
DOKUZ EYLÜL UNIVERSITY 

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

 

 

 

 

 

 

SURVIVAL TIME PREDICTION OF CANCER 

PATIENTS 

 

 

 

 

 

 

by 

Müşerref Ece ERCAN 

 

 

 

 

 

 

 

 

 

 

January, 2018 

İZMİR



SURVIVAL TIME PREDICTION OF CANCER 

PATIENTS 

 

 

 

 

A Thesis Submitted to the 

Graduate School of Natural and Applied Sciences of Dokuz Eylul University 

In Partial Fulfillment of the Requirements for the Degree of Master of  

Science in Computer Engineering 

 

 

 

 

 

 

 

 

by 

Müşerref Ece ERCAN 

 

 

 

 

 

 

 

January, 2018 

İZMİR





iii 

 

ACKNOWLEDGEMENTS 

 

I would like to thank my supervisor Asst. Prof. Dr. Zerrin IŞIK who allowed me 

to work in this project and I appreciate for her valuable ideas, support and guidance 

throughout this project. 

 

This work is supported by the Scientific and Technological Research Council of 

Turkey (TÜBİTAK). Project number is 115C012. 

  

 

       Müşerref  Ece ERCAN 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

SURVIVAL TIME PREDICTION OF CANCER PATIENTS 

 

ABSTRACT 

 

In recent years, in order to reduce noise in experimental data and to add the 

common role of genes in biological processes into diagnostic and prognostic 

prediction models, researchers entegrates more than one data type. In this context, 

many studies have shown that protein interaction networks increase the success of 

scientific diagnosis. This study aims to find biomarkers that successfully predict the 

potential survival time of cancer patiens by merging gene transcriptome and protein 

level data belonging to kidney renal clear cell carcinoma (KIRC) and glioblastoma 

multiforme (GBM). For this purpose, expression level of mRNA (RNA-seq) and 

protein (RPPA) data entegrated a with network modelling protein interactions in the 

human genome. Survival time of patients will be predicted by selecting certain 

amount of biomarkers and feeding those as inputs to the supervied learning method. 

For both cancer types, this study showed that our new entegrated method, RPBioNet, 

outperforms both "only protein" and "only mRNA" methods. 

 

Keywords: Bioinformatics, biomarker, gene expression, RPPA, protein interaction 

network, survival time prediction, data mining, GBM, KIRC, TCGA 
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KANSER HASTALARININ YAŞAM SÜRESİ TAHMİNİ 

 

ÖZ 

 

Son yıllarda, deneysel verilerdeki kirliliği en aza indirmek ve genlerin biyolojik 

süreçteki ortak rollerini tanı-tahmin modeline ekleyebilmek için araştırmacılar birden 

fazla veri türünü entegre etmektedir. Bu bağlamda son yapılan çalışmalar protein 

etkileşim ağlarının, bilimsel tanı yöntemlerinin başarısını arttırdığını göstermektedir. 

Bu çalışmada, böbrek (KIRC) ve beyin (GBM) kanseri hastalarına ait gen 

transkriptom ve protein seviye bilgilerini protein etkileşim ağları ile bütünleştirerek, 

hastaların olası yaşam süresini başarıyla tahmin edebilecek belirteçler (biyomarker) 

bulunması amaçlanmıştır. Bu amaçla transkriptom düzeyindeki mRNA ifadesi 

(RNA-seq) ve protein (RPPA) verileri insan genomundaki protein etkileşimlerini 

modelleyen bir ağ modeli ile entegre edilmiştir. Hastaların yaşam süresi, belli bir 

miktar belirteç seçip, ardından bu belirteçleri gözetimli öğrenme yöntemine girdi 

olarak vererek tahmin edilmiştir. Geliştirdiğimiz yeni entegre yöntemin, RPBioNet, 

iki kanser türü için de, “sadece protein” ve “sadece mRNA” yöntemlerinden daha 

başarılı sonuç verdiği görülmüştür. 

 

Anahtar kelimeler: Biyoinformatik, biyomarker, gen ifadesi, RPPA, protein 

etkileşim ağı, yaşam süresi tahmini, veri madenciliği, glioblastoma multiforme, 

böbrek kanseri, TCGA 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Motivation 

 

Recently, advancements in proteomics and genomics have helped us to gather an 

immense amount of biological data which requires complex computational analysis 

(Raza, 2012). Bioinformatics, or in other words computational biology, analyse the 

data related with biomolecules on a very large-scale by inferring structure or 

generalizations from the data (Luscombe, Greenbaum & Gerstein, 2001). Protein 

structure prediction, cancer subtype classification using microarray data, gene-

expression data clustering, gene classification, protein-protein interaction network 

classifications can be some examples of that kind of analysis (Raza, 2012). 

 

Cancer patients are cured by oncologists according to the cancer type and stage of 

the patients. The cancer type and stage are diagnosed by pathologists. Extracting 

tumor samples with a surgery cannot be possible for some sensitive structures, such 

as optic nerves or brain stem. Sometimes, elaboration of tumor samples in the lab 

might not help to predict future health conditions (e.g., total survival time, cancer 

stage in two years etc.) of a patient. So, there is a need for new diagnostic tests that 

can predict future health condition of patient by using only patient’s blood samples. 

Such diagnostic tests can also help to design targeted therapy (i.e., personalized 

medicine) specific to each cancer patient. Therefore, research on personalized 

medicine is taking more attention in recent years. 

 

If it would be possible to identify information specific to a cancer patient without 

surgery but with a simple and easy-to-implement blood tests, without decreasing 

patient's life quality; targeted treatment specific to a cancer patient can be applied. In 

recent years, studies on this topic are being carried out by many researchers. 

However, these studies do not one hundred percent accurate, yet. 

 



2 

 

 

The vast amount of highthroughput patient data become more accessible in the 

last decade. The Cancer Genome Atlas (TCGA) Project publishes various patient 

data for 34 cancer types and regularly enlarges the repository ("TCGA research 

network" 2017). Researchers can use large patient cohorts for prediction of future 

health states of patients. In this sense, survival time prediction is quite important 

topic to develop personalized treatment strategies for patients. 

 

1.2 Problem Definition 

 

The discovery of a certain amount of biomarkers for the prediction of cancer type, 

subtype, and the probable survival time of cancer patients is a challenging problem 

for distinct reasons. We suggested several proposals to this problem with 

computational methods.  The essential data source of this research is gene expression 

and protein level data integrated with protein-protein interaction network that is used 

as an input for feature selection method. Thus, we will investigate whether integrated 

data can outperform single data for predicting prognostic biomarkers. 

 

Another significant point is what kind of features we are supposed to use to create 

a training method. There are mRNA levels of about 2100 genes in a human genome 

belongs to cancer patients in TGCA database. However, not all these data can be 

given as inputs to machine learning model. Otherwise, in this much large input 

space, the patient sample amount for a model to be trained will not be enough. For 

this reason, the most important "N" features will be selected. 

 

The other issue is to reduce the experimental mistakes caused by gene level 

measurements and adding causal relationships between transcriptome level genes to 

the model. Does protein-protein interaction network improve the classification 

performance? At that point, gene level data will be integrated to protein-protein 

interaction network. Each node represents a human genome and each path between 

two vertices represents genomic, physical or functional interaction in a protein-

protein network.  
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Furthermore, another concern is cross validation methods. The most convenient 

data partitioning method to train the model should be selected. 

 

In a nutshell, in this research we will answer whether we can determine a patient's 

cancer type and cancer subtype by looking at certain biomarkers without applying 

surgery to this patient. After prognosis, is it possible to predict the survival time of 

the patient using the same biomarkers? If it is, what is the success rate of this 

predication? In which cancer related biological processes are these biomarkers play 

an active role? All these questions will be investigated with detail. 

 

1.3 Contribution  

 

The ultimate goal of this study is to find a limited number of biomarker genes that 

can successfully predict the potential survival time of GBM or KIRC patients. For 

this purpose, gene expression and protein level data were integrated by using PPI 

(Protein-Protein Interaction) and Personalized PageRank algorithm that provides the 

highly ranked (i.e., most significant) proteins (Isik & Ercan, 2017). In the next phase, 

the gene expression data of 20 highly ranked proteins were used to train a supervised 

prediction model. 

