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FPGA BASED SMART ANTENNA IMPLEMENTATION

ABSTRACT

Adaptive beamformers for sensor arrays, are widely used in RADAR, SONAR and

communications applications in order to increase the directivity of the sensor system to the

target, while suppressing the interfering signals by adapting the radiation pattern of the antenna

array. A signal processing hardware accomplishes the beamforming by adjusting the weights of

the sensor array system. Eventhough the hardware for similar applications have been generally

preferred as a Digital Signal Processor (DSP), Field Programmable Gate Arrays (FPGA), have

become a promising alternative, for various signal processing technics, with increasing logic

elements they include. In this manner, logic elements included in the FPGA can be arranged

as distinct processors running concurrently, therefore signal processing algorithms running on

distinct processors can be implemented by employing FPGA technology.

Systolic arrays are processor arrays, that operate concurrently and pass data between the

neighbor processors in order to perform complex functions. Optimal weight extraction based

on systolic structures have been the subject of various researches for nearly two decades. In

this thesis we propose a rectangular systolic structure for QR decomposition based recursive

least squares algorithm for a minimum variance distortionless response beamformer and a

folding scheme for this systolic structure. Folding a systolic array reduces the die size of the

hardware implementation, accordingly systolic arrays for larger sensor systems will be able to

be implemented without employing a larger FPGA chip.

In this thesis, the SystemC library is preferred for developing the necessary software and

for the implementation of the algorithm on the hardware. The SystemC is accepted by IEEE

as a standard for system development and simulation in 2006. The proposed systolic structure

is then implemented on a FPGA based DSP Development board and the results are compared

with the conventional systolic array based beamformer hardware. This method can be applied

to sensor array beamforming application.

Keywords: Smart Antenna Systems, Systolic Array Architectures, FGPA, Digital Signal

Processing
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FPGA TABANLI AKILLI ANTEN UYGULAMASI

ÖZ

Uyarlanabilir huzme yönlendiriciler RADAR, SONAR ya da iletişim sistemleri gibi

uygulamalarda yayg�n olarak kullan�lmakta, böylece hedefe do�gru olan yönlülük artt�r�l�rken,

kar�şan işaret(ler)in oran� düşürülmektedir. Huzme yönlendirme alg�lay�c�lar�n işaretlerinin,

belli algoritmalar yard�m�yla işaret işleme donan�m�ndan elde edilen a�g�rl�klar ile çarp�lmas�

ile gerçekleştirilir. Genel olarak algoritmalar say�sal işaret işlemciler (S�I�I - DSP) üzerinde

koşan yaz�l�mlar olarak tasarlanm�ş ve uygulanm�şt�r, fakat alan programlanabilir kap� dizileri

(APKD-FPGA) üzerindeki mant�ksal elemanlar�n artmas� ile say�sal işaret işleme algoritmalar�

için umut veren donan�mlar haline gelmiştir. Her ne kadar APKD say�sal işaret işleme için

yeterli eleman� bar�nd�rsa da temel olarak algoritmalar�n ba�g�ms�z işlemciler üzerinde eş

zamanl� çal�şacak şekilde tasarlanmas� gereklidir.

Sistolik diziler, eşzamanl� çal�şan ve komşu işlemciler aras�nda veri aktar�m� yaparak

karmaş�k işlemleri gerçekleştirmeye yarayan işlemci dizileridir. Sistolik diziler kullan�larak

en uygun a�g�rl�klar�n elde edilmesi yaklaş�k yirmi y�ld�r üzerinde çal�ş�lan bir konudur. Bu tez

çal�şmas� kapsam�nda en az de�gişimli bozunumsuz tepki (MVDR) huzme yönlendiricisi için

QR ayr�şt�mas� temelli özyineli en küçük kareler (RLS) algoritmas�n�n üzerinde çal�şabilece�gi

bir dikdörtgen sistolik dizi yap�s� ve bu yap� için bir ayr�şt�rma ve katlama şemas� önerilmektedir.

Sistolik dizilerin ayr�şt�r�l�p katlanmas�ndaki amaç, yap�n�n uygulanabilmesi için gerekli mant�k

kap�s� miktar�n� azaltarak, APKD'nin daha verimli kullan�lmas�n� sa�glamakt�r.

Bu çal�şmada, sistolik dizinin benzetimi ve uygulamas� için C++ programlama dilini temel

alan SystemC kütüphanesi tercih edilmiştir. SystemC 2006 y�l�nda IEEE taraf�ndan standart

olarak kabul edilmiş ve sistem tasar�mlar� için gelecekte önem kazanmas� beklenen bir araçt�r.

Önerilen yap� APKD tabanl� bir işaret işleme kart� üzerinde uygulanm�ş ve sonuçlar geleneksel

sistolik dizi yap�s�ndan elde edilen sonuçlarla karş�laşt�r�larak sunulmaktad�r.

Anahtar Sözcükler: Ak�ll� Anten Sistemleri, Sistolik Dizi Yap�lar�, APKD, Say�sal �Işaret
�Işleme
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CHAPTER ONE

INTRODUCTION

Mobile communication systems are one of the emerging technologies in recent years. There

are now more than 2.2 billion mobile phone subscribers worldwide (ITU 2006), over one over

third of the human population. The growth rate of the mobile phone subscribers, which is

given in Figure 1.1, is signi�cantly faster than the landline phone service, which now reaches

1.85 billion users after a century after it was invented. This rapid growth of demand on

mobile communications, force the service providers to improve their capacity by employing

new technologies on their systems.
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Figure 1.1 Worldwide Cellular Phone Usage Statistics (ITU 2006)

Mobile communication systems are cellular systems that employ base stations to serve

its subscribers. Each base station serves a certain region called the cell. The conventional

antennas employed in the existing cellular systems are omnidirectional or directional antennas

which are presented in Figure 1.2. Omnidirectional antennas are employed in base stations

since the early days of the mobile systems. Base stations are located at the center of each

cell and the transmitter radiates to every point inside the cell at a speci�ed frequency with an

omnidirectional antenna. Directional antennas, also called as sectoral antennas, have been used

to overcome the capacity leakage of the cells with omnidirectional antennas. More than one

directional antenna can be placed on a base station, each pointing to a different direction so

that it is possible to sectorise the cell and use different frequencies in each sector for capacity

improvement (Liberti & Rappaport, 1999).

The capacity improvement of the mobile system by using sectoral antennas has become

1
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Figure 1.2 Directional and omnidirectional antennas for base stations.

insuf�cient recently, especially in dense urban areas as the number of subscribers increase, so

micro or pico cells are employed inside bigger cells to overcome the problem. Smart antenna

systems, however, dynamically sectorize a cell. So that multiple users inside the coverage

area of the base station can share the same physical channel without any interference, hence

the capacity of the cell can be improved dynamically as can be seen in Figure 1.3 (Zooghby,

2005).

Figure 1.3 Base station with a smart antenna

As it can be observed in Figure 1.4, a smart antenna system is an antenna array equipped

with a digital signal processor. The digital signal processor adjusts the complex weights of the

antennas so that the radiation pattern of the antenna array is adjusted according to the locations

of the users (Liberti & Rappaport, 1999).

Even if the smart antenna technology is a promising one for improving the capacity of the
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Figure 1.4 Block diagram of a smart antenna

communication system, signal processing algorithms with high operation count may affect the

performance of the whole system and cause a degraded performance. Although more powerful

signal processing hardware emerge each day, research on improving the performance of the

algorithms are also carried out for smart antenna systems (Boukalov & Haggman, 2000).

Parallel algorithms are promising candidates for high performance signal processing

applications like smart antenna systems. Systolic array is an architecture on which parallel

algorithms can run. A systolic array is an arrangement of processors in an array where data

�ows synchronously between neighbors across the array, usually with different data �owing in

different directions. Processors perform a sequence of operations on data that �ows between

them and operate concurrently. Each processor at each step takes in data from one or more

neighbors, processes it and, in the next step, outputs results in the opposite direction(s) (Quinton

& Robert., 1991). Two basic types of systolic arrays; linear and rectangular are demonstrated in

Figure 1.5. H. T. Kung and Charles Leiserson were the �rst to publish a paper on systolic arrays

in 1978 (Kung & Leiserson, 1978) , and coined the name. Systolic array based recursive least

squares algorithm was �rst proposed by Gentleman & Kung (1981) and many beamforming

algorithms based on systolic arrays have been proposed since then.

A Field Programmable Gate Array (FPGA) is an adequate hardware for implementing a
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Figure 1.5 Some simple examples of systolic array models.I linear

systolic array, II square systolic array

parallel processing structure such as a systolic array. A gate array is an IC chip on which gates

are placed in matrix form without connections among the gates. FPGAs are programmable gate

arrays, so that, users can easily and inexpensively realize their own logic networks in hardware.

FPGAs are composed of repeating units, where units consist of programmable logic devices

(PLD), logic gates, random-access memory, and often other types of components (Muroga,

2000). The internal structure of a bus based FPGA is presented in Figure 1.6. The user describes

the interconnections and functions of these units by using hardware description languages,

to function as distinct processors that will run inside the FPGA concurrently. Thus we can

conclude that they are suitable for a systolic array implementation.

1.1 Aim of the Thesis

The aim of this thesis is to develop and implement a smart antenna system based on FPGAs.

The FPGAs have the advantage that the logic blocks can be programmed as distinct processors

for specialized functions and can run concurrently as denoted in the previous section. The

concurrent operation of the processors will improve the performance of the signal processing

algorithm and the throughput rate of the weights form the hardware.
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Figure 1.6 Bus-based array type of FPGA

We preferred the QR decomposition based recursive least squares algorithm (QRD RLS) as

the beamforming algorithm for the smart antenna which will run on a systolic array.

Eventhough parallel operation of the algorithms on systolic arrays improve the performance

and reduce the operation count, mathematical operations such as division and square root

demand large number of logic elements and the FPGA chip may lack of resources for most

of the applications. Our aim is to reduce the number of logic elements for the implementation

by partitioning and folding the systolic array structure which is also proposed in this thesis.

For the development and implementation of the systolic array the SystemC library for the

C++ programming language is preferred since it reduces the efforts for developing signal

processing algorithms with large operation count.

1.2 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter Two presents smart antenna systems

and their application to mobile communications in detail. Chapter Three introduces the systolic

array based QRD RLS algorithm for beamforming of the smart antenna system while the

proposed folded systolic array based MVDR beamformer is described in Chapter Four.

Hardware and software implementation of the conventional and proposed beamformer systems

is given in detail in Chapter Five whereas results of the implementation are presented in Chapter

Six. The results of the thesis are concluded and discussed in Chapter Seven.



CHAPTER TWO

SMART ANTENNAS FOR MOBILE COMMUNICATIONS

A smart antenna extracts a desired signal d(n), out of a linear combination of signals

incident on the antenna array, by arti�cially forming a beam into the direction of the desired

user and minimizing the in�uence of the signals from the interfering users by multiplying the

vector of incident signals onM antennas, x(n) by a weight vector w as;

d(n) = wHx(n) (2.0.1)

The weights of the array elements are calculated by adaptive algorithms running on a signal

processing hardware. Figure 2.1 shows the radiation pattern of a smart antenna, which is

directing its main beam to the desired user, and a null of the array factor to the interfering

user.

Figure 2.1 Radiation pattern of a smart antenna

2.1 Types of Smart Antennas

Smart antennas can be examined in two basic types; the switched beam antennas and the

adaptive beamforming antennas.

6
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2.1.1 Switched Beam Antennas

The simplest implementation of a smart antenna is the switched beam system, in which

a single transceiver is connected to the RF beamforming unit. The RF beamforming unit,

switches to one of the prede�ned set of beams, according to the received signal power or

minimum bit error ratio. The maxima and nulls of the radiation pattern can not be adjusted for

the directions of users, so this technique has limited capabilities as a smart antenna.

Figure 2.2 Block diagram of a switched beam antenna

2.1.2 Adaptive Beamforming Antennas

The adaptive beamforming antennas use antenna arrays which are equipped with strong

signal processing capability hardware to automatically change the beam pattern in accordance

with the changing signal environment. It not only directs maximum radiation in the direction

of the desired mobile user, but also introduces nulls at the interfering directions, and tracks

the desired mobile user at the same time. Figure 2.3 presents the receiver block of an adaptive

beamforming antenna. The adaptation is achieved by multiplying the incoming signal with

complex weights and then summing them together to obtain the desired radiation pattern. These

weights are computed adaptively by the signal processor to adapt the pattern to the changes

in the signal environment. The complex weight computation based on different criteria is

incorporated in the signal processor in the form of software algorithms.

The transmitter part of a smart antenna has a similar structure with the receiver part. The
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Figure 2.3 Receiver block of an adaptive beamformer

block diagram of the transmitter part is given in Figure 2.4. Here the weights derived from the

received signals are also used for the transmitter block. If the uplink and downlink frequencies

are close enough, same weights will be adequate for both of them.
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End
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End

RF Front
End

DAC

DAC

DAC

w

w

w

. . .

