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FINITE ELEMENT METHOD AND STEP-BY-STEP PERTURBATION
METHOD FOR HIGH FREQUENCY EIGENVALUE PROBLEMS

ABSTRACT

Cavity resonators are widely employed passive components in microwave
applications, such as oscillators, amplifiers and filters, due to their simple geometries
and high quality factors in general. Perturbation of these structures by a small
object or changing the geometry slightly, has been studied for a long time since the
perturbation analysis can be critical for tuning and optimization applications. When
the perturbation is small, classical perturbation techniques work well. On the other
hand, for the problems where analytical solutions do not exist or the amount of
perturbation is relatively large, numerical techniques, such as finite element method,
must be utilized. Analysis of the resonant structures using finite element method,
corresponds to a generalized eigenvalue-eigenvector problem. Resulting eigenvalues
and eigenvectors provide information about the resonant frequencies and the field
intensities of the corresponding modes, respectively. For the optimization and tuning
processes, it is useful to extract a parametric history information. However, this
operation requires successive finite element operations which is time consuming.
Especially for the applications where large variations are demanded, the step-by-step
perturbation technique can be used. In this study, the material perturbation of a cubic
resonant cavity is investigated by combining the step-by-step perturbation technique
and nodal finite element method. The required software is created using Python
scripting language. The results produced by this software is compared with Ansoft
HFSS and the analytical solutions where possible.

Keywords: Finite element method, step-by-step perturbation, eigenvalue eigenvector
problem, cubic resonant cavity, parametric history
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SONLU ELEMANLAR VE ADIM-ADIM PERTÜRBASYON
YÖNTEMİNİN YÜKSEK FREKANS ÖZDEĞER PROBLEMLERİNE

UYGULANMASI

ÖZ

Basit geometrileri ve yüksek kalite faktörleri nedeniyle, kavite rezonatörler,
osilatör, yükseltici ve süzgeç gibi mikrodalga uygulamalarında yaygın olarak
kullanılırlar. Bu yapıların pertürbasyon çözümlemesi optimizasyon ve ince ayar
uygulamarında kritik olduğu için, içlerine küçük bir obje sokulması ve/veya
geometrilerinin hafifçe değiştirilmesiyle yapılan pertürbasyonların çözümlemeleri
uzunca bir süredir araştırılmaktadır. Pertürbasyon miktarının küçük olduğu
durumlarda, klasik pertürbasyon yöntemleri iyi sonuç vermektedir. Öte yandan,
analitik çözümün mümkün olmadığı veya pertürbasyon miktarının görece yüksek
olduğu durumlarda, sonlu elemanlar yöntemi gibi nümerik metodlar kullanılmalıdır.
Rezonans yapılarının sonlu elemanlar metodu ile çözümlenmesi, genelleştirilmiş
özdeğer-özvektör problemine karşılık gelir. Elde edilen özdeğer ve özvektörler,
rezonans frekansları ve bunlara karşılık gelen modların alan şiddetleriyle ilgili
bilgi verir. Optimizasyon ve ince ayar süreçleri için, parametrik geçmiş bilgisi
çıkarmak faydalıdır. Fakat bu işlem ardışıl sonlu elemanlar çözümlemesi gerektirir
ki bu da zaman alıcıdır. Özellikle büyük değişimler gerektiği zaman, adım adım
pertürbasyon tekniği kullanılabilir. Bu çalışmada, kübik bir rezonans kavitesinin
malzeme pertürbasyonu, adım adım pertürbasyon tekniği ve düğüm tabanlı sonlu
elemanlar yöntemi tümleştirilerek incelenmiştir. Bu amaca uygun olarak geliştirilen
yazılım, Python programlama dili ile oluşturulmuştur. Bu yazılımla elde edilen
sonuçlar, Ansoft HFSS ve analitik çözümlerle karşılaştırılmıştır.

Anahtar kelimeler: Sonlu elemanlar yöntemi, adım-adım pertürbasyon, özdeğer-
özvektör problemi, kübik rezonans kavitesi, parametrik geçmiş çözümlemesi
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CHAPTER ONE
INTRODUCTION

1.1 Motivation

Microwave resonators have been widely used components for RF oscillator and
amplifier circuits. They can be in various forms such as metallic cavity, planar
microstrip or circuit with lumped components. Design and analysis of these structures
became easier with the improvements in the numerical methods and the computing
power. Cavity resonators are favorable in this manner due to the relative ease in
construction and high quality factor.

Perturbation of the resonant cavities has been studied for several decades, hence it is
possible to find numerous application examples such as material measurement, tuning
and optimization. Earlier studies were mostly focused on the analytical formulation
of the Maxwells’ equations when a small object is inserted into the cavity or the
dimensions were altered (Spencer et al., 1957; Price et al., 1963). It is well known
that the classical perturbation method works well when the amount of perturbation
is relatively small. However, depending on the application, this condition may not
always be satisfied. In this case, the solution of the problem can be obtained using
approximate methods (Zaki & Atia, 1983; Carter, 2001). It should be noted that
though, these formulas are applicable for a few specific case only, since most of the
problems couldn’t be solved analytically. The solution of such problems have been
feasible with the arise of the numerical methods, such as the finite element method
(FEM).

Earlier examples of FEM was based on nodal discretization where the field
components are solved at discrete nodal points of the geometrical structure. This
procedure caused some non-physical, spurious solutions to occur for waveguide and
cavity problems. Various methods to deal with the spurious modes have been proposed,
such as penalty term method (Rahman & Davies, 1984), but none of them have been
as effective as the development of the vector FEM, where edge based elements are
used instead of nodal ones. Removal of the spurious solutions have been a major
improvement for the finite element analysis of the waveguides and cavities, as a
result, many different problems have been investigated thoroughly (Wang & Ida, 1992;
Lee & Mittra, 1992). This also caused the commercial FEM software to arise and
simplified the design and analysis of electromagnetic systems. Nevertheless, nodal
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FEM hasn’t declined completely due to easier discretization compared to the edge-
based FEM which requires complex geometrical algorithms and data management for
discretization. Computational requirements of the FEM routines have always been
higher, compared to the other aspects though, since the analysis of the cavity problem
by means of FEM requires the solution of a generalized eigenvalue/eigenvector
problem which may include several thousand variables. Optimization, sensitivity
analysis or fine-tuning of the cavity structure requires successive solutions FEM
operations, which further increases the computational cost.

Reducing the computational cost and removing the restriction of the amount of
perturbation can be achieved by using the step-by-step eigenvalue perturbation method
(Lu et al., 1993). Major benefit of the method is that only one FEM solution is required
initially. Then, using this initial solution, new perturbed solutions can be obtained
by using the step-by-step perturbation method more efficiently. Effectiveness of the
step-by-step eigenvalue perturbation method for resonant cavity problems is shown
by Gunel & Zoral, 2014 where the dielectric permittivity of the inner material of the
cavity is perturbed. Initial FEM solutions were made with vector FEM, which provides
spurious-free solutions. Thus, the quality of the perturbation solutions are only limited
by the accuracy of the initial FEM solutions and the correct choice of the system
parameters. Nonetheless, it is evident that the presence of any spurious modes also
would have affected the results, if any had existed in the initial FEM solution.

The main goal of this study is to demonstrate the application of the step-by-
step perturbation method along with the nodal FEM and investigating the effects of
the spurious modes over the perturbation process. The problem will be modeled
over a rectangular cavity that is filled with two different materials whose dielectric
permittivities differ. The total amount of perturbation is divided into smaller steps
in order to obtain a parametric history rather than eliminating the restriction about
the amount of perturbation. Initially, cavity problem is solved by using FEM for a
large interval of frequencies. Then, the size of the problem is significantly reduced
by choosing the eigenvalues/eigenvectors which correspond to the lower order modes,
at each step of the perturbation process. A software is created with Python language
to implement the algorithm. Since the step-by-step perturbation method is heavily
dependent on the initial FEM data, it was also necessary to create a nodal FEM routine
since commercially available electromagnetic field solvers (e.g. Ansoft HFSS, CST
Studio) don’t provide any intermediary data about their processes.
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1.2 Thesis Structure

The thesis is organized such that the theoretical analysis of resonant structures is
given first, then the numerical results are presented.

Next chapter describes the analytical solutions of two types of cavities; one is
uniformly filled cubic cavity where the dielectric permittivity of the inner material
is constant everywhere and the other is partially filled cubic cavity which contains
two materials with different permittivities. The expressions related with resonant
frequencies are given for both structures. These expressions will be used extensively
as reference to measure the performance of the numerical results.

Theoretical basis of nodal FEM and step-by-step perturbation technique are given
in Chapter 3. First of all, FEM formulation is described in general, then it is shown
that how the cavity problem is expressed as a generalized eigenvalue/eigenvector
problem. The concept of spurious solution is explained shortly. After that, the
classical perturbation method is given to introduce the concept of cavity perturbation
and the limitation about the amount of variation is explained. Finally, the step-by-
step perturbation method is given and its superiority over classical perturbation is
mentioned.

Chapter 4 includes the numerical results for both FEM and the step-by-step
perturbation routines, obtained by using the designed software. The numerical and
the analytical solutions are compared for the cavity structures given in Chapter
2. Moreover, Ansoft HFSS is occasionally used to simulate the structures for
further verification. Effects of two FEM parameters, mesh resolution and divergence
coefficient, over the solutions are investigated. The step-by-step perturbation technique
is tested with different parameters as well and several limitations about the process
are pointed out. Finally, the effects of the spurious solutions over the step-by-step
perturbation results are examined by using three error criteria.

