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DIGITAL FILTERING FOR COMMUNICATION SIGNALS USING FPGA 

TECHNOLOGY 

 

ABSTRACT 

 

Base element of digital systems which are used in a very wide area between daily 

life and or hi-tech research applications is ICs (Integrated Circuits). There are several 

technologies for designing and producing these IC‟s which are used for several 

applications. 

 

FPGA (Field Programmable Gate Array) is a new technology which provides a 

different new way to develop these integrated circuits. It is produced by a few 

companies around the world and common property of these FPGA‟s is they can be 

configured by the hardware descriptive languages Verilog and VHDL (Verilog 

Hardware Descriptive Language) which have base standards. Filtering of digital 

signals on implemented hardware using these languages is explained in this thesis. 

 

Together with explanation of developed filter which is created by VHDL 

command lines, algorithm of serial communication modules which are needed for 

data communication in the project like transmitter, receiver and delayer are also 

explained in this thesis. 

 

To test the constructed modules in FPGA digital data is transmitted and received 

through serial port of FPGA. Audio files which have specific sampling frequency 

and bit depth are used for testing filtering characteristics.  

 

In addition, subjects like algorithm of VHDL modules, digital filter construction, 

module instantiation, differences of filter architectures and design process are 

explained and results are compared. Also several software are used in the design 

process and it is explained how to use them in this thesis. 

 

Keywords: FPGA, VHDL, digital filters, instantiation, implementation  
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FPGA KULLANARAK HABERLEŞME SAYISAL İŞARETLERİNİN 

SÜZÜLMESİ 

 

ÖZ 

 

Günlük ihtiyaçlarda kullanılan cihazlardan, yüksek teknoloji araştırmalarına kadar 

geniş bir yelpazede kullanılan sayısal sistemlerin temel elemanı entegre devrelerdir. 

Değişik amaçlar için kullanılan ve farklı tipleri bulunan bu entegre devrelerin, 

bilinen birden fazla tasarım ve üretim teknolojileri vardır.  

 

FPGA sayısal tasarımda entegre devrelerin üretimi için farklı bir yol sunan yeni 

bir teknolojidir. Dünyada FPGA üreten bir kaç şirket bulunmaktadır ve bu 

FPGA‟ların ortak noktası belirli yazılım standartlarına sahip Verilog ve VHDL 

olarak bilinen donanım tabanlı komut dilleridir. Bu tezde sayısal sinyallerin VHDL 

kullanılarak oluşturulan entegre devre ile süzülmesi anlatılmaktadır. 

 

VHDL kullanılarak sayısal süzme için tasarlanan entegre kısmına ilaveten 

verilerin iletiminde rol oynayan ardışık alıcı, ardışık gönderici, erteleme gibi 

işlemlere yarayan çevresel modüller de VHDL kullanılarak oluşturulmuş ve 

algoritmaları anlatılmıştır. 

 

Haberleşme sayısal işaretlerinin FPGA içinde süzülmesi için seri haberleşme 

modülleri aracılığıyla veri gönderilmiş ve alınmıştır. Süzme için belirli örnekleme 

frekansına ve bit genişliğine sahip ses dosyaları kullanılmıştır.  

 

Ayrıca tasarımda kullanılan VHDL komutlarının mantık haritaları, sayısal süzgeç 

tasarımı, modül instantiation, değişik süzme mimarilerinin birbirinden farkları ve 

tasarım boyunda izlenen yol, açıklamalarla birlikte sonuçlar kıyaslanarak 

yorumlanmıştır. 

 

Anahtar Sözcükler: FPGA, VHDL, sayısal süzgeç, dijital filtre, implementasyon 
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CHAPTER ONE 

INTRODUCTION 

 

Electronics has made a great progress in the past century and continues to grow in 

the 21st century. The start and growth of the computer industry has been responsible 

for the recent growth of electronics. Thirty years before now, in the 1980s, electronic 

systems were created by connecting basic components such as microprocessors and 

memory chips with digital logic components on PCBs (Printed Circuit Boards). As 

electronics grew, producing stable PCBs became more complex and harder, due to 

increase in the number of transistors inside ICs increase in the number of I/O 

(Input/Output) pins also the development of multi-layer boards which has more than 

20 separate layers. Figure1.1 shows the increase in the number of transistors from 

1970s to 2000s. Because of this huge progress, the probability of error increased. So 

it became harder to design and to test a working system before producing it. Increase 

of transistor number per IC is shown in figure below.  

 

 

Figure1.1 Number of transistor per IC for past decade (Berkeley University) 

 

Need for designing and testing a working system before production caused the 

new solution technology called FPGA. 
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FPGA can be described as simple „logic gate‟ technology which is based on either 

antifuse, EPROM (Erasable Programmable Read Only Memory) or SRAM (Static 

Random Access Memory) technologies and provides programmable connectivity 

between desired components. This functionality helps designer to catch errors at the 

development stage before production. These errors can be corrected by simply 

reprogramming the FPGA. Reprogramming is provided by the array of logic blocks 

and routing channels. Thus using FPGA avoids a costly and time-consuming board 

redesign procedure and reduces the design risks. 

 

Al Mahdi Eshtawie & Bin Othman, (2007) has obtained a better solution about 

representing coefficients of FIR filters for reducing area used to implement FIR filter 

architectures. 

 

Vaidyanathan, (2004) has reviewed filter banks used in communication and filter 

bank predecoders which are very important for channel equalization applications. 

 

Elhossini, Areibi & Dony, (2006) have worked on implementing LMS adaptive 

filtering on FPGA to compare software performance to the implemented hardware. 

 

Wang, (2005) has worked on implementation of digital filters on FPGA‟s for 

better performance-area ratios. 

 

Bicakci, Çetinkaya & Karaboğa, (2005) have worked about designing digital 

filters for FPGA‟s. 

 

Dikmeşe, (2007) has worked on implementation of FPGA for wireless 

communication systems, especially for mobile wireless communications which 

require faster response in signal process. 

 

Tamer, (2007) has worked about FPGA based smart antenna implementation to 

improve distinct processes better signal processing performance with processor 

arrays which are provided by FPGA‟s. 



3 
 

 
 

 

These works have been very useful for understanding the FPGA‟s in a lot of 

perspectives and have been guidelines of the design process of this work. Such a 

work for the same purpose could not be found including implementations and 

applications as this project. 

 

The objective of this thesis is to gather the VHDL code generation knowledge and 

FPGA implementation techniques to construct different hardware designs to achieve 

very high SNR values. Design bit depth can be enhanced with simply changing the 

specific codes on specific lines on VHDL codes.  

 

There are different ways to implement a digital filter. There will be several FIR 

filters with different architectures and orders inside the designed system. That 

increases the number of hardware systems used for this project. The purpose is to 

identify different approaches and architectures, compare and contrast different 

methods.  

 

With the help of results, FPGA resource usage results are a useful report to 

identify the best performance on hardware. To design and change the order of the 

filters, MATLAB is a useful tool which simply calculates the filter internals and 

coefficients for designer to save time. After implementing hardware on FPGA, audio 

data will be sent to the input of the filter system as serial bits. Pure input will be 

analyzed before it was sent and filtered data will be analyzed after the data is 

received. These analyses will be compared to make an analytical conclusion about 

the filter order, type and architecture to achieve best SNR (Signal to Noise Ratio) and 

sampling rates with optimum use of resources on FPGA. 

 

 

1.1 Overview of Thesis 

Chapter 2 covers a brief overview of FPGA, digital filters, digital filter types and 

performance calculation of these filters. 
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Chapter 3 covers a brief overview of FIR (Finite Impulse Response) filter 

architectures, MAC (Multiply Accumulate) units of FPGA‟s and describes digital 

filter implementation methods. 

 

Chapter 4 describes the specifications of the top design, includes explanation of 

algorithms and comparisons of simulation results of communication modules 

implemented on FPGA. 

 

Chapter 5 describes specifications and features of the used FPGA board. Also this 

chapter includes simulation results of digital filters‟ utilization results for Spartan 

3A-DSP 1800A FPGA development board. 

 

Chapter 6 gives brief information of signals used in communication, PCM (Pulse 

Code Modulation) process, and describes the estimation of signals to audio signals. 

 

Chapter 7 describes the filter design method and application procedure, and then 

compares results of the implementations. 

 

Chapter 8 concludes the thesis and gives advises for future works. 
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CHAPTER TWO 

FILTERS & FPGA’s 

 

2.1 FPGA Architecture 

There are four main categories of FPGAs available in the market: symmetrical-

array, row-based, hierarchical PLD and sea-of-gates. 

 

 

Figure 2.1 Base producing architecture types of FPGA‟s 

 

Different designs are considered by main FPGA trademarks. Xilinx uses static 

RAM (Random Access Memory) programming and QuickLogic uses antifuse 

programming with symmetrical array architecture. Actel uses antifuse programming 

with row-based architecture. Algotronix uses static RAM programming with sea-of-

gates architecture. ALTERA uses EPROM programming with hierarchical PLD 

(Programmable Logic Device) architecture. 

 

 

2.2 Filters in Communication 

As in most of the electronics, filters are often used in communication systems. 

They are used for several purposes as spectrum shaping, channel detecting and FFT 

(Fast Fourier Transform) etc. in communication. For example telephone lines which 
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were considered to carry speech signals are today used to carry many megabits of 

data per second. This became possible with efficient use of high frequency regions. 

As a result of using high frequency regions on telephone line, high speed internet 

traffic such as ADSL (Asymmetric Digital Subscriber Line) became available for use 

of the public. Several signals through a single channel became possible with the 

efficient use of filters located on start and end of the channel. 

 

Generally communication channels are handled in two parts as wireless and 

wireline. In both cases, signals face with distortion and noise caused by 

environmental sources which affect the channel. Figure 2.2 below shows the noise 

affect on signals passing through the channel. 

 

 

Figure 2.2 Noise effect on signal x(n) as passing through a 

physical channel 

 

Noise reduction and spectrum shaping will be dealt with digital filters 

implemented on FPGA in this paper. Purpose of the thesis is to verify mathematical 

expressions of digital filters by implementing on FPGA and test these filters 

characteristics like efficiency and architecture for any kind of signal. And then 

compare these results to bring up a total report which may enlighten designers‟ future 

works about digital filter applications implemented on FPGA for several types of 

signals which are used in communication or any other areas. 

 

 

2.3 Why Digital Filter? 

Digital filters are used in all areas of electronics. They are mostly used for digital 

signal processing for audio and video applications. This is because digital filters can 

achieve better SNRs than analog filters. Ability of better SNR comes from the 

noiseless mathematical operations, but this property is not true for the analog filters 
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because the analog filter adds more noise to the signal. As a result digital filters 

became preferred option for removing noise and shaping spectrum in communication 

systems. Digital filters have become popular because they have precise 

reproducibility and allow designers to achieve high performance levels which are 

difficult to obtain with analog filters. 

 

 

2.4 Which Type of Filter to Use? 

There are two common filter forms which are FIR and IIR (Infinite Impulse 

Response).  We need to decide if the desired filter should be IIR or FIR. The 

following table summarizes different factors that could be considered when making 

this decision. 

 

Table 2.1 Differences between FIR and IIR filters (MIT EECS Dept 6.341: Discrete Time Signal 

Processing OpenCourseWare 2006) 

 IIR Filters FIR Filters 

Phase difficult to control, no 

particular techniques 

available 

Linear phase always 

possible 

Stability can be unstable, can have 

limit cycles 

always stable, no limit 

cycles 

Order Less more 

History derived from analog filters no analog history 

Others  Polyphase implementation 

possible, can always be 

made casual 

 

The number of calculations done per unit time is directly related to filter order. It 

affects number of logic gates usage on the FPGA board. FIR filters have only 

numerators according to their mathematical expression, whereas IIR filters have both 

numerator and denominator coefficients. So IIR filters are more complex to FIR 

filters and they use much more resources than FIR filters even if they are in the same 

order.  According to the above analysis, the FIR type is chosen for the design. 
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2.4.1 FIR Filter Structure 

 Transfer function of N tap filter is shown in equation (2.0.1). In digital FIR filter 

for Nth order, tap is N+1. 

 

𝐻 𝑧 = 𝑎0 +  𝑎1𝑧
−1 + 𝑎2𝑧

−2 + ⋯ + 𝑎(𝑁−1)𝑧
−(𝑁−1)  (2.4.1) 

 

 

Structure can be realized in many forms, such as canonical, pipelined or inverted 

as shown in Figure 2.3. 

 

 

Figure 2.3 Realizations of FIR Filters in various forms 

 

 

 

 

 



9 
 

 
 

2.4.2 IIR Filter Structure 

Transfer function of N
th

 tap filter is expressed as; 

 

𝐻 𝑧 =  
𝑏0+ 𝑏1𝑧

−1+𝑏2𝑧
−2+⋯+𝑏(𝑁−1)𝑧

−(𝑁−1)

(1− 𝑎1𝑧−1−𝑎2𝑧−2−⋯−𝑎 𝑁−1 𝑧
− 𝑁−1 )

   (2.4.2) 

 

Two of possible realizations are direct form I and direct form II. For reducing the 

delay the realization shown in Figure 2.4 can be used.  

 

 

Figure 2.4 Modified Canonical Form realization of IIR Filter 

 

It is cascade of an AR (Autoregressive) filter and MA (Moving Average) filter. 

There is only one path with a multiplier and two adders. This realization makes 

implementation easier and reduces the routing delays between CLBs (Configurable 

Logic Blocks). 
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2.4.3 Filter Performance on FPGA 

If the size of the chip is constant and resources are low, the performance has to be 

considered before designing filter.  The structure in Figure 2.5 is a MAC unit with 

four multipliers and four adders. 

