results 

conducted using IR techniques requires a dynamic calculation of the coefficients 

/weights that affect the search process and retrieval results. Another approach to find 

and use weights to produce the best results is the Brute Force Search algorithm. As the 

size of the dataset grows, it is better to use optimization methods since the time for 

calculation is high, and this has to be repeated in specific periods (new records, daily, 

etc.). 

 

4.1.2 Source Code – Bug Report Pre-processing 
 

During the BL process, HTML and CSS files are excluded from the source code 

repository, and JS files are the only accepted input to be processed. Moreover, all UI-

related bugs are eliminated while getting bug reports from the issue tracking system. 

Then, all stop-words are removed from the source code files and bug reports. Stop-
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word removal is most common process to reduce dimensionality. (Kılınç, 2019) Stop-

words include keywords such as; 

• English stop-words: “a”, “the”, “to” etc. 

• Syntactic symbols/identifiers: “null”, “undefined”, “alert”, “init” etc. 

• Operators / Punctuations: “==”, “!=”, “<”, “>” etc. 

There are some different naming conventions in software companies. Identifiers 

may consist of more than one word. In order to increase the accuracy of the retrieval, 

identifiers are tokenized. To achieve this, individual tokens are used, but there might 

be some conflicts between bug reports and source code with regard to case sensitivity. 

To resolve these conflicts, all texts are transformed to lowercase. 

 

In addition, to be the first study on the web front-end side, the model is tested in 

Java-based systems so that the pre-processing step can be done similarly. A language-

based stop-word list has also been created to build a generic infrastructure. The 

language parsers are used to understand the written code structurally. JS parser and 

Java parser are included in the proposed approach. To support different software 

development languages, the language-based stop-word list is included in the 

collection, and a language parser is added to the project to understand the structure of 

the new language. 

 

4.1.3 Indexing 
 

In this section, the source code indexing approach is presented. Lucene (Apache, 

2020) is used to index the source code files. Lucene is one of the most widely used and 

well-known open-source IR systems. In the proposed approach, Lucene evaluates a 

relevance score between source code files and bug reports. There are two ways for 

multi-parameter indexing. Some researchers prefer building a different index for each 

attribute, and the others use one index including all attributes. In this study, building 

an index with all attributes is preferred with Lucene’s powerful APIs. 
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Before the indexing step, the source codes have to be parsed to index them in a 

structured way. After the source codes are parsed, important information such as class, 

method, variable and function names are extracted. All source code files are analyzed 

structurally by using specific language parsers. Each source code file is called 

“document” in the index structure and any valuable parts of the source code are called 

“attributes”. These attributes are added to the document as a field. Both filenames and 

attribute names are usually written in camelCase naming convention. In this way, all 

the filenames and attribute names which have more than one word are added to the 

related field of the document by using the camelCase notation. It is also discovered 

that these names may be included in the bug records and they are also indexed as a 

separate field in the document to increase success. For example, 

“securityQuestionsPageHelper” method name is added to the method field of the index 

with five inputs which are security, question, page, helper, 

“securityQuestionPageHelper”. In addition to these structural fields in the document, 

unprocessed and flat text of the source code file is stored in the document. 

 

First, the bug report is searched for commit messages in the source code history 

index. In this way, it is aimed to find the most similar solution set from the previous 

commitments to the solution of this error. The source code files obtained from this set 

of solutions are indexed by the method described above. After these indexes are 

formed, the process of finding the weights of the attributes begins. By means of the 

genetic algorithm, the optimum values of the attributes on both indexes are determined 

to be used in the next step. The obtained values help in-memory index to achieve the 

best result on the entire data set. 

 

4.1.4 Query Construction 
 

Source code files are called as document collection and bug reports are evaluated as 

query in IRBL process. Since the bug reports are pre-processed in the first step, query 

construction is performed in the retrieval. According to the previous studies, it is 

understood that the query construction process is very important and critical for 

retrieval accuracy. Many researchers use special weights for fields on documents while 
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constructing the retrieval query according to their empirical studies on each dataset. In 

our approach, outputs of the AAW process are used to set weights while constructing 

the retrieval queries. In addition, all words of bug report summaries that are tokenized 

and pre-processed in the previous steps are used in the queries. In general, bug 

summary contains useful information to localize bugs. Moreover, the description parts 

of the bug reports are examined to verify whether they have valuable information about 

bug or not. Then, it is decided to include bug descriptions to queries. Bag of words 

algorithm (BoW) is applied to extract more valuable information from the bug 

description and to reduce complexity of query construction. Finally, ten words are 

selected according to the word counts to be added to the query. 

 

Apache Lucene is used for indexing, so the Lucene APIs are used in the retrieval 

phase. Lucene API provides some methods to retrieve data according to the query that 

has multiple attributes with different coefficients. Figure 4.3 shows query construction 

approach. 

