
DOKUZ EYLÜL UNIVERSITY 

GRADUATE SCHOOL OF NATUREL AND APPLIED SCIENCES 
 

 
 
 
 

EFFECT OF HOLE NUMBER TO BEARING 
STRENGTH IN PIN LOADED LAMINATED 

COMPOSITE PLATES  
 

 

 

 

 

 

 

 

by 

Numan TAYLAK 
 

 

 

 

 

 

 

 

 

 

February, 2006 

İZMİR 



 

 

 

EFFECT OF HOLE NUMBER TO BEARING 
STRENGTH IN PIN LOADED LAMINATED 

COMPOSITE PLATES  
 
 

 

 

 

A Thesis Submitted to the  

Graduate School and Applied Sciences of Dokuz Eylül University 

In Partial Fulfillment of the Requirements for the Degree of Master of Science 

in Mechanical Engineering, Mechanics Program 

 

 

 

 

by 

Numan TAYLAK 

 

 

 

 

 

 

 
February, 2006 

İZMİR 



 

 ii

Ms. Sc. THESIS EXAMINATION RESULT FORM 
 

We have read the thesis, entitled “EFFECT OF HOLE NUMBER TO 

BEARING STRENGTH IN PIN LOADED LAMINATED COMPOSITE 

PLATES” completed by NUMAN TAYLAK under supervision of Prof. Dr. 

RAMAZAN KARAKUZU and we certify that in our opinion it is fully adequate, in 

scope and in quality, as a thesis for the degree of Master of Science. 

 

 

 
Prof. Dr. Ramazan Karakuzu 

 

Supervisor 
 
 

 

 

   

 
(Committee Member)  

  
(Committee Member) 

   

   
 

 

 

 

 

________________________________ 

Prof. Dr. Cahit Helvacı 
Director 

Graduate School of Natural and Applied Sciences 

 



 

 iii

ACKNOWLEDGEMENTS 

 

 

I would like to express to my deep sense of appreciation and gratitude to Prof. Dr. 

Ramazan KARAKUZU, for his supervision, valuable guidance and continuous 

encouragement throughout this study. 

 

I also would like to thank Prof. Dr. Onur Sayman for their academic support and 

encouragement through my M.Sc program. 

 

I also extend my sincere thanks to Özgür Ahıshalı, Cihan Rıza Çalışkan and 

Tuncer Yıldız for their great help during my study. I want to express my thanks to 

the research assistants of Department of Mechanic at Dokuz Eylül University for 

their helps during experimental phase of this study. 

 

I want to thank to Ahmet Yiğit, technician in the Machine Tool Laboratory of the 

Mechanical Engineering Department. 

 

Thanks go out to Izoreel Firm that helped me for the production of glass-

vinylester composite plates.  

 

Finally, I am deeply indebted to my family for their support, patience and 

understanding throughout my life. 

 

 

Numan TAYLAK 

 

 

 

 



 

 iv

 EFFECT OF HOLE NUMBER TO BEARING STRENGTH IN PIN LOADED 

LAMINATED COMPOSITE PLATES  

 

ABSTRACT 

 

The aim of this study is to research failure mode, failure load and bearing strength 

in a laminated glass-vinylester composite plate with two parallel circular holes, 

which are subjected to traction forces by two parallel rigid pins. The behaviour of pin 

loaded composite plates has been observed experimentally and numerically with 

different dimensions. 

 

These are performed at three different modes; the distance from the free edge of 

the plate to diameter of holes (E/D) ratio (1,2,3,4,5), the distance between upper part 

of plate and centre of holes to diameter of holes  K/D ratio (2,3,4) and the distance 

between two holes to diameter of holes M/D ratio (2,3,4,5). The failure analysis is 

performed numerically and experimentally and the orientation of fiber θ =0° is 

constant during study. 

 

Failure types and failure loads on the specimens have been determined from 

experimental study. In numerical study, three dimensional finite element method was 

used by assistance of LUSAS 13.6 finite element analysis program. In this program, 

maximum failure load is found with nonlinear analysis. Hashin failure criteria is used 

in this failure analysis. In the case of failure, appropriate properties of the nodes 

failed of the composite plate are reduced. 

 

The experimental results are compared with the numerical results and it has been 

seen that a good agreement between experimental and numerical results. 

 

Keywords: Composite Plate, Bearing Strength, Pin Loading 
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PİM YÜKLEMELİ KOMPOZİT PLAKLARDA YATAK MUKAVEMETİNE 

DELİK SAYISININ ETKİSİ 

 

ÖZ 

 

 Bu çalışmanın amacı iki paralel rijit  pim tarafından değişken yayılı yüke maruz 

kalmış iki paralel delikli tabakalı glass-vinylester kompozit plaktaki, hasar modunu, 

hasar yükünü ve yatak mukavemetini araştırmaktır. Pim yüklü tabakalı kompozit 

plakanın davranışı, deneysel ve nümerik olarak farklı ölçülerde gözlemlenmiştir. 
 

Bu çalışmalar, üç farklı şekilde gerçekleştirilmiştir. Plakanın uç kısmının deliğin 

çapına oranı (E/D); birden beşe kadar, plakanın üst kısmı ile deliğin merkezi 

arasındaki uzaklığın, deliğin çapına oranı (K/D); ikiden dörde kadar ve iki delik 

arasının, delik çapına oranı (M/D); ikiden beşe kadar. Hasar analizi, deneysel ve 

nümerik olarak gerçekleştirilmiştir ve fiber yönlendirme açısı θ= 0 sabittir. 

 

Numunelerdeki hasar tipleri ve hasar yükleri deneysel çalışmalardan bulunmuştur. 

Nümerik çalışmada üç boyutlu sonlu eleman metodu, Lusas 13.6 sonlu eleman 

programı yardımıyla yapılmıştır. Bu program maksimum hasar yükünü nonlieer 

analizle bulur. Hasar analizinde Hashin hasar kriteri kullanılmıştır. Hasar durumunda 

kompozit plağın hasarlı düğümlerindeki malzeme özellikleri indirgenir.  

 

Deneysel sonuçlar, nümerik sonuçlarla karşılaştırılmış ve aralarında iyi bir uyum 

olduğu gözlenmiştir. 