3



CHAPTER TWO
ELECTROMAGNETIC RESONANCE PROBLEM

Electromagnetic cavity resonator is an empty enclosed object made from a good
electrical conductor. The inner filling material is generally a lossless dielectric
material that is chosen according to the requirements. They can find application in
microwave circuits as resonance elements, similar to LC sections. Resonant cavities
can provide excellent quality factor as the value may reach several thousands at
resonant frequencies. Therefore, they are very desirable as an oscillator building block,
especially at the frequencies where wavelength is sufficiently small. Frequency tuning
is also possible with mechanical alterations, such as adding a screw that controls the
position of an inner wall or inserting a material whose characteristics are different. An
electromagnetic field can be excited with an inner probe or loop as well as coupling
with a waveguide (Collin, 1992).

Figure 2.1 A cylindrical cavity

The resonance characteristics of a cavity resonator can be obtained by solving the
Helmholtz wave equation (2.1) along with the necessary boundary conditions, for
source-free case. Mathematical representation does not include any probe model or
source term since they are redundant for analytical case.

∇2E + β2E = 0

∇2H + β2H = 0
(2.1)

where E and H are electric field intensity (V/m) and magnetic field intensity (A/m),
respectively. The wavenumber, β, can be expressed as,

β2 = ω2µε (2.2)

where ω is the angular frequency (rad/s), ε is the permittivity (F/m) and µ is the
permeability (H/m) of the medium.
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Existence of an analytical solution mostly depends on the geometry and the inner
material properties (ε, µ). As a result, it is not always possible to find such solution.
However, the cases where solutions exist, usually provide a reference point for
evaluating the performance of approximate solution methods.

2.1 Analytical Solution For Cubic Cavity

Solving the Helmholtz wave equation for a cubic cavity is significantly easier and
provides quicker, simpler results compared to different geometrical configurations.
First of all, the wave equation is written in cartesian form, which is much simpler
compared to cylindrical and spherical counterparts. Consequently, solutions are also
simpler. Secondly, due to the symmetrical properties of the cube, resonances occur at
the same frequencies (degenerate modes) for certain mode configurations, as long as
the cavity is filled uniformly. This allows to tag and identify the resulting resonant
frequencies produced by an approximate solution method (e.g FEM) very easily.
For a partially filled cavity, resonant frequencies depend on the properties of the
inner materials and the fill ratio, which increases the complexity of the equations.
Nonetheless, analytical solutions still exist. Let us now investigate these two cavity
structures.

2.1.1 Uniformly Filled Cubic Cavity

Analysis of resonant cavities is similar to waveguide solutions. Let us begin the
analysis with transverse magnetic mode with respect to z direction (TMz). Solution
process of (2.1) can be simplified by introducing an auxiliary function, the magnetic
vector potential A, that satisfies the following identities (Balanis, 1989).

H =
1

µ
∇×A

E = −jωA− j 1

ωµε
∇(∇ ·A)

(2.3)

leads to the following for TMz case.
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Hx =
1

µ

∂Az

∂y
Ex = −j 1

ωεµ

∂2Az

∂x∂z

Hy = − 1

µ

∂Az

∂x
Ey = −j 1

ωεµ

∂2Az

∂y∂z

Hz = 0 Ez = −j 1

ωεµ

(
∂2

∂z2
+ β2

)
Az

(2.4)

where Az(x, y, z) is the scalar component of A towards z direction, which satisfies,

∇2Az(x, y, z) + β2Az(x, y, z) = 0

∂2Az

∂x2
+
∂2Az

∂y2
+
∂2Az

∂z2
+ β2Az = 0

(2.5)

Solution of (2.5) can be obtained using separation of variables method such that,

Az(x, y, z) = [Acos(βxx) +Bsin(βxx)][Ccos(βyy) +Dsin(βyy)]

× [Ecos(βzz) + Fsin(βzz)]

β2
x + β2

y + β2
z = β2

(2.6)

A, B, C, D, E and F are the coefficients which must be found when (2.6) is substituted
into (2.4) along with the necessary boundary conditions. Uniformly filled cavity has 6
boundaries that can be considered as perfect electrical conductors for convenience. The
boundary conditions for electric and magnetic fields on a perfect electrical conducting
surface are given as,

n̂×H = Js

n̂× E = 0

n̂ ·H = 0

n̂ · E =
ρs
ε

(2.7)

where Js is the surface current density (A/m2) and ρs is the surface charge density
(C/m2). Since the region is source-free, right hand side of the first and the last
equations in (2.7) equal to zero. Applying the boundary conditions, reduces (2.6) into
the following form;
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Az(x, y, z) = Kmnp sin(βxx) sin(βyy) cos(βzz)

βx =
mπ

a
m = 1, 2, 3, ...

βy =
nπ

a
n = 1, 2, 3, ...

βz =
pπ

a
p = 0, 1, 2, ...

β = ω
√
µε =

√(mπ
a

)2

+
(nπ
a

)2

+
(pπ
a

)2

(2.8)

where a is the side length of the cube. m, n, p indices represent the mode
configurations and can take the values given in (2.8). The resonant frequency for any
numerical configuration can be calculated from (2.8) by substituting the permittivity
and the permeability values at the left hand side of the equation. The mode having the
lowest resonant frequency is called as the dominant mode.

A similar procedure can be applied for finding TE mode solutions by means of the
electric vector potential F.

Fz(x, y, z) = [Acos(βxx) +Bsin(βxx)][Ccos(βyy) +Dsin(βyy)]

×[Ecos(βzz) + Fsin(βzz)]
(2.9)

If the boundary conditions are applied,

Fz(x, y, z) = Kmnp cos(βxx) cos(βyy) sin(βzz)

βx =
mπ

a
m = 0, 1, 2, ...

βy =
nπ

a
n = 0, 1, 2, ...

βz =
pπ

a
p = 1, 2, 3, ...

m = n 6= 0

(2.10)

The resonant frequency expression is found as the same as given in (2.8), but the
numerical configurations differ for m, n, p, as it is seen in (2.10). It can be noticed
that cubic cavity have three dominant modes (TM110, TE011, TE101) which are also
degenerate (have the same resonant frequency). Such degenerate modes occur at many
other frequencies due to the symmetry. The ratio between the resonant frequency of
TM110, TE011, TE101 and following 11 modes, including the TE cases, for a cubic
cavity is summarized in Table 2.1.

7



Table 2.1 Resonant frequency comparison for cubic cavity

f(..)

f(TM110)

TE101 TE011 TM110 TE111 TM111 TE102 TE201

1 1.22 1.58
TE021 TE012 TM210 TM120 TE112 TM112 TM130

1.58 1.73 2.23

2.1.2 Partially Filled Cubic Cavity

A partially filled cavity generally contains two materials whose permittivities or
permeabilities or both differ from each other. The reason for such modification is
tuning the resonance frequency without changing the dimensions of the cavity. Despite
that the cavities whose one dimension can be varied mechanically are common, tuning
intervals are rather limited compared to the material perturbation.

For our practical purposes, let us consider a cubic cavity containing two materials
having the same permeability but different permittivities as shown in Figure 2.2. For
this specific material configuration, where the dielectric constant varies along the z-
direction, none of the TMx, TMy, TEx or TEy solutions satisfy the boundary conditions
individually (Harrington, 2001). Therefore, TMz and TEz cases must be investigated.

ε1

ε2

x

z

y
a

h1

h2

Figure 2.2 Partially filled cavity illustration

Let us define two scalar magnetic potential functions for the regions filled with ε1
and ε2.
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A(1)
z (x, y, 0 6 z 6 h1) = [A(1)cos(β(1)

x x) +B(1)sin(β(1)
x x)][C(1)cos(β(1)

y y)+

D(1)sin(β(1)
y y)][E(1)cos(β(1)

z z) + F (1)sin(β(1)
z z)]

A(2)
z (x, y, h1 6 z 6 a) = [A(2)cos(β(2)

x x) +B(2)sin(β(2)
x x)][C(2)cos(β(2)

y y)+

D(2)sin(β(2)
y y)][E(2)cos(β(2)

z (a− z)) + F (2)sin(β(2)
z (a− z)]

(2.11)

The field expressions can be found using (2.4) in the same way. Applying the boundary
conditions for magnetic field at x = 0, x = a, y = 0 and y = a planes yields to the
following.

H(1)
x (x = (0, a), 0 6 y 6 a, 0 6 z 6 h1) = 0

H(1)
y (0 6 x 6 a, y = (0, a), 0 6 z 6 h1) = 0

H(2)
x (x = (0, a), 0 6 y 6 a, h1 6 z 6 a) = 0

H(2)
y (0 6 x 6 a, y = (0, a), h1 6 z 6 a) = 0

(2.12)

which leads to,

A(1) = C(1) = A(2) = C(2) = 0

A(1)
z = K(1)

mn sin(β(1)
x x) sin(β(1)

y y)[E(1)cos(β(1)
z z) + F (1)sin(β(1)

z z)]

A(2)
z = K(2)

mn sin(β(2)
x x) sin(β(2)

y y)[E(2)cos(β(2)
z (a− z)) + F (2)sin(β(2)

z (a− z))]
(2.13)

with,

β(1)
x =

m(1)π

a
, β(2)

x =
m(2)π

a
, β(1)

y =
n(1)π

a
, β(2)

y =
n(2)π

a

m(1) = 0, 1, 2, .. n(1) = 1, 2, .. m(2) = 0, 1, 2, .. n(2) = 1, 2, ..

(2.14)

The potential functions can be further simplified using boundary conditions for electric
fields at z = 0 and z = a planes.