Up
converter
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converter

Up
converter
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Figure 2.4 Transmitter block of an adaptive beamformer

Forming the beam of an antenna adaptively by assigning weights to the antennas can be

realized by employing different techniques which are explained in detail below.
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2.1.2.1 Beamforming Techniques

If, L signals with arrival angles {�1; �2; :::; �L} impinge on a uniform linear array withM

elements, the received signal at themth element at time instant t can be written as;

xm(t) =

LX
i=1

si(t)e
jkd sin �i + n(t) (2.1.1)

where k denotes the wave number and n(t) denotes the noise at that time instant. Same

equation can be represented in vector form as;

X(t) = AS(t) +N(t) (2.1.2)

for

X(t) = [ x1(t) x2(t) ::: xM (t) ]
T

S(t) = [ s1(t) s2(t) ::: sM (t) ]
T

N(t) = [ n1(t) n2(t) ::: nM (t) ]
T

where S(t) denotes the signals impinging on the array elements, N(t) denotes the noise

received by the elements and A is the steering matrix, whose columns are the array response

vectors for a signal impinging from �i direction, given by

A = [ a(�1) a(�2) ::: a(�L) ]
T

where

a(�L) = e
jkd sin �L

In adaptive arrays, complex weights are applied to the element outputs given by;

W = [ w1 w2 ::: wM ]T (2.1.3)

Then the array output can be written as;

y(t) =

MX
l=1

x
l
(t)w�

l
=WHX(t) (2.1.4)

2.1.2.1.1 Beam Steering In the beam steering approach, phase angles of the weights are

selected to steer the main beam of the array in a particular direction, while magnitude of the

weights are unchanged. In other words, the array main beam is steered toward the DOA of the

desired source. This technique can be used with spatial reference algorithms since it needs the

DOA information.
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Figure 2.5 Block diagram of a beamformer

2.1.2.1.2 Minimum Mean Square Error (MMSE) In the MMSE criterion, the error

between the desired signal d(t) and the output of the beamformer is minimized. The mean

square error is given by;

E[e(t)] = Ef[d(t)�WHX(t)][d(t)�WHX(t)]Hg (2.1.5)

The gradient of the MMSE with respect toW can be written as

rE[e(t)] = Ef[�2d(t)XH(t) + 2X(t)XH(t)Wg (2.1.6)

The optimum weight can be evaluated by setting this gradient to zero;

Wopt = R
�1r (2.1.7)

where R is the array correlation matrix and r is given by (Zooghby, 2005);

r = E[dH(t)X(t)] (2.1.8)

2.1.2.1.3 Minimum Variance Distortionless Response Beamformer (MVDR) The aim of

the MVDR system is to minimize the output residual of the total interference and noise which
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can be expressed as;

minWHRW subject toWHAd = c (2.1.9)

where Ad is the steering matrix for the direction of the desired signals and c is the constraint

vector. If all elements of c is 1 then the technique is called the MVDR. In order to minimize

the variance of the output power, we have to minimizeWHRNW . If we take the gradient of

the equation with respect to W and set it to zero we get;

5[WHRNW + �(1�WHAd)] = RNW � �Ad = 0 (2.1.10)

thus the optimum weight vector can be evaluated as;

Wopt = �R
�1
N Ad (2.1.11)

where � is given by;

� =
1

AHd R
�1
N Ad

(2.1.12)

For an M-element array with M degrees of freedom, the number of interferers must be less

than or equal to M � 2, since one has been used by the constraint vector in the look direction.

Some apriori knowledge of the desired signal is required by the MVDR beamformer. Since

in the MVDR approach the weight vector that minimizes the output power is a function of

the spatial correlation matrix, some degree of coherency between the uplink and downlink

is needed to provide an estimate of the correlation matrix for transmission. One advantage

of the MVDR beamformer is that it does not require any knowledge of the directions of the

interference, rather only those of the desired signal(s) (Veen & Buckley, 1999).

2.2 Spatial Channel Model

Conventional propagation models, focus on the power delay pro�le without taking into

account the angular distribution of the arriving signals to the receivers. Channel models that

characterize the arrival angles of multipath components are known as the spatial channel models.

The directional channel impulse response can be written as;

h(t; � ; �; �) =

LX
l=0

Al(t)e
j'l(t)a(�l(t); �l(t))�(t� � l(t)) (2.2.1)
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where Al(t) is the amplitude, 'l(t) is the phase, and � l(t) is the time delay of the signal

component and a(�; �) is the response of the array to a signal arriving from the direction (�; �)

given by (Zooghby, 2005);

a(�; �) = [ 1 e�j ::: e�j(P�1) ]
T (2.2.2)

for a uniform linear array (ULA) with M elements given in Figure 2.6 the array response

becomes;

a(�) = [ 1 ejkd cos � ::: ej(M�1)kd cos � ]T (2.2.3)

Since the ULA elements are placed on the z axis, the array response does not change with the

colatitude angle (�).

Figure 2.6 Uniform Linear Array (ULA)

2.3 Adaptive Beamforming Algorithms

Beamforming algorithms are used to calculate the complex weights w for the individual

antenna elements. They can be investigated in three main types; temporal reference (TR)

algorithms, spatial reference (SR) algorithms and blind algorithms. A branching chart of these

algorithms are given in Figure 2.7. According to a previous work by Fuhl & Bonek (1998)
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temporal reference algorithms and spatial reference algorithms perform equally well. However

temporal reference algorithms are the most robust against interferers close to the base station

with wide angular spread.

NonlinearLinear
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Figure 2.7 Adaptation algorithms for smart antennas (Fuhl & Bonek, 1998)

2.3.1 Temporal Reference Algorithms

TR algorithms are based on the knowledge of some temporal properties of the received

signals, such as the known training sequence within the burst, or the constant envelope of the

signal. The receiver adjusts the complex weights in such a way that the difference between the

combined signal and the known training sequence is minimized.

Most of the downlink beamforming approaches are based on the knowledge of the DOAs.

This information is not directly determined by TR algorithms, therefore an additional SR

algorithm would have to be included to estimate the DOAs which increases the computational

complexity of the signal processing unit.

The problem in a TR algorithms is to minimize the mean square error between the array

output and the reference signal d by choosing the right weight vector w. The solution to this
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problem is given by;

w = R�1% (2.3.1)

whereR is theM �M covariance matrix of the antenna output x(n) and it is given by;

R = E[x(n)xH(n)] (2.3.2)

and % is theM � 1 cross-correlation vector between the antenna output x(n) and the desired

response d;

% = E[x(n)r�(n)] (2.3.3)

whereM is the number of antennas.

If we replace the covariance matrix R and the cross-correlation vector % by their estimates

from a �nite length sequence bR and b%, respectively, we speak of the Direct Matrix Inversion
(DMI) or Sampled Matrix Inversion (SMI) solution.

The direct inversion of the estimated covariance matrix requires large number of operations

as stated in Fuhl & Bonek (1998). As a solution to this problem algorithms determining the

weight vector w iteratively have been developed. Least Squares (LS), Least Mean Square

(LMS) and Recursive Least Squares (RLS) algorithms are examples to the iterative algorithms.

2.3.1.1 The Least Mean Squares Algorithm

As it is the case with all temporal reference algorithms, a reference signal (d(n)) is used to

update the weights at each iteration as follows;

w(n+ 1) = w(n)� �5w (MSE) (2.3.4)

where 5w is the gradient of the mean square error (MSE) between the reference signal d(n)

and the array output x(n) given by

MSE(w(n)) = E[
��d(n+ 1)� wH(n)x(n+ 1)��2] (2.3.5)

= E[jd(n+ 1)j2] + wH(n)Rw(n)� 2wH(n)E[x(n+ 1)d(n+ 1)]

where R is the array correlation matrix.

In the LMS algorithm main aim is to �nd the optimum weight that would minimize the

MSE. Modifying the weights in the negative direction of the MSE, should minimize the error
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surface because of the quadratic structure of the MSE (Zooghby, 2005). The gradient of the

MSE can be calculated as;

5wMSE(w(n)) = 2Rw(n)� 2E[x(n+ 1)d(n+ 1)]

= 2x(n+ 1)xH(n+ 1)w(n)� 2x(n+ 1)d(n+ 1) (2.3.6)

= 2x(n+ 1)"�

where " is the error given by;

" = wH(n)x(n+ 1)� r(n+ 1) (2.3.7)

and the weight vector can be updated as;

w(n+ 1) = w(n)� �x(n+ 1)"� (2.3.8)

The constant �, also called the step size, determines how close the weights approach the

optimum value after each iteration and it controls the convergence speed of the algorithm.

Typical values for the step size are 0 < � < Trace(R) (Zooghby, 2005).

2.3.1.2 The Recursive Least Squares Algorithm

An alternative to LMS is the exponentially weighted recursive least squares (RLS) algorithm.

At the nth time instant , w(n) is chosen to minimize a weighted sum of past squared errors;

min
w(n)

nX
�n�t

��d(n)�wH(n)x(t)
��2

t=0

(2.3.9)

where � is a positive constant less than one which determines how quickly previous data are

forgotten.

The algorithm is initialized by �rst setting

R�1(0) =
1

�
I; � > 0 (2.3.10)

w(0) = 0 (2.3.11)

where I is the identity matrix and � is a very small number.

The weights are then updated as;

w(n) = w(n� 1)� k(n)��(n) (2.3.12)
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where k(n) and �(n) are given by (Veen & Buckley, 1999);

k(n) =
��1R(n� 1)x(n)

1 + ��1xH(n)R(n� 1)x(n)
(2.3.13)

�(n) = d(n)� wH(n� 1)x(n) (2.3.14)

2.3.2 Spatial Reference Algorithms

Spatial reference (SR) algorithms rely on the information regarding the direction of arrival

of the desired signal and its multipath components. If the received signal is a narrowband

signal, the propagation delay between two neighboring antenna elements corresponds to a

certain phase shift. SR algorithms exploit this fact to estimate the direction of arrivals (DOA)

and, form the desired antenna patterns using this information as stated by Zooghby (2005).

These patterns usually have main beams towards the direction of the desired user and nulls at

the interferers' directions as stated in previous sections.

Beamforming by using spatial algorithms is achieved as follows. First some DOA estimation

technique is applied to the received signal to determine the signal's DOAs and their associated

amplitudes. The DOA with the maximum amplitude �max, which would indicate the strongest

path, is selected and its array response vector a (�max) is chosen as the downlink beamforming

weight (Zooghby, 2005).

The signals transmitted by each user will arrive at the BS from different directions due

to multipath propagation. The SR algorithm will resolve these paths separately so that an

optimum combining scheme can be used. The estimated DOAs can be directly used for

downlink beamforming.

The array factor has to be known exactly to estimate the DOA's, all deviations from the ideal

case will reduce the performance of the estimation process. Also the number of resolvable

signals depends on both the number of antenna elements and the coherence of the incident

signals which limits the performance of the algorithms.

If the signals arrive from angles which are too close to be resolved, the algorithm will not

be able to perform its task anymore and one user must be assigned to another physical channel.

Practically the vertical angular spread can be neglected in most practical cases so that a
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linear array is satisfactory in most applications.

2.3.2.1 Multiple Signal Classi�cation (MUSIC)

The approach of the MUSIC algorithm is to estimate the dominant subspace of the

observations, and then �nd the elements of the array manifold that are closest to this subspace.

The array output may be written as;

x(t) = As(t) + n(t) (2.3.15)

where s(t) is the amplitude and phase of the signals and n(t) is the additive noise at time instant

t. If no noise were present, determining the direction of arrival's (DOA) was �nding the unit

elements of array manifold. In the presence of noise a different method is necessary since the

observations are full rank.

The subspace estimation step is achieved by performing an eigendecomposition on the

covaricance matrix R of the received data. If the noise and signals are uncorrelated, and the

noise is spatially white the covariance matrix can be evaluated by;

R = E[x(t)x�(t)] = ASA� + �2I (2.3.16)

where S is the covariance matrix of the emitter signals, A is the array response vector and

�2 is the noise power in each channel. S must be full rank to apply the MUSIC algorithm.

The eigendecomposition ofR has the following form as mentioned by Swindlehurst & Kailath

(1992) ;

R =

dX
i=1

�ieie
�
i = Es�sEs + �

2EnE
�
n (2.3.17)

whereEs is composed of n eigenvectors corresponding to the �rst d eigenvalues, where d is the

rank of the matrix A. The remaining (d-m) eigenvectors compose the En matrix. The span of

the Es de�nes the signal subspace and the En de�nes the noise subspace (Tamer & Kokturk,

2004). So that if R is available, we can evaluate the DOA's by �nding the vectors on the array

manifold that have zero projection in the noise subspace which are the zeros of the function

(Swindlehurst & Kailath, 1992);

f(�) =
a�(�)EnE�na(�)

a�(�)a(�)
(2.3.18)
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However, due to various sources of error, only an estimate bEn of the noise subspace eigenvectors
is available (Swindlehurst & Kailath, 1992). So by using the MUSIC algorithm we estimate

the DOA's as those values of � that minimize the;

f(�) =
a�(�)bEnbE�na(�)
a�(�)a(�)

(2.3.19)

2.3.2.2 Estimation of Signal Parameters via Rotational. Invariant Techniques (ESPRIT)

ESPRIT is similar to MUSIC in that it exploits the underlying data model and generates

estimates that are asymptotically unbiased and ef�cient. In addition, the algorithm does not

require knowledge of the array geometry and element characteristics; thus array calibration is

not required, eliminating the need for the associated storage of the array manifold. It is also

computationally less complex since it does not need a search procedure (Roy et al. (1986)).

Given the sensor array system de�ned by equations 2.3.15 and 2.3.16. If we de�ne the array

response vector as;

A = [AT ; (A�)T ] (2.3.20)

where the matrix � is a diagonal k� k matrix of the phase delays between the doublet sensors

for the d wavefronts;

� = diag[ej�1 ; :::; ej�1 ]; �k = !0�sin �k=c (2.3.21)

TheM � k matrix A is the direction matrix whose columns are the signal direction vectors for

the k wavefronts. De�ning Czz as;

Czz = Rzz � �2I =

24Cxx Cxy

Cyx Cyy

35 =
24 ASA� AS��A�

A�SA� A�S��A�

35 (2.3.22)

The basic concept upon which ESPRIT, is based is the elements of � can be obtained

without knowledge of A. They are the non-zero generalized eigenvalues associated with the

matrix pencil {Cxx,Cxy}. Furthermore, the associated generalized eigenvectors can be shown

to be proportional to optimal signal copy vectors (Roy et al., 1987).
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2.3.3 Blind Algorithms

Blind algorithms try to extract the unknown channel impulse response and the unknown

transmitted data from the received signal by the antenna elements. Eventhough they do not

know the actual bits, blind algorithms use additional knowledge about the transmitted signal

like the constant envelope or the �xed symbol rate of the signal or the �nite alphabet property

of the modulation scheme.

Blind algorithms with training sequences are called the semi-blind algorithms which show

better performance than temporal reference algorithms or blind algorithms alone (Laurila,

2000). The computational complexity of pseudo-blind algorithms is reduced in comparison

to blind ones, which is a very important fact for their use in practical systems (Robert, 1998).