 

 
 

Figure 4.3 Query construction approach 
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4.1.5 In-memory Source Index (IMSI) 
 

IMSI has an important role in the project. As a result of retrieval on source code 

history, the most similar change set is determined according to the similarity between 

commit messages and bug reports. Every commit may include more than one file. 

Therefore, unique source files are created by evaluating the changes. On the other 

hand, the code pieces that may potentially contain bugs are determined as a result of 

the IR process on structured information of source codes. 

 

The merge operation in adaptation process is executed simultaneously. The 

candidate bug resources selected after the IR process on source file are merged with 

the candidate file names according to the IR results on the source code history. All 

files in the merged list are re-indexed in a more complex structured information during 

the execution of the application. It is thought that indexing is a time-consuming 

process. Therefore, lists of candidate source files to index are filtered. Through, 

building an IMSI does not affect the retrieval process dramatically. 

 

After IMSI is constructed, there are more attributes for query construction in IRBL 

process. New weights for each attribute are required. By executing the AAW process 

on the attributes, new weights are determined for all attributes. So all prerequisites get 

ready for the second level of IR. 

 
4.1.6 Adaptive Attribute Weighting 

 
 

GA is a widely used search and optimization method that works in a manner similar 

to the evolutionary process observed in nature. It seeks the best holistic solution based 

on the principle of survival in complex multi-dimensional search space. GA has three 

main steps: crossover, mutation, and selection.  
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In this section, all configurations and strategies which are chosen for 

implementation explained in detail. Initially, each chromosome is designed to have 

eight genes which can take double values (0.0 – 1.0). Each gene is represented by 16-

bits and can have fractions up to two decimal points. A set of chromosomes are defined 

as population, also population is subset of a solutions in current generation. There are 

some limitations while defining the size of population. The diversity of the population 

should be maintained otherwise it might lead to premature convergence. The 

population size should not be kept very large as it can cause to GA to slow down, while 

a smaller population might not be enough for a good crossing pool. As mentioned 

before, diversity of the population effects optimality and initial population is 

important. Random initial populations which is increasing the diversity of the 

chromosomes in the population. In this approach, the initial population is generated 

completely random with minimum sample size of 100 and maximum sample size of 

200. General view of GA flow is shown in Figure 4.4. 

 

 
Figure 4.4 GA flow 

 
 

After a brief information about population which is used in GA, crossover strategy 

and rate are implemented in the proposed approach. Crossover step is similar to 

reproduction and biological crossover. More than one parent is selected and one or 

more off-springs are produced using the genetic material of parents. Crossover has two 

internal steps as following; 
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• Sort the parents according to fitness scores from large to small 

• Divide them into groups of two and cross them among themselves to generate 

new off-springs 

 

Uniform crossover strategy is used to generate new off-springs with the mix 

probability of 0.75. In uniform crossover, each gene is evaluated separately while 

deciding it to be included in the off-springs.  

 

Second important process that provides diversity is mutation. Flip Bit Mutation 

(FBM) strategy is used in the proposed approach. FBM is a mutation approach which 

has two steps such as selecting one or more bits randomly and flip them with a given 

probability. In this approach, 0.1 is given as mutation probability. As mentioned 

before, crossover and mutation are two critical methods to create a new chromosome 

using existing genes. The selection of the genes which occurs with respect to crossover 

and mutation is called the selection process. Consequently, complex problems are 

solved to inform the GA of which gene is good using a fitness function and coding 

variables. The steps of GA can be summarized as follows: 

 

• Generate the initial population randomly 

• Find the fitness score for each chromosome in the population 

• Perform gene reproduction using crossover and mutation operations. 

• Eliminate chromosomes having inadequate fitness score.  

• Repeat Step 3 through 5. The process is terminated after the configured number 

of chromosomes are generated. 

 

In this approach, GA is used to find a common solution for all datasets to solve 

attribute weighting problems. GA must have a fitness function to optimize the given 

problem. Therefore, a customized fitness function has been implemented to solve the 

current problem. This function is problem dependent and each problem has its own 

fitness function. For example, error measures such as Eucledian, Manhattan have been 
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widely adopted in classification problems. On the other hand, entropy-based 

approaches can be used to solve different problems. Details of proposed fitness 

function are explained. The Gene/Population selection algorithm is the most important 

part in GA. Elite selection (elitism) is the most successful and preferred method in the 

literature. Especially, elitism strategy has been widely used in different evolutionary 

algorithms. Therefore, the Elite selection algorithm is used for the selection process. 