 

The novelty of this study is the integration of PPI networks with gene expression 

and protein level data to find prognostic biomarkers that can be used for clinical 

purposes (Isik & Ercan, 2017). Finding only a certain amount of biomarkers rather 

than many of them will reduce the costs of clinical prognostic tests. Another 

contrubition is the development of a new feature selection method that combines 

protein and gene expression data in a random walk method (Isik & Ercan, 2017). 

 

1.4 Organization of the Thesis 

 

This thesis includes 5 chapters and the rest of the thesis is organised as follows: 
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In Chapter 2, the definition of biomarkers and their relationship with cancer have 

been detailed. Biological data have been discussed regarding RNA-seq, RPPA. 

Furthermore, survival time prediction researches on GBM and KIRC cancer 

typeshave been disgussed. 

 

In Chapter 3, inputs that are given to the algorithms, data processing steps 

including feature selection, different machine learning methods and cross validation 

process have been described and network-based functional analysis steps have been 

explained in detail. Besides, Page Rank and personalized Page Rank algorithms have 

been discussed. 

 

In Chapter 4, experimental results of the proposed method, RPBioNet, have been 

illustrated with screenshots and tables which represent the main aspects for the 

project. Besides, biological results such as best predicted genes and gene ontology 

analysis results have been shown. 

 

In Chapter 5, the conclusion and future works have been discussed. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

2.1 Cancer 

 

There are two types of tumor: benign and malignant (Bollinger, 2016). Benign 

tumors are not cancerous and unlike benign tumors, malignant tumors are cancerous. 

Benign tumors can usually be removed, and they do not metastasize (or spread) to 

different parts of the body and tissue (Bollinger, 2016; "Malignant and benign brain 

tumors", 2017). They are mostly localized, and they respond well to therapy. 

However, malignant tumors are dangerous and usually resistant to therapy 

(Bollinger, 2016; "Malignant and benign brain tumors", 2017). They infest 

contiguous tissues and have a tendency to recur after removal and spread to other 

parts of the body ("Malignant and benign brain tumors", 2017). The differences 

between benign and malignant tumors are shown in Figure 2.1. 

 

 

 

Figure 2.1 Malignant vs benign tumor (Christiansen, 2015) 
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Malignant tumors are called cancer ("What is cancer?", 2017). Unlike normal 

cells, cancer cells grow out of control which means they divide uncontrollably 

("What is cancer?", 2017). Cancer cells omit signals which order cells to start 

process called apoptosis (programmed cell death) or to stop dividing ("What is 

cancer?", 2017). 

 

In multi-cellular organisms like human beings, there must be a homeostatic 

balance between tissues (Pucci, Kasten & Giordano, 2000). To keep this balance cell 

proliferation and cell death occurs (Pucci, Kasten & Giordano, 2000). Normally, 

cells undergo apoptosis when they are damaged or old that makes apoptosis a chance 

for organisms to get rid of defective or redundant cells (Pucci, Kasten & Giordano, 

2000). 

 

Tumor suppressor genes like p53 is associated with apoptosis. Down regulation or 

mutation of p53 gene brings about lessened apoptosis, thus improved tumor 

development (Wong, 2011). Mutations arise from either copying DNA damage or 

failures happened during DNA synthesis(Loeb & Loeb, 2000). This damage is 

caused by environmental and internal (cellular) origins, which results in genetic 

instability (Loeb & Loeb, 2000). In tumor cells there are aggregation of multiple 

mutations (Loeb & Loeb, 2000). There is an unbalance between cell cycle and cell 

death (or apoptosis) in cancer (Wong, 2011). Inactivation or any mutation in 

apoptosis represents a major reason for development and advancement of cancer 

(Kasibhatla & Tseng, 2003). It means that a better understanding of apoptosis can 

make a contribution to cancer treatment.  

 

Aside from consecutive accretions of genetic mutations, epigenetic mutations are 

also causes cancer (Virani, Colacino, Kim & Rozek, 2012). Epigenetic change is an 

alteration in phenotype (genetic traits and environmental aspects) without an 

alteration in genotype, or in other words DNA sequence (Virani, Colacino, Kim & 

Rozek, 2012). There is a hot topic in epigenetic called DNA methylation (Virani, 

Colacino, Kim & Rozek, 2012). Lack of DNA methylation is one of the epigenetic 

alterations which is characterized in cancer (Virani, Colacino, Kim & Rozek, 2012). 
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Since these changes are reversible, they give a strong hope for cancer treatment 

(Virani, Colacino, Kim & Rozek, 2012). 

 

By the National Center for Health Statistics, in 2016, 1.685.210 new cancer 

occurrence and 595.690 deaths caused by cancer took place in the United States 

(Siegel, Miller & Jemal, 2016). Cancer mortality rates are declined 23% since 1991 

(Siegel, Miller & Jemal, 2016). However, for some cancer types like liver, pancreas, 

and uterine corpus, fatality rates are rising (Siegel, Miller & Jemal, 2016). Figure 2.2 

illustrates top ten most common cancer types forecasted to happen in men and 

women in 2016: 

 

 

 

Figure 2.2 Top ten cancer types for the Estimated New Cancer Cases and Estimated Deaths according 

to sex in the US in 2016 (Siegel, Miller & Jemal, 2016) 
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2.1.1 Biomarkers and Their Relationship with Cancer 

 

Biomarkers (i.e., biological markers), are measurable and objective signs of a 

biological state or condition (Strimbu & Tavel, 2010). Biomarkers are clinically 

measured, and it can be a signal change in the state of a protein that correlates with 

the development or risk of an illness, or sensitivity of the illness to an applied 

treatment (Guenther, Hauser, & Huss, 2016). Biomarkers can be biological features 

or particles that may be discovered or measured in any parts of the body such as the 

tissue or blood (Mayeux, 2004). 

 

For example, body temperature is a widely known biomarker for fever or blood 

pressure is used to detect the possibility of stroke (Kropotov, 2016). High-sensitivity 

C-reactive protein (HSCRP) is an inflammatory marker that is used for detecting 

atherothrombosis of the cerebral and coronary vessels (Ridker & Silvertown, 2008). 

 

The main characteristics of an optimal biomarker are listed below: 

 

• Safely obtained and easy to measure (Kufe et al., 2003). 

• Cost efficient and high throughput to follow up (Kufe et al., 2003). 

• High accuracy and disease specificity (Kufe et al., 2003). 

• High accuracy and disease specificity which results in a low false-positive  rate  

(FPR) and false-negative rate (FNR) (Kufe et al., 2003).                                                                                         

• Consistent across gender (Ananya, 2014). 

 

Biomarkers play a key role in the monitoring, follow-up, diagnosis and 

monitoring of many cancer types (Kobayashi et al., 2012). The aim of anticancer 

therapies is targeting and killing cancerous cells while sparing healthy cells (Delalat 

et al., 2015). The discovery of a biomarker can help oncologists to apply treatments 

targeted only specific cancer cells which reduces the risk of harm and cost of the 

treatment (Ananya, 2014).  
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Genetic mutations (i.e., genetic abnormalities), are the primary cause of cancer 

(Kurzawski et al., 2012). Hence, predefined RNA or DNA biomarkers may most 

likely help oncologists to discover and treat specific types of cancers (Kurzawski et 

al., 2012). If a genetic test displays that presence or levels of a certain biomarker is 

disparate than what is found in healthy tissues, it might show that the cancer is 

contingent on the change in that biomarker ("Biomarker Testing" 2017). For 

instance, p53 gene is very well-known tumor suppressor gene which is often mutated 

in cancer cells (Hong, van den Heuvel, V Prabhu, Zhang & S El-Deiry, 2014). By 

looking at some researches,p53 gene is a significant biomarker of survival in 

osteosarcoma, which is a malignant bone tumor with low survival rates (Fu et al., 

2013). 

 

2.2 Biological Data 

 

2.2.1 RNA-Seq (RNA sequencing) 

 

Information such as personal traits, behaviors of each single cells, the color of a 

person's hair, the scent of a violet, the way in which bacteria infect a skin cell, etc are 

encoded by DNA (Finotello & Di Camillo, 2015). Using this information, cells are 

able to gain and convert (or translate) particular instructions through gene expression 

by switching set of genes on and off (Finotello & Di Camillo, 2015). This encrypted 

info in the selected genes transcribed (or copied) into messenger RNA(mRNA), 

which can be translated into proteins (Finotello & Di Camillo, 2015). This means 

that the group of RNAs copied in a certain time and circumstance tells the present 

state of a cell and able to report pathological structure of disease (Finotello & Di 

Camillo, 2015). 