2.3.3.1 Constrained RLS Algorithm

A constrained algorithm is a temporal reference algorithm which does not require a desired

signal, instead it only requires the look direction information, which is the probable direction of

arrival of the signal from the desired user. In the adaptive process, the algorithm progressively

learns statistics of noise and interference arriving from directions other than the look direction

(Frost, 1972).

The constrained algorithms are able to maintain a chosen frequency response in the look

direction, while minimizing the output noise power because of a simple relation between the

look direction frequency response and the weights of the array elements. If we choose the look

direction 0o (perpendicular to the antenna array), then the wavefront received by the sensor at

the center being the reference with 0 phase angle, each sensor at both sides will have equal

phase delays. However waveforms arriving other than the look direction will not produce

similar voltage components on any of the antennas. The interfering waveforms are canceled by

using an adaptive algorithm.

For a speci�ed look direction �i the constraint vector is given by

ci
h
= [ 1 ej(2���)d sin �i ej(2���)2d sin �i (2.3.23)

: : : ej(2���)(N�1)d sin �i ]
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and the array response is denoted as

ri = ci
h
w (2.3.24)

So the optimized weight vector of the MVDR beamformer can be evaluated as (Huo & Lung,

1998)

wiopt(n) =
riR�1xx (n)c

i

ciHR�1xx (n)c
i

(2.3.25)

2.4 Advantages of Smart Antenna Systems

Regardless of differetn techniques and algorithms mentioned in the previous section, smart

antennas systems brings out important advantages to the communication systems to which they

are applied.

The most important advantage of smart antenna employment is improving the network

capacity. By using a smart antenna a single base station can serve more users sharing the same

physical channel. This technique is called the Spatial Division Multiple Access (SDMA). If

there exist two co- channel users as presented in Figure 2.8, then one of the adaptive arrays

directs its main beam to the user 1 and a null of the array pattern to the user 2 and the other

arrays directs its main beam to the user 2 while placing a null of the pattern in the direction

of user 1. So, user 1 and user 2 can communicate with the base station on the same physical

channel. More co-channel users can exist if we use more adaptive antennas in a smart antenna

system.

Figure 2.8 SDMA for mobile communications

Interference reduction on the downlink and on the uplink are also important advantages of

smart antenna systems. Interference can be rejected using directional beams and/or by forming
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nulls in the base station receive antenna pattern in the direction of interfering co-channel users.

A base station equipped with smart antennas is less likely to interfere with nearby co-

channel base stations than if it used an omnidirectional antenna.

Interfering users can be blocked by, forming base station antenna array radiation pattern

nulls in the directions of interfering signals that come from co-channel mobiles. Interference

rejection can also be ful�lled by steering maximas of the base station receiving antenna towards

mobiles within a cell, just like the interference reduction approach on the downlink (Dietrich,

2000).

In rarely populated areas, extending coverage is often more important than increasing the

capacity of the system. In such cases, the gain provided by adaptive antennas can extend the

range of a cell to cover a larger area and more users, than would be possible with omnidirectional

or sector antennas. The high gain of the smart antenna systems, also increases the transmission

quality and the Quality of Service of the communication system and enable usage of higher

data rates.

The transmitting power for the uplink and downlink are automatically adjusted in cellular

communication systems. Thus increasing the transmitted power with a more directive beam,

by using a smart antenna system, increases the power received by the user. So that the auto

gain control system at the users mobile device reduces the transmitting gain and also systems

power consumption.

2.5 Employing Smart Antennas in Mobile Communication Systems

The application of adaptive antennas is not feasible and practical in the mobile side of

current mobile communication systems because of the limited physical dimensions for a large

enough antenna array and also the signal processors (Robert, 1998) . So, throughout this thesis

we consider adaptive antennas at the base station side only.

In mobile communications the signal from the user comes from an angle range around

the nominal DOA due to local scattering. Since this angular spread strongly in�uences spatial

separability, it is an important parameter for setting up applications using adaptive antennas. As
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the angular spread increases especially for urban environments, it becomes harder to employ a

smart antenna system. Thus the best channel assignment strategy for the system is to mutually

maximize the angle between the DOAs of the different users.

In existing systems such as GSM, changes in the system's architecture are necessary to

exploit the bene�ts of smart antennas. The base station (BS) has to be equipped with the

adaptive antenna facilities, and therefore the hardware and software of the BS have to be

upgraded. But, because of the additional spatial information, employing SDMA also has an

impact on the protocols used, thus they have to be updated too.

During call setup, if the user tries to establish a connection, the mobile station request a

signalling channel for setting up the call. This call request signal is also used for calculating

the weights for forming the beam of the smart antenna system. Since this request contains no

training sequence, only algorithms that do not need this information (spatial reference or blind

algorithms) can be used at the base station for calculating the weights.

If the base station requests a connection to the mobile station, the call request message has

to be transmitted into the whole cell area, since the location of the user is not known by the base

station initially. When the mobile station answers the call request the beamforming hardware

calculates the weights of the antennas and forms the beam of the smart antenna system.

In conclusion, there are no principle restrictions preventing the utilization of SDMA in GSM

and smart antenna systems can replace the conventional antennas in cellular communication

systems., but much care has to be taken concerning protocol aspects (Robert, 1998). The

cellular system has to control the smart antenna beamforming hardware to direct the maxima

of the array to the desired user and null of the array to the interfering users.



CHAPTER THREE

SYSTOLIC ARRAYS FOR BEAMFORMING ALGORITHMS

Eventhough the smart antenna systems improve the capacity and communication quality

of the communication systems, they require much processing power and may cause delays or

performance degrading of the system.

Parallel algorithms improve the performance of the system by splitting the operations to

many parts and processing them concurrently on distinct processors. As a result, many

researchers have focused on parallel processing algorithms for signal processing applications.

Systolic array is an architecture on which parallel algorithms can run. Systolic arrays are arrays

of processors which are connected to the nearest neighbors in a mesh-like topology. Processors

perform a sequence of operations on data that �ows between them and operate concurrently.

Each processor at each step takes in data from one or more neighbors, processes it and, in the

next step, outputs results in the opposite direction(s).

3.1 Systolic Arrays

Systolic array, takes their names from the analogy with the regular pumping of blood by the

heart. It is similar with the blood pumping of the heart since data �ows synchronously between

processing elements of the array with each trigger signal for example a clock signal.

A systolic array is an arrangement of processors in an array where data �ows synchronously

between neighbors across the array, usually with different data �owing in different directions.

Each processor at each step takes in data from one or more neighbors, processes it and, in

the next step, outputs results in the opposite direction(s) and the result of the operation can

be evaluated from one of the cells one by one. Two basic types of systolic arrays; linear and

rectangular were presented in Figure 1.5 in Chapter One. "H. T. Kung and Charles Leiserson

were the �rst to publish a paper on systolic arrays in 1978 (Kung & Leiserson, 1978) , and

coined the name" as mentioned in Chapter One.

Matrix multiplication is a good example for a systolic algorithm application. As presented

in Figure 3.1 one matrix is fed in a row at a time from the top of the systolic array and is

passed downwards, while the other matrix is fed in a column at a time from the left hand side

23
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of the systolic array and passes from left to right. Dummy values occurs in the cells until each

processor has seen one whole row and one whole column of the input data. At this point, the

result of the multiplication is stored in the array and can now be output a row or a column at a

time (Kung, 1985).

Second  Matrix

First M
atrix

Systolic Array

Figure 3.1 Matrix multiplication using a systolic array

Systolic array-based recursive least squares algorithm has �rst been proposed by (Gentleman

& Kung, 1981). Their algorithm was based on the QR decomposition technique and their

structure was pipelined on a triangular array. However, their pipelined structure consisted of

two separate steps of QR-updates and backward substitution which made it very hard to realize.

A �xed parallelogram structure for the parallel weight extraction was proposed by

McWhirter (1990). His approach was based on �rst adapting the array to the input data and

then freezing the parameters and evaluating the weights. Updating and evaluating the weights

is not ef�cient, as the systolic array needs to be frozen at each update period.

McWhirter & Shepherd (1989) suggested a systolic array for a minimum variance

distortionless response (MVDR) beamformer based on �rst forming the upper triangular matrix

by using Given's rotations and then freezing the array and evaluating the inverse covariance

matrix and store it in the processing elements. The procedure is then run in the �rst mode and

the weights are obtained at the outputs consequently.

A systolic array architecture for parallel weight extraction without the need for forward
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and backward substitution is presented by Tang et al. (1994). Their algorithm is mainly based

on the systolic array presented by McWhirter & Shepherd (1989) and function recursively to

update the instantaneous optimal weight vector after the initialization process. Their systolic

architecture is also a modular and expandable one that makes it suitable for VLSI hardware

implementation.

3.2 The QRD RLS Algorithm

Weights (w(n)) of the sensors of the RLS algorithm at time tn can be found as

Rxx(n)w(n) + %(n) = 0 (3.2.1)

Here Rxx is the (M � 1) � (M � 1) data covariance matrix X , where M is the number of

sensors, and %(n) is the (M � 1) element cross correlation vector McWhirter (1990) which is

given by

Rxx(n) = XH(n)X(n) (3.2.2)

%(n) = XH(n)d(n)

We can use the QR decomposition technique, used in solving matrices, for evaluating

equation 3.2.1. The QR decomposition of a matrix is the decomposition of the matrix into

an orthogonal and a triangular matrix. This matrix decomposition can be used to solve linear

systems of equations like the linear least squares problem.

The QR decomposition can be applied to the least squares problem given above as;

Q(n)X(n) =

�
R(n)

0

�
(3.2.3)

where Q(n) and R(n) denote (M � 1)� (M � 1) orthogonal matrix and (M � 1)� (M � 1)

upper triangular matrix respectively. Since Q(n) is an orthogonal matrix the residue vector

e(n) can be evaluated as;

ke(n)k =




�R(n)0

�
w(n) +

�
u(n)

v(n)

�



 (3.2.4)
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where �
u(n)

v(n)

�
= Q(n)y(n) (3.2.5)

and the d(n) denotes the reference data of the systolic array (McWhirter, 1990). The RLS

weight vector that minimizes ke(n)k can be computed by

R(n)w(n) + u(n) = 0 (3.2.6)

Since our system is a real time one we need to refresh R(n) and u(n) as

QT �
�
R

xT

�
| {z }�

R

0

� �w = QT �
�
y

�T

�
| {z }�

u

�

�
(3.2.7)

Thus for each new data vector we �rst need a triangular update step and and then backsolve the

previous equation (Manolakis et al., 2005).

3.3 Implementation of the QRD RLS Algorithm using Givens Rotations

3.3.1 Givens Rotations

A Givens rotation can be represented by a matrix as;

G(i; k; �) =

266666666666666664

1 � � � 0 � � � 0 � � � 0
... . . . ...

...
...

0 � � � c � � � s � � �
...

... . . . ...
...

0 � � � �s � � � c � � �
...

...
... . . . ...

0 � � � 0 � � � 0 � � � 1

377777777777777775
(3.3.1)

where c represent the cosine term and s represent the sine term given by c = cos(�), s =

sin(�). The c and s terms appear at the intersection points of the ith and kth rows and columns

as given in equation

gii = gkk = c (3.3.2)

gik = �gki = s
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The result of the product of a vector xwith the matrixG(i; k; �) is the x vector rotated � radians

in the i; k plane. The main usage of the Givens Rotations is to introduce zeros in vectors or

matrices.

If the matrix G(i; k; �)is multiplied with matrix A from the left, G �A as given by;24 c s

�s c

3524a
b

35 =
24r
0

35 (3.3.3)

If we know the values of a and b, we can calculate the c and s parameters of the rotation matrix,

with the resultant matrix as;

r =
p
a2 + b2

c =
a

r
(3.3.4)

s =
b

r

3.3.2 Applying Givens Rotations to the QR RLS problem

The orthogonal triangularization of the input data matrix can be carried out using a sequence

of Givens rotations (Gentleman & Kung, 1981) which is explained brie�y in the previous

subsection. Givens rotations are used to eliminate the leading nonzero element xi of one vector

by rotating it with the corresponding term ri of the other, c and s represent the cosine and sine

of the rotation angle which are given in what follows.

r
0
i =

q
r2i + x

2
i (3.3.5)

c =
ri

r
0
i

s =
xi

r
0
i

where r0i denotes the updated ri parameter.

3.4 Systolic Array Based Implementation of the QRD RLS Algorithm

Givens Rotations can be applied in a systolic array structure proposed by (Gentleman &

Kung, 1981) as presented in Figure 3.2. Each processing element in this systolic structure is

called the "cell". There exists three types of cells for this structure; boundary, internal cells and
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the "last cell" which are demonstrated in detail in Figure 3.3. Inputs denoted by "x" from the

upper side of the systolic array are the signals received by the antennas, while the input denoted

as "d" is the reference signal received by the reference antenna.

B

B

B

X

I I

I

I

I

I

w

   . . . .
   . . . d2

   . . x21 d1

   . x21 x13

x21 x12

x11

A B

C

D

E

Figure 3.2 Systolic array structure for the QRD RLS

algorithm

The boundary cells have the duty of calculating and updating the Givens Rotation parameters

c and s according to the input data value and pass these values to the internal cells at the same

row to apply the Givens Rotation to the whole row. The internal cells get the c and s values

from the neighbor cells and apply them to the data they receive from the upper neighbor cells.

They also feed their bottom neighbor with the new data. The last cell multiplies the two inputs

and gives the result at the output.

Table 3.1 depicts the functions of the cells for adaptive and frozen mode operations of the

systolic array. The parameters with a comma over them denote the updated parameter of the

same parameter depicted with the same letter. As can be seen in Figure 3.2 the systolic array is

composed of two main parts, a triangular part marked with letters ABC and the column on the

most right marked with letters DE. In the adaptive mode of operation, the triangular part of the
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(A) (B)

(C)

Boundary
Cell

xiσin

σout

c s

ri

Internal
Cell

xi

r

c s c s

xo

Last Cell

xiσin

ρ

Figure 3.3 Cell types of the systolic array for

the QRD RLS algorithm

systolic array performs the QR decomposition of the incoming data matrix. Elements of the

evolving triangular matrix are stored in the triangular part of the systolic array and as the data

vector passes downwards, it is completely eliminated by rotating one element to zero at each

row. As a result of eliminating the data vector x(n) the stored triangular matrix is updated. The

right hand column of cells marked as DE applies the Givens Rotations parameters calculated

by the boundary cells to the reference signal d(n) which is also rotated to produce u(n).