This selection method is optimized to choose the best chromosomes. The custom 

fitness function executes the required number of multiples and keeps the result in 

memory. After the required number of chromosomes are generated (min 100, max 200 

is used in the application), the existing population is evaluated. The evaluation step is 

done considering the termination function. This function decides whether the new 

generation should be produced or not. The application is terminated if the best 

chromosome value is not changed after the configured number of iterations are 

executed. Otherwise, new chromosomes and populations continue to be produced by 

the GA iteratively. 
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Figure 4.5 Termination condition of GA 

 

In this study, GA is used to optimize IR efficiency by finding the best coefficients 

for any given dataset. There are three AAW execution to optimize three IR processes. 

The main difference of these executions is the number of parameters which will be 

optimized. In this study, AAW algorithm is designed to support variable length 

parameters, and can take 3 to 8 parameters as input and returns optimized values for 

each parameter as output. Therefore, only one AAW implementation can be used in 

these three executions. Across to this, fitness function is different according to the 

index which is used for retrieval. AAW can switch a fitness function according to the 

number of input parameters. BugSTAiR performs the first execution of AAW on 

multi-field source code index. Therefore, fitness function evaluates the result for only 

this index. This index has five fields such as class names, methods, variables, file 

content and object keys. Fitness function evaluates every bug report in given dataset 

and compares the ranked files with Ground Truth Data (GTD). After all bug reports 
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are evaluated, fitness function returns Top 1 ratio of the IR which has coefficients from 

GA. The formula to calculate the base similarity score 𝑅"(𝑗) is represented in the 

Equation 4.1.  

 

𝑅"(𝑗) = ∑ (𝑤1+, ×	𝑞+0 + (𝑤2+, ×	𝑞+0 + ⋯+	(𝑤5+, ×	𝑞+)5
+6"     (4.1) 

 

where, 𝑅"(𝑗) is the similarity score of 𝑗78 source file, n is length of the vocabulary 

and, 𝑤1+,	and 𝑞+ represents the weight of 𝑗78 class name and query of 𝑖78 bug report, 

respectively. 𝑤2+, , 	𝑤3+, , 	𝑤4+,  and 𝑤5+,  represents the weight of 𝑗78  methods, 

variables, file content and object key.  

 

The second execution of AAW is performed on a multi-field source code history 

index. This index has only three fields such as commit messages, changed files and 

changed methods. Therefore, the fitness function in this execution can be represented 

in Equation 4.2. 

 

𝑅<(𝑗) = ∑ (𝑤1+, ×	𝑞+0 + (𝑤2+, ×	𝑞+0 + (𝑤3+, ×	𝑞+)5
+6"     (4.2) 

 

where, 𝑅<(𝑗) is the similarity score of 𝑗78 commit message, n is the length of the 

vocabulary and, 𝑤1+,, 𝑤2+,, 𝑤3+, and 𝑞+ represents the weight of 𝑗78 commit message, 

changed files, changed methods and query of 𝑖78 bug report, respectively.  

 

The third execution of AAW is performed on the in-memory index. Details of in-

memory indexing are given in section 3.6. There are eight fields on this index and 

evaluation method is the same as previous executions. The formula to calculate the 

base similarity score 𝑅>(𝑗) is represented in Equation 4.3. 

 

𝑅>(𝑗) = ∑ (𝑤1+, ×	𝑞+0 + (𝑤2+, ×	𝑞+0 + ⋯+	(𝑤8+, ×	𝑞+)5
+6"    (4.3) 

 

where, 𝑅>(𝑗) is the similarity score of 𝑗78 source file, n is length of the vocabulary 

and 𝑞+  represents query 𝑖78  bug report. 𝑤1+,	to	𝑤8+,  are represents the weight of 
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related fields. The calculation algorithm is the same for all functions. The only 

difference among them is number of weights which used for each field included in 

query.  

  

To summarize, all of the AAW executions are executed step by step including as 

fitness functions, selections, crossover and mutation configurations. All the parameters 

such as crossover, mutation probability and population size used in GA are selected 

with Grid Search (GS). It is a technique that scans the dataset to select optimal 

parameters for the constructed model. GS works iteratively on each data and compares 

the results for each value. Then, the best value for each parameter is found. The 

configurable parameters of the applied solution are mutation, crossover rate and the 

number of chromosomes. In order to understand whether the AAW algorithm performs 

better, basic IR tests have executed on benchmark datasets. The experiments are 

performed on four different datasets which are formed as initial structure on source 

code. The aim is to see better accuracies on benchmark datasets and apply the AAW 

to the IRBL model. After applying the AAW algorithm, retrieval results are better than 

retrieval results without AAW in the same conditions. The results of IRBL processes 

for each dataset are given in Table 4.1. AAW provides better accuracy on all four 

datasets that are used for benchmarking in bug localization. AAW achieves better 

accuracy compared to our previous experiments that have no specific 

coefficient/weight for each attribute. According to the accuracy results, improvements 

on benchmark projects such as SWT, Eclipse and AspectJ are 20%, 21%, and 62% 

respectively. These improvements on benchmark datasets show that the AAW 

improves the IRBL process results significantly. 