 

Anahtar sözcükler : Kompozit Plak, Yatak Gerilmesi, Pimle Yükleme 
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NOMENCLATURE 

 

 

Abbreviation Term  

D Hole diameter  

E End distance from the hole center  

W Width of the plate  

K Distance between two holes  

t Thickness of the plate  

L Distance from hole center to fixed end  

a, b, c, t i Dimensions of Iosipescu testing specimen  

P Tensile load  

Pult Maximum failure load  

θ Fiber orientation angle  

Eij Elastic moduli in material directions   

Gij Shear moduli  

ν12 Poisson’s ratio  

Vf Fiber volume friction  

σb Bearing strength  

Xt Tensile strength in the fibre direction  

Xc Compressive strength in the fibre direction  

Yt Tensile strength in the transverse direction   

Yc Compressive strength in the transverse direction  

S Shearing strength  

εij Strains  

σij Stress  

][ ijC  Reduced-stiffness matrix  

][ ijC                      Inverse of compliance matrix              

][ ijS                     Compliance matrix          

u, v, w               Displacement component              
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CHAPTER ONE 

INTRODUCTION 

 

Composite materials are highly used in structures when high strength to weight 

and stiffness to weight ratios are required. Because of this, application areas of 

composite materials have increased in recent years. There are a lot of different 

techniques for joining composite members. Some of them are bonding and bolted. 

The use of bolted joints is promising technique since it is easier and more 

economical than others. It is often used due to this materials are easy for 

disassembly. However, mechanical fastened joints require holes to be drilled and 

therefore large stress zones tend to develop. Because of anisotropic and 

heterogeneous nature, the joint problem in composites is more difficult to analyze 

than the case with isotropic materials. For this reason, finding and improving to new 

design methods is very important to avoid cost penalties and weaknesses.  

 

A large part of the literature published so far on mechanically fastened joints 

present experimental results on the effect of the dimensions, clearance between the 

hole and the pin, and the stacking sequence. Several numerical methods have also 

been investigated to predict failure of pinned joints. Most of them are reviewed in 

detail by Camanho & Matthews (1997). Kretsis & Matthews (1985) showed, using E 

glass fiber-reinforced plastic and carbon fiber reinforced plastic, that as the width of 

the specimen decreases, there is a point where the made of failure changes from one 

of bearing to one of tension. A similar behaviour between the end distance and the 

shear-out mode of failure was found. They concluded that lay-up had a great effect 

on both joint strength and failure mechanism. A computer code which can be used 

calculated the maximum load has been developed by Chang et al. (1982). In that 

work Yamada failure criterion has been used. Then Chang et al. (1984a) have 

developed their analysis to T300/T300/1034-C laminates containing a pin loaded 

hole or two pin loaded holes in series or in series. Chang et al (1984b) have 

developed a model and corresponding computer code to determine failure strength 

and failure mode of composite laminates containing a pin loaded hole even when the 

material exhibits nonlinearly elastic behaviour. Chang (1986) has carried out a study 
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to evaluate the effect of the assumed pin load distribution. The calculation have 

utilized a finite element method of stress analysis combined with the Yamata-Sun 

failure criterion applied along the Chang-Scott- Springer characteristic curve. A three 

dimensional finite element model to perform stress analysis of single and multi-

bolted double shear lap connections of glass fiber reinforced plastic has been used by 

Hassan et al. (1996) with using ANSYS program.  

 

Aktas & Karakuzu (1999) have investigated the strength of mechanically fastened 

carbon fiber reinforced epoxy composite plate at the different arbitrary orientations.  

They have analyzed failure load and failure mode numerically and experimentally by 

using Tsai-Hill and fiber tensile compressive failure criteria. Icten & Karakuzu 

(2002) have investigated to prediction of the behaviours of the pined joint carbon 

epoxy composite plates. In that work Hashin and Hoffman criteria was used to 

determine failure load and failure mod. Icten & Sayman (2003) have investigated 

failure load and failure mod in an aluminum glass epoxy sandwich composite plate 

which is subjected to a traction force by a pin. Parametric studies were carried out 

experimentally to obtain the effects of join geometry and fiber orientation on the 

failure strength and failure mode. Okutan, Aslan & Karakuzu (2001) have studied the 

effects of woven fiber, specimen with-to-hole diameter (W/D) and the ratio of edge 

distance to hole diameter (E/D) on the bearing strength of woven laminated 

composites. They have tested single-hole pin loaded specimens for their tensile 

response. They have observed failure propagation and failure type on the specimens.   

Gülem, Içten & Karakuzu (2004) have investigated the bearing strength and failure 

analysis of woven laminated glass-vinylester. In this study, effect of holes has been 

investigated for the different geometries. 

 

 Kim et al (1998) have performed a progressive failure analysis to predict the 

failure loads of pin loaded composites. Camanho & Matthews (1999) have improved 

a 3D finite element model to predict damage progression and strength of 

mechanically fastened joints in carbon fiber reinforced plastics. In that work Hashin 

failure criteria has been used to predict the failure mode.  
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Lessard & Shokrieh (1995) have numerically investigated the damage modeling 

of pin loaded composite. In that work fiber tensile compressive shearing, matrix 

tensile compressive and fiber matrix shearing criterias have been used. 

 

Hung et al (1996) have investigated failure analysis of T800/3900-2 graphite-

epoxy materials by using Hashin failure criteria. 

 

Pierron & Cerisier (2000) have performed a numerical and experimental study to 

determine the bearing strength of bolted woven composite joints. Hamada & 

Maekawa (1996) have investigated failure analysis of quasi isotropic carbon epoxy 

T300/#2500 laminates numerically and experimentally.   

 

Dano et al. (2000) have examined progressive failure analysis of pin loaded 

composite plate to predict the bearing stress pin displacement curve until joint failure 

occurs. In that analysis, contact between the pin and hole, progressive damage, large 

deformation theory and a non linear shear stress strain relationship have been 

investigated. 

