

DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES

DESIGN OF SIMULATOR FOR UNMANNED
AERIAL VEHICLE OF QUADROTOR

by

Đlhan ATEŞ

November, 2012

ĐZMĐR

DESIGN OF SIMULATOR FOR UNMANNED

AERIAL VEHICLE OF QUADROTOR

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Master of Science

in Electrical and Electronics Engineering Program

by

Đlhan ATEŞ

November, 2012

ĐZMĐR

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my thesis advisor Assoc. Prof. Dr.

Mehmet KUNTALP for giving me an opportunity to work on an innovative topic

such as unmanned air vehicles. I am very grateful for his advice and suggestions. I

gained valuable experience by working on this thesis.

I would also like to thank my colleague who is Mr. Emrah YAVUZ (Arçelik

R&D Engineer) and my family for their help and endless support.

Đlhan ATEŞ

iv

DESIGN OF SIMULATOR FOR UNMANNED AERIAL VEHICLE OF

QUADROTOR

ABSTRACT

This work covers a simulator for unmanned air vehicle called quadrotor. For the

simulator design, the main components of a real quadrotor are explained and the

modeling of them is implemented in the simulation. The main goal of this work is to

argue for an idea that a real quadrotor design could be developed upon a well

designed simulator with a little effort.

In first sections, the importance of unmanned air vehicles and the reasons for why

the quadrotor is commonly used for educational purpose are explained. After that

quadrotor working principles explained in detail and the equations of dynamics are

derived.

In an unmanned air vehicle, measurement system, control system and

communication system have vital importance. All sensors used in a quadrotor are

mentioned and the modeling equations of them are derived. Because sensor outputs

have different noise characteristics, an effective filtering operation is applied.

Furthermore, a well designed control system is required for a stable flight operation

and fulfilling duties commanded from a remote operator.

As a last, a three dimensional quadrotor model and medium are designed to

visualize all the work done. Simulator helicopter is controlled from a user interface

which has number of functional buttons for operator commands and vehicle’s instant

state values on it.

Keywords: Unmanned air vehicle (UAV), quadrotor helicopter, UAV simulator,

inertial measurement systems, control systems.

v

QUADROTOR ĐNSANSIZ HAVA ARACI ĐÇĐN SĐMULATOR TASARIMI

ÖZ

Bu çalışma, quadrotor adlı insansız hava aracı için simülatör tasarımını

anlatmaktadır. Simulator tasarımı için gerçek sistemin temel bileşenleri anlatılmış ve

simülasyon ortamında modellemeleri yapılmıştır. Çalışmanın ana amacı gerçek

tasarımların, simulator modeli üzerinde çok az çaba ile geliştirilebileceği tezini

savunarak iyi bir simülasyon modeli çıkarmaktır.

Đlk bölümde insansız hava araçlarının önemi anlatılmış ve quadrotor tipi

helikopterin kullanım yaygınlığından bahsedilmiştir. Daha sonra quadrotor çalışma

prensipi detaylı bir şekilde anlatılarak, sistemin dinamik denklemleri çıkarılmıştır.

Đnsansız hava araçlarında ölçüm sistemi, kontrol sistemi ve haberleşme sistemi

hayati önem taşır. Sistemde kullanılan sensörler tek tek incelenmiş ve modelleme

denklemleri çıkarılmıştır. Sensörlerden ölçülen verilerin gürültü içermesinden dolayı,

gerçek bir ölçüm değeri almak adına filtreleme işlemi uygulanmıştır. Ayrıca,

sistemin verilen görevleri yerine getirebilmesi ve dengeli bir şekilde çalışabilmesi

için iyi bir kontrol sistemi uygulanmasının önemi üzerinde durulmuştur.

Son olarak, istenilenleri görsel olarak sonuçlarını görebileceğimiz üç boyutlu bir

simülator tasarımı gerçekleştirilmiştir. Helikopter modeli tasarımı, ortam ve görsel

bir kullanıcı arayüzü aracığıyla sistemin çalışması test edilmiştir.

Anahtar sözcükler: Đnsansız hava aracı(ĐHA), quadrotor helikopter, ĐHA simülator,

inersiyal ölçüm sistemleri, kontrol sistemleri.

vi

CONTENTS

 Page

M. SC THESIS EXAMINATION RESULT FORM... ii

ACKNOWLEDGEMENTS .. iii

ABSTRACT .. iv

ÖZ .. v

CHAPTER ONE - INTRODUCTION ... 1

CHAPTER TWO - QUADROTOR PRINCIPLES AND DYNAMICS 3

2.1 Quadrotor Principles .. 3

2.2.1 Body Frame .. 6

2.2.2 Global Frame (Navigation Frame, Earth Frame) 7

2.2.3 Frame Transformation ... 8

2.3 Quadrotor Dynamic States ... 11

2.4 Quadrotor Forces and Moments ... 11

CHAPTER THREE - INERTIAL MEASUREMENT .. 16

3.1 Inertial Measurement Sensors .. 16

3.1.1 Gyroscopes ... 16

3.1.1.1 Mechanical Gyroscopes ... 17

3.1.1.2 Optical Gyroscopes .. 17

3.1.1.3 MEMS Gyroscopes .. 17

3.1.2 MEMS Gyro Error Characteristics .. 19

3.1.2.1 Constant Bias ... 19

3.1.2.2 Thermo-Mechanical White Noise .. 19

3.1.2.3 Flicker Noise .. 19

3.1.2.4 Temperature Effects ... 19

vii

3.1.2.5 Gyroscope Misalignment ... 20

3.1.3 Accelerometers ... 20

3.1.3.1 Mechanical Accelerometers ... 20

3.1.3.2 Solid State Accelerometer .. 20

3.1.3.3 MEMS Accelerometer ... 21

3.1.4 MEMS Accelerometer Error Characteristics .. 22

3.1.4.1 Constant Bias ... 22

3.1.4.2 Flicker Noise ... 22

3.1.4.3 Accelerometer offset .. 22

3.1.4.4 Temperature Effects ... 23

3.1.4.5 Calibration Errors .. 23

3.1.5 Altitude Sensors .. 23

3.2 Inertial Measurement Units .. 24

3.2.1 Stable Platform Systems (Gimbaled) ... 24

3.2.2 Strap-down Systems .. 25

3.3 Filtering ... 26

3.3.1 Kalman Filter .. 27

CHAPTER FOUR - CONTROL SYSTEM ... 30

4.1 PID Controller ... 30

4.1.1 Proportional Term ... 31

4.1.2 Integral Term .. 32

4.1.3 Derivative Term .. 32

4.1.4 Discete PID Control Algorithm ... 33

4.2 Controller Tuning .. 34

4.3 Model Simplifications ... 34

4.4 Input Declarations ... 36

CHAPTER FIVE - SIMULATOR DESIGN .. 37

5.1 Software Layers ... 38

viii

5.1.1 Simulator Layer .. 38

5.1.2 Driver Abstraction Layer ... 40

5.1.3 Middleware Layer ... 40

5.1.3.1 Communication Operations ... 40

5.1.3.2 User command Operations ... 41

5.1.3.3 Sensor Operations .. 42

5.1.3.4 Filter Operations .. 43

5.1.3.5 Control System .. 44

5.1.3.6 Motor Operations ... 45

5.1.4 Application Layer ... 46

5.2 Simulator 3D Visualization .. 46

5.2.1 OpenGL .. 47

5.2.2 3D Design of Model .. 48

5.3 Sensor Modeling.. 50

5.3.1 Accelerometer Model .. 50

5.3.2 Gyroscope Model .. 50

5.3.3 Altitude Sensor Model .. 51

5.4 Component Modeling .. 51

5.4.1 Brushless Motor Model ... 51

5.4.2 Propeller Model .. 52

5.5 MCU Modeling ... 53

5.5.1 UART Model .. 54

5.5.2 ADC Model .. 54

5.5.3 Timer Model ... 54

5.5.4 PWM Model ... 54

5.5.5 Interrupt Model ... 54

5.6 Graphical User Interface .. 55

5.7 Communication Protocol ... 55

CHAPTER SIX - CONCLUSION .. 57

REFERENCES ... 59

1

CHAPTER ONE

INTRODUCTION

This thesis focuses on the design of a simulator for unmanned air vehicle(UAV)

called quadrotor. The UAVs have gained an increasing interest in last years because

of the wide area of applications like surveillance, imaging, dangerous environments,

navigation, mapping, fire fighting and exploration in military or commercial

applications. The quadrotor is one of the most preferred types of UAV that can apply

in many application areas mentioned above. The reason is the very easy construction

and control using four rotors against the conventional helicopter that uses one main

rotor and one tail rotor.