 

Figure 2.5 FIR Filter realization using MAC with four 

multipliers 

 

Inputs are multiplied with the filter coefficients in the multipliers and summation 

is done with adders.  Since the multipliers have greater delay than adders, clock 

frequency of the filter is dependent to the multipliers delay.  There are four 

multipliers in this MAC unit and four outputs of multiplications are summed in every 

clock cycle. So if a four tap filter is implemented, the sampling frequency of the filter 
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will be same as the clock frequency, or eight tap filter with sampling frequency 

which is half of the clock frequency.  

 

It can be said generally that if there are M multipliers in a chip and the delay of 

the multiplier is T sec, then N tap filter can operate at a sampling frequency𝑓𝑠, given 

by; 

𝑓𝑠 =  
1

𝑇(𝑁 𝑀) 
     (2.4.3) 

 

For considering that system has 100MHz clock frequency, multiplier delay is 

100ns, adder delay is 25ns, an N tap filter can operate at a sampling rate of 40/N 

MHz where N is multiple of 4. For example a 16 tap filter can operate at 2.5 MHz 

sampling frequency with these specifications. 
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CHAPTER THREE 

IMPLEMENTATION OF DIGITAL FILTER 

 

3.1 Architecture of the Filter 

Based on the resource capacity of your FPGA or the price limitation of the chip to 

be produced, area efficient serial filter architecture with low number of MACs or 

faster parallel architecture with higher number of MACs decision is up to the 

designer. Serial architectures are very area efficient and ideal for low price and low 

performance applications. Fully parallel architectures are generally chosen for high 

performance applications but they are not that area efficient as serial architecture. 

Distributed arithmetic architecture can be chosen something in between serial and 

parallel architecture for optimum performance and area applications. Serial 

architecture shares one single MAC unit and parallel architectures use many MACs 

dependent to the order of filter as shown in Figure 3.1. 

 

 

Figure 3.1 FPGAs parallel advantage to DSP for higher computational throughput. (DSP Co-

Processing in FPGAs: Embedding High-Performance, Low-Cost DSP Function, Steve Zack, 

Signal Processing Engineer XILINX WP212 (v1.0) March 18, 2004) 

 

Since new FPGA devices provide many numbers of MACs and DSP (Digital 

Signal Processing) blocks on board, high performance filters are easy to realize and 

implement. 
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3.1.1 FIR Filter Structure Types 

Different types of architectures are used for reducing area dependent on the 

number of mathematical calculations in the mathematical expression of filter. These 

architecture types are respectively named as “direct form”, “transposed”, 

“symmetric” and “asymmetric”. Below are the analyses of these architectures for the 

following transfer function (3.1.1) given next line. 

 

𝐻 𝑧 = 𝐺𝑎𝑖𝑛 ×  h[n]M
n=0 z−n     (3.1.1) 

 

Direct form is the closest structure to the mathematical expression of the filter. 

The number of delays are equal to the filter order M. Figure 3.2 represents the direct 

form structure below. 

 

 

Figure 3.2 Direct Form FIR Filter structure 

 

Transposed form structure is an alternate way to implement direct form structure. 

Figure 3.3 represents the transposed form structure below. 

 

 

Figure 3.3 Transposed Form FIR Filter structure 
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Both direct form and direct form transposed structures contain the same number 

of delays. Simply the direct form structure has a total accumulation at the output but 

transposed form structure has many small additions between delay elements. Direct 

form structure needs extra pipeline registers between the adders to reduce the delay 

of the adder tree, but transposed structure does not need this pipeline registers 

because it already has these registers in the self structure. In the light of this 

information, direct form structure is more area efficient than transposed structure. If 

there is no limit in the area, direct form would be the better choice for the design. 

These structures will be analyzed in fifth chapter. 

 

Symmetric structure is used for symmetric phase FIR filters to reduce the number 

of multipliers. New number of multipliers reduced from 𝑀 + 1 to (𝑀 + 1)/2 when 

filter order is an odd number, and 𝑀/2 when filter order is an even number. Figure 

3.4 represents the FIR symmetric structure when the filter order is an even number 

on the left, when the filter order is odd number on the right. 

 

 

Figure 3.4 Symmetric Form FIR Filter structures with filter order number is even (left) and odd (right) 

 

Antisymmetric structure is used for antisymmetric phase FIR filters to reduce the 

number of multipliers as symmetric structure. New number of multipliers reduced 

from 𝑀 + 1 is 𝑀/2 when filter order is even number, and (𝑀 + 1)/2 when filter 

order is odd number. Figure 3.5 represents the FIR antisymmetric structure when the 

filter order is an even number on the left, when the filter order is odd number on the 

right. 
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Figure 3.5 Antisymmetric Form FIR Filter structures with filter order number is even (left) and odd 

(right) 

 

 

3.2 Implementation Methods 

There is more than one way for implementing a digital filter. The important point 

is choosing the right one suitable for the design which is directly related to the 

background knowledge of the designer to save a lot of work and time. 

 

 

3.2.1 IP Generator Software 

IP (Intellectual Property) generators are designed to construct specific IP cores for 

related FPGA board. Limitations and the benefits come with these IP cores. FIR IP 

cores are available with most of producers support software. Generally each IP core 

is designed for specific board to arrange device utilization of used FPGA and very 

area efficient because of being specific for target device. However these IP cores do 

not provide user modification and implementation on another device. As an example, 

Xilinx System Generator or AccelDSP with MatLab Simulink could be used for IP 

core generating and implementing on FPGA. Figure 3.6 Illustrates the relation and 

design flow of using Xilinx System Generator with MatLab. 
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Figure 3.6 Design flow of using Xilinx System Generator with 

MatLab 

 

 

3.2.2 User Defined Coding 

Area efficiency and filter performance for specific properties makes user-defined 

coding better than pre-defined IP cores in specific designs. Writing own code for FIR 

filter allows designer to specify every property in the architecture such as symmetry, 

unique impulse response, coefficient type, coefficient length etc. Some IP cores 

provide modification to a few of these properties but not all. 

 

User defined coding with VHDL or Verilog provides wide flexibility on the RTL 

(Real Time Logic) design but it costs designer a very long time. A simply 6 tap filter 

code written in VHDL can range 100 - 200 lines. Also specific block RAM (Random 

Access Memory) or DSP blocks or pipeline registers has to be considered during the 

coding process. 

 

 

3.2.3 HDL Code Generators 

HDL coders are used to generate VHDL or Verilog source code from any code 

written in another language or from specific inputs and selected options in the  

graphical user interface (GUI) for a filter.  Filter Design and Analysis Tool 

(FDATool) or the MatLab command line can be used to design a filter and generate 

VHDL or Verilog code. 
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The Filter Design Tool can generate VHDL or Verilog codes for several filter 

structures such as: Direct Form or Transposed FIR, Symmetric or Anti-symmetric 

FIR, Direct Form I or II SOS (Second Order Section) IIR and Direct Form I 

Transposed SOS IIR  

 

These IIR and FIR structures can be modeled with fixed-point and floating-point 

(single/double precision) realizations. Also FIR structures support unsigned fixed-

point coefficients. 

 

 

3.3 Chosen Method for Implementation 

Designing a hardware and implement it in FPGA is a hard and time consuming 

task. There is a lot of way to implement a digital filter in FPGA. Important point is to 

specify design properties and chose the right way to get in work. There are several 

tools for designing process to make it easy and quick for designers. MatLab is one of 

these tools that can save designers time when used for designing several type of 

filters for implementing. Pre-defined mathematical algorithm of filter functions and 

HDL generation property of MatLab reduces the time to generate target architecture. 

This gained time can be used to implement different types of filters to analyze area 

and efficiency of the designs. 
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CHAPTER FOUR 

DESIGN TEMPLATE 

 

4.1 Basic Specifications of the Template 

Design is called template because the design has a good flexibility of the bit depth 

of filter, filter order and filter types. Objective of the design template is to test several 

filter types with different orders on the FPGA, then statistically collect and compare 

these results. Several voice files which are considered as used in communication 

systems will be used with different bit depths and sampling rates. These signals are 

estimations of generally used or specific communication signals. Template has four 

modules named Receiver, Transmitter, Filter and Delayer on the FPGA side. 

Transmitter and Receiver can be considered one unique module as UART (Universal 

Asynchronous Receiver Transmitter). Design template has following tasks and 

features below: 

 

1. At first the design template is considered for Spartan-3 DSP 1800A FPGA 

development board. 

 

2. Communicate with PC through the RS-232 (Recommended Standard 232) serial 

interface. 

 

3. Receive a voice signal from the PC each sample after previous one. Data will 

be in binary form so data can be applied to the FIR filter in parallel form through 

base register of the RS-232. Pure signal can have 5, 6, 7 or 8-bit samples. 

 

4. Again template will have several types of FIR filters. Filtered data will be 

returned to the PC and then analyzed with proper software. Data from the board to 

the PC will be binary too. 

 

5. To send data file to the board and receive outputs simultaneously, TeraTerm, 

MatLab, or HyperTerminal can be used. Baud rate of the serial port can be 

arranged by the clock dividing constant (CD) inside Transmitter, Delayer and 
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PC 

FIR Filter 

 

 

clk 

125MHz 
Clock 

Delayer 

Receiver. Our board has a 125 MHz on board clock source. For the target baud 

rate, the clock divider constant (CD) can be calculated as: 

 

 𝐶𝐷 =
125000000

𝐵𝑎𝑢𝑑𝑟𝑎𝑡𝑒
             (4.1.1) 

 

Design template has a flexible baud rate with data bits between 1 start bit and 1 

stop bit without parity and flow control. 

 

 

4.2 Design Template Overview 

Several types of filters will be implemented on Spartan-3A DSP 1800A edition 

FPGA board of producer Xilinx.  Below figure is an illustration of the design 

template. VHDL codes of Transmitter, Receiver, Delayer and the FIR Filter have to 

be changed for different baud rates and bit depths.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Design template overview including sub modules 

 

In the figure above FIR filter codes will be generated with the help of FdaTool of 

MatLab, rest of the template, Transmitter, Receiver and Delayer modules are 

Spartan-3A DSP 1800A Edition 

 Transmitter 

Receiver 

            R
S-2

3
2

 

Start 
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constructed with user defined coding method.  Actually the Transmitter and Receiver 

hardware can be considered together as a UART. Delayer module helps the 

stabilization of transmitting and receiving, by delaying the start signal start which 

interrupts transmitter for starting to transmit data, for 2 bauds. FPGA board has an 

on-board oscillator which produces 125MHz system clock. 

Receiver has a FSM (Finite State Machine) inside to be capable of listening the port 

if the start of the communication bit has arrived or not.  System performs following 

algorithms: 

 

1- Transmission starts with the start bit which has a value of 0 on the receive (RX) 

port on Receiver. 

 

2- After detecting first bit, data bits are collected in the temporary register of 

Receiver by shifting function. Register has to be at the same length of data according 

to the number of data bits. 

 

3- After data bits are received, RX port is started being listened for the stop bit 

which has a value of 1. 

 

4- When stop bit is detected on RX port, then data in the temporary register is 

shifted to the output register and the start output set to 1. This signal will work 

directly as the clock of the FIR Filter simultaneously, and interrupts the transmitter 

after 2 bauds with the help of Delayer module. 

 

5- In the meaning time between start is 1 and detected by transmitter, FIR filter 

takes the N-bit data to the input register, applies filter algorithm according to the self 

architecture and gives the output on the output register. 

 

6- After 2 bauds, transmitter detects the start signal on the start input ad receives 

the N-bit data to input register, then start and stop bits are added to this data. 

 

7- Send the framed data in binary form and wait for next start signal. 
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Delayer is designed to arrange the data flow and clocks to stabilize the system. It 

gives a delay for 2 bauds to start signal which interrupts Transmitter in the design. 

This delay is considered for the FIR filter parallel computation duration, and also 

used for transmitter to wait until the Receiver outputs next data sample to the filter. 

Delayer has a FSM which has 3 states to realize the delay algorithm on the FPGA. 

Also delayer has a clock input and takes the clock from FPGA on-board clock 

source. Delayer uses clock divider constant “CD” same as Transmitter and Receiver 

to reduce self clock down to the target baud rate. 

 

 

4.3 Design of the Receiver 

For the RS-232 standard, data flow has a maximum length of 8, actually it can 

have a length of 5, 6, 7 bits too. There are other bits named start bit, stop bit and 

parity bit used to control flow of data. Start bit is the first bit which declares that 

transmission is started, and stop bit declares the end of the frame. Parity bit is used 

for controlling mechanism if any error occurred during transmission, but it is not 

used in the design. In addition “Baud Rate” is the number of signals sent through TX 

in one second Figure 4.2 below shows the data, start bit and the stop bit without 

parity and error bits. 

 

 

Figure 4.2 Baudrate and character time on serial port 

 

As seen in the figure start bit is logic0 and stop bit is logic1. Length of the stop bit 

can be arranged 1, 1.5 or 2 bit length. In the design it is considered as 1 bit length. 

First bit sent after the start bit is always least significant bit.  Time elapsed for a data 
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frame to be sent can be calculated by dividing 1 to the multiply of baud rate and 

number of bits. As an example for 8 bit frame length and 1 bit start, 1 bit stop and no 

parity at 9600 baud rate communication; time period for 1 bit will be 1/9600 = 

104.1µs. 

 

In the design of the receiver, specifications are considered as 8 bit data frame, 1 

start bit, 1 stop bit and no parity control. Baud rate is not specified as a constant, it 

can be changed manually by changing the CD in the VHDL codes of the design. 