 

RNA-sequencing is a RNA profiling technique which makes it possible to 

measure and assess the similarities and differences between gene expression patterns 

at high resolution (Finotello & Di Camillo, 2015). It provides immense amount of 

data for transcriptomics researches (Finotello & Di Camillo, 2015). A gene 

expression is illustrated in Figure 2.3. 
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Figure 2.3 mRNA becomes a single-stranded replica of the gene. As the next step, it will be 

translated into a protein (Clancy & Brown, 2008) 

 

There are some significant stages in RNA-Seq data analysis such as experimental 

analysis and design, sequence quality analysis, alignment reading, measuring gene 

expression, RNA-Seq data visualization, differential gene expression, alternative 

splicing, functional analysis of gene lists (Conesa et al., 2016). Figure 2.4 shows 

three significant data analysis processes for both microarray and RNA-Seq 

technologies. 
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Figure 2.4 A brief summary of microarray and RNA-Seq technologies workflow (Corney, 2013) 

 

A recent study by Zhao et al. (2014) showed that even if there is a high correlation 

between the RNA-Seq and microarray technology, RNA-Seq outperforms microarray 

technology in terms of transcriptome profiling. RNA-Seq performs better at 

discriminating extremely important isoforms, labeling genetic variants, and 

discovering more differentially expressed genes. 

 

2.2.2 Reverse Phase Protein Arrays (RPPA) 

 

The reverse phase protein array (RPPA) supplies gene-expression data for a 

predetermined group of proteins, through a group of cell line or tissue samples 

(O'Mahony et al., 2013). RPPA shows a way to get the state of signal transduction 
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(the transfer of genetic material from one cell to another) pathways in either normal 

or diseased cells (Creighton & Huang, 2015). RPPA data may be integrated with 

other molecular profiling platforms to discover more complete molecular analysis of 

the cell (Creighton & Huang, 2015). 

 

The RPPA technology is a kind of protein microarray that is dedicated from gene 

expression microarrays, which is obtained by printing DNA molecules on 

microscope slide, and immunoassays, which is for discovering protein expression by 

antigen and antibody interplay (Creighton & Huang, 2015). 

 

In short, RPPA is an effective antibody-based, cost effective, quantitative way for 

targeted proteomics which can be applied to large datasets (Zhang, Chen, Huang, 

Zhang, Kong & Cai, 2015). Since protein expression is more reliable than gene-

expression, Zhang et al. (2015) have picked RPPA data to classify cancer subtypes 

and to find a small number of key genes to discriminate different cancers. They 

proposed a method to categorize the patient samples into ten cancer types on the 

basis of the RPPA data with help of the sequential minimal optimization method. 

First, they applied feature selection to pick 23 significant proteins out of 187 proteins 

applying minimum redundancy maximum relevance feature selection and 

incremental feature selection methods on the training dataset. Their workflow can be 

seen in Figure 2.5. 
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Figure 2.5 Model development and assessment. By dividing data set into a train and a test set and 

then applying 10-fold cross-validation on 10 partitioned training set, the features are picked and 

prediction model is built.  (Zhang, Chen, Huang, Zhang, Kong & Cai, 2015) 

 

Akbaniet al. (2014) mixed the proteomic data with transcriptomic and genomic 

data to label common attributes, dissimilarities, signaling pathways, biological 

network of tumor origins by using TGCA "pan-cancer" patient samples. They also 

improved biomarker detection by decreasing tissue-specific signals. This combining 

method is called “replicates-based normalization” (RBN), which is a novel approach 

for deciding diagnostic, curative importance of proteome (Akbaniet al., 2014). 

 

RPPA workflow is shown in Figure 2.6. RPPAs can be used for personalized 

medicine (Malinowsky, Wolff, Gündisch, Berg & Becker, 2011). By extracting 

proteins from formalin-fixed, paraffin-embedded (FFPE) tissues, RPPA can provide 

ways to measure curative targets and prognostic biomarkers in the future 

(Malinowsky, Wolff, Gündisch, Berg & Becker, 2011). 
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Figure 2.6 Workflow of RPPA ("Example of a RPPA workflow", 2017) 

 

2.3 Survival Time Prediction 

 

There exists FDA approved and commercial diagnostic kits such as 

“Mammaprint” (Beumer, Witteveen, Delahaye, Wehkamp, Snel, Dreezen & Linn, 

2016), “Oncotype Dx” (Buus et al., 2016), and “Prosigna Breast Cancer Prognostic 

Gene Signature Assay” (Nielsen et al., 2014). These genomic tests analyse a sample 

of a malignant tumour and identify the activity level of certain genes to predict the 

recurrence rate or the risk of metastasis in breast cancer. Although such kits are 

reliable for the clinical usage, they are not 100% accurate yet. 

 

Glioblastoma multiforme (GBM) is the most common and aggressive malignant 

brain tumour (i.e., gliomas) (Bowman & Joyce, 2014). Glioma is a form of tumour 
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which develops in the brain and spines ("Glioma", 2017). There are four grades of 

gliomas, and grade 4, glioblastoma multiforme, is the most aggressive one (Holland, 

2000). Region of tumour cells within brain varies, hence the name is multiforme 

(Holland, 2000). This makes the treatment of GBM even more difficult, it cannot be 

treated by surgery (Holland, 2000). After diagnosis, total survival time of GBM 

patient is less than a year. The National Cancer Institute showed that 22.850 adults 

(12.630 men and 10.280 women) were diagnosed with brain and other nervous 

system cancer in 2015, and unfortunately 15.320 of these patients died in the same 

year ("Glioblastoma Multiforme" 2017). Figure 2.7 illustrates MRI scans of a GBM 

with recurrence in 6 months after surgery (Holland, 2000). 

 

 

Figure 2.7 MRI scans of a patient with recurrent GBM. Picture (A) shows scan before surgery, (B) 

shows scan after radiotheraphy and surgery, (C) shows recurrence of GBM after surgery in 6 months, 

(D) shows recurrence of tumors after cutting them out, (E) shows scan after 3 months, tumor 

completely spreads out (Holland, 2000) 

 

The occurrence rate and fatality of kidney cancers have been increasing all around 

the world (Edwards et al., 2014). Kidney renal clear cell carcinoma (KIRC) is the 

most common type (90–95% of cases) of kidney cancers (Kush, 2014). KIRC is a 

tumour where VHL gene, which is rarely mutated in other types of tumours, is often 

inactive (Brugarolas, 2014) in this type of tumour. It is described by a lack of early 

warning signs, and resistant to chemo and radiation therapies (Kush, 2014). 



16 

 

 

 

Zhan et al. (2015) analysed RNA-expression data of KIRC patients for 

discovering the detailed connection between gene-expression level and diagnosis of 

these patients. They claimed by carrying out Cox regression and Kaplan-Meier 

analysis, a five-gene signature could help to predict the survival time (Zhan et al., 

2015). 

 

Bie et al. (2011) showed that RNA levels of spindle assembly checkpoint (SAC) 

genes (BUB1, BUB1B, BUB3, CENPE, MAD1L1, MAD2L1, CDC20, TTK) are 

related with the grade of glioma and six of them highly related with survival time of 

GBM patients. 

 

Shen et al. (2016) have introduced a statistical method called SURVIV (Survival 

analysis of mRNA Isoform Variation), which outruns Cox regression survival 

analysis, to determine mRNA isoform variation related to cancer patient’s (including 

KIRC and GBM) survival time. 

 

Alexiou et al. (2014) have shown that neutrophil-to-lymphocyte ratio (NLR) has 

common availability and low-cost. Therefore, neutrophil-to-lymphocyte ratio can be 

used as a biomarker of GBM aggression and diagnosis. 

 

Many studies have shown that protein-protein interaction (PPI) networks increase 

the success of cancer diagnosis (Leiserson et al., 2015; Pe'er & Hacohen, 2011; 

Safari-Alighiarloo, Taghizadeh, Rezaei-Tavirani, Goliaei & Peyvandi, 2014). 

 

Li et al. (2012) have suggested that genes identified from both gene expression 

profiles, which constructed from protein-protein interaction data, and the shortest 

path analysis of weighted functional protein association network have found more 

cancer related genes compared to the classic gene expression analysis. 