 

This study is concerned with the bearing strength, failure mode and failure load in 

pin loaded which is subjected to traction force by rigid pins glass-vinylester 

laminated composite plate. The failure mode and bearing strength have been 

examined numerically and experimentally. To determine the failure mode and failure 

load, a three dimensional finite element method has been used. The effects of 

changing the geometric parameters are observed. 
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CHAPTER TWO 

MACROMECHANICAL BEHAVIOUR OF A LAMINA 

 

2.1 Laminated Composite Materials 

 
Laminated composite materials consist of layers of at least two different materials 

that are bonded together. Lamination is used to combine the best aspects of the 

constituent layers and bonding material in order to achieve a more useful constituent 

layers and bonding material. The properties that can be emphasized by lamination are 

strength, stiffness, low weight, corrosion resistance, wear resistance, beauty or 

attractiveness, thermal insulation, acoustical insulation, etc.  (Johns, 1999) 

 

2.1.1 Lamina 
 

A lamina is a single ply in laminate, which is made up of a series of layers. The 

basic building block of a lamina is a lamina which is a flat arrangement of 

unidirectional fibers or woven in a matrix. Laminated composite materials typically 

have exceptional properties in the direction of the reinforcing fibers, but poor to 

mediocre properties to the fibers.  The problem is how to obtain maximum advantage 

from the exceptional fiber directional properties while minimizing the effects of the 

low transverse properties. 

 

A laminate consists of multiple layers of lamina with unique orientation. A typical 

laminate is shown in Figure 2.1. Mostly the fiber orientation of the layers is not 

symmetric as shown in Figure 2.1. As a result of this, the laminate may not have 

definable only principal directions. 
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Figure 2.1Construction of a laminate 

 

2.2 Stress Analysis 

 

In most cases an accurate understanding of the loads and stress levels in 

component operations is one of the critical involved in defining source of failure. 

Even though other methods of analysis may identify the origin and mode of crack 

propagation, stress analysis most often provides a quantitative explanation for the 

cause of failure. Through this analysis step, engineers involved in future or corrective 

redesigns are provided direct feedback regarding the actual loads experienced by the 

part, poor design practices and configurations, and the effectiveness of the analysis 

methods used in design. 

 

Stress analysis procedures for composite materials can be relatively complex, due 

to the several factors. Because composite materials are fabricated by the lamination 

of highly anisotropic plies, a nearly infinite variety of directional module and 

strength can be achieved. Because of this flexibility, a different set of material 

properties must be considered for each failure case being examined. 
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2.2.1 Stress –Strain Relations for a Lamina  

 

A unidirectional ply is shown in Figure 2.2, along with a coordinate system used 

to establish notation. Here directions 1 and 2 indicate to the fiber directions and 

transverse to the fibers in the plane of the ply, and direction 3 refers to the through 

the thickness direction.  

 

 
Figure 2.2 Unidirectional fiber reinforced ply 

 
 

Stress-strain relations can be expressed in matrix form as, 
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or 

 

{ } [ ]{ }σε S=                                                                                                              (2.2) 
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The S matrix is often called to as the compliance matrix for the lamina, or the 

strain-stress form of material properties with the strains as the dependent variables. It 

can be shown that the matrices describing the stress-strain as the dependent variables. 

It can be shown that the matrices describing the stress-strain relationship of an elastic 

material must be symmetric, so that relationships such as, 

 

122211 νν EE =  or 
2

21

1

12

EE
νν

=  (2.3) 

 

Hold for the off-diagonal terms, so that only nine material properties are required 

to fully characterize the linear behaviour of a lamina in 3-D stress and strain states. 

The zeros in the compliance matrix reflect the fact that it is describing the stress-

strain behaviour of an orthotropic material and that the description is made with 

respect to the principal material axes. 

 

The stress-strain matrix can be inverted to obtain stress-strain relations:  
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The stiffness matrix, ijC , for an orthotropic materials in terms of the engineering 

constants, is obtained by inversion of the compliance matrix, ijS . The stiffnesses in 

Eq. (2.3) are, 
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where 
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2.2.2 Stress-Strain Relations for a Lamina of Arbitrary Orientation 

 

The stress-strain relation has been explained in the principal material coordinates 

on previous section. However, the principal directions of orthotrophy often do not 

coincide with coordinate directions that are geometrically natural to the solution of 

the problem. Due to this cause a method of transforming stress-strain relations from 

one coordinate to another system is required. 

 

The transformation of stress matrix is, 
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θ is the angle between principal directions (1-2-3) and coordinate directions (x-y-

z). 

 

 

 

 

 

 



9 

 

The stress-strain relation in x-y-z coordinates are, 
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The transformed compliance coefficients ijC , indicated to the (x, y, z) system, 
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Note that C14, C15, C16, C24, C25, C26, C34, C35, C36, C45, C46, and C56 are zero for 

an orthotropic material.  

 

The relation of stress-strain for the x-y-z coordinates are, 
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The transformed compliance coefficients ijS , indicated to the (x, y, z) system, 
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2.3 Failure Analysis 

 

The rapid advancement of composite materials over the past two decades has 

outstripped the development of appropriate failure analysis techniques. This is 

particularly true of the fiber composite material systems used in primary structural 

applications in any industries. Although some of the knowledge gained over the 

years in performing failure analysis on metals is applicable to composites, the 

fundamentally different nature of the two materials prohibits the widespread transfer 

of information. 

 

Numerous failure theories have been proposed and are available to the composite 

structural designer. They are classified into three groups, limit or noninteractive 

theories (maximum stress, maximum strain); interactive theories (Tsai-Hill, Tsai-

Wu); and partially interactive or failure mode based theories (Hashin). 

 

The validity and applicability of a given theory depend on the convenience of 

application and agreement with experimental results. The plethora of theories is 

accompanied by a dearth of suitable and reliable experimental data, which makes the 

selection of one theory over another rather difficult. Considerable effort has been 

devoted recently to alleviate this difficulty. 

 

2.3.1 Hashin Failure Criterion 

 

In this study, Hashin failure criteria (1980) has been used due to this criterion is a 

preference for use in finite element models.  