Baud rate for the system is gathered by dividing the on-board clock of the FPGA 

board. However if the division has a value in the fraction, it is rolled to an integer 

and the synchronization loss is unavoidable. This is because of the basic principle of 

synchronization, clock sources should be same but PC has its own clock generator 

and FPGA board too. Solution for the unavoidable synchronization loss lays under 

considering both hardware and software practically. Based on the FSM of the 

receiver, if there is no start bit for 1 baud after stop bit is received, then state counter 

sets itself to zero and returns the idle state again. So if there exists at least 1 baud 

delay before sending the next frame in the PC side, synchronization can never be 

lost. This solution is considered in the software part of the design. The flowchart of 

receiver algorithm is shown in Figure 4.3. 
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Figure 4.3 Flowchart of the Receiver 

 

In the figure some of the constants are named shorter because of figure area. In 

VHDL codes of the Receiver, N is actually clock divider constant, S and S2 are start 

and start2 respectively. In the system start-up, the Receiver starts in the st1_idle 

state. In this state the RX port is listened if there is a start bit detected system goes to 

the st2_sayac state, if not returns to the st1_idle state again. In the st2_sayac state, 

counter named sayac counts from 0 to the CD/2 and jumps to the st3_reg state. In 

this state s_reg_en register is triggered to 1 and sayac2 is increased by 1. Then next 

state is st4_reg1 and in this state s_reg_en register is triggered to 0 and 0 value is 

given to sayac. Then system goes to st5_sayac and in this state sayac is increased by 

1. When sayac is equal to CD system jumps to the st3_reg, otherwise it returns back 

to st5_sayac2 again. With this state machine structure, data bits are received and 
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stored in a specific register which has the same length as the data frame. Then the 

data is shifted to the output register. The simulation result for the Receiver is shown 

in Figure 4.4 below. Simulation is produced by ISIM which is a software of Xilinx 

company. 

 

 

Figure 4.4 Simulation results from ISIM for the Receiver 

 

Clock frequency is arranged 10 MHz for simulation, and it can be easily 

understood that reset is considered active-high. When reset level is high, there is no 

output even though there is a serial input on RX. After reset level is low. Then 

system starts to work and waits for the start bit which is 0. After detecting the first 

start bit and collecting 10 bits which has a value as “1000011110”, the frame without 

start bit and the stop bit “00001111” is sent through the output at the same time the 

start signal is set to 1for ½ baud which interrupts the Fir Filter and Transmitter. 

 

 

4.3.1 Pseudo Code for Receiver 

Set start with the value of stop_en 

Set the output1(0:9) with the value of register reg_en(9:0) 

Set output(7:0) with the register c(7:0) 

If there is a clock event and clock is equal to 1 

If reset is equal to 1 

Set current state is st1_idle 

Else 
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Set current state to next state 

If there is a clock event and clock is equal to 1 and reset is equal to 0 

If s_reg_en is equal to 1 

Set the MSB of reg_n with incoming bit and shift reg_n through LSB 

If there is a clock event and clock is equal to 1 

If stop_en is equal to 1 

Increment sayac_stop by 1 

Else 

Set sayac_stop to 0 

If there is a clock event and clock is equal to 1 

If current state is st1_idle 

Set C(0 to7) with the output1(1 to 8) 

If the current state is state st1_idle and If there is start bit 0 has been detected 

Go to the state st2_sayac  

Else 

Stay in the state st1_idle wait for the start bit to be detected 

Case of states are 

When the current state is st2_sayac 

Increment the sayac by 1 

If sayac_stop is equal to half of CD 

Set the stop_en register to 0 

If sayac is equal to half of CD 

Go to  st3_reg state 

When current state is st3_reg 

Set st3_reg_en register to 1 

Increment the sayac2 counter by 1 

If sayac_stop is greater than half of CD 

Set the stop_en register to 0 

Go to  st4_reg1 state 

When current state is st4_reg1 

Set s_reg_en to 0 

Set sayac to 0 
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If sayac_stop is greater than half of CD 

Set stop_en to 0 

If sayac2 is equal to 10 

Set m to 1 

Set stop_en to 1 

Go to st1_idle 

Else 

Go to st5_sayac2 

When current state is st5_sayac2 

Increment sayac by 1 

If sayac is equal to CD 

Go to  is st3_reg state 

If there is a clock event and clock is equal to 1 

If sayac2 is smaller than eight 

Set enable to 1 

Else  

Set enable to 0 

 

 

4.4 Design of the Delayer 

As it is mentioned before, delayer works for the synchronization of receiver and 

transmitter modules to prevent data loss. It has two inputs named clock and rec_out, 

and has an output named tra_in. The pin rec_out is connected to the start which is 

output pin of the Receiver. The output signal start which comes from the receiver is 

delayed by 2 bauds with the Delayer module. Delayer has its own processes and also 

has a FSM which has three states. These states are st1_gor, st2_bekle and st3_ver. 

Delayer also arranges its baud rate by dividing the board clock by CD with the 

counter inside which holds value of CD inside. Flowchart of the Delayer is shown in 

Figure 4.5 below. 
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Figure 4.5 Flowchart of the Delayer 

 

In the Figure some coefficients are named shorter because of the area of figure. 

“R” represents rec_out pin, “CT” represents counttut and “CB” represents countbekle 

which are all in the VHDL code of the Delayer. 

 

System starts at the st1_gor state and in this state system listens to the rec_out pin 

if there is any rising edge of start signal. If there is not, then it returns to st1_gor 

state again, if there is a rising edge of the rec_out signal, then system goes to 

st2_bekle state. In this state system waits for two times the baud rate and then system 

goes to st3_ver. In the st3_ver state system waits for two times the baud rate. In this 

duration tra_in signal is set to 1. Then system goes to st1_gor state and tra_in signal 

is taken down to 0 again. Simulation result obtained from ISIM is shown in Figure 

4.6. 
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Figure 4.6 Simulation results of the Delayer 

 

In the Figure 4.6 above rec_out is input of the delayer and tra_in is the output of 

the delayer. The signal output(7:0) shows the output of Receiver. It is obviously seen 

that the behavior of the Delayer is exactly matches with the simulation results. There 

is a delay of 2 bauds between the input and output; also the duration of output is 

increased to 2 bauds. 

 

 

4.4.1 Pseudo Code for Delayer 

Set tra_in with the valu of counttut_en 

Set rec_out_ctrl with the value od rec_out 

If there is a clock event and clock is equal to 1 

If countbekle_en is equal to 1 

Increment coutbekle by 1 

Else 

Set countbekle to 0 

If counttut_en is equal to 1 

Increment counttut by 1 

Else 

Set counttut to 0 

If there is a clock event and clock is equal to 1 

Case of states are 

When current state is st1_gor 

Set  counttut_en and countbekle_en both  to 0 

If rec_out is equal to 1 
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Go to st2_bekle 

When current state is st2_bekle 

Set countbekle_en to 1 

If countbekle is equal to two times the CD 

Go to st3_ver 

When current state is st3_ver 

Set countbekle_en to 0 and set counttut_en to 1 

If counttut is equal to to times th CD 

Go to st1_bekle 

 

 

4.5 Design of the Transmitter 

In the design the Transmitter data frame length has been set the same as receivers 

to make a working design. It is easier to create transmitter because is works simpler 

than the Receiver. Transmitter takes whole bunch of 8 bits, adds start and stops bits 

to this frame and sends it one by one through TX pin of the design. Transmitter 

understands time to take parallel data from its input register with the help of the input 

pin start which is connected to the output pin tra_in of the Delayer. Transmitter has a 

FSM like Receiver and Delayer inside too. States of the FSM in the Transmitter are 

st1_a, st2_b, st3_c, st4_d. Design waits in the st1_a state until there is a rising edge 

on the input start. Then system goes to the next state st2_b and starts to rotate 

between four states with the help of counters and registers until all bits are sent 

through TX one by one. Then system returns to the st1_a state where everything has 

started. System flowchart of the Transmitter is shown in Figure 4.7. 
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Figure 4.7 Flowchart of the 

Transmitter 

 

In the figure above, some names are written shorter because of the figure area. 

“SC” represents the start_ctrl register in the VHDL code. “S” and “S2” represent 

start and start2 respectively. As already known CD is the clock divider constant 

which is same in every part of the whole design template. In the Transmitter 

algorithm system goes from st2_b to st3_c without a query. This is because there is 

no need for a query between these states. These states are constructed because a few 

counters are needed in separate states. 

 

System starts in the st1_a state and waits for the rising edge on the input pin start. 

When the rising edge of the start is detected, system goes to st2_b state. In this state 

sayac starts to count from zero then goes to the next state st3_c. In st3_c state, 

load_enable register is set to 0 and system goes to the next state st4_d. In st4_d state, 

sayac2 starts to count from zero, sayac is set to 0 and s_reg_en register is set to 1. In 

this state, system always returns to st3_c state until sayac2 reaches 9. When sayac2 



31 
 

 
 

is equal to 9, then system returns to st1_a state. Simulation result for Transmitter 

obtained from ISIM is shown in Figure 4.8. 

 

 

Figure 4.8 Simulation results of the Transmitter  

 

In the figure tx is the serial output and input[7:0] is the parallel input of 

Transmitter. Whole system does not start to work until reset gets 0. It is seen that 

after system wtarts to work, Transmitter is interrupted with signal start and sends the 

parallel input one by one after adding start and stop bits to the frame. It is considered 

for Transmiter to send LSB (Least Significant Bit) of the frame at first always. 

 

 

4.5.1 Pseudo Code for Transmitter 

Set reg(7:0) with the input(0:7) 

If there is a clock event and clock is equal to 1 

Set output with the reg_n(0) 

If there is a clock event and clock is equal to 1 

If reset is equal to 1 

Go to st1_a state 

Else 

Current state is next state 

If there is a clock event and clock is equal to 1 

If start is equal to 1 
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Set start_ctrl to1 

If sayac2 is equal to 9 

Set start_ctrl to 0 

If there is a clock event and clock is equal to 1 

If start_ctrl is equal to 1 

If load_enable is equal to 1 

Set reg_n(9) with 1 

Set reg_n(1:8) with reg(7:0) 

Set reg_n(0) with 0 

If reg_en is equal to 1 

Shift reg_n to through LSB one bit and set MSB with 0 

Else 

Set reg_n(0) with 1 

If there is a clock event and clock is equal to 1 

Case of states are 

When current state is st1_a 

Set  load_enable to 0 

Set sayac to 0 

Set sayac2 to 0 

Set s_reg_n to 0 

If start_ctrl is equal to 1 

Go to st2_b state 

When current state is st2_b 

Set load_enable to 1 

Increment sayac by 1 

Go to st3_c state 

When current state is st3_c 

Set load_enable to 0 

Set s_reg_en to 0 

Increment sayac by 1 

If sayac is equal to CD 

Go to st4_d state 
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When current state is st4_d 

Set sayac to 0 

Set s_reg_en to 1 

If sayac2 is equal to 9 

Go to st1_a 

Else 

Go to st3_c 

 

 

4.6 Design of FIR Filters 

For the complete design, FIR Filter is considered to have 8-bit input data length 

and 8-bit output respectively. For the system to work and MatLab calculate correct 

coefficients for the desired filter, sampling frequency must be exactly same with the 

sampling frequency of the data. Other variables of the FIR filter like order, fraction 

length etc. can be changed for several examinations. As FIR filter is considered fully 

parallel architecture for the whole design, so its behavior can be explained easily. 

Clock signal and clk_enable signal of FIR filter is connected to the start signal which 

is output of Receiver. This signal interrupts FIR filter to take new 8 –bit frame from 

temporary register. Fir filter takes this 8-bit frame in its pipeline, multiplies each 

sample with coefficients and gices an output from its output register. These 

operations take one clock of clock which is connected start pin of Receiver. 

 

Simulation tested for a FIR filter with following specifications: 

Response Type:  Low-pass; 

Characteristic:  Equiripple; 

Filter Order:  5; 

Architecture:  Direct-Form 1; 

Density Factor:  20; 

Pass band frequency: 1600 Hz; 

Stop band frequency: 2000 Hz; 

Sampling Frequency: 8000 Hz; 

Input Data Length:  8-bit; 
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Output Data Length: 8-bit; 

Simulation result obtained from ISIM for the FIR Filter with above specifications 

is shown in Figure 4.9 below. 

 

 

Figure 4.9 Simulation results for FIR Filter with specifications on previous page 

 

In the figure above it is clearly seen that signal start and clk of FIR Filter is 

connected. Start works as clock source of the Filter. In the time axis, first few 

outputs are not reliable, precise outputs are given after all taps are fully loaded with 

inputs. Because FIR filter use windowing method and for reliable results; window 

elements must not be empty. 
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CHAPTER FIVE 

PRE-IMPLEMENTATION 

 

5.1 Overview of the FPGA Board 

Before implementing the whole design, FPGA board which will be used should be 

deeply analyzed. Spartan-3A DSP 1800A type Spartan-3A DSP family FPGA will be 

used for implementation. FPGAs in this family solve the designs which need cost-

sensitive, high-volume and high-performance DSP applications. Spartan-3A DSP 

1800A has 1.8 million system gates inside. Package marking of the FPGA is shown 

below in Figure 5.1. 

 

 

Figure 5.1 Spartan-3A DSP FPGA family package marking codes 

 

The Spartan-3A DSP family which has a new feature, XtremeDSP™ DSP48A 

slices, and combined with proven 90 nm technology, it delivers more functionality 

and bandwidth per dollar than ever before which results a new standard in the 

programmable logic and DSP processing industry. 