 

Smedley et al. (2008) have represented a method for prioritization of candidate 

disease genes with the help of a global distance measure based on random walk with 
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restart that characterizes the similarity between genes in protein-protein interaction 

networks and then proposes new candidates based upon this similarity to known 

diseases genes. 

 

Study by Zhang et al. (2016) showed that mRNA expression and DNA 

methylation features provided the most contribution for patient survival, followed by 

CNV and miRNA features. By determining the importance of the contribution of 

genes to patient survival considering n-layered regulatory mechanisms such as CNV, 

DNA methylation, mRNA and miRNA expression and analysing sub networks of the 

genes related to survival in protein-protein interaction network; a n-dimensional sub 

network landmark for cancer by combining cancer genomics and interactome data, 

which illustrated as protein-protein interaction network nodes perturbed by multiple 

genetic and epigenetic events related to patient survival, is constructed (Zhang et al., 

2016). 

 

In breast cancer tissue, Ren et al. (2016) suggested that up-regulated genes related 

with cell cycle and extracellular matrix interaction causes abnormal breast cancer 

cycle along with cancer metastasis by constructing protein-protein interaction 

network encoded by the differentially expressed genes (DEGs) to create the signal 

transduction network and transcriptional regulatory network. The transcription factor 

and its multiple downstream regulators, which remarkably higher express in cancer 

tissue, are the key factor in growth of breast cancer (Ren, Li, Wu, Feng & Li, 2016). 
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CHAPTER THREE 

METHOD 

 

3.1 System Overview 

 

A novel classification method that intent to identify a limited number of protein 

biomarkers which predict the possible survival time of a cancer patient in a 

successful manner is established. Overall the new method, which is called RPBioNet, 

has four main stages (Figure 3.1). In the first stage, patients' samples are split into 

two parts randomly: 70 percent as training set and remaining 30 percent as test set. 

For each selected training set, biomarker selection process and supervised learning 

method is applied. Secondly, the random walk-based Personalized PageRank 

algorithm runs a human protein-protein interaction network to the most defining N 

biomarkers (features) whose gene expression values are later used to train a machine 

learning model. As a third step, the machine learning model is trained by Support 

Vector Machine (SVM) and Random Forest (RF) supervised machine learning 

methods to predict new patients' cancer subclass (long-, or short-term). In the end, 

estimation ability of each trained model is tested on a test data set which is not used 

when training the model before and accuracy percentage is calculated. 
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Figure 3.1 The workflow of RPBioNet. The personalized PageRank algorithm is applied on a 

proteinprotein interaction network to uncover the most predictive proteins in the RPPA data. 

Later, the mRNA data of the 20 selected features are used to train machine learning methods 

(Support Vector Machine, Random Forest). The performance is calculated over the unseen data 

and the accuracy is computed. This scheme is repeated 500 times (Monte Carlo crossvalidation) 

and the average accuracy of all iterations is reported as the overall performance of the method 

 

3.2 Data Pre-processing 

 

The data used in this research study were gathered from TGCA ("TCGA research 

network" 2017) database and saved to a local server. Gene transcriptome (RNA-

sequencing) and protein level (Reverse Phase Protein Array-RPPA) data for 

glioblastoma (GBM) and kidney renal clear cell carcinoma (KIRC) patients were 

downloaded to a local server via “TCGA Assembler” library in the R-Bioconductor 

on May 2015. R programming language is used for coding the whole system. As an 

IDE, RStudio is used. Noise removal and normalization were applied to use these 

data as an input to supervised learning method. The missing gene and protein data 

were removed. Since normalization is highly important for clustering of datasets, 

rows and columns are normalized. Then z-score transformation is applied to gene 

expression and protein level data. Thus, the raw data for two different cancer types is 
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converted to z-scores. Those steps will be explained in detail in the following 

paragraphs. 

 

The RNA-seq data is downloaded by means of the "DownloadRNASeqData" 

function (parameter called "assayPlatform" was set to "RNASeqV2" and the 

"dataType" parameter was set to "rsem.genes.normalized.results"). Later, the 

"ProcessRNASeqData" function is used to get the gene symbol and to extract the 

normalized count value of each gene. The normalized gene counts are converted into 

the logarithmic level with the help of the "log2" function. The RPPA data is 

downloaded to a local server via the "DownloadRPPAData" function with default 

parameters. After then, the "ProcessRPPADataWithGeneAnnotation" function is 

applied to obtain gene symbols and protein antibody names. After then, the 

"ProcessRPPADataWithGeneAnnotation" function is applied to obtain gene symbols 

and protein antibody names. If the expression of a protein or gene could not be 

calculated for patients, such proteins or genes were deleted from the data matrix. 

Later, the patients with survival time, RNA-seq and RPPA data available were 

preserved during the rest of the analysis. This filtering method significantly lowered 

the total number of patient samples (KIRC patients were lowered from 417 to 243, 

GBM patients were lowered from 174 to 35). To normalize RPPA and RNA-seq 

data, each protein/mRNA level is centralized around a zero mean by subtracting the 

mean value of patients' samples from the distinctive protein/mRNA level sample. 

Next, each patient sample is normalized by applying the z-score formula:  

 

𝑧. 𝑠𝑐𝑜𝑟𝑒(𝑖, 𝑗) =
𝑥𝑖− 𝜇

𝜎
     (3.1) 

 

where xi is the expression value of a patient i, µ represents the population mean, and 

σ represents the standard deviation of protein/mRNA samples for the patient i. The 

z.score(i,j) demonstrates the normalized expression value of the patient i for a gene j. 

The z-score transformation is applied for both mRNA and protein level data. 

 

Table 3.1 shows the amount of patients in GBM and KIRC datasets. 24 out of 35 

GBM patients are labelled as long-term survivors (LTS) (i.e., can live over 3 years) 
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whereas 11 of them are labelled as short-term survivors (STS) (less than a year) 

(Adeberg, Bostel, König, Welzel, Debus & Combs, 2014). 90 out of 243 patients 

with KIRC patients are labelled as long-term survivors (LTS ≥ 5 years) and 153 of 

them are labelled as short-term (STS < 2 years) (Choueiri et al., 2007). 

 

Table 3.1 Distribution of data used in this study. The aim is to predict the survival time of KIRC and 

GBM patients, so two different subclasses are: long-term and short-term survival 

Cancer type Patient Class Total # of 

patient class 

Total # of 

patients 

Total # of  

genes 

Total # of  

Proteins 

GBM Survival time 

(long-term, 

short-term) 

24 (long-term), 

11 (short-term) 

35 19080 (gene) 183 (protein) 

KIRC Survival time 

(long-term, 

short-term) 

90 (long-term), 

153 (short-

term) 

243 20189 (gene) 166 (protein) 

 

Protein level and mRNA gene expression data were provided as the inputs to 

machine learning algorithms. In order to reduce experimental flaws and integrate 

causal relationships between the genes into classifier models, a protein-protein 

interaction (PPI) network was used as a secondary data source. For this purpose, the 

functional protein interaction information - from the STRING ("STRING: functional 

protein association networks", 2017) database - was downloaded to a local server, 

and after that pre-processing and filtering were applied to the data. Initially, only 

human proteins and corresponding interactions were chosen. Next, interactions with 

a confidence score 900 or above were preserved in the network. The human PPI 

network was consisted of roughly 200.000 edges (interactions) and 10.600 nodes 

(proteins). 

 

3.3 Feature Selection 

 

It is intended to integrate miscellaneous data sources (for instance RPPA, RNA-

seq, PPI network) for much better classification model for survival time prediction. 
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For that, a certain amount of biomarkers were derived from a human PPI network 

which was later fed to the machine learning method as the input. The most 

meaningful biomarkers (for example, features) should be extracted out of thousands 

of genes; or else in a huge feature space, the amount of patient samples would not be 

adequate to effectively train the model. Furthermore, selecting only a certain amount 

of biomarkers will cut down the costs of potential prognostic tests in future. For that 

reason, the first step in creating new method was the selecting of N features that were 

chosen by running a random walk on the PPI network, in which each vertex portrays 

a gene/protein and an edge between two vertices portray physical, functional or 

genomic interactions among them. RPBioNet applies the Personalized PageRank 

algorithm which is the random walk adaption. The PageRank algorithm was 

originally developed by Google as a web search engine that imitates the behaviours 

of a random surfer on the Internet (Page, Brin, Motwani & Winograd, 1999). 

