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DISCOVERING DISEASE-CAUSING GENES BY NETWORK ANALYSIS

ABSTRACT

Identifying the common molecular mechanisms for metabolic disorders is crucial

for early diagnosis and targeted drug therapies. However, the bioinformatics studies

aiming to reveal shared disease genes remained limited because of the challenges

arose from the complexity of the metabolic pathways. In this respect, we suggested

an integrative bioinformatics model that combines multiple biological data sources

and computational methods to identify shared disease genes in metabolic syndrome

(MS), type 2 diabetes (T2D), and coronary artery disease (CAD).

We constructed weighted gene co-expression networks for each disease group by

integrating  peripheral  blood  gene  expression  data  of  29  subjects,  protein-protein

interactions from STRING and INet, and Gene Ontologies. We clustered 90 disease

networks, which are constructed using different parameters, by using MCL, SPICi,

and Linkcomm algorithms and detected the disease modules.  After comparatively

evaluating the clustering results, we overlapped the networks providing the highest

biological validity, and thus we obtained the common disease modules.

Our analyses revealed 22 shared genes in total for MS–CAD and T2D–CAD pairs.

Moreover, 19 out of these 22 genes are directly or indirectly associated with relevant

diseases in the previous medical studies. This integrative network based gene-disease

association study on MS, T2D, and CAD offers potential insights into the common

genetic mechanisms of the metabolic and cardiometabolic disorders.

Keywords: Gene  expression,  gene  ontology,  gene-disease  association,  protein-

protein interaction, metabolic syndrome, type 2 diabetes, coronary artery disease
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HASTALIĞA NEDEN OLAN GENLERİN AĞ ANALİZİ İLE BULUNMASI

ÖZ

Metabolik bozukluklardaki ortak moleküler mekanizmaların belirlenmesi,  erken

tanı ve hedefe yönelik ilaç tedavileri için çok önemlidir. Bununla birlikte, metabolik

yolakların karmaşıklığı sebebiyle ortak hastalık genlerini ortaya çıkarmayı amaçlayan

biyoinformatik çalışmaları sınırlı kalmıştır. Bu bağlamda, metabolik sendrom (MS),

tip  2  diyabet  (T2D) ve koroner  arter  hastalığı  (KAH) tarafından paylaşılan  ortak

hastalık genlerini tanımlamak için çoklu biyolojik veri  kaynaklarını ve hesaplama

yöntemlerini birleştiren bütünleştirici bir biyoinformatik modeli önerdik.

29  hastanın  periferik  kan  gen ifadelerini,  STRING ve  INet’ten  protein-protein

etkileşimlerini ve Gen Ontolojilerini birleştirerek her hastalık grubu için ağırlıklı gen

ortak-ifade  ağları  oluşturduk.  Farklı  parametreler  kullanarak  oluşturduğumuz  90

hastalık ağını MCL, SPICi ve Linkcomm algoritmalarını kullanarak kümeledik ve

hastalık  modüllerini  tespit  ettik.  Kümeleme  sonuçlarını  karşılaştırmalı  olarak

değerlendirdikten  sonra,  en  yüksek  biyolojik  geçerliliği  sağlayan  ağları  üst  üste

bindirdik ve böylece ortak hastalık modüllerini elde ettik.

Analizlerimiz MS–CAD ve T2D–CAD çiftleri için toplamda 22 paylaşılan gen

ortaya  çıkardı.  Dahası,  bu  22  genin  19'u  daha  önceki  tıbbi  çalışmalarda  alakalı

hastalıklarla  doğrudan  veya  dolaylı  olarak  ilişkilendirilmiştir.  MS,  T2D  ve  CAD

üzerinde yapmış olduğumuz bu bütünleştirici ağ tabanlı gen-hastalık ilişkilendirme

çalışması, metabolik ve kardiyometabolik bozuklukların ortak genetik mekanizmaları

hakkında potansiyel bilgi arz etmektedir.

Anahtar kelimeler: Gen ifadesi, gen ontolojisi, gen-hastalık ilişkilendirme, protein-

protein etkileşimi, metabolik sendrom, tip 2 diyabet, koroner arter hastalığı
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CHAPTER ONE

INTRODUCTION

1.1 Motivation

Metabolic disorders consist of a large set of genetic diseases and characterized by

enzyme deficiencies that disrupt the normal metabolic process by causing abnormal

chemical reactions in the body. Despite the fact that most of the metabolic disorders

are inherited, they can be acquired by environmental conditions, particularly by diet-

induced factors.

Most of the metabolic disorders derive from metabolic syndrome (MS) that is a set

of pathological conditions including insulin resistance, hypertension, hyperlipidemia,

and abdominal obesity. Patients with MS have two to three fold increased risk of

developing  cardiovascular  diseases and  five  fold  increased  risk  of  developing

diabetes  mellitus (Eckel,  Grundy,  &  Zimmet,  2005;  Wilson,  D’Agostino,  Parise,

Sullivan, & Meigs, 2005; Zimmet, Shaw, & Alberti, 2005). Besides, according to The

International  Diabetes  Federation’s  report  published  in  2015,  25%  of  the  global

population has MS (O’Neill & O’Driscoll, 2015).

Diabetes mellitus is a chronic condition diagnosed by the increased level of blood

glucose arising from the body’s inability in producing enough hormone insulin or

ineffective  usage  of  insulin.  Type  2  diabetes  mellitus  (T2D),  which  the  most

prevalent form of diabetes, accounts for approximately 95% of all cases. (Centers for

Disease  Control  and Prevention,  2011).  As  of  2017,  8.8% (425 m) of  the  world

population diagnosed with diabetes and the annual healthcare expenditures exceed

USD 727 billion (International Diabetes Federation, 2017).

Cardiovascular diseases (CVDs) consist of a group of heart and vessel disorder

that can be divided into five main groups: coronary artery disease (CAD), peripheral

arterial  disease  (PAD),  cerebrovascular  disease,  renal  artery  stenosis  (RAS),  and

aortic aneurysm (AOA). Cardiovascular diseases causing one in every three deaths
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are the primary cause of death globally.  Besides,  coronary artery disease induced

deaths account for 80% of all cardiovascular deaths  (Mendis, Puska, Norrving, &

World Health Organization, 2011).

Over the past three decades, many medical researches have been carried out to

reveal the relationship between metabolic disorders (Carr & Brunzell, 2004; De Rosa

et al.,  2018; Eckel et al.,  2005; Grundy, Hansen, Smith, Cleeman, & Kahn, 2004;

Grundy,  2004;  Hanson,  Imperatore,  Bennett,  & Knowler,  2002;  Hu et  al.,  2004;

Isomaa et al., 2001; Laaksonen et al., 2002; Wilson et al., 2005). Their results clearly

demonstrated the tie  between the CVDs, T2D, and MS. However,  the underlying

mechanisms and the interactions in molecular level are not well understood yet due

to the complexity of metabolic connections. The complexity in question arises from

the fact that metabolic disorders act  on many metabolic  pathways that  produce a

large  number  of  potential  risk  factors  and  therefore  it  is  extremely  difficult  to

distinguish between the  more important  and the  less  important.  Nevertheless,  the

bioinformatics studies, which have remained limited to now, are rapidly increasing

by means of the recent developments in computational biology  (Chan et al., 2014;

Ko, Cho, Lee, & Kim, 2016; Liu, Jing, & Tu, 2016; Shu et al., 2017; Wei Zhao et al.,

2017).

Our motivation in this study is to propose an integrative bioinformatics approach

that aims to combine multiple biological data sources and computational methods to

identify common disease related protein complexes in MS, T2D, and CAD. While

doing this, as well as discovering novel disease genes, we also aim to evaluate the

performance  of  different  protein-protein  interaction  networks,  GO  semantic

similarity  measures,  orthogonal  ontologies,  and  graph  clustering  algorithms  in

disease gene prediction.

1.2 Problem Definition

Understanding the underlying  molecular  mechanisms of  metabolic  disorders  is

crucial not only to reveal the course of the disease but also to design targeted drug
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therapies. In this respect, discovering the shared disease genes and protein complexes

for multiple metabolic disorders provides an insight into the status of the disease and

improves the accuracy of the early diagnoses.

Detection of common disease related modules for multiple metabolic disorders

essentially  requires  identification  of  disease  genes  in  separate  disease  networks,

which is already a challenging task for several reasons. These challenges arise from

computational  difficulty  as  well  as  the  biological  complexity.  The  problem  is

computationally complex owing to the fact that biological data sets are usually very

large and noisy,  that  it  makes  them difficult  to  analyze.  On the other  hand,  it  is

biologically complex, since the metabolic reactions act in so many pathways and

identification of the disease related ones is quite challenging.

To overcome such problems, many statistical and computational approaches have

been proposed. As well as these approaches get use of biological interaction data,

gene expression data, sequence data, or Gene Ontology information, they may also

integrate multiple data sources to improve the integrity and reliability of the results.

Due to the nature of the problem, any disease gene discovery study requires some

essential data mining steps such as data preprocessing, data mapping / integration,

feature selection, clustering / classification, and validation of the results.

On the other hand, selecting the best method for disease gene discovery is another

challenge since the performance of a method is highly dependent to the data set used.

Thus, it is usually needed to perform a comparative evaluation on as many methods

and configurations as possible.

In conclusion, pathway analysis and disease gene discovery in metabolic disorders

are biologically and computationally challenging problems that require us to develop

some integrative models combining multiple computational methods and biological

data  sources.  In this  research,  we will  answer whether such an integrative model

could successfully identify common pathways in metabolic disorders, and then detect

protein complexes that can be used in development of targeted drug therapies.
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1.3 Contribution

In this  study we worked on three  different  metabolic  disorders  and integrated

multiple biological data sources including protein-protein interaction networks, gene

expressions, and Gene Ontologies. After constructing functional interaction networks

using 30 different configurations for each disease subject, we detected the disease

related protein complexes using three different graph clustering approaches. Through

the utilization of the best configuration, we analyzed the overlapping disease modules

and revealed the common disease modules for the metabolic disorders in question.

As  well  as  presenting  a  comparative  performance  evaluation  of  different

biological databases, network construction methods, and graph clustering algorithms

in disease gene prediction, this study is novel in virtue of being the initial effort to

collectively analyze MS, T2D, and CAD in bioinformatics perspective.

A part of this study (Tenekeci & Isik, 2018) is presented as a poster in the 11th

International  Symposium on  Health  Informatics  and  Bioinformatics  (HIBIT)  and

accepted as an oral presentation in ISCB RSG Turkey Student Symposium 2018.

1.4 Organization of the Thesis

This thesis consists of five chapters organized as follows:

In  Chapter  2,  we  provide  a  detailed  background  information  and  a  literature

review in order  to  describe  some essential  concepts  such as  metabolic  disorders,

microarray data analysis, gene ontologies, protein-protein interaction networks, graph

clustering  algorithms,  and integrated methods for  disease gene  prediction;  and to

present the related work on common disease-gene discovery for metabolic disorders.

In Chapter 3, we introduce our methodology in seven main sections including a

general  system overview,  the gene expression data  and protein-protein interaction

data we have used, utilization of the GO semantic similarities, integration of various

4



biological data sources, clustering of the disease networks, and overlapping of the

clusters for common module identification.

In Chapter  4,  we present  the results  of  our analyses that  cover  a comparative

evaluation of the network construction and clustering methods, clusters discovered

for each disease network, common modules identified for each disease pair, and the

biological evaluation of the findings.

In Chapter 5, we conclude our study and offer the future work.
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CHAPTER TWO

LITERATURE REVIEW

In this chapter, we will first introduce the metabolic disorders and the relationship

between  them.  Following  the  presentation  of  medical  and  genomic  studies  on

metabolic  disorders,  we will  explain  the  process  of  microarray data  analysis  and

differential  gene  expression  analysis  in  depth.  Then,  we  will  describe  the  gene

ontology (GO), GO enrichment, and GO similarity analyses respectively. In addition

to listing and comparing the protein-protein interaction networks (PPINs) and some

of the well known PPI databases, we will introduce and evaluate different clustering

algorithms available for PPIN clustering. After referring the integrated methods and

databases for gene-disease association, we will present the novelty of our study.

2.1 Metabolic Disorders

Metabolic disorders form a large class of genetic diseases and characterized by

enzyme deficiencies that  alter  the normal metabolic process by causing abnormal

chemical reactions in the body. Most of the metabolic disorders are inherited and they

also  known  as  congenital  metabolic  disorders or  inborn  errors  of  metabolism

(Garrod, 1908). However, environmental conditions can induce non-hereditary, or in

other words acquired metabolic disorders. Some recent studies have established that

environmental factor-related changes in the germ line of parents can be transmitted to

future generations through epigenetic mechanisms. (Carone et al., 2010; Daxinger &

Whitelaw, 2012). In particular, diet-induced metabolic alterations in mammals are

passed  from father  to  offspring  (Q.  Chen  et  al.,  2016;  Grandjean  et  al.,  2015),

suggesting sperm-mediated epigenetic inheritance (Rando, 2012).

2.1.1 Metabolic Syndrome (MS)

Metabolic disorders usually evolve from MS which is also named as syndrome X

or dysmetabolic syndrome. MS refers to a set of pathological conditions characterized

by  hypertension,  hyperlipidemia,  insulin  resistance,  and  abdominal  obesity;  and
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frequently named as a precursor state for cardiovascular diseases (CVDs) and T2D

(Wilson et al., 2005).

The first descriptions of the clustering of various components of the MS has a

century  of  history  (Kylin,  1923).  However,  what  we  now  call  the  MS  was  the

definition of  syndrome X suggested by Reaven in 1988  (Reaven, 1988). In the last

two decades, global organizations have made a number of attempts to introduce a

unified  definition  for  MS.  As  a  result,  four  slightly  different  definitions  became

popular worldwide introduced by:

• WHO (Alberti & Zimmet, 1998; World Health Organization, 1999)

• EGIR (Balkau & Charles, 1999)

• NCEP/ATP III  (National Cholesterol Education Programme/Adult Treatment

Panel III, 2002)

• IDF  (Alberti,  Zimmet,  &  Shaw,  2005;  International  Diabetes  Federation,

2006)

IDF reports that nearly one fourth of the global population has MS  (O’Neill &

O’Driscoll, 2015) although this estimate varies widely due to the MS definition used

as well as the ethnicity, sex, and age of the population under investigation  (Kaur,

2014).