When the systolic array is switched to frozen mode it operates like a �xed linear combiner

with the constant weight vector w(n). If a p dimensional unit matrix is input to the main

triangular array, while a vector of zeros is input to the DE column the corresponding (M-1)

element output vector will be the required weight vector. The operation of the systolic array

can be seen in Figure 3.4 (McWhirter, 1990).

The algorithm brie�y explained above uses the Givens rotation as a building block and it can

be implemented by a fully parallel and pipelined triangular systolic array. But unfortunately

after the adaptive mode of operation we have to back substitute to evaluate the weights which

makes this approach inapplicable for a pipelined processor (Proudler et al., 1996).
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Table 3.1 Functions of cells of the QRD RLS algorithm

Cell Type Adaptive Mode Frozen Mode

r0 =
q
r2 + jxj2

if x=0 c = 1

Boundary c = 1; s = 0 s = x=r

otherwise �out = �in

c = r=r0; s = x=r0

r = r0; �out = c�in

Internal x0 = cx� sr x0 = x� sr

r = sx+ cr0

3.5 The QRD Based Constrained RLS MVDR Beamformer

A fully parallel and pipelined systolic array for the MVDR adaptive weight extraction

system without the need for forward or backward substitution is proposed by Tang et al. (1994).

The upper triangular matrix R(n) is given by;

R(n) = Q(n)X(n)

where X(n) is the n snapshot data matrix of n sensors, therefore with size n� n and Q(n) is

a n� n unitary matrix. The initial parameter vector is given by;

si(n) = R�H(n)ci (3.5.1)

where ci is the constraint vector, denoting the response of the array to a speci�c angle. The QR

decomposition can be used to update the optimal weights recursively as;

Q(n)X (n) = bQ(n)
26666664
�R(n� 1)

0
...

x(tn)

37777775 =
26666664
R(n)

0
...

0

37777775 (3.5.2)

and updating the parameter vector si is given by;

bQ (n)
26664
1
� s

i(n� 1)

]

0

37775 =
26664
si(n)

]

]

37775 (3.5.3)
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Figure 3.4 Operation of the systolic array for QRD RLS

algorithm

where the sign ] denotes the existing parameters of the corresponding matrix/vector. The same

unitary matrix used to update the upper triangular matrix, R(n� 1), can be used to update the

lower triangular matrix R�H(n� 1)

bQ(n)
26664
1
�R

�H(n� 1)

]

0

37775 =
26664
R�H(n)

]

]

37775 (3.5.4)

The combined updating equation of the system is given by;

bQ(n)
26664
�R(n� 1)

... 1
� s

i(n� 1)
... 1

�R
�H(n� 1)

0
... ]

... ]

x(tn)
... 0

... 0

37775 =
26664
R(n)

... si(n)
... R�H(n)

0
... ]

... ]

0
... ]

... ]

37775
(3.5.5)

The weight vector is given by;

bwiT (n) = siT (n)R�H�(n)
Substituting equations for updating the weights with the MVDR weight equation given in



32

Chapter Two we get the MVDR weight vector for the QRD CRLS algorithm as;

wi
T
(n) =

ri

jsi(n)j2
bwiT (n) (3.5.6)

The QRD CRLS algorithm can run on a systolic array given in Figure 3.5. The input signals

from the antennas are acquired by the cells at the top of the columns. The weights of the

system can be extracted from the cells stated by "C-5" that are at the bottom of the columns on

the right.

C ­1

C ­1

C ­1

C ­1

C­2 C­2

C­2

C­2

C­2

C­2

C­3

C­3

C­3

C­3

C­4

C­4

C­4

C­4

C­4

C­4

C­4

C­4

C­4 C­4

C­5 C­5 C­5 C­5

0 0 0

mode
1

0 0 0 1
x 0 0 0 0 0

x x 0 0 0 1 0
x x x 0 0 0 0 0

x x x x 0 0 1 0 0
x x x 1 0 0 0 0 0
x x 0 0 0 1 0 0 0
x 0 1 0 0 0 0 0 0

mode
2

0 0 0 0 1 0 0 0 0
0 1 0 c 0 0 0 0
0 0 c x 0 0 0
1 c x x 0 0
c x x x 0

mode
1

x x x x
x x x
x x
x

w(1) w(2) w(3) w(4)

Figure 3.5 Systolic array architecture and operation of the MVDR beamformer.

There are �ve types of cells in the systolic array shown in Figure 3.5which are given in detail

with input and output diagrams in Figure 3.6. The C-1 type cell calculates the Givens Rotations

parameters and passes them to the other cells on the same line to apply the QR decomposition
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to the whole data matrix. The C-2 type cell gets the Givens Rotations parameters, calculated by

the neighboring C-1 type cell and applies them to the data acquired from its upper neighbor or

the sensor. So, the upper triangularization of the data matrix is accomplished. The C-3 and C-4

types of cells perform the multiplication and accumulation operations to compute the optimal

weight vector and the C-5 type of cell normalizes the optimal weight vector.

(A) (B)
(C)

(D)

C­4

xi, wi

r

c s c s

xo, wo

C­5

wi

r

η

wo

η

(E)

C­3

xi

ρ

r

c sc s
C­2

xi

r

c s c s

xo

C­1

xi

c s

ri

Figure 3.6 Cells of the systolic array for MVDR beamforming

Operation of the systolic array can be observed in the upper part of Figure 3.5. The system

is �rst run in the adaptive mode for "n" cycles, where n is the number of antennas, to form and

store the upper triangular matrix in cells C-1 and C-2. The adaptive mode and the frozen mode

operations of the cells is presented in Table 3.2. During this phase, the input to the �rst row of

the C-1 and C-2 type cells, is the acquired data from the antenna array, while input of the other

cells are zero.

Within the second phase of operation, the cells operate in the frozen mode for n+1 cycles.

The input to the left part of the systolic array is the constraint vector followed by an identity

matrix. While an identity matrix is the input for the right hand part of the systolic array.

The cells of the systolic array operate in adaptive mode at the recursive updating phase of

operation, the inputs of the �rst row of the C-1 and C-2 cells are the acquired data matrix, while

the input to the other cells are zero. The optimal weights of the beamformer can be acquired at

the outputs of the C-5 type cells consequently. The adaptive and frozen mode functions of the

cells are denoted in Table 3.2 (Tang et al., 1994).
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Table 3.2 Functions of cells of the QRD RLS based MVDR beamformer
Cell Type Adaptive Mode Frozen Mode

C-1 r0 =
q
�2 + jxj2

c = ��r0
r s = x

r

s = x
r c = 1

r = r0

C-2 x0 = �s�r + cx x0 = cx� sr

r0 = c�r + s�x

C-3 x0 = �sr
� + cx x0 = x

r0 = cr
� + s

�x if x = 1

y = r0 then r = s�

�0 = jrj2 + �

C-4 x0 = �sr
� + cx x0 = x

r0 = cr
� + s

�x if x = 1

y = r0 then r = s�

w0 = yr� + w

C-5 w0 = rw
�2�

w0 = w



CHAPTER FOUR

FOLDED SYSTOLIC ARRAY BASED QRD RLS ALGORITHM

Advantages and usages of systolic arrays have been mentioned in the previous chapter.

However computational complexity of the systolic arrays can exceed the physical limitations of

a �xed VLSI structure like the included logic elements or the number of pins. These limitations

could be overcome by dividing the problem into smaller problems and remapping them for the

VLSI structure. The division process of the main systolic array to smaller structures is called

the partitioning of the systolic array.

Partitioning operation must satisfy some conditions in order to be considered as applicable.

These conditions are listed by Moldovan & Fortes (1986) as;

� Accuracy of the algorithm must not be affected from the partitioning process.

� No additional time delays must be inserted by the partitioning process.

� Partitioning must not cause a raise to the resources used by the systolic structure.

� Numerical stability of the algorithm must not be affected from the partitioning scheme.

4.1 Partitioning and Folding a Systolic Array

The purpose of partitioning is to solve the given problem by, utilizing the limited resources

regardless of the actual size of the problem as mentioned above. The systolic array structure

can be partitioned properly to be folded in to a smaller array structure. There exists two basic

partitioning schemes; locally sequential globally parallel (LSGP) and locally parallel globally

sequential (LPGS) (Jainandunsing, 1986). Both partitioning schemes for a 6x6 systolic array

can be seen in Figure 4.1.

In LSGP, the main structure is partitioned into tiles which contain cells of the systolic array.

The tiles execute in parallel while the cells inside the tiles operate in serial. The size of the

array is equal to the total number of tiles and the period of the array is lower bounded by

the block size. The schedule of operations in the LSGP scheme, must not assign more than

35
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FIFO

FIFO

FIFO

FIFO FIFO FIFO

LSGP LPGS

Figure 4.1 Systolic Array Partitioning Schemes

one computation to each processing element at the same time instant which brings out that

simultaneous operations must not be on the same block Burleson (1991).

For the LSGP scheme the local memory of each processing element is lower bounded by

the tile size since the local memories of the nodes get mapped to the same processing element.

Internal buffers are required to hold the internal tile parameters for the sequential operation.

The main structure of the LPGS is again partitioned into tiles containing cells of the systolic

array, but this time tiles execute in serial while cells inside the tiles operate in parallel. The array

size in the LPGS scheme is equal to the tile size and the array is lower bounded by the number

of tiles. Since the tiles are stacked, the internal communication inside the tiles requires external

buffers and wires whose lengths are functions of the block size (Burleson, 1991).

Some limitations in scheduling of the tiles exist in LPGS scheme as; there must be no

dependencies which point backward in time and no two nodes must be assigned to the same

processor element at the same time (Burleson, 1991).

The LPGS scheme tends to achieve better load balancing and requires less local memory



37

than LSGP scheme. However LPGS scheme imposes extra constraint on partitioning and

requires much more inter-processor communication. As the communication processes

aggravates, the LSGP scheme, having fewer inter-processor communications, will perform

better than the LPGS scheme. (Hwang & Hen, 1992).

The LSGP partitioning scheme has been preferred for our application since it does not need

any external buffering and having less inter processor communications for large arrays..

4.1.1 Reusage of Functions

Partitioning of the systolic arrays brings the bene�t of reusage of common functions of the

cells inside the tile. For the LSGP partitioning scheme if some or all of the functions of the

cells inside the tiles are identical then they can be used as the functions of the corresponding

cell at each time interval.

Figure 4.2 demonstrates a tile which includes four cells of the same kind. Since the

partitioning scheme is chosen as the LSGP these cells will operate sequentially inside the tile.

The sequential operation turn of the cells are given in parenthesis. Ports are also numbered

according to the cells they are connected. Right hand side of the Figure is the functional

diagram of the Figure which shows the reusage of the functions, inside the tile while inputs

and outputs are multiplexed according to its turn.

Cell
(1)

Cell
(2)

Cell
(3)

Cell
(4)

Tile

Input1

Input3

Output 2

Output 4

Interconnections

Input1

Cell
M
U
X

D
EM

U
X

Tile

inputInput3
Output 2

Output 4

Interconnections

output

Figure 4.2 Reusage of the cell functions inside tiles
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4.2 Folded Systolic Array Based MVDR Algorithm

The systolic array structure for the QRD CRLS algorithm presented in Chapter Three can

be partitioned into tiles containing three cells as mentioned by Lijun & Parhi (2000). However

this structure does not let us to build tiles containing more than three cells because of its

rhomboid geometry. We can rearrange the structure of this systolic array, while preserving its

functionality and systolic architecture. Since a rectangular structure is better than the rhomboid

one, for building tiles including more cells, the structure of the systolic array will be rearranged

to form a rectangular structure (Tamer & Ozkurt, 2007).

In order to make the systolic structure more appropriate for partitioning, we propose a new

systolic structure for the QRD CRLS based MVDR beamformer algorithm which is presented

in Figure 4.3. As can be seen in Figure 3.6 both C-2 and C-3 types of cells acquire the c and

s parameters horizontally, which are generated by the C-1 type of cells on the boundary of the

systolic array. Thus the C-3 type of cells can be shifted to the left of the �rst type of cells

without effecting the functionality and the �ow of the systolic array operation since none of the

horizontal parameters, that the shifted cells require are modi�ed by the C-2 cells. Nevertheless

the C-2 cells still apply the Givens Rotations parameters to the data they received vertically so

that the c and s parameters generated by the C-1 cells, are applied to the systolic array, properly.

Since the C-3 type of cells are moved to the left, the rest of the cells which remain on the

right hand side in Figure 3.5, must be moved to the left also. The �ow direction for the shifted

part of the systolic array must be reversed, to avoid a change in the functionality. As presented

in Figure 4.3 the data �ow on the right of the �rst type of cells is unaffected while it is reversed

on the left.

After rearranging the structure of the systolic array we can group the cells to form tiles that

contain four cells each, as can be seen in Figure 4.4. Since the C-5 type of cells have the duty

of normalizing the outputs by multiplying the weights by a variable, they are kept out of the

tiles and used as additional processes.