 

In the Personalized PageRank, the random web page selection relies on a provided 

probability distribution. In this study, the rank (in other terms, importance) of a 

vertex in the PPI is determined by the following equation: 

 

𝑝 = (1 − 𝑑). 𝑝. 𝐾 + 𝑑. 𝑟    (3.2) 

 

where p gives the rank value of a vertex after the running of the algorithm is ended, d 

means the damping factor which is the probability of continuing to visit other 

vertices in the network throughout the random walk, K represents the adjacency 

matrix (or in other terms, edges) of the PPI network, and finally r shows the vertex 

selection probabilities during making random choices in the walk. In this research, 

protein level information was used to construct the r vector of the Personalized 

PageRank algorithm. A t-test is applied to transform z-score of a protein i, which is 

sampled over entire patients' data in the training set, into a probability value of the 

protein i. For this reason, z-score values of proteins are provided to the t-test as the 

input to calculate the considerable difference between the short and long survival 

classes. Afterwards, the t-statistic value of the protein i was mapped to a value 

between 0 and 1, which was selected as the initial probability value of the node i. If 
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protein level data of any vertex are not supplied, the initial probability value of this 

vertex is assigned to zero. In biological terms, proteins with higher protein levels will 

be selected with higher probabilities while algorithm making random choices. The 

rank value p displays the importance of each protein in the PPI network. The proteins 

that have higher rank values are chosen as the most significant N features (or in other 

terms biomarkers). The impact of post-transcriptional modifications in the cell may 

be more precisely measured via protein data; so, protein-level measurements in the r 

vector are used by the feature selection algorithm. Subsequently, z-scores (the gene 

expression values) of the selected N-proteins were supplied as the input of the 

machine learning method. The "page_rank" function in the "igraph" package of R-

Bioconductor was adopted to compute the rank values of proteins in PPI network. 

 

3.4 Machine Learning Algorithms 

 

The learning model is trained with N-biomarkers that were chosen by the 

Personalized PagePank algorithm. The aim is to foresee the most probable survival 

class (short- or long-term) of a new cancer patient. Two of recent and common 

algorithms: random forest (RF) and support vector machines (SVM) are preferred to 

use as machine learning methods. 

 

3.5 Support Vector Machines (SVMs) 

 

SVM is a supervised machine learning technique which is helpful for solving 

regression and classification problems. Fundamentally, it calculates the optimum 

separating hyper-plane, that maximizes the margin between the samples of two 

classes provided by the training set. That way we are provided more improved 

classifier model, which is less influenced by outliers. The prediction accuracy of it is 

mostly high, keeps working when training data contain some flaws, and has fewer 

over-fitting problem compared to the other methods (Statnikov, Wang & Aliferis, 

2008), SVM is selected as one of the machine learning methods. SVM is able to 

work with both nonlinear and linear datasets. Support vector machine is a kernel-

based algorithm (Amari & Wu, 1999). A kernel function transforms the input data to 



24 

 

 

a high-dimensional problem space. It can be linear or nonlinear. Besides a kernel 

function is a similarity function that we provide to a machine learning method 

(Amari & Wu, 1999). It requires two inputs and reveals how similar they are. Kernel 

functions are used to transform the input space into a high-dimensional space to 

supply a better separation between class samples (Figure 3.2). With the use of kernel 

functions, the algorithm can operate in a higher-dimensional space without explicitly 

mapping the input points into the space. This is quite beneficial, since occasionally 

our higher-dimensional feature space can be infinite-dimensional and therefore 

unfeasible to compute. Selecting the right kernel depends on what sort of 

information/feature we are hoping to extract about the data (Souza, 2010). For 

instance, a polynomial kernel models feature combinations up to the order of the 

polynomial (Souza, 2010). In this research Radial Basis Function (B-Spline) kernel 

which selects hyperspheres (or circles) - compared to linear kernel which lets select 

only hyperplanes is used. 

 

 

 

Figure 3.2 The kernel function maps the two dimentional non-linear feature space into a three 

dimensional feature space. This way, the training set becomes linearly separapable 

(Schultebraucks, 2017) 

 

When the data is more complicated divided, using just a liner classification 

method is not enough. Luckily, SVMs can do both linear and non-linear 

classification based on the linearity of a dataset. More details about these two 
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classification types will be given in the following sections. Advantages of SVMs can 

be listed as follows: 

 

• SVMs can ignore outliers and works with both linear and non-linear data 

• Most of the time, prediction accuracy is high 

• Robust, it can keep working even if training set contains flaws 

• In case where the number of dimensions is greater than the number of 

examples, SVMs are efficient 

• Compared to other methods SVMs have less overfitting problem (Ray, Jain, 

Blog & Saraswat, 2016). 

 

Disadvantages of SVMs can be listed as follows: 

 

• When the data set is wide, training time takes long 

• Memory-intensive 

• SVMs cannot directly provide statistical results, to compute statistical 

outcomes we need cross-validation techniques(Ray, Jain, Blog & Saraswat, 

2016). 

 

In R-Bioconductor, the package "e1071" has an interface to "libsvm" package. 

The "svm" function is applied to train a SVM with training datasets. The "c" 

parameter in "svm" function illustrates a level to prevent misclassification of each 

training sample. "c-classification" with the "Radial Basis Function (RBF) kernel" is 

used to stay away from problems caused by tuning. To determine prediction 

performance of the SVM, the "predict" function is used with test samples. In this 

research a new feature selection strategy is introduced, so any optimization for the 

SVM parameters is not made intentionally. 

 

3.5.1 Linear SVM 

 

When segregating two classes, there can be multiple lines/hyper-planes that 

differentiates the two classes successfully. The intention of SVM is to maximize the 
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margin/distance from hyperplane to the nearest data point of either class (Figure 3.3). 

The nearest data points that define the hyperplane are called support vectors.  

 

 

Figure 3.3 Optimal hyperplane between two different classes (Ray, Jain, Blog & Saraswat, 2016) 

 

For instance, in Figure 3.4, hyperplane C gives the highest margin compared to 

hyperplane A and B. Another reason for choosing the hyperplane with the highest 

margin is robustness (Ray, Jain, Blog & Saraswat, 2016). If we choose a hyperplane 

with low margin then there is high risk of misclassification (Ray, Jain, Blog & 

Saraswat, 2016). 

 

If a separating hyperplane has maximum distance from data points of either 

classes, like all the data points in each side of the hyperplane have to be of the same 

class this is called hard margin. This assumes that data is not noisy, and we can find a 

perfect classifier which will have zero error on training set. However, data may have 

some errors and we may willing to ignore them to get a better solution. To overcome 

this problem, we allow for some misclassifications and some data points to be on the 

wrong side of the hyperplane, so the training error will not be zero, but the average 

error over all points is minimized. This is called soft margin. 
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Figure 3.4 Hyperplane C is the optimal hyperplane (Ray, Jain, Blog & Saraswat, 2016) 

 

Assume that we have linearly separable data. We pick two parallel hyperplanes, 

which segregates the two classes, such that distance between two lines is maximum 

(Figure 3.5).  

 

 

Figure 3.5 Maximum margin hyperplane (Saxena, 2017) 

 

�⃗⃗� . 𝑥𝑖 −  𝑏 ≥ 1 𝑖𝑓 𝜃𝑖 = 1     (3.3) 

 

�⃗⃗� . 𝑥𝑖 −  𝑏 ≤ 1 𝑖𝑓 𝜃𝑖 = −1     (3.4) 
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where ||�⃗⃗� || is a vector to hyperplane, 𝜃𝑖 symbolizesclasses and 𝑥𝑖 symbolizes 

features. So, the margin is calculated as 
2

||�⃗⃗� || 
 , and to maximize the margin 

denominator value ||�⃗⃗� || should be minimized (Saxena, 2017).  

 

To sum up, hard-margin support vector machine focuses on linearly separable 

problems whereas soft-margin support vector machine focuses on linearly separable 

problems with outliers.   

 

3.5.2 Non-Linear SVM 

 

When we are unable to separate data samples with a linear separator, non-linear 

SVM is applied to these data samples (Figure 3.6). This can be done by mapping 

input samples in a higher dimensional feature space. Then, since we do not want to 

lose advantages of linear separators, we carry out linear classification in this higher 

dimensional space (Figure 3.2). This is done by a kernel function.  