2.1.2 Type 2 Diabetes Mellitus (T2D)

Diabetes  mellitus  is  a  chronic condition in  which blood sugar  exceeds normal

levels as a result  of inability of the body to produce sufficient amount of insulin

hormone or to use insulin effectively; and patients with MS are five fold more likely

to develop diabetes (Eckel et al., 2005; Zimmet et al., 2005). Diabetes is divided into

three  main  classes  including  type  1  diabetes  (T1D),  type  2  diabetes  (T2D),  and

gestational diabetes (GDM). However, T2D accounts for ~95% of all cases (Centers

for Disease Control and Prevention, 2011). According to IDF diabetes atlas, global

prevalence of diabetes is 8.8% (425 m) and total healthcare expenditures for diabetes
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is above USD 727 billion as of 2017. By 2045, this rate is expected to increase to

9.9% (629 m) while  the cost  reaches  to  USD 776 billion  (International  Diabetes

Federation, 2017).

2.1.3 Coronary Artery Disease (CAD)

People with MS or T2D has two to three times increased risk of cardiovascular

diseases  (CVDs)  (Eckel  et  al.,  2005;  Zimmet  et  al.,  2005) those are  a  cluster  of

disorders  in  blood  vessels  and  heart  including:  Renal  artery  stenosis  (RAS),

cerebrovascular disease, peripheral arterial disease (PAD), Coronary artery disease

(CAD), and aortic aneurysm (AOA). CVDs are known to be the leading source of

death globally that cause one in every three deaths (Mendis et al., 2011). On the other

hand, CAD, also known as ischemic heart disease (IHD) or coronary heart disease

(CHD),  accounts  for  75%  of  cardiovascular  deaths  in  females  and  80%  of

cardiovascular deaths in males  (Mendis et al., 2011).

2.1.4 Medical Studies Associating MS, T2D, and CAD

Over the past three decades, many medical research papers have been published

that clearly demonstrate the relation between MS, T2D, and CAD. In 2001, Isomaa et

al. found that MS was present in ~80% of subjects with T2D and the presence of MS

increased  the  risk  of  CHD  three-fold  and  increased  the  risk  of  cardiovascular

mortality and morbidity by 1.8-fold. (Isomaa et al., 2001). In 2004, Grundy described

obesity-induced  MS  as  a  multidimensional  risk  factor  for  atherosclerotic

cardiovascular disease (ASCVD) and T2D (Grundy, 2004). Again in 2004, Grundy et

al. reported that in patients with MS, the risk of developing ASCVD increases at least

twice,  and the risk of  developing T2D increases  five  times,  regardless  of  gender

(Grundy et al., 2004). In 2005, Wilson et al. observed that MS accounts for up to one

third of CVD in men and approximately half of new T2D over 8 years of follow-up

(Wilson et al., 2005). Many other studies demonstrated the association and parallel

incidence of MS, T2D, and CAD (Table 2.1).
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Table 2.1 Medical and computational studies on MS, T2D, and CAD

Publication Method / Key Findings

(Isomaa et al., 2001)
MS is present in 80% of subjects with T2D. MS increases the 
risk of CHD by 3-fold, and CVD-caused mortality by 1.8-fold

(Laaksonen et al., 2002)
Persons with MS are at high risk for developing T2D during the 
4-year follow-up.

(Hanson et al., 2002)
Among 890 originally non-diabetic participants with MS, 144 
developed T2D in a follow-up of 4 years.

(S. M. Grundy, 2004) 
Obesity-induced MS is a multidimensional risk factor for 
ASCVD and T2D.

(Grundy et al., 2004)
MS increases the risk of developing ASCVD twice and T2D 5-
times, regardless of gender.

(Hu et al., 2004)
432 out of 1,119 deaths are caused by CVD. The overall hazard 
ratios of persons with MS are 1.44 times higher.

(Carr & Brunzell, 2004)
Persons with MS are at particularly high risk (20-30%) for 
premature CAD if they also have T2D.

(Wilson et al., 2005)
MS accounts for up to 1/3 of CVD in men and 1/2 of new T2D 
over 8 years of follow-up.

(Galassi, et al., 2006)
MS increases all-causes and CVD-caused mortality, as well as 
CVD, CHD, and stroke incidences.

(Skov, et al., 2012)
A pathway and network analysis. Displayed a statistically 
significant cluster of dysregulated genes in the arteries of 
diabetic patients.

(Chan et al., 2014)
An integrative pathway and network analysis. Identified multiple
biological pathways and key regulatory genes involved in CVD 
and T2D.

(Dong et al., 2014)
An integrative network analysis identified four common 
pathways in T2D and CAD.

(Ko et al., 2016)
A novel approach that utilizes underlying molecular pathways 
and common disease-related genes to identify comorbid diseases 
through molecular interaction networks.

(Liu et al., 2016)
A WGCNA to identify specific hub genes and modules in CAD. 
3711 genes and 21 modules associated with CAD.

(Shu et al., 2017)
An integrative analysis based on five multi-ethnic GWAS. 
Identified common disease sub-networks and metabolic 
pathways in T2D and CVD.

(Wei Zhao et al., 2017)
A genome-wide study on multiple ancestry groups including 
265,678 T2D and 260,365 CHD subjects. Reported new genetic 
loci that are shared by CHD and T2D.
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2.1.5 Computational Studies Associating MS, T2D, and CAD

Although there are many medical studies conducted to understand the relationship

between MS, T2D, and CAD; the genome studies that aimed to reveal underlying

mechanisms  remained  limited.  The  relationship  in  molecular  level  is  not  well

understood since the connection between metabolic disorders is very complicated due

to the fact that MS affects numerous metabolic pathways that produce a large number

of potential risk factors, thus it is extremely difficult to distinguish the important ones

from the insignificant ones.

Nevertheless,  some  promising  discoveries  have  been  made  recently  on  these

complex diseases  with the  help  of  recent  developments  in  computational  biology

(Table  2.1).  In  2014,  with  an  integrative  analysis  on  biological  pathways  and

networks, Chan  et al. discovered multiple biological pathways and key regulatory

genes involved in CVD and T2D development (Chan et al., 2014). In 2016, Ko et al.

proposed a novel approach that utilizes underlying molecular pathways and common

disease-related  genes  to  identify  comorbid  diseases  through molecular  interaction

networks (Ko et al., 2016). In the same year, Liu et al. performed a weighted gene

co-expression  network  analysis  (WGCNA)  to  identify  specific  hub  genes  and

modules associated with CAD; and they associated 3711 genes in 21 modules with

CAD  (Liu et al., 2016). In 2017, Shu  et al. conducted a broad integrative analysis

based on five multi-ethnic genome-wide association studies; and they identified the

common disease sub-networks and metabolic pathways in T2D and CVD (Shu et al.,

2017). In the same year, Zhao  et al. performed a genome-wide study on multiple

ancestry  groups  including  265,678  T2D  and  260,365  CHD  subjects;  and  they

reported new genetic loci that are shared by CHD and T2D (Wei Zhao et al., 2017).

2.2 Microarray Data and Analysis

Gene  expression  is  the  process  of  synthesizing  functional  gene  products  (i.e.

phenotype) using the gene information (i.e.  genotype). The gene products are either

proteins  or  functional  RNAs,  depending  on  whether  the  gene  is  coding  or  non-
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coding.  On  the  other  hand,  gene  expression  profiling  is  the  measurement  of  the

activity (expression level) of thousands of genes at the same time to monitor cellular

function at a global level. By examining these profiles, we can distinguish between

diseased and healthy  cells,  or  observe how cells  respond to a  specific  treatment.

Various transcriptomic technologies may be used to generate analytical data.

DNA microarrays,  also  called as  biochips or  DNA chips,  are  one  of  the most

popular  transcriptomic  technologies.  They  are  solid  surfaces  consisting  of

microscopic DNA spots. Each spot involves 10−12 moles (i.e.  picomoles) of DNA

sequence that is named as probes. A probe can be a short section of a gene or other

DNA element that are utilized in probe-target hybridization.

DNA microarrays provide a picture of all transcriptional activity in a biological

sample. Different from most conventional molecular biology tools, that usually allow

a single or very small number of genes to run, microarrays facilitate the discovery of

completely new and unexpected functional roles of gene. The power of these tools

has been applied to a variety of applications, such as exploring new disease sub-

types, identifying underlying disease or drug response mechanisms, and developing

new diagnostic tools. However, DNA microarray technology produces a large amount

of data that forces us to analyze using modern statistical and computational tools.

2.2.1 Differential Gene Expression Analysis

Because of  the fact  that  the  microarray  data  sets  are  commonly very large to

perform computational analyses on, dimensional reduction has become one of the

primary tasks in any bioinformatics study, regardless of the computational method

that  will  be  used.  By  performing  some  statistical  analyses,  one  can  observe  the

quantitative changes in gene expression levels among two or more sample groups

and eliminate the insignificant features (genes) to reduce the dimension of data; that

is called differential gene expression analysis.
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However,  detecting the differentially  expressed genes  (DEGs)  is  a  challenging

task as it aims to eliminate as much data as possible while minimizing the loss of

significant genes. There are different methods for differential  expression analysis.

such as DESeq (Anders & Huber, 2010) and edgeR (Robinson, McCarthy, & Smyth,

2010) based on negative binomial distributions; or  EBSeq (Leng et al., 2013) and

baySeq (Hardcastle & Kelly, 2010) which are Bayesian approaches using a negative

binomial model. However, it is very important to take the experimental design into

consideration when choosing an analysis method. While some of the tools can only

perform pair-wise  comparison,  others  such  as  edgeR,  limma (Smyth,  2005),  and

DESeq can perform multiple comparisons.

2.2.1.1 Fold Change

Using fold-changes (FC) is one of the simplest and most popular methods that is

used to discover DEGs. A FC can be described as the ratio between two samples

(e.g., for given samples  I and  J, the FC of  J with respect to  I is computed as  J/I).

However, it is more common to use logarithmic fold change ratios, also named as

logFC,  log2FC or  loget (Pacholewska,  2017),  in  microarray experiments  because

proportional changes are more biologically meaningful than additive chances.

The log2FC can be defined as  log2(Ei  / Ej) where Ei and Ej are gene expression

values for two samples I and J (e.g. different subjects or conditions). To obtain DEGs

using the log2FC, an arbitrary threshold (τ) value is selected and all genes that differ

by more than τ are considered as DEGs. Since both down-regulated (log2FC ≤ -τ)

and up-regulated (log2FC ≥ τ) genes are considered to be differentially expressed, the

absolute values can be used in DEG detection (|log2FC| ≥ τ). Additionally, τ = 1 is a

very common definition due to the fact that the FC with 2-fold usually accepted a

sufficient cutoff.

12



2.2.1.2 The t-test

Although the  FC cutoffs  are  very useful  in  producing biologically  meaningful

results, they have some limitations such as not taking variability into account or not

guaranteeing reproducibility (Y. Chen, Dougherty, & Bittner, 1997). Therefore, it has

become very common to benefit from the traditional statistical tests.

Two-sample  t-test  is  a  straightforward method to  use  (Peck & Devore,  2011).

However, two-sample t-test descriptions differentiate according to two conditions: 1)

whether it is logical to assume that gene expression levels show an equal variance

under the compared conditions, 2) whether the sample size (K1 and K2) is large. Since

typically both K1 and K2 are small and variances are unequal in gene expression data

(Thomas, Olson, Tapscott, & Zhao, 2001), it will be relevant to use the  t-test with

two normally-distributed, independent, small samples with unequal variances.

Let  Ejk be  the  expression  level  of  gene  j with  under  condition  k.  For  two

conditions, k=1 and k=2, If the sample means are:

Ē A(1)=

∑
k =1

K 1

E Ak

K1

, Ē A(2)=

∑
k=K1+1

K1+K 2

EAk

K2

(2.1)

and the variances are:

sA (1 )

2
=

∑
k=1

K1

( E Ak−Ē A(1))
2

K1−1
, sA (2)

2
=

∑
k=K 1+1

K 1+K2

( EAk−Ē A(2))
2

K 2−1
 (2.2)

Then the t-statistic will be:

T A=
ĒA (1)−Ē A(2 )

√s A(1)
2

/ K 1+s A(2 )

2
/ K2

   (2.3)
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By comparing the Tj with the critical value that is corresponding to the sample size

(degree of freedom) and the desired confidence level (p-value), one can determine if

a gene is differentially expressed or not through t-statistics. Although the significance

thresholds can be chosen arbitrarily, it is very common to set  p-value  ≤ 0.01 or  p-

value ≤ 0.05.

2.2.1.3 Combined Methods

Although the conventional statistical methods seemed to be an alternative to FC at

the first place, they were soon found to have other limitations such as giving high

false  discovery  rates  (FDRs)  in  small  samples,  or  being  weakly  related  with FC

(McCarthy & Smyth, 2009). Therefore, meeting both FC cutoff and p-value criteria

together has become a general opinion in DEG detection.

Patterson et al. applied statistical comparison cutoffs (p-value < 0.01 or p-value <

0.05) on different FC values (FC > 1.5, FC > 2 or FC > 4) to identify the significant

DEGs (Patterson et al., 2006). They presented that the sets of DEGs obtained using

the combinations of p-value and FC are more concordant with microarray platforms

in comparison to the ones obtained using p-value or FC alone. Similarly, Huggins et

al. considered DEGs significant if they satisfy a FC of at least 1.3 (FC > 1.3) and a

statistical significance criteria (p-value < 0.2) simultaneously (Huggins et al., 2008).

As a result,  they showed that the DEG lists  generated using this combination are

biologically more significant than the ones generated using  p-values alone. On the

other hand, Peart et al. and Raouf et al. required genes to satisfy a maximum p-value,

which is adjusted for multiple-testing (p-value < 0.05), and a minimum fold-chage

condition (FC > 1.5)  (Peart et al., 2005; Raouf et al., 2008).

2.3 Gene Ontology (GO)

The GO platform is a comprehensive bioinformatics knowledge-base that includes

controlled and structured (i.e. machine-readable and human-readable) vocabulary of

terms, providing a uniformed annotation for attributes of genes and functional gene
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products in a wide variety of species  (The Gene Ontology Consortium, 2008). The

GO project emerged as a result of collaborative efforts and contributions of several

bioinformatics  resource  centers  and  major  model-organism  databases;  and  assist

biomedical researchers in the annotation phase of large-scale molecular biology and

genetics experiments.

An ontology in GO is a hierarchy of terms in three key biological domains that are

common to all  organisms:  cellular component  (CC),  biological  process (BP),  and

molecular function (MF). Cellular components consist of the sections of a cell and its

extracellular elements. Biological processes represent all biological operations and

elemental activities that are related to the functionality of integrated living units such

as  cells,  tissues,  organs,  and  organisms.  On  the  other  hand,  molecular  functions

correspond to the molecular level activities of gene products (i.e. protein or RNA),

like catalysis or binding.