 

Two proposals of failure criterion for fibrous composite materials that are 

associated with Hashin may be found in the literature. The first reference 1 of the 

review is known as the Hashin- Rotem criterion. This criterion predicts failure when 

one of the following equations is satisfied. 
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2.3.1.1 Hashin & Rotem Criterion (1973) 

 

Fiber Failure in Tension 

 

tX=11σ       )0,( 11 >tXσ                         (2.12) 

 
 

Fiber Failure in Compression 

 

- tX=11σ      ( 11σ < 0; Xc >0)                                              (2.13) 
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Matrix Failure in Compression 

 

1
2

12
2

22 =⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

SYc
τσ                     (2.15) 

 

where 

11σ  is the nominal stress in the lamina in the direction of  the fibers. 

22σ  is the nominal stress in the lamina in the transverse direction to  the fibers. 

12τ  is the nominal shear stress in the plane of the lamina. 

Xt  is the tensile strength of the fibers. 

Yt  is the tensile strength in the transverse direction of the fibers. 

Xc  is the compressive strength of the fibers. 
Yc  is the compression strength in the transverse direction of the fibers. 
S is the shear strength. 
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Based on observations of specimen failure in tension with different orientations of 

the fibers, the author of this proposal concludes that there are only two mechanisms 

of failure; fiber or matrix failure. With reference to the second, they do not 

distinguish whether the failure is exactly at the interface or inside the matrix and thus 

propose that both σ2 and σ12 contribute to the appearance of the failure (the proposal 

is in quadratic form). 

 

The historical importance of this proposal is that initiates a different way of 

approaching the generation of composites failure criteria. The authors first set out to 

recognize modes of failure, then to understand the variables with these nodes and 

propose and interaction between them. 

 

The idea seems adequate for the type of materials under consideration; although it 

may be argued that not all failure modes that can appear in fibrous composites are 

covered in the proposal. It is also not clear that the variables they propose for each 

case are the most appropriate or in what they combine them. 

 

In 1980, Hashin re-examined the proposal and established some modifications. 

There are also four expressions involved in the proposal that Hashin developed for 

the 3D case. 

 

Hashin Criterion 3D (1980) 
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or 

 

tX=11σ                                                                                      (2.17) 
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Compressive Fiber Mode 

 

cX=11σ                                                    (2.18) 

 

Tensile Matrix Mode )0( 3322 >+σσ  
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Compressive Matrix Mode )( 3322 σσ + <0 
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where in addition to the previous definitions, ST represents the transverse shear 

strength, the allowable value of shear stress 23τ  (the allowable value of 13τ  is, as for 

12τ , S). 
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CHAPTER THREE 

NUMERICAL STUDY 

 
3.1 Introduction 

 

Numerical analysis techniques, such as finite element analysis (FEA) are used 

extensively in the design and stress analysis of adhesively bonded and bolted 

structures. These techniques offer solutions to complex problems that are too 

difficult or impossible to resolve using analytical, closed-form solutions. Numerous 

FEA programs are available. These programs provide in-built constitutive models for 

simulating the behavior of most adhesive, allowing for non-uniform stress-strain 

distributions, geometric non-linearity, hydrothermal effects, elastic-plastic behavior, 

static and dynamic analysis, and strain rate dependence. Orthotropic element types 

include two dimensional solid plane stress or plain strain elements, axisymetric shell 

or solid elements, three dimensional solid or “brick” elements and crack tip elements. 

A number of automatic mesh (element) generators are available with post processing 

capabilities. 

 

3.2 Three Dimensional Finite Element Method 

 

In the three-dimensional finite element formulation, the displacements, traction 

components, and distributed body force values are the functions of the position 

indicated by (x, y, z). The displacement vector u is given as (Chandrupatla, 1991) 

 
Twvu ],,[=u                    (3.1) 

 

where u, ν and w are the x, y and z components of u, respectively. The stress and 

strains are given by  

 

 



17 

 

T
xyxzyzzzyyxx ],,,,,[ σσσσσσσ =  

T
xyxzyzzzyyxx ],,,,,[ γγγεεεε =                  (3.2) 

 

From Figure 3.1, representing the three- dimensional problem in a general setting, 

the body force and traction vector are given by 

 
T

zyx fff ],,[=f      , T
zyx TTT ],,[=T                              (3.3) 

 

The body force f has dimensions of force per unit volume, while the traction force 

T has dimensions of force per unit area. 

 

 
Figure 3.1 Three-dimensional problem 

 
 
 



18 

 

3.3 The sixteen-Node Brick Element 

 

In this study, the sixteen-node brick element was used. A typical sixteen-node 

brick element is shown in figure 3.1. A 3D isoparametric solid continuum element 

capable of modeling curved boundaries. The element is numbered according to right 

hand screw rule in the local z direction. Freedoms of the element are u, v, w at each 

node and node coordinates are x, y, z at each node. (Gülem, 2004) 

 

 

 
 

Figure 3.2 Sixteen-node brick element 
 

3.4 Modeling of the Problem in Finite Element Program 

 

The maximum failure load values have been found by nonlinear analysis in Lusas 

13.6 finite element program. First of all composite plate was modeled as a half model 

and symmetry boundary conditions were used to reduce to size of the model. Then 

mesh has been graded manually by specifying the number of elements on each of the 

boundary lines. After that, the surface was swept through the depth of the plate to 

create a volume. One element only is required through the depth of the plate the 

default number of mesh divisions must be set to one. 

 

Then translation value of the surface was defined. The translation direction is Z 

and its value is 2.8mm. Next we assigned the volume with mesh dataset Composite 

Brick (HX16L), this element descriptions are generic element type (Structural 

Composite), element shape (Hexahedral), interpolation order (Quadratic). After that, 
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the element axis of the model oriented to lie along the global X axis. The meshing 

half model was shown in figure 3.3. 

 

 

 
Figure 3.3 Meshing of the half model 

 

After completed above parts, model properties were defined. In this section of 

program, orthotropic material was defined, the mechanical properties of glass-

vinylester composite material was added to composite library, leave the units N, mm, 

t, C, s. 3D solid is chosen and the option to output parameters were selected for the 

Hashin Damage model. Mechanical properties of glass-vinylester are shown in Table 

4.2. 
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Figure 3.4 Supported surfaces on symmetry XZ plane 

 

After that, support conditions of the model were defined. Firstly, the bottom 

surfaces of the half model have been supported on symmetry XZ plane as shown in 

Figure in 3.4. Secondly, cylindrical axis is performed surfaces on semi cylinder. 