 

 

Figure 3.6 Linearly-separable and non-linearly separable problems (Chen & Bhattacharya, 2006) 

 

Kernel functions may be declared as a dot product in a feature space (Chen & 

Bhattacharya, 2006). Lots of machine learning algorithms can be declared 

completely in terms of dot products. So, a kernel is not only restricted to support 

vector machines. This gives us an opportunity to replace the dot products with 
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kernels. For the sake of classification performance, selecting the right kernel function 

is important. Two of the most frequently-used kernel functions are: 

 

• Polynomial function: K(x, y) = (xTy + 1)d  where d is the polynomial kernel 

of degree. 

• Gaussian Radial Basis function: K(x, y) = exp (−
||x−y||

2

2σ2 ) where 𝜎 represents 

width. 

 

3.6 Random Forest (RF) 

 

Random forest (RF) is a type of ensemble machine learning algorithm for 

classification, regression, etc., which works with multiple learning algorithms to get 

better prediction performance. RFs are consisting of k untrained Decision Trees, 

which are trees with only a root node and M bootstrap data samples. Just like in an 

ensemble (or in an orchestra) of instrumentalists, who play together on various 

instruments, when one of them plays a wrong note, the rest of the group compensate 

this flaw. The main idea behind ensemble learning is that a group of "weak learners" 

can collaborate to form a "strong learner" (Benyamin, 2012). If we obtain the mean 

of the results of all prediction models like voting, we can get a greater model from 

their combination. As the more trees are added to the forest, the forest becomes more 

robust which gives higher accuracy results. 

 

Each tree grows out as far as possible, just like the over-fitting tree. However just 

because the formulas for constructing a single decision tree are the same every time, 

randomness is required to make these trees different from one another. RFs achieve 

this by using bagging, or bootstrap aggregating. This technique decreases model 

variance, or over-fitting and enhances the outcome of learning on unstable or limited 

number set of data samples (Lan, 2017). The working principle of bagging starts with 

taking the actual dataset then creating M subsets, where each subset contains n 

samples. The n samples are sampled uniformly with replacement from the actual 

dataset. After that, k ensemble (or in other words, individual learning models) are 

constructed for each M bootstrap sample (Lan, 2017). So, each ensembles' output is 
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averaged of aggregated by simple means averaging or voting (Figure 3.7). Bagging 

might add bias to the bagged estimator, this may cause the trade-off of reducing 

variance (Lan, 2017). So, this is one of things that needs to be considered. 

 

 

Figure 3.7 After bootstrapping and creating learning ensembles, the learning models are 

aggregated or averaged (Breiman, 2015) 

 

After each tree is built by using a different bootstrap sample from the original 

dataset. Approximately one-third of the data are left out of the bootstrap sample and 

not used in the creation of the kth tree. This is called out-of-bag (oob) data and it is 

used for getting a running unbiased measure of the classification error as trees are 

added to the forest. That way, in RFs we do not need a separate test set or cross-

validation for obtaining an unbiased estimation of the test set error (Breiman, 2015). 

Random forest algorithm works as follows: 
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1. Randomly pick k features at the current node from available m features 

where k<<m.  

2. Then the best split point for tree k is calculated by using splitting metric 

such as information gain, or gini importance, etc.).  

3. We repeat steps 1 to 2 until maximum tree depth l has been reached.  

4. In the end, we redo steps 1 to 3 for each tree k in the forest and then 

average or vote on the output of each tree. 

 

 A random forest grows as a classification tree without any pruning. To classify a 

new data from an input vector, we put the input vector down each of the trees in the 

forest. A classification result has provided us by each tree; the class receives the 

highest votes between all the trees in the forest is chosen as the final class of the 

input vector. Decision trees may have come across with over-fitting problem. So, a 

procedure called pruning is applied. But, RFs accommodate a lot of trees grown with 

any pruning and allow them to vote for the outcome, as a result over-fitting problem 

does not take place. 

 

In summary, RFs does not over-fit. We can run as many trees as we wish. RFs are 

fast, and they can run effectively on large data sets (Breiman, 2015). RFs provides 

estimates of what variables are significant in the classification. They have an 

efficient method for calculating missing data and maintains accuracy even when 

there is big part of data are missing (Breiman, 2015). RFs estimates proximities 

amongst pairs of cases which can be come in handy for locating outliers, or 

clustering (Breiman, 2015). 

 

In this research, "randomForest" and "predict" functions of "randomForest" R-

library were used. "ntree" parameter of "randomForest" function displays the number 

of trees to grow. It was set to 2000. Considering we own two classes, total class 

amount m is set to 2. 
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3.7 Individual Predictors 

 

Two independent prediction models were constructed obtaining the same data 

sets, to make unbiased comparisons. The individual predictors only depended on 

either RPPA or RNA-seq data. The most significant N-genes were chosen with the t-

test by comparing the sort and long survival classes, for the individual classifier of 

only RNA-seq data. Later, their gene expression was provided as the input of the 

machine learning model. The same process was done for the individual classifier of 

the RPPA data. Theoretically, the classification accuracy of these models ought to be 

lower than that of the proposed method, RPBioNet. 

 

3.8 Cross-Validation 

 

Prediction effectiveness of each training model is tested on an unseen (i.e., test) 

data sample, after then a prediction performance, such as accuracy, is calculated 

(Equation 3.5). Monte-Carlo cross-validation in which the whole data set was split 

into two sets randomly; one with 70% of the samples was set as the training set, and 

one with 30% was set as the test set is applied. The personalized PageRank was run 

with the protein level data, and the most important N-genes were chosen during the 

feature selection. SVM and RF classification models were trained with the gene 

expression values of these N-genes. The prediction effectiveness of the classification 

models was computed on the testing data, and the performance was calculated by the 

accuracy independently for SVM and RF. This train-test process was rerun 500 times 

with randomly splitted training and testing samples. The complete performance of 

each machine learning method was showed as the average accuracy of 500 iterations. 

In the end, the best predicting N-biomarkers (genes) were chosen from the individual 

iterations that had the topmost accuracy scores. Table 3.2 shows "predicted labels" 

and "actual classes" in a confusion matrix, which also known as error matrix. 
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Table 3.2 The confusion matrix for a two classes problem 

 
Real Labels 

Class 1 Class 2 

Predicted 

Labels 

Class 1 True Positive (TP) False Positive (FP) 

Class 2 False Negative (FN) True Negative (TN) 

 

The accuracy is calculated by the Equation 3.5. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 +𝑇𝑁)

(𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁)
    (3.5) 

 

TP represents the number of predictions (their real class is also defined as Class 1). 

TN represents the sum of predictions which are predicted as Class 2, and their real 

label is also Class 2.Total predictions are produced by the addition of P and N 

predictions. The classifiers' performance was calculated by using the receiver 

operating characteristic (ROC) curve and the area under the ROC curve (AUC) 

measures. The x- and y-axes of a ROC curve represent the false positive rate and the 

true positive rate, respectively. The area under the ROC curve is presented as the 

AUC. If the AUC value of a classifier is smaller than 0.5 for a two-class problem, 

this classifier performs worse than a random classifier, which turns out to be futile 

for a classification problem. In this research, "ROCR" and "cvAUC" R-libraries were 

used for those computations. 

 

Another classification metrics are precision and recall. Precision is calculated by 

dividing the number of true positives (TP) by the addition of number of true positives 

(TP) and false positives (FP) (Equation 3.6). In other words, the number of positive 

predictions divided by the total number of positive class values predicted. For 

instance, in a medical prognostic test, precision gives us statistical information about 

what percentage of patients we diagnosed as having Glioblastoma actually had 

Glioblastoma.  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
     (3.6) 
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Recall (also called sensitivity) is calculated by dividing the number of true positives 

(TP) by addition of the number of true positives (TP) and the number of false 

negatives (FN) (Equation 3.7). In other words, recall gives the number of positive 

predictions divided by the number of positive class values in the test set. The recall 

answers the following question: of all the patients that actually survived, how many 

did we identified correctly by the test? 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
     (3.7) 

   

3.9 Network-Based Functional Analysis 

 

Functional enrichment analysis was practiced uncovering biological functions of 

the best predictive genes (i.e., biomarkers) for each cancer type supplied by 

RPBioNet. DAVID tool was used for the GO enrichment analysis ("DAVID 

Functional Annotation Tools", 2017). The ToppGene Suite was applied for both 

Gene Ontology (GO) and pathway enrichment analysis (Chen, Bardes, Aronow & 

Jegga, 2009). A network-based analysis was applied to comprehend functions of 

predictive genes regarding a PPI network topology. 