2.3.1 GO Enrichment Analysis

A main practice of the GO is to conduct term enrichment analysis within a subset

of genes. In particular, one can identify the GO terms that are significantly over-

represented  or  under-represented  under  specific  conditions,  by  performing  term

enrichment analysis on a differentially expressed gene list.

There are a several methods and tools to realize term enrichment using GO, like

DAVID  (Dennis  et  al.,  2003),  GO::TermFinder  (Boyle  et  al.,  2004),  Blast2GO

(Conesa et al., 2005), g:Profiler  (Reimand, Kull, Peterson, Hansen, & Vilo, 2007),

GSEA  (Subramanian,  Kuehn,  Gould,  Tamayo,  &  Mesirov,  2007),  ToppGene  (J.

Chen, Bardes, Aronow, & Jegga, 2009), GOrilla (Eden, Navon, Steinfeld, Lipson, &

Yakhini, 2009), and topGO (Alexa, Rahnenführer, & Lengauer, 2006). 

These tools and methods may be diversified according to the input type, type of

correction method applied, or type of the statistical tests applied. Some use ranked

gene lists as input, while others use unranked ones. There are also more complicated
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methods that avoid arbitrary cutoffs by enabling each gene to be associated with an

expression level. In addition, the most widely used statistical significance tests are

Hypergeometric test and  Fisher’s exact test (D. W. Huang, Sherman, & Lempicki,

2009; Rivals, Personnaz, Taing, & Potier, 2007); and the most common correction

methods are Bonferroni and FDR.

2.3.2 GO Similarity Analysis

It is possible to measure the level of functional similarity of genes and proteins by

the semantic similarity of their GO annotations. Thus, the GO similarities have been

commonly used in computational biology applications, especially in the studies that

perform  gene  clustering  (Bolshakova,  Azuaje,  &  Cunningham,  2005;  Wolting,

McGlade, & Tritchler, 2006), gene function prediction  (Tao, Sam, Li, Friedman, &

Lussier, 2007), and protein localization (Lei & Dai, 2006).

To measure the semantic similarity among multiple GO terms, various strategies

have been developed; and their correlation with protein-protein interactions (Xu, Du,

& Zhou,  2008), gene expressions (Sevilla  et  al.,  2005),  and sequence similarities

(Lord, Stevens, Brass, & Goble, 2003) have been confirmed.

Some  methods  (Dennis  et  al.,  2003;  Gunther  et  al.,  2005) only  consider  the

functional similarity of genes and use the kappa statistics of similar annotations or

the frequency of incidence of GO terms when calculating the similarities. However,

the main shortcoming of these approaches is that they ignore semantic relationships,

such as  is-a and  part-of, between the terms. Other methods developed for natural

language  taxonomies  (J.  J.  Jiang  &  Conrath,  1997;  Lin,  1998;  Resnik,  1999),

measure  the  semantic  similarity  by  considering  the  distance  of  two terms  to  the

closest common ancestor term. The comparative evaluations (Guo, Liu, Shriver, Hu,

& Liebman, 2006; Sevilla et al., 2005; H. Wang, Azuaje, Bodenreider, & Dopazo,

2004) have shown that each approach has its own advantages and drawbacks, but that

Resnik's method provides a higher correlation with gene expression and sequence

similarity.
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2.4 Protein–Protein Interaction Networks (PPINs)

PPINs  are  complex  topological  architectures  that  fulfill  a  specific  biological

function through electrostatic forces and biochemical events. On the other hand, a

protein interactome represents the whole set of protein-protein interactions partaking

within a biological system.

A PPIN is commonly modeled as an undirected graph, G(V, Ε), where V denotes

the nodes or vertices (i.e. proteins), and Ε denotes the edges (i.e. pairwise protein-

protein  interactions).  An  interaction  between  two  proteins  may  represent  the

information of physical association, functional association, co-localization, or direct

interaction. Edges are usually undirected and weighted, connect pairs of interacting

proteins  and  the  edge  weights  represent  how  strongly  interacting  two  proteins.

Sometimes,  edge  weights  denote  the  reliability  information  associated  to  the

corresponding interactions.  PPINs have similar  topological  features  with the real-

world networks, like communication networks and social networks. Typically,  PPINs

are scale-free networks with high-degree of clustering and small-world property (X.-

F. Zhang, Dai, Ou-Yang, & Yan, 2014).

PPIs serve in almost every cellular process, so understanding the main mechanism

of these interactions is crucial to infer novel functions of gene products, to support

predictions in pathogenesis studies, or to detect the alterations in cell physiology of

diseased samples. It is also important for drug development  (Hopkins, 2008), since

drugs that bind to proteins change some functions in a corrupted PPIN.

Discovering PPINs has been a major challenge in computational biology over the

last  decade.  Consequently,  the  bioinformaticians  developed several  strategies  and

methods to identify PPINs. These strategies can be separated by each other according

to the experimental and computational methods they use  (Jordán, Nguyen, & Liu,

2012).
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There are two types of experimental approaches, the traditional (low-throughput)

and the high-throughput  ones.  The traditional  approaches  provide  high  resolution

(atomic level)  outcomes and are thus very detailed and informative.  They supply

essential information to identify disease related protein complexes and design target

oriented molecular therapies. However, they are low-throughput because of the high

demands  in  sample  quality  and  amounts  of  material  needed  for  structural

determination. On the other hand, high-throughput methods report interactions at a

larger scale and assess interactions globally at cellular level. They offer information

at  a  relatively  low  resolution  and  just  report  the  existence  of  particular  inter-

molecular interactions. Still, they provide a useful basis for further experimentation

and  analysis  of  molecular  networks  within  cells  or  organelles.  The  main

disadvantages  of  high-throughput  methods  are  being  labour-intensive  and  having

high false negative and false positive rates (Podobnik et al., 2016).

On the other hand, the computational methods can be divided into three groups

according to the source of information they use: genome-based, sequence-based, or

structure-based (Schuster-Böckler & Bateman, 2008). In addition, it is also possible

to  integrate  multiple  data  sources  by  Bayesian  network  approach  (Jansen  et  al.,

2003), probabilistic decision tree approach (L. V. Zhang, Wong, King, & Roth, 2004),

kernels methods (Ben-Hur & Noble, 2005), or the hybrid approach (Bui, Katrenko, &

Sloot, 2011).

The rapid advance in computational methods in the recent years have provided

bioinformaticians an opportunity to develop massive PPI databases (Table 2.2). Some

of  these  are  HPRD  (Keshava  Prasad  et  al.,  2009),  MINT  (Licata  et  al.,  2012),

BioGRID (Chatr-aryamontri et al., 2017), HIPPIE (Alanis-Lobato, Andrade-Navarro,

&  Schaefer,  2017),  FunCoup  (Ogris,  Guala,  Kaduk,  &  Sonnhammer,  2018),

HumanNet (Hwang et al., 2019), and STRING (Szklarczyk et al., 2019).
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Table 2.2 Number of unique nodes and edges of popular PPI databases for Homo Sapiens (Human).

Unique  nodes  show  non-redundant  proteins  or  genes.  Unique  edges  represent  non-redundant

undirected interactions between two interactors (proteins or genes)

Database Unique Nodes Unique Edges Version

HPRD 30,047 41,327 Release 9 (April 2010)

MINT 7,411 51,886 2012 Update (Jan 2012)

BioGRID 23,505 373,866 3.5.171 (April 2019)

HIPPIE 20,781 411,430 V2.2 (Feb 2019)

FunCoup 18,355 6,403,719 V4 (Jan 2018)

HumanNet 16,243 476,399 V1 (2011)

STRING 19,257 5,879,727 V11.0 (Jan 2019)

On the other hand, researchers may have trouble while choosing the best PPIN for

a biological application because of the plethora of databases. Fortunately, there are

many comparative studies assessing PPIN databases based on both topological and

biological features. Mathivanan et al. analyzed eight public PPIN databases including

Reactome,  PDZBase,  MIPS,  MINT,  IntAct,  HPRD,  DIP,  and BIND by literature

citations, protein coverage, network size, overlapping, and other topological features

(Mathivanan et al., 2006). Similarly, Lehne et al. compared six major PPIN databases

including  MINT,  IntAct,  HPRD,  DIP,  BioGRID,  and  BIND  by  considering

topological  features  and  overlapping  (Lehne  &  Schlitt,  2009).  Turinsky  et  al.

systematically compared the interaction and protein agreement of ten PPIN databases

including OPHID, MPPI, MPact, MINT, IntAct, HPRD, DIP, CORUM, BioGRID,

and BIND  (Turinsky,  Razick,  Turner,  Donaldson,  & Wodak,  2011).  Huang  et  al.

evaluated 21 different human genome-wide PPINs for their coverage capability on

446 disease gene sets by comparing their construction method, molecular interaction

types, network similarities and size (J. K. Huang et al., 2018).

2.4.1 STRING

STRING (https://string-db.org) is a popular protein association networks (PANs)

database that is periodically improved and updated since the initial version, which is

v3.0 including 261,033 proteins  in  89 organisms,  has  been published in  2003.  It
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collects and arranges PPI data by integrating known and predicted protein-protein

associations  for  5090 different  organisms (STRING v11)  including  homo-sapiens

(Szklarczyk et al., 2019).

The protein associations in STRING consist of functional (indirect) and physical

(direct) interactions that are known to be specific and biologically significant. The

strength  of  each  interaction  is  determined  by  collecting  and  re-evaluating  the

experimental  data  available  in  the  PPINs,  and  retrieving  the  known  protein

complexes  and pathways from curated  databases.  In  addition,  STRING combines

four  different  sources  to  predict  the  strength  of  interactions  including:  (1)  co-

expression  analysis,  (2)  transfer  of  PPI  information  between  different  organisms

through gene orthology, (3) identification of shared selective signals across genomes,

and (4) text-mining of the scientific literature (Szklarczyk et al., 2017).

 An edge weight (score) is assigned for every interaction listed in STRING. These

scores are normalized to the range of [0,1] and denote the confidence level of the

interactions. A higher confidence denotes that the given interaction is more specific,

biologically more significant, and easier to reproduce. For each PPI within STRING,

there are seven different channels of supporting evidence, that are separated by type

and  source  of  the  evidence. Each  of  these  channels  are  collected,  scored,  and

compared individually. A final confidence score, which is named as combined score,

is computed for each PPI based on the seven channels. The combined scores are

preferably used to  sort  and filter  the interactions while  building PPINs.  STRING

defined the typical confidence thresholds for the combined scores as follows: 0.90 =

highest confidence, 0.70 = high confidence, 0.40 = medium confidence, and 0.15 =

low confidence.

2.4.2 INet

Because  it  has  large  number  of  entries  (proteins  and  interactions)  and  high

coverage and integration, STRING became a prominent database and had been used

in many  successful bioinformatics applications focused on gene-disease association
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(Lan,  Wang,  Li,  Peng,  &  Wu,  2015;  Moreau  &  Tranchevent,  2012;  X.  Wang,

Gulbahce, & Yu, 2011). On the other hand, in 2017, Yang  et al. proposed INet  (F.

Yang et al., 2017), as an integrated network model and suggested it as an equally or

better performing alternative to STRING for disease gene prediction.

By definition, INet is a weighted human gene association network (WGAN) that

integrates four well-known WGANs (FunCoup, HumanNet, HIPPIE, and STRING)

by utilization of  information entropy. As well as INet covers all nodes of the four

original networks, it calculates the combined edge weights for all overlapping edges

by use of an information entropy algorithm. Since the overlapping edges of the four

existing networks are  very limited (common nodes  > 72% and common edges  <

12%) (Table 2.3), the INet is expected to be a much larger network including richer

biological  information and high functional  relevance  between strongly interacting

gene (or protein) pairs.

Yang et al. made several assessments on INet, STRING, FunCoup, HIPPIE, and

HumanNet; and they evaluated the performance in terms of the percentage of actual

disease genes in predicted disease genes and the ratio of true positives (TPR) to false

positives (FPR). As a result, they suggested that INet and STRING show very similar

performances  and  both  outperform FunCoup,  HIPPIE,  and HumanNet  in  disease

gene prediction.

Table 2.3 The common nodes and edges of four networks (F. Yang et al., 2017)

HIPPIE HumanNET FunCoup STRING

Proportion of common nodes 
occupied in other networks

73.43% 74.66% 72.94% 74.80%

Proportion of common edges 
occupied in other networks

11.24% 4.05% 0.65% 0.83%

2.5 Clustering Algorithms

PPIN clustering, also known as module detection, is the process of analyzing the

functional and topological features of a PPIN to find out the groups of interacting
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proteins that serve together in particular biological functions or that participate in the

same biological processes. Many recent studies have indicated that PPIN clustering is

an effective approach to discover functions of novel proteins or identify functional

modules, thus it has become a hot research topic in systems biology (King, Przulj, &

Jurisica,  2004;  Shih  & Parthasarathy,  2012;  J.  Wang,  Li,  Chen,  & Pan,  2011;  S.

Zhang, Ning, & Zhang, 2006).

Although identification of such modules is a computationally complex problem,

many  approaches  utilizing  different  computational  strategies,  such  as  community

detection and graph clustering have emerged in the last decade. Besides, traditional

clustering algorithms, such as RNSC (King et al., 2004), MCODE (Bader & Hogue,

2003),  and  MCL (Dongen,  2000) have  been  successfully  adapted  for  PPIN

clustering. Many of the clustering methods have been extensively compared in the

surveys  (Bhowmick & Seah, 2016; Pizzuti & Rombo, 2014; J. Wang, Li, Deng, &

Pan,  2010;  X.  Wang  et  al.,  2011;  X.-F.  Zhang  et  al.,  2014) and  they  typically

classified depending on four main characteristics: (i) whether the graph is weighted,

(ii)  whether  the  clusters  are  overlapping,  (iii)  whether  the  method  is  providing

complete coverage, (iv) computational method used.