 

The XC3SD1800A is reconstructed for DSP applications and has additional block 

RAM and XtremeDSP DSP48A slices. The XtremeDSP DSP48A slices included in 

the Spartan-3A devices are based on the DSP48 blocks used in the Virtex®-4 

devices. Both the block RAM and DSP48A slices in the Spartan-3A DSP devices run 

at 250 MHz in the lowest cost, standard -4 speed grade. 
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5.2 Board Features 

The Spartan-3A DSP Starter Platform provides the following features:  

 Xilinx 3SD1800A-FG676 FPGA 

 Clocks 

 LVTTL oscillator socket 

 125 MHz LVTTL (Low Voltage Transistor-Transistor Logic) SMT 

oscillator 

 25.175 MHz LVTTL SMT (Surface Mount) oscillator (video clock) 

 Memory 

 32M x 32 (128 MB) DDR2 (Double Data Rate) SDRAM 

(Synchronous Dynamic Random Access Memory) 

 16Mx8 parallel and BPI (Byte-wide Peripheral Interface) 

configuration flash 

 64Mb SPI (Serial Peripheral Interface) Configuration and Storage 

Flash (with 4 extra SPI selects) 

 Interfaces 

 10/100/1000 PHY (Physical Layer) 

 JTAG (Joint Test Action Group) programming and configuration port 

 RS232 Port 

  Low-cost VGA (Video Graphics Array) 

 Buttons and switches 

 8 User LEDs (Light Emitting Diode) 

 8-position user DIP (Dual In-line Package) switch 

 4 User push button switches 

 Reset push button switch 

 User I/O (Input/Output) and expansion 

 Digilent 6-pin header (2) 

 EXP expansion connector (2) 

 Configuration and debug 

 JTAG 

 SystemACE™ module connector 



37 
 

 
 

 Eridon debug connector (SATA (Serial Advanced Technology 

Attachment )) 

 

A high-level block diagram of the Spartan-3A DSP Starter Platform is shown in 

Figure 5.2. Sections shown as boxes describe details of the board design. 

 

 

Figure 5.2 Spartan-3A DSP Starter Platform block diagram 
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5.2.1 Memory 

The Spartan-3A DSP Starter Platform includes high-speed RAM (128Mbytes 

DDR2) and non-volatile ROM (Read Only Memory) (16Mbytes parallel, and 64Mbit 

serial). Additionally, a 50-pin connector is provided for SystemACE interface (not 

included) that can be used to configure the Spartan-3A DSP FPGA, and to provide 

storage for A/V (Audio/Video) media files from removable Compact Flash cards. 

 

 

5.2.2 Clock Sources 

There are four clock sources provided on the Spartan-3A DSP Starter Platform: 

 A 125 MHz oscillator connected to GCLK7 (Global Clock) (Used in design). 

 A 25.175 MHz oscillator (primarily for VGA timing) connected to RHCLK2 

(Right Half Clock). 

 A socket for a half-can oscillator connected to GCLK14. 

 The user must install this oscillator. 

 An SMA connector footprint (J1) connected to GCLK4. The user must install 

this connector*. 

 

The clock sources are listed and described in Table 5.1. 

 

Table 5.1 Clock sources of Spartan-3A DSP Starter Platform 

Clock Source FPGA Pin No Part Number 

125 MHz oscillator (U7) F13 Fox FXO-HC535-125.000 
 

25.175 MHz oscillator (U4) P26 Fox FXO-HC530-25.175 
 

Socket AE13 Populate with Fox 350LF osc. 
 

SMA connector J1* K14 Tyco-AMP part #221789-3 
 

 

 

5.2.3 10/100/1000 Ethernet PHY 

The Spartan-3A DSP development board provides a 10/100/1000 Ethernet port for 

network connection. The PHY is a low power version of the National Gig PHYTER 

V with a 1.8V core voltage and 2.5V I/O voltage. The PHY is connected to a RJ-45 
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jack, which is connected to two LEDs and their relevant resistors. An external logic 

is used to indicate 10, 100 and 1000 Mb/s to drive a LED on the RJ-45 jack. This 

external logic may not work if the configuration of strap is changed. Four more 

LEDs are provided on the board for status indication. These LEDs indicate speed at 

10 Mb/s, speed at 100 Mb/s, speed at 1000 Mb/s and Full Duplex operation. PHY 

has its own clock generated from its own 25 MHz crystal. 

 

 

5.2.4 RS-232 

The board provides an RS-232 connector for serial communication. The RS-232 

transceiver is a Texas Instruments MAX3221 device. It operates at 3.3V with an 

internal charge pump. The RS-232 interface is carried out by DB9 connector P2. 

Only null-modem serial cables are supported by this RS-232 interface. A male-to-

female serial cable should be used to connect J11 with PC serial port (male DB9). 

Table 5.2 shows the FPGA pin-out for the RS232 interface. 

 

Table 5.2 RS232 signals relevant pin codes on FPGA 

Net Name Description FPGA Pin Number 

FPGA_RS232_Rx Receive data, RD N21 

FPGA_RS232_Tx Transmit data, TD P22 

 

 

5.2.5 VGA Output 

The Spartan-3A DSP Starter Platform includes a VGA video output port which 

uses a resistor-divider network and 4-bits for each RGB color. This resistor-divider 

network is constructed with 510, 1K, 2K, & 4K ohms for each color. A 25.175 MHz 

clock (VGA-resolution) is included on the board, connected to the FPGA at 

RHCLK2 (P26) pin. For timing the output and generating the image and syncs, this 

clock should be used in the FPGA controller. 
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5.2.6 Miscellaneous I/O 

Spartan-3A DSP Starter Platform has an 8-position DIP switch, 4 user 

Pushbuttons, and 8 user LEDs. The connections of these devices to the FPGA pins 

are shown in Table 5.3. Each DIP switch is pulled low in the “OFF” position. 

Turning the switch “ON” causes the corresponding FPGA pin to be pulled up to 

VCC_0 (Common Collector Voltage) of the FPGA bank. The four pushbuttons are 

also initially low and pressing any button will cause the corresponding FPGA pin to 

be driven to the value of VCCO_0. Driving a “High” to the LEDs will cause them to 

light. 

 

Table 5.3 Relevant pin assignments for DIP Switch, Push Buttons and LEDs on FPGA 

Device Name FPGA Pin 

DIP Switch 

SW3.1, SW3.2 A7, G16 

SW3.3, SW3.4 E9, D15 

SW3.5, SW3.6 D19, B24 

SW3.7, SW3.8 A5, A23 

Push Buttons 
SW5(PB1), SW6(PB2) J17, J15 

SW7(PB3), SW8(PB4) J13, J10 

LEDs 

LED1(D14), LED2(D13) P18, P25 

LED3(D12),LED4(D11) N19, K22 

LED5(D10), LED6(D9) H20, G21 

LED7(D8), LED8(D7) D24, D25 

 

5.3 Utilization of Resources on FPGA Board 

As mentioned on chapter three, this utilization results are used to choose right 

filter type for the corresponding purpose. To investigate the resources used inside 

FPGA, simulation result from ISE software is a useful tool. For Spartan-3A DSP 

1800A FPGA board, the detailed usage of resources results after implementing low 

pass equiripple FIR filter for several orders and structures shown in following tables. 
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Table 5.4 Device utilization numbers and ratios for 5
th

 order FIR filters for three different 

architectures 

Number of Resources 

in  

Spartan-3A DSP 1800 

Available 

Architecture of 5
th

 order FIR Filter 

Direct Transposed Symmetric 

Used Used Used 

Slice Flip Flops 33,280 80 – (1%) 169 – (1%) 112 – (1%) 

4 input LUTs 33,280 80 – (1%) 186 – (1%) 93 – (1%) 

Occupied Slices 16,640 72 – (1%) 111 – (1%) 96 – (1%) 

Bonded IOBs 519 35 – (6%) 35 – (6%) 35 – (6%) 

BUFGMUXs 24 1 – (4%) 1 – (4%) 1 – (4%) 

DSP48As 84 6 – (7%) 3 – (3%) 3 – (3%) 

 

 

Figure 5.3 Compare of filter architectures according to device utilizations in Table 5.4 

 

It is seen in Figure 5.3 that direct form architecture uses most DSP48 blocks than 

other architectures. But on other resources, direct form architecture uses minimum 

amount. Usage of bounded IOBs and BUFGMUXs (Global Clock Multiplexer) is 

same for all structures. These results are just for fifth order low-pass FIR filter and 

can not be generalized. 
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Table 5.5 Device utilization numbers and ratios for 10
th

 order FIR filters for three different 

architectures 

Number of Resources 

in  

Spartan-3A DSP 1800 

Available 

Architecture of 10th order FIR Filter 

Direct Transposed Symmetric 

Used Used Used 

Slice Flip Flops 33,280 160 – (1%) 323 – (1%) 192 – (1%) 

4 input LUTs 33,280 338 – (1%) 341 – (1%) 186 – (1%) 

Occupied Slices 16,640 246 – (1%) 190 – (1%) 184 – (1%) 

Bonded IOBs 519 35 – (6%) 35 – (6%) 35 – (519) 

BUFGMUXs 24 1 – (4%) 1 – (4%) 1 – (4%) 

DSP48As 84 11 – (13%) 6 – (7%) 6 – (7%) 

 

 

Figure 5.4 Compare of filter architectures according to device utilizations in Table 5.5 

 

It is seen in Figure 5.4 that direct form and transposed architectures are closely 

use resources inside FPGA. The clear difference between them is usage of DSP48 

blocks. Symmetric form seems most homogeneous structure on usage of resources. It 

also uses the same amount of DSP48 blocks as transposed structure. Usage of 

bounded IOBs and BUFGMUXs is same for all structures. These results are just for 

tenth order low-pass FIR filter and can not be generalized. 
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Table 5.6 Device utilization numbers and ratios for 20
th

 order FIR filters for three different 

architectures 

Number of Resources 

in  

Spartan-3A DSP 1800 

Available 

Architecture of 20th order FIR Filter 

Direct Transposed Symmetric 

Used Used Used 

Slice Flip Flops 33,280 320 – (1%) 630 – (1%) 352 – (1%) 

4 input LUTs 33,280 641 – (1%) 653 – (1%) 341 – (1%) 

Occupied Slices 16,640 482 – (2%) 351 – (2%) 344 – (2%) 

Bonded IOBs 519 35 – (6%) 35 – (6%) 35 – (6%) 

BUFGMUXs 24 1 – (4%) 1 – (4%) 1 – (4%) 

DSP48As 84 21 – (25%) 11 – (13%) 11 – (13%) 

 

 

Figure 5.5 Compare of filter architectures according to device utilizations in Table 5.6 

 

In the Figure 5.5 above it is seen that direct form and transposed architectures are 

closely use resources inside FPGA. The clear difference between them is usage of 

DSP48 blocks. Symmetric form seems most homogeneous structure on usage of 

resources. It also uses the same amount of DSP48 blocks as transposed structure. 

Usage of bounded IOBs and BUFGMUXs is same for all structures. These results are 

just for twentieth order low-pass FIR filter and can not be generalized. 
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Table 5.7 Device utilization numbers and ratios for 40
th

 order FIR filters for three different 

architectures 

Num. of Resources in  

Spartan-3A DSP 

1800 

Available 

Architecture of 40th order FIR Filter 

Direct Transposed Symmetric 

Used Used Used 

Slice Flip Flops 33,280 672 – (2%) 1,246 - (3%) 672 – (2%) 

4 input LUTs 33,280 1,273 – (3%) 1,281 - (3%) 745 – (2%) 

Occupied Slices 16,640 986 – (5%) 686 – (4%) 714 – (4%) 

Bonded IOBs 519 35 – (6%) 35 – (6%) 35 – (6%) 

BUFGMUXs 24 1 – (4%) 1 – (4%) 1 – (4%) 

DSP48As 84 33 – (39%) 17 – (20%) 17 – (20%) 

 

 

Figure 5.6 Compare of filter architectures according to device utilizations in Table 5.7 

 

In the above it is seen that direct form and transposed architectures are closely use 

resources inside FPGA. The clear difference between them is usage of DSP48 

blocks. Symmetric form seems most homogeneous structure on usage of resources. It 

also uses the same amount of DSP48 blocks as transposed structure. Usage of 

bonded IOBs and BUFGMUXs is same for all structures. These results are just for 

fortieth order low-pass FIR filter and can not be generalized 
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Thus far the structures are compared for several orders and number of used 

BUFGMUXs and bonded IOBs came out same for all. Without these resources, 

results are compared again all in one graph which can be seen in Figure 5.7. 

 

 

 Figure 5.7 Compare of filter architectures and orders according to device utilizations in 

Table 5.4, Table 5.5, Table 5.6 and Table 5.7 

 

By analyzing the simulation result it can be said that for the same filter order, 

transposed architecture takes larger resources than the direct architecture except 

DSP48 blocks. Symmetric hardware architecture takes lower resources than the 

transposed and direct architectures. That‟s because symmetric architecture shares 

some component in common and number of coefficients in it is almost half of the 

direct architecture. Also it is obviously seen that resource usage increases as the 

order of filter increases. 
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CHAPTER SIX 

DATA COMPARISON 

 

6.1 PSTN Signals 

PSTN (Public Switched Telephone Network) is a circuit-switched network that is 

used generally for voice communications. At first was a fixed-line analog telephone 

systems network. But now PSTN is almost digital worldwide. 

  

 

Figure 6.1 Public Switched Telephone Network 

 

The basic frame in the PSTN is a 64 kbps channel, which is "DS0" or Digital 

Signal 0. DS0's are actually timeslots because they are multiplexed together in a 

time-division frame. The audio sound in PSTN is changed to digital at 8 kHz sample 

rate and it is received out by 8-bit PCM. 

 

Multiple DS0's can be multiplexed together on higher capacity circuits, such that 

32 DS0's make an E1. 

 

These time slots are transported from the initial access point to last access point 

over a group of electronic equipment which is known as the access network. This 

network uses SDH (Synchronous Digital Hierarchy) or SONET (Synchronous 

Optical Networking) technology. In some areas older PDH (Plesiochronous Digital 

Hierarchy) technology is still used. 
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For a long time period, the PSTN was the only available network for telephony. 

Now other services are integrated with PSTN, such as ISDN (Integrated Service 

Digital Network), DSL (Digital Subscriber Line), ATM (Asynchronous Transfer 

Mode), frame relay and the Internet VOIP (Voice Over Internet Protocol). 

 

 

6.1.1 Fundamentals of PCM in PSTN 

As mentioned in previous page, the audio sound in PSTN is changed to digital at 8 

kHz sample rate using 8-bit PCM. PCM stands on some techniques. 

 

6.1.1.1 Sampling 

The sampling theorem is used to determine the minimum rate (Nyquist Rate) at 

which an analog signal can be sampled without corruption when recovered to the 

original signal. The sampling frequency (𝑓𝑆) must be at least two times the highest 

frequency in the analog signal (𝑓𝐴). 