E(1)
x (0 6 x 6 a, 0 6 y 6 a, z = 0) = E(1)

y (0 6 x 6 a, 0 6 y 6 a, z = 0) = 0

E(2)
x (0 6 x 6 a, 0 6 y 6 a, z = a) = E(2)

y (0 6 x 6 a, 0 6 y 6 a, z = a) = 0

F (1) = F (2) = 0

A(1)
z = K(1)

mn sin(β(1)
x x) sin(β(1)

y y) cos(β(1)
z z)

A(2)
z = K(2)

mn sin(β(2)
x x) sin(β(2)

y y) cos(β(2)
z (a− z))

(2.15)
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In order to find a proper expression which relates A(1)
z and A(2)

z , dielectric interface
must be examined. The boundary conditions for dielectric interface are given as,

n̂× (E(2) − E(1)) = 0

n̂× (H(2) −H(1)) = Js

(2.16)

Since the cavity doesn’t contain any source, right hand side of the boundary formula
for magnetic fields is equal to zero. Thus, tangential components of the electric and
magnetic fields across the boundary are continuous.

H(1)
x = H(2)

x , H(1)
y = H(2)

y , E(1)
x = E(2)

x , E(1)
y = E(2)

y at z = h1 (2.17)

Evaluating H(1)
x and H(2)

x at dielectric interface results,

H(1)
x =

β
(1)
y

µ
K(1)

mn sin(β(1)
x x) cos(β(1)

y y) cos(β(1)
z h1)

H(2)
x =

β
(2)
y

µ
K(2)

mn sin(β(2)
x x) cos(β(2)

y y) cos(β(2)
z (a− h1))

(2.18)

From (2.18) it is evident that β(1)
x = β

(2)
x and β(1)

y = β
(2)
y . Hence, the expressions are

reduced into the following form.

A(1)
z = K(1)

mn sin(βxx) sin(βyy) cos(β(1)
z z)

A(2)
z = K(2)

mn sin(βxx) sin(βyy) cos(β(2)
z (a− z))

βx =
mπ

a
m = 0, 1, 2, .. , βy =

nπ

a
n = 1, 2, ..

β(1) =

√
(βx)2 + (βy)2 + (β

(1)
z )2 = ω

√
µε1

β(2) =

√
(βx)2 + (βy)2 + (β

(2)
z )2 = ω

√
µε2

(2.19)

Continuity of the magnetic field expressions given in (2.18) results,

K(1)
mn cos(β

(1)
z h1) = K(2)

mn cos(β
(2)
z (a− h1)) (2.20)

Similarly, continuity of the electric fields across the boundary results,

β
(1)
z

ε1
K(1)

mn sin(β(1)
z h1) = −β

(2)
z

ε2
K(2)

mn sin(β(2)
z (a− h1)) (2.21)
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Dividing the (2.21) by (2.20) gives the characteristic equation;

β
(1)
z

ε1
tan(β(1)

z h1) +
β

(2)
z

ε2
tan(β(2)

z (a− h1)) = 0 (2.22)

where,

β(1)
z (ω) =

√
ω2µε1 −

(mπ
a

)2

−
(nπ
a

)2

β(2)
z (ω) =

√
ω2µε2 −

(mπ
a

)2

−
(nπ
a

)2
(2.23)

A similar approach can be used to obtain the characteristic equation for TE case, which
results,

β
(1)
z

µ
cot(β(1)

z h1) +
β

(2)
z

µ
cot(β(2)

z (a− h1)) = 0 (2.24)

From (2.23) and (2.24), it is inferred that the resonant frequency is obtained by
finding the roots of the trigonometric equation for a particular choice of m and n

numbers. Since the expressions cannot be simplified any further and there is not a
structured method to solve the equations, numerical methods (e.g Newton-Raphson
method) or graphical evaluations are required to find the solutions. Nevertheless, it
is possible to make rough estimations using perturbational techniques prior to solving
characteristic equation. In general, it can be shown that the resonant frequency of
a partially filled cavity for a particular mode, lie between the resonant frequencies of
uniform cavities filled with materials having dielectric constants ε1 and ε2, for the same
particular mode (Balanis, 1989; Collin, 1990).

f(ε2) < f(εpartial) < f(ε1) for ε2 > ε1 (2.25)

Periodicity of the functions implies that infinite number of solutions for a particular
m, n pair. However, it is generally sufficient to investigate only two roots with lowest
frequencies, for most practical applications. Although there is no proper numbering
convention like in uniform cavity case, a number p, which increases with respect to
the frequency for a particular m and n, can be defined (Harrington, 2001). Resulting
waveforms don’t have a regular pattern like uniform cavity resonance. Fields tend to
be concentrated in the region having higher permittivity and/or permeability. Both the
electric and the magnetic fields inside the cavity have z components for certain modes,
which are called hybrid modes.
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Figure 2.3 Magnetic field illustrations of an empty (left) and a partially filled cavity (right)

2.2 Cavity Problems without Analytical Solutions

As stated in previous section, filling a cavity partially with a material is useful
for tuning the resonance frequency without changing the dimensions. This may not
be always practical though, due to several limitations. In order to fill the cavity
with another dielectric up to a certain volume, at least one bulk material has to be
shaped to satisfy the dimensions, assuming that the second dielectric is vacuum or
air. However, shaping may not always be possible, depending on material and its
dimensions and even if it is, manufacturing process might introduce some defects
which cause erroneous operation. As a result, the materials which are used for tuning
the cavity, may have geometries and dimensions different than the cavity itself, like
shown in Figure 2.4.

x

z

y

Figure 2.4 An empty rectangular cavity with a pill-shaped dielectric material

Major problem for this case and many similar others, is the lack of the analytical
solutions. Although there are approximations for common cavity and dielectric
configurations in order to find resonance frequency (Harrington, 2001), they can’t

12



be generalized for every possible situation. For this reason, verification of these
structures are made using numerical methods. There are several numerical methods
for solving electromagnetic problems. Finite Element Method (FEM), Method of
Moments (MoM), Finite Difference Time Domain (FDTD) are some of the most
common techniques used today. Analysis of the cavity resonance problem by means
of FEM yields an eigenvalue problem, which, in result, brings the resonant frequency
information we want to find at first place.
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CHAPTER THREE
FINITE ELEMENT METHOD AND STEP-BY-STEP EIGENVALUE

PERTURBATION FOR CAVITY PROBLEM

3.1 Finite Element Method

Finite Element Method (FEM) is a numerical analysis tool for solving boundary
value problems defined by differential equations for a given domain. It is widely
used to solve many physical problems from different areas like electromagnetics,
thermodynamics, structural mechanics, fluid dynamics. Main motivation for using
FEM is to find approximate solutions to the problems that can’t be solved analytically.
Solution is obtained by dividing the entire domain into smaller pieces (discretization),
then solving a set of equations represented in matrix form (Logan, 2011).

Eigenvalue problems in FEM are special type of problems where the differential
equation and the boundary conditions are homogeneous, meaning no source exists in
the system. Resulting algebraic system can be expressed in the following form;

Aφ = λBφ (3.1)

where λ is an eigenvalue and φ is the eigenvector corresponding to λ. Typical
applications of the eigenvalue problem formulation for electromagnetics are waveguide
and cavity problems. Let us now review the general formulation of FEM, then its
application to resonant cavities as an eigenvalue problem.

3.1.1 General Finite Element Method Formulation

Mathematical foundations of FEM is based on classical methods for solving
boundary value problems. The two well known and widely used of these methods
are Galerkin method and Ritz’ variational method. Both formulations result the same
system of equations. Ritz’ formulation can be summarized briefly in the following
form.

Suppose that a boundary value problem is defined by a governing differential
equation in domain Ω, along with the boundary conditions on the boundary Γ.

Lφ̃ = f (3.2)
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where L is the differential operator, f is the excitation and φ̃ is the unknown term.
Let us assume the problem is real valued and L is a self-adjoint operator. Then, the
solution of (3.2) can be found by minimizing the following functional with respect to
φ̄.

F (φ̄) =
1

2
〈Lφ̄, φ̄〉 − 〈φ̄, f〉 (3.3)

where φ̄ is the trial function. It should be noted that the term φ̄ represents the field
expressions (electric field, magnetic field) for an electromagnetic problem. There are
generally two types of boundary conditions in electromagnetic problems. First one
is Dirichlet boundary condition which defines φ̄ at the boundaries and the second
condition is Neumann condition which determines the value of the derivative of φ̄
at boundaries. Implementation of Dirichlet conditions require explicit definition while
Neumann conditions are generally satisfied within the solution process automatically
(Jin, 2002).

Finite element analysis requires the solution domain to be discretized and divided
into smaller subdomains, which are also called as elements and they can be denoted by
Ωe for e = 1, 2, 3, ...M where M is the number of elements. For a three dimensional
geometry, these elements may have various shapes like brick, prism, tetrahedra.

(a)

(b)

Figure 3.1 (a) A tetrahedral element (b) Discretization of a cube with tetrahedral elements (Wilson,
1984)

The solution is obtained as a vector which represents the values of the unknown
term at node points. This type of modeling is called as nodal FEM. Values inside
the elements at arbitrary points are obtained by means of interpolation functions.
Type of the interpolation function is generally a trade-off between complexity and
accuracy. However, as long as the discretization is sufficiently refined, linear functions
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are favorable due their simplicity. For a mesh which is formed by tetrahedral elements,
unknown solution constituted with linear interpolation can be written in the following
form for a single element.