A clustering algorithm may or may not support the weighted graphs. On the other

hand, the clusters generated by a clustering algorithm may be overlapping or disjoint

(non-overlapping). In networks with overlapping clusters, a protein can be a member

of  multiple  clusters.  A clustering  method  providing  complete  coverage  assigns  a
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cluster for all nodes (i.e. there is not any cluster-less proteins in the PPIN). On the

other hand, by computational method used, a clustering algorithm can be classified in

seven categories (Bhowmick & Seah, 2016):

• Genomic Data Driven Algorithms

• Multiple Clustering based Algorithms

• Hierarchical (Graph Cut)  Algorithms

• Random Walk based (Message Passing) Algorithms

• Complete Enumeration Algorithms

• Flow-based Algorithms

• Heuristic-based Algorithms

Genomic Data Driven methods integrate PPI data and genomic data to eliminate

the noise problems in PPINs.  Multiple Clustering based methods perform multiple

clustering instead of a single clustering and combine the generated clusters to achieve

the final clustering. Hierarchical algorithms utilize graph-theoretic (i.e. topological)

properties of the PPINs to generate clusters. Random Walk based approaches utilize

the stationary distribution of the Markov chain to solve the graph clustering problem.

Complete Enumeration algorithms apply enumeration on all possible sub-graphs of

which density exceed a particular threshold. On the other hand, Flow-based methods

distinguish clusters with weak inter-cluster flow and high intra-cluster flow using a

series of flow expansions and contraction. Lastly, in  Heuristic-based methods, the

clustering is achieved by a greedy heuristic approach that is based on measurements

of similarity and dissimilarity between nodes.

Table 2.4 Main features of three clustering algorithms for extracting clusters from weighted PPINs

Algorithm Computational Method Weighted Overlapping Full Coverage

MCL Flow-based Yes No Yes

SPICi Heuristic-based Yes No No

Linkcomm Graph-cut & Hierarchical Yes Yes No
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 Selecting the right  algorithm is  another  challenge in PPIN clustering.  Several

recent  studies  evaluated  more  than  50  methods  proposed  for  PPIN  clustering

(Bhowmick & Seah, 2016; Ji, Zhang, Liu, Quan, & Liu, 2014; Pizzuti & Rombo,

2014; J. Wang et al., 2010; X.-F. Zhang et al., 2014). However, less than half of these

approaches  support  weighted  graphs  and  the  results  vary  widely,  depending  on

overlap and coverage characteristics. Therefore, it would be wise to apply multiple

clustering  methods  with  different  characteristics  as  listed  in  Table  2.4  instead  of

considering the results of a single clustering algorithm.

2.5.1 MCL

MCL (Markov Clustering, https://micans.org/mcl) is a well-kown stochastic flow-

based  graph  clustering  algorithm  (Enright,  Van  Dongen,  &  Ouzounis,  2002).  To

partition a given PPIN G = (V, Ε) into sub-graphs, MCL first gives a similarity score

(e.g. BLAST Ε-value or GO similarity score) to each edge (υ, ν) between nodes υ and

ν using a function f : Ε → ℝ, then defines a weight transition matrix (W) given by:

W [υ ,ν ] = I ((υ , ν )) f (υ ,ν )      (2.4)

where the indicator function  I((υ,  ν)) = 1 if  (υ,  ν)  Ε∈  and I((υ,  ν)) = 0 otherwise.

Then, MCL performs a normalization based on the  weight transition matrix W and

constructs the column-wise transition probability matrix (M):

M [υ ,ν ] =
W [ υ , ν ]

∑
x

W [υ , x ]
(2.5)

To separate the graph into different segments, MCL simulates random walks by

iteratively alternating two operations that are called inflation and expansion, until the

convergence. In expansion, the transition matrix M is raised to the power of p:

M t[ υ , ν ] = (M t−1[ υ ,ν ])
p (2.6)
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This  operation  actually  represents  the  transformation  of  Mt-1 into  a  transition

probability matrix of all possible random walks over  p steps. In the inflation, the

transition matrix M is raised to the power of h > 1 (Hadamard power) followed by re-

normalization. This corresponds to an entry-wise exponentiation and normalization:

Γ r M t[ υ , ν ] =
M t−1[υ ,ν ]

h

∑
x

M t−1[ υ , x ]
h   (2.7)

Since the exponent h > 1, the entries with low transition probabilities are suppressed,

while the entries with high transition probabilities are inflated (i.e.,  favored), thus

favoring densely connected regions.

However, the MCL algorithm may reveal imbalanced clusters of which sizes are

significantly different. A side effect of having imbalanced clusters is the formation of

Singleton clusters. In order to avoid the fragmentation and scalability problems, the

Multi-Level  Regularized  MCL algorithm,  MLR-MCL  (Satuluri  & Parthasarathy,

2009) is proposed.

On the other  hand, the original  implementation of MCL algorithm ignores the

overlapping clusters which may be useful in network analysis. To this end, SR-MCL

(Shih  &  Parthasarathy,  2012),  which  is  another  MCL-based  clustering  algorithm

creating  overlapping clusters,  is  proposed.  Essentially,  SR-MCL is  an  augmented

version of MCL that iteratively executes the conventional MCL clustering process to

generate different clusterings on the same network. It keeps generating clusters until

the resulting clusters are always the same, then it applies a post-processing to remove

redundant clusters and obtains the final set of overlapping clusters.

2.5.2 SPICi

Another  important  feature  that  a  clustering  tool  necessarily  should  have  is

scalability that denotes  the  ability  of  handling  computational  complexity  of

clustering large PPINs. Jiang  et al. proposed a heuristic local clustering algorithm,
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SPICi  (‘spicy’,  http://compbio.cs.princeton.edu/spici,  Speed  and  Performance  In

Clustering) to handle scalability problem  (P. Jiang & Singh, 2010).

Given a undirected weighted graph  G = (V,  Ε), SPICi aims to generate a set of

disjoint dense sub-graphs. In G, the edge weight wυ,ν for every edge (υ, ν)  Ε∈  is in

the range of (0, 1]. On the other hand, wυ,ν = 0 if the nodes υ and ν are unconnected.

For each node  υ, SPICi defines the  weighted degree,  dw(υ), as the total confidence

value of all of its incident edges:

d w(υ )= ∑
v :(υ , ν )∈Ε

wυ ,ν        (2.8)

Then, for each set of nodes U V⊂ , SPICi defines a density value that varies in the

range of [0,  1] and indicates how close the induced subgraph is  to a clique.  The

density is calculated by dividing the sum of the edge weights among all nodes of the

subgraph by the total number of possible edges:

 density (U )=

∑
υ, ν ∈U

wυ, ν

|U|(|U|−1)/ 2
  (2.9)

Finally, for each node υ and node set U V⊂ , SPICi defines the support of υ by U as

the sum of the confidence values of υ’s edges that are incident to nodes in U:

   support (υ , U )=∑
ν ∈U

wυ , ν (2.10)

SPICi forms one cluster at a time by executing two steps: 1) selecting seeds by a

heuristic approach, 2) building or expanding clusters using the obtained seeds. Each

cluster is expanded from an original seed pair of nodes. To select the seed nodes,

SPICi first finds the node with the largest weighted degree. Then, it identifies the best

pair of nodes as seed by following a binned selection process.
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After obtaining two seed nodes with an edge between them, SPICi forms a cluster

by iteratively adding the unclustered (adjacent) node with the highest support for the

cluster. Nodes are added as long as the support is higher than a user-defined support

threshold,  Ts and  the  overall  cluster  density remains  higher  than  a  user-defined

density threshold, Td. Once the support among all the unclustered nodes drops below

Ts or  density of the formed cluster drops below  Td, SPICi returns the cluster as an

output and removes the nodes of the returned cluster from the network. The same

procedure is repeated until all nodes in the network are clustered.

Jiang  et  al. evaluated  the  performance  of  SPICi  and  other  nine  clustering

algorithms in terms of memory usage and running time on five different biological

networks (Table 2.5). The results showed that SPICi, which has a time complexity of

Ο(V log  V+Ε) and  space  complexity  of  Ο(Ε),  is  significantly  fast  and  memory-

efficient; and it can be considered as a highly scalable tool for large PPI networks.

2.5.3 Linkcomm

While MCL provides complete coverage and assigns a cluster to each protein in a

network,  SPICi  may  output  some  unclustered  nodes.  On  the  other  hand,  both

methods performs a node-oriented clustering and place each protein in a maximum of

one community. However, such an approach in which each node can only be included

in a single community is unsuitably restrictive for densely connected graphs  where

sub-networks often overlap. To overcome such a problem Ahn et al. proposed a link-

similarity based community detection algorithm (Ahn, Bagrow, & Lehmann, 2010)

which has been later released as an R library,  Linkcomm  (Kalinka & Tomancak,

2011).
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Table 2.5 Execution time (sec) and peak memory consumption (MBs) of clustering algorithms (Jiang

& Singh, 2010). Memory consumption of MCUPGMA is fixed for these networks since it  is pre-

allocated by a default limit. The algorithms that cannot cluster the network within 12 hours are shown

in the table with N/A

Running Time 
(sec)

Bayesian
Human

STRING
Human

STRING
Yeast

BioGRID
Human

BioGRID
Yeast

SPICi 1111 7 2 1 1

MCUPGMA N/A 33 9 4 5

MCL N/A 4926 645 114 336

SPC N/A N/A 219 215 183

RNSC N/A N/A 1325 17 172

MCODE N/A N/A 7848 49 101

NetworkBLAST N/A N/A 7848 427 1904

DPClus N/A N/A N/A 2113 1602

CFinder N/A N/A N/A 25 N/A

DME N/A N/A N/A N/A N/A

Memory Usage 
(MBs)

Bayesian
Human

STRING
Human

STRING
Yeast

BioGRID
Human

BioGRID
Yeast

SPICi 1143.0 90.5 15.1 1.5 1.2

MCUPGMA N/A 259.1 259.1 259.1 259.1

MCL N/A 357.0 111.7 24.9 73.3

SPC N/A N/A 311.0 430.3 220.5

RNSC N/A 349.4 82.3 9.8 25.9

MCODE N/A N/A 606.9 306.1 375.6

NetworkBLAST N/A N/A 72.8 60.5 61.9

DPClus N/A N/A N/A 202.1 140.2

CFinder N/A N/A N/A 23.0 N/A

DME N/A N/A N/A N/A N/A

For a given unweighted, undirected graph, the set of node i and its neighbors are

denoted as n+(i). To obtain link communities in such networks, first the similarity S,

between link pairs (eik, ejk) that share a node is calculated by: 

28



 S (e ik , e jk )=
|n+ (i)∩n+( j)|
|n+ (i)∪n+( j)|

(2.11)

Then, by agglomerating ties in S simultaneously, a link dendrogram is built by use of

a  single-linkage  hierarchical  clustering  approach.  Cutting  this  dendrogram  with

certain threshold values yields link communities.

The threshold value is defined as maximum partition density. For given graph G

with N nodes and L links, P = {P1, P2, …, Ps} represents partition of the links into s

subsets. The number of connected nodes in subset  Ps is ns=|U eij∈P s
{i , j }|  and the

number of links is  ms = |Ps|. The  link density,  Ds, of community  s is obtained by

normalizing ms by the maximum and minimum numbers of edges possible among ns

linked nodes:

  D s=
ms−(ns−1)

ns(ns−1)/2−(ns−1)
(2.12)

and the average of the link density weighted by the fraction of present links, gives the

partition density, D:

D=
1
L
∑

s

m s D s=
2
L
∑

s

m s

ms−(ns−1)
(ns−2)−(ns−1)

(2.13)

Zhang  et al. compared ten different clustering algorithms in terms of accuracy

(ACC) (X. Li, Wu, Kwoh, & Ng, 2010), maximum matching ratio (MMR) (Nepusz,

Yu,  & Paccanaro,  2012),  fraction  of  matched complexes  (FRAC),  and precision-

recall score (PR) (Song & Singh, 2009). The performance of each algorithm has been

evaluated  on six  different  biological  networks  by  considering  how well  the  gold

standards are recovered by the predicted complexes. The results in Table 2.6 show

that  Linkcomm  and  SR-MCL  generate  more  clusters  with  high  accuracy  in

comparison to other approaches (X.-F. Zhang et al., 2014).
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Table 2.6 Average benchmark results for six unweighted PPI networks (Collins, Gavin, Krogan-Core,

Krogan-Extended, DIP, and BioGRID) with respect to the CYC2008 gold standard (X.-F. Zhang et al.,

2014). The highest two values in each measurement are highlighted

Algorithm Coverage # of Clusters ACC FRAC MMR PR

GMFTP 1539 299 0.731 0.438 0.714 0.453

AP 3250 343 0.526 0.399 0.22 0.194

CFinder 1123 107 0.416 0.253 0.576 0.315

ClusterONE 1676 349 0.645 0.382 0.68 0.382

Linkcomm 2152 1452 0.739 0.487 0.69 0.337

MCL 2507 382 0.579 0.33 0.661 0.29

MCODE 773 113 0.461 0.275 0.57 0.39

MINE 1289 223 0.645 0.367 0.671 0.42

SPICi 1610 289 0.591 0.331 0.666 0.382

SR-MCL 3282 1645 0.742 0.47 0.656 0.241

2.6 Integrated Methods for Gene-Disease Association

Since  relying  upon  a  single  type  of  biological  information  does  not  provide

reliable results, integrating multiple data sources such as protein-protein interaction /

association  network,  gene  expression,  Gene  Ontology,  functional  annotation,  and

DNA sequence have become essential in the post-genomic era.

Hubner  et al. discovered 73 new genes and regulatory pathways underlying MS

and CVD phenotypes by integrating linkage analysis with genome-wide expression

profiling  (Hubner et al., 2005). Presson  et al. presented the IWGCNA method that

integrates  weighted  gene  co-expression  network  analysis  (WGCNA) with  genetic

marker data (SNP) to detect disease related modules in Chronic Fatigue Syndrome

(Presson et al., 2008). Radivojac et al. proposed an approach to predict gene–disease

associations (GDAs) based on a PPIN as well as functional annotation and protein

sequence  (Radivojac  et  al.,  2008).  Similarly,  Wu  et  al. integrated  the  gene

expressions data with PPIN to prioritize genes associated with cancer (C. Wu, Zhu, &

Zhang,  2012).  Magger  et  al. integrated  PPIN  data  with  tissue  specific  gene
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expression  data  in  order  to  build  tissue-specific  PPINs  for  60  tissues;  and  they

performed  disease  gene  prioritization  on  them  (Magger,  Waldman,  Ruppin,  &

Sharan, 2012). Liu et al. combined WGCNA with functional and pathway enrichment

analyses to discover hub genes and particular modules associated with CAD (Liu et

al., 2016).