In a conventional helicopter, the vehicle is controlled using many kinds of

combined commands that are transmitted to the rotors using complex mechanical

systems that consist of so many moving elements. On the other hand, one of the main

advantages of quadrotor is the simplicity of the vehicle in terms of control of overall

system. The quadrotor has fixed pitch rotor angles and reduced mechanical

complexity. The four rotor arrangement also provides more payload capacity,

maneuverability and resistance to disturbances. The payload and power consumption

of the quadrotor are increased due to the number of motors; but the payload to power

ratio is still advantageous and use of electrical motors reduces the power

consumption.

The quadrotor has many advantages over conventional helicopters in terms of

control and simple construction, but there are still drawbacks that cause it not to be

used widely in many of the application areas. The stabilizing and direction control of

the quadrotor is a difficult job because dynamics are not linear. The lower lift force

and processing power of the onboard electronics are other limitations for a control

system design. This means, in order to implement more complex control mechanism

such as take off, landing and path following, more suitable sensors might be provided

on the quadrotor.

2

The quadrotor has four propellers driven by four motors in a cross configuration.

While the front and the rear motor rotate counter-clockwise, the left and the right

motor rotate clockwise. If the rotors rotate at the same speed and if the gyroscopic

effects are omitted, the vehicle just hovers. In fact, the thrust generated by each

motor has to be exactly the same to provide a stable hover. The slightest change in

thrust on one of the rotors will turn upside down the vehicle on a sudden. By

changing the speed of the single motors, the lift force can be adjusted and vertical

and horizontal motion can be created.

In the simulator design, all necessary components are modeled including sensors,

motors, propellers and microcontroller unit. The simulator only takes motor set

values and determines its own attitudes according to dynamic equations and outputs

the modeled sensor values instantly. The sensor values and user commands are

processed in control system and the vehicle is driven into user demands. A simple

user interface is designed to take commands and view quadrotor instant state values

on it.

3

CHAPTER TWO

QUADROTOR PRINCIPLES AND DYNAMICS

2.1 Quadrotor Principles

Quadrotor is controlled by applying differential thrusts. The motors are arranged

in pairs of reverse rotating motors so that the torque generated from the first pair of

motors is exactly reacted by the torque from the second pair of motors, which are

rotating in the other direction. With balanced torques, there is no rotating moment

and the vehicle does not rotate about the vertical z-axis. This condition is pictured in

Figure 2.1. If the thrust generated by each motor is equal to one-fourth of the

vehicle’s mass, the quadrotor will continue to hover stable. Altitude can be

controlled by increasing or decreasing the thrust from each motor by the same

amount so that total thrust changes but net torque on the vehicle is zero.

Figure 2.1 Balanced thrust resulting in a hovering platform

Figure 2.2 illustrates the application of differential thrust. The left motor’s speed

slightly increased and right one decreased same amount. If differential thrust is

4

applied to a pair of opposing rotors, the total thrust does not change. In addition, the

net torque about the vertical axis remains zero because the decrease in torque on the

slower motor is balanced by the increase in torque on the other motor since they are

spinning in the same direction. The difference of thrust between two motors will

create a moment in x-axis. In Figure 2.2, the moment is created about the x-axis and

the vehicle will roll to the right.

 Figure 2.2 Differential thrust resulting in a rolling moment

If the direction of the differential thrust is changed to opposite, the vehicle will

roll to the left. Likewise, differential thrust can be applied to the other pair of rotors,

this would cause either a pitch up, as shown in Figure 2.3, or a pitch down moment

depending on the direction of differential thrust.

When a differential thrust causes the quadrotor to pitch or roll, the total thrust

vector is inclined away from the vertical. As a result, part of the lift force is broken

into the horizontal and vertical component and this will cause acceleration in inclined

direction. For example, in Figure 2.2, the quadrotor is rolling to the right. This tilts

the lift force vector to the right and creates an acceleration in right direction. The

quadrotor would move towards the right side. When the lift force vector is tilted

5

away from the vertical, there is also a loss of altitude because the amount of thrust on

vertical axis is decreased.

 Figure 2.3 Differential thrust resulting in a pitch up moment

In practice, with small angles of rotation, the change is little and can not be

noticed by the operator. Drastic changes in the pitch or roll angles, however, would

cause the platform to quickly lose altitude.

A change in yaw is managed by applying a differential torque to the two pairs of

rotors, as shown in Figure 2.4. Because the total thrust is the same, the altitude does

not change, but the unbalanced moments cause the body to rotate about the vertical

z-axis.

The operations of balanced thrust, differential thrust about the roll axis,

differential thrust about the pitch axis and differential torque are the only ways of

controlling the quadrotor as shown in Figures 2.1–2.4

6

 Figure 2.4 Yaw motion with a differential thrust.

2.2 Coordinate Systems

In quadrotor, there are three critical angles as roll, pitch, and yaw. These three

important angles of rotation about the center of mass of the vehicle constitute the

overall attitude of the system. In order to observe these attitude angles and changes to

them as the vehicle experiences a motion, the use of two coordinate systems is

required as body(local) frame and global(earth, navigation) frame. The body frame

system is attached to the vehicle itself at its center of mass. The global frame system

is fixed to the earth and is taken as an inertial coordinate system in order to simplify

analysis. The angular difference between these two coordinate systems is adequate to

determine the vehicle attitude. In inertial navigation systems, the sensor

measurements are taken in body frame. In order to calculate position and velocity,

the measurements should be transformed to global frame.

2.2.1 Body Frame

The body frame is a reference frame carried by the tracked object and basis for the

onboard inertial sensors. Its origin is at the gravitational center of the object.

7

 Figure 2.5 Body frame representation

2.2.2 Global Frame (Navigation Frame, Earth Frame)

In the navigation frame, N is represented by the orthogonal vector basis x0; y0; z0

and is attached to the earth. Here x0 points north, y0 points east and z0 points toward

the center of earth.

 Figure 2.6 Global frame representation

8

2.2.3 Frame Transformation

The frame (coordinate) system transformation is acquired by using Direction

Cosine Matrix. The Euler angle and Quaternion transform method uses the direction

cosine matrix to transform. The orientation and movement in the body frame can be

transformed to the global frame using transformation matrix.

Figure 2.7 Body and global frame

=

b
z

b
y

b
x

xyz

b

P

P

P

P
 (2.1)

=

g
z

g
y

g
x

xyz

g

P

P

P

P
 (2.2)

xyz

b

g

b

xyz

g PCP ⋅=
 (2.3)

9

2.2.3.1 Direction Cosine Matrix

Direction cosine matrix consists of three columns with unit vectors projected

along transformed axis from original axis. If the body frame is converted to the

global frame, the direction cosine transformation matrix;

=

)cos()cos()cos(

)cos()cos()cos(

)cos()cos()cos(

'''

'''

'''

zzzyzx

yzyyyx

xzxyxx

b

g
C

θθθ

θθθ

θθθ

 (2.4)

Hereθ�� denotes the angle between the body coordinate x axis and the global

coordinate y axis.

2.2.3.2 Euler Angle

The Euler angle defines the coordinate transformation using angular rotation. For

the transformation from navigation axes to body axes, firstly we rotate about z-axis

through an angle ψ, then we rotate through an angle θ about the new y-axis and

finally the system is rotated about new x-axis through an angle φ. These are so called

yaw, pitch and roll angles.

Figure 2.8 Eular angle rotations

The rotation matrices for each axis;

10

−=

φφ

φφφ

cossin0

sincos0

001

C (2.5)

=

θθ

θθ

θ

cos0sin

010

sin0cos

C (2.6)

 −

=

100

0cossin

0sincos

ψψ

ψψ

ψC (2.7)

From these three separate matrices, the overall coordinate transformation matrix

between body frame and navigation frame presented with Euler angles is defined as;

φθψ CCCC
n

b ..=

(2.8)

2.2.3.3 Quaternion Angles

For two coordinate systems, there is always one invariant axis. Using this

invariant axis and rotations around it, it is possible to place one axis to other. The

quaternions use an orientation unit vector γ to describe the rotation axis and the angle

δ to describe the rotation around it. The angles directing the orientation unit are α, β

and γ.

 Figure 2.9 Quaternion angle rotation

11

The coordinate system rotations are put together in four parameters q0, q1, q2 and

q4, forming a Quaternion vector E.

2
sin.cos,

2
sin.cos,

2
sin.cos,

2
cos 4310

δ
γ

δ
β

δ
α

δ
==== qqqq

 (2.9)

The Direction Cosine Matrix can be expressed in terms of these four parameters as

follow.