These surfaces of the plate were supported in X direction as shown in figure 3.5 

 

Finally, tensile load was performed one by one to per unit on surface as shown in 

figure 3.6 and CTRL and A keys were used together whole model was selected and 

assigned, the element axis was selected and click OK to finish this part of the study.  
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Figure 3.5 Supported surfaces in X direction with respect to cylindrical 

 
Figure 3.6 Tensile load direction  
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CHAPTER FOUR 

EXPERIMENTAL STUDY 

 
4.1 Problem Statement 

 
Consider a composite rectangular plate of length L+E, L is fixed at a constant 

value 85mm, width W with  two hole of diameter D, the hole diameters were fixed at 

a constant 5mm, the distance between holes is M, the distance from upper part of 

plate to centre of hole is K, as depicted in Figure 4.1. The holes are at a distance E 

from the free edge of the plate. Rigid pins are located at the centre of the holes. A 

tensile load is applied at one edge of the plate and is resisted the pins.  

 
Figure 4.1 Geometry of a specimen 

 

Depending on the geometry, the specimens may fail in tension, shear-out, or 

bearing. These three modes are shown in Figure 4.2. In real life applications, bearing 
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failure is usually preferred because it is not catastrophic and provides the highest 

joint strength.  

 

The ratio of K/D, E/D and M/D are changed from 2 to 4, 1 to5, 2 to 5 respectively. 

In order to find the strength of two parallel pin loaded specimens, the static bearing 

strength is defined as: 

 

Dt
P

b 2
=σ                     (4.1) 

 
Table 4.1 Typical failure modes for bolted joints 

 
 

4.2 Manufacturing of the Specimens 

 

Izoreel Company produced composite materials which were used in this study. 

Composite plate was consisted of twelve laminas. Thickness of each lamina was 0.3 

mm. The woven of glass-vinylester prepress are cured about 30 minutes at 100 C° 
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under 10 MPa pressure. At the end of the producing, composite plate thickness was 

measured as 2.8 mm. Volume fraction of the glass fiber was approximately 63%. 

 

4.3 Determination of Mechanical Properties 

 

The modulus in direction of the fibers E1 and the Poisson’s ratio ν12 can be 

characterized by means of tension tests on unidirectional coupons that instrumented 

with electric resistance strain gages, as depicted in Figure 4.2. One of them is placed 

to the fiber direction, the other in the matrix direction. The Poisson’s ratio is just ν12= 

-ε2/ε1, it may be noted that some nonlinearity may be observed in these tests. E2 is 

equal to E1 due to the woven structure. 

 

 

 

Figure 4.2 Longitudinal tension test specimen for determination of E1 and ν12 

 

12
1

1
11 ,, EEE

A
P

===
ε
σ

σ                                                      (4.2) 

 
Xt is calculated by dividing the ultimate force by the cross-sectional area of the 

specimen. 

 

A
P

X ult
t =                                                                                                                  (4.3) 

 
To find Xc, a rectangular specimen with small length whose fiber direction 

coincides with the loading direction is taken and it is subjected to compressive 
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loading Figure 4.3. Xc is also calculated by dividing the ultimate force by the cross-

sectional area of the specimen. 

 

A
P

X ult
c =                                                                                                                  (4.4) 

 

S p e c im e n

P

P

 

Figure 4.3 Longitudinal compression 
test 

 
 

The in-plane shear modulus can be obtained in a number of ways (Jones, 1999). 

One of them is to use angel ply coupons, made up of alternating layers of plies at an 

angle to the axis of the specimen. It will be simply stated that the stress and strain 

response in the axial direction of at 45° laminate can be interpreted to give G12 

according to the following expression: 

 

1

12
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EEEE
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=

=

                                                                                   (4.5) 

 

Iosipescu testing method is used to define the shear strength S Figure 4.4. The 

dimensions of the specimen are chosen as; a=80 mm, b=20 mm, c=12 mm and ti=2.8 

mm. A compression test is applied to the specimen. In failure, S is calculated from 
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c.t
P

S
i

max=                                                                                                         (3.6) 

 

where Pmax is the failure force. (Gibson, 1994) 
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Figure 4.4 Iosipescu testing fixture 

 

Yt and Yc are equal to, Xt and Xc, respectively because of the woven structure. 

The mechanical properties of glass-vinylester composite plate which are obtained 

from the experimental study have been given in Table 3.1. (Gülem, 2004) 

 

Table 4.2 Mechanical properties of glass-vinlyester composite materials 

   E1=E2 

(GPa) 

G12 

(GPa) 
ν12 

Xt=Yt 

(MPa) 

Xc=Yc 

(MPa) 
S (MPa) Vf (%) 

20.769 4.133 0.09 395 260 75 63 
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To find the failure load and the failure mode, a series of experiments were carried 

out. The specimens were trimmed as depicted in Figure 4.1. The effects of the pin 

location were studied by varying the distance from upper part of plate and centre of 

holes (K/D) ratio from 2 to 4, edge distance to diameter (E/D) ratio from 1 to 5 and 

between two holes distance to diameter (M/D) ratio from 2 to 5, for the 0° fiber 

orientation angle while keeping D, t and L constant. 60 different geometries were 

used. All specimens were tested two times each.  

 

The experiments were carried out in tension mode on the Tensile Machine. The 

lower edge of the specimen clamped and loaded from the steel pins by stretching the 

specimens at a ratio 0.5 mm/min Figure 4.5. The load-pin displacement diagrams for 

all composite configurations were plotted.  

 

 
Figure 4.5 Experimental setup for pin-joint testing 
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CHAPTER FIVE 

RESULTS AND DISCUSSION 

 

In this investigation, progressive failure analysis of pin loaded composite plates is 

performed to predict failures and bearing stresses and also it is compared with 

different geometries. The analysis takes into account contact between the pins and 

holes and a non-linear shear stress-strain relationship. To predict the failure, the 

Hashin Criteria was used for numerical analysis. After that these results have been 

compared with the experimentally conclusions.  