2.7 Integrated Databases for Gene-Disease Association

In the recent years, many integrative databases are founded to collect the results of

the GDA studies. These databases can integrate data from animal models, GWAS

catalogs,  or  expert  curated  repositories  as  well  as  they  can  obtain  GDAs  from

scientific literature by text mining. They generally diverge by the data sources they

scan and the scoring method they use to assign confidence levels of the GDAs.

In Table 2.7, we present some statistical features and the main differences of three

largest GDA databases: CTD  (Davis et al.,  2019), DISEASES  (Pletscher-Frankild,

Pallejà, Tsafou, Binder, & Jensen, 2015), DisGeNET (Piñero et al., 2017).

Table 2.7 The number of curated genes (G), the number of curated diseases (D), the number of curated

gene-disease  associations  (GDA),  and  types  of  integrated  data  sources  for  the  three  largest  GDA

databases: CTD, DISEASES, and DisGeNET. Types of data sources are: Curated Knowledge (C),

Animal Model (M), Experimental (E), Inferred (I), and Literature (L)

Database G D GDA Types of Data Sources

CTD 8,572 5,790 38,928 C + L

DISEASES 2,001 735 15,231 C + E + L

DisGeNET 9,413 10,370 81,746 C + M + I + L

2.7.1 DisGeNET

DisGeNET database integrates information of  human gene-disease associations

(GDAs) and variant-disease associations (VDAs) from various repositories including

Mendelian, complex and environmental diseases. DisGeNET (v6.0) contains 628,685
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GDAs,  between 17,549 genes  and 24,166 diseases.  The GDAs in DisGeNET are

organized based on the types of source databases:

• Curated (C): GDAs from UniProt  (UniProt Consortium, 2018), PsyGeNET

(Gutiérrez-Sacristán  et  al.,  2015),  Orphanet  (Weinreich,  Mangon,  Sikkens,

Teeuw, & Cornel, 2008), the CGI (Tamborero et al., 2018), CTD (Davis et al.,

2019), ClinGen  (Rehm et al.,  2015), and the Genomics England PanelApp

(Genomics England PanelApp, 2019).

• Animal Models (M): GDAs from RGD  (Laulederkind et al., 2018), MGD

(Smith et al., 2018), and CTD (mouse and rat).

• Inferred (I): GDAs from the HPO (Köhler et al., 2019), and VDAs reported

by Clinvar (Landrum & Kattman, 2018), the GWAS db (M. J. Li et al., 2016),

and GWAS catalog (MacArthur et al., 2017).

• Literature (L): GDAs from BeFree (Bravo, Cases, Queralt-Rosinach, Sanz,

& Furlong, 2014; Bravo, Piñero, Queralt-Rosinach, Rautschka, & Furlong,

2015) and LHGDN (Bundschus, Dejori, Stetter, Tresp, & Kriegel, 2008).

Curated data (C) contain GDAs reported by the expert curated resources. Animal

model  data  (M)  include  GDAs provided by the  resources  containing  information

about  animal  models  (rat  and  mouse)  of  disease.  DisGeNET  uses  orthology

information to map the associations to the human genes. Inferred data (I) refer to

GDAs inferred from HPO and VDAs. In the case of HPO, GDAs are inferred from

phenotype-disease via triangulation. In the case of VDAs, a GDA is created for each

gene annotated to the variant and the disease annotated to the variant. Literature data

(L) denote GDAs extracted by text-mining of LHGDN and MEDLINE abstracts via

BeFree system.

2.7.1.1 Calculating DisGeNET Scores

DisGeNET uses scores to rank the GDAs according to their level of evidence.

These scores varies between 0 and 1 depending on the number of data sources and
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publications reporting the association, and type (level of curation) of these sources.

The score (S) for GDAs is computed according to:

S=C+ M + I +L           (2.14)

where:

C= {
0.6 if N sources (i ) > 2
0.5 if N sources (i) = 2
0.4 if N sources (i ) = 1
0 otherwise

         

M = { 0.2 if N sources ( j) > 0
0 otherwise

I = { 0.1 if N sources (k) > 0
0 otherwise

L = { 0.1 if N p > 9
N p ∗ 0.01 if N p ⩽ 9

        (2.15)

Here,  Nsources(i) is  the  number  of  curated  sources,  Nsources(j) is  the  number  of  model

organisms,  Nsources(k) is the number of inferential  sources,  and  Np is  the number of

publications supporting the GDA.

2.8 Novelty of the Proposed Study

We mentioned several medical and bioinformatics applications that aim to identify

underlying  molecular  mechanisms  of  metabolic  disorders  by  use  of  different

biological  data  sources  and  computational  approaches.  However,  most  of  these

studies either focused on a single type of metabolic disorder or did not diversify the

integrated data sources and/or computational methods that are used in analyses.

In our study, we constructed three functional interaction networks for MS, T2D,

and CAD disease by integration of multiple biological data sources such as protein-

protein interactions, gene expressions, and gene ontologies. Then, we detected the

disease related protein complexes using different clustering approaches. By analyzing

the overlapping sub-graphs, we obtained shared disease genes for metabolic disorders

in question.
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As well  as presenting a comparative performance evaluation of different PPIN

databases and clustering algorithms in disease gene prediction, this study is novel in

virtue  of  being  the  initial  effort  to  collectively  analyze  MS,  T2D,  and  CAD  in

bioinformatics perspective.
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CHAPTER THREE

METHOD

3.1 System Overview

We present a general overview of our system in four main steps in Figure 3.1. In

step A, we reduced the size of STRING and INet networks. We first mapped the

proteins in both networks to the gene symbols in our gene expression data set. Then,

by  filtering  out  the  unmapped  nodes,  we  reduced  the  density  of  both  networks

approximately 34%. The main reduction in the number of edges has happened when

the  insignificant  interactions  were  removed.  By  using  the  medium-confidence

threshold (0.4) that is stated in Section 2.4.1, we shrank the STRING network to the

10% of its initial size. Similarly, we selected 0.175 as the confidence cutoff for INet

to get same reduction ratio with STRING in terms of network size.

Table 3.1 Number of nodes and edges of  the STRING and INet topologies before and after  data

reduction

Before Reduction After Reduction % of Reduction 

Network Nodes Edges Nodes Edges Nodes Edges

STRING 19,576 5,676,528 13,969 568,020 29 90

INet 19,290 7,077,509 12,264 710,660 36 90

In step B, we executed three procedures to construct disease networks for MS,

CAD, and T2D: (1) preprocessing of microarray data, (2) detection of DEGs, (3)

integration of PPINs with the DEGs. In procedure 1, we first removed invalid and

null rows. Then, we filtered out the duplicated rows (probes) by mapping each probe

identifier to its gene symbol and aggregating the probes corresponding to the same

gene  symbol.  Thus,  we  obtained  24,279  unique  genes  from  50,400  probes.  In

procedure  2,  we  detected  DEGs  by  considering  both  fold-change  values  and

significance  score  of  t-test.  In  procedure  3,  we  constructed  disease  networks  by

placing each DEG to the STRING and the INet topologies.
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In step C, we clustered the disease networks to identify the significant functional

modules. To be able to generate biologically meaningful clusters, we assigned GO

semantic  similarity  scores  as  edge  weights.  Then,  we  executed  three  clustering

algorithms  (MCL,  SPICi,  and  Linkcomm)  on  each  network  and  generated  the

disease-related protein complexes. Before proceeding to the last step, we performed

cluster validation by biological homogeneity index (BHI) for each disease network.

By this means, we selected the best clustering algorithm and network construction

parameters to be used in the extraction of overlapping disease modules. Finally, in

step  D,  we  detected  the  overlapping  modules  in  MS,  T2D,  and  CAD  disease

networks to obtain common sub-modules that are expected to include shared disease

genes for metabolic disorders in question.

3.2 Peripheral Blood Gene Expression Data

The  microarray  experiments  has  shown that  peripheral  blood  gene  expression

profiling  is  an  effective  way  to  distinguish  the  phenotypically  unique  cohorts  of

patients suffering from a wide variety of diseases  (Aune, Maas, Moore, & Olsen,

2003; Baechler et al., 2003; Bomprezzi et al., 2003). Based on this claim, Grayson et

al. comparative  evaluation  on  peripheral  blood  transcript  levels  of  patients  with

CAD, T2D, MS, and RA (rheumatoid arthritis) in order to determine if patients with

metabolic disorders own distinct gene expression profiles (Grayson, Wang, & Aune,

2011). To do that, they recruited subjects with CAD (n=6), T2D (n=8), MS (n=6), RA

(n=6), and 9 individuals who were not currently taking medications for any disease

state, and had never been diagnosed with a chronic illness, to present as the control

(CTRL) cohort.  After  analyzing the  peripheral  blood samples  of  35 subjects  and

profiling  the  gene  expressions  by  use  of  the  human  exonic  evidence  based

oligonucleotide (HEEBO) array,  they deployed the resulting data  set  to  public  in

National Center for Biotechnology Information Gene Expression Omnibus (NCBI

GEO) under the GSE23561 identifier.
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3.2.1 Preprocessing

Each  series  matrix  file  provided  under  GSE23561  data  set  includes  50400

oligonucleotide probes and their expression values that are normalized to whole array

intensity sum of 10,000 that is giving an average intensity per probe of 0.2. However,

we used the raw (F635 median) values instead of normalized series matrices to apply

a logarithmic transformation.

We normalized the matrices by transforming the F635 median value of each probe

to log2(F635 median). Then, we removed the invalid and null rows in the data set and

aggregated  multiple  probes  corresponding  to  the  same  gene  by  mapping  probe

identifiers  to  gene  symbols  (Symbol  v12)  using  GPL10775  platform.  Here,  we

applied a median based aggregation. As a result, we obtained 24,279 log transformed

gene expression values for each one of the 29 samples.  The distribution of gene

expression values for each subject is shown in Figure 3.2.

3.2.2 Detecting DEGs

We first applied a t-test to identify the significantly differentiated genes between

control  and  disease  groups.  By  filtering  out  the  genes  with  p-value  >  0.05,  we
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obtained the significant genes in the following numbers: 307 (MS), 435 (T2D), and

2679 (CAD). Then, we calculated the fold-change values by:

FC(i ) =|mCTRL (i )– mDISEASE(i)| (3.1)

where  mCTRL(i) denotes the mean of log-normalized expression values of gene  i in

control (CTRL) group and mDISEASE(i) denotes the mean of log-normalized expression

values of gene i in a disease group (i.e., MS, T2D, or CAD). After applying the fold-

change cutoff,  FC  ≥ 1,  we concluded the analysis  with the  following number of

DEGs: 190 (MS), 414 (T2D), and 1635 (CAD).

3.3 PPIN Data

All versions of STRING topologies for different types of species are available in

the STRINGdb website (https://string-db.org). We made use of human PPIN v10.5

(9606.protein.links.v10.5) which consists of 19,576 unique proteins with 11,353,056

directed and reversely-duplicated interactions. By merging the directed interactions

between  the  same  proteins,  we  obtained  5,676,528  unique  (non-redundant)  and

undirected edges (Figure 3.1 A). In STRING, nodes are named by ensemble protein

identifiers and edge weights are represented by combined scores in the range of [0,

1000].

On the other hand, we obtained INet topology from Yang et al.’s study (F. Yang et

al., 2017). INet covers 19,290 unique genes and there are 7,077,509 undirected and

non-redundant interactions between them (Figure 3.1 A). The nodes are presented by

ensemble identifiers and the weight of each edge is in the range of  [0, 1].

3.3.1 Protein-Gene Mapping

In order to place the genes in our gene expression data set into the STRING and

INet topologies, we mapped the ensemble identifiers to the official gene symbols. We

performed  this  mapping  in  R  by  use  of  STRINGdb (v1.22.0)  and  org.Hs.eg.db
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packages (Carlson, 2018) available in Bioconductor (https://bioconductor.org). Then,

we eliminated the nodes that could not be mapped to the genes in our data set and the

edges  between  them.  The  eliminations  of  non-available  genes  correspond  to

reduction in 27% of nodes and 34% of edges for the STRING; and 28% of nodes and

33% of edges for the INet network (Figure 3.1 A).

3.3.2 Filtering Insignificant PPIs

In the STRING network, we first normalized the combined scores to the range of

[0,  1].  Then,  we filtered  out  the  interactions  below the  medium-confidence  (i.e.,

combined score < 0.4). Compared to the initial topology, the resulting network was

including  only  10%  of  the  edges  while  keeping  71% of  the  nodes  (Table  3.1).

Because of the absence of a de facto confidence threshold for INet, we set the cutoff

as  0.175  providing  10%  reduction  obtained  as  in  the  STRING  network.  Unlike

STRING, the remained nodes accounted for 64% of the initial  nodes in the INet

network (Table 3.1). On the other hand, 12,109 of the nodes and 188,188 of the edges

are intersecting in the final versions of two networks (Table 3.2).

Table 3.2 Number of overlapping nodes and edges for the STRING and INet topologies

# after reduction # of overlap % of overlap

Network Nodes Edges Nodes Edges Nodes Edges

STRING 13,969 568,020 12,109 188,188 86.6 33.1

INet 12,264 710,660 12,109 188,188 98.7 26.5

3.4 Integrating DEGs with PPINs

For both the STRING and INet topologies, we filtered out all of the genes that are

not represented in the DEG set for any disease subject (Figure 3.1 B). As a result, we

obtained  three  separate  differential  co-expression  networks  for  two  topologies

(Figure 3.1 C). The numbers of nodes/edges in the resulting STRING-based disease

networks were as follows: 34/25 (MS), 786/3786 (CAD), and 106/107 (T2D). The
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numbers  of  nodes/edges  in  the  resulting  INet-based  disease  networks  were  as

follows: 22/21 (MS), 608/5645 (CAD), and 53/41 (T2D).

3.5 Generating GO Similarity Scores

We obtained GO semantic similarity scores for each connected gene pair using

GoSemSim R package (Yu et al., 2010). GOSemSim generates GO semantic similarity

scores by using different  similarity  measures,  different  combination methods,  and

different  orthogonal  ontologies.  The  similarity  measure is  either  one  of  four

information content (IC) based method (Resnik, Lin, Rel, Jiang) or a graph-based

method (Wang) that are used in determination of the semantic similarity of two GO

terms.  The  combination  strategy is  one  of  the  max,  avg,  rcmax,  or  best-match

average (BMA) and needed to calculate overall semantic similarity score on all pairs

of two GO term sets. On the other hand, the reference orthogonal ontologies can be

biological process (BP),  cellular component (CC), or  molecular function (MF) and

used to specify which ontology will be considered while generating similarity scores.