φ̄e =
4∑

i=1

N e
i φ

e
i = (N e)T (φe) (3.4)

where N e
i is the interpolation functions and φi is the value which must be found at

node i. Elemental functions contributes to the major problem in the following form;

F (φ̄) =
M∑
e=1

F e(φ̄e) (3.5)

where
F e(φ̄e) =

1

2

∫
Ωe

φ̄eL φ̄e dΩ−
∫

Ωe

fφ̄e dΩ (3.6)

Substituting (3.4) into (3.6),

F e =
1

2
(φe)T (Ke)(φe)− (φe)T (be)

Ke
ij =

∫
Ωe

N e
i LN e

j dΩ

bei =

∫
Ωe

fN e
i dΩ

(3.7)

where φe, be are 4× 1 column vectors, Ke is 4× 4 matrix. Returning back to original
formulation given in (3.5) with a global node numbering convention gives,

F =
1

2
(φ)T (K)(φ)− (φ)T (b)

K =
M∑
e=1

Ke

b =
M∑
e=1

be

(3.8)

where K is n × n matrix known as the stiffness matrix and b is a n × 1 vector. n is
the total number of the nodes obtained by the discretization of the entire domain. The
minimization of the functional F given in (3.8) results,
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Kφ = b (3.9)

The system given in (3.9) can be solved right after the boundary conditions are applied.
Imposition of Dirichlet condition in this matrix system is very simple as it can be
accomplished by setting the entire matrix line and column concerning the boundary
node to zero, except the diagonal element, which should be set to 1. On the other
hand, implementation of Neumann condition is more complicated as it requires the
alteration of functional. However, as long as the interpolation functions don’t violate
continuity, Neumann conditions don’t have to be enforced explicitly. It must be noted
that though, this approach will cause spurious solutions since the conditions cannot be
satisfied completely due to discretization (Gunel & Zoral, 2012; Rahman et al., 1991).

For the case where no excitation exists in the given system, right-hand side of (3.9)
reduces to zero. If the stiffness matrix can be decomposed in the following form,

K = A− λB (3.10)

then (3.9) becomes,

Aφ = λBφ (3.11)

which is in the form of an eigenvalue problem. Let us now apply FEM formulation to
a rectangular cavity.

3.1.2 Finite Element Formulation For Rectangular Cavity

The analysis of a rectangular cavity requires either the electric or magnetic fields to
be treated, which are both vector quantities. Therefore, modifications are required
in the formulation of the problem. It should be noted that using magnetic field
formulation provides a significant advantage for dielectric cavity problem since the
magnetic field doesn’t have any discontinuities in the structure (Rahman et al., 1991).
Hence, the magnetic field formulation will be used for the problem.

For the time harmonic case, magnetic field expression inside of a rectangular cavity
can be obtained by solving,

∇×
(

1

εr
∇×H

)
− k2

0µrH = 0 (3.12)
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with the following boundary condition at perfect electrical conductor surfaces.

n̂ ·H = 0 (3.13)

The functional which corresponds to this boundary value problem can be written as,

F (H) =
1

2

∫∫∫
V

[
1

εr
(∇×H) · (∇×H)− k2

0µrH ·H
]
dV (3.14)

Simplifying the expression in terms of Hx, Hy, Hz results,

F =
1

2

∫∫∫
v

1

εr

[(
∂Hz

∂y
− ∂Hy

∂z

)2

+

(
∂Hx

∂z
− ∂Hz

∂x

)2

+

(
∂Hy

∂x
− ∂Hx

∂y

)2

−k2
0µrεr

(
H2

x +H2
y +H2

z

) ]
dV

(3.15)

Due to the dependency between Hx, Hy, Hz, resulting system of equations contains
coupling terms, which are also in matrix form.Kxx Kxy Kxz

Kyx Kyy Kyz

Kzx Kzy Kzz


Hx

Hy

Hz

 = 0 (3.16)

Rank of the matrix is 3n, where n is the total number of the nodes. Individual parts of
this matrix can be expressed as,

Kxx =
M∑
e=1

1

εr

∫∫∫
V e

[(
∂N e

∂y

)(
∂N e

∂y

)T

+

(
∂N e

∂z

)(
∂N e

∂z

)T

−k2
0µrεr(N

e)(N e)T
]
dV

Kyy =
M∑
e=1

1

εr

∫∫∫
V e

[(
∂N e

∂z

)(
∂N e

∂z

)T

+

(
∂N e

∂x

)(
∂N e

∂x

)T

−k2
0µrεr(N

e)(N e)T
]
dV
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Kzz =
M∑
e=1

1

εr

∫∫∫
V e

[(
∂N e

∂x

)(
∂N e

∂x

)T

+

(
∂N e

∂y

)(
∂N e

∂y

)T

−k2
0µrεr(N

e)(N e)T
]
dV

Kpq =
M∑
e=1

1

εr

∫∫∫
V e

[(
∂N e

∂p

)(
∂N e

∂q

)T ]
dV p, q = x, y, z p 6= q

(3.17)

If the following definitons are made,

Bxx =
M∑
e=1

∫∫∫
V e

(N e)(N e)TdV

Byy =
M∑
e=1

∫∫∫
V e

(N e)(N e)TdV

Bzz =
M∑
e=1

∫∫∫
V e

(N e)(N e)TdV

Axx = Kxx − k2
0µrBxx

Ayy = Kyy − k2
0µrByy

Azz = Kzz − k2
0µrBzz

Apq = Kpq p, q = x, y, z p 6= q

(3.18)

the system of equations can be separated in the following form,Axx Axy Axz

Ayx Ayy Ayz

Azx Azy Azz


Hx

Hy

Hz

 = k2
0µr

Bxx 0 0

0 Byy 0

0 0 Bzz


Hx

Hy

Hz

 (3.19)

which is an eigenvalue-eigenvector problem. There are various algorithms in literature
for solving (3.19). Symmetry and sparsity properties of the matrices allow the
computations to be more efficient (Bai et al., 2000). The accuracy of the resulting
eigenvalues and eigenvectors mostly depends on the number of the nodes, which
affects the solution time and memory requirements exponentially.
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3.1.3 Spurious Modes

One of the most intriguing concepts in finite element analysis is the existence of
nonphysical (spurious) solutions. There are many studies which address this issue
for waveguides particularly (Mabaya et al., 1981; Ise et al., 1990; Sun et al., 1995),
as well as different methods to deal with. Reasons for this problem can be given as
the representation of the differential equation in weak form and discretization of the
domain, which is mentioned previously.

There are various methods to deal with spurious solutions. One approach is based
on selecting continuous interpolation functions whose derivatives are also continuous,
namely, C1 functions. This approach hasn’t become popular due to the difficulties
of implementation. Another method which is widely used today is using edge based
elements instead of nodal ones (Cendes, 1991). This method is known as Vector FEM

and requires more complicated formulations compared to nodal FEM. However, this
approach is out of the scope of this study, therefore an alternative way, namely, penalty
term method is investigated. Penalty term method relies on adding a divergence term
to the functional, which is based on the fact that spurious solutions don’t satisfy the
following condition.

∇ ·H = 0 (3.20)

Hence, the functional is modified in the following form.

F (H) =
1

2

∫∫∫
V

[
1

εr
(∇×H) · (∇×H) +

s

µ2
rεr

[∇ · (µrH)]2 − k2
0µrH ·H

]
dV

(3.21)

where s is the penalty coefficient. It should be noted that introducing the penalty
term doesn’t violate symmetry or sparsity and don’t increase the size of the problem.
Although spurious solutions are not completely avoided, eigenvalues which correspond
to spurious solutions are mostly shifted towards higher frequencies. This is a
significant advantage for cavity problem as the modes of interest generally cover lower
frequencies.

3.2 Step-By-Step Eigenvalue Perturbation Technique For Resonant Cavity
Structures

Certain parameters of electromagnetic resonant structures may be slightly varied
for tuning, optimization or sensitivity analysis. In literature, this problem has been
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referred as perturbation problem. Perturbation of these structures with respect to
a geometrical or a material parameter results in generalized eigenvalue-eigenvector
perturbation problem. If the perturbation is sufficiently small, the well-known classical
perturbation theory can be used to calculate resonant frequencies approximately
(Van Bladel, 2007). On the other hand, if the perturbation is relatively large, the
perturbation may be divided into smaller steps and the problem can be solved
iteratively. Commercial FEM softwares handle this problem by solving the eigenvalue-
eigenvector problem for each step successively, but this is time consuming since the
number of unknowns may easily exceed several thousands and the computational costs
of the algorithms for solving such problem are no less than O(n2) (Bai et al., 2000).
However, it is possible to examine the system for parameter variations by means of the
step-by-step eigenvalue perturbation technique (Gunel & Zoral, 2014; Lu et al., 1993).
In this section, the classical eigenvalue perturbation technique will be reviewed briefly,
then the step-by-step perturbation method for a partially filled cavity will be explained.

3.2.1 Classical Eigenvalue Perturbation Method

Let us consider the generalized eigenvalue problem obtained by finite element
formulation given in the following form;

A0φ0,i = λ0,iB0φ0,i (3.22)

where, A0,B0 ∈ RN×N and symmetric Hermitian matrices, φ0 ∈ RN , i = 1, 2, . . . , N

Applying small perturbations to matrices A0 and B0 such that ||∆A|| � ||A0||,
||∆B|| � ||B0|| results a new eigenvalue problem in the following form;

Aφi = λiBφi (3.23)

where,
A = A0 +∆A

B = B0 +∆B

φi = φ0,i +∆φi

λi = λ0,i +∆λi

(3.24)
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then the perturbed eigenvalues-eigenvectors can be obtained by (Stewart & Sun, 1990),

λi =
(φ0,i)

TA(φ0,i)

(φ0,i)TB(φ0,i)

φi = φ0,i +
∑
j,j 6=i

(φ0,j)
T (A− λiB)(φ0,i)

λi − λ0,j

φ0,j

(3.25)

In the case of a permittivity perturbation of the resonant cavity where the eigenvalue
problem is modeled by (3.21), ∆B = 0, B = B0. It is evident that ||∆A|| � ||A0||
may not always be satisfied as the typical values for relative permittivity may vary
between 1-100. Overcoming this problem is possible by dividing the perturbation into
smaller steps and solving it iteratively.