+−−+−

−−+−−

+−−−+

=
2

3
2

2
2

1
2

010322031

1032

2

3

2

2

2

1

2

03021

20313021
2

3
2

2
2

1
2

0

)(2)(2

)(2)(2

)(2)(2

qqqqqqqqqqqq

qqqqqqqqqqqq

qqqqqqqqqqqq

Rq (2.10)

2.3 Quadrotor Dynamic States

The roll angle Φ, the pitch angle θ and the yaw angle ψ will be represented in the

statevector. Additionally, the angular velocities of these about each axis will be

represented as Φ� , θ� , ψ� . These six states define the attitude of the vehicle with respect

to body frame. Another six states are necessary to represent the attitude of the vehicle

with respect to the earth frame. These states include the coordinates of the vehicle

within the earth frame along each of its principal axes, shown as X, Y, and Z.

Moreover, the velocity of the vehicle in each of these directions is also required and

shown as X� , Y� , Z� . Together, these 12 state variables constitute the state vector of the

quadrotor platform. This state vector is provided in equation 2.11 below.

X � � Φ Ө ψ Φ � Ө� ψ� X Y Z X� Y� Z�] (2.11)

2.4 Quadrotor Forces and Moments

In order to design an accurate model of the system, all the forces and moments on

the vehicle must be taken into consideration. When these forces and moments are

mentioned, some assumptions are made in order to simplify analysis. The vehicle’s

movement and attitude is provided by forces and moments created on it. Each of the

forces can be broken into an x, y, and z component. The following Newton-Euler

12

equations 2.12 and 2.13 define the total effect of the net forces and moments on the

vehicle. The basic dynamic equations for linear and rotational motion:

 F � Ma (2.12) τ � Ia (2.13)

If the two matrix equations for force and torque are combined, the basic dynamic

equations 2.14-2.17 for the quadrotor are obtained.

�������
� � �� 0 00 � 00 0 �� ������� � � �� ! �������� (2.14)

�"�"�"� � � ��!! �!� �!��!� ��� ����!� ��� ���
� ������� � (2.15)

 #�� ! 0 ! 0 ! $!�� % #&� '(� '%) * ('+ ,�&'-('+ ,$!��('-. � /�'"' 0 (2.16)

 /�� ! 00 $0 #&�(� %) # (+ ,�&-(1+ ,$('-% � /�"0 (2.17)

The important parameters in designing the control system are the V� (change ofbody

linear velocity) and the ω� (change of body angular velocity). If the differential is

carried out through the parameters that define the various axes and angles available

to these velocities, state variables that will determine the attitude of the vehicle to the

control system are found.

Figure 2.10 represent how the forces influenced the system based on which

coordinate system is referenced. In the left picture of Figure 2.10, global and the

body frame are aligned in the z-axis direction, the thrust produced by the rotors is the

same for both coordinate system. As the vehicle experiences a roll or pitch angle

change as in the right picture of Figure 2.10, the alignment of the body and earth

frame disappears. All of the thrust force is still available to the body coordinate

system, but only some part of it exists in the z axis of the earth frame. This

demonstrates the need of the rotation matrices previously derived and will be useful

in describing the vehicle in both systems for attitude calculation and translational

motion.

13

Figure 2.10 No roll/pitch and roll/pitch angle exist

 Z45678 � Z9:;� . cos ,angle- (2.18)

From the reference of the body coordinate system, the thrusts produced by the

motors are always in the vehicle z-axis direction. The gravity vector is always in the

global frame z direction that points the center of the earth. In this case, it is important

to use the rotation matrix. Therefore the force of gravity can be defined as in

equation 2.19.

�C � �D � EFG1HIJFHFG1KIJFHIJFK�
LMN�

 (2.19)

It is important to note that the force of gravity is observed with respect to the

vehicle body coordinate system that attached to the center of mass of the quadrotor

platform. Besides gravity, the other forces to be considered are the forces produced

by the motors. If these forces are combined with gravitational force, all forces acting

on quadrotor platform and acceleration of the vehicle can be found in terms of the

body frame.

�XOYOZO � � E PQ � 00F786RS7
�) g � EsinθcosθsinUcosθcosU� E � θ� Z� E ѱ� Y�X� E U� Z�U� Y� E θ� X� � (2.20)

In last matrix, the rotational and translational velocities are the result of the cross

product of the ω and V time derivatives in equation 2.17. The only thrust in the body

14

frame is in the z-direction. To simplify the simulation model, the frictions produced

by the air on the rotors will be ignored in the x and y directions.

At this point, another assumption should be noted. On take off and landing, there

are important aerodynamic changes because of ground effect. At low altitudes, a

decrease in the generated air stream velocity provides greater efficiency from the

rotor and so provides more thrust. The ground effect will be omitted when

developing the simulation model of the quadrotor platform.

All the moments should be considered to calculate the acceleration rates of the

each attitude angles. Each of the three angle accelerations is under the influence of

the gyroscopic effect. The gyroscopic effect is the moment generated by the angular

velocity of the frame. The following equations show the gyroscopic effects on each

angle of rotation.

Roll angle gyro effect � θ� ψ� ,I� E IZ) (2.21)

Pitch angle gyro effect � U� ψ� ,I^ E I�) (2.22)

Yaw angle gyro effect � θ� U� ,I� E I�) (2.23)

The equations prove that a change at the velocities of other angles directly influence

the acceleration of the target angle. Another moment to discuss is the moment

generated by the rotor thrusts. This moment only affects the roll and pitch angles.

The equations 2.24 and 2.25 illustrate this moment. Roll angle moment � r ,Eab) ac) (2.24) Pitch angle moment � r ,aP E a) (2.25)

Although the yaw angle is not influenced by the thrust moment, it is still affected

by the various rotor thrusts due to unbalance in the counter rotating torques. While

the thrusts are balanced, the yaw angle change should be zero, if any external noise

or disturbance is neglected. The yaw angle can be controlled with unbalanced thrusts.

It eliminates the use of an anti-torque rotor as in conventional helicopter. The

equation for thrust unbalance is shown in below. Thrust unbalance � ,aP) a E ab E ac) (2.26)

15

The individual moments from the rotor also creates gyroscopic effects. These

effects are related with the inertia of rotor, speed of rotor and change of attitudes.

The rotor gyroscopic effects are illustrated as below.

 Roll rotor gyro effect � J6θ�Ω6 (2.27)

 Pitch rotor gyro effect � J6U� Ω6 (2.28)

The inertial anti-torque moment on the z-axis is similar to the rotor gyroscopic

effects for the x and y axis. Inertial anti E torque effect � ijkj (2.29)

The gyroscopic moments have no important effects in the attitude of the vehicle.

They are introduced to present a more accurate model, but will not be implemented

in the simulation and design of the control system in order to simplify the overall

complexity of the platform. All moments together constitute the overall behavior of

the principle attitude angles of the vehicle. The equations showing the acceleration of

rotation around each axis are given in equations 2.30-2.32 below.

UO � ∑ mnIn � pθ� ψ� qI� E I^r) r,ETb) Tc-) J6θ� Ω6t, PIn- (2.30)

θ�O � ∑ muIu � pU� ψ� ,I^ E I�-) r,TP E T -) J6U� Ω6t, PIu- (2.31)

ψO � ∑ mvIv � pθ� U� qI� E I�r) r,TP) T E Tb E Tc-) J6Ω6t, PIv- (2.32)

16

CHAPTER THREE

INERTIAL MEASUREMENT

Inertial measurement systems use sensors to track the position and orientation of

an object without any external knowledge. Generally, Inertial Measurement Unit

(IMU) is used which consist of three axis gyroscope and three axis accelerometer

sensors. The gyroscopes measure the angular velocity and accelerometers measure

the acceleration. Using these measurements, it is possible to find the position and

orientation of a body with a known reference position, velocity and orientation

information.

Inertial measurement is used in wide variety of areas such as the navigation of air

vehicle, submarines, spacecrafts, missiles and ships. With MEMS (Micro Electro

Mechanical Systems) technology this application area has widened greatly.

3.1 Inertial Measurement Sensors

Mostly used inertial measurement sensors are gyroscopes, accelerometers and

altimeters. There are also several sensors helping to measurements like ultrasonic

sensor, magnetometer, pressure sensor and temperature sensor.

3.1.1 Gyroscopes

Gyroscope is a device which provides angular velocity around operating axis.

Using three gyroscopes with orthogonal to each other, it is possible to sense the total

orientation of related body. Generally, it makes use of the Coriolis Effect to do it.

The coriolis is the effect of the force when a rotating object is deviated from its

angular course. The main types of gyroscope are mechanical, optic and MEMS.

17

3.1.1.1 Mechanical Gyroscopes

 Mechanical gyroscope consists of a spinning wheel which can rotate in all three

axes with the gimbaled system. When it is subjected to a rotation, the wheel will

remain at a constant global orientation and the angles between adjacent gimbals will

change. The angle between gimbals is a measure of orientation. In contrast to the

other types which measure angular rotation, the mechanical gyroscopes measure the

orientation. It contains moving parts, so mechanical friction occurs and the output

drifts.