To combine GO terms, we selected  BMA which has been suggested as the best

combination method in the previous studies (Pesquita et al., 2008; X. Wu, Pang, Lin,

& Pei, 2013). On the other hand, we repeated our analyses for each type of similarity

measure (Resnik, Lin, Rel, Jiang, Wang) and each type of orthogonal ontology (BP,

CC, MF) to perform a comparative evaluation on our data set (Figure 3.3).

3.5.1 Information Content Based Similarity Methods

The IC-based approaches use the annotation statistics (i.e. information content) of

the common ancestor terms to measure the semantic similarity of two GO terms. The

semantic similarity score depends on the frequencies of two GO terms involved and

that  of  their  closest  common  ancestor  term  (i.e.  the  most  informative  common

ancestor) within a given corpus of GO annotations. On the other hand, the IC of a

GO concept is calculated by taking the negative logarithm of the probability that the
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term being included in the respective GO corpus.  In this  regard,  rarely used GO

terms are richer in the information they contain.

For a given GO term θ and a set T consisting of θ’s children terms, the frequency

f(θ) and the information content IC(θ) are defined as:

f (θ ) =
|T|

N
, IC (θ )= − log ( f (θ ))       (3.2)

where N is the total number of terms in the GO corpus. Since GO allow each term

to have multiple parents, any two terms can be linked to a parent through multiple

paths. The similarity of terms θ1 and θ2 is calculated by use of the IC of each term

and the IC of their most informative common ancestor (θA).
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The Resnik’s similarity (Resnik, 1999) of two GO terms is defined as:

simResnik(θ1 ,θ2)= IC (θ A)   (3.3)

The Lin’s measure (Lin, 1998) is defined as:

simLin(θ1 ,θ2) =
2 IC (θA)

IC (θ1)+ IC (θ2)
        (3.4)

The  Relevance  (Rel)  method  (Schlicker,  Domingues,  Rahnenführer,  &  Lengauer,

2006) is a combination of Resnik’s and Lin’s method:

simRel(θ1 ,θ2)=
2 IC (θA)(1− f (θA))

IC (θ1)+ IC (θ2)
(3.5)

And Jiang’s similarity (J. J. Jiang & Conrath, 1997) is defined as:

simJiang (θ1 ,θ2) = 1−min(1 , IC (θ1)+ IC (θ2)−2 IC (θA)) (3.6)

3.5.2 Graph Based Similarity Methods

The graph-based methods compute the semantic similarity using the topological

properties of GO. In GO database, the ontologies are formed as a  directed acyclic

graph (DAG) in which the nodes denote concepts (i.e. terms) and the edges denote

two types of semantic relations (‘is-a’ and ‘part-of’). In such a structure, a GO term i

can be defined as  DAGi = (i, Ti, Ei) where  Ti is the corpus of GO terms in  DAGi,

consisting of term i and all of its ancestor terms, and Ei is the set of edges connecting

the GO terms in DAGi.

The Wang’s method (J. Z. Wang, Du, Payattakool, Yu, & Chen, 2007) computes

the  GO semantic  similarity  between  two  GO terms  by taking  into  account  their

distance in the GO graph and their connections with the common ancestor terms. It

first sets the semantic value (SV) of GO term i as the cumulative contribution of all
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terms in DAGi to the semantics of term i. In DAGi, the terms closest to term i provide

the highest semantic contribution to it. Therefore, the contribution of a GO term j to

the semantic of GO term i is defined as the S-νalue of term j related to term i. For any

j in DAGi, Si(j) denotes its S-νalue related to the GO term i, and can be defined as:

S i(i) = 1
S i( j)= max { we×S i( j ' )∣ j ' ∈ children of ( j)}if j ≠i

   (3.7)

where we represents the semantic contribution factor for edge е  Ε∈ i connecting term

j and its child  j′.  Contribution of term  i to its own is always defined as 1. After

calculating the contributions (i.e. S-νalues) of all terms in DAGi, the semantic value

(SV) of i, which the sum of the S-νalues, is obtained as:

SV (i)=∑
j∈T i

S i( j)        (3.8)

Based on the semantic values and contribution of the common ancestor term j, the

semantic similarity between terms i and k is defined as:

simWang (i , k )=

∑
j∈T i∩T k

S i( j)+S k ( j)

SV (i)+SV (k )
       (3.9)

where Si(j) and Sk(j) are the contributions of the GO term j to the GO term i and GO

term k, respectively.

3.5.3 Combination Methods

For given two genes g1 and g2 annotated by two sets of GO terms T1 = {t11, t12 ⋯
t1n} and T2 = {t21, t22  t⋯ 2k} respectively, GOSemSim computes the semantic similarity

between  g1 and  g2 by combining  T1 and  T2. To that end, it utilizes one of the four

combination methods called max, rcmax, avg, and BMA.
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The  max technique sets the semantic similarity score between  g1 and  g2 as the

maximum semantic similarity over all pairs of GO terms between T1 and T2.

simmax (g1 , g2) = max
1⩽i⩽n ,1⩽ j⩽ k

sim (t1 i , t2 j)     (3.10)

The avg sets the similarity score by taking an average over all pairs of GO terms.

simavg (g1 , g2)=

∑
i=1

n

∑
j=1

k

sim( t1 i ,t 2 j)

n×k
       (3.11)

Similarities  between  T1 and  T2 form  a  matrix.  The  rcmax method  uses  the

maximum of  ColumnScore (average of maximum similarities on each column) and

RowScore (average of maximum similarities on each row) to calculate sim(g1, g2).

simrcmax (g1 , g 2) = max(

∑
i=1

n

max
1⩽ j⩽k

sim(t 1 i , t 2 j)

n
,
∑
j=1

k

max
1⩽i⩽n

sim( t1 i ,t 2 j)

k
)       (3.12)

The BMA (Best-Match Average) method, utilizes the same similarity matrix as in

rcmax, but it takes the average of all maximum similarities on each column and row.

simBMA( g1 , g 2) =

∑
i=1

n

max
1⩽ j⩽k

sim(t 1 i , t 2 j) +∑
j=1

k

max
1⩽i⩽n

sim(t 1 i , t 2 j)

n+k
     (3.13)

3.6 Implementation of the Clustering Algorithms

We executed three different clustering algorithms,  MCL  (Enright  et  al.,  2002),

SPICi  (P.  Jiang  &  Singh,  2010),  and  Linkcomm  (Ahn  et  al.,  2010;  Kalinka  &

Tomancak, 2011), on ninety different combinations of disease networks constructed

for MS, CAD, and T2D by using two different PPI topologies (STRING and INet),

three different orthogonal ontologies (BP, CC, MF), and five different GO similarity
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measures (Resnik, Lin, Rel, Jiang, Wang). We summarize the clustering, evaluation,

and validation steps in Figure 3.4. All datasets, source code, and analysis results are

available on GitHub (https://github.com/smtnkc/go-cluster).

3.6.1 Libraries, Functions, Parameters, and Running Environment

We used  MCL  (Jäger,  2015) and  Linkcomm  (Kalinka  & Guenoche,  2014) R

packages, and SPICi  (Peng & Singh, 2010) python library to generate clusters. We

executed  mcl,  getLinkCommunities,  and  spici functions for MCL, Linkcomm, and

SPICi, respectively. For all methods, we set the input as an undirected and weighted

graph without self loops. In SPICi, we set the minimum cluster density (d) to 0.5, the

minimum support threshold (g) to 0.5, the minimum cluster size (s) to 2, and graph

mode to 0 (sparse graph). On the other hand, we used the default parameters in MCL

and Linkcomm. All executions have been performed on a computer with Intel Core

i5-4200U processor, 8 GB of RAM, and Ubuntu 18.04 operating system.

3.6.2 Execution Time and Memory Consumption

We present the average execution time and maximum memory consumption of

each algorithm in Table 3.3 and Table 3.4, respectively. As it is expected, SPICi is

significantly faster and memory efficient (i.e. scalable), especially in large networks

(i.e. CAD).

Table 3.3 Average execution time (seconds) for MCL, Linkcomm, and SPICi

Topology Subject MCL Linkcomm SPICi

STRING

MS 0.2 1.6 0.006

T2D 1.2 2.1 0.005

CAD 37.4 32.6 0.02

INet

MS 0.8 1.5 0.006

T2D 1.2 1.5 0.006

CAD 28.5 330.6 0.02
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Table 3.4 Average memory consumption (MBs) of MCL, Linkcomm, and SPICi

Topology Subject MCL Linkcomm SPICi

STRING

MS 1.2 0.1 3.7

T2D 19.2 2.2 3.8

CAD 2,298 4,289 4.8

INet

MS 0.9 0.2 3.7

T2D 4.6 0.3 3.7

CAD 1,642 608.7 5.2

3.7 Post-clustering Validation

To validate the biological significance of the produced modules, we calculated the

biological  homogeneity  index  (BHI)  scores  for  each  disease  network  that  are

constructed  by  different  configurations  and  clustered  by  different  algorithms.

Basically,  BHI  quantifies  how biologically  homogeneous  the  clusters  are;  and  it

controls to what extent the genes incorporated into the same cluster by statistical

methods, belong to the same functional classes. Thus, it is a useful metric to evaluate

consistency and performance of the clustering algorithms. The BHI scores vary in the

range of [0, 1], and larger values represent biologically more homogeneous clusters.

We generated the  BHI scores using  clValid R package  (Brock, Pihur, Datta, &

Datta,  2008) (Figure  3.4).  The  BHI function  in  clValid takes  three  important

arguments  including  a  clustered  network,  a  Bioconductor annotation  list,  and  a

category parameter indicating the GO categories to use for biological validation (BP,

CC, MF, or ALL).  As annotation reference,  we used  hgu133a.db (Carlson, 2016)

annotation database available in Bioconductor. We mapped the official gene symbols

in our networks to the probe identifiers available in hgu133a.db.
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3.8 Overlapping Disease Modules

To detect the shared disease related modules for MS, T2D, and CAD, we analyzed

the  overlapping  clusters  of  the  disease  networks.  We  first  compared  different

configurations  for  network  construction  and clustering  algorithms to  find  out  the

parameters that are producing the most biologically  homogeneous  clusters (i.e., the

clusters with the largest BHI score). After the comparative evaluation of 270 different

configuration, we decided to construct the disease networks on INet topology. We

selected Wang measure and MF ontology to calculate GO semantic similarity scores.

For clustering, we ran both Linkcomm and SPICi algorithms, since they achieved to

almost identical BHI scores (Figure 3.4).

In  the  results  and  discussions  chapter,  we  will  explicitly  present  the  revealed

clusters for each disease network and the common modules detected for each pair of

diseases alongside a comparative evaluation of network construction and clustering

methods. Additionally, we perform a biological assessment for our findings.
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CHAPTER FOUR

RESULTS AND DISCUSSIONS

We  have  followed  an  integrative  approach  that  aims  to  combine  multiple

biological  data  sources  and  computational  methods  to  identify  common  disease

related protein complexes in MS, T2D, and CAD. To obtain the best configuration

for clustering of the disease networks,  we comparatively evaluated the biological

significance of 270 networks clustered using various parameters. These parameters

include:  three  gene  expression  matrices  (MS,  T2D,  CAD),  two  protein-protein

interaction networks (STRING, INet), five GO similarity measures (Resnik, Rel, Lin,

Jiang,  Wang),  three  orthogonal  ontologies  (MF,  BP,  CC),  and  three  clustering

algorithms  (MCL,  SPICi,  Linkcomm).  As  a  significance  indicator,  we  used  the

biological  homogeneity  index  (BHI)  and  after  we  obtained  the  most  accurate

clustering, we overlapped the revealed clusters to identify the shared disease-related

genes.

4.1 Comparison of PPI Networks

For  each PPIN topology,  we evaluated  the  biological  homogeneity  of  clusters

produced by 135 different configurations for three disease networks, MS, T2D, and

CAD. For 92 out of 135 configurations (68%) the INet network outperformed the

STRING network.  On the other  hand,  the STRING performed better  in 19 cases

(14%), while it showed equal success with INet in 24 cases (18%). The mean BHI

scores achieved on MS, T2D, and CAD are 0.449 and 0.408 for INet and STRING

respectively. We present the average and disease subject specific BHI scores in Table

4.1 where  BHI scores vary in the range of [0, 1] and larger values correspond to

biologically  more  homogeneous  clusters.  The  results  show  that  constructing  the

disease networks on INet topology would provide more homogeneous clusters for

our data set.

49



Table 4.1 The average BHI scores for STRING and INet topologies. The scores are produced using 45

different  configurations  (five  GO  similarity  measures,  three  orthogonal  ontologies,  and  three

clustering  algorithm)  for  each  disease  network  (MS,  T2D,  and  CAD).  The  largest  value  in  each

column is highlighted and corresponds to most biologically homogeneous clustering

MS T2D CAD AVERAGE

BHISTRING 0.308 0.449 0.467 0.408

BHIINet 0.407 0.458 0.481 0.449

4.2 Comparison of GO Similarity Measures

To select the most accurate GO similarity measure to calculate edge weights on

the  disease  networks  based  on  semantic  similarity,  we  performed  clustering

procedure by using each of five similarity measures (Jiang, Lin, Rel, Resnik, and

Wang)  on  the  INet  topology.  We generated  the  BHI scores  using  three  types  of

orthogonal ontologies (BP, CC, and MF). We present the average and disease subject

specific BHI scores for each measure in Table 4.2.

Table  4.2 The  average  BHI scores  produced  by  nine  different  configurations  (three  orthogonal

ontology  and  three  clustering  algorithm)  for  MS,  T2D,  and  CAD.  The  disease  networks  are

constructed using the INet topology. The largest value in each column is highlighted and corresponds

to most biologically homogeneous clustering

MS T2D CAD AVG

BHIJiang 0.425 0.492 0.477 0.465

BHILin 0.415 0.491 0.482 0.463

BHIRel 0.441 0.491 0.481 0.471

BHIResnik 0.300 0.326 0.484 0.370

BHIWang 0.456 0.492 0.481 0.476

On disease networks of MS and T2D, Wang similarity measure outperformed the

others. Although Resnik measure generated slightly more homogeneous clusters on

CAD, its performance is significantly worse on MS and T2D. Therefore, the Wang,
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which had a more successful average score than the others, stepped forward as the

best similarity measure for our analyses.

4.3 Comparison of Orthogonal Ontologies

After selecting the INet topology and the Wang measure, we need to choose the

most  efficient  orthogonal  ontology  between  BP,  CC,  and  MF  to  generate  edge

weights based on GO semantic similarity and to perform clustering procedure on

each disease network. By following a similar approach, we compared the average

BHI scores achieved by each ontology on each disease network constructed by INet.