 

𝑓𝑆 > 2 ∗ 𝑓𝐴     (6.1.1) 

 

Sampling frequency (𝑓𝑆) of 8 kHz is used internationally in telephone systems, 

and the telephone signal is sampled 8000 times per second. The interval between two 

sequential samples (sampling interval = 𝑇𝑆) can be calculated as: 

 

𝑇𝑆 =
1

𝑓𝑆
=

1

8000 𝐻𝑧
= 125µ𝑠    (6.1.2) 

 

In the Figure 6.2 it is shown how the telephone signal is sampled. First it is passed 

on a low-pass filter then fed to an electronic switch. Low-pass filter limits the 

frequency band; it blocks high frequency components which are higher than half of 

the 𝑓𝑆. The electronic switch takes samples from audio signal with sampling rate of 8 

kHz. Then a PAM (Pulse Amplitude Modulation) signal is obtained at the output. 
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Figure 6.2 Generation of PAM signal 

 

The PAM  signal represents the audio in analog form. The samples can be 

transmitted more easily in digital form. For this the signal has to bi converted to 

digital PCM signal by quantizing. 

 

 

6.1.1.2 Quantizing 

It is shown in Figure 6.3 how quantization works. In order to make it simpler, 

only 4 equal quantizing intervals are indicated. The quantizing intervals are 

numbered 00 to 11 in the signal range. When recovering the signal, signal level 

corresponding to the middle of two quantizing intervals is recovered for one of these 

intervals. This causes small differences between original signal and recovered signal. 

This difference for each sample can be up to half of a quantizing interval. This 

distortion occurred in quantization can be decreased by increasing the number of 

quantizing intervals. 

 

 

Figure 6.3 Example of quantizing an analog signal rolled-up 
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6.1.1.3 Encoding 

The PCM is obtained by encoding the quantized signal into digital bits. The 

encoder writes an 8-bit PCM word for each sample determined in quantizing 

intervals. An 8-digit binary code is used for the 256 = 2
8
 intervals which are 128 for 

positive and 128 for negative quantizing intervals. Therefore PCM words have 8 bits. 

Signed representation is used for PCM. The first bit for the positive intervals is a "1", 

for the negative intervals is a "0". 

 

 

6.1.1.4 Multiplexing 

The 8-bit PCM words of a group can be transmitted in a wider frame 

synchronously. One word of is followed by next word, and all are arranged in 

sequential order. This technique is called PCM time-division multiplexing. Figure 

6.4 shows a multiplexed 32 channels into E1 frame below. 

 

 

Figure 6.4 Multiplexed 32 channels into E1 frame 

 

 

6.1.1.5 Demultiplexing 

On the receive side each PCM signal is recovered from the time-division 

multiplexed signal. Then the process is continues through decoding. 

 

 

6.1.1.6 Decoding 

As in quantizing and encoding parts, on the receive side a signal amplitude is 

allocated to every 8-bit PCM word. It corresponds to the midpoint of the particular 

quantizing interval. The characteristic for decoding should be the same as encoding 
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on the transmit side. The PCM words are decoded in the receive order and converted 

to a PAM signal. Finally these PAM signals are passed on a low-pass filter, which 

reproduces the original analog voice signal. Figure 6.5 shows the reproduction 

procedure of the digital signal down below. 

 

 

Figure 6.5 Reproduction of digital signal with low-pass filter 

 

 

6.2 Telephony Signals vs. Wav Files 

Telephony signals in PSTN include voice signals and these are filtered through 

analogue filters. In this project the main issue is to implement digital filters in a 

FPGA and apply spectrum shaping on voice signals especially digitally. For this aim, 

data subchunk of the wav files can be used as a voice source. Actually 8-bit wav file 

which is sampled with 8 kHz has almost the same data as the telephony signal which 

is just encoded to digital in the PCM procedure. 

 

 

6.2.1. Wav File 

The WAV (Waveform Audio File Format) is a subtype of Microsoft's RIFF 

(Resource Interchange File Format) specification and used or storing an audio signal 

on PCs. A RIFF file has a header in the start, and it is followed by data chunks. A 

wav file is generally just a RIFF file contains a single wav chunk. This wav chunk 

consists of two sub chunks; a "FMT" chunk specifies the data format and a "data" 

chunk contains the sampled audio. This type of wav file is called "Canonical form".  
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Basically a wav file has three major chunks which are riff, fmt and data chunks. 

First 12 bytes are used for riff chunk and contains “chunked” “chunk size” and 

“chunk format” descriptions. Second part is the fmt sub-chunk which is 24 bytes 

long and it contains the description of several properties such as “sample rate”, 

“audio format” etc. of the audio signal. The last chunk is data sub-chunk which starts 

with 37th byte and continues till end of the file. First 8 bytes of this chunk contains 

ID and size information, and the rest is pure sampled audio. So it can be said that 

first 44 bytes of this type of file contains information and the rest contains pure 

sampled audio. 

 

Data chunks of this type of files can be used to test digital filters in the whole 

design. Figure 6.6 shows the structure of a wav file. 

 

 

Figure 6.6 Data structure of a wav file 
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CHAPTER SEVEN 

APPLICATION AND RESULTS 

 

7.1 Pre-Implementation 

As mentioned in Chapter.3, whole system is prepared for implementation using 

Xilinx ISE Design Suite software. Pin connections are constructed with Plan Ahead 

software. In Figure 7.1 RTL schematic of the system is shown below. 

 

 

Figure 7.1 RTL schematic of the designed system 

 

Receiver, Transmitter, Delayer and Filter modules are seen in the Figure 7.1. Each 

of these modules has its own VHDL source file. These files are instantiated in a top 

module named A_TOP. For more information about instantiation, refer to the Xilinx 

ISE / Help.  

 

After passing “Synthesize” and “Implement” steps without any errors on ISE 

Design suite, a *.bit file is created. This file is implemented on the board by Xilinx 

iMPACT software. 
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7.2 Filter Design with FDATool 

FDATool is used for creating several types of filters with different specifications. 

The software work as a sub software of MatLab and starts executing the “fdatool” 

command in the MatLab command window. FDATool is displayed as shown in 

Figure 7.2 below. 

 

 

Figure 7.2 FDAToool main window with filter design specifications 

 

As designing the filter required, filter specifications like Response Type, Design 

Method, Filter Order, Frequency Specifications were checked and entered correctly 

in the Design Filter tab. Next step is the Set Quantization Parameters tab. It is shown 

in Figure 7.3. 
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Figure 7.3 Set quantization parameters tab in FDATool 

 

In this tab important specification is the Filter Arithmetic selection. Only Fixed-

Point Arithmetic option is valid for HDL generation. In Filter Precision option, 

Specify all option should be selected for specifying the output and accumulator width 

lengths in the filter. Otherwise FDATool calculates an optimum width length of 

accumulator and output of the filter according to other specifications of the filter. 

And filter output always has wider width length than filter input when this option is 

not Specify all. All the specifications like Numerator word length, Input word length, 

Output word length, Rounding mode, Overflow mode, Accumulator word length are 

checked and entered according to the filter structure in this tab. 

 

After all the specifications are checked and entered, the next step is generating the 

VHDL code of the designed filter. Selecting Targets > Generate HDL… from the 

upper menu starts the HDL Coder which is shown in Figure 7.4. 
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Figure 7.4 HDL generation window in FDATool 

 

In the Generate HDL window specifications like Add pipeline registers, 

Coefficient multipliers, FIR adder style, Reset type and Reset asserted level are 

checked and selected according to the top design. 

 

It is seen that an option named “More HDL Settings…” in the Figure 7.4 above. 

By clicking this button a window appears as shown in Figure 7.5. 

 

 

Figure 7.5 More HDL settings window in FDATool 
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This window has three tabs as General, Ports and Advanced. Ports tab includes 

preferences like input port, clock port, input data type, output port etc. shown in 

figure above. These preferences are checked and filled according to the top design. 

 

VHDL code file of the designed filter is created in the target directory just after 

“Generate” button clicked which is at the right bottom of the Generate HDL window. 

 

 

7.3 Implementation on FPGA 

Constructed VHDL files are instantiated in the top module as mentioned in 

section 6.1. Then this top module is passed through Synthesize, I/O Pin Planning 

(PlanAhead) Post Synthesize, Implement Design and Generate Programming File 

operations. Then the created *.bit file in the project directory of ISE is implemented 

on the board by the software Xilinx iMPACT. 

 

 Following results are given from the command window of iMPACT after 

implementing the *.bit file on the board and Program Succeeded icon is shown on 

screen. 

------------------------------------------------------------------------------------ 

INFO:iMPACT:2219 - Status register values: 

INFO:iMPACT - 0011 1111 1010 1100  

INFO:iMPACT:579 - '1': Completed downloading bit file to device. 

INFO:iMPACT - '1': Programing completed successfully. 

PROGRESS_END - End Operation. 

------------------------------------------------------------------------------------ 

For more information about using iMPACT, refer to the Xilinx ISE / Help. 

 

 

7.4 Transmit and Receive Data 

By implementing the design on FPGA, it is ready to test the design and check the 

results. A connection is needed for transmitting and receiving data between PC and 

FPGA board in order to test the system if it is working or not. This requirement is 
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supplied by a serial communication between serial port of PC and RS-232 of FPGA 

board. 

 

Software like HyperTerminal or TeraTerm can be used to test if any data returns 

from the FPGA.  TeraTerm is used for testing design just other modules together 

without filter module. 

 

Serial port has maximum 8-bit data width length for each baud as known. System 

is designed for 8-bit data input and 8-bit data output for each sample to make 

hardware simpler. 8-bit *.wav files are used for testing the system with several 

sampling rates. Wav file structure is mentioned in chapter six.  

 

Simple executable software named “write_read_comport” is prepared for this 

communication. It is coded in C#. Algorithm is basically to remove headers from 

wav file and send each sample to the serial port starting from LSB; then, to listen the 

serial port if there is any data on the port. The data processed on FPGA is received 

from serial port is stored in memory and next sample of wav file is sent to the serial 

port. After all the samples sent through serial port, new wav file is created in the 

same directory with original wav file by adding the removed headers to the stored 

data with the last processed byte received from the serial port. Software GUI looks 

like Figure 7.6. 
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Figure 7.6 Data flow progress 

 

In the software window there are options and selections like ports, baud rate, 

connect, disconnect, open file, filter, send all. At the bottom of the window it shows 

the percentage of data processed and received. Source code of the software is given 

in appendices. 

 

First the serial port which FPGA is connected is selected from ports option. Then 

the baud rate is selected from baud rate option and clicked to connect button. Now 

connection between PC and FPGA is established and system is ready to send data. 

Then wav file is selected by clicking open file option and found from the located 

directory. Data sending and receiving process starts after checking send all option 

and clicking on the filter button. 

 

 

7.5 Expected and Derived Results 

The system is constructed and implemented on FPGA and now it is ready to test 

several types of filters with different orders created by FDATool are ready to test and 

compare results. 
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7.5.1 Results of Direct Form Architecture FIRs 

First implementation and test has experienced with FIR filter which has following 

specifications. 

 

Table 7.1 Sixth order Direct Form FIR filter specifications 

Direct Form FIR 6
th

 Order Filter FDATool Specifications 

Option Value Option Value 

Response Type Low Pass Input Word Length 8 

Design Method FIR Equir. Input Fraction Length 7 

Filter Order 6 Filter Precision Specify All 

Fs 44100Hz Output Word Length 8 

Fpass 3500Hz Output Fraction Length 7 

Fstop 4500Hz Rounding Mode Nearest (Co.) 

Numerator Word Length 16 Overflow Mode Saturate 

Best-Prec. Frac. Lengths Selected Product W. Length 16 

Use Unsig. Represent. Cleared Product Frac. Length 16 

Scale Numerator Coeff. Cleared Accum. Word Length 18 

Filter Arithmetic Fixed-Point Accum Frac. Length 16 

Numerator Word Length 8   

 

Expected magnitude and phase responses of the filter given in the below table are 

shown in Figure 7.6 and Figure 7.7. 

 

 

Figure 7.6 Magnitude response of FIR filter according to specifications in Table 7.1 
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Figure 7.7 Magnitude response of FIR filter according to specifications in Table 7.1 

 

Samples of original wav file which are between the range +127 and -128 are 

viewed in time domain 0 to 2.2s is analyzed with software Power Sound Editor Free 

and shown in the Figure 7.8. 

 

 

Figure 7.8 Samples of wav file in time domain 

 

The wav file I_44100.wav has 44100Hz sampling rate, 8-bit depth, 96633 samples 

and almost 2.25s length. This file is stored in the relevant directory in the attachment 

CD. On the right side of the figure, sample range is shown between +127 and -128. 

 

Frequency analysis of the I_44100.wav file with specifications above is shown in 

Figure 7.9.  
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Figure 7.9 Frequency analysis of the I_44100.wav 

 

After sending I_44100.wav through designed system, following sample view 

Figure 7.10 is taken from the processed audio file DF06_out.wav. This file is stored 

in the relevant directory of the attachment CD. 

 

 

Figure 7.10 Samples of DF06_out.wav from 0 to 2.20s 
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To make the above figure simpler and see it detailed, it is zoomed into the first 

7ms and shown in Figure 7.11 below. 

 

 

Figure 7.11 Samples of DF06_out.wav from 0 to 7ms 

 

Frequency analysis of the DF06_out.wav file with shown specifications is shown 

in Figure 7.12. 

 

 

Figure 7.12 Frequency analysis of the DF06_out.wav 

 

Next implementation and test has experienced with FIR filter which has following 

specifications. 
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Table 7.2 Twentieth order Direct Form FIR filter specifications 

Direct Form FIR 20
th

 Order Filter FDATool Specifications 

Option Value Option Value 

Response Type Low Pass Input Word Length 8 

Design Method FIR Equir. Input Fraction Length 7 

Filter Order 20 Filter Precision Specify All 

Fs 44100Hz Output Word Length 8 

Fpass 3500Hz Output Fraction Length 7 

Fstop 4500Hz Rounding Mode Nearest (Co.) 