 

The STRING network was applied for this purpose. The most predictive 

biomarkers (i.e., best achieving features out of 500 CV iterations) were merged by 

taking into account various cross-validation iterations whose performance are 

sufficient (e.g., greater than average accuracy). The runs with accuracies higher by 

one standard deviation of the average accuracy of each model are chosen. The 

number of features turned into fairly high, after choosing the CV iterations with the 

high accuracies. But, many of the genes were marked only once or twice in the 

feature sets, and despite there was a demand for filtering. If the occurrence frequency 

of a biomarker gene was greater than average frequency of whole biomarkers in the 

top performing runs, then this gene was selected as a frequent biomarker.  

 

The biological analysis carried on by concentrating on these finest predictive and 

frequent biomarkers. A core network, that consist only of direct interactions amongst 
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the finest predictive biomarkers, was derived for each cancer on the STRING 

network. Afterwards, the cancer type-specific GO annotations were added into the 

core networks to comprehend both network-based and functional relations amongst 

genes. Besides, fold change (Gene expression changes) was mapped on the core 

network visualization. The fold change was computed by comparing mRNA 

measurements of patients in short- and long-survival classes. For instance, up-

regulation shows greater expression in the long survival data samples. 
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CHAPTER FOUR 

RESULTS 

 

The main intention of RPBioNet is to perform the assignment of survival classes 

(short- or long term) of GBM and KIRC patients based on data retrieved from TCGA 

Project. mRNA expression, protein level and protein-protein interaction data were 

integrated to decrease the noise in experimental data and to include causal relations 

among the proteins. Finally, the biological interpretation of the frequent biomarker 

genes was found by PPI and functional enrichment analysis. 

 

4.1 Survival Time Prediction Performance 

 

Survival time prediction is a significant issue when it comes to creation of more 

personalized therapies for patients with cancer. RPBioNet divides cancer patients 

into classes as long- or short-term based on their survival time by making use of 

RNA-seq and RPPA data gathered from TCGA Project. RPBioNet uses the 

personalized PageRank algorithm to the human STRING Protein-Protein Interaction 

network to reveal the most predictive N-proteins based on the input of RPPA data. 

The impact of post-transcriptional modifications may be more precisely observed by 

means of RPPA data; so, the feature selection method obtains the protein 

measurements as the input instead of mRNA measurements. Then, the mRNA 

measurements of the most predictive N-proteins were utilized for training each 

machine learning method. Monte-carlo cross validation technique was applied and 

repeated 500 times to evaluate the learning method. RPBioNet was evaluated on 243 

and 35 patients for the KIRC and GBM data sets, respectively. When the 

personalized PageRank algorithm was executed on two data sets, the most optimal 

results are gathered with N=20 features/proteins for KIRC and GBM. In Table 4.1 

and Table 4.2, the average accuracy percentages of all models after applying 500 

iterations of the Monte-Carlo cross-validation method is shown for GBM and KIRC, 

respectively. 

 



37 

 

 

Table 4.1 The performance percentages of all methods for GBM data set in terms of the average 

accuracy. The individual classifiers are trained by using either RPPA or RNA-Seq data. According to 

the results, RPBioNet, exceeds other methods for GBM 

GBM RPBioNet Only RNA-Seq Only RPPA 

SVM RF SVM RF SVM RF 

Average-

Accuracy (%) 

73.3 78.3 66.8 66.7 65.0 60.2 

 

 

Table 4.2 The performance percentages of all methods for KIRC data set in terms of the average 

accuracy. The individual classifiers are trained by using either RPPA or RNA-Seq data. According to 

the results, RPBioNet, exceeds other methods for KIRC 

KIRC RPBioNet Only RNA-Seq Only RPPA 

SVM RF SVM RF SVM RF 

Average-

Accuracy (%) 

76.6 75.1 72.5 72.2 70.5 72.1 

 

The standard deviations in accuracies while running 500 iterations for GBM and 

KIRC data sets are shown in Figure 4.1 and Figure 4.2, respectively. Figure 4.1 

illustrates bar plot with error bars for GBM according to RPBioNet, RNASeq and 

RPPA. Figure 4.2 shows a bar plot with error bars for KIRC according to RPBioNet, 

RNASeq and RPPA. Error bars show the standard deviation of accuracies obtained 

by 500 iterations. The  proposed  method, RPBioNet, correctly predicts  the  survival  

classes with  the  average  accuracy  of  73%  and  77%  for GBM and  KIRC  

patients,  respectively. RPBioNet performs  significantly  better  than  the individual 

classifier, which is trained with either mRNA (66% for GBM, 72% for KIRC) or 

RPPA (65% for GBM, 70% for KIRC) data. Thus, the integration of two types of 

patients’  data  with  PPI  information  leads  the  better  results  for  the  survival  

time prediction. For GBM, RPBioNet accomplished an average AUC of 0.6 and 0.69 

by SVM and RF, respectively. Nevertheless, the average AUC values were restricted 

by 0.48 and 0.57 for RPPA and RNA-Seq individual classifiers, respectively. 

RPBioNet achieved an average AUC of 0.72 and 0.71 by SVM and RF, respectively 

for KIRC patients.  
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The approximate AUC values were calculated at roughly 0.66 and 0.69 for RPPA 

and RNA-Seq individual classifiers in KIRC. Both evaluation criteria, AUC and 

accuracy, illustrate a better performance for RPBioNet. Therefore, the integration of 

two types of patients' data (RPPA and RNA-seq) with PPI information provides 

better outcomes for the survival time prediction. SVM and RF models depict fairly 

similar average accuracy and AUC values for KIRC patient samples. While SVM 

accomplished the better accuracies in RPBioNet classifier for KIRC patient dataset, 

both machine learning algorithms did evenly well in terms of average AUC values.  

 

From another point of view, RF could outrun SVM in RPBioNet classifier for 

GBM data samples regarding both AUC and accuracy values. If SVM and RF were 

compared for the GBM data set, there were 4% and 9% dissimilarity in the average 

AUC and accuracy values, respectively. This difference between RF and SVM 

machine learning models happened because of imbalanced patient samples between 

short-survival (24 patients) and long-survival (11 patients) classes in the GBM data 

set. The fundamental aim of the research is not to compare the performances of 

various machine learning methods by tuning their special parameters. Monitoring the 

effect of the new feature selection method in RPBioNet classifier is aimed; so, all 

machine learning algorithms were run with their default parameters, as explained 

before. 
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Figure 4.1 The performances of all methods in the GBM data. For SVM average accuracy 

measures are 0.73, 0.67, and 0.65; standard deviation results are 0.08, 0.12, and 0.11 for the new 

method (RPBioNet), RNASeq, and RPPA respectively. For RF average accuracy measures are 

0.87, 0.66, and 0.59; standard deviation calculations are 0.1, 0.11, and 0.11 for the new method 

(RPBioNet), RNASeq, and RPPA respectively 

 

 

Figure 4.2 The performances of all methods in the KIRC data. For SVM average accuracy 

measures are 0.76, 0.73, and 0.70; standard deviation results are 0.04, 0.5, and 0.4 for the new 

method (RPBioNet), RNASeq, and RPPA respectively. For RF average accuracy measures are 

0.75, 0.72, and 0.72; standard deviation calculations are 0.04, 0.05, and 0.04 for the new method 

(RPBioNet), RNASeq, and RPPA respectively 
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4.2 Biomarkers Biological Interpretation  

 