 

In the experimental study, it is seen that load–displacement curves are linear 

before the initial failure. But then load decreases while deformation increases for 

most of the specimens. Some of them continued to keep loading on. Sometimes the 

highest load becomes after this event. 

 

It is seen that when edge distance to diameter ratio (E/D), distance between holes 

to diameter (M/D) and distance between center of holes and upper part of plates to 

diameter ratio (K/D) are increased, failure load reaches higher values.  

 

Especially when E/D ratio is 1 for M/D=2, 3 and K/D=2, failure load occurs lower 

values. In this case, plate is the weakest. E/D ratio begins to increase when M/D and 

K/D are constant; failure load reaches the higher values. For example E/D is 4-5 for 

M/D=4-5 and K/D is 4, failure load occurs 7500-8000 N. 

 

In the same way, failure occurs quickly while M/D ratio is 2-3 for E/D=1 and 

K/D=2. When the M/D ratio is increased such as 4and 5, failure load values reaches 

higher values. 

 

Load-displacements curves of the experimental study are shown in Appendix A. 
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Bearing strength rises with increasing M/D ratio, while E/D and K/D ratio are 

constant. It reaches higher values when M/D 4, 5 for E/D=1 K/D=2-3. 

 

When E/D ratio reaches 4 or 5 value, failure mode generally either bearing or 

bearing and shear out. It is shown in Figure 5.1 and 5.2 

 

 

 

 

 

 
  

Figure5.1 The bearing mode for E/D=5, M/D=5, K/D=4 

  

 

 

 

 

 

Figure5.2 The bearing and shear out mode for E/D=2, M/D=3, K/D=3 

 

 

At low values of E/D, the failure types are shear out which are weak type of 

failure. This mode can be shown in Figure 5.3 

 

 
 
 
 
 
 

 
Figure5.3 The shear out mode for E/D=1, M/D=5, K/D=2 

 

The other modes of failure of comparison with experimental and Hashin results 

are shown in Appendix B.40 
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Figures from 5.4 to 5.15 are concerned with the bearing strength. It is clearly seen 

from the graphics that bearing strength is depend on E/D ratio. Bearing strength 

reaches lowest values while E/D=1 for M/D=2-3, K/D=2-3. As the E/D and M/D 

ratio are increases, the failure load reaches higher values. 
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Figure 5.4 The effect of K/D ratio according to E/D=1, 2, 3, 4, 5, M/D=2, 

3, 4, 5 
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Figure 5.5 The effect of E/D ratio according to K/D= 2, 3, 4, M/D=2, 3, 

4, 5 

 



33 

 

E/D=1

0

100

200

2 3 4 5

M/D
B

ea
rin

g 
St

re
ng

th
 (M

Pa
) K/D=2

K/D=3

K/D=4

E/D=2

0
100
200
300

2 3 4 5

M/D

B
ea

rin
g 

St
re

ng
th

 
(M

Pa
)

K/D=2

K/D=3

K/D=4

E/D=3

0
100
200
300

2 3 4 5

M/D

B
ea

rin
g 

St
re

ng
th

 
(M

Pa
)

K/D=2

K/D=3

K/D=4

E/D=4

0
100
200
300
400

2 3 4 5

M/D

B
ea

rin
g 

St
re

ng
th

 
(M

Pa
)

K/D=2

K/D=3

K/D=4

E/D=5

0
100
200
300

2 3 4 5

M/D

B
ea

rin
g 

St
re

ng
th

 
(M

Pa
)

K/D=2

K/D=3

K/D=4

 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.6 The effect of M/D ratio according to K/D= 2, 3, 4, E/D=1, 2, 

3, 4, 5 
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(c) 

Figure 5.7 The effect of E/D ratio on the bearing strength 

for M/D=2 a) K/D=2, b) K/D=3 c) K/D=4 
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(c) 

Figure 5.8 The effect of E/D ratio on the bearing strength 

for M/D=3 a) K/D=2, b) K/D=3 c) K/D=4 
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Figure 5.9 The effect of E/D ratio on the bearing strength 

for M/D=4 a) K/D=2, b) K/D=3 c) K/D=4 
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Figure 5.10 The effect of E/D ratio on the bearing 

strength for M/D=5 a) K/D=2, b) K/D=3 c) K/D=4 
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Figure 5.11 The effect of M/D ratio on the bearing 

strength for E/D=1 a) K/D=2, b) K/D=3 c) K/D=4 
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(c) 

Figure 5.12 The effect of M/D ratio on the bearing 

strength for E/D=2 a) K/D=2, b) K/D=3 c) K/D=4 
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Figure 5.13 The effect of M/D ratio on the bearing 

strength for E/D=3 a) K/D=2, b) K/D=3 c) K/D=4 
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Figure 5.14 The effect of M/D ratio on the bearing 

strength for E/D=4 a) K/D=2, b) K/D=3 c) K/D=4 
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Figure 5.15 The effect of M/D ratio on the bearing 

strength for E/D=5 a) K/D=2, b) K/D=3 c) K/D=4 
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Table 5.1 Comparisons of experimental and numerical failure loads and bearings for E/D=1  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.2 Comparisons of experimental and numerical failure loads and bearings for E/D=2  

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

Experimental Hashin Experimental Hashin 
M/D=2 3163 5235 113 187 

M/D=3 3278 5400 117 193 

M/D=4 3332 5452 119 195 

M/D=5 3457 5578 123 199 

M/D=2 3314 4288 118 153 

M/D=3 3404 5560 122 199 

M/D=4 3874 5601 138 200 

M/D=5 3454 5706 123 204 

M/D=2 3762 3912 134 140 

M/D=3 3737 5304 133 189 

M/D=4 3961 5652 141 202 

M/D=5 4083 5750 146 205 

Failure Load (N) Bearing Strength (MPa)