 Figure 3.1 Mechanical gyroscope

3.1.1.2 Optical Gyroscopes

Fiber optic gyroscope consists of large coil of fiber optic cable. To measure the

angular velocity, two light beams are fired in the opposite direction. The beam

traveling in the direction of the rotation will travel in longer path than the other.

When the beam travel ends, two beams will combine. The intensity of the combined

beam is the angular velocity. The accuracy of the fiber optic gyroscope is directly

related with length of path.

3.1.1.3 MEMS Gyroscopes

MEMS gyroscopes make use of the Coriolis Effect which states that in a frame of

reference rotating at angular velocity ω, a mass m moving with velocity v

experiences a force called Coriolis.

18

Figure 3.2 Optical gyroscope

 �w � E2�,(+ y- (3.1)

When the mass vibrating along with drive axis is rotated, a vibrating force is

produced with sense axis. The produced Coriolis force is directly related with

angular velocity.

 Figure 3.3 The Coriolis force

The MEMS gyroscopes have the advantages of small size, low weight, rigid

construction, low power consumption, short start-up time, inexpensive, high

reliability and low maintenance. The main disadvantage of the MEMS gyroscope is

that it is far less accurate as compare to optical ones.

19

3.1.2 MEMS Gyro Error Characteristics

3.1.2.1 Constant Bias

The constant bias is the average output from the gyroscope when any rotation is

not applied on it. It grows linearly with time and can be calculated by averaging the

output of gyroscope when a rotation is not applied.

In unaided systems, the gyroscope bias causes an increasing angular error over

time with fatal errors as a result. If the system is integrated with low drift gyroscopes,

the real attitude can be estimated.

3.1.2.2 Thermo-Mechanical White Noise

The MEMS gyro readings will be suffered by some thermo-mechanical noise

which oscillates at a rate much greater from the sampling period of the readings. As a

result, the samples obtained from the sensor are influenced by a white noise, which is

simply a sequence of zero-mean uncorrelated random variables.

3.1.2.3 Flicker Noise

The bias of a MEMS gyroscope changes over time because of flicker noise in the

electronics and in other components. Flicker noise is noise with a 1/f spectrum, the

effects of which are usually observed at low frequencies in electronic components.

At high frequencies flicker noise tends to be surpassed by white noise. Bias

oscillations due to flicker noise are usually modeled as a random walk.

3.1.2.4 Temperature Effects

Temperature changes in the environment and sensor self heating create a

movement in the bias.

20

3.1.2.5 Gyroscope Misalignment

A misalignment between the gyro axes and the object body axes gives a cross

coupling error angle between the measuring axes.

3.1.3 Accelerometers

The accelerometers are used to measure the velocity and position in inertial

navigation systems. Three types of accelerometer are available as; mechanical, solid

state and MEMS accelerometers.

3.1.3.1 Mechanical Accelerometers

A mechanical accelerometer consists of suspend mass with springs. When

acceleration is applied, the mass is displaced along with input axis. This

displacement is a measure of acceleration.

Figure 3.4 Mechanical accelerometer

3.1.3.2 Solid State Accelerometer

Solid-state type accelerometers can be designed with several types as surface

acoustic wave, vibratory silicon and quartz devices. Solid state accelerometers are

small, reliable and robust. Mostly, the surface acoustic wave (SAW) accelerometers

are used. A SAW accelerometer consists of a cantilever beam which is resonated at a

particular frequency. A mass is fixed to one end of the beam which can move. The

21

other end is rigidly attached to the case. When acceleration experienced along the

input axis, the beam bends. This causes the frequency of the surface acoustic wave to

change proportionally to the applied acceleration. The change in frequency is the

measure of the acceleration.

Figure 3.5 Solid state accelerometer

3.1.3.3 MEMS Accelerometer

Micro-machined electromechanical accelerometers use the same principles as

mechanical and solid state sensors. There are two main classes of MEMS

accelerometer. The first class consists of mechanical accelerometers manufactured

using MEMS technique. The second class consists of devices which measure the

change in frequency of a vibrating element caused by a change of tension, as in SAW

accelerometers.

 They are small, light and have low power consumption and short start-up times.

Their main disadvantage is that they are not currently as accurate as accelerometers

manufactured using traditional techniques but the performance of MEMS devices are

improving rapidly.

22

3.1.3 MEMS Accelerometer Error Characteristics

The main difference between errors coming from accelerometers than gyroscope’s

is that they are integrated twice in order to track position, where as gyro signals are

integrated once to track the orientation.

3.1.4.1 Constant Bias

The accelerometer bias is the difference of its output signal from the true value. A

constant bias causes high erroneous position results because the accelerometer output

is double integrated. So the position error grows dramatically.

The constant bias is estimated by measuring the long term average of the

accelerometer output when it is not applied any acceleration. But this is complicated

by gravity, since a component of gravity acting on the accelerometer will appear as a

bias.

3.1.4.2 Flicker Noise

MEMS accelerometers are subject to flicker noise, which causes the bias to

change over time. Such changes are usually modeled as a bias random noise. Using

this model, flicker noise creates a second order random noise in velocity whose

uncertainty grows proportionally to tz{ and a third order random noise in position

which grows proportionally with t|{.

3.1.4.3 Accelerometer Offset

An offset is a displacement of the accelerometers from the body axes which

causes an error in the alignment of the system.

23

3.1.4.4 Temperature Effects

Temperature changes cause oscillations in the bias of the output signal. The

relationship between bias and temperature is often highly nonlinear. Any residual

bias introduced causes an error in position which grows dramatically with time. If the

IMU contains a temperature sensor then it is possible to apply corrections to the

output signals in order to compensate for temperature effects.

3.1.4.5 Calibration Errors

Calibration errors appear as bias errors which are only visible as the device is

experiencing acceleration.

3.1.4 Altitude Sensors

Ultrasonic sensors can be used for altitude measurement. They use sounds which

are at a higher frequency than human ear can hear. They emit a pulse of sound and

listen for echoes. By measuring the time it takes for an echo to return from an object,

they are able to calculate the distance to that object. Knowing the speed of sound in

the air, distance to the target object is given by equation 3.2 below.

 Figure 3.6 Measuring distance

24

L = C.
Tb (3.2)

Here, L is distance to object, C is speed of sound and T is total time for echo.

The frequency of sound the sensor uses affects its efficiency. A higher frequency

means the wavelength is shorter. This gives a wider angle of detection, but reduces

the operation range. The shape of target objects, medium temperature and humidity

are also important as using ultrasonic sensors. A typical ultrasonic sensor can be

tuned to detect objects at ranges between a few centimeters and 10 meters.

3.2 Inertial Measurement Units

Inertial measurement unit is a cluster of all necessary sensors to be able obtain the

state information. Inertial measurement units are classified in two groups according

to their operating navigation frame as stable platform and strap-down systems.

3.2.1 Stable Platform Systems (Gimbaled)

In this configuration, the main principle is to keep the inertial sensors aligned with

global navigation frame. The stable platform can rotate in three axes with the help of

gimbals. The gyroscopes sense the any rotational movement and this is sent to torque

motors which rotate gimbals so cancels out any external rotations.

 Figure 3.6 Stable platform measurement unit

25

The angles between gimbals are interpreted as orientation. Accelerometer outputs

are referenced with global frame. So the velocity can be calculated directly by

integration once after gravity correction. The position is obtained double integration

of accelerometer readings. It is noted that accelerometer readings contain the

gravitational acceleration.

 Figure 3.7 Stable platform IMU operations

3.2.2 Strap-down Systems

In strap-down systems, the gyroscopes and accelerometers are placed on the body

in a rigid manner. The main difference from stable platform system is that the

measurements are referenced with the body frame. The orientation is obtained with

just integrating gyroscope readings. The body frame referenced accelerometer

readings are transformed to global frame with the help of orientation and integrated

twice to get the position.

The strap-down systems are less complex mechanically and smaller than stable

platform systems but have computational complexity.

26

 Figure 3.8 Strap-down IMU operations

3.3 Filtering

Raw sensor data is noisy and not usable value. Moreover, each sensor has

different noisy characteristics. So sensor raw readings need to be filtered and merged

together. There are typically three type of method used for combining sensor data.

The first is known as correction. A sensor data is used to correct another sensor data.