As a result of grouping the cells, we have four types of tiles which can be seen in Figure 4.5;

Tile-1, Tile-2 Tile-3 and Tile-4. Tile-1 contains C-3 and C-4 type of cells, Tile-2 contains C-1,

C-2, C-3 type of cells while Tile-3 contains C-4 and Tile-4 contains C-2 type of cells only.
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Figure 4.3 Transformation of the conventional MVDR systolic array to the rectangular one
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Figure 4.4 Grouping of the cells for the proposed systolic array
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As mentioned in subsection 4.1.1 identical functions in these cells can be used in common,

so that each cell uses the same function at its turn. Thus, the number of functions inside a tile

is less than the total number of functions of the included cells. For example Tile 4 contains

four C-2 type cells and all the functions of these cells, certainly, are identical. Then it is

possible to make each cell to use the same function during its turn and pass the parameters to

the neighboring cell or outside of the tile. The reusage of the functions for Tile 4 can be seen

in Figure 4.6 where the internal structure of it is given. The functions of the C-2 type of cell

operate sequentially inside Tile 4 as shown in the Figure. Thus main operation inside Tile 4

becomes switching of the input and output parameters for the C-2 cell functions. This reusage

of the functions reduces the number of operations inside the tiles.
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c1 s1
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Figure 4.6 Reusage of functions inside Tile 4

Using the proposed tile structures the systolic array based QRD CRLS MVDR beamformer

can be built as shown in Figure 4.7. The systolic array structure can easily be expanded for

larger sensor arrays by just adding tiles presented in this work. As an example a systolic array

structure for eight antennas is presented in Figure 4.8.

4.2.1 Operation of the Folded Systolic Array

The operation of the proposed folded systolic array structure for QRD CRLS algorithm is

similar to the conventional one which is introduced in Section 3.4. The input of the systolic
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Figure 4.7 Folded sytolic array based MVDR beamformer
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array including the data and the identity matrices are changed according to the shifts of the

cells which are described in section 4.2. So, the operation scheme for a systolic array for four

antennas is presented in Figure 4.9

Upper part of the Figure denotes the input of the system. In the grey shaded part, the system

operates in frozen mode and the following parts of the inputs denote the adaptive operation of

the system. Inputs denoted by 'x' denotes the measured data from the corresponding sensor

while inputs denoted by 'c' points out the constraint values. A more detailed description of

the adaptive and frozen modes of the operation can be found in Chapter Three. Each line on

the input table lasts for four clock cycles to let the serial operation of the cells inside the tiles.

The optimal weights of the beamformer can be acquired at the outputs of the C-5 type of cells

consequently. Arrays of larger size also have similar operation schemes.

The operation scheme evinces a major advantage of the proposed systolic array structure.

For the conventional systolic structure �rst weight vector is obtained at 13th clock cycle,

however, for the rectangular systolic structure proposed in this thesis the weights are obtained

at 10th clock cycle since the shifted cells receive the c and s parameters earlier. This advantage

brings a better throughput ratio for the rectangular systolic array.
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CHAPTER FIVE

IMPLEMENTATION OF THE SYSTEM

A detailed block diagram of the implemented system can be seen in Figure 5.1. As you

can observe the implementation mainly consists of three parts; the receiver part, the signal

processing part, and the transmitter part.

At the receiver part the signal received by the antennas is ampli�ed to a proper level for

the I/Q demodulator. The task of the I/Q demodulator circuitry is to downconvert the signal to

the baseband level with inphase (I) and quadriphase(Q) components. The representation of the

baseband signal in I and Q components lets us to extract the phase and amplitude difference

between the antennas which will be explained in detail in the following sections.

The I/Q demodulators are followed by analog to digital converters (ADC) which are the

onboard equipments of the signal processing board. The Altera DSP Development Board is

equipped with 2 ADC inputs. Since we have more than two signals to be processed, the onboard

ADC's , will be connected to the analog blocks via multiplexers. So, the signal acquired by

each of the antennas will be transferred to the ADC's when they are switched to them by the

multiplexer.

The signal processing board consists of an Altera EP1S80 Stratix FPGA, memory modules

and some interfaces which are given in detail in Appendix B. The inner diagram of the FPGA

part denotes that the signals received by the I/O ports of the FPGA are �rst combined and

converted into a complex form. These data are then applied to the QRD CRLS algorithm

denoted by the systolic array block in the diagram. The outputs of the systolic array are the

weights of the adaptive array and are applied to the input signals and combined for the output

data.

The adaptive weights are also applied to the data which are received from the communication

system and transferred to the transmitter part. At the transmitter part the weighted outputs from

the I/O ports of the FPGAwhich are in inphase and quadriphase forms are converted into analog

signals by the onboard DAC's. The I/Q modulators upconverts the signals to the operating

frequency band and applies the necessary weights to the antennas for proper beamforming.

The implementation of the proposed system will be given in detail in two main sections;
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Figure 5.1 Block diagram of the implementation
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hardware implementation and software implementation. The hardware implementation will

present the RF parts such as the antennas, ampli�ers and I/Q modulators and demodulators

as well as multiplexers and ADC and DAC components. While the software implementation

will focus on the development of the QRD CRLS algorithm on the SystemC environment and

building the system with the developed parts in the Matlab Simulink environment..

5.1 Hardware Implementation

Hardware implementation of the system is the design and development process of the

hardware parts which include antennas, RF blocks and multiplexers. Hardware parts can be

analyzed in two pieces, the transmitter part and the receiver part.

The receiver and the transmitter parts use a direct conversion technique with an I/Q

modulator/demodulator instead of a superheterodyne technique as explained in the following

subsection.

5.1.1 The Direct Conversion Technique

The RF signals received by the antennas and ampli�ed at the low noise ampli�ers must

be downconverted to a proper frequency for the signal processing units. The conventional

way is to downconvert the signals to the intermediate frequency (IF) band and then digitize

them by using the ADC's. The signal processing unit compares and detects the relative phase

and the amplitude of the digitized signals, with respect to a reference signal. The detection

of the relative phase and amplitude are accomplished by the running software inside the signal

processor, so the performance of the ADC and the software plays a critical role in the

performance of the technique.

The second option, which is called the direct conversion technique is to directly convert

the received RF signals into phase and amplitude by using phase and power detectors and then

digitize these information by the ADC's (Maskell & Woods, 2003). The signal processing

unit does not deal with detecting the relative amplitude and phase of the signals. In the

implementation of the thesis the direct conversion receiver technique is preferred to simplify

the signal processing part and keep the resources of the FPGA for the other signal processing
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operations.

Main aim of the direct conversion receiver is to extract the phase and the magnitude

information out of the received signal. First of all we need a phase detector circuitry to extract

the phase from the RF signal. A basic phase detector consists of a mixer, local oscillator and

a low pass �lter (LPF). Illustration of this phase detector can be seen in Figure 5.2. The local

oscillator (cos(!t)) is at exactly the same frequency with the RF input signal (cos(!t + ')).

The output of the mixer is given by;

cos(!t+ ') cos(!t) =
1

2
(cos(')� cos(2!t+ ')) (5.1.1)

where ! is the operating frequency, and ' is the phase angle of the RF signal with respect to the

local oscillator. If we �lter the high frequency component cos(2!t + ') by using a low pass

�lter, then we have only the component cos(') which contains the phase angle information

in cosine form. By using an arccos transformation in the signal processing part, the relative

phase angle ' of the signal can be obtained (Maskell & Woods, 2003).

Figure 5.2 Block diagram of a phase petector

A major and well known problem in this phase determination method is that, the cosine

function gives the same values for negative values of the angles between 0 and �: This means

we can not determine whether the phase angle of the signal is between angles 0 and � or

between angles � and 2�.

We can overcome this problem by adding a second phase detector circuitry with a 90o phase

shift at the local oscillator input as can be seen in Figure 5.3. The output of the second phase

shifter is given by;

cos(!t+ ') cos(!t+
�

2
) = cos(!t+ ') sin(!t) =

1

2
(sin(') + sin(2!t+ ')) (5.1.2)

and after the low pass �lter we can evaluate sin(') at the output. This time we can determine
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if the signal is between angles 0 and � or between angles � and 2� and this lets us know the

exact phase angle we evaluated from the �rst phase detector (Maskell & Woods, 2003).

Figure 5.3 Block Diagram of the Direct Conversion Technique

If the input signal's amplitude is A and the local oscillator's amplitude is B, equations 5.1.1

and 5.1.2 become;

A cos(!t+ ')B cos(!t) =
AB

2
(cos(')� cos(2!t+ ')) (5.1.3)

A cos(!t+ ')B sin(!t) =
AB

2
(sin(') + sin(2!t+ ')) (5.1.4)

As we can observe from the equations, even if the local oscillator has a constant amplitude,

outputs of the phase detector change with the input signal's amplitude. This problem can be

overcome by calibrating the direct conversion receiver at various phase angles for a signal

source.

5.1.2 The Receiver Block

The detailed block diagram of the receiver part is given in Figure 5.4. The received signals

from the dipoles are converted to microstrip transmission line and fed to the quadrature

demodulator integrated circuit which also includes necessary ampli�ers.

Signals departing from the user arrive at the receiving antennas at different phases and

amplitudes. The phase and amplitude difference between the antennas can be represented by

complex signals. The quadrature demodulator converts the complex signals into inphase(I) and

quadriphase(Q) signals by mixing them with the local oscillator signal. So that the complex

signals can be reconstructed inside the signal processing unit. This phenomenon is also given

in more detail in section 5.1.1.
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Figure 5.4 Receiver Block Diagram

The RF signal from the local oscillator is also fed to the quadrature demodulator by �rst

dividing it into four branches and then equalizing the phases. The implemented receiver part

can be seen in Figure 5.5. Major parts of the receiver; the quasi yagi antenna and the I/Q

demodulator are explained in detail in the following subsections.

5.1.2.1 The Quasi Yagi Antenna

The antenna to be used as a part of the system must be printed and have a microstrip feed

line so that the antenna can easily be fabricated with the RF blocks on a single substrate.

The Quasi-Yagi antenna which can be seen in Figure 5.6, is mainly a dipole antenna as the

driver, with a re�ector plate placed quarter wavelength apart, that increases the directivity of

the antenna. Generally a director that increases the directivity and bandwidth of the antenna is

placed in front of the dipole but in our work we did not use the director part since increasing

the directivity, means a narrower beamwidth which is not preferred in most of the mobile

communication systems (Deal et al., 2000).
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Figure 5.5 The receiver board and components
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Figure 5.6 The Quasi Yagi antenna and the feed line
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The driver of the Quasi Yagi antenna is fed with a coplanar strip line as can be seen in

Figure 5.6. Since the transmission lines of our RF circuitry are microstrip, we have to convert

the coplanar strip line to a microstrip line. This conversion is accomplished by the transformer

balun which also balances the transmission line. The impedance of the transformer balun at the

microstrip line is matched to the 50 
 microstrip line by using a �g=4 match circuitry where

�g is the effective wavelength inside the microstrip line.

The impedance of the microstrip line, used for feeding the coplanar strip line is 50 
. The

junction point of the coplanar strip line makes the strip lines of the coplanar strip line act like

parallel impedances; thus the impedance of the coplanar strip lines has to be adjusted for 100


 to avoid re�ections.

Most critical point of the antenna design is transferring the power from the microstrip line

to the driver antenna with minimum loss. This aim can be reached by adjusting the width of

the coplanar strip and the line width of the phase shifter part. The characteristic impedance

of the coplanar strip line depends on the dielectric constant of the media and the gap between

the strip lines. Increasing the dielectric constant of the media decreases the impedance of

the transmission line while increasing the gap increases the characteristic impedance of the

transmission line (Pintzos, 1991). As mentioned before we designed the coplanar strip line

with a characteristic impedance value of 100 
. The insertion loss and return loss graphs of the

CPS to MS transformer balun are given in Figure 5.7 and Figure 5.8. As can be seen in Figure

5.7 insertion loss of the transformer at the operation band and mostly below 2 dB which means

the power is transmitted to the antenna good enough. Also the return loss measurement shown

in Figure 5.8 validate these results since at the operating band return losses below 10 dB are

evaluated both from the CPS and the MS sides which means a power transmission ratio over

90%.

The microstrip to coplanar strip converter is then connected to the quasi yagi antenna and

performance of the antenna is measured. Figure 5.9 shows the return loss measurement of the

antenna. The antenna impedance match is achieved at 1900 and 2100MHz covering the UMTS

operation bands.

In Figure 5.10 transmission measurement of the quasi yagi antenna is presented. The

measurement procedure is transmitting the signal and receiving it with identical antennas as
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Figure 5.9 Return Loss Graph of the Quasi Yagi Antenna

described in The Standard Test Procedures for Antennas by IEEE (1979). The measurement

results show that the antenna transmitted power between 1810 MHz and 1925 MHz and as a

second band 2270MHz and 2415MHz. The antenna measurements were taken 8 cm. apart and

with a free space loss of 17.7 dB at 2300 MHz 15.6 dB at 1800 MHz. Even if the measured

received power level is at -11.4 dBm with a 0 dBm transmitted power we also must include

the cable and connector losses which are also measured as 2.5 dB. So that the quasi yagi

antenna implemented has a 4.4 dB gain at 2300 MHz and 3.35 dB gain at 1800 MHz which

also consistent with the theoretical values. When we compare the results with the return loss

graph we can observe that the transmission frequency is shifted from 2150 MHz to 2300 MHz.

This shift is due to the fact that the second antenna in the measurement procedure has a shifted

operation band.

5.1.2.2 The I/Q Demodulator

A detailed block diagram of the I/Q demodulator is given in Figure 5.3. The I/Q demodulator

is implemented using the AD8347 integrated circuit which includes a 0.8 GHz 2.7 GHz direct

conversion IQ demodulator. As can be seen from the data sheet given in Appendix A the

AD8347 is composed of a 90o phase shifter connected to the local oscillator input, a mixer and
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Figure 5.10 Transmission measurement of the quasi yagi antenna

an automatic gain control ampli�ers at the RF input which makes it proper for our application.

The local oscillator input of the AD8347 needs a coplanar feed line for proper operation.

The microstrip to coplanar strip transformer mentioned in section 5.1.2.1 is used to convert the

microstrip local oscillator feed to coplanar strip feed line.

The implemented circuit was tested with the I/Q modulator circuitry. First the I/Q modulator

was fed with sinusoidal waveforms from both of the channels and the RF signal source at

the local oscillator. The outputs of the modulator are then connected to the corresponding

input ports of the demodulator. The I and Q outputs of the demodulator are connected to an

oscilloscope and compared with the input signal. Results of this measurement can be seen in

Figure 5.11.

5.1.3 The Transmitter Block

The detailed block diagram of the transmitter part can be seen in Figure 5.12. The structure

of the transmitter block is very similar to the receiver block. It includes a power divider module,

which splits the RF signal received from the oscillator to the I/Q demodulators at equal phase.