In Table 4.3, we present the average BHI scores generated on the INet topology using

Wang  similarity  measure  and  different  clustering  algorithms.  On  each  disease

subject, MF outperformed the BP and CC in terms of creating more homogeneous

clusters.

Table 4.3 The average BHI scores produced by three clustering algorithms for MS, T2D, and CAD.

The disease networks are constructed using the INet topology. The GO similarity scores are generated

using the Wang measure. The largest value in each column is highlighted and corresponds to most

biologically homogeneous clustering

MS T2D CAD AVERAGE

BHIBP 0.442 0.486 0.478 0.468

BHICC 0.444 0.490 0.481 0.472

BHIMF 0.480 0.498 0.483 0.487

4.4 Comparison of Clustering Algorithms

We ran each clustering algorithm on the disease networks built by use of the INet

topology, the Wang measure, and MF ontology. We present the number of clustered

nodes (mn), the number of clusters produced (mc), and the average cluster size (mn /

mc) for each clustering algorithm in Table 4.4. We also show the coverage rate (100 x

mn / ma) and the number of clusters by the network size (ma / mc) in Figure 4.1.
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The results show that MCL outperforms the other algorithms in terms of coverage

rate (100 x mn / ma) and the average cluster size (mn / mc). Similarly, MCL produces

significantly  more  clusters  (mc) than  SPICi  and  Linkcomm  for  T2D  and  MS

networks. However, the biological homogeneity (BHI) achieved by MCL is not as

high as SPICi and Linkcomm (Table 4.5). Since BHI scores obtained by SPICi and

Linkcomm algorithms are very close, we decided to apply clustering by using both

algorithms in order to verify the results and not to miss out any significant clusters

revealed by one of the algorithms.

Table 4.4 The number of clustered nodes (mn), the number of clusters produced (mc), and the average

cluster size (mn / mc) for MCL, SPICi, and Linkcomm algorithms. Each value is generated by using the

INet topology, the Wang measure, and MF ontology

MCL SPICi Linkcomm

Topology Subject mn mc mn  / mc mn mc mn  / mc mn mc mn  / mc

STRING

MS 29 7 4.1 6 2 3 3 1 3

T2D 93 24 3.9 37 15 2.5 31 9 3.4

CAD 716 111 6.5 354 84 4.2 635 235 2.7

INet

MS 19 3 6.3 3 1 3 7 2 3.5

T2D 50 13 3.8 11 5 2.2 6 2 3

CAD 580 76 7.6 296 68 4.4 532 137 3.9

Table 4.5 The  BHI scores  produced by three clustering  algorithms for  MS, T2D, and CAD.  The

disease networks are constructed using the INet topology. The GO similarity scores are generated

using  the  Wang measure  and  MF ontology.  The largest  value  in  each  column is  highlighted  and

corresponds to most biologically homogeneous clustering

MS T2D CAD AVG

BHIMCL 0.441 0.493 0.467 0.467

BHISPICi 0.500 0.500 0.492 0.497

BHILinkcomm 0.500 0.500 0.490 0.497
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4.5 Discovered Disease Modules

Using the Linkcomm clustering algorithms, we revealed two clusters with seven

unique genes for MS, four clusters with ten unique genes for T2D, and 137 clusters

with 532 unique genes for CAD. Using the SPICi clustering algorithm, we detected

one cluster  with four  genes  for  MS, six clusters  with 13 genes for T2D, and 68

clusters with 296 genes for CAD.

4.5.1 Discovered Disease Modules for MS

We identified two clusters, {RSP9, ARPC1B, POLR2L, ANAPC2} and {ANAPC2,

VPS28, PCGF6, HCFC1}, in the MS network by using the Linkcomm algorithm. On

the other  hand,  we detected  one  cluster,  {GSPT2,  RPS9,  POLR2L,  ANAPC2} by

using the SPICi algorithm. We show the discovered clusters in Figure 4.2.
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Figure 4.1 Coverage rate (%), number of clusters per node, and average cluster size for Linkcomm,

MCL, and SPICi algorithms. Coverage rate is 100 x (mn / ma), number of clusters per node is ma / mc,

the cluster size is mn / mc where ma is the number of all nodes, mn is the number of clustered nodes, and

mc is the number of clusters. The values are generated by using the STRING and INet topologies, the

Wang measure, and MF ontology



4.5.2 Discovered Disease Modules for T2D

We  identified  four  disease  modules,  {SP1,  POU2F1},  {HBD,  ALAS2},

{PLEKHG5, RAC3, ARHGAP10} and {DYNC1I1, SPTBN2, RILP}, in T2D network

by using the Linkcomm algorithm. On the other hand, we detected five modules,

{SP1,  POU2F1},  {HBD,  ALAS2},  {PELI3,  MAP3K14},  {RAC3,  NRBP1}  and

{TXNRD2, SAMM50, BCS1L} in the same network by using the SPICi algorithm. We

show the revealed clusters in Figure 4.3.

4.5.3 Discovered Disease Modules for CAD

We identified 68 clusters with 296 genes for the CAD network by using the SPICi

algorithm. On the other hand, we detected 137 clusters with 532 unique genes by

using  the  Linkcomm algorithm.  However,  total  number  of  genes  in  137 clusters

reached up to 2,907 since the Linkcomm algorithm produce overlapping clusters.

Moreover, the number of edges between the clustered nodes were 5,461 and 3,948

for Linkcomm and SPICi, respectively. Because of the huge size and complexity of

these networks, we summarize the revealed clusters in the supplementary materials.
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Figure 4.2 Discovered clusters in MS network. (A) Two modules with seven unique genes are detected

by using the Linkcomm algorithm. (B) One module with four unique genes are detected by using the

SPICi algorithm. The edge thicknesses represent the GO similarity value of two genes.  The common

nodes are shown in the same color



4.6 Common Disease Modules

By  overlapping  the  clusters  of  the  Linkcomm  algorithm,  we  detected  two

modules,  {ARPC1B,  ANAPC2,  RPS9,  POLR2L}  and  {VPS28,  PCGF6,  HCFC1,

ANAPC2},  and  12  individual  genes,  {TNFSF13,  TNFRSF13B,  NFKBIB,  FRG1,

S100A8, ENTPD2, SIX3, LHX2, GSPT2, ISYNA1, COX5A, GLUD2}, shared by MS–

CAD pair  (Figure 4.4).  On the other  hand,  we found a single shared gene,  SP1,

alongside a shared module, {ALAS2, HBD}, for T2D–CAD (Figure 4.4).

By overlapping the clusters of the SPICi algorithm, we identified one module,

{GSPT2,  ANAPC2,  RPS9,  POLR2L},  and  15  individual  genes,  {TNFSF13,

TNFRSF13B,  NFKBIB,  FRG1, S100A8,  ENTPD2, SIX3, LHX2,  ISYNA1,  COX5A,

GLUD2, VPS28, PCGF6, HCFC1, ANAPC2}, shared by MS–CAD (Figure 4.5). As

same as Linkcomm, one common module, {ALAS2, HBD}, and one common gene,

SP1, revealed for T2D–CAD pair (Figure 4.5).

Unlike MS–CAD and T2D–CAD, we could not identify an intersecting module

for the MS–T2D using neither the SPICi nor the Linkcomm clustering. Therefore,

our analyses could not reveal a disease module shared by all disease groups.
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Figure 4.3 Discovered clusters in T2D network. (A) Four modules with ten unique genes are detected

by using the Linkcomm algorithm. (B) Six modules with 13 unique genes are detected by using the

SPICi algorithm. The edge thicknesses represent the GO similarity value of two genes. The modules

with common nodes are shown in the same color
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Figure 4.4 Overlapping modules and genes of the Linkcomm clustering. (A) Two modules with seven

genes and 12 individual genes are shared by MS-CAD pair. (B) One module with two genes (ALAS2,

HBD) and the SP1 gene are shared by T2D-CAD pair. The gray nodes represent the common genes

that are either unclustered or diversely clustered in each network. The edge thicknesses denote the GO

similarity value of two genes. The modules with common nodes are shown in the same color
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Figure 4.5 Overlapping modules and genes of the SPICi clustering. (A) One module with four genes

and 15 individual genes are shared by MS-CAD pair. (B) One module with two genes (ALAS2, HBD)

and the SP1 gene are shared by T2D-CAD pair. The gray nodes represent the common genes that are

either  unclustered  or  diversely  clustered  in  each  network.  The  edge  thicknesses  denote  the  GO

similarity value of two genes. The modules with common nodes are shown in the same color



4.7 Evaluation of the Gene-Disease Associations

In total, SPICi and Linkcomm algorithms revealed 19 unique genes (ANAPC2,

ARPC1B,  COX5A,  ENTPD2,  FRG1,  GLUD2,  GSPT2,  HCFC1,  ISYNA1,  LHX2,

NFKBIB, PCGF6, POLR2L, RPS9, S100A8, SIX3, TNFRSF13B, TNFSF13, VPS28)

shared  by MS–CAD pair  and three unique  genes  (ALAS2,  HBD, SP1)  shared by

T2D–CAD pair. By using the DisGeNET (Piñero et al., 2017), we identified 1,136

gene-disease associations (GDAs) for 22 genes in question. We present the number of

GDAs reported for each gene (Ngda) in Table 4.6.

Then, we obtained the GDAs that are related with our diseases (MS, T2D, and

CAD) by filtering out the associations reported for irrelevant  disease classes.  We

selected three disease classes: nutritional and metabolic diseases (NMD), endocrine

system diseases (ESD), and cardiovascular diseases (CVD). In ESD class, we also

applied keyword filtering to obtain GDAs that are related with only diabetes and

diabetic complications (i.e., DIAB sub class).

In NMD class, we identified 11 genes (APC2, COX5A, FRG1, HCFC1, ISYNA1,

NFKBIB,  S100A8,  TNFSF13,  ALAS2,  HBD,  SP1)  with  57 GDAs reported  by 82

articles (Table 4.7).  In DIAB sub class,  we identified 4 genes (ISYNA1, S100A8,

SIX3, SP1)  with 12 GDAs reported by 15 articles (Table 4.8).  In CVD class, we

found 11 genes (ALAS2, APC2, COX5A, ENTPD2, ISYNA1, RPS9, S100A8, SIX3,

SP1, TNFRSF13B, TNFSF13) with 60 GDAs reported by 88 articles (Table 4.9).

Five out of 19 genes (APC2, COX5A, ISYNA1, S100A8, TNFSF13) identified for

MS–CAD pair were already associated with both NMD and CVD class diseases. On

the other hand, three genes (FRG1, HCFC1, NFKBIB)  were only associated with

NMD, three genes (ENTPD2, RPS9, TNFRSF13B) were only associated with CVD,

and one gene (SIX3)  was associated with DIAB and CVD. The remaining genes

(ARPC1B, GLUD2, GSPT2, LHX2, PCGF6, POLR2L, VPS28) are novel for MS and

CAD, since they were not previously associated with NMD or CVD (Table 4.10).
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Among three disease genes (ALAS2, HBD, SP1) identified for T2D–CAD pair,

only  SP1 was previously associated with DIAB and CVD.  ALAS2 was associated

with NMD and CVD, while  HBD was only associated with NMD (Table 4.10). In

this respect, we suggest only the HBD as a novel gene shared by T2D–CAD.

Table 4.6 Gene symbol, entrez identifier, description, and the number of GDAs (Ngda) reported for each

gene according to the DisGeNET. * ANAPC2 is replaced by APC2 in the DisGeNET

Symbol Entrez Description Ngda

APC2* 10297 APC2, WNT signaling pathway regulator 82

ARPC1B 10095 actin related protein 2/3 complex subunit 1B 6

COX5A 9377 cytochrome c oxidase subunit 5A 75

ENTPD2 954 ectonucleoside triphosphate diphosphohydrolase 2 12

FRG1 2483 FSHD region gene 1 47

GLUD2 2747 glutamate dehydrogenase 2 5

GSPT2 23708 G1 to S phase transition 2 4

HCFC1 3054 host cell factor C1 43

ISYNA1 51477 inositol-3-phosphate synthase 1 95

LHX2 9355 LIM homeobox 2 16

NFKBIB 4793 NFKB inhibitor beta 12

PCGF6 84108 polycomb group ring finger 6 1

POLR2L 5441 RNA Polymerase II Subunit L 0

RPS9 6203 ribosomal protein S9 2

S100A8 6279 S100 calcium binding protein A8 199

SIX3 6496 SIX homeobox 3 84

TNFRSF13B 23495 TNF receptor superfamily member 13B 118

TNFSF13 8741 TNF superfamily member 13 90

VPS28 51160 VPS28, ESCRT-I subunit 1

ALAS2 212 5'-aminolevulinate synthase 2 59

HBD 3045 hemoglobin subunit delta 26

SP1 6667 Sp1 transcription factor 159

TOTAL – – 1136
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Table 4.7 Gene symbol, entrez identifier, disease pair, the number of GDAs reported for nutritional

and  metabolic  diseases (Ngda(NMD)),  the  number  of  publications  supporting  the  corresponding

associations (NP), and the maximum GDA score (Smax) for each gene according to the DisGeNET.  

* ANAPC2 is replaced by APC2 in the DisGeNET

Symbol Entrez Disease Pair Ngda(NMD) NP Smax

APC2* 10297 MS–CAD 2 0 0.100

COX5A 9377 MS–CAD 9 12 0.340

FRG1 2483 MS–CAD 1 0 0.100

HCFC1 3054 MS–CAD 4 2 0.100

ISYNA1 51477 MS–CAD 6 9 0.030

NFKBIB 4793 MS–CAD 1 1 0.010

S100A8 6279 MS–CAD 14 18 0.030

TNFSF13 8741 MS–CAD 2 2 0.010

ALAS2 212 T2D–CAD 13 32 0.600

HBD 3045 T2D–CAD 1 0 0.100

SP1 6667 T2D–CAD 4 6 0.320

TOTAL – – 57 82 –

Table 4.8 Gene symbol, entrez identifier, disease pair, the number of GDAs reported for diabetes and

diabetic  complications  (Ngda(DIAB)),  the  number  of  publications  supporting  the  corresponding

associations (NP), and the maximum GDA score (Smax) for each gene according to the DisGeNET

Symbol Entrez Disease Pair Ngda(DIAB) NP Smax

ISYNA1 51477 MS–CAD 6 9 0.010

S100A8 6279 MS–CAD 4 4 0.030

SIX3 6496 MS–CAD 1 1 0.100

SP1 6667 T2D–CAD 1 1 0.010

TOTAL – – 12 15 –
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Table  4.9 Gene  symbol,  entrez  identifier,  disease  pair,  the  number  of  GDAs  reported  for

cardiovascular  diseases (Ngda(CVD)),  the  number  of  publications  supporting  the  corresponding

associations (NP), and the maximum GDA score (Smax) for each gene according to the DisGeNET.  