Second is binding sensor data together. This involves merging different parts of a

sensor together and disregarding other parts. Third method is fusion and the best for

merging sensor data. In this method, the values from each sensor are combined

together in a rated, statistical manner to produce good results. In IMUs,

accelerometer which is used to get the position and gyroscope which is used to get

attitude of the vehicle plays an important role. Due to the nature of acceleration

measurement, the outputs fluctuate not only to changes in the gravitational vector but

also to very small accelerations and disturbances like translational acceleration,

thrust and altitude changes, wind, etc. The accelerometer reading is very noisy and

tends to error. The gyroscopes are used to smooth out these errors. The gyros are,

however, not without their own limitations. Although they suffer little from

translational noise components due to their rotational measurement system, they tend

to suffer heavily from drift and hysteresis. By statistically averaging the values from

the sensors together, the attitude of the vehicle can be determined with a decreased

noise and error component. Typically, sensor fusion algorithms use a form of

Kalman filtering to observe a noisy signal over time in order to produce a signal that

27

is closer to the true value of the measurement. The Kalman filter approach typically

uses the time domain principles of the noise with no regard to the signal transfer

functions or frequency components. As an alternative, the complementary filter

method concerns itself with analysis of the frequency domain with no consideration

of the statistical description of the noise signal. Essentially, a complementary filter

can be called as a steady-state Kalman filter.

3.3.1 Kalman Filter

Kalman filter is a bunch of mathematical equations that implement a predict-

correct type estimator that is optimal in the sense that it minimizes the estimated

error under some presumed conditions. The Kalman filter can estimate the variables

of a wide range of processes which require the estimate of the states of a linear

system. In order to use a Kalman filter to eliminate noise from a signal, the process

that measured must be described as a linear system. A linear system is simply a

process that can be defined by the following two equations: x� � A. x��P) B. u�) w��P (3.3)

 z� � H. x�) v� (3.4)

In the equations A, B, and H are matrices; k is the time index; x� is called the state of

the system; U is a known input to the system; z� is the measured output; and w and v

are the noise. The variable w is called the process noise, and v is called the

measurement noise. Each of these variables is a vector and therefore contains more

than one element. The vector x� contains all of the information about the current

state of the system, but x�vector cannot be measured directly. Instead, z� which is a

function of x� can be measured but z� is affected by the measurement noise v�.

The system behavior is known according to the state equation and also

measurements of the position, so the best estimate of the state x� is should be

determined. An estimator that gives an accurate estimate of the true state even

though that cannot be directly measurable, should be determined. There are two

requirements for the estimator; first, the expected value of the estimate should be

28

equal to the expected value of the state, second, the estimator should have the

smallest possible error variance.

The Kalman filter satisfies the two requirements under some assumptions about

noise. It is assumed that the process and measurement noises have the average value

of zero and also assumed that there is no correlation between them.

 Q � E ,w� . w�T- (3.5)

 R � E ,z� . z�T- (3.6)

The filter contains four main operations; Initialization, Prediction, Observation

and Estimation.

Figure 3.9 Kalman filter operations.

In the initialization step, initial state variables are set. In an inertial navigation

system, initial position, velocity and acceleration values are determined. x�~ � A. x��P) B. u� (3.7) P�~ � A. P��P) AT) Q (3.8)

The observation matrix is measured by inertial sensors. The difference between

the predicted sensor values H. x�~ and real sensor values are called as innovation. z� E H. x�~ (3.9)

29

The observation is processed in every period and sensor one by one for each. The

Kalman gain is calculated for every time step after observation. K� � P�~ . HT . ,HP�~ . HT) R-�P (3.10)

And the new state estimation for new Kalman Gain;

x� � x��P~) K� ,z� – H. x�~- (3.11)

The first term used to derive the state estimate at time k is just predicted state x

variable at k-1 time. This would be the state estimate if a measurement is not existed.

In other words, the state estimate would propagate in time just like the state vector in

the system model. The second term in the equation is called the correction term and

it represents the amount by which to correct the propagated state estimate due to our

measurement. The covariance matrix for new state is expressed as; P� � P�~ ,1 E K� H- (3.12)

The first job during the measurement update is to calculate the Kalman gain. The

next step is to actually measure the process to obtain and then to generate the next

state estimate. The final step is to obtain the next error covariance. After each time

and measurement update pair, the process is repeated with the previous ‘next

estimates’ used to predict the new a former estimates.

 Figure 3.10 Kalman filter loop

30

CHAPTER FOUR

CONTROL SYSTEM

 Applications that require control of the system output when reference input value

changed, need to a control algorithm. A control system is commonly used in

applications like motor control, control of temperature, pressure, flow rate, speed,

force or other variables.

Different control algorithms have been used up to now, but the PID algorithm has

become common method because of its simplicity and good performance. The PID

algorithm can be applied to control any measurable variable, if this variable can be

controlled by adjusting some other process variables.

4.1 PID Controller

 In Figure 4.1 a diagram of a system with a PID controller is shown. The PID

controller compares the measured sensor value of y with a reference value (y0). The

difference is called as error (e) which is evaluated to compute a new process input (u)

to system. This calculated input will try to approach the measured sensor value to the

desired reference value. The alternative method to a closed loop control such as the

PID controller is an open loop controller. Open loop control which has no feedback

is in many cases not adequate, and is generally not preferred. By adding feedback

from the system output, performance can be improved greatly.

 Figure 4.1 Simple PID block diagram

31

On contrary to simple control algorithms, the PID controller is to be able to adjust

the process inputs according to the old and rate of change of the signal. This provides

a more accurate and stable control design. Firstly, the system output state is

measured by sensors. And then this value is subtracted from desired reference to

generate the error value. The error will be evaluated in three ways, to manage the

present with the proportional term, recover from the past using the integral term and

to predict the future with the derivative term.

Controller
(PID) Quadrotor

Sensors
(IMU)

User
Inputs

error

 Figure 4.2 Control system for quadrotor

4.1.1 Proportional Term

The proportional term provides a system control input proportional with the error.

if just a proportional control is used, there exists a stationary error except when the

reference equals to measured state.

 Figure 4.3 Step response of P term.

 In figure 4.3, the stationary error in the system process value appears after a

change in the desired value. Using a too large P term gives an unstable system.

32

4.1.2 Integral Term

 The integral term provides an addition from the sum of the old errors to the

system control input. The summation will continue until the measured system

process equals the desired reference value and this provides no stationary error when

the reference is stable. Normally integral term is not used alone because of slow

response and oscillatory output. The most common use of I term is together with the

P term, called a PI controller. The figure 4.4 shows the step response to I and PI

controller. As seen the PI controller response have no stationary error and I controller

response is very slow.

 Figure 4.4 Step response of I term

4.1.3 Derivative Term

 The derivative term provides an addition from the rate of change in the error to the

system control input. An instant change in the error will give an addition to the

system control input. This improves the response to a sudden change in the system

state or reference value. The D term is typically used with the P or PI as a PD or PID

controller. A large D term usually gives an unstable system. The figure 4.5 shows D

and PD controller responses. The response of the PD controller gives a faster rising

system process value than the P controller.

33

 Figure 4.5 Derivative Term

 Using all the terms together, as a PID controller usually gives the best

performance. The figure 4.6 shows the P, PI, and PID controllers. PI improves the P

by removing the stationary error and the PID improves the PI by faster response and

no overshoot.

 Figure 4.6 PID controller step response

4.1.4 Discrete PID Control Algorithm

The transfer function of the system in S-domain

R4 ,s- � H,s- � K� �1) PT�S) T;s� (4.1)

34

Here Tp, Ti, and Td denote the time constants of the proportional, integral, and

derivative terms respectively. In time domain version of the transfer function;

 u,t- � K� �e,t-) PT� � e,σ-d7� σ) T; ;4,7-;7 � (4.2)

Approximating the integral and the derivative terms to get the discrete form;

 � e,σ-d7� σ � T ∑ e,k-���� ;4,7-;7 � 4,�-�4,��P-T t � nT (4.3)

Where n is the discrete step at time t. Finally Discrete PID equation;

 u,n- � K� e,n-) K� ∑ e,k-����) K;,e,n- E e,n E 1-- (4.4)

4.2 Controller Tuning

After the PID controller successfully implemented, the next step is to tune the

controller gains to appropriate values. There are several tuning methods in order to

find the P, I and D gains appropriately to provide a desired response. These are

manual tuning, Ziegler-Nichols, software tuning and Cohen-Coon tuning. In the

actual implementation of the platform, disturbances rejection is much more important

than getting the reference value exactly every time. The Ziegler-Nichols tuning

method is good at disturbance rejection but a little slow to follow the reference input.

Ziegler-Nichols method is quite simple. First, the proportional constant is set a

small value. As Kp is increased slowly, the response of controlled variable is

observed. The Kp is increased until the response becomes oscillatory continuously.

This is known as the ultimate gain (Ku) and the period of the oscillation as Pu. The

control law settings are then obtained from the following table.

4.3 Model Simplifications

In model based control, it is common to take the full simulation model and

simplify it such that the control is applied to a specific behavior. This makes the

initial design of the system less intensive and allows adjusting the system for the

most significant effects before adding minor effects that may increase the complexity

35

of the controller. Equations that show the rotational equations of motion for the full

simulation model had been developed in Chapter 2.