 
Table 4.1 Results before and after AAW  

 
Dataset Before AAW (%) After AAW (%) 

SWT 47.00 56.32 

Eclipse 26.19 31.61 

AspectJ 20.84 33.80 

Web Application 27.72 32.18 
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CHAPTER 5 

A NEW BUG LOCALIZATION TOOL: BugSTAiR 

 

Software quality is very important for project success. There are several projects 

that continue simultaneously in software companies. Each of them may be 

implemented in a different language but state-of-the-art bug localization tools do not 

provide a general or adaptive solution to handle this problem. Identifying the root 

cause of the bug and finding the possible buggy file is getting more time-consuming. 

Especially, larger projects are become more complex to manage and maintain 

according to the number of stakeholders in the project or size of the project. Therefore, 

industry needs a software tool in order to apply proposed adaptation process by AAW 

to real-word software projects. BugSTAiR is a tool which a software company can 

easily deploy and can integrate it to its SDLC. BugSTAiR also can be integrated to 

project management systems such as Atlassian Jira by the help of jira plugin. There 

are some other features that BugSTAiR have. All of them are discussed in this chapter. 

 

5.1 BugSTAiR 

 

The name of BugSTAiR is comes from “bug” and “stair”. The main idea is that 

developed tool should the first step of the bug localization processes. BugSTAiR has 

enough features to cover all parts of the processes.  

 

BugSTAiR tool has three main component such as core services, ui dashboard and 

backend services. Details of each component is given in this chapter.  

 

5.1.1 BugSTAiR Core Services 
 

BugSTAiR Core services module can include features about adaptation processes. 

We prepared a statement-of-work (SoW) document to identify all the needs. Feature 

specifications is given in Table 5.1.  
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  Table 5.1 Features of BugSTAiR Core Services 

 

No Feature Epic Description 

1 Operations Indexing 

The system works on independent services. 

There must be two kind of indexing mechanism. 

• Source Code Indexing 

• Source Code History Indexing 

2 Operations Configurations 

User can manually configure the BugSTAiR parameters. 

Parameters can be; 

• Source Code Language (Java/Javascript) 

• Natural Language Processing (Stemming) 

• Time interval for historical evaluation 

3 Operations 
Source Code 

Indexing 
User can select a path for source code to work. 

4 Operations 
Source Code 

Indexing 

Source code should be parsed with structural information 

such as; 

• FileContent 

• Class 

• Variables 

• Function 

• -ObjectKey 

5 Operations 

Source Code 

History 

Indexing 

Source code history should be indexed in structured way.  

Following fields must be created; 

• CommitId 

• CommitMessage 

•  ModifiedFiles 

6 Operations 

Adaptive 

Attribute 

Weighting 

An optimization algorithm must be implemented to 

support project specific weights on query fields.  

• AAW algorithm must be implemented based on 

Genetic algorithms 

7 Operations 
Query 

Construction 

Dynamic query construction algorithm must be 

implemented.  

Fields and Coefficients should be selected according to 

index which retrieval process executed.  
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  Table 5.1  continues 

 

8 Operations Retrieval 

Queries must be executed by service calls. 

Response must include: 

• Potentially buggy file name 

• File score 

9 General Internalization 

Application can support languages below; 

• English 

• Turkish 

 

All of these features are implemented and published. 

 

5.1.2 BugSTAiR UI Dashboard 
 

BugSTAiR UI dashboard module can include features about user interface and 

administrative reporting processes. We prepared a statement-of-work (SoW) 

document to identify all the needs. Feature specifications is given in Table 5.2.  

 
  Table 5.2 Features of BugSTAiR Core Services 

 

No Feature Epic Description 

1 General Internalization 

Application can support languages below; 

• English 

• Turkish 

2 Onboarding Onboarding 

Onboarding screens should be shown to user at first 

login. 

Onboarding screens should have max 5 screenshots. 
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  Table 5.2 continues 

 

3 Homepage 
Session 

Management 

Application should check the session if there is an active 

session or not.  

• Navigate to login page if there is not active 

session. 

• Navigate to main page if there is an active 

session. 

4 Homepage 
Homepage - 

Pre login 

The homepage should be viewed with the following 

component unless a session created. 

• Login 

• Remember Password 

5 Login Login Page  

Users can login with username and password.  

Login information must be validated on-prem database 

or active directory. 

6 Homepage 
Homepage – 

Post Login 

User should be redirect to homepage if login cridentials 
are validated. 

• User can only see projects which are already 
authorized. This authorization inherits from 
Project management system. 