K/D=2 

K/D=3 

E/D=1

K/D=4 

Experimental Hashin Experimental Hashin 
M/D=2 5604 5640 200 201 

M/D=3 5695 5684 203 203 

M/D=4 5696 6663 203 238 

M/D=5 6177 6463 221 231 

M/D=2 5625 5635 201 201 

M/D=3 5775 6640 206 237 

M/D=4 5750 6912 205 247 

M/D=5 6851 6501 245 232 

M/D=2 5689 4368 203 156 

M/D=3 5781 5676 206 203 

M/D=4 6628 6944 237 248 

M/D=5 7284 6441 260 230 

Failure Load (N) Bearing Strength (MPa)

K/D=2 

K/D=3 

E/D=2

K/D=4 
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Table 5.3 Comparisons of experimental and numerical failure loads and bearings for E/D=3  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 5.4 Comparisons of experimental and numerical failure loads and bearings for E/D=4 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Experimental Hashin Experimental Hashin 
M/D=2 5635 6105 201 218 

M/D=3 6273 7000 224 250 

M/D=4 6515 6936 233 248 

M/D=5 7073 6850 253 245 

M/D=2 6378 5788 228 207 

M/D=3 6711 6600 240 236 

M/D=4 6683 6912 239 247 

M/D=5 7159 6864 256 245 

M/D=2 6585 6025 235 215 

M/D=3 6744 6540 241 234 

M/D=4 7344 6566 262 235 

M/D=5 7952 6840 284 244 

Failure Load (N) Bearing Strenth (MPa)

K/D=2 

K/D=3 

E/D=3

K/D=4 

Experimental Hashin Experimental Hashin 
M/D=2 6152 6690 220 239 

M/D=3 6482 6940 232 248 

M/D=4 6585 6576 235 235 

M/D=5 7140 6720 255 240 

M/D=2 6970 6376 249 228 

M/D=3 7026 6750 251 241 

M/D=4 7185 6624 257 237 

M/D=5 7475 6723 267 240 

M/D=2 7137 6220 255 222 

M/D=3 7247 6600 259 236 

M/D=4 7670 8165 274 292 

M/D=5 8165 6690 292 239 

K/D=4 

Failure Load (N) Bearing Strenth (MPa)

K/D=2 

K/D=3 

E/D=4 
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 Table 5.5 Comparisons of experimental and numerical failure loads and bearings for E/D=5 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

Experimental Hashin Experimental Hashin 
M/D=2 6779 6840 242 244 

M/D=3 7065 6900 252 246 

M/D=4 6954 6768 248 242 

M/D=5 6630 6531 237 233 

M/D=2 6931 6520 248 233 

M/D=3 6754 6800 241 243 

M/D=4 7407 6570 265 235 

M/D=5 7176 6508 256 232 

M/D=2 7302 6400 261 229 

M/D=3 6589 6720 235 240 

M/D=4 7688 6529 275 233 

M/D=5 7909 6630 282 237 

K/D=2 

K/D=3 

K/D=4 

E/D=5 
Failure Load (N) Bearing Strenth (MPa)
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CHAPTER SIX 

CONCLUSION 

 

In this investigation, failure mode, maximum failure load and bearing strength in a 

glass vinylester composite plate with two circular and parallel holes, which is 

subjected to traction force by two parallel rigid pins, are performed experimentally 

and numerically. In numerical study, Hashin failure criteria was used to predict the 

maximum failure load and failure types. In the experimental study, the specimens for 

each E/D, M/D and K/D ratio have been tested. Experimental results concerning 

failure types and failure loads were obtained and compared with numerical results. It 

is seen that these results are close to each other. In addition the effects of geometric 

parameters are observed. All the numerical and experimental results which is 

obtained have been presented in tables and figures. 

 

Bearing strength of the composite plate increases by going up the geometric 

parameters. It means that, when edge distance to diameter ratio (E/D), distance 

between center of the holes (M/D) and distance from center of holes to upper edge of 

plates (K/D) are increased, the bearing strength reaches higher values.  

 

When E/D ratio is 1, the bearing strength is small and failure mode is generally 

shear out. In addition, when the E/D ratio 3, 4 or 5, the failure load reaches higher 

values and failure modes is bearing which is the best mode of resisting load. 

 

While the M/D and K/D ratios are increased, the bearing strengths generally reach 

high values as E/D ratio. Failure types are bearing.  

 

At low values of M/D, the failure types are shear out or shear out and bearing 

together which are weak type of failure 
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          APPENDIX A 
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Figure A.1 Load-displacement curves for pin-loaded glass-

vinylester composite plates (E/D=1,2,3,4,5 M/D=2) a) 

K/D=2, b) K/D=3, c) K/D=4 
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Figure A.2 Load-displacement curves for pin-loaded glass-

vinylester composite plates (E/D=1,2,3,4,5 M/D=3) a) 

K/D=2, b) K/D=3, c) K/D=4, d) K/D=5 
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Figure A.3 Load-displacement curves for pin-loaded glass-

vinylester composite plates (E/D=1,2,3,4,5 M/D=4) a) 

K/D=2, b) K/D=3, c) K/D=4 
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Figure A.4 Load-displacement curves for pin-loaded glass-

vinylester composite plates (E/D=1,2,3,4,5 M/D=5) a) 

K/D=2, b) K/D=3, c) K/D=4 
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Figure A.5 Load-displacement curves for pin-loaded glass-

vinylester composite plates (K/D=2, 3, 4 E/D=1) a) M/D=2, 

b) M/D=3, c) M/D=4, d) M/D=5 
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Figure A.6 Load-displacement curves for pin-loaded glass-

vinylester composite plates (K/D=2, 3, 4 E/D=2) a) M/D=2, 

b) M/D=3, c) M/D=4, d) M/D=5 
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Figure A.7 Load-displacement curves for pin-loaded glass-

vinylester composite plates (K/D=2, 3, 4 E/D=3) a) M/D=2, 

b) M/D=3, c) M/D=4 d) M/D=5 
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Figure A.8 Load-displacement curves for pin-loaded glass-

vinylester composite plates (K/D=2, 3, 4 E/D=4) a) M/D=2, 

b) M/D=3, c) M/D=4 d) M/D=5 
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Figure A.9 Load-displacement curves for pin-loaded glass-

vinylester composite plates (K/D=2, 3, 4 E/D=5) a) M/D=2, 

b) M/D=3, c) M/D=4 M/D=5 
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Figure A.10 Load-displacement curves for pin-loaded glass-

vinylester composite plates (M/D=2, 3, 4,5  E/D=1) a) 