Table 4.1 PID tuning table

 �� �� ��

P KU2

PI KU2.2
PU1.2

PID KU1.7
PU2

PU8

In full simulation model, the rotor gyroscopic effects created by the rotational

motion of the propellers are not important comparing to the moments created by the

rotor thrusts. For this reason, they are eliminated in both the simulation and the

controller design. To limit the design over which the controller is valid thus reducing

the complexity of the controller while evaluating the most important characteristics

of the vehicle. When gyroscopic effects are eliminated;

 UO � ∑ mnInn � pθ� ψ� qI�� E I^^r) r,ETb) Tc-t, PInn- (4.8)

 ψO � ∑ mvIvv � pθ� U� qI�� E I��r) ,TP) T E Tb E Tc-t, PIvv- (4.9)

 θO � ∑ muIuu � pU� ψ� ,I^^ E I��-) r,TP E T -t, PIuu- (4.10)

A stable hover state will be the desired orientation of the vehicle. This means we

are only concerned with the rotations of the vehicle near hover. As a result, we will

only consider the rotational movements for the roll, pitch and yaw angles. The

angular velocities for roll, pitch, and yaw will be very small. For this reason, we can

also omit the angle gyroscopic effects introduced in Chapter 2. These eliminations

form the simplified control model used to develop the controller. These simplified

equations of motion are provided in equations 4.11 - 4.13.

 UO � ∑ mnInn � � r,ETb) Tc- , PInn- (4.11)

 θ�O � ∑ muIuu � � r,TP E T - , PIuu- (4.12)

36

 ψO � ∑ mvIvv � �,TP) T E Tb E Tc- , PIvv- (4.13)

4.4 Input Declarations

After the simplified model is defined, the next step is to define the input (U)vector

that will be used to control the system dynamics from the controller. In the

simulation, the input to the system dynamics model was based on the relationship

between the pulse-width modulation command send from the controller to the motors

and the actual thrust output. This relationship is only linear for a small portion of the

thrust curve. It is therefore useful to use a more observable rotational speed instead

of PWM input. The thrust produced by motors related to the square of the propeller

speed when the flight state is in hover and is not a motion, with a thrust constant

factor and drag moment factor considered. Therefore, the inputs selected for the

system can be expressed as in equations 4.14 – 4.16. The altitude input is comprised

of all the motor inputs as a sum to provide the altitude of the vehicle.

 U6:¢¢ � rb,EΩbb) Ωcb- (4.14)

 U��7£8 � rb,ΩPb E Ω b - (4.15)

 U�5¤ � d,EΩPb) Ωbb E Ω b) Ωcb - (4.16)

37

CHAPTER FIVE

SIMULATOR DESIGN

The overall software design can be separated to three parts as simulator, UAV and

graphical user interface (GUI). User sends commands with GUI, UAV software takes

them and uses as reference values for the control system. Control system evaluates

reference with current state and calculates actuator states to drive all system into user

demands. Simulator model applies actuator states and outputs sensor values to UAV

software. This loop continues forever.

 Figure 5.1 Diagram of working principle of overall system

The simulator contains graphic model, dynamic design and MCU modeling.

Simulator is separated from UAV software with an abstraction layer. UAV software

consists of main UAV middleware core and application layer. User interface is

totally different software that consists of common controls for user to send

commands to UAV system.

 Figure 5.2 Overall system input-ouput model

38

5.1 Software Layers

Quadrotor overall software is divided to layers in hierarchic manner. Layers also

divided to sub-blocks as modules. Below Figure 5.3 illustrates common software

layers and blocks. The layered configuration provides abstraction between software

tasks. All work is broken down to parts so that the design is simplified. The main

advantage of layered design is that the code reusability is increased. The layer and

modules can be used other software projects or can be discarded easily.

The quadrotor software consists of layers as application, middleware, driver

abstraction and simulator. With driver abstraction layer, the same middleware and

application layer can be used for both simulator and real UAV platform.

 Figure 5.3 General software layer diagram

5.1.1 Simulator Layer

Simulator layer provides visual output of the project such that quadrotor 3D

model movements and medium it located on. This layer also includes sensor

modeling, dynamic calculations and MCU modeling.

39

3D model operations are fulfilled using OpenGL\GLUT library. Firstly, the model

and terrain are loaded. After initialization system goes into idle state and waits for

user command.

 Figure 5.4 Simulator software input output model

All operation done in simulator layer is shown in Figure 5.5. Simulator system just

takes motor set values that calculated in control system and outputs sensor values

calculated in sensor modeling operation. The rotor speeds are calculated from motor

set values using brushless motor model developed. The rotor thrust values are

calculated using propeller model which uses rotor speeds and propeller’s physical

parameters. After that, the quadrotor dynamic equations are processed to obtain the

attitude of the vehicle which consists of six degree of freedom x, y, z positions and

roll, pitch, yaw angles on the earth frame. Calculated system states applied to

quadrotor 3D model instantly. Finally, sensor outputs are calculated with sensor

modeling operation that will be explained in next sections.

 Figure 5.5 Simulator software operations

40

5.1.2 Driver Abstraction Layer

The driver abstraction layer isolates the platform based operations from main

quadrotor operations. Thus it is used to pass the code into simulator instead real

quadrotor platform.

5.1.3 Middleware Layer

Middleware layer is designed to fulfill the generic UAV operations. All the

necessary modules of UAV system needs should be implemented in this layer. A

communication system between operator and vehicle, sensor measurement and

filtering to obtain the vehicle instant attitude and a powerful control system for

managing vehicle movement are common in all UAV platforms. The middleware

software modules are shown in Figure 5.6 below.

 Figure 5.6 Middleware layer

5.1.3.1 Communication Operations

The communication system creates connection between operator and vehicle. The

operator sends commands using user interface and vehicle receives them and

processes. This module mainly captures the packets sent from user interface and

sends packets to user interface. The captured packets are parsed and interpreted as

user desired states for the control system. Additionally, it shares quadrotor states,

sensor values with GUI. The communication module functions and variables are

shown in Figure 5.7 below.

41

 Figure 5.7 Communication module elements

The variable ‘comPacket’ stores instant communication packet in the form of

‘T_ComPacket’ struct. The function ‘sendComPacket()’ sends packets to channel.

The function ‘readComPacket()’ captures packets from channel and

‘parseComPacket()’ function parses packets captured. ‘T_ComPacket’ data structure

consists of communication protocol packet content as packet length, type (command

or data), data and 16-bit crc for data integrity check. The structure is shown in Figure

5.8 below.

Figure 5.8 package structure

Serial communication (RS232) communication is used between simulator and user

interface. Simulator uses Windows WIN32 API library for serial communication.

5.1.3.2 User Command Operations

User commands are interpreted after parsing communication packets and user

desired states are determined. All UAV systems have generic user commands as

take off, rotate to all directions, hover and landing. All these commands are

implemented in simulator and user interface side to control quadrotor.

42

 Figure 5.9 User command operations

Module functions are listed in Figure 5.10 below.

 Figure 5.10 User command

The module variable ‘userStates’ consist of user desired states in the form of

‘T_UserState’ structure. The commands are interpreted and desired roll, pitch, yaw

and altitude values calculated for control system reference input. ‘T_UserState’

structure is used for control system as reference or desired value. It consists of user’s

desired roll, pitch, yaw and altitude values.

 Figure 5.11 User state structure

5.1.3.3 Sensor Operations

Sensor operation manager gets raw sensor data as voltages from ADC unit and

convert them to actual readings. The filter manager applies filters to get reliable data

43

and produces measured sensor states for control system as current device attitude.

Here moving average and Kalman filters are processed.

 Figure 5.12 Sensor operations

Module functions are listed in Figure 5.13

 Figure 5.13 Sensor processes

The module variable ‘Sensors’ stores all sensor raw data in the form of

‘T_Sensor’ structure. The function ‘ReadSensor()’ reads raw sensor data and

‘UpdateSensorValues()’ function updates all sensor readings. ‘T_Sensor’ structure

consists of elements for all necessary sensor types. The three axis gyro, three axis

accelerometer and altitude sensor raw readings are stored for filter operations.

 Figure 5.14 Sensor data

5.1.3.4 Filter Operations

 Sensor raw readings contain lots of noise and should be filtered. Two types of

filtering are applied as moving average and Kalman filter. Filter module functions

are listed in Figure 5.15 below.

44

 Figure 5.15 Filter process functions

The function ‘kalmanInit()’ initializes Kalman states. The functions

‘movingAverageFilter()’ and ‘ProcessFilter()’ apply Kalman and moving average

filters respectively. ‘T_SensorState’ data structure is used in control system as an

actual system state. Firstly, sensor outputs are filtered and interpreted as roll, pitch,

yaw and altitude of measurement system.