• Project listing must be implemented in two 
ways such as List View and Grid View 

• User can switch between views by a toggle. 
• List must have pagination, user can navigate a 

page via page number  

7 Homepage  
Project Detail 

List View 

List view must include some basic statistics about the 
project on mouse hover action. These are ; 

• Project summary 
• Bug Count 
• Last Index Information 

8 Homepage 
Project Detail 

Grid view 

Grid view must include some basic statistics about the 
project such as; 

• Project summary 
• Bug Count 
• Search Statistics 
• Last Index Information 
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Table 5.2 continues 

 

9 Operations Search 

 

• User can open search page by a button. 
• User can see previous searches in a list under 

the search bar.  
o Previous search list must have 

pagination and user can navigate by 
page number 

• User can create a query by using a text area and 
submit query by using search button. 

• Search can be done in two ways such as; 
o Similar bug list 
o Buggy file prediction 

According to the IR scores 

10 Operations Search Result 

User can see search results according to the operation. 

• If user searches for similar bugs, result list must 
contain previous similar bugs and file list which 
were fixed.  

• If user searches for bug prediction, result list 
must contain possible buggy files with score. 

11 Operations  
Query 

Feedback 

Developer can search its own previous queries and 

provide a feedback for application success. 

Developer can see predicted files according to search 

and select the real fixed files after the bug fixed. 

12 Plugin Jira Plugin 

A jira plugin must be implemented which uses search 

and feedback services. Therefore, developers can see the 

search result and feedback file list via Jira field.  

 

 

Core services do not have any user interface related outputs. All the features 

implemented as independent services. Therefore, it is easy to scale up for new projects. 

Some screenshots are given to introduce BugSTAiR UI Dashboard application below. 

 



 

39 
 

 
Figure 5.1 Login Page of BugSTAiR 

 

 

 
Figure 5.2 Home page of BugSTAiR 
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Figure 5.3 Previous search list of a user 

 

 

 
Figure 5.4 File search and search results according to file score 
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Figure 5.5 Similar bug search and result list 

 
 

 
 

Figure 5.6 Developer feedback list for fixed issue 
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CHAPTER 6 

EXPERIMENTAL STUDY 

 

6.1 Subject Systems 

 

To evaluate the success of the proposed approach, all experimental results of IR on 

well-known benchmark datasets such as Eclipse, AspectJ, SWT are presented. These 

datasets are used in the bug localization field by researchers. All of them are open-

source software projects that are developed with Java. The source code and change 

history of the subject projects are collected from Git repository of the projects. All the 

bug reports which have already been fixed are collected from bug tracking systems.  

 

Besides, a commercial web application is used to evaluate the performance of the 

proposed approach on JS-based application since there is no open-source benchmark 

dataset for JS-based applications. The detailed information about commercial web 

application is as follows; 

• Responsive Web Application is developed with AngularJs framework. 

• Development language (Method names, variables etc.) is English. 

• Bug summaries and descriptions are in English. 

• The number of JS file related bugs is 313.  

• JIRA is used as bug tracking system. 

• On-premise Git is used as source/version control system. 
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Figure 6.1 Experimental setup architecture for a software project 

 
 
6.1.1  Dataset Statistics 

 

In this section, brief information about datasets which are used to test the proposed 

approach is given. Some important statistics collected from datasets are shown in 

Table 6.1. 

  Table 6.1 Dataset Statistics 
 

Dataset Indexed Source Code Files # of Commits # of Bug Reports 

SWT 738 33,994 98 

Eclipse 12,302 37,687 1,174 

AspectJ 3,692 8,291 284 

Web Application 724 2,543 313 

 

Indexed source files are different according to the dataset. Javascript files that have 

“js” extension are indexed in the web application dataset. Additionally, files that have 

“java” extension are indexed in AspectJ, SWT and Eclipse dataset. These statistics 

directly affect the IR result and accuracy. Also, these statistics are important for 
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evaluating the success of tools. Some datasets cannot be evaluated depending on the 

approach which the tool has adopted. Therefore, it is important to compare approaches 

of IRBL tools. 

 

BLUIR+, BRTracer+, BLIA and BugLocator are well-known IRBL tools that have 

better accuracies on BL. Detailed comparison of these tools and BugSTAiR is shown 

in Table 3. Each row of the table is a property of the BL approaches. IR Method, 

Information Structure, Bug Similarity, Version History usage, Stack Trace usage and 

Adaptive Attribute Weighting are evaluated in comparison. “O” means that tools have 

related property and “X” means do not have related property in their approaches.  

 

 Table 6.2 Comparison of IRBL tools 
 

Approach BLUIR BRTracer BLIA BugLocator BugSTAiR 

Published 2013 2012 2015 2012 2020 

IR Method TF.IDF rVSM rVSM rVSM Lucene 

Structured Information O X O X O 

Bug Similarity O O O O O 

Version History X X O X O 

Stack Trace Analysis X O O X X 

Adaptive Attribute 

Weighting 

X X X X O 

 

Bug similarity is the standard feature that is used by all IRBL tools. Structured 

information of source code is another common feature. BRTracer+ and BLIA use 

information about stack traces to improve IR accuracy. Stack trace is one of the most 

important features because it mostly contains direct reference of buggy source. Effects 

of the stack trace is up to 47\% according to the reports in BLIA. 