The phase of the RF signals are kept equal by using phase shifting transmission lines after the

power divider circuitry.

Quadrature modulators used in the implementation process, have coplanar strip line at the

local oscillator input port, so that we must convert the microstrip transmission line to coplanar
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Figure 5.11 Oscilloscope plot of the Q channel input od the quadrature modulator and Q

channel output of the Quadrature demodulator
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transmission line. A similar problem has been overcome in designing a Quasi Yagi antenna as

denoted in section 5.1.2.1. We can use the same converting structure for feeding the quadrature

modulator with the RF signal.

The I/Q modulator integrated circuit also includes, automatic gain controlled ampli�ers,

which meets our need for an external ampli�er. I and Q inputs of the modulator are used to

adjust the output weights of the antennas and fed from the multiplexer.

Output of the quadrature modulator is connected to the Quasi Yagi antenna via a microstrip

to coplanar strip converter explained in detail in section 5.1.2.1. An image of the designed and

implemented transmitter board can be seen in Figure 5.13. The Quasi Yagi antenna is one of

the major parts of the transmitter block and was explained in detail in subsection 5.1.2.1. The

I/Q modulator part is explained in detail in the following subsection.

Figure 5.13 The transmitter board and components

5.1.3.1 The I/Q modulator

The I/Q modulator circuitry has the function to apply the necessary phase and amplitude

changes to each RF signal to feed the antennas. The outputs of the FPGA are in the forms of I
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and Q signals and given by;

I = A cos(!t+ ')B cos(!t) =
AB

2
(cos(')� cos(2!t+ ')) (5.1.5)

Q = A cos(!t+ ')B sin(!t) =
AB

2
(sin(') + sin(2!t+ ')) (5.1.6)

where A represents the amplitude of the signal and B represents the amplitude of the local

oscillator and ' represents the phase angle with respect to the reference signal.

The block diagram of the I/Q modulator can be seen in Figure 5.14. When the I port is fed

with cos(') and the Q port is fed with sin(') the RF output becomes;

I cos(!t)�Q sin(!t) = cos(') cos(!t)� sin(') sin(!t) = cos(wt+ ') (5.1.7)

90o Phase
Shifter

I

Q

Σ
RFLO

Figure 5.14 I/Q modulator

We can see that the phase shift of the output is adjusted at the RF output port of the

modulator. Amplitude of the output can also be adjusted by amplifying (or attenuating ) the I

and Q ports. Also the amplitude of the LO is effective at the output and must be taken care at

the output of the FPGA.

The I/Q modulator was implemented with the AD8346 integrated circuit from Analog

Devices which is the conjugate of the AD8347 I/Q demodulator. The datasheet of the AD8346

can be found at Appendix A. As it can be observed from the datasheet this integrated circuit

also has coplanar feed lines at the input ports so that the coplanar strip to microstrip converter

circuitry is also needed for the local oscillator feed line of the device.
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5.2 Software Implementation

Software implementation is de�ned as developing and uploading the Folded Systolic Array

Based QRD CRLS Beamforming algorithm into the FPGA.

The implementation procedure is as follows brie�y. The cells and the tiles of the systolic

array and surrounding components such as internal multiplexers are �rst developed using the

SystemC library as the �rst step. After testing and simulating these components they are

transferred to the MATLAB Simulink environment by using the Altera DSP Builder software

and assembled for the complete system. The developed code by using the MATLAB Simulink

environment is then synthesized and uploaded to the FPGA core.

A brief �ow chart of software development and implementation is given in Figure 5.15.

Each step in the �owchart is explained in detail in the following sections.

Altera
DSP Builder

Converts Verilog Codes into
Simulink Blocks

Special Blocks for
Hardware Implementation

FPGA
Stratix

EP1S80

Digital Implementation
Flow Chart

Altera
Quartus II

Analysis and Synthesis of
the VHDL code developed

by DSP builder
Writing the synthesized code

into the Hardware

Altera
DSP Builder

Converts the simulink model
into VHDL code by keeping
the SystemC based Verilog

codes as they are

MATLAB
Simulink

Forming the Systolic array
by making necessary

interconnections between
cells and other control

elements

Celoxica
Agility Compiler

Development and
Compilation of the SystemC
code

Pre Synthesis of the
SystemC code into Verilog

Figure 5.15 Software development and implementation �owchart
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5.2.1 The SystemC Library

Several languages have emerged to address the various aspects of system design. "C/C++"

is the language which is predominately used for embedded system software. The hardware

description languages (HDLs), "VHDL" and "Verilog", are used for simulating and synthesizing

digital circuits. "Vera" and "e" are the languages for functional veri�cation of complex

application-speci�c integrated circuits (ASICs). "SystemVerilog" is a new language that evolves

the Verilog language to address many hardware-oriented system design issues. "Matlab" and

several other tools and languages such as "SPW" and "System Studio" are widely used for

capturing system requirements and developing signal processing algorithms. Figure 5.16 shows

the comparison of "SystemC" with other languages. One of the most important advantages

of the SystemC based hardware design is that it is the only environment which gives the

opportunity of both an architectural design language and a HDL (Black & Donovan, 2004).

Figure 5.16 SystemC vs other design languages

Today's integrated circuits (ICs) often exceed 10 million gates, which conservatively

translates to one hundred thousand lines of RTL code. Today's designs are practical because

of the methodologies that apply RTL synthesis for automated generation of gates by using

behavioral design languages. But as the systems get more complex behavioral design languages

also become unpractical which brings out the need for architectural design languages. Integrated

development of hardware and software is also a major advantage of the SystemC since it is a

C++ library and enables communication with other C++ designs (Black & Donovan, 2004).
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SystemC is preferred in our software implementation for expediting the software design and

implementation process.

Recently, IEEE published the standard titled "IEEE 1666TM -2005 Standard SystemC

Language Reference Manual (LRM)" (SystemC Standard, 2006) and accepted SystemC as a

standard library for system development environment. Version of the SystemC library published

by the IEEE as a standard is 2.1 which is the version used in this thesis also.

Recently, some software have been developed for behavioral synthesis of the SystemC codes

by both eda vendors and research groups but these are limited synthesis tools which demand

specially developed codes for synthesis. After behavioral synthesis RTL synthesis tools and

logic synthesis tools are widely used without any limitations and provided mainly by chip

vendors (Black & Donovan, 2004).

5.2.2 Developing Systolic Arrays Using the SystemC library

The main structure of the beamformer hardware is the systolic array on which the QRD

CRLS algorithm runs and evaluates the weights as the outputs. The conventional systolic array

structure consists of components called cells, which are explained in detail in chapter three.

The folded systolic structure, proposed in this thesis, includes tiles containing cells, which are

mentioned in Chapter Four. SystemC is used in developing and simulating these components.

5.2.2.1 Development of the Conventional Systolic Array

The conventional systolic array structure contains �ve type of cells; C-1, C-2, C-3, C-4, C-

5, as mentioned in chapter three. As an example to the developed SystemC code for modeling

and synthesis, the C-2 cell will be explained in detail.

The C-2 cell and internal functions are presented in Figure 5.17. It has a data input shown

as xin , inputs and outputs of Givens rotation parameters as c and s and data output as xout.

The cell also has an internal parameter r which is updated at each clock cycle, and shown as a

loop from an output to an input as presented in Figure 5.17.
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Figure 5.17 C-2 cell and internal functions

All of the parameters used in the functions of C-2 cells are complex valued except the

forgetting factor � which is preferred as 0:5 in this work. Since the parameters are complex,

we need to use complex operations for the internal functions inside the cell. In order to expedite

the development process and ease the traceability of the code, a complex operations library is

developed. Complex operations de�ned in this library are given in table 5.1. .

Table 5.1 Complex Operations

Operation Complex Representation

x = (a; b); y = (c; d); x; y 2 C

x+ y (a+ b; c+ d)

x� y (a� b; c� d)

xy (ac� bd; ad+ bc)
x
y

�
ac+bd
c2+d2

; bc�ad
c2+d2

�
p
x

p
2
2 (
pp

a2 + b2 + a; sgn(b)
pp

a2 + b2 � a)

jxj
p
a2 + b2

A comparison of the code developed with and without the complex operations library is

given in Figure 5.18. It can be clearly observed that the operations using the complex library are

more apparent than the standard operations which enables rapid and ef�cient implementation

of the signal processing algorithm.

Complex division and complex square root operations include more division and square

root operations than for the real numbers. These operations require too many logic elements
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sc_out<sc_int<8> > c_re, c_im, s_re, s_im; // output ports
complex<sc_int<8> > c, s, rout, x, beta, rin; // parameters

/*calculation of output values*/
rout= sqrt(beta*beta+abs(x)*abs(x));
c=beta*rout/rin;
s=x/rin;

/*write the calculated parameters to the ports*/
c_re.write( c.get_real() );
c_im.write( c.get_imag() );
s_re.write( s.get_real() );
s_im.write( s.get_imag() );

SystemC Code Using the Complex Library

sc_out<sc_int<8> > c_re, c_im, s_re, s_im; // output ports
sc_int<8> betareal, betaimag, rreal, rimag, dreal, dimag //parameters

/*calculate of output values c and s and write to the ports */
c_re.write(((betareal*rreal­betaimag*rimag)*dreal+(betareal*rimag+betaimag*rreal)*dimag)/(dreal*dreal+dimag*dimag));
c_im.write(((betareal*rimag+betaimag*rreal)*dreal­(betareal*rreal­betaimag*rimag)*dimag)/(dreal*dreal+dimag*dimag));
s_re.write((binreal*dreal+binimag*dimag)/(dreal*dreal+dimag*dimag));
s_im.write((binimag*dreal­binreal*dimag)/(dreal*dreal+dimag*dimag));

SystemC Code Using Standard Libraries

Figure 5.18 Developed SystemC codes with and without the complex libraries

and may reduce resources of the FPGA chip dramatically, when used. To prevent the lack of

resources with these operations, division and square root operations contained in the library are

de�ned using the CORDIC algorithm.

5.2.2.2 The CORDIC algorithm

The CORDIC acronym stands for COordinate Rotation DIgital Computer. It is a class of

shift-add algorithms for rotating vectors in a plane.

The CORDIC algorithm provides an iterative method of performing vector rotations by

arbitrary angles using only shift and adds. The rotation transform given by;

x� = x cos�� y sin� (5.2.1)

y� = y cos�+ x sin�

rotates a vector in a Cartesian plane by the angle �. We can reexpress this transform as;

x� = cos�(x� y tan�) (5.2.2)

y� = cos�(y + x tan�)

If the rotation angles are restricted so that tan� = �2�i the multiplication by tangent

term reduces to a simple shift operation. Since at each iteration the direction of rotation is
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determined by the sign of � ; the cos� term becomes constant as its value does not change

with the direction. The angular shift is kept constant at each iteration so value of the cosine

term does not change. As a result, we have the following equations for each iteration;

xi+1 = Ki[xi � yidi2�i] (5.2.3)

yi+1 = Ki[yi + xidi2
�i]

where:

Ki = cos(arctan(2�i)) =
1p

1 + 2�2i
(5.2.4)

di = �1

The scaling constant Ki can be applied elsewhere in the system without loss of generality. As

number of iterations increase Ki approaches to 0,6073. So we have a gain for this algorithm

given by;

An =
Y
n

p
1 + 2�2i (5.2.5)

where n is the number of iterations. An approaches to 1,647 as n increases. By adding or

subtracting elementary rotation angles depending on the direction of rotation, the rotation angle

can be accumulated. This angular accumulator adds a third difference equation to the CORDIC

algorithm;

zi+1 = zi � di arctan(2�i) (5.2.6)

The CORDIC rotator has two basic operation modes. In the rotation mode we rotate the

input vector by a speci�ed angle. In the vectoring mode we rotate the input vector to the x axis

while recording the angle required to make that rotation (Andraka, 1998).

In the rotation mode CORDIC algorithm, the angle accumulator, z, is initialized with the

desired rotation angle. At each iteration the residual angle in the angle accumulator is made to

diminish. The CORDIC operations for the rotation mode are given by;

xi+1 = xi � yidi2�i

yi+1 = yi � xidi2�i (5.2.7)

zi+1 = zi � di tan�1(2�i)

where

di = �1 if zi < 0 else di = 1 (5.2.8)
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and as a result of the algorithm we evaluate;

xn = An[x0 cos z0 � y0 sin z0]

yn = An[y0 cos z0 + x0 sin z0] (5.2.9)

zn = 0

The absolute value of the complex parameter can be evaluated by using the vectoring

mode by letting the yn equal to zero. The vectoring algorithm is based on minimizing the

y component of the residual vector at each iteration. The CORDIC equations for the vectoring

mode are given as;

xi+1 = xi � yidi2�i

yi+1 = yi � xidi2�i (5.2.10)

zi+1 = zi � di tan�1(2�i)

where;

di = �1 if yi < 0 else di = 1 (5.2.11)

and we evaluate the following results;

xn = An

q
x20 + y

2
0 (5.2.12)

yn = 0

zn = z0 + arctan(y0=x0)

An =
Y
n

p
1 + 2�2i

The CORDIC algorithms are limited between angles -�=2 and �=2 . This limitation is due

to the use of 2o for the tangent in the �rst iteration. An initial rotation of either � or 0 can be

made according to the sine of the y value in order to �nd the correct rotation angle of the vector

(Andraka, 1998).

The CORDIC based complex division and complex multiplication operations are based on

transforming the relevant operands into phasor forms and then accomplishing the operation.

The advantage of using phasor division is it requires less operations compared with the

conventional complex division as given in table 5.2. The complex multiplication operation

conventionally needs 4 multiplications and 2 additions whereas the phasor operation needs
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only one multiplication and one addition operations. However the transformation operations

are also needed before and after the multiplication in order to transform the complex numbers

into phasor forms and back transform the result into complex form. These transformations also

need too much resources for implementation. However the vectoring mode CORDIC algorithm

can also be used for the complex notation to phasor notation transformation operation and the

rotation mode CORDIC algorithm can be used for phasor to complex notation transformation.