* ANAPC2 is replaced by APC2 in the DisGeNET

Symbol Entrez Disease Pair Ngda(CVD) NP Smax

APC2* 10297 MS–CAD 1 1 0.010

COX5A 9377 MS–CAD 4 4 0.010

ENTPD2 954 MS–CAD 1 1 0.200

ISYNA1 51477 MS–CAD 13 16 0.020

RPS9 6203 MS–CAD 1 1 0.010

S100A8 6279 MS–CAD 13 20 0.040

SIX3 6496 MS–CAD 2 2 0.010

TNFRSF13B 23495 MS–CAD 6 12 0.450

TNFSF13 8741 MS–CAD 9 15 0.060

ALAS2 212 T2D–CAD 3 5 0.020

SP1 6667 T2D–CAD 7 11 0.030

TOTAL – – 60 88 –

Another  important  point  is  that  although  our  clustering  algorithms  could  not

reveal a disease module shared by all disease groups, three genes (ISYNA1, S100A8,

SP1) that we identified were associated with NMD, DIAB, and CVD disease classes.

Additionally, three genes (ALAS2, HBD, SIX3) are potentially shared by all disease

groups,  since  they  were  associated  with  a  complementary  disease  class  in  the

DisGeNET (e.g., DIAB is a complementary class for a gene shared by MS–CAD).

In a nutshell, by using the DisGeNET, we biologically evaluated our GDA results

for 22 genes identified as shared disease genes for MS–CAD and T2D–CAD pairs in

our  analyses.  In  pairwise  associations,  we  obtained  full-matching (i.e.,  previous

association with both disease classes) for six genes and half-matching (i.e., previous

association with one of the disease classes) for eight genes. In addition, we identified

eight novel genes that have no previous association with any of the disease classes.
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Table 4.10 Gene symbol, entrez identifier, disease pair, GDA reported disease classes, and matching

result (full, half, or none) according to DisGeNET. * ANAPC2 is replaced by APC2 in DisGeNET

Symbol Entrez Disease Pair GDA reported class(es) Matching

APC2* 10297 MS–CAD NMD + CVD Full

ARPC1B 10095 MS–CAD – None

COX5A 9377 MS–CAD NMD + CVD Full

ENTPD2 954 MS–CAD CVD Half

FRG1 2483 MS–CAD NMD Half

GLUD2 2747 MS–CAD – None

GSPT2 23708 MS–CAD – None

HCFC1 3054 MS–CAD NMD Half

ISYNA1 51477 MS–CAD NMD + DIAB + CVD Full

LHX2 9355 MS–CAD – None

NFKBIB 4793 MS–CAD NMD Half

PCGF6 84108 MS–CAD – None

POLR2L 5441 MS–CAD – None

RPS9 6203 MS–CAD CVD Half

S100A8 6279 MS–CAD NMD + DIAB + CVD Full

SIX3 6496 MS–CAD DIAB + CVD Half

TNFRSF13B 23495 MS–CAD CVD Half

TNFSF13 8741 MS–CAD NMD + CVD Full

VPS28 51160 MS–CAD – None

ALAS2 212 T2D–CAD NMD + CVD Half

HBD 3045 T2D–CAD NMD None

SP1 6667 T2D–CAD NMD + DIAB + CVD Full

4.8 Functional and Relational Evaluation of the Novel Disease Genes

To gain an insight into the functional and biological features of the eight novel

disease genes (ARPC1B, GLUD2, GSPT2, HBD, LHX2, PCGF6, POLR2L, VPS28),

61



we investigated their associations with non-metabolic disorders and their interactions

with other genes associated with metabolic disorders.

ARPC1B encodes one of seven subunits of the human Arp2/3 protein complex

which has been implicated in the control of actin polymerization in cells. It is known

that  ARPC1B plays a major role in the regulation of the actin cytoskeleton and its

deficiency causes platelet and immune system abnormalities (Kahr et al., 2017).

GLUD2 encodes  an  enzyme  localized  to  the  mitochondrion  and  acts  as  a

homohexamer to recycle glutamate during neurotransmission.  GLUD2 is associated

with Parkinson disease (Plaitakis et al., 2010; Plaitakis, Latsoudis, & Spanaki, 2011;

Plaitakis, Zaganas, & Spanaki, 2013). More importantly, its housekeeping isoform

GLUD1 is clearly associated with several metabolic disorders and diabetic conditions

such as hypoglycemia, hyperinsulinism, and hyperammonemia (Balasubramaniam et

al., 2011; Chik, Chan, Lam, & Ng, 2008; Corrêa-Giannella et al., 2012; Darendeliler

& Bas,  2006;  Flanagan et  al.,  2010;  Ihara  et  al.,  2005;  MacMullen  et  al.,  2001;

Meissner, Mayatepek, Kinner, & Santer, 2004; Santer et al., 2001; C. A. Stanley et

al., 1998; Charles A. Stanley, 2011; Tran et al., 2015).

GSPT2 encodes a GTP-binding protein which has an essential role at the G1 to S-

phase transition of the cell cycle in human and yeast cells. GSPT2 is associated with

intellectual disability (Grau et al., 2017). It is closely related to GSPT1 and shown to

interact  with  PABPC1 (Hoshino,  Imai,  Kobayashi,  Uchida,  &  Katada,  1999).

However, none of these genes are previously associated with metabolic disorders.

HBD and  HBB genes are normally expressed in the adults and responsible from

constitution of the hemoglobin.  Mutations in the  HBD are  associated with Delta-

thalassemia,  an  inherited  blood  disorder  characterized  by  abnormal  hemoglobin

production.  (Matsunaga,  Kimura,  Yamada,  Fukumaki,  &  Takagi,  1985;  Vives-

Corrons, Pujades, Miguel-García, Miguel-Sosa, & Cambiazzo, 1992; J. W. Zhang,

Stamatoyannopoulos, & Anagnou, 1988). On the other hand, HBB is associated with

several CVDs (Bender, 1993; Dinakaran et al., 2014; Makani et al., 2011). 
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LHX2 encodes a protein that belongs to a large protein family, members of which

carry the LIM domain and function as a transcriptional regulator. It is associated with

neoplastic  process,  digestive  system diseases,  and  rheumatoid  arthritis  (Galligan,

Baig, Bykerk, Keystone,  & Fish, 2007; Kuzmanov et al.,  2014; Shi et al.,  2015).

LHX2 is shown to interact with CITED2 (Glenn & Maurer, 1999) which is strongly

associated with several heart diseases (Sperling et al., 2005; Su et al., 2013; Sun et

al., 2006; Yin et al., 2002).

PCGF6 encodes  a  Polycomb  group  (PcG)  protein,  which  acts  as  a  master

regulator to ensure embryonic stem cell development and differentiation (C.-S. Yang,

Chang,  Dang,  & Rana,  2016;  Wukui  Zhao et  al.,  2017).  PCGF6 is  most  closely

related to  PCGF2 (i.e.  MEL-18) that is known as a marker in breast cancer (Lee et

al., 2014; Park et al., 2011; Riis et al., 2010).

POLR2L encodes  a  subunit  of  RNA  polymerase  II  that  is  the  polymerase

responsible  for  synthesizing  messenger  RNA in  eukaryotes,  and  it  is shown  to

interact with POLR2A (Acker et al., 1997) which is associated with heart failure and

cardiomyopathy (Brattelid et al., 2010).

VPS28 encodes a protein subunit of the ESCRT-I complex, which functions in the

transportation and sorting of proteins into subcellular vesicles. Although there is not a

GDA reported for VPS28 in the literature, VPS37C in the same subunit (ESCRT-I) is

associated with rheumatoid arthritis and cardiometabolic disorders (Eyre et al., 2012;

Kettunen  et  al.,  2012).  Additionally,  VPS37A in  the  same  subunit  has  a  strong

association with hereditary spastic paraplegia (Zivony-Elboum et al., 2012).

As  a  conclusion,  we  discovered  that  five  out  of  eight  genes  (GLUD2,  HBD,

LHX2, POLR2L, VPS28) that we identified as novel disease genes for MS–CAD and

T2D–CAD have some indirect associations with diseases in NMD and CVD class.

On the other hand, there is no previous metabolic disorder association reported for

the remaining three genes (ARPC1B, GSPT2, PCGF6) in the literature.
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CHAPTER FIVE

CONCLUSION AND FUTURE WORK

Identifying the shared disease-genes and protein complexes for multiple metabolic

disorders  is  crucial  to  enable  accurate  prognoses  and  to  design  targeted  drug

therapies. In this respect, we have suggested an integrative bioinformatics model that

aims  to  combine  multiple  biological  data  sources  and  computational  methods  to

identify common disease related genes and modules in MS, T2D, and CAD.

We constructed 90 disease networks for each disease group by using of different

protein-protein interaction network topologies, orthogonal ontologies, GO similarity

measures, and clustering algorithms. Then, we evaluated the performance of each

configuration by considering the biological homogeneity achieved in the generated

clusters.  The networks  constructed  using  the  INet  topology provided higher  BHI

scores in comparison to networks constructed using the STRING. In calculation of

GO  semantic  similarity  scores,  the  only  graph-based  similarity  measure,  Wang,

performed better than all of the information content based similarity measures (Jiang,

Lin, Rel, and Resnik). Especially, the BHI scores obtained by combining the Wang

measure  and  MF ontology  were  significantly  higher  in  comparison  to  any  other

measure. For clustering, performance of the Linkcomm and the SPICi algorithms was

almost identical and better  than MCL. Therefore,  we executed both algorithms to

generate the clusters.

By  overlapping  the  generated  clusters,  we  identified  22  genes  (ANAPC2,

ARPC1B,  COX5A,  ENTPD2,  FRG1,  GLUD2,  GSPT2,  HCFC1,  ISYNA1,  LHX2,

NFKBIB, PCGF6, POLR2L, RPS9, S100A8, SIX3, TNFRSF13B, TNFSF13, VPS28,

ALAS2, HBD, SP1) shared by MS–CAD and T2D–CAD pairs. Three of these genes

(ISYNA1, S100A8, SP1) were previously associated with all of the nutritional and

metabolic  diseases  (NMD),  diabetes  and  diabetic  complications  (DIAB),  and

cardiovascular diseases (CVD). Four of them (ALAS2, APC2, COX5A, TNFSF13)

were  associated  with  NMD  and  CVD  class  diseases,  and  one  gene  (SIX3)  was

associated  with  DIAB  and  CVD  class  diseases.  Four  genes  (FRG1,  HCFC1,
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NFKBIB, HBD) were associated with only NMD, and three genes (ENTPD2, RPS9,

TNFRSF13B)  were  associated  with  only  CVD.  The  remaining  seven  genes

(ARPC1B, GLUD2, GSPT2, LHX2, PCGF6, POLR2, VPS28) were not associated

with any of the NMD, DIAB, or CVD class diseases.

We performed a functional and relational analysis for these seven genes and HBD,

which revealed as a shared disease gene for T2D–CAD pair in our analyses but is not

associated with neither DIAB nor CVD class diseases before. We investigated the

associations  with  non-metabolic  disorders  and  the  gene-gene  interactions  with

external genes, which have  associations with NMD, DIAB, or CVD class diseases.

We found that five out of eight novel genes (GLUD2, HBD, LHX2, POLR2L,

VPS28) that we identified as novel disease genes for MS–CAD and T2D–CAD have

some indirect associations with diseases in NMD and CVD class. On the other hand,

ARPC1B was associated with platelet and immune system abnormalities, GSPT2 was

associated with intellectual disability, and PCGF6 was associated with breast cancer.

However, no previous association with NMD, DIAB, or CVD class diseases reported

for these three genes.

Our study provided some strong evidence that there are common disease genes

underlying the MS, T2D, and CAD. Nevertheless, further investigation with different

data  sets  is  required  to  validate  these  new  findings.  In  the  future  studies,  the

integrated  biological  data  sources  may  be  diversified  by  use  of  human  disease

networks (HDNs), and some machine learning strategies may be executed to select

the best network construction parameters. Additionally, different biological validation

metrics such as Biological Stability Index (BSI) (Datta & Datta, 2006) and Clustering

Quality Score (CQS) (Gat-Viks, Sharan, & Shamir, 2003) may be combined with the

Biological Homogeneity Index (BHI) in the post-clustering validation.
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APPENDICES

APPENDIX 1: LIST OF ACRONYMS

ACC Accuracy

AOA Aortic aneurysm

ASCVD Atherosclerotic cardiovascular disease

BHI Biological homogeneity index

BMA Best-match average

BP Biological process

BSI Biological stability index

CAD Coronary artery disease

CC Cellular component

CHD Coronary heart disease

CQS Clustering quality score

CTRL Control

CVD Cardiovascular disease

DAG Directed acyclic graph

DEG Differentially expressed gene

DIAB Diabetes

EGIR European Group for the Study of Insulin Resistance

ESD Endocrine system disease

FC Fold-change

FDR False discovery rate

FPR False positive rate

FRAC Fraction

GDA Gene-disease association

GDM Gestational diabetes mellitus

GEO Gene Expression Omnibus

GO Gene Ontology
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HDN Human disease network

HEEBO Human exonic evidence-based oligonucleotide

HPO Human Phenotype Ontology

IC Information content

IDF International Diabetes Federation

LHGDN Literature-derived Human Gene-Disease Network

logFC Logarithmic fold-change

MF Molecular function

MICA The most informative information ancestor

MMR Maximum matching ratio

MS Metabolic syndrome

NB Negative binomial

NCBI National Center for Biotechnology Information 

NMD Nutritional and metabolic diseases

PAD Peripheral arterial disease

PAN Protein association network

PPI Protein-protein interaction

PPIN Protein-protein interaction network

PR Precision-recall score

RA Rheumatoid arthritis

RAS Renal artery stenosis 

T1D Type-1 diabetes mellitus

T2D Type-2 diabetes mellitus

TPR True positive rate

VDA Variant-disease association

WGAN Weighted Gene Association Network

WGCN Weighted Gene Co-expression Network

WGCNA Weighted Gene Co-expression Network Analysis

WHO World Health Organization
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