 

The only tool which uses source code version history except for BugSTAiR is BLIA. 

Source code history threats experimental results on datasets. It is not possible to have 

source code histories on all benchmark datasets. Specifically, source code architecture 
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of Eclipse is different from any other datasets. Its source code is based on different 

repositories, so it is difficult to match which bug is related to which repository. To 

avoid this mismatch, the top three repositories that cover most bug reports are analyzed 

and selected. The source code history information and bug report dataset are shared in 

open-source platforms such as Github. This new dataset is third contribution of this 

study to BL research. 

 

Current state of the IRBL tools, their approaches and details of datasets with 

statistics are introduced and the experimental results of the retrieval process on these 

datasets are explained in Section 4.4. 

 

6.1.2 Evaluation Metrics 
 

There are some standard evaluation metrics on IR research such as Top N Rank 

accuracies, Mean Average Precision (MAP) and Mean Reciprocal Rank (MRR). All 

of the compared tools use the same metrics to evaluate IR results. 

 

Top N Rank: This metric is used to calculate the number of the bug reports in which 

at least one source file is ranked in list of retrieval results. A higher value for this metric 

indicates better BL performance. [30]. Responsive Web Application is developed with 

AngularJs framework. 

 

MAP: This metric is used to find average precision, is the primary metric in IR 

evaluation. MAP can be formulated as: 

 

𝑀𝐴𝑃(𝑄) = "
|G|
∑ "

HI
∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑅P)
HI
P6"

|G|
,6"         (6.1) 
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MRR: This metric is based on early precision over recall logic. Reciprocal Rank is 

a value that is inversely proportional to the rank given by the retrieval method to a 

single relevant item. Shortly, the MRR is the average RR of all queries. MRR can be 

formulated as: 

 

𝑀𝑅𝑅 = "
|G|
∑ "

QR5PS

|𝑄|
𝑖 = 1              (6.2) 

 

These three metrics are used to evaluate the experiments of this study. Therefore, it 

is possible to compare our results to the results of other tools.  

 

6.1.3 Experimental Results 
 

In this section, experimental results of BugSTAiR are compared to the previous bug 

localization tools and the overall performance of the proposed approach are presented. 

The main purpose of this study is to define a generic model to localize bugs in software 

projects. As mentioned before, a commercial JS-based responsive web application and 

one of open-source JS-based projects are used as dataset to execute the proposed 

model. The other benchmark tools cannot work for WebApp due to development 

language limitations. Therefore, there are no Top N rank or MAP statistics related to 

WebApp for these tools. All the processes that are already defined in the proposed 

architecture are executed on Java-based benchmark datasets and JS-based web 

applications. 

 

All the previous approaches are only work for Java-based applications such as 

BLIA, BRTracer+, BugLocator, BLUIR+, Locus are IRBL tools. As mentioned, there 

are three common metrics on BL studies such as Top 1 accuracy, MAP and MRR. 

BLIA is the state-of-the-art tool while we are working on proposed approach. In BL 

literature, BLIA had the best performance on benchmark datasets except Eclipse. 

Indeed, BLIA does not have any experiment on Eclipse dataset because of BLIA’s 
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approach. BLIA uses source code history but there is not any open-sourced Eclipse 

dataset that includes necessary items such as source code, source code history and 

related bug reports. In addition, BLIA uses stack trace to have better accuracy. The 

effect of the stack trace on experimental results is over 40% according to BLIA’s 

statistics. Therefore, success of the tool over other tools related to this input, but this 

input may not be ready for many benchmark or industrial datasets. The overall 

experimental results of all these tools and BugSTAiR are summarized in Table 3.  

 

Table 6.3 Comparison of experimental results 
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Colums in Table 6.3 are Dataset, Approach, Top 1 %, Top 5 %, Top 10%, MAP 

and MRR. Dataset column indicates names of benchmark datasets that the proposed 

approach has already experimented. Approach column indicates names of tools that 

proposed approach is compared. The Top 1% value is the ratio of the number of queries 

in which the first ranked source code file is the correct file to the total number of 

queries. The Top 5% value is the ratio of the number of queries in which any of the 

first five ranked source code files in are correct files to the total number of queries. 

The Top 10% value is the ratio of the number of queries in which any of the first ten 

ranked source code files in are correct files to the total number of queries. MAP and 

MRR columns are common IRBL metrics that are mentioned in Chapter 6.1.2. 