Table 5.2 Comparison of Complex Division and Phasor Division

Complex Operations Phasor Operations

Multiplication 4 Mult. r = rabrcd 1 Mult.

(a+ bi)� (c+ di) (ac� bd) + i(ad+ bc) 2 Add. � = �ab + �cd 1 Add.

3 Trans.

Division 2 Div. r = rab
rcd

1 Div.
(a+bi)
(c+di)

ac+bd
c2+d2

+ i bc�ad
c2+d2

6 Mult. � = �ab � �cd 1 Add.

4 Add. 3 Trans.

To �nd the square root we �rst assign a reference value which starts from the square of the

MSB and compare the parameter with this reference value. If it is greater than the MSB, the

result is set to 1 and the reference is subtracted from the parameter, if not, it is set to 0. The

reference is then set to the square of the (MSB-1) bit and compared with the parameter again

until the LSB is reached. The result is the square root of the parameter. Table 5.3 gives an

example to the square root operation with a 8 bit reference and 8700 as the parameter value.

Note that width of the reference is always the half of the parameter.

Table 5.3 Square Root by CORDIC Algorithm

Reference Result Parameter Operation

128 0 128� 128 < 8700 do nothing

64 64 64� 64 < 8700 result = 64

32 64 96� 96 < 8700 do nothing

16 80 80� 80 < 8700 result = 64 + 16 = 80

8 88 88� 88 < 8700 result = 80 + 8 = 88

4 92 92� 92 < 8700 result = 88 + 4 = 92

2 92 94� 94 < 8700 do nothing

1 93 93� 93 < 8700 result = 93
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5.2.2.3 The Fixed Point Arithmetic

Because of the basic logic elements they are composed of Field Programmable Gate Arrays

are capable of performing integer arithmetic only. However in signal processing applications

acquired data from the real world is never integer. Applying the integer arithmetic operations

results in the loss of data and improper operation of the systolic array. For example if the

acquired data for a multiplication operation are 0.5 and 2 the result of the operation should be

1 however in integer arithmetic the �rst operand becomes 0 and so is the result.

The int format represents integers from 0 up to the largest integer that can be represented

with the available number of bits. Fixed point format is used to include numbers that lie

between 0 and 1; with a 'binary point' assumed to lie just after the most signi�cant bit. A

8 bit binary word x interpreted as;
h
b7 b6 b5 b4 b3 b2 b1 b0

i
equals to

x =
7X
i=0

(2ibi) (5.2.13)

for an unsigned integer representation which varies between values 0 to 255. For a signed

representation x equals

x = �
6X
i=0

(2ibi) (5.2.14)

and can get values from -128 to 128.

If x is a 4.4 bit �xed point data then it becomes;

x =

3X
i=�4

(2ibi) (5.2.15)

for the unsigned case and it will have a range between 16 and 0 which increases with 0.0625

step size. For the signed case x equals;

x = �
2X

i=�4
(2ibi) (5.2.16)

and can get values between -8 and 8 with the same step size.

For the addition of two �xed point numbers the binary point must be casted at the same digit

for a proper result. Same rule is also valid for subtraction operation.

The �xed point multiplication operation can be accomplished by multiplying two �xed point

numbers as if they were integers and then shift the result twice the length of the fractional
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part. However this kind of operation uses too much resources since the result is twice the

length of the operands. Another method is somehow more complicated but it is a more

effective one. First of all the operands are separated in integer and fractional parts. First

the integer parts are multiplied and the result is stored, afterwards the integer part of the �rst

operand is multiplied by the fractional part of the second operand, and the integer part of

the second operand is multiplied with the fractional part of the �rst operand, however since

the multiplication operation includes a fractional part, the result is shifted as much as the

length of the fractional part before adding the results to the stored multiplication value. The

multiplication result of the fractional parts of the operators are shifted twice the length of the

fractional part before adding the result to the previous ones. Figure 5.19 shows a 4.4 bit �xed

point multiplication operation brie�y. Here the result is de�ned to be 4.4 bit �xed point, so

that the 4 most signi�cant bits of the integer part of the result are saturated while the 4 least

signi�cant bits of the fractional part are truncated to have a 4.4 bit �xed point result.

Integer Part Fractional Part Integer Part Fractional Part

×

×

×

×

×

Shift 4 Bits

Shift 4 Bits

Shift 8 Bits +

Saturate Truncate

Figure 5.19 4.4 Fixed Point multiplication operation

The division operation is also accomplished in a similar manner while this time dividing an

operand with a fractional part would cause a left shift of the result.

These �xed point arithmetic issues are also de�ned in the complex operations library, so

that no additional operations inside the main code are required for converting the results to the

�xed point representations.
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The r parameter of the cell is updated at each clock cycle of the array, so that the update of

the triangularization matrix is accomplished. Outputs of the components developed using the

SystemC are updated at the end of each clock cycle and inputs which are updated at previous

clock cycle are read with the triggering of the clock. So that connecting the input and output

of the r parameter will provide the update of it at each triggering of the clock signal.

5.2.2.4 Development of the Folded Systolic Array

The proposed folded systolic array structure contains 4 types of tiles; T-1, T-2, T-3, T-4.

The internal structure of T-2 tile is given in Figure 5.20. Each cell inside the tile must operate

sequantially for a proper operation of the systolic array. The mode input shown in the Figure

determines the routing of the inputs and the outputs of the tile, to the cells in order. So that each

cell acquires its inputs and delivers its outputs to the ports of the tile at its turn. The multiplexers

are the critical parts of the tiles in this manner, since they are responsible in routing of the data

from/to the cells to/from the ports of the tiles.

xi

C­1 C­2 C­3

ηi

MUX
1

2 3

4

c1

s1

D
EM

U
X

c2

s2
y2

DEMUX

ηo
xo

1

2 3
4

mode

Figure 5.20 Internal Structure of the T2 Tile
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5.2.3 Assembling Software Components in MATLAB Simulink

The process of converting a digital design written in a hardware description language (HDL)

into a low-level implementation consisting of primitive logic gates is called the synthesis.

Synthesis of the components developed using the SystemC is accomplished by using the

Celoxica Agility Compiler. A screenshot of the synthesis environment is given in Figure 5.21.

Figure 5.21 Celoxica Agility Compiler for SystemC synthesis

For a more �exible software development each of the cells and tiles are synthesized

separately which gives us the freedom to connect as many cells of each type as needed. So

that the systolic array can easily be converted to a larger or smaller one.

The synthesized cells are then transferred to the Matlab Simulink environment as distinct

blocks by using the Altera DSP builder software. The interconnections between the cells and

other simulink interface blocks are established to form a MVDR beamformer for 4 antennas.

Figure 5.22 presents a systolic array for two antennas structure while in Figure 5.23 a systolic

array for 4 antennas is presented. As can be seen here cells are displayed as simulink blocks

with necessary interconnections between them.

As presented in Chapter Three the systolic array operates in two different modes namely
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the adaptive and the frozen modes. The cells switches between these modes at different

time intervals since inputs to the array elements impinge at different time intervals. An array

generator is placed for the switching operation of the cells to the appropriate mode. Time delay

elements are placed between mode ports of the cells to ensure the switch the correct cell at the

speci�ed time interval. These elements are seen as small boxes in the Figure 5.22 and 5.23.

The internal structure of a cell, imported to the Matlab Simulink, can be seen in Figure 5.24.

Here the large block that is placed at the center with light gray color is the imported block into

simulink as a model from the SystemC code. Ports of this block are connected to the input and

output ports of the simulink interface.

For concurrent operation, all time delays between the inputs and outputs of the cells must

be equal. We placed delays to the ports with less time delay and made the outputs ready at the

same instant. The dark gray cells indicate the necessary delays for the synchronous output of

the ports.

Acquiring the signals from the ADC's and feeding the systolic array with this data, and

transferring the evaluated weights to the DAC's, need multiplexing and routing mechanisms,

which should operate synchronously with the external muliplexers and demultiplexers. Figures

5.25 and 5.26 present these multiplexing and routing structures. As can be seen in Figure 5.25,

inputs from the ADC's are shown as SMA connectors in Simulink. These inputs are �rst

converted to 4.4 bit �xed point data format from 12 bit ADC output and are connected to the

input multiplexer. The input multiplexer block is also developed in SystemC environment and

is used to acquire the constraint and data vectors from the ADC's and feed the cells with these

data separately.

The constraint vector is also acquired from the antennas but its acquisition is controlled by

the pushbutton that is also presented in the Figure. The constraint vector is acquired and stored

when the button is pressed and it is routed to the systolic array during the operation. Internal

multiplexers following the input multiplexer blocks are used to form the input data matrix of

the cells.

The output part of the model consists of an output multiplexer block as can be seen in Figure

5.26. The output multiplexer block is also developed in the SystemC environment to route the

weight vector to the onboard DAC's while controlling the output multiplexer to acquire the
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Figure 5.22 Systolic array for 2 antennas in Matlab Simulink
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Figure 5.23 Systolic array in Matlab Simulink
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Figure 5.24 Internal Structure of C2 Cell in simulink environment

Figure 5.25 Input block of the simulink model
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proper weight for the correct antenna array element.

Figure 5.26 Output block of the systolic model

The folded systolic array structure, which is proposed in this work, is also implemented in

a similar manner. As the initial step the cells are combined to form the tile structures and pre

synthesized by using the Celoxica Agility Compiler. Afterwards the tiles are transferred into

Matlab Simulink environment as distinct blocks by using the Altera DSP Builder software.

Figure 5.27 demonstrates the internal structure of a tile transferred to the Matlab Simulink

environment.

The simulink blocks representing the tiles are then connected properly to form the folded

systolic array structure which is presented in Figure 5.28.

The input and output multiplexing circuitry presented in Figures 5.25 and 5.26 are used

without any changes in the implementation procedure of the folded systolic array structure.

The interconnections between systolic array structures and the multiplexing interfaces are

transferred to a VHDL code by using the Altera DSP Builder software. The SystemC blocks

together with the VHDL de�nitions of the interconnections are then synthesized by the Altera
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Figure 5.27 Internal Structure of Tile2 in simulink environment
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Figure 5.28 Folded Systolic Array Structure in Matlab Simulink
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Quartus II software to generate a programming �le for the FPGA chip. Figure 5.29 presents a

screenshot of the Quartus II software. Results of the synthesis operation of both the conventional

and the folded systolic array structures will be presented in the following chapter.
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Figure 5.29 Altera Quartus II software for �nal synthesis



CHAPTER SIX

RESULTS

The conventional and the folded systolic array structures for the QRD RLS algorithm based

MVDR beamforming system are implemented as presented in Chapter Five. As denoted in

Chapter Four the folded structure needs less logic elements for the implementation since it

enables the reusage of functions inside the cells. Following section will present the synthesis

results and comparison of the conventional and the folded systolic array structures. The test

bed results of the smart antenna system will be given afterwards.

6.1 Synthesis Results

Synthesis is a translation process, taking a design description from one level of abstraction

to a lower level. Behavioral synthesis of SystemC is the process of translating, the SystemC

code into a register-transfer-level (RTL) structure. This entails determining the number of clock

cycles and separating out data paths, memories, and control units, ruling the same data paths

and memories. Although the exact nature of data path operators may be left to the ensuring

synthesis step, the data path architecture (e.g. number of data path registers, pipeline depths

etc.) becomes �xed in this step. The end result is normally written out as RTL code. Following

synthesis steps are the RTL synthesis and the logic synthesis.

Signal processing applications usually require �oating point operations for better resolution

and to avoid rounding and cropping errors. However �oating point data types cause too much

delay in signal processing systems and require too many logic elements for the implementation

as well as it is not de�ned as a synthesizable data type of the SystemC library. Eventhough

�xed point operations lack of precision they do not consume as much resources as �oating

point data types. In our application �xed point operations using integer data types are de�ned

in the complex operations library. The parameters used are 8 bit word length with 4 signed

integer bits and 4 fractional bits, so that their values range from � 8 with step size 0; 0625.

The pre-synthesis operation of the SystemC code is achieved by using the Celoxica Agility

Compiler. Pre-synthesis is de�ned as the operation of translating the SystemC code, to a

suitable code for the Altera Quartus II software, like EDIF or Verilog. The pre-synthesis

results of the developed cells and tiles are given in Table 6.1 and in Table 6.2. These results

80
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are the estimated logic element usage of the developed code by the Celoxica Agility Compiler.

Eventhough these are not the exact logic resources used by the cells and tiles, it can be evaluated

that for a four antenna array the conventional systolic array structure needs 94404 look up

tables(LUT) and 6948 �ip �ops(FF) for the implementation. However for the folded systolic

array structure we only need 38475 LUT's and 4739 FF's for the implementation of a same

size smart antenna which corresponds to a 40 % reduction in LUT's and 68 % reduction in �ip

�ops. Eventhough these synthesis results are only estimations for the pre-synthesis operation

and optimization for the full synthesis operation can affect the results.

Table 6.1 Resources needed for the implementation of cells (pre-synthesis results)

C-1 C-2 C-3 C-4 C-5

LUT 13175 1272 1347 1318 3876

FF 468 181 223 241 172

Table 6.2 Resources needed for the implementation of tiles (pre-synthesis results)

Tile1 Tile2 Tile3 Tile4

LUT 6414 3098 1369 2578

FF 1017 514 452 537

The developed and simulated code is synthesized by the Quartus II software supplied by

the FPGA manufacturer Altera Corporation. The target hardware for the synthesis is selected

EP1S80B956C6, which is a member of the Altera Stratix Family. The Altera Stratix family

includes DSP Multipliers which reduce the number of logic elements needed for the

implementation especially for signal processing operations. The EP1S80B956C6 FPGA has

79,040 Logic Elements, 7,427,520 RAM bits, 22 DSP blocks, 176 Embedded DSP, multipliers,

12 PLLs and 956 User I/O pins.

The synthesis result of the SystemC code for the cells and the tiles can be seen in Table

6.3 and 6.4. These results are the �nal synthesis results after optimization procedure. The C-

1 type cell uses the resources more than the other cells since it is responsible for calculating

the c and s parameters, which include division and square root operations. The C-2, C-3 and

C-4 types of cells occupy similar amount of logic area with each other since they accomplish

analogous tasks, as processing the received data and forwarding the c and s parameters as

de�ned in Chapter Three. The C-5 type cell uses the least resources since it is only responsible

of normalizing the weights.
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Table 6.3 Resources needed for the implementation of cells (�nal synthesis results)

C-1 C-2 C-3 C-4 C-5

Logic Elements 5142 3545 3326 3541 2033

DSP Multipliers 5 0 0 0 0

Table 6.4 Resources needed for the implementation of tiles (�nal synthesis results)

Tile1 Tile2 Tile3 Tile4

Logic Elements 7807 11764 1171 4282

DSP Multipliers 2 5 0 0

As can be seen in Table 6.4, Tile2 occupies the largest number of logic elements since it

includes C-1 type of cells which also has the same property when compared with other cells.