Numerator Word Length 16 Overflow Mode Saturate 

Best-Prec. Frac. Lengths Selected Product W. Length 16 

Use Unsig. Represent. Cleared Product Frac. Length 16 

Scale Numerator Coeff. Cleared Accum. Word Length 18 

Filter Arithmetic Fixed-Point Accum Frac. Length 16 

Numerator Word Length 8   

 

Expected magnitude and phase responses of the filter given in the below Table 7.2 

are shown in Figure 7.13 and Figure 7.14 below. 

 

 

Figure 7.13 Magnitude response of FIR filter according to specifications in Table 7.2 
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Figure 7.14 Phase response of FIR filter according to specifications in Table 7.2 

 

Samples of original wav file I_44100.wav which are between the range +127 and 

-128 are viewed in time domain is analyzed with software Power Sound Editor Free 

and shown in the Figure 7.8. 

 

Frequency analysis of the I_44100.wav file with shown specifications on figure 

itself is shown in Figure 7.9. 

 

After sending I_44100.wav through designed system, following sample view 

Figure 7.15 is taken from the processed audio file DF20_out.wav. This file is stored 

in the relevant directory of the attachment CD. 

 

 

Figure 7.15 Samples of DF20_out.wav from 0 to 2.20s 
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To make the above figure simpler and see it detailed, it is zoomed into the first 

7ms and shown in Figure 7.16 below. 

 

 

Figure 7.16 Samples of DF20_out.wav from 0 to 7ms 

 

Frequency analysis of the DF20_out.wav file with shown specifications is shown 

in Figure 7.17. 

 

 

Figure 7.17 Frequency analysis of the DF20_out.wav 

 

Next implementation and test has experienced with FIR filter which has following 

specifications. 
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Table 7.3 Thirtieth order Direct Form FIR filter specifications 

Direct Form FIR 30
th

 Order Filter FDATool Specifications 

Option Value Option Value 

Response Type Low Pass Input Word Length 8 

Design Method FIR Equir. Input Fraction Length 7 

Filter Order 30 Filter Precision Specify All 

Fs 44100Hz Output Word Length 8 

Fpass 3500Hz Output Fraction Length 7 

Fstop 4500Hz Rounding Mode Nearest (Co.) 

Numerator Word Length 16 Overflow Mode Saturate 

Best-Prec. Frac. Lengths Selected Product W. Length 16 

Use Unsig. Represent. Cleared Product Frac. Length 16 

Scale Numerator Coeff. Cleared Accum. Word Length 18 

Filter Arithmetic Fixed-Point Accum Frac. Length 16 

Numerator Word Length 8   

 

Expected magnitude and phase responses of the filter with given specifications in 

Table 7.3 are shown in Figure 7.18 and Figure 7.19. 

 

 

Figure 7.18 Magnitude response of FIR filter according to specifications in Table 7.3 
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Figure 7.19 Phase response of FIR filter according to specifications in Table 7.3 

 

Received I_44100.wav is processed through designed system, and following 

sample view Figure 7.20 is taken from the processed audio file DF30_out.wav. This 

file is stored in the relevant directory of the attachment CD. 

 

 

Figure 7.20 Samples of DF30_out.wav from 0 to 2.20s 

 

To make the above figure simpler and see it detailed, it is zoomed into the first 

7ms and shown in Figure 7.21. 
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Figure 7.21 Samples of DF30_out.wav from 0 to 7ms 

 

Frequency analysis of the DF30_out.wav file with shown specifications is shown 

in Figure 7.22. 

 

 

Figure 7.22 Frequency analysis of the DF30_out.wav 

 

 

7.5.2 Results of Direct Form Transposed Architecture FIRs 

To change the architecture of the designed FIR filter, Edit > Convert Stucture… 

option is selected. This selection opens a new window which has three options 

shown in Figure 7.23 below. Structure is changed by these steps. It is important that 

Set Quantization Parameters tab has to be reconfigured according to the design after 

changing the structure.  
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Figure 7.23 Convert structure window 

 

First implementation and test has experienced with FIR filter which has following 

specifications. 

 

Table 7.4 Tenth order Direct Form Transposed FIR filter specifications 

Direct Form FIR Transposed 10
th

 Order Filter FDATool Specifications 

Option Value Option Value 

Response Type Low Pass Input Word Length 8 

Design Method FIR Equir. Input Fraction Length 7 

Filter Order 10 Filter Precision Specify All 

Fs 44100Hz Output Word Length 8 

Fpass 3500Hz Output Fraction Length 7 

Fstop 4500Hz Rounding Mode Nearest (Co.) 

Numerator Word Length 16 Overflow Mode Saturate 

Best-Prec. Frac. Lengths Selected Product W. Length 16 

Use Unsig. Represent. Cleared Product Frac. Length 16 

Scale Numerator Coeff. Cleared Accum. Word Length 18 

Filter Arithmetic Fixed-Point Accum Frac. Length 16 

Numerator Word Length 8   
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Expected magnitude response of the filter given specifications in Table 7.4 is 

shown in Figure 7.24 below. 

 

 

Figure 7.24 Magnitude response of FIR filter according to specifications in Table 7.4 

 

Expected phase response of the filter given specifications in Table 7.4 is shown in 

Figure 7.25. 

 

 

Figure 7.25 Phase response of FIR filter according to specifications in Table 7.4 

 

Original file I_44100.wav file is filtered through designed system, and following 

sample view Figure 7.26 is taken from the processed audio file TR10_out.wav. This 

file is stored in the relevant directory of the attachment CD. 
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Figure 7.26 Samples of TR10_out.wav from 0 to 2.20s 

 

To make the above figure simpler and see it detailed, it is zoomed into the first 

7ms and shown in Figure 7.27. 

 

 

Figure 7.27 Samples of TR10_out.wav from 0 to 7ms 

 

Frequency analysis of the TR10_out.wav file with shown options is shown in 

Figure 7.28. 
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Figure 7.28 Frequency analysis of the TR10_out.wav 

 

Next implementation and test has experienced with FIR filter which has following 

specifications. 

 

Table 7.5 Twentieth order Direct Form Transposed FIR filter specifications 

Direct Form FIR Transposed 20
th

 Order Filter FDATool Specifications 

Option Value Option Value 

Response Type Low Pass Input Word Length 8 

Design Method FIR Equir. Input Fraction Length 7 

Filter Order 20 Filter Precision Specify All 

Fs 44100Hz Output Word Length 8 

Fpass 3500Hz Output Fraction Length 7 

Fstop 4500Hz Rounding Mode Nearest (Co.) 

Numerator Word Length 16 Overflow Mode Saturate 

Best-Prec. Frac. Lengths Selected Product W. Length 16 

Use Unsig. Represent. Cleared Product Frac. Length 16 

Scale Numerator Coeff. Cleared Accum. Word Length 18 

Filter Arithmetic Fixed-Point Accum Frac. Length 16 

Numerator Word Length 8   
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Expected frequency and phase responses of the filter with given specifications in 

Table 7.5 are shown in Figure 7.29 and Figure 7.30. 

 

 

Figure 7.29 Magnitude response of FIR filter according to specifications in Table 7.5 

 

 

 

Figure 7.30 Phase response of FIR filter according to specifications in Table 7.5 

 

By filtering I_44100.wav in FPGA with designed system, following sample view 

Figure 7.31 is taken from the processed audio file TR20_out.wav. This file is stored 

in the relevant directory of the attachment CD. 
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Figure 7.31 Samples of TR20_out.wav from 0 to 2.20s 

 

To make the above figure simpler and see it detailed, it is zoomed into the first 

7ms and showed in Figure 7.32. 

 

 

Figure 7.32 Samples of TR20_out.wav from 0 to 7ms 

 

Frequency analysis of the TR20_out.wav file with selected options is shown in 

Figure 7.33. 
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Figure 7.33 Frequency analysis of the TR20_out.wav 

 

Next implementation and test has experienced with FIR filter which has following 

specifications. 

 

Table 7.6 Thirtieth order Direct Form Transposed FIR filter specifications 

Direct Form FIR Transposed 30
th

 Order Filter FDATool Specifications 

Option Value Option Value 

Response Type Low Pass Input Word Length 8 

Design Method FIR Equir. Input Fraction Length 7 

Filter Order 30 Filter Precision Specify All 

Fs 44100Hz Output Word Length 8 

Fpass 3500Hz Output Fraction Length 7 

Fstop 4500Hz Rounding Mode Nearest (Co) 

Numerator Word Length 16 Overflow Mode Saturate 

Best-Prec. Frac. Lengths Selected Product W. Length 16 

Use Unsig. Represent. Cleared Product Frac. Length 16 

Scale Numerator Coeff. Cleared Accum. Word Length 18 

Filter Arithmetic Fixed-Point Accum Frac. Length 16 

Numerator Word Length 8   
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Expected magnitude and phase responses of the filter with given specifications in 

Table 7.6 are shown in Figure 7.34 and Figure 7.35 

 

 

Figure 7.34 Magnitude response of FIR filter according to specifications in Table 7.6 

 

 

Figure 7.35 Phase response of FIR filter according to specifications in Table 7.6 

 

After sending I_44100.wav through designed system in FPGA, following sample 

view Figure 7.36 is taken from the processed audio file TR30_out.wav. This file is 

stored in the relevant directory of the attachment CD. 
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Figure 7.36 Samples of TR30_out.wav from 0 to 2.20s 

 

To make the above figure simpler and see it detailed, it is zoomed into the first 

7ms and shown in Figure 7.37. 

 

 

Figure 7.37 Samples of TR30_out.wav from 0 to 7ms 

 

Frequency analysis of the TR30_out.wav file with selected options is shown in 

Figure 7.38. 
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Figure 7.38 Frequency analysis of the TR30_out.wav 

 

 

7.5.3 Results of Direct Form Symmetric Architecture FIRs 

To change the architecture of the designed FIR filter, Edit > Convert Stucture… 

option is selected. This selection opens a new window which has three options 

shown in Figure 7.23. Structure is changed by choosing the option in the selection 

window. It is important that Set Quantization Parameters tab has to be reconfigured 

according to the design after changing the structure. 

 

First implementation and test has experienced with FIR filter which has following 

specifications. 

 

 Table 7.7 Tenth order Direct Form Symmetric FIR filter specifications 

Direct Form FIR Symmetric 10
th

 Order Filter FDATool Specifications 

Option Value Option Value 

Response Type Low Pass Input Word Length 8 

Design Method FIR Equir. Input Fraction Length 7 

Filter Order 10 Filter Precision Specify All 

Fs 44100Hz Output Word Length 8 

Fpass 3500Hz Output Fraction Length 7 

Fstop 4500Hz Rounding Mode Nearest (Co.) 
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Numerator Word Length 16 Overflow Mode Saturate 

Best-Prec. Frac. Lengths Selected Product W. Length 16 

Use Unsig. Represent. Cleared Product Frac. Length 16 

Scale Numerator Coeff. Cleared Accum. Word Length 18 

Filter Arithmetic Fixed-Point Accum Frac. Length 16 

Numerator Word Length 8   

 

Expected magnitude and phase responses of the filter with given specifications in 

Table 7.7 are shown in Figure 7.39 and Figure 7.40. 

 

 

Figure 7.39 Magnitude response of FIR filter according to specifications in Table 7.7 

 

 

Figure 7.40 Phase response of FIR filter according to specifications in Table 7.7 

 

Following sample view Figure 7.41 is taken from the processed audio file 

SYM10_out.wav after sending it through designed system. This file is stored in the 

relevant directory of the attachment CD. 
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Figure 7.41 Samples of SYM10_out.wav from 0 to 2.20s 

 

To make the above figure simpler and see it detailed, it is zoomed into the first 

7ms and shown in Figure 7.42. 

 

 

Figure 7.42 Samples of SYM10_out.wav from 0 to 7ms 

 

Frequency analysis of the SYM10_out.wav file with shown specifications is 

shown in Figure 7.43. 
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Figure 7.43 Frequency analysis of the SYM10_out.wav 

 

Next implementation and test has experienced with FIR filter which has following 

specifications. 

 

Table 7.8 Twentieth order Direct Form Symmetric FIR filter specifications 

Direct Form FIR Symmetric 20
th

 Order Filter FDATool Specifications 

Option Value Option Value 

Response Type Low Pass Input Word Length 8 

Design Method FIR Equir. Input Fraction Length 7 

Filter Order 20 Filter Precision Specify All 

Fs 44100Hz Output Word Length 8 

Fpass 3500Hz Output Fraction Length 7 

Fstop 4500Hz Rounding Mode Nearest (Co.) 

Numerator Word Length 16 Overflow Mode Saturate 

Best-Prec. Frac. Lengths Selected Product W. Length 16 

Use Unsig. Represent. Cleared Product Frac. Length 16 

Scale Numerator Coeff. Cleared Accum. Word Length 18 

Filter Arithmetic Fixed-Point Accum Frac. Length 16 

Numerator Word Length 8   
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Expected frequency and phase responses of the filter according to given 

specifications in Table 7.8 are shown in Figure 7.44 and Figure 7.45. 

 

 

Figure 7.44 Magnitude response of FIR filter according to specifications in Table 7.8 

 

 

Figure 7.45 Phase response of FIR filter according to specifications in Table 7.8 

 

Audio file I_44100.wav is sent through designed system, and following sample 

view Figure 7.46 is taken from the processed audio file SYM20_out.wav. This file is 

stored in the relevant directory of the attachment CD. 
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Figure 7.46 Samples of SYM20_out.wav from 0 to 2.20s 

 

To make the above figure simpler and see it detailed, it is zoomed into the first 

7ms and shown in Figure 7.47. 