 Figure 5.16 Filtered sensor data

5.1.3.5 Control System

Control system takes desired user states as reference and filtered sensor states as

input, processes PID control algorithm and generates output states.

 Figure 5.17 Control system operations

Module functions are listed in Figure 5.18 below.

45

+PIDController()
+ProcessControlSystem()

-controlState

ControlSysMngr

 Figure 5.18 Control system functions

The module variable ‘controlState’ stores the output of PID controller. The

‘PIDController()’ function applies PID operations and ‘ProcessControlSytem()’

function calls it for all states. The control system outputs are used for actuator system

as an input. Here, control roll, pitch, yaw and altitude values are calculated.

 Figure 5.19 Control system data structures

5.1.3.6 Motor Operations

Motor software module takes control system outputs and calculates motor set

values. Finally, it sends new calculated values to PWM module. Module functions

are listed Figure 5.20 below.

 Figure 5.20 Motor process functions

The module variable ‘motorState’ stores motor instant parameter as motor

location, speed and set values for each motor.

46

 Figure 5.21 Motor system data types

5.1.4 Application Layer

Using generic UAV middleware functions, quadrotor application is created.

Application layer simply calls middleware functions to operate the quadrotor in

desired manner.

 Figure 5.22 Application layer

Firstly, The function ‘InitApplication()’ initiates middleware modules. The

function ‘GetUserCommand()’ takes incoming user commands if available. The

function ‘GetVehicleState()’ gets instant vehicle states. Here, sensor read and

filtering operations are processed. ‘ProcessControlSys()’ processes control system

algorithms to drive overall system into operator demands. Finally, actuator system is

updated.

5.2 Simulator 3D Visualization

The quadrotor3D model is created with Blender 3D tool as wavefront object

format. The model imported to Opengl medium using Opengl mathematics (GLM)

library. Basically, it reads a wavefront object file and material file and knows how to

47

draw it on the screen exactly the way it looked in Blender. It provides also texturing

and locating the model on the screen everywhere.

After importing quadrotor model, it can be moved anywhere on the screen and

rotated with any angle representing roll, pitch and yaw movements using OpenGL

functions. Opengl part takes the model states that roll, pitch, yaw, x, y, z in earth

frame and positions it on the screen. These states are calculated from motor speeds.

The motor speeds are calculated from motor set values which are the control

system’s output.

5.2.1 OpenGL

OpenGL (Open Graphics Library) is a standard specification defining a cross-

language, cross-platform API for writing applications that produce 2D and 3D

computer graphics. The interface consists of over 250 different function calls which

can be used to draw complex three-dimensional scenes from simple primitives.

OpenGL was developed by Silicon Graphics Inc. (SGI) in 1992 and is widely used

in CAD, virtual reality, scientific visualization, information visualization, flight

simulation, and video games.

OpenGL hides complexities of interfacing with different 3D accelerators by

providing a simple, uniform interface. In its basic operation, OpenGL accepts

primitives such as points, lines and polygons, and converts them into pixels via

a graphics pipeline known as the OpenGL state machine. Most OpenGL commands

either issue primitives to the graphics pipeline, or configure how the pipeline

processes these primitives.

OpenGL is a low-level, procedural API, requiring the programmer to dictate the

exact steps required to render a scene. This contrasts with descriptive APIs, where a

programmer only needs to describe a scene and can let the library manage the details

of rendering it. OpenGL's low-level design requires programmers to have a good

48

knowledge of the graphics hardware, but also gives a certain amount of freedom to

implement algorithms.

OpenGL is a hardware and system independent interface. An OpenGL application

will work on every platform, as long as there is an installed implementation. But, for

a good performance, the computer that simulator runs on should have a minimum

system requirements as 2GB RAM memory, 2GHz processor speed and 256MB

display card memory.

5.2.2 3D Design of Model

Blender 3D design tool is used for drawing quadrotor model. Four arms, one

central hub, four motors and propellers are drawn separately and brought together.

The model saved as wavefront object format which uses two file as object (.obj) and

material file (.mtl). Object file stores description of the surface of a 3D object,

composed of triangles or higher degree polygons and material file is an auxiliary file

containing definitions of materials like color and textures.

 Figure 5.23 3D Simulator model as skeleton.

When working with Blender tool, first 3D model is drawn as skeleton as shown

in Figure 5.23. The central hub, arms, motors and legs are created as one object and

49

propeller created as different object because Opengl rotates propellers besides overall

quadrotor. Then it is coated with desired colors as shown Figure 5.24. One of the

arms is marked as red near motor to represent the front of vehicle.

 Figure 5.24 3D Simulator model.

And finally it is previewed as below.

 Figure 5.25 3D Simulator model final preview

After completion of the model, it should be exported in an appropriate format.

Blender provides lots of format. Wavefront object format is used for the simulator.

50

Terrains helps to figure out the 3D mediums especially when there exist moving

objects. In simulator medium, floor is covered with full green grasses, air with real

sky and mountains are placed far behind to increase the visual perception.

5.3 Sensor Modeling

The simulator model just takes motor set values and outputs raw sensor outputs as

voltages. Sensors are modeled according to the simulator‘s instant attitude.

Simulated IMU consist of 3 axes gyroscope, 3 axes accelerometer and altimeter. This

sensor combination allows the platform to track accelerations along the three

principal axes of translation (x, y and z) via the accelerometer and rotational speed

around two of the principal axes of rotation (in this case, roll and pitch) to give us a

total of 6 DOF available.

5.3.1 Accelerometer Model

For each 3 three axis, accelerometer outputs are modeled from simulator dynamic

accelerations. ADXL335 accelerometer is used for modeling as base. The output of

modeled accelerometer is between 0 to 5 volts. The model equation is shown below.

Output =Offset + Sensivity * sin(Acceleration) + Noise (5.1)

The Offset is measured voltage when no acceleration exist. The sensivity is g value

for each volt. The noise is modeled as white noise. White noise is a

random signal with a flat power spectral density. In other words, the signal contains

equal power within a fixed bandwidth at any center frequency.

5.3.2 Gyroscope Model

The simulator rotational movements are modeled as three axes gyroscopes.

IDG500 type gyroscope is used for modeling. The model equation is shown below.

Output = Gyro Zero Bias + Sensivity * Rate + Noise (5.2)

51

Here, zero bias value comes from no rotation gyro readings. The sensivity is measure

of degree for each voltage. The noise model is Gaussian white noise.

5.3.3 Altitude Sensor Model

Ultrasonic sensor is chosen for altitude measurement. Murata MA40S4R/S model

ultrasonic sensor is taken as base. The sensor is modeled with following equation.

Output = Offset + Sensivity * Altitude (5.3)

5.4 Component Modeling

Quadrotor main components are also modeled in simulation as brushless motor,

propellers and microcontroller (MCU). The MCU model includes all peripherals

needed in simulation.

5.4.1 Brushless Motor Model

Brushless motors provide higher payload rates with high energy density lithium

polymer batteries. Brushless motors replace the field windings with permanent

magnets located on the rotor and move the armature windings to the stator. In this

manner, the need for brushed mechanical commutation is eliminated, reducing noise

and electromagnetic interference due to arcing. Without the friction of the brushes

against the rotor, there is also some gain in efficiency. In addition, maintenance is

greatly reduced as there are no brushes to replace. On the other hand, a disadvantage

of the brushless motor is the need to perform the commutation electronically in a

separate unit.

A complicating factor with the use of brushless motors is the introduction of an

electronic speed controller (ESC), a device external to the motor which electronically

performs the commutation achieved mechanically in brushed motors. The ESC

converts the battery pack DC voltage to a three phase alternating signal which is

synchronized to the rotation of the rotor and applied to the armature windings. The

52

motor speed is then proportional to the root-mean-square (RMS) value of the

armature voltage and is set by the ESC in response to a pulse width modulated

control signal. The relationship between the control signal and the voltage level is

not necessarily linear and must be confirmed experimentally. For example, the ESC

units used for this quadrotor could be programmed to provide either a linear power

response or a linear speed response.

Figure 5.26 ESC model

Direct measurement of the three phase voltage or current can be made with a true

RMS meter with sufficient bandwidth and current limits only if it is known whether

the armature windings are connected in a wye or a delta configuration. An alternate

approach is to model the ESC as shown in Figure 5.26. Accounting for the power

consumed by the electronics, Pe, the power available to the motor can be determined

from the power supply voltage and current as: ¥¦ � &§¨$§¨ E ¥© (5.4)

5.4.2 Propeller Model

A propeller accelerates incoming air particles, throwing them towards down in a

quadrotor, and it feels a force called thrust on itself in opposite direction. The

propeller adds a velocity ∆v to incoming air particle that has velocity v. The first half

of this acceleration takes place in front of the propeller, and the second half behind

the propeller. According to conservation of mass, the mass of air passing through the

stream tube must be constant. This increased velocity results in a confinement of the

stream tube passing through the propeller.