3.2.2 Step-by-Step Eigenvalue Perturbation Method

Suppose that (3.22) is the FEM formulation obtained from (3.21) for the partially
filled cavity illustrated in Figure 2.2 where ε1 = ε0εr1 , ε2 = ε0εr2 . If the permittivity of
the material in the region 1 is varied from ε1 to εfinal in K steps, the problem can be
expressed in the following form;

[
A(k) +∆f (k)∆A

]
φ

(k+1)
i = λ

(k+1)
i B(k)φ

(k+1)
i (3.26)

where,
ε(k) − ε(k−1) = ∆ε =

εfinal − ε1
K

f : R+ → R+ f(ε) =
1

ε

∆f (k) = f
(
ε(k)
)
− f

(
ε(k−1)

)
A(0) = A0 B(0) = B0

λ
(0)
i = λ0,i φ

(0)
i = φ0,i

(3.27)

and k denotes the iteration step (Gunel & Zoral, 2010).

It is unnecessary to find all the eigenvalues for a resonant cavity problem since the
modes of interest are generally a few having the smallest frequencies. Suppose that
FEM matrices are N ×N and the number of modes which are interested is N0 where
N > N0. If the original eigenvalue problem is written in the matrix form such that,

[
A(k) +∆f (k)∆A

]
Φ(k+1) = B(k)Φ(k+1)Λ(k+1) (3.28)
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where,
Φ(k) =

[
φ

(k)
1 φ

(k)
2 . . . φ

(k)
N

]
Λ(k) = diag

(
λ

(k)
1 λ

(k)
2 . . . λ

(k)
N

) (3.29)

Since A(k), B(k) are real symmetric matrices and Φ(k) is the matrix whose column
elements (eigenvectors) create an orthonormal basis,

Λ(k) = (Φ(k))TA(k)(Φ(k))

I = (Φ(k))TB(k)(Φ(k))
(3.30)

where I is the identity matrix. If the following definitions are made,

Φ(k+1) = Φ(k)Y
(k)
N0×N0

Φ(k) =
[
φ

(k)
1 φ

(k)
2 . . . φ

(k)
N0

] (3.31)

then (3.28) can be written in the following form[
A

(k)
N0×N0

+∆f (k)∆A
]

Φ(k)Y(k) = B(k)Φ(k)Y(k)Λ(k+1) (3.32)

If the expression is multiplied by (Φ(k))T from both sides,[
Λ

(k)
N0×N0

+∆f (k)(Φ(k))T∆A(Φ(k))
]

Y(k) = I Y(k)Λ(k+1) (3.33)

Note that (3.33) is smaller in terms of problem size, compared to (3.26). That provides
a significant advantage in terms of computational cost for solving the problem (Gunel
& Zoral, 2010).

A question might arise here about what the step size, ∆ε and the number of
solutions, N0 should be. In fact, this choice mostly depends on the problem and no
single answer can be given, but there is indeed a compromise between solution time
and accuracy. It should be noted that the accuracy of the initial solutions has also
major effect as well as the presence of spurious solutions. In the following chapter,
performance of the method will be evaluated by numerical results.
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CHAPTER FOUR
SOFTWARE DEVELOPMENT AND NUMERICAL RESULTS

4.1 Software Development

The performance evaluation of the step-by-step eigenvalue perturbation technique
is made by implementing the method using Python (v2.7) scripting language. As it is
seen in previous chapter, the step-by-step perturbation technique is heavily dependent
on not only the results of FEM but also intermediary data used in FEM such as
the matrices, the boundaries and the mesh structure. Unfortunately, commercially
available common electromagnetic field solvers (e.g. Ansoft HFSS, CST Studio)
don’t provide this information to the user. Therefore, a FEM routine is written in the
software. A Graphical User Interface (GUI) front-end is used to control the parameters
and execute the operations. Software is mainly developed for Linux operating systems,
but it is possible to adapt for other OS as well with slight modifications. Tests are
performed on a machine which has the following specifications;

• Linux Mint 15

• Intel R© CoreTM i7 620M @ 2.67 GHz 64-bit CPU

• 6 GB RAM

Let us now further investigate the implementation of the methods as software routines.

4.1.1 FEM Routine

Prior to any mathematical operation, FEM requires the geometry to be discretized
with mesh structures. Mesh generation is another problem by itself and it is irrelevant
to the essence of the perturbation problem. Therefore, an open source software ,
namely Gmsh, is used for this purpose (Geuzaine & Remacle, 2009). Gmsh provides
its own GUI to perform various operations like creating a geometry, mesh generation
and visualization (Figure 4.1). Underlying processes are based on command line
interactions with the operating system. In order to automatize the discretization process
in FEM routine, command line interactions are favorable. There are two main steps for
receiving the discretized geometry data in FEM routine;

1. Defining the structural properties of the geometry within the .geo file which is
created previously.
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Figure 4.1 Gmsh GUI

2. Execution of mesh command in Gmsh, importing .msh file that is created by
Gmsh in the FEM routine and reading the data.

An important parameter, discretization interval, is defined in the .geo file initially.
Therefore, .geo file is partially modified within the FEM routine. Code is optimized for
the geometries that are analyzed in this study and may require some modifications for
different cases. There are two geometrical structures which are pre-defined, partially-
filled rectangular cavity and rectangular cavity with cylindrical box.

After the geometrical data is obtained, the remaining FEM procedure is the same as
given in the previous chapter. A flowchart which summarizes the operation is given in
Figure 4.2.

Mathematical operations in FEM procedure, especially solving the eigenvalue
problem, should be treated carefully for software implementation to meet the
requirements in terms of time and accuracy. The major issue in this case is solving
the eigenvalue problem since the entire FEM procedure up to solving the eigenvalue
problem, which consists of meshing, reading data, creating interpolation functions and
matrix assembly, can be completed in a few seconds while solving the eigenvalue
problem may take several hours or even days to complete, depending on the number of
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Figure 4.2 FEM routine flowchart for an eigenvalue problem

the unknowns and the system which executes the algorithm. Hence, it is essential
to speed up the solution procedure of the eigenvalue problem. Besides choosing
the optimum algorithm in terms of time and accuracy, one must also consider
to execute the algorithm as fast as possible. Therefore, for the implementation
of the numerical operations like norm, determinant, matrix addition-subtraction,
augmentation, eigenvalue solution that the FEM procedure includes, SciPy and Numpy
(Oliphant, 2007) libraries are used. The major contribution of these libraries is
accelerating the solution of the eigenvalue problem by means of LAPACK linear
algebra package and ARPACK (ARnoldi PACKage) eigenvalue algorithm package,
which are written with FORTRAN in order to provide maximum speed. There are two
functions used for solving the eigenvalue problem;

1. (scipy.linalg.eig): Finds all the eigenvalues and corresponding eigenvectors.
Underlying algorithm is the QR algorithm which is based on QR factorization
(Horn & Johnson, 1985). Computational cost of the algorithm is normally
O(n3). However, if the right-hand side matrix is in Hessenberg form, the cost is
reduced to O(n2) (Golub & Van Loan, 1996).

2. (scipy.sparse.linalg.eigs): Finds only specific number of eigenvalues which are
smaller than some user-defined value. A tolerance parameter is used to limit the
number of iterations. Function is based on Implicitly Restarted Lanczos Method
(IRLM) (Calvetti et al., 1994). It is not always guaranteed all the eigenvalues,
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which correspond to a resonant mode, to be found. Significantly faster than
scipy.linalg.eig function for most cases.

A simple benchmark is performed by measuring the solution time of these two
functions for different number of unknowns. Typical FEM matrices are used for the
test. Results are given in Table 4.1. IRLM algorithm is executed with the following
parameters; Number of eigenvalues: 30, Largest eigenvalue: 600000, Tolerance: 1.

Table 4.1 SciPy eigenvalue algorithms benchmark

Number of unknowns
3555 2253 1620 813 165

Method
QR 939 secs 238 secs 72 secs 8.3 secs 0.22 secs

IRLM 38 secs 12 secs 1.7 secs 0.97 secs 0.03 secs

According to the given information, the most convenient method to solve a problem
is to use QR algorithm initially with a rough grid for having a perspective about the
eigenvalues, then re-solving the problem with IRLM using a denser mesh to obtain
more accurate results.

4.1.2 Step-By-Step Perturbation Routine

Step-by-step perturbation routine is closely dependent on the FEM routine and
takes the following parameters as input arguments.

• Initial eigenvalues & eigenvectors

• Stiffness matrix

• Node table

• Boundary nodes

• Element (tetrahedra) table

• Geometry information (e.g. dimensions, regions)

• Amount of dielectric perturbation

• Number of perturbation steps

• Number of perturbation vectors (N0)
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NumPy and SciPy libraries are used in the perturbation routine as well and the
eigenvalue function is scipy.linalg.eig, the same as used in the FEM routine. Thus, the
time requirements of the perturbation process can be roughly estimated by referring
to Table 4.1. Note that the method used here involves the solution of an eigenvalue
problem, like given in (3.33), at each perturbation step. This resulted the step size
variations unnecessary for improving the accuracy. On the other hand, observing the
parametric history is also a major concern which requires the problem to be divided
into several steps.

4.1.3 GUI

A dedicated GUI is designed to control FEM and perturbation parameters, initiate
the process and observe the results of these processes. GUI is written by using
wxPython library. There are two window classes defined for GUI structure.

1. Control Panel: Parameters for FEM and perturbation procedures are set, process
is initiated (Figure 4.3).

2. Results Window: The eigenvalues and the corresponding resonant frequencies
are listed in a table. Magnetic fields (eigenvectors) can be plotted. The
eigenvalue history is provided for tracking the values, if perturbation is
performed.

Figure 4.3 GUI control panel of the created software

It is possible to perform only FEM procedure by unselecting perturbation option.
If the perturbation option is selected, FEM and perturbation procedures are executed
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respectively, then two result windows appear after all operations are completed.