 

 

Figure 7.47 Samples of SYM20_out.wav from 0 to 7ms 

 

Frequency analysis of the SYM20_out.wav file with shown specifications is 

shown in Figure 7.48. 
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Figure 7.48 Frequency analysis of the SYM20_out.wav 

 

Next implementation and test has experienced with FIR filter which has following 

specifications. 

 

Table 7.9 Fortieth order Direct Form Symmetric FIR filter specifications 

Direct Form FIR Symmetric 40
th

 Order Filter FDATool Specifications 

Option Value Option Value 

Response Type Low Pass Input Word Length 8 

Design Method FIR Equir. Input Fraction Length 7 

Filter Order 40 Filter Precision Specify All 

Fs 44100Hz Output Word Length 8 

Fpass 3500Hz Output Fraction Length 7 

Fstop 4500Hz Rounding Mode Nearest (Co.) 

Numerator Word Length 16 Overflow Mode Saturate 

Best-Prec. Frac. Lengths Selected Product W. Length 16 

Use Unsig. Represent. Cleared Product Frac. Length 16 

Scale Numerator Coeff. Cleared Accum. Word Length 18 

Filter Arithmetic Fixed-Point Accum. Frac. Length 16 

Numerator Word Length 8   
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Expected frequency and phase responses of the filter according to given 

specifications in Table 7.9 are shown in Figure 7.49 and Figure 7.50. 

 

 

Figure 7.49 Magnitude response of FIR filter according to specifications in Table 7.9 

 

 

Figure 7.50 Phase response of FIR filter according to specifications in Table 7.9 

 

Following sample view Figure 7.51 is taken from the processed audio file 

SYM40_out.wav after sending I_44100.wav through designed system. This file is 

stored in the relevant directory of the attachment CD. 
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Figure 7.51 Samples of SYM40_out.wav from 0 to 2.20s 

 

To make the above figure simpler and see it detailed, it is zoomed into the first 

7ms and shown in Figure 7.52. 

 

 

Figure 7.52 Samples of SYM40_out.wav from 0 to 7ms 

 

Frequency analysis of the SYM40_out.wav file with selected options is shown in 

Figure 7.53. 
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Figure 7.53 Frequency analysis of the SYM40_out.wav 

 

From the results of the filtering operations on audio files with different filters 

which has different orders or architectures it can be said that sharp jumps and falls 

have occurred on the output signals. 

 

Original audio file has been filtered with 4kHz cutoff frequency low pass filter by 

Power Sound Editor and frequency response of the filtered data is shown in Figure 

7.54. Filtered file I_44100_out_4khz.wav is stored in the relevant directory of the 

attachment CD. 

 

 

Figure 7.54 Frequency analysis of filtered file I_44100_out_4khz.wav 
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Expected result does not fit with the received results because of the sharp jumps 

and fall downs in the samples. To test if there is a problem in the filter modules or 

other modules, an audio file has been constructed using MatLab and tested on all 

implementations. For constructing this file, “wavread” and “zeros” commands were 

used In MatLab. For more information about these commands, please refer to 

Matlab/Help.  

 

This audio file I_44100_zeros.wav which includes only zero samples is sent 

through the configured system and received data is saved as I_44100_zeros_out.wav. 

This file is stored in the relevant directory of the attachment CD. Received data has 

only zeros as original one including no jumps or no sharp sample changes. This 

shows there is no external module problem inside the project. 

 

Every single option in FDATool except 8-bit input and 8-bit output has been tried 

for generating new VHDL files of filters to test the audio data but meaningless sharp 

jumps and fall downs between samples occurred in every received output. 

 

All command lines of the VHDL modules has been analyzed and mathematical 

algorithms has been understood. 

 

As the filter designs were constructed according to the top design with 8-bit input 

and 8-bit output, expression of audio samples between +127 and -128 were processed 

through mathematical operations. 

 

Numbers multiplied with coefficients and stored in temporary registers. For full 

precision in the output, an FIR filter which has 8-bit coefficient lengths and 10
th

 

order, minimum accumulator length, minimum product length and output width 

length are shown in next two figures. 
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Figure 7.55 Proper specifications chosen automatically by MatLab for full precision in the output 

of the filter 

 

 

Figure 7.56 Proper specifications chosen automatically by MatLab for full precision in the output 

of the filter 

 

In the figures above, for a full precision of filter according to the specifications, 

output word length should have 18-bits length and. Also product and accumulator 

word lengths should be as seen in figures above.  

 

Because result of multiplication operation on coefficients and samples; outputs a 

number which has to be wide enough to represent result. As it is chosen Specify All 

option is selected according to the top design, resizing operation is processed inside 

FPGA to fit a wide number to slammer bit length; so information loss occurs in the 

output data. That causes the unexpected noise in the output audio files. 

 

In this example resizing operation is processed between temporary sum registers 

and product registers inside FPGA, last operation which resizes the final result into 

8-bit length causes the loss of information in the data. Resizing codes of final result 

to 8-bit length is shown in next lines. 
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-------------------------------------------------------------------- 

output_typeconvert <= (7 => '0', OTHERS => '1') 

WHEN (finalsum(17) = '0' AND finalsum(16) /= '0') OR 

(finalsum(17) = '0' AND finalsum(16 DOWNTO 9) = "01111111") special 

case 

ELSE (7 => '1', OTHERS => '0') 

WHEN finalsum(17) = '1' AND finalsum(16) /= '1' 

ELSE (resize(shift_right(finalsum(17) & finalsum(16 DOWNTO 0) + ( 

"0" & (finalsum(9) & NOT finalsum(9) & NOT finalsum(9) & NOT 

finalsum(9) & NOT finalsum(9) & NOT finalsum(9) & NOT finalsum(9) & 

NOT finalsum(9) & NOT finalsum(9))), 9), 8)); 

-------------------------------------------------------------------- 

 

It is clearly shown that scaling of an 18-bit result to 8-bit number is operated in 

the VHDL codes for a few special cases and a generalization is operated except these 

few cases. This causes the loss of information for different which are generalized in 

the codes. 

 

Assuming that audio signal has amplitude is between +1 and -1 and represented 

with signed 8-bit samples. In this case +1 is relevant to +127 and -1 is relevant to  -

128. After the mathematical operations inside the filter algorithm with full precision, 

sample results represented with signed 18-bit numbers for above example. In this 

case +1 is represented with 131071 and -1 is represented with -131072. But the resize 

command can‟t provide such scaling operation between 8-bit to 18-bit numbers. 

Dividing integer value of MSB (Most Significant Bit) in the 18-bit result to the 

integer value on MSB in the 8-bit result 1024 is the correct step correspondence 

between input and output. VHDL does not support such scaling between input and 

output with these length specifications, except for a few special cases. 
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CHAPTER EIGHT 

CONCLUSION 

 

Throughout this thesis work, a system to filter digital signals through FPGA is 

designed. Digital filter applications with FPGA‟s have attracted attention with the 

technologic growth of FPGA‟s in the past two decades. However digital filtering 

applications include large numbers of mathematical operations and need MAC units 

according to the order of filter. This requirement size differs with the types and 

architectures of filter algorithms and therefore choosing optimum order and proper 

architecture can reduce the area and units used in FPGA. 

 

Hardware descriptive language is a complicated software language and requires 

hardware background to create stable and working designs. VHDL is used to 

construct design parts separately to improve project step by step. Zero values are 

given to the initial conditions of registers and pipelines used in project, to get better 

results and prevent crashes. 

 

Transmitting and receiving algorithms are designed and implemented for 8-bit 

samples according to the serial port RS-232 which supports maximum 8 data bits 

between start and stop bits. Serial port is used for communication between FPGA 

and computer to send and receive digital data. However using different 

communication technique could turn better result out 

 

In the filter design numerator word length affects the product lengths which are 

retrieved from multiplication of samples and coefficients. Choosing wider numerator 

length results loss of information in the received data because of resizing. Thus 

numerator lengths reduced closer to the input word length to decrease loss of 

information in the received data. Also synchronous reset type in filter specifications 

is chosen to prevent system crushes because of synchronization errors on FPGA. 

 

Finite state machine algorithm is used both in receiving and transmitting parts to 

make data flow precise without any errors. 
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For a filter with any order specification, symmetric structure uses about 50% less 

MAC units than direct form architecture and about 40% less LUTs than other 

architectures. On the other way this architecture could perform at about 50% speed 

of sampling rate compared to the direct form architecture. 

 

In conclusion, specifications of the design and software to be used should be 

carefully analyzed before implementation and some tradeoffs between speed and 

area has to be considered by designer according to these results. 

 

 

8.1 Futureworks 

Even though the results of the system are in accordance with theoretical 

expectations they are evaluated using serial port which will not give best results. 

Using Ethernet communication for data flow with higher bit depth and sampling 

rates will return more reliable results. 

 

System is designed for processing stored data and it can be enhanced by 

improving software and hardware for real time application by connecting input and 

output devices to the PC.   
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APPENDIX 

CODES 

 

9.1 VHDL Codes 

9.1.1 VHDL Codes for Transmitter 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 

 

entity Transmitter is 

    Port ( clock : in  STD_LOGIC; 

           reset : in  STD_LOGIC; 

           input : in  STD_LOGIC_VECTOR (7 downto 0); 

           start : in  STD_LOGIC; 

           output: out  STD_LOGIC); 

end Transmitter; 

 

architecture Behavioral of Transmitter is 

  type state_type is (st1_a, st2_b, st3_c, st4_d); 

  signal state, next_state: state_type; 

  signal reg_n   : std_logic_vector (0 to 

9):="0000000000"; 

  signal reg   : std_logic_vector (7 downto 0); 

  signal load_enable: std_logic; 

  constant bolme  : integer:=2171; --57600 baud 

  signal sayac  : integer range 0 to bolme:=0; 

  signal sayac2  : integer range 0 to 10:=0; 

  signal s_reg_en : std_logic; 

  signal start_ctrl: std_logic:='0'; 

begin 

  reg(7) <= input(0); 

  reg(6) <= input(1); 

  reg(5) <= input(2); 

  reg(4) <= input(3); 

  reg(3) <= input(4); 

  reg(2) <= input(5); 

  reg(1) <= input(6); 

  reg(0) <= input(7); 

   

 SYN_PROC: process (clock) 

  begin 

  if (clock'event and clock = '1') then 

   if (reset = '1') then 

    state <= st1_a; 

   else 

    state <= next_state; 

   end if; 

  end if; 

  end process; 

   

  process (start,clock) 

  begin 

   if clock'event and clock = '1' then 

    if(start = '1') then 
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     start_ctrl <= '1'; 

    end if; 

    if sayac2 = 9 then 

     start_ctrl <= '0'; 

    end if; 

   end if; 

  end process; 

   

   

  process (clock, start_ctrl, load_enable, s_reg_en) 

  begin 

  if clock'event and clock = '1' then 

   if (start_ctrl = '1') then -- degisti 

    if load_enable = '1' then 

     reg_n(1 to 8) <= reg; 

     reg_n(9) <= '1'; 

     reg_n(0) <= '0'; 

    end if; 

    if s_reg_en = '1' then 

     reg_n <= reg_n(1 to 9) & '0'; 

    end if; 

   else 

    reg_n(0) <= '1'; 

   end if; 

  end if;  

  end process; 

   

  process (clock) 

  begin 

  if (clock'event and clock = '1') then 

   output <= reg_n(0); 

  end if; 

  end process; 

   

 OUTPUT_DECODE: process (state,clock) 

  begin 

  if clock'event and clock='1' then 

   case (state) is 

    when st1_a => 

     load_enable <= '0'; 

     sayac   <=  0 ; 

     sayac2  <=  0 ; 

     s_reg_en  <= '0'; 

    when st2_b => 

     load_enable <= '1'; 

     sayac <= sayac+1; 

    when st3_c => 

     load_enable <= '0'; 

     sayac <= sayac+1; 

     s_reg_en  <= '0'; 

    when st4_d => 

     sayac2 <= sayac2+1; 

     sayac   <= 0; 

     s_reg_en  <= '1'; 

   end case; 

  end if; 

  end process; 
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 NEXT_STATE_DECODE: process (state, start_ctrl, sayac, sayac2, 

clock) 

  begin 

  next_state <= state; 

  case (state) is 

   when st1_a => 

    if start_ctrl = '1' then -- changed 

     next_state <= st2_b; 

    end if; 

   when st2_b => 

    next_state <= st3_c; 

   when st3_c => 

    if sayac = (bolme-1) then 

     next_state <= st4_d; 

    end if; 

   when st4_d => 

    if sayac2 = 9 then 

     next_state <= st1_a; 

    else 

     next_state <= st3_c; 

    end if; 

  end case; 

  end process; 

   

end Behavioral; 

 

 

9.1.2 VHDL Codes for Receiver 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 

 

entity Receiver is 

Port ( input   : in  STD_LOGIC; 

       reset   : in  STD_LOGIC; 

       clock   : in  STD_LOGIC; 

       output  : out STD_LOGIC_VECTOR (7 downto 0):="00000000"; 

  start  : out STD_LOGIC:='0' ); 

end Receiver; 

 

 

architecture Behavioral of Receiver is 

 

type state_type is (st1_idle, st2_sayac, st3_reg, st4_reg1, 

st5_sayac2); 

 

 signal state, next_state: state_type; 

 signal s_reg_en  :std_logic:='0'; 

 signal reg_n :std_logic_vector (9 downto 

0):="0000000000"; 

 signal output1  :std_logic_vector (9 downto 0); 

 constant bolme  :integer:=2171; --57600 baud 

 signal sayac  :integer range 0 to bolme:=0; 

 signal sayac2  :integer range 0 to bolme:=0; 

 signal sayac_stop  :integer range 0 to bolme:=0; 
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 signal counter  :integer range 0 to bolme*100:=0; 

 signal enable  :std_logic:='0'; 

 signal c  :std_logic_vector(7 downto 0):="11111110"; 

 signal m     :std_logic:='0'; 

 signal stop_en  :std_logic:='0'; 