After completing the run of RPBioNet on both data sets, the iterations were 

analyzed by looking at their accuracy percentages. The genes (features) obtaining the 

topmost classification accuracies should have special functions associated with 

progression of cancer. The most predicting biomarkers were composed by taking a 

few cross-validation iterations whose performance was at a satisfactory level (for 

instance, higher than one standard deviation of the average accuracy of each model) 

into consideration. It is acquired 85 and 51 different runs (for instance, different 

feature sets) that covered 55 and 66 unique biomarker genes for KIRC and GBM, 

respectively when it is applied this new filtering technique to the 500 cross-

validation iterations. A few of these biomarker genes only appeared once or twice in 

feature sets, and so only the most frequent biomarker genes are selected. If the 

frequency of a biomarker gene was higher than all biomarker genes' average 

frequency, this gene was selected as a frequent biomarker. There were 22 and 24 

frequent biomarkers for KIRC and GBM, respectively. The ToppGene Suite was 

used for an enrichment analysis, to comprehend the biological functions of these 

predictive biomarkers detected by RPBioNet. The biological annotations are detailed 

in Table 4.3 and Table 4.4, in which only the cancer progression-related ones are 

provided. 
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Table 4.3 The cancer-related Gene Ontology and pathway annotations for some of the most frequent 

biomarkers for GBM 

Cancer Annotation Type Term Biomarker Genes in the 

Term 

FDR 

GBM Gene 

Ontology 

(BP) 

Regulation 

of 

cell 

proliferation 

SHC1, JUN, AKT1, KDR, 

ERBB3, IRS1, BCL2, 

CTNNA1, CTNNB1, RB1, 

CDH2, AR, ESR1, 

NOTCH1, TP53, 

NOTCH3, STAT3, 

STAT5A, SMAD4 

4.34 E-13 

GBM Gene 

Ontology 

(BP) 

Negative 

regulation of 

apoptotic 

process 

JUN, AKT1, KDR, 

ERBB3, BCL2, UBC, 

CTNNA1, CTNNB1, RB1, 

AR, RPS6, NOTCH1, 

TP53, STAT3, STAT5A 

3.75 E-12 

GBM Gene 

Ontology 

(BP) 

Regulation 

of 

nervous 

system 

development 

AKT1, KDR, BCL2, 

CTNNA1, CTNNB1, 

CDH2, NOTCH1, TP53, 

NOTCH3, STAT3 

9.52 E-7 

GBM KEGG 

pathway 

Neurotrophin 

signalling 

pathway 

JUN, AKT1, SHC1, IRS1, 

BCL2, MAPK9, TP53 

1.21 E-7 

GBM KEGG 

pathway 

Glioma SHC1, RB1, AKT1, TP53 6.77 E-3 
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Table 4.4 The cancer-related Gene Ontology and pathway annotations for some of the most frequent 

biomarkers for KIRC 

Cancer Annotation Type Term Biomarker Genes in the 

Term 

FDR 

KIRC Gene 

Ontology 

(BP) 

Regulation of 

cell 

proliferation 

SHC1, CDKN1A, EGFR, 

CDH3, JUN, AKT1, AR, 

TP53, GAB2, CTNNA1, 

IGF1R, MAPK1, SRC, 

CCNB1, CTNNB1, 

IGFBP2, ERRFI1 

6.13 E-13 

KIRC Gene 

Ontology 

(BP) 

Negative 

regulation of 

apoptotic 

process 

CDKN1A, EGFR, PEA15, 

JUN, AKT1, AR, UBC, 

TP53, CTNNA1, IGF1R, 

SRC, CTNNB1 

3.79 E-9 

KIRC KEGG 

Pathway 

Prostate 

cancer 

CDKN1A, EGFR, AKT1, 

AR, TP53, IGF1R, 

MAPK1, CTNNB1, 

MAPK3 

3.61 E-12 

KIRC KEGG 

pathway 

Endometrial 

cancer 

EGFR, AKT1, TP53, 

CTNNA1, MAPK1, 

CTNNB1, MAPK3 

1.21 E-10 

KIRC PantherDB-

pathway 

Angiogenesis SHC1, JUN, AKT1, 

MAPK1, SRC, CTNNB1, 

MAPK3 

5.81 E-8 

 

Some of the biological processes like cell proliferation and apoptosis, are 

frequently observed for two cancer types. Cell proliferation is a process that results 

in an increase of the amount of cells, and it is increased in tumours (Alberts, 2017). 

Apoptosis is a programmed cell death, and malignant cells (e.g., tumours) avoids 

apoptosis (Wong, 2011).  

 

A network-based analysis was carried out to comprehend the biological relations 

amongst the biomarker genes at a system level, as a second step. The common 

(frequent) biomarker genes were mapped on the STRING network. Later, a core 

network, which includes only direct interactions between biomarker genes, was 

obtained for each cancer types. The cancer-specific GO annotations, which are 
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shown in Table 4.3 and Table 4.4, were also contained on top of core networks to 

uncover both topological and functional relations amongst biomarkers. 

 

In Figure 4.3 two biomarker networks are shown for the KIRC and GBM data 

sets. The biomarker network for KIRC data set includes 9 biomarker genes, which 

are annotated with the "negative regulation of apoptosis" GO term and represented 

by an octagon shape.  The network for GBM data set includes 10 biomarkers, which 

are annotated with the "regulation of nervous system development" GO term and 

shown by a rectangle shape. By comparing the expression level of patients in short- 

and long-survival classes, the fold change value of a gene was calculated. Therefore, 

a green colour represents a down-regulation in the gene expression of long-survival 

patient samples; orange colour represents an up-regulation in the same patient class. 

Nine of the biomarker genes (UBC, AR, AKT1, CTNNA1, CTNNB1, JUN, PCNA, 

SHC1, TP53) are common in KIRC and GBM core networks. This situation may 

reveal specific driver proteins linked to cancer progression.  
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Figure 4.3 The core biomarker networks for the GBM and KIRC data sets. Circle shapes represent 

a biomarker gene; an edge/path between two genes shows an interaction gathered from the 

STRING database. In the KIRC network, each Octagon indicates the genes which are annotated 

with the "Negative regulation of apoptosis" GO biological process. In the GBM network, each 

Rectangle depicts the genes that are annotated with the "Regulation of nervous system 

development" process. Node color represents the fold-change value [-1.4 to 0.8] of the gene in the 

RNA-Seq data, for instance, higher expression signifies more mRNA measurement in the long-

survival class samples or vice versa 

 

A higher level of gene expression in biomarker genes CDH2, NOTCH1, 

NOTCH2, AKT1, and AR for the short-term survival patients in the GBM data sets 

are detected. Then a literature review is made on these biomarker genes. El Hindy et 

al. (2013) found out a critical mRNA increase in the GBM patients. Study by Saito et 

al. (2015) showed that the recurrence of GBM after radiotherapy or chemotherapy 

treatments in some patients with a high NOTCH1 expression. A recent study by 

Zhen-yi et al. (2015) discovered a positive correlation between the expression levels 

of NOTCH1 and EGFR genes and the GBM patients' survival time who lived more 
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than a year.  All of these researches indicated that NOTCH1 may be a likely target 

for the treatment of GBM. The expression of some biomarker genes, AR (lower), 

SHC1 (higher), CCNB1 (higher), EGFR (lower), CDH3 (higher), and SRC (higher) 

were found out with miscellaneous levels in the KIRC patients' long-survival class.  

 

During literature reviews, similar results were found with this research. According 

to the study by Zhu et al. (2014) the mRNA level of AR gene was discovered to be 

higher in normal kidney tissue. Mirza et al. (2015) aimed to find anti-cancer drugs to 

target S100A8 and EGFR proteins and to propose new treatment methods for kidney 

cancer. 
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CHAPTER FIVE 

CONCLUSION AND FUTURE WORK 

 

Combining multiple data sources is not a new approach for biomedical issues. 

Analyzing various kinds of biological networks leads to better understanding of 

complex cellular systems. As a result, using biological networks could have a strong 

influence on solving different problems such as identification of disease-causing 

genes, discovery of drug-targets etc. 

 

The protein-protein interaction network that is integrated in this research has 

made an affirmative contribution to the identification of a limited number of 

biomarkers that provided more precise predictions for the future health conditions of 

KIRC and GBM patients. Usage of RPPA data in the PPI network for feature 

selection purpose is the main novelty of this study. 

 

When the individual performances of mRNA and protein expression data are 

compared, the classifier trained with the mRNA data always provides better 

classification results than the protein data. Limited sampling of protein data in the 

RPPA experiments might cause this poor result, more sampling might also improve 

results. So, application on different (larger) data sets can improve performance of 

classifiers. It is also possible that optimizing parameters of SVM and RF might 

improve their performances. Eventually, as a future study DNA methylation data 

could be replacement of RPPA data in the PPI network. 
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