Figure 4.4 FEM and perturbation result windows of the created software

Noticable difference between FEM and perturbation result windows, as seen in
Figure 4.4, is the eigenvalue history, which is present in perturbation results and
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shows the information about eigenvalues at each perturbation step. Magnetic field
components (eigenvectors) can be viewed as cross-sectional plots in both perturbation
and FEM results. The field intensity plots are also available. Plotting operations are
performed by exporting the data into .m files, then plotting it using Octave. Plotting
operations are handled by system calls, hence, no user intervention is required to run
Octave explicitly. A sample set of plots is shown in Figure 4.5.

Figure 4.5 Magnetic field components (Hx, Hy , Hz) for 10×10×10mm cubic cavity

4.1.4 Future Work For Software

Current capabilities of the software are very limited due to external dependencies.
As mentioned previously, there are lots of external libraries and software used in the
development. The names and the versions of all libraries and software used in test and
development are listed below.

• Eclipse 3.8.1

• PyDev 3.0.0.2

• Python 2.7

• Gmsh 2.8.4 Linux

• NumPy 1.7

• SciPy 0.11

• Octave 3.8.0

• wxPython 2.8.12

There are two major improvements which should be implemented. First, FEM and the
perturbation procedures must be generalized to cover all kinds of geometries. This
alteration also requires some modifications on GUI. Secondly, Octave dependency
must be removed altogether. For plotting tasks, SciPy packages can be used. However,
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data import and export from/to Octave can be optional for flexibility. It is not possible
to remove NumPy and SciPy dependencies as they provide most critical resources for
the solution of the main problem.

4.2 Numerical Results

The performance and the results produced by FEM and the step-by-step perturbation
algorithm are affected by the nature of the problem and the parameters related with
these methods. Thus, both FEM and the step-by-step perturbation method should be
tested with the software that is described recently. Despite that the major concern
of this study is to evaluate the performance of the step-by-step perturbation method,
examining the outputs of the FEM implementation is critical as well since FEM
provides the basis for the entire perturbation process.

Analysis is made by changing the software parameters and conditions, then
observing their effects over the results. Two different cavity structures are used as
test cases;

1. Uniformly filled cubic cavity

2. Partially filled cubic cavity

Results will be compared with Ansoft HFSS in several cases. Furthermore, the
analytical solutions for the structures are also used for evaluating the performance with
a solid reference.

4.2.1 FEM Results

FEM results will be examined for two parameters; mesh resolution and divergence
coefficient against spurious solutions. A cubic cavity whose one side is 10mm and
filled with vacuum (εr = 1) is used as the test case. The analytical results for the
resonant frequencies of the structure are given in Table 4.2.

Table 4.2 First 12 resonant frequencies of a cubic cavity with 10×10×10 mm, εr = 1

Mode 1 2 3 4 5 6 7 8 9 10 11 12

Freq (GHz) 21.213 25.981 33.541 36.742
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4.2.1.1 Mesh Resolution

One of the most important parameters for the software, and for the FEM in general,
is the size of the problem which is ultimately determined by the mesh structure. The
higher the mesh resolution is, the more accuracy is obtained in the expense of longer
solution time due to larger matrices. A general scheme for the variation of the solution
time with respect to the number of unknowns is given in 4.1. Mesh resolution is
determined by setting a characteristic length, which is defined for the individual points
of the geometry and propagated throughout the structure during meshing process.
Hence, elements are intended to be uniform, or at least similar in terms of shape and
volume. However, it is possible for some grids to have tetrahedral elements whose
edge lengths are much larger or smaller than the characteristic length, but it is a rare
situation in general. Let us now demonstrate how the accuracy varies if the problem
size increases due to denser meshing. Cubic cavity problem (10×10×10mm, εr = 1)
is solved by using QR algorithm for 4 different characteristic lengths; 5mm, 2mm,
1mm, 0.75mm. The resulting outputs are shown in Figure 4.6.

It can be noticed that a well-refined grid produce more accurate results as the pattern
of the resonant frequencies is similar to the analytical solution, especially for 1 and
0.75mm characteristic lengths. It should be noted that the results given in Figure
4.6(c) and 4.6(d) are very close although the difference between their solution times
is enormous where 1mm characteristic length produced 3500 unknowns, solved in
15 minutes and 0.75mm characteristic length did 8700 unknowns, solved in 6 hours.
It is possible to solve the problem with IRLM algorithm using a denser grid, but it
would be unnecessary for this and many similar cases. On the other hand, it has been
observed that characteristic lengths beyond 0.6mm causes memory problems on the
test machine, thus, it is not possible to implement altogether.

Presence of the spurious modes is evident for all cases and they occur as either
multiple solutions near a real one or non-existent frequencies compared to the
analytical results. Analyses are performed where divergence coefficient is set to 1,
which has been beneficial for the elimination to a certain degree. Verifying the validity
of the solutions might be possible by examining the field plots whether they show a
meaningful pattern. Nonetheless, it is still possible for a spurious solution to have a
field pattern similar to a real solution.
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(a) (b)

(c) (d)

Figure 4.6 First 20 eigenvalues found by FEM routine for the tetrahedral characteristic lengths (a) 5mm
(b) 2mm (c) 1mm (d) 0.75mm

4.2.1.2 Divergence Coefficient

Spurious modes are non-physical solutions which occur due to weak formulation of
the governing differential equation in nodal FEM. In the previous chapter, a divergence
term was written in the functional in order to force them towards higher frequencies,
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which are much less of interest. The divergence term coefficient s from (3.21) is
chosen as 1 for many cases as optimum (Jin, 2002). However, this should not always
be a default choice since different values may produce better results, depending on the
circumstances. Let us now demonstrate the effects of this coefficient by solving the
cubic cavity problem with 4 different values, s=0, s=0.5, s=1, s=1.5. QR algorithm
with 1mm characteristic length is used for the solution. In order to evaluate the results
comparatively, the results obtained from Ansoft HFSS will be given first.

Ansoft HFSS Results: The eigenvalues and corresponding resonant frequencies
obtained by HFSS is no different than the analytical solution. Results for the 12 modes
with the lowest frequencies are given in Table 4.3.

Table 4.3 Lowest 12 resonant frequencies of a 10×10×10 mm, εr = 1 cavity found by HFSS

Mode 1 2 3 4 5 6

Freq (GHz) 21.201 21.201 21.202 25.969 25.969 33.529

Mode 7 8 9 10 11 12

Freq (GHz) 33.541 33.541 33.541 33.541 33.541 36.741

The magnetic field intensity on the walls of the cavity for the first mode (21.201 GHz)
is shown in Figure 4.7.

Figure 4.7 Magnetic field intensity plot from Ansoft HFSS for cubic cavity

s=0: Lack of any divergence term in the functional results many spurious modes to
occur. There is no concentration near a single value, instead, eigenvalues are spread
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over a wide interval of frequencies. Outputs between 20-25 GHz are shown in Figure
4.8. A serious problem with this case is the irregular field patterns occurring for each

Figure 4.8 Resonant frequencies for a cubic cavity (10×10×10 mm, εr = 1) between 20-25 GHz for
s=0

solution which makes impossible to identify whether a solution is spurious or not.
Hence, s=0 is not a proper choice. The field plots for the mode at 21.5239 GHz are
shown in Figure 4.9.

s=0.5: Larger values of the spurious coefficient results the solutions with smallest
frequencies become closer to the actual resonant frequencies as expected since
spurious modes are shifted towards higher frequencies, as shown in Figure 4.10.

The magnetic field intensity for the mode with 21.9117 GHz frequency is shown in
Figure 4.11.
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Figure 4.9 The field plots of Hx, Hy , Hz for s=0 at 21.5239 GHz

Figure 4.10 The smallest eigenvalues for s=0.5
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Figure 4.11 The magnetic field intensity plot for s=0.5 at 21.9117 GHz

The field pattern is not random anymore, but it is inconsistent with HFSS result.
However, it can be inferred that the frequencies obtained from the process are much
lower than they were supposed to be as the field pattern given in Figure 4.11 may
belong to a mode whose mnp configuration is in the 22p, 2n2 or m22 form (2×2
peaks on the upper wall), which should have occurred at much higher frequencies.

s=1: The results for this case were actually given in Figure 4.6(c) and it was discussed
that the frequencies are consistent with the analytical solution. However, the field
patterns must also be investigated to validate the accuracy because of the mismatch
between the field patterns and the resonant frequency of the solutions, like in the case
of s=0.5. The magnetic field intensity plots of all 6 solutions near 21.5 GHz are given
in Figure 4.12. The field intensity plots show some resemblance with HFSS result from
certain cross-sectional views but don’t match it completely. On the other hand, there
are 6 solutions instead of 3 which leads the presence of spurious solutions. Intuitively,
it can be claimed that increasing the divergence coefficient s, would eventually result
correct number of modes with the correct field patterns because that was the situation
when s is changed from 0 to 1. This assumption is theoretically correct since the real
solutions correspond to physically existent electromagnetic fields whose divergence is
equal to zero in source-free region. Thus, increasing the divergence parameter s should
have no effect over the real solutions. However, that is not the case in practice.
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Figure 4.12 The magnetic field intensity plots of 6 eigenvalues near 21.5 GHz for s=1

s=1.5: Further increase in divergence coefficient results with a frequency shift for all
solutions, as shown in Figure 4.13. The amount of shift is larger for spurious solutions,
as expected. Three modes, occured near 22.5 GHz and having index numbers 686, 687,
688 are those dominant modes that should have been near 21 GHz. Following three
modes, near 25 GHz, are the spurious that were found near 21 GHz in the previous
configuration. Those which should have occurred at 25 GHz ideally, are located near
27 GHz. Field patterns for the three modes near 22 GHz are shown in Figure 4.14.
The similarity between the field patterns is noticeable compared to previous cases, but
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Figure 4.13 The smallest eigenvalues for s=1.5
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Figure 4.14 The field plots of the modes for s=1.5 near 22.5 GHz
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s=1.5 is not used for the step-by-step eigenvalue perturbation process, instead, s=1 is
used. This is mostly due to performance evaluation of the perturbation method would
be easier when eigenvalues are inspected instead of field quantities. Since the accuracy
of the eigenvalues produced by FEM routine is highest for s=1, this choice is logical. It
is still possible to improve the accuracy by increasing the mesh resolution. Figure 4.15
shows the resulting eigenvalues for s=1.5 and characteristic length is 0.75mm. The

Figure 4.15 The smallest eigenvalues for s=1.5, characteristic length=0.75mm

results for two cases given in Figures 4.13 and 4.15 respectively, differ by only small
margins whereas the time and memory requirements for the second case are several
times larger than the first one. Although the problem is solved by IRLM algorithm in
a relatively short time, prior knowledge about the solution is essential. It is unlikely to
have such valuable information for every cavity problem as many of them don’t have
any analytical expression for the solution or can’t be analyzed with FEM in a short
while. Further increase in the mesh resolution could improve the situation but this
resulted malfunction on the test computer, as indicated before. Ultimately, diminishing
the effects of the large spurious coefficient values by increasing the mesh resolution, is
not feasible.