The reduction ratio of the number of logic elements of the tiles and the total number of

logic elements of the cells they include, is given in Table 6.5. Tile3 and Tile4 are compressed

better than the other tiles as expected, since cells inside these tiles are the same and only some

switching and routing mechanisms are added. Tile 2 has the worst ratio since it has three

different types of cells and each of these cells is coded inside the tile distinctly.

Table 6.5 Resources needed for the implementation of tiles (�nal synthesis results)

L.E. Total L.E. Ratio

Tile1 7807 13949 55 %

Tile2 11764 17155 68 %

Tile3 4278 14164 30 %

Tile4 4282 14180 30 %

The synthesis results of the implemented smart antenna with a conventional systolic array

occupies 72732 logic elements with 17 Embedded DSP multipliers (9 bit), while same size of

an array running on a folded structure only occupies 29725 logic elements and 8 Embedded

DSPmultipliers which corresponds to a reduction ratio of 40% for the logic elements. Note that

these are the result of the �tter operation which also employs some optimization techniques.

The proposed folding scheme becomes more ef�cient for larger antenna arrays since the

tiles Tile3 and Tile4 are used more frequently in larger arrays and these tiles bene�t more

from the reusage approach. This phenomenon makes the die size of the large arrays smaller
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compared with the conventional systolic array as can be seen in Table 6.6. As the number of

antennas increase from 4 to 16 the ratio of the used logic elements needed for implementation

of folded and conventional systolic arrays decrease from 52% to 38%.

Table 6.6 Resources needed for the implementation for systolic arrays with differens sizes)
Folded Conventional Ratio

Number of Antennas LE's DSP's LE's DSP's LE DSP

4 47684 14 90552 20 53 70

6 84339 21 178344 30 47 70

8 129536 28 294480 40 44 70

10 183275 35 438960 50 42 70

12 245556 42 611784 60 40 70

14 316379 49 812952 70 39 70

16 395744 56 1042464 80 38 70

6.2 Implementation Results

Implementation of both the conventional and the folded systolic array based smart antenna

systems were presented in Chapter Five. These implementations are synthesized and then

downloaded to the FPGA chip on the Altera DSP Development board. The FPGA chip with

the systolic array is then connected to the other hardware presented in Chapter Five via the

ADC's and DAC's existing on the DSP Development board.

A block diagram of the smart antenna testbed is presented brie�y in Figure 6.1. The local

oscillator inputs of the receiver and the transmitter blocks of the smart antenna system are

connected to a RF generator which operates at 2.0 GHz. The RF generators of the mobile units

are also tuned to 2.0 GHz for a reliable operation of the smart antenna system. As presented in

chapter three the smart antenna separates the desired user from the interfering user according

to the angular placement of the users. The smart antenna system treats the user inside the look

direction as the desired user and the other user(s) as the interfering user(s).

Eventhough the employment of the smart antenna improves the communication quality, it

is not easy to observe the performance and the operation of it. The beamform monitor shown
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in the Figure is a personal computer that receives the weights of the beamformer via serial port

and displays the resultant radiation pattern. So that the operation of the system is visible to

the observers and its performance for various cases can easily be established. The beamform

monitor updates its display continuously to present the instantaneous performance of the smart

antenna system.

Smart Antenna
DSP Board

RF Generator

Receiver
Board

Transmitter
Board

Mobile Unit 1

Beamform Monitor

RF Generator

Mobile Unit 2

RF Generator

Figure 6.1 Brief diagram of the smart antenna testbed

The look direction of the beamforming algorithm is determined by acquiring and storing

the data from the single user when the SW1 push button on the DSP Development Boards is

pressed. The stored data is then used as the constraint data vector for the systolic array which

determines the look direction. For multiple constraint applications other onboard switches can

be used for storing data for other look directions and use as different constraint vectors.

The test procedure of the smart antenna is as follows; �rst the beamforming algorithm to be

tested is downloaded to the FPGA chip. Then for single user case the constraint data vector is

stored in the FPGA, by �rst placing the mobile user to the look direction of the antenna and

then pressing the onboard pushbutton "SW1" so that the signal impinging on the receiver board

is stored as the constraint vector. The desired user is then located to the angle of the constraint

vector and the resultant radiation pattern is obtained at the beamform monitor.
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For the two user case the constraint data vector is stored in the FPGA. Then one of the users

is located at or close to the look direction and the other one is placed to another angular location

and the radiation pattern formed by the beamforming algorithm is viewed from the display

of the beamform monitor. Performance of the smart antenna system for various locations

of the users are presented in the following �gures. The �gures denote the array factor plot

corresponding to the weight output of the system, therefore, only the part between 0o and 180o

must be taken into consideration since the antennas do not propagate backwards because of the

re�ecting ground plane.

Figure 6.2 presents the radiation pattern of the smart antenna system for a single user thest,

when the look direction is adjusted to 90o,and the user is located at 90o. As can be seen in the

Figure main beam of the antenna array is directed to the user.

Figure 6.2 Plot of the radiation pattern when user 1 is located at 90o and

user 2 is located at 30o

For the second case the location of the user and the constraint vector are set to 60o. The

radiation pattern of the antenna array becomes as presented in Figure 6.3. The main lobe of the

radiation pattern is slightly (5o) shifted to the left from 60o.

When we change the constraint vector and the location of the user to 30o the radiation
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Figure 6.3 Plot of the radiation pattern when user 1 is located at 90o and

user 2 is located at 60o

pattern of the antenna array becomes as can be seen in Figure 6.4. Eventhough the main beam

of the antenna array is not exactly directed towards the user , we can observe that there is less

difference betwen the gain at the maxima of the main beam and the location of the desired user.

Figure 6.5 presents a theradiation pattern for a two user case. The constraint vector is

adjusted for a look direction of 90o while the users are kept at 90o and 45o is given. The

null is steered to the user at 45o, while the main beam is close to the user at 90o but not exactly

at the same direction (shifted 1o-2o to the left). The attenuation of the desired user with respect

to the interfering user is -8 dB.
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Figure 6.4 Plot of the radiation pattern when user 1 is located at 60o and

user 2 is located at 120o

Figure 6.5 Plot of the radiation pattern when user 1 is located at 120o

and user 2 is located at 60o



CHAPTER SEVEN

CONCLUSION

Throughout this thesis work, a smart antenna system running on a proposed folded

rectangular systolic array for QRD RLS algorithm based MVDR beamformer is designed

and implemented. Systolic array architectures have attracted attention for array processing

applications for two decades. However conventional systolic arrays include many arithmetic

operations like multiplication, division, square root which makes their implementation dif�cult

because of the large size of their die. Folding of the systolic structures have the potential of

reducing die size by enabling reusage of functions of the elements of the array.

The rectangular systolic array structure, which is proposed in this thesis work, aims to

eliminate the poor folding nature of the conventional systolic algorithm, as depicted in Chapter

Three. The rectangular systolic structure is more adequate for partitioning and folding schemes,

since the folded tiles can include more than three cells, which improves the bene�ts of the

folding approach by reducing the resources needed for implementation. The rectangular systolic

array is then folded into tiles that include four cells each. Therefore, functions of the cells inside

the tiles can be reused, and the die size of the implementation can be reduced signi�cantly.

The rectangular systolic array structure, does not have any drawbacks, when compared with

the conventional rhomboid systolic array, from which it has been derived from. However its

structure is more adequate for partitioning and folding. Thus the folded tiles include more cells,

let the signal processing algorithms to be implemented into smaller and cheaper FPGA chips,

at the same time algorithms with very high operation count, that are hard to implement, will

also have the possibility for an implementation.

In accordance with theoretical expectations, the rectangular systolic array could easily be

folded into tiles including more cells. Eventhough, in this work each tile included four cells,

depending on the number of antennas, tiles composed of six, nine or even sixteen cells could

be used upon request. Tiles including more tiles could of course result with a systolic array

that uses the resources of the hardware more effectively.

After the folding process of the systolic array, the resources used by T2 and T4 tiles are

reduced to 30% of the total logic elements of the cells they include. This is because all

88
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of the cells are identical and full reusage of them has become possible. T1 and T3 tiles

include less identical cells and the reduction ratio of them are 55% and 68% respectively.

However reduction ratio of the folded systolic array beamformer system when compared with

the conventional one is 40% which means that a beamformer using the folded structure could

be implemented to a FPGA chip with one over third capacity of the conventional systolic array.

The implementation procedure is composed of twomain parts hardware and software design.

The design of the quadrature modulators and demodulators, the antenna and the antenna arrays

and their implementations compose the hardware part of this work. The quadrature demodulator

is used as the direct downconversion receiver, which also extracts the phase and amplitude

information of the channels, relative to a reference channel, in forms of inphase (I) and

quadriphase (Q) signals. The phase and amplitude information is then used for representing

the acquired data in complex forms in the signal processing part. This method overcomes

the resolution problems of the analog to digital converters as mentioned in chapter �ve. The

transmitter part of the antenna employs quadrature modulators to convert the signals in I and Q

forms into complex signals at RF frequency and transmit to the antennas.

The quasi yagi antenna is preferred for both the receiver and the transmitter part of the

system. It is a printed dipole antenna with a microstrip feed line which makes it easy to fabricate

with other components of the system. The array is designed as a uniform linear array with four

antennas printed on the same circuit board with the modulators and demodulators.

The Open SystemC Initiative (OSCI) de�nes the SystemC as a language built in C++ that

spans from concept to implementation in hardware and software. Eventhough it is a new

platform for hardware and software modeling, design, veri�cation; it has been approved by the

IEEE as a standard language for its functions, which makes it a promising language for system

level applications and designs. SystemC brings out the advantage of testing and developing of

related systems on a single platform, over other hardware description languages. The SystemC

model developed for the smart antenna system could easily be embedded in a communication

system and the performance of the whole system could be evaluated in a single environment in

a more realistic way.

The SystemC library for the C++ programming language is preferred as the hardware

development environment for this thesis work. The SystemC code, which is developed for cells
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or tiles is then presytnhesized by using Celoxica Agility Compiler software and transferred to

the Matlab Simulink to realize the interconnections between cells or tiles and form a systolic

array structure. The Altera DSP builder software is then used to generate the VHDL code for

these interconnections. The resultant codes and interconnections are then synthesized by using

the Altera Quartus II software and downloaded in to the FPGA chip.

The array signal processing algorithms require complex operations to represent the phase

and amplitude differences acquired from the sensors. So, a complex operations library needed

for easy development of the SystemC code is built as a part of the thesis work for software

implementation. Operations like multiplication, division and square root are de�ned in forms of

CORDIC operations, in order to reduce the resources required for implementation as mentioned

in Chapter Five.

Measurement results which were evaluated at the test bed and are presented in Chapter Six,

are also in accordance with the theoretical expectations. The adaptive antenna array has chosen

the user which is inside the look direction as the desired user and directed the main beam of

the array towards that user for both single user and multi user tests. For tests with two users the

algorithm places null to the direction of the interfering user and attenuating it up to 8 dB. The

smart antenna system better performed when the look direction is determined as ninety degrees

and placed the null at the interferers direction, however for look directions like sixty and one

hundred and twenty the main beam and the null placement of the smart antenna has shifts.

The smart antenna system presented in this work has the potential to be applied to actual

mobile communication technologies, by adjusting the RF parts for the frequency band of the

system. However the signal processing part is a beamformer which is independent of the

application, thus with proper sensor array systems and data acquisition elements, this part

could be employed in applications such as RADAR or SONAR where array signal processing

applications count.

7.1 Futureworks

Eventhough the results of the system are in accordance with the theoretical expectations,

they are evaluated using a four antenna array which will not give the best results. Using an

antenna array with more elements will exhibit more reliable results.
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Evaluating the results for tiles composed of more cells for different size of antenna arrays

could also present valuable information for similar applications.

A uniform linear antenna array is used for the implementation. However using different

array geometries could also turn better results out.

The test bed included one desired user and one interfering user however the antenna array

used in this thesis could separate two interfering users. An antenna array composed of more

antennas even can separate more users, and results of such a system can be evaluated.
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APPENDIX A

SAMPLE SYSTEMC CODES

8.1 C1 Type Cell

The header and the main code of the C1 type of cell is given below.

8.1.1 Header

95
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8.1.2 Main Code
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8.2 Tile 4

The header and the main code of the Tile 4 type of tile is given below.

8.2.1 Header
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8.2.2 Main Code
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ALTERA DSP DEVELOPMENT BOARD
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The Stratix EP1S80 DSP development board provides a hardware platform designers can

use to start developing DSP systems based on Stratix devices immediately. Combined with

DSP intellectual property (IP) fromAltera and AlteraMegafunction Partners Program (AMPPSM)

partners, users can quickly develop powerful DSP systems. Altera's unique OpenCore R
 Plus

technology allows users to try out these IP cores in hardware prior to licensing them. DSP

Builder (version 2.2.1) includes a library for the Stratix EP1S80 DSP development board. This

library allows algorithm development, simulation, and veri�cation on the board, all from within

The MathWorks MATLAB/Simulink system-level design tools. Additionally, the Stratix DSP

development board has a Texas Instruments' EVM (cross-platform) daughter card connector,

which enables development and veri�cation of FPGA co-processors.
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DATA SHEETS OF THE USED INTEGRATED CIRCUITRY
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