  

  

begin 

 SYNC_PROC: process (clock, reset) 

 begin 

 if clock'event and clock ='1' then 

  if reset='1' then  

   state <= st1_idle; 

   else 

   state <= next_state; 

  end if; 

 end if; 

 end process; 

 

 process (clock, s_reg_en) 

 begin 

 if clock'event and clock ='1' and reset = '0' then 

  if s_reg_en ='1' then 

   reg_n <= reg_n (8 downto 0) & input; 

  end if; 

 end if; 

 end process; 

  

 start <= stop_en; 

 process(clock,stop_en,sayac_stop) 

 begin 

  if clock'event and clock='1' then 

   if(stop_en='1') then 

    sayac_stop <= sayac_stop + 1; 

   else 

    sayac_stop <= 0; 

   end if; 

  end if; 

 end process; 

   

 process (state, clock) 

 begin 

 if clock'event and clock='1' then 

  if (state = st1_idle) then 

   c(0) <= output1(1); 

   c(1) <= output1(2); 

   c(2) <= output1(3); 

   c(3) <= output1(4); 

   c(4) <= output1(5); 

   c(5) <= output1(6); 

   c(6) <= output1(7); 

   c(7) <= output1(8); 

  end if; 

 end if; 

 end process; 

  

 output <= c; 

 output1(0) <= reg_n(9); 

 output1(1) <= reg_n(8); 
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 output1(2) <= reg_n(7); 

 output1(3) <= reg_n(6); 

 output1(4) <= reg_n(5); 

 output1(5) <= reg_n(4); 

 output1(6) <= reg_n(3); 

 output1(7) <= reg_n(2); 

 output1(8) <= reg_n(1); 

 output1(9) <= reg_n(0); 

  

 process (clock, state) 

 begin 

 if (clock'event and clock='1') then 

  case (state) is 

   when st1_idle => 

    sayac  <= 0; 

    sayac2 <= 0; 

    s_reg_en <= '0'; 

   when st2_sayac => 

    sayac <= sayac+1; 

   when st3_reg => 

    s_reg_en <= '1'; 

    sayac2 <= sayac2+1; 

   when st4_reg1 => 

    s_reg_en <= '0'; 

    sayac <= 0; 

   when st5_sayac2 => 

    sayac <= sayac+1; 

  end case; 

 end if; 

 end process; 

  

 NEXT_STATE_DECODE: process (state, input, sayac, sayac2, 

clock) 

 begin 

 next_state <= state; 

 case (state) is 

  when st1_idle => 

    

   if(sayac_stop > (bolme-1)/2 ) then 

    stop_en <= '0'; 

   end if; 

      

   if input = '0' then 

    next_state <= st2_sayac; 

   else 

    next_state <= st1_idle; 

   end if; 

  when st2_sayac => 

   if(sayac_stop > (bolme-1)/2 ) then 

    stop_en <= '0'; 

   end if; 

   if sayac = ((bolme-1)/2) then 

    next_state <= st3_reg; 

   end if; 

  when st3_reg => 

   if(sayac_stop > (bolme-1)/2 ) then 

    stop_en <= '0'; 

   end if; 

   next_state <= st4_reg1; 
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  when st4_reg1 => 

   if(sayac_stop > (bolme-1)/2 ) then 

    stop_en <= '0'; 

   end if; 

    

   if (sayac2 = 10) then 

    next_state <= st1_idle; 

    m <= '1'; 

    stop_en <='1'; 

   else 

    next_state <= st5_sayac2; 

   end if; 

  when st5_sayac2 => 

   if (sayac = (bolme-1)) then 

    next_state <= st3_reg; 

   end if; 

 end case; 

 end process; 

 

 process (sayac2, clock) 

 begin 

 if clock'event and clock = '1' then 

  if (sayac2<8) then 

   enable <= '1'; 

  else 

   enable <= '0'; 

  end if; 

 end if; 

 end process; 

 

end Behavioral; 

 

 

 

9.1.3 VHDL Codes for Delayer 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 

 

 

entity Delay is 

    Port ( clock  : in  STD_LOGIC; 

           rec_out : in  STD_LOGIC:='0'; 

           tra_in  : out  STD_LOGIC); 

end Delay; 

 

    

 

architecture Behavioral of Delay is 

   type state_type is (st1_gor, st2_bekle, st3_ver); 

   signal state, next_state: state_type; 

   constant CD   : integer:=2171; --57600 

baud 

   signal countbekle  : integer range 0 to 

2*CD:=0; 

   signal counttut  : integer range 0 to 

2*CD:=0; 
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   signal tra_in_ctrl : std_logic:='0'; 

   signal rec_out_ctrl: std_logic:='0'; 

   signal  countbekle_en: std_logic:='0'; 

   signal  counttut_en : std_logic:='0'; 

 

begin 

 

  SYNC: process (clock) 

  begin 

  if (clock'event and clock = '1') then 

   state <= next_state; 

  end if; 

  end process; 

   

   

  process (clock) 

  begin 

  if clock'event and clock = '1' then 

   if countbekle_en = '1' then 

    countbekle <= countbekle+1; 

   else 

    countbekle <= 0; 

   end if; 

    

   if counttut_en = '1' then 

    counttut <= counttut+1; 

   else 

    counttut <= 0; 

   end if; 

  end if;  

  end process; 

   

     

  OUTPUT: process (state,clock) 

  begin 

  if clock'event and clock='1' then 

   case (state) is 

    when st1_gor => 

     counttut_en  <= '0'; 

     countbekle_en <= '0'; 

    when st2_bekle => 

     countbekle_en <= '1'; 

    when st3_ver => 

     countbekle_en <= '0'; 

     counttut_en  <= '1'; 

   end case; 

  end if; 

  end process; 

   

   

   

  STATE_DECODE: process (rec_out, countbekle, counttut) 

  begin 

  next_state <= state; 

  case (state) is 

   when st1_gor => 

    if rec_out = '1' then 

     next_state <= st2_bekle; 

    end if; 
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   when st2_bekle => 

     if countbekle = CD*2 then 

      next_state <= st3_ver; 

     end if; 

   when st3_ver => 

    if counttut = CD*2 then 

     next_state <= st1_gor; 

    end if; 

  end case; 

  end process; 

 

tra_in_ctrl <=  counttut_en; 

 

tra_in <= tra_in_ctrl; 

rec_out_ctrl <= rec_out; 

 

end Behavioral; 

 

 

9.2 C# Codes 

9.2.1 Write Read Serial Port Codes 

using System; 

using System.Collections.Generic; 

using System.ComponentModel; 

using System.Data; 

using System.Drawing; 

using System.Linq; 

using System.Text; 

using System.Windows.Forms; 

using System.IO; 

using System.IO.Ports; 

using System.Threading; 

 

namespace write_read_comport 

{ 

    public partial class Form1 : Form 

    { 

        SerialPort port; 

 

        bool send_all = false;      // if true sends all bytes, if 

false sends a byte with evey click on filter 

        bool taken = true;         // when it takes filtered byte 

from port, this'll be true, so we can send a new byte 

        bool cont = true;          // controling continuosly sending 

data 

         

        bool port_listen = false; 

        int counter;            // counts the index of sample byte 

of file. 

        int counter_listen;     // counts listening bytes. 

        int length_all; 

        byte[] wave; 

        byte[] filtered_wav; 

 

        public Form1() 
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        { 

 

            InitializeComponent(); 

            boudsCBox.SelectedIndex = 5; 

            port = new SerialPort(); 

 

            counter = 0; 

            counter_listen = 0; 

            length_all = 0; 

        } 

 

        private void Form1_Load(object sender, EventArgs e) 

        { 

            CheckForIllegalCrossThreadCalls = false; 

 

            // adding all com ports to combo box 

            try 

            { 

                portsCBox.Items.AddRange(SerialPort.GetPortNames()); 

            } 

            catch (Exception ex) { MessageBox.Show(ex.Message); } 

 

            // disable buttons 

            connectBtn.Enabled = false; 

            disconnectBtn.Enabled = false; 

            filterBtn.Enabled = false; 

            openFileBtn.Enabled = false; 

        } 

 

        private void portsCBox_SelectedIndexChanged(object sender, 

EventArgs e) 

        { 

            connectBtn.Enabled = true; 

             

        } 

 

        private void connectBtn_Click(object sender, EventArgs e) 

        { 

             

            port.PortName = (string)portsCBox.SelectedItem; 

            port.BaudRate = 

Int32.Parse(boudsCBox.SelectedItem.ToString()); 

            port.DataBits = 8; 

            port.Parity = (Parity)Enum.Parse(typeof(Parity), 

"None"); 

            port.StopBits = (StopBits)Enum.Parse(typeof(StopBits), 

"1"); 

             

            try { 

                port.Open(); 

                port_listen = true; 

                portsCBox.Enabled = false; 

                connectBtn.Enabled = false; 

                disconnectBtn.Enabled = true; 

                openFileBtn.Enabled = true; 

            } 

            catch (Exception ex) { MessageBox.Show(ex.Message); } 

             

        } 
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        private void button1_Click(object sender, EventArgs e) 

        { 

            BinaryReader reader = new 

BinaryReader(File.Open(filenameTxt.Text, FileMode.Open)); 

            int pos = 0; 

            int length = (int)reader.BaseStream.Length; 

            length_all = length; 

 

            byte sample = 0; 

            wave = new byte[length]; 

            filtered_wav = new byte[length]; 

            // first 44 byte (header) 

            while ((pos < length) && (pos < 44)) { 

                sample = reader.ReadByte(); 

                filtered_wav[pos] = sample; 

                wave[pos] = sample; 

                pos += sizeof(byte); 

            } 

 

            // whole file to memory (array) 

            while (pos < length) 

            { 

                wave[pos] = reader.ReadByte(); 

                pos += sizeof(byte); 

            } 

 

            reader.Close(); 

            counter = 44; 

            counter_listen = 44; 

            // 

             

            // progress bar 

            progressBar1.Minimum = 0; 

            progressBar1.Maximum = length; 

            progressBar1.Visible = true; 

            progressBar1.Step = 1; 

            progressBar1.Style = ProgressBarStyle.Blocks; 

            // 

             

            // start writer thread to write wave data to filter com. 

            backgroundWorker2.RunWorkerAsync(); 

            backgroundWorker3.RunWorkerAsync(); 

        } 

 

        private void disconnectBtn_Click(object sender, EventArgs e) 

        { 

            try 

            { 

                port_listen = false; 

                portsCBox.Enabled = true; 

                filterBtn.Enabled = false; 

                openFileBtn.Enabled = false; 

                port.Close(); 

                counter = 0; 

            } 

            catch (Exception ex) { MessageBox.Show(ex.Message); } 
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        } 

 

        private void checkBox1_CheckedChanged(object sender, 

EventArgs e) 

        { 

            if (checkBox1.Checked) 

            { 

                send_all = true; 

            } 

            else { send_all = false; } 

        } 

 

        private void takeHeaderBtn_Click(object sender, EventArgs e) 

        { 

            openFileDialog1.Filter = "Wave files (*.wav)|*.wav|All 

files (*.*)|*.*"; 

            openFileDialog1.FileName = ""; 

            if (openFileDialog1.ShowDialog() == DialogResult.OK) { 

                filterBtn.Enabled = true; 

                filenameTxt.Text = openFileDialog1.FileName; 

            } 

             

        } 

 

        private void backgroundWorker2_DoWork(object sender, 

DoWorkEventArgs e) 

        { 

            filterBtn.Enabled = false; 

            byte incoming = 0; 

 

            while ((counter < wave.Length) && (cont)) 

            { 

                if (!send_all) 

                { 

                    cont = false; 

                } 

                else { cont = true; } 

 

                // write byte to port 

                //if (taken) // if we did not take the data, we 

should wait the filter to writes. 

                //{ 

                    if (port.IsOpen) 

                    { 

                        port.Write(wave,counter,1); 

                        taken = false; 

                        counter +=sizeof(byte); 

                    } 

                 

                     

                    while (true) 

                    { 

                        if (port.BytesToRead > 0) 

                        { 

                            incoming = (byte)port.ReadByte(); 

                            port.DiscardInBuffer(); 

                            if (counter_listen < 

filtered_wav.Length) 

                            { 
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                                filtered_wav[counter_listen] = 

incoming; 

                            } 

                            counter_listen++; 

                            break; 

                        } 

                        if (!send_all) 

                        { 

                            Thread.Sleep(100); 

                        } 

                    } 

 

                 

            } 

 

            // close control 

            if (counter >= wave.Length) { 

                write_filetered_file(); 

            } 

 

            cont = true; 

            filterBtn.Enabled = true; 

        } 

 

        // progress bar refresh 

        private void backgroundWorker3_DoWork(object sender, 

DoWorkEventArgs e) 

        { 

            while (counter < length_all) 

            { 

                progressBar1.Value = counter; 

                progressBar1.Refresh(); 

                progressBar1.Update(); 

 

                int number = (int)(((float)(counter+1) / 

(float)length_all) * 100); 

                progressLbl.Text = number.ToString() + " %"; 

                Thread.Sleep(500); 

            } 

            progressBar1.Value = length_all; 

            progressLbl.Text = "100 %"; 

        } 

 

        private void progressBar1_Click(object sender, EventArgs e) 

        { 

 

        } 

 

        private void write_filetered_file() { 

            BinaryWriter writer = new 

BinaryWriter(File.Open("filtered.wav", FileMode.Create)); 

 

            int pos = 0; 

 

            while (pos < filtered_wav.Length) { 

                writer.Write(filtered_wav[pos]); 

                pos++; 

            } 
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            writer.Close(); 

        } 

    } 

} 

 

 

9.3 Filter Equation Tables 

Following tables include bacground knowledge about filter design. 

 

Table 9.1 Mathematical expressions of FIR filters according to architecture and order 

 

 

 

Table 9.2  Suitability of FIR for filter responses 

 