40



4.2.2 Step-By-Step Eigenvalue Perturbation Results

The performance evaluation of the step-by-step perturbation method is mainly
carried out by varying two parameters; the number of the perturbation steps and
the number of the eigenvalues/eigenvectors tracked in the process. Additionally,
limitations of the perturbation process and the effects of the spurious modes are also
presented. A partially filled cavity is used as the test case for verification, due to
having an analytical expression for its resonant frequencies, as given in Chapter 2.
Ansoft HFSS will be also used as reference. Common parameters used for the cavity
can be described as, 10×10×10mm dimensions, %50 fill ratio, normal vector of the
interface plane towards ẑ direction (see Figure 2.2), first region relative permittivity
εr1=1, second region relative permittivity (perturbation parameter) is varied such that
16 εr2 610. FEM parameters are chosen as; s=1, characteristic length=1mm. It can
be noticed that the dielectric variation of the second region (16 εr2 610) where εr1=1,
correspond to the homogeneous cavity case for either in the beginning or in the end of
the perturbation. Analysis for this case has been given previously. The results for the
opposite case where εr2=10 should also be given before the perturbational analysis.

Resonant frequencies of the partially filled cavity structure can be obtained by
using the characteristic equations given in (2.22) and (2.24). Unfortunately, resonant
frequency cannot be expressed explicitly like (2.8), therefore, roots of the characteristic
equations are obtained numerically by locating the zero-crossing points of the sampled
curve.

Table 4.4 Lowest 12 resonant frequencies of a 10×10×10 mm, εr1 = 1, εr2 = 4 partially filled cavity

Mode 1 2 3 4 5 6

Freq (GHz) 12.52 15.01 18.8 20.38

Mode 7 8 9 10 11 12

Freq (GHz) 20.38 23.18 24.4 25.07 25.58

Partially filled cavity has lower resonant frequencies compared to vacuum filled cavity,
as expected. Analyzing the same structure by using HFSS, shows an interesting result,
as given in Table 4.5.
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Table 4.5 Lowest 21 resonant frequencies of the partially filled cavity obtained from HFSS

Mode 1 2 3 4 5 6 7

Freq (GHz) 12.455 12.527 12.528 15.02 18.13 18.134 18.837

Mode 8 9 10 11 12 13 14

Freq (GHz) 18.848 20.428 20.443 22.369 23.214 23.225 24.532

Mode 15 16 17 18 19 20 21

Freq (GHz) 24.756 24.789 25.131 25.356 25.697 25.703 26.458

The number of the resonant frequencies is higher in HFSS’ results for the same
interval and these frequencies seem to be degenerate with other modes. Thus, the
number of the resonance modes for the same frequency interval is higher in HFSS’
results. This is not a major problem if only the frequencies where resonance occur, are
sought. However, it should be known that these additional solutions also correspond to
the physically existent modes and they are most likely in hybrid form.

4.2.2.1 Number of Perturbation Steps

Main motivation behind the step-by-step perturbation method is to divide the total
variation into smaller steps where the amount of perturbation is large. Consequently,
the number of the perturbation steps is a trade-off between solution time and accuracy.
It should be noted that the amount of the total perturbation is also critical due to
affecting the step size, which is actually the main parameter related with the accuracy.
Hence, all the tests are performed with the same amount of total perturbation. Let us
now demonstrate the results of three different perturbation process where the number
of the initial eigenvectors is 40 (total eigenvectors: 3555), number of perturbation
steps are chosen as 5, 20, 80 and relative permittivity of the perturbation region is
varied from 4 to 1. The results are given as the variation of the resonant frequencies
for a certain mode with respect to the relative permittivity of the perturbation region,
in Figure 4.16. Variation of the analytical solution is also given for comparison. Mode
number is arranged such that the dominant mode, either TM110 or TE011 or TE101, is
tracked. The figures indicate that all three cases have similar characteristics. Resonant
frequencies are always higher than the analytical results for all cases. The average
errors between the analytical and the perturbation solutions are 713, 717, 738 MHz for
80, 20, 5 steps, respectively. That implies the accuracy gets better when the number of
steps are increased, the differences are barely visible though. On the other hand, time
requirements increase linearly with respect to the number of steps. Nonetheless, the
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Figure 4.16 Perturbation analysis of the partially filled cavity by (a) 80 steps (b) 20 steps (c) 5 steps,
from εr2=4 to 1

step-by-step perturbation procedure does not take a long time to complete in general
as the longest time measured was 118 seconds for 80 steps.

4.2.2.2 Eigenvalue Identification & Perturbation Interval

It should be noted that no restriction or condition has been given about the
eigenvalues or the perturbation process’ itself in the recent analysis but the accuracy
of the results mostly depends on to identify the correct eigenvalues and to realize the
limitations of the perturbation process. Let us now give an example where the process
is reversed such that the relative permittivity of the perturbation region is incremented.
Figure 4.17 shows the results for perturbation where the relative permittivity of the
perturbation region is initialized from 1, finalized at 4 and 10, total number of steps are
5 and 20.

Figure 4.17 shows that the error between the analytical and the perturbation results
increase with respect to the relative permittivity, on the contrary of the previous case.
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(a) εr2=4, 5 steps
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(b) εr2=4, 20 steps
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(c) εr2=10, 5 steps
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(d) εr2=10, 20 steps

Figure 4.17 Perturbation analysis from εr1=1 to εr2=4, 10 by 5, 20 steps

Additionally, increased number of perturbation steps had no visible benefit in terms
of accuracy. Therefore it can be deducted that a wrong choice of eigenvalue has been
made for representing the mode, despite that there was no significant error initially.
Furthermore, it is possible that different eigenvalues may align with the analytical
solution at different parts of the perturbation interval. This argument can be justified
by investigating the variations of the different eigenvalues. Figure 4.18 shows the
perturbation results for two different eigenvalues along with the same mode.

Results in Figure 4.18 indicate that the variation of the eigenvalues may not align
with the ideal solution throughout the perturbation interval. The eigenvalue given in
Figure 4.18(a) match the ideal result at the end of the interval and the eigenvalue in
Figure 4.18(b) does at the beginning. From the user perspective, it may not be possible
to identify the correct perturbation solution since there might not be a reference
(i.e. analytical solution) to compare. Investigating the characteristics of multiple
eigenvalues can provide useful information though. Figure 4.19 shows the variation
of 9 eigenvalues during the perturbation process.

44



2 4 6 8 10

8

10

12

14

16

18

20

22

Relative permittivity

F
re

q
u
e
n
c
y
 (

G
H

z
)

 

 

2 4 6 8 10
0

5

10

15

20

25

30

E
rr

o
r 

(%
)

Perturbation

Analytical

Error

(a)

2 4 6 8 10

8

10

12

14

16

18

20

22

Relative permittivity

F
re

q
u
e
n
c
y
 (

G
H

z
)

 

 

2 4 6 8 10
0

5

10

15

20

25

30

E
rr

o
r 

(%
)

Perturbation

Analytical

Error

(b)

Figure 4.18 Deflection of eigenvalues during the perturbation process
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Figure 4.19 Variation and deflection of nine eigenvalues during the perturbation process

It can be noticed that the larger the perturbation interval is, the more likely to
observe a cross-pass between the curves. This is an important limitation in terms of the
total amount of perturbation that can be implemented without losing the accuracy. A
possible solution for this problem is to investigate the derivatives of the characteristic
curves whether they are smooth functions or not. If the derivative of a curve has a sharp
transition at some point, remaining parts of the curve would probably lead erroneous
results.

4.2.2.3 Number of Eigenvalues

Being able to reduce the problem size is a major advantage of the step-by-step
perturbation technique. Deciding the number of eigenvalues is a trade-off between time
and accuracy, as usual. However, time requirements for the step-by-step perturbation
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technique are not extreme, therefore, accuracy is the primary concern. Test are
performed with 40 perturbation steps, relative permittivity variations from 4 to 1, 1
to 4, 1 to 10 and the number of the eigenvalues used in the perturbation is set as 20, 80
respectively. Results are shown in Figures 4.20, 4.21 and 4.22, respectively.
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Figure 4.20 Effects of number of initial eigenvalues for (a) 20 (b) 80 , εr2 is perturbed from 4 to 1
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Figure 4.21 Effects of number of initial eigenvalues for (a) 20 (b) 80, εr2 is perturbed 1 to 4
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Figure 4.22 Effects of number of initial eigenvalues for (a) 20 (b) 80, εr2 is perturbed 1 to 10
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The differences are evident as the accuracy increases with the number of the
eigenvalues. Correct choice of the eigenvalue for representing the mode of interest is
essential here too. The eigenvalues are selected with respect to the resonant frequencies
they represent.