53

 Figure 5.27 Propeller air stream tube

The thrust of a propeller depends on the volume of air accelerated per time unit, on

the amount of the acceleration, and on the density of the medium. Based on

momentum considerations, it can be expressed by the following formula:

T � «c . Db. �v) ∆b � . ρ. ∆v (5.5)

Here, T, thrust [N]; D propeller diameter [m]; v, velocity of incoming flow [m/s]; ∆v,

additional velocity, acceleration by propeller [m/s]; ρ , density of fluid [kg/m³].

(air: ¯=1.225 kg/m³)

In the formula, thrust T increases when the diameter D increases or when the density ρ of the medium increases. If the additional velocity ∆v is increased, the thrust also

increases. For a propeller of a fixed diameter, working in a certain medium at a

certain speed, thrust depends on the velocity increase ∆v only.

5.5 MCU Modeling

Microcontroller is modeled with necessary peripherals such as UART, ADC,

timer, PWM and interrupt modules.

 Figure 5.29 MCU model operations

54

 Figure 5.28 MCU model units

5.5.1 UART Model

UART is modeled with serial port device using WIN32 API. Using the API, a

serial communication port can be opened with ‘CreateFile()’ function. And using

‘WriteFile()’ and ‘ReadFile()’ APIs, serial data send and receive operations are

handled respectively.

5.5.2 ADC Model

 ADC is modeled as six channels for each sensor and simply returns modeled

sensor values. 10-bit digital value corresponds to analog sensor output in interval

between 0 and 5 V.

5.5.3 Timer Model

 Timer module is simulated with OpenGL/GLUT timer functions. OpenGL/GLUT

provides time dependent function callbacks.

5.5.4 PWM Model

 PWM Module just passes motor set values to simulator unit from control system.

5.5.5 Interrupt Model

 Timer interrupts are created using timer module and simulator states are updated

in specific time intervals. For example, sensor readings and user interface updates are

handled with timer based interrupts.

55

5.6 Graphical User Interface

 Graphical user interface is developed under Microsoft Visual Studio 2005 with

Visual C++.Net programming language. It allows users to control the quadrotor from

remote computer.

 Figure 5.30 User interface design

Firstly, user adjusts serial port settings and opens port. Sensor readings are

received and plotted. Moreover, the vehicle six degrees of freedom states are

observed in interface as roll, pitch, yaw and x, y, z. Basic commands are included

such as take-off, hover, landing, turn left, turn right, go up and go down.

Graphic components are not part of Visual Studio. Third-party PlotLab’s Scope

Control component is used to visualize the coming sensor and state values.

The Scope Control is a very fast multichannel plot component that can plot the data

in logarithmic or linear modes.

5.7 Communication Protocol

 Simulator software and user interface communicates continuously. User interface

sends user commands and simulator sends its instant dynamic states. The

56

communication medium is standard RS232. A special communication protocol is

designed between user interface and simulator software. The protocol packet

structure is shown in Figure 5.31 below.

 Figure 5.31 Protocol structure

STX: start of transmission

LEN : length of data from TYPE to CRC

TYPE : packet type as command or data

DATA: data to transmit

CRC: cyclic redundancy check for data integrity

57

CHAPTER SIX

CONCLUSION

The overall objective of this thesis was to design of a generic simulator for

quadrotor UAV from point of view of electronic engineering. The focus was to be on

the system that fulfills generic UAV operations and a simulator using them to

visualize all system capabilities in a 3D medium. The derivation of the modeling

equations, the implementation of a simulation model and controller design provided

the understanding of the physical characteristics and the behavior of the quadrotor.

The platform consists of several subsystems as the dynamics, sensors, motors,

control system and communication system which have been examined deeply to

understand how they are related in a real platform.

The overall simulation model is simplified to focus into main characteristics of

quadrotor vehicle. The simulation model worked sufficiently for stable hover flight,

but the air frictions neglected would need to be included for the model to be even

more realistic. Moreover, the gyroscopic effects ignored in the development of the

equations of motion could be added in future versions of the simulator. In addition,

all components which were considered as an efficient exactly could be modeled more

accurately. For example, the motors do not have 100% efficiency, because they do

not output based on input instantly. This delay could be simulated with a first-order

model of the motor. This model would be created from a gain and a pole that is

related to the timing constant for the motor. The more complicated sensor modeling

could also be designed to increase the accuracy of the simulation.

The platform gained great advancement after the simplified steady-state Kalman

filter was implemented to combine data from the gyroscopes and accelerometers.

The filter was able to handle the long term drift of the roll and pitch angles of the

gyroscopes and removed the noise of the accelerometer. But the long term drift of the

yaw angle is not considered. Inclusion of a magnetometer sensor to provide route

information would allow the yaw drift to be corrected. While the filter implemented

on the vehicle provided a true estimation of the sensor values, this can be improved

58

even more. By observing the noise, the weight that each sensor system plays in the

overall could be adjusted in real time. Moreover, an ultrasonic sensor alone is not

adequate for altitude measurement beyond a certain limit and should be merged with

a pressure sensor to estimate real altitude. Additionally, integration of a GPS model

would be important to target path following and true autonomous flight.

Environmental effects such as collisions, wind, temperature and raining models

could be added to an advanced simulation in order to fully test the platform in a

variety of conditions. Lastly, addition of power consumption model that simulates

battery status and sound effects for motors could make simulator more realistic.

There are alternative platforms for simulator designs. For example, using Matlab

Simulink modeling tool, overall simulator model could be designed with built-in

system blocks and the outputs could be visualized with Opengl support.

A simulator for quadrotor UAV has been researched, specified, designed,

implemented and tested for this project. This simulator is capable of modeling not

only the physics of such a vehicle, but also the architecture of the electronic devices

onboard. The software is run on the simulated microcontroller in order to test its

suitability and can be transferred to the real platforms with little modification.

59

REFERENCES

Angeletti G. & Valente, J. R. & Iocchi, D. (2008). Autonomous Indoor Hovering

with a Quadrotor. Sapienza University of Rome, Italy, B.Sc.

Beard, R. W. (2008). Quadrotor Dynamics and Control. Brigham Young University,

USA, B.Sc.

Bouabdallah, S. (2007). The Design and Control of Quadrotors with Application to

Autonomous Flying. Swiss Federal Institute of Technology, Ph.D.

Bresciani, T. (2008). Modelling, Identification and Control of a Quadrotor

Helicopter. Lund University, Sweeden, M.Sc.

Bror, T. & Valdemar, K. (2003). Structure of an Inertial Navigation System.

Darmstadt University of Applied Sciences, Germany, B.Sc.

Chronister, J. (2009). Blender Basics (3rd ed.). Retrieved May 13, 2009, from

http://www.blender.org/education-help/tutorials/

Kemp, C. (2006). Visual Control of a Miniature Quad-Rotor Helicopter. University

of Cambridge, England, Ph.D.

Latorre, E. S. (2007). Propulsion system optimization for an unmanned lightweight

quadrotor. Universitat Politècnica de Catalunya, Spain, M.Sc.

Mitov, B. (2010). PLotLab Quick Start. Retrieved April 29, 2010, from

http://www.mitov.com/manuals/QuickStart.pdf

Nice, E. B. (2004). Desıgn of A Four Rotor Hovering Vehicle. The Faculty of the

Graduate School of Cornell University, USA, M.Sc.

60

Pedersen, A. H. (2006). Test and Modeling of Four Rotor Helicopter. Technical

University of Denmark, M.Sc.

Pusa, J. (2009). Strap down inertial navigation system aiding with non holonomic

constraints using indirect Kalman filtering. Department of Mathematics, Tampere

University of Technology, Finland, M.Sc.

Rost, R. J. (2006). OpenGL Shading Language (2nd ed.) Addison Wesley

Professional.

Rönnback, S. (2000). Development of a INS/GPS navigation loop for an UAV.

Lulea University of Technology, Sweeden, M.Sc.

Sikiric, V. (2008). Control of Quadrocopter. The School of Electrical Engineering,

Royal Institute of Technology, Sweeden, M.Sc.

Simon, D. (2001). Kalman Filtering. Retrieved June, 2001, from

http://academic.csuohio.edu/simond/courses/eec644/

Stepaniak, M. (2008). A Quadrotor Sensor Platform. Ohio University, USA, M.Sc.

Woodman, O. J. (2007). An introduction to inertial navigation. Cambridge

University.

Welch, G. (2001). An Introduction to the Kalman Filter. University of North

Carolina.

Yiting W. (2009). Development and Implementation of a Control System for a

quadrotor UAV. University of Applied Science Ravensburg-Weingarten,

Germany, M.Sc.