  

The experimental result shows that BLIA’s Top 1% is 67.3% in SWT dataset, and 

this score makes difference among BugLocator, BLUIR and BRTracer. MAP score is 

0.65 and MRR score of BLIA is 0.75 BugSTAiR locates more bugs in the first ranked 

source file than BLIA in this dataset. Therefore, BugSTAiR’s Top 1% score is better 

than BLIA. MAP score is also better than BLIA. MRR scores of these tools are very 

close to each other. Performance of BL tools are different in Eclipse dataset. BLUIR+ 

has 32.9% in Top 1% score, and this score was the best in IRBL tools before 

BugSTAiR. BLIA and Locus do not have any experiments on Eclipse dataset. 

BugSTAiR’s Top 1% score is 39.52%, MAP is 0.43 and MRR is 0.46 on this dataset. 

Therefore, BugSTAiR outperforms all IRBL tools on Eclipse. The general view of tool 

performances is the same on AspectJ dataset. BLIA was the best performance in IRBL 

tools by 41.5% Top 1% score, 0.39 MAP and 0.55 MRR score. BugSTAiR locates 

more bugs in the first ranked result than BLIA. Experimental results of BugSTAiR in 

AspectJ in Top 1%, MAP and MRR are 42.3%, 0.43 and 0.51 respectively. Tomcat 

dataset has been used in recent studies. Therefore, older studies do not have an 

experimental result on this data set. Locus had the best performance scores in IRBL 

tool by 53.9% on Top1%, 0.57 on MAP and 0.64 MRR scores. BugSTAiR’s 

performance metrics are 55.1%, 0.61 and 0.65 on Top1%, MAP and MRR 

respectively. Hence, BugSTAiR has the best performance in Tomcat dataset. Since the 

last two data sets are developed with the JS-based software development language, 

they do not have any experimental results with other bug localization tools. 
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In short, experimental results show that BugSTAiR performs better than all the 

previous studies that use IRBL. BugSTAiR Top 1 rank is 2% and MAP is 10% better 

than BLIA metrics on AspectJ. BugSTAiR has localized 4.6% bugs in Top 1 and its 

precision is 6.1% better than BLIA in SWT. As mentioned, there is no performance 

metric on Eclipse for BLIA, so BLUIR+ had the best scores. Then, BugSTAiR’s 

performance is compared to BLUIR+. Experimental results show that performance of 

BugSTAiR is 20% better than BLUIR+ in Top 1 metric and its precision is also 30% 

better than BLUIR+ 

 

On the other hand, there is another tool on the comparison table which did not 

compared to IRBL tools, DNNLoc. DNNLoc is a BL tool that uses a deep neural 

network while locating a buggy source. Experimental results of DNNLoc are better 

than BugSTAiR in both Eclipse and AspectJ on Top 1 and MAP metrics. These metrics 

are essential, but MRR scores of DNNLoc are remarkably less than all other tools. 

Ideally, the MRR score should be better than the MAP score in the IR process. In 

detail, the MAP metric deals with the first predicted item and true positive values over 

all positives. MRR metric deals with the only actual rank of the prediction. MRR 

metric could be less than MAP if many predicted results are not found in the actual 

results. Unless a tool is not consistent for all queries in given dataset, the tool can cause 

extra costs in BL processes. According to this fact, BugSTAiR could be more preferred 

tool than DNNLoc.  

 

There are some statistics about the proposed approach that cannot compared to the 

other tools. Execution time of each processes which are source code indexing, change 

history indexing and query retrieval processes is calculated. Number of source files 

and number of changes affect the execution time. All of these statistics are shown in 

Table 6.4.  
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 Table 6.4 Execution Time Statistics of BugSTAiR 
 

Dataset # of Source 

Files 

# of Commits Indexing Time 

(sec) 

Avg IR Time 

(sec) 

SWT 738 33,994 618.8 2.01 

Eclipse 12,302 37,687 11,544 0.71 

AspectJ 3,692 8,291 287 1.7 

Web Application 724 2,543 35.6 0.38 

Tomcat 2,485 62,783 24,348 1.21 

angular-translate 48 1,712 219 0.67 

 

6.1.4 Threats to Validity 
 

This section considers threats to validity. Four types of them are explained: Threats 

to internal validity, threats to external validity, threats to construct validity and 

reliability. 

 

Threats to internal validity is biases that may be done by experimenters. In the 

proposed approach, the same dataset as BugLocator and BLIA have used. These are 

well-known datasets which are used to minimize threats to internal validity. The source 

files and change histories are downloaded from Git repositories of the projects. 

Afterwards, all extended properties such as fixed files and commit logs are verified for 

each dataset. 

 

Threats to external validity is about the generalizability of the results. Most bug 

localization tools only work for well-known open-source datasets. Our approach is 

tested on four datasets of different sizes, different domains and different languages. 

One of these datasets is from an internally developed project for commercial use. 