K/D=2, b) K/D=3, c) K/D=4 
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Figure A.11 Load-displacement curves for pin-loaded glass-

vinylester composite plates (M/D=2, 3, 4, 5 E/D=2) a) 

K/D=2, b) K/D=3, c) K/D=4 

 

E/D=3 K/D=2 

0
1000
2000
3000
4000
5000
6000
7000
8000

0 1 2 3 4 5 6 7 8 9 10

Displacement (mm )

Lo
ad

 (N
)

M/D=2

M/D=5

M/D=3

M/D=4

 
(a) 

 



 63

E/D=3 K/D=3 

0
1000
2000
3000
4000
5000
6000
7000
8000

0 1 2 3 4 5 6 7 8 9 10

Displacement (mm )

Lo
ad

 (N
)

M/D=2

M/D=5

M/D=3

M/D=4

 
(b) 

E/D=3 K/D=4

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

0 1 2 3 4 5 6 7 8 9 10

Displacement (mm )

Lo
ad

 (N
)

M/D=2

M/D=5

M/D=3

M/D=4

 
(c) 

Figure 5.12 Load-displacement curves for pin-loaded glass-

vinylester composite plates (M/D=2, 3, 4, 5 E/D=3) a) 

K/D=2, b) K/D=3, c) K/D=4 
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Figure A.13 Load-displacement curves for pin-loaded glass-

vinylester composite plates (M/D=2, 3, 4, 5 E/D=4) a) 

K/D=2, b) K/D=3, c) K/D=4 
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Figure A.14 Load-displacement curves for pin-loaded glass-

vinylester composite plates (M/D=2, 3, 4, 5 E/D=5) a) 

K/D=2, b) K/D=3, c) K/D=4 
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APPENDIX B 
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Figure B.1 Comparison with experimental and Hashin results a) E/D=1 M/D=2 K/D=2, b) E/D=1 

M/D=2 K/D=3, c) E/D=1 M/D=2 K/D=3 
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Figure B.2 Comparison with experimental and Hashin results a) E/D=1 M/D=3 K/D=2, b) E/D=1 

M/D=3 K/D=3, c) E/D=1 M/D=3 K/D=3 
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Figure B.3 Comparison with experimental and Hashin results a) E/D=1 M/D=4 K/D=2, b) 

E/D=1 M/D=3 K/D=4, c) E/D=1 M/D=4 K/D=3 
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Figure B.4 Comparison with experimental and Hashin results a) E/D=1 M/D=5 K/D=2, b) 

E/D=1 M/D=5 K/D=4, c) E/D=1 M/D=5 K/D=3 
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Figure B.5 Comparison with experimental and Hashin results a) E/D=2 M/D=2 K/D=2, b) 

E/D=2 M/D=2 K/D=3, c) E/D=2 M/D=2 K/D=4 
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Figure B.6 Comparison with experimental and Hashin results a) E/D=2 M/D=3 K/D=2, b) 

E/D=2 M/D=3 K/D=3, c) E/D=2 M/D=3 K/D=4 
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Figure B.7 Comparison with experimental and Hashin results a) E/D=2 M/D=4 K/D=2, b) 

E/D=2 M/D=4 K/D=3, c) E/D=2 M/D=4 K/D=4 
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Figure B.8 Comparison with experimental and Hashin results a) E/D=2 M/D=5 K/D=2, b) E/D=2 

M/D=5 K/D=3, c) E/D=2 M/D=5 K/D=4 
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Figure B.9 Comparison with experimental and Hashin results a) E/D=3 M/D=2 K/D=2, b) 

E/D=3 M/D=2 K/D=3, c) E/D=3 M/D=2 K/D=4 
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Figure B.10 Comparison with experimental and Hashin results a) E/D=3 M/D=3 K/D=2, b) E/D=3 

M/D=3 K/D=3, c) E/D=3 M/D=3 K/D=4 
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Figure B.11 Comparison with experimental and Hashin results a) E/D=3 M/D=4 K/D=2, b) E/D=3 

M/D=4 K/D=3, c) E/D=3 M/D=4 K/D=4 
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Figure B.12 Comparison with experimental and Hashin results a) E/D=3 M/D=5 K/D=2, b) E/D=3 

M/D=5 K/D=3, c) E/D=3 M/D=5 K/D=4 
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Figure B.13 Comparison with experimental and Hashin results a) E/D=4 M/D=2 K/D=2, b) E/D=4 

M/D=2 K/D=3, c) E/D=4 M/D=2 K/D=4 
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Figure B.14 Comparison with experimental and Hashin results a) E/D=4 M/D=3 K/D=2, b) 

E/D=4 M/D=3 K/D=3, c) E/D=4 M/D=3 K/D=4 
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Figure B.15 Comparison with experimental and Hashin results a) E/D=4 M/D=4 K/D=2, b) E/D=4 

M/D=4 K/D=3, c) E/D=4 M/D=4 K/D=4 
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Figure B.16 Comparison with experimental and Hashin results a) E/D=4 M/D=5 K/D=2, b) E/D=4 

M/D=5 K/D=3, c) E/D=4 M/D=5 K/D=4 
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Figure B.17 Comparison with experimental and Hashin results a) E/D=5 M/D=2 K/D=2, b) E/D=5 

M/D=2 K/D=3, c) E/D=5 M/D=2 K/D=4 
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Figure B.18 Comparison with experimental and Hashin results a) E/D=5 M/D=3 K/D=2, b) E/D=5 

M/D=3 K/D=3, c) E/D=5 M/D=3 K/D=4 
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Figure B.19 Comparison with experimental and Hashin results a) E/D=5 M/D=4 K/D=2, b) E/D=5 

M/D=4 K/D=3, c) E/D=5 M/D=4 K/D=4 
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Figure B.20 Comparison with experimental and Hashin results a) E/D=5 M/D=5 K/D=2, b) E/D=5 

M/D=5 K/D=3, c) E/D=5 M/D=5 K/D=4 
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