4.2.2.4 Effects of Spurious Solutions

Elimination of certain spurious solutions from the step-by-step perturbation process
requires prior identification. It has been shown that introducing a divergence term in
the FEM formulation has some benefits for identifying the spurious modes at lower
frequencies. However, the size of the set of perturbed eigenvalues generally far exceeds
the number of eigenvalues which can be identified by including the divergence term.
Therefore, different methods are required for higher frequency region. Although there
is no formula to identify the spurious modes with %100 accuracy, it is possible to
use various methods in order to have a rough idea. Fundamentally, spurious modes
don’t correspond to any physically existent electromagnetic field, thus, they cannot
satisfy Maxwell’ equations. In fact, no solution obtained by FEM could exactly
satisfy Maxwell’ equation because of approximations. However, the spurious modes
would have rather larger errors compared to the real solutions, hence, they might
be distinguished. The reason for including the divergence term in the functional is
based on this fact. Considering Maxwell’ equations, it can be stated that the spurious
solutions will have larger errors for Helmholtz’ equation, too. Moreover, the error
term obtained for Helmholtz’ equation is equal to the energy at a chosen point. If the
energy is integrated in the elements of the FEM grid, a new error criteria, related with
energy densities of the elements, is obtained. Investigating these error terms, namely
divergence error, point-wise energy and energy density, gives an insight about the
characteristics of the solutions. Divergence and point-wise energy terms are calculated
at the centroids of each tetrahedral element, then. Similarly, energy density term is also
calculated for each element. This procedure is repeated for each mode and the error
of a certain mode is simply the sum of the errors calculated for individual elements.
Mathematical representations of the error terms are given below.

1.
Ne∑
i=1

||∇2H(xi, yi, zi) + β2H(xi, yi, zi)||2 = 0 where xi, yi, zi are the

coordinates of the centroid of ith element (Pointwise energy).

2.
Ne∑
i=1

∣∣∣∣∫
Vi

(∇2H + β2H) dV

∣∣∣∣2 = 0 where Vi is the volume of the ith element

(Energy density).
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3.
Ne∑
i=1

|∇ ·H(xi, yi, zi)|2 = 0 where xi, yi, zi are the coordinates of the centroid

of ith element (Divergence).

whereNe is the number of elements in the mesh structure. It should again be noted that
these error terms must be calculated for each mode individually. A key point about the
energy terms is the reduction of the norm expression such that the ∇2H term is equal
to zero for each element since the second derivative of a linear function, which we
implement for interpolation, is also zero. Hence, the expressions are reduced to the
norms of the field expressions, which represent the energy.

Initial FEM solution is made where εr1=εr2=1 hence, corresponds to the uniformly
filled cavity problem which has been analyzed previously. Divergence coefficient s is
chosen as 1. Relative dielectric permittivity of the perturbation region is varied from 1
to 4 in 20 steps. The error plots for the 100 modes with lowest frequency are given in
Figure 4.23.

Characteristics of the plots related with energy, are quite similar but the divergence
term is significantly different. It is not possible to claim that one of the plots provides
more accurate results since there are evidences to support the validity for each plot.
Therefore, elimination is performed by identifying the modes which are deviated
(abrupt peaks) from the general trend, in any one of the error plots. The modes with
the index number of 1, 2, 3, 8, 13, 14, 15, 27, 43, 44, 46 are labeled as spurious.
Total number of eigenvalues selected for perturbation is 80. It should be emphasized
that labeling is done manually and no automatic process is used for this purpose as it
would bring its own challenges like determining the correct threshold, which are out
of the scope of this study. Now let us compare the perturbation results for the cases
where these labeled modes are included and excluded, respectively.
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Figure 4.23 FEM errors calculated by (a) Point-wise energy (b) Energy density (c) Divergence for the
elimination of the spurious modes
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Figure 4.24 shows the plots of the error terms for 25 modes with the lowest
frequencies, without any spurious mode exclusion. Mean values of the point-wise
energy, energy density and divergence term are 1.16 × 107, 3.55 × 10−2, 1.07 × 109,
respectively. A key point about the error calculation is that the eigenvectors should
have been unnormalized during the perturbation process.

Figure 4.25 shows the new situation of the perturbation results when the labeled
eigenvalues are excluded from the process. Mean values of these new error terms
also support the statement as they are found as 0.88 × 107, 2.61 × 10−2, 0.51 × 109,
respectively. Decline of the errors is evident from both figures and the numerical
values, especially for the divergence term. It can also be noticed that the elimination
of certain eigenvalues have prevented spurious solutions to re-occur in some regions.
For example, the first 3 modes in the solutions of Figure 4.24, which are most likely
spurious, don’t appear in Figure 4.25 where some eigenvalues were excluded. As a
result, frequency spectrum of the solution has also improved.

A final remark about the perturbation errors is the comparison of the results with
native FEM solution. Experiments showed that the error values are 0.63 × 107,
1.93 × 10−2, 0.63 × 109 for point-wise energy, energy density and divergence term
respectively. It is surprising to see that the divergence error of the perturbation solution
where initial filtering is performed, is slightly lower than the FEM solutions’. This is
due to the errors introduced by spurious solutions probably far exceeds the numerical
errors of the entire perturbation process.
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Figure 4.24 Errors of 25 modes without spurious exclusion calculated by (a) Point-wise energy (b)
Energy density (c) Divergence obtained from perturbation
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Figure 4.25 Errors of 25 modes with spurious exclusion calculated by (a) Point-wise energy (b) Energy
density (c) Divergence obtained from perturbation
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CHAPTER FIVE
CONCLUSION

Resonant structures are essential components for microwave applications. Among
various alternatives for different applications, the cavity resonators are one of the
widely used passive elements due to their superior quality factor and ease of
construction. Performing optimization, tuning and sensitivity analysis on these
structures corresponds to the perturbation of a parameter (e.g. permittivity, dimension
etc.), assuming that the initial solutions exist already. Initial solution of the problem
can be obtained by FEM, which leads to the generalized eigenvalue/eigenvector
problem for cavity analysis. Then, the perturbation can be applied upon the solutions
of the eigenvalue problem by means of classical eigenvalue perturbation techniques
as long as the amount of perturbation is relatively small. However, this criteria is
not always satisfied, hence, multiple FEM solutions are required as each step of
variation brings a new eigenvalue problem to be solved. Consequently, the process
becomes computationally demanding since typical FEM problems may involve several
thousand variables. In order to reduce the computational requirements, the step-by-
step eigenvalue perturbation technique can be used where the variation is divided into
smaller steps and each new solution is calculated as linear combination of the previous
solution. This also provides a parametric history of the process, which is useful to
track down the solution for certain criteria. Effectiveness of step-by-step perturbation
method has been recently shown by (Gunel & Zoral, 2014) where the initial solutions
are obtained by the vector FEM. Although the vector FEM is widely used today, its
formulation requires complex geometrical data to be handled. Therefore, traditional
nodal FEM is occasionally more preferable. It can be said that though, the performance
of the step-by-step perturbation technique would be different for nodal FEM, compared
to the vector FEM case, due to the spurious modes which occurs more seriously in
nodal FEM. In order to examine the performance of the method under nodal FEM, a
software, which includes the step-by-step perturbation algorithm as well as nodal FEM
routine, is created using Python language. Partially filled cubic cavities are examined
as the test cases due to having analytical solutions. Both the FEM routine and the step-
by-step perturbation algorithm are tested with different parameters and the effects of
these parameters over the solutions are investigated thoroughly.

First of all, two FEM parameters, the mesh resolution and the divergence coefficient
are examined. It is observed that the mesh resolution increases the accuracy in the
expense of the computational cost. Test cases involved 3500 variables in the resulting
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eigenvalue problem, which is solved in several minutes using linear algebra libraries
written in FORTRAN. On the other hand, introducing the divergence term in the
formulation helps to distinguish the spurious modes, to a certain degree.

Analysis of the step-by-step perturbation technique is more complicated as it not
only involves the examination of the parameters (number of steps, vectors to be
perturbed) but also certain limitations about the process. Experiments on the effects of
the number of steps revealed that the average error differs by a very small amount for
different stepping schemes. This is the result of solving a reduced eigenvalue problem
at each step. However, dividing the process into smaller steps helps for observing the
parametric history. It has been pointed out that selecting the correct eigenvalue and
matching it with the correct mode configuration is vital for tracking as it is possible
that two different perturbed eigenvalues might align with the analytical solution, for
different parts of the process. This points out another vital fact, which is the corruption
caused by the crossings between eigenvalues when the perturbation is large. It can
be concluded that, the higher number of perturbation steps is useful for detecting any
abnormal deviation if the total amount of perturbation is large. The parts where the
perturbation and analytical curves align, the average error is as low as %2.

On the next stage, the effects of the number of the eigenvalues used in perturbation is
investigated. The results showed that the average error can be reduced significantly by
increasing the number of the tracked eigenvalues. The tracked eigenvalues are chosen
from those with lowest values, including many spurious modes as well.

Finally, an elimination is made on the eigenvalues to be selected by investigating
their errors. Three error criteria, namely point-wise energy, energy density and
divergence error, are used for this elimination. Improvements in the perturbation
results are also examined by using these criteria. Eliminating even only a few
eigenvalues has resulted in significant improvement. Ultimately, the accuracy of the
step-by-step perturbation method can be increased in the case of nodal FEM by pre-
processing the solutions against the spurious modes. This also eases the matching
efforts of correct eigenvalues with corresponding modes.
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