Therefore, our approach is generalizable to any other open-source or commercial 

project with different languages. A potential threat to validity is the quality of bug 

reports. Bug reports contain many crucial information about the issue for developers 

to fix the bugs. If a bug report has misleading information or does not provide enough 

information, the accuracy of the BugSTAiR is affected poorly. 
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Threats to construct validity is about the qualification of the evaluation metrics. In 

our experiments, three evaluation metrics such as Top N rank, MAP and MRR are 

used. These metrics have been widely used for bug localization benchmarks and are 

well-known IR metrics. Therefore, it is obvious that our research has strong construct 

validity. 

 

In previous bug localization tools, various combinations of control parameters have 

been used to find the best accuracy for each project. Every parameter has been defined 

according to the number of experiments for each dataset. In our approach, the AAW 

process is proposed to optimize the control parameters. All the parameters are 

automatically selected via GA. Therefore, there are no heuristic or experimental tests 

in our approach. 
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

7.1 Conclusion 
 

Software quality and maintainability are getting more important in the last decade 

due to improvements on software development technologies. Quality of a software is 

directly related with processes and practices that are used in SDLC. Typical SDLC has 

iterative phases such as requirement analysis, design, development, testing and 

maintenance. Software engineering discipline defines several activities and techniques 

for each phases of these lifecycle. Although following all defined activities, all 

software’s have bugs in production. Therefore, dealing with bugs is a process that 

always in SDLC.  

 

Bugs can be reported by three different profiles, such as developers, testers, and end-

users. Then, a developer must locate the buggy source to fix it. This process is 

generally difficult and time-consuming. Many researchers studied in this area to 

automate the bug localization process. Bug localization is one of the critical points in 

bug fixing processes. Several approaches are proposed to improve bug localization 

efficiency and accuracy in the last decade. Information retrieval-based BL, machine 

learning based BL, and neural network-based BL are common approaches in BL 

literature. All of the previous studies include state-of-the-art algorithms works for only 

Java-based applications. There is no proposed solution to other popular software 

development languages such as Javascript, Kotlin, and Swift. Besides, all of these 

studies are academic purposes. Therefore, there is not any study or tool that is ready 

for industrial use.  

 

In this research, the proposed approach uses information retrieval and genetic 

algorithms on both JS-based web applications and Java-based back-end applications. 

It is the first BL work that works for JS-based web applications by using IR and ML 

to the best of our knowledge. Lack of the bug report dataset of open-source web 
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applications has made us use one of our commercial web applications. Its bug report 

dataset is used to experiment the proposed approach. Thus, there is no result to 

compare the success of the proposed approach in this area. On the other hand, results 

of experiments show that BugSTAiR has promising performance on Java-based 

applications, so BugSTAiR outperforms any other BL tool. The experimental results 

indicate that BugSTAiR has better performance than BLUIR+ and BLIA. The 

proposed tool localized 20% bugs in Eclipse, 4.6% bugs in SWT and 2% bugs in 

AspectJ. Besides our system has better performance (on the MAP metric) than any 

other tool with all datasets. MAP metrics of BugSTAiR are 6.1%, 10% and 30% higher 

compared to BLIA and BLUIR+. 

 

In addition to this, BugSTAiR is the first generic BL tool with the AAW process, 

which is the most valuable contribution to the state-of-the-art on BL. Adaptation step 

prevents numerous manual experiments to reach optimum weights for all datasets. This 

generic implementation of the BL process provides us to enlarge our datasets easily.  

At last, BugSTAiR is the first BL tool that is ready for industrial usage. All of the 

previous tools are based on academic purposes.  

 

7.2 Future Work 

 

In the future, we would like to integrate image processing features to handle 

screenshots that are taken when a bug or error is occurred. As it is possible to extract 

more valuable text information from images to localize bugs, this feature will help us 

to improve localization accuracy in two ways. First, we can localize only JS files in 

web applications. Second, it will be possible to localize UI related bugs more 

accurately with the help of this feature. In addition to this, we would like to integrate 

the proposed model with ML algorithms such as clustering. It is possible for a bug to 

be related with another bug which was fixed before. Therefore, clusters which are 

created according to the relevance of textual similarity between bug reports can help 

to improve the accuracy of IR results. Finally, configurable software systems and 

microservice architectures will be preferred in both front-end and back-end in the 
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future. If there are any open-source projects like this, we will test the BugSTAiR and 

share experimental results. 
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APPENDICES 

 
APPENDIX: LIST OF ACRONYMS 
 

Acronym Definition 

VSM Vector Space Model 

LDA Latent Dirichlet Allocation 

AAW Adaptive Attribute Weighting 

IR Information Retrieval 

IRBL Information Retrieval-Based Bug Localization 

MAP Mean Avarage Precision 

MRR Mean Reciprocal Rank 

GA Genetic Algorithm 

LSA Latent Semantic Analysis 
 


