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MS SEGMENTATION BY USING MRI IMAGES 

 

ABSTRACT 

 

Multiple Sclerosis (MS) is a disease of the central nervous system, brain and 

spinal cord. The inherent heterogeneity of MS lesions, which is reflected on MR 

images, causes some of the difficulties encountered while attempting to separate 

lesions from healthy brain tissue and cerebro-spinal fluid. Automated segmentation 

of the lesions is useful for trace and diagnosis of MS. In this study, different tissue 

classification techniques are compared for segmentation of the MS lesions. Artificial 

neural networks are considered as supervised segmentation techniques and clustering 

algorithms are considered as unsupervised techniques. Fuzzy C-Means, K-Means and 

K-medoid clustering techniques with Principle Component Analysis, Independent 

Component Analysis and Multi Layer Back Propagation Neural Network algorithms  

are compared and results are evaluated.  

 

Keywords: Multiple Sclerosis, Magnetic Resonance Imaging, Segmentation, 

Artificial Neural Network, Fuzzy C-Means, K-Means, Clustering, Principle 

Component Analysis (PCA), Independent Component Analysis (ICA).  
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MR GÖRÜNTÜLERİ KULLANARAK MS BÖLÜTLEMESİ 

 

ÖZ 

 

 Multiple Sclerosis (MS), merkezi sinir sistemi, beyin ve omuriliği etkileyen bir 

hastalıktır. MS lezyonlarının içsel heterojen yapısı MR görüntülerine yansır ve 

lezyonların sağlıklı beyin dokusundan ayrılması sırasında zorluklarla karşılaşılır. 

Lezyonların otomatik bölütlenmesi MS’in tanımlanması ve izlenmesi açısından 

gereklidir. Bu çalışmada, MS lezyonlarının bölütlenmesi için  farklı doku 

sınıflandırma teknikleri karşılaştırıldı. Yapay sinir ağları, güdümlü yöntem olarak 

dikkate alındı. Bağımsız bileşen analizi (ICA) ve  temel bileşen analizi (PCA) ile 

birleştirilmiş  fuzzy c-means, k-means ve k-medoid kümeleme yöntemleri ile çok 

seviyeli geri yayılım sinir ağları algoritmaları karşılaştırıldı ve sonuçlar 

değerlendirildi. 

 

Anahtar Sözcükler: Multiple Sclerosis, Manyetik Rezonans Görüntüleme, 

Bölütleme, Yapay Sinir Ağları, Fuzzy C-Means, K-Means, Kümeleme, Temel 

Bileşen Analizi (PCA), Bağımsız Bileşen Analizi (ICA). 
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CHAPTER ONE 

INTRODUCTION 

 

 Multiple Sclerosis (MS) is a disease of the central nervous system, the brain and 

spinal cord. Magnetic resonance imaging is very important for radiologists for 

detecting and seperating lesion areas. The inherent heterogeneity of MS lesions, 

which is reflected on MR images, causes some of the difficulties encountered while 

attempting to separate lesions from healthy brain tissue and cerebro-spinal fluid.  

Automated segmentation of the lesions is useful for trace and diagnosis of MS.  

 

1.1 Magnetic Resonance Imaging (MRI) 

 

Magnetic Resonance Imaging is important technique for diagnosis diseases and 

soft tissue contrast is ideal modality for investigating central nervous system 

disorders. Magnetic Resonance Imaging is a non-invasive medical technique which 

through the production of series of cross-sectional images, allows the visualization of 

internal anatomical structures of the body. MRI is typically used qualitatively, with 

radiologists inspecting the acquired images for tumors, lesions, and other 

abnormalities. Quantitative estimation of tissue volumes provides important 

information about the natural progression of disease and helps to evaluate efficiency 

of  threapeutic intervension (Hornac, J.P.,2007).  

 

1.2 Multiple Sclerosis (MS) 

 

Multiple Sclerosis (MS) is a disease of the central nervous system, the brain and 

spinal cord. It is a debilitating and progressive disease which may result in a variety 

of symptoms from blurred vision to severe muscle weakness and degradation, 

depending on the area of the central nervous system which is affected. Multiple 

Sclerosis is caused by a breakdown in the myelin sheath, a soft, white, fatty material 

which insulates the neurons of the central nervous system and provides for the rapid 

transmission of nerve impulses along the nerve fibers of the brain and spinal cord. 

MS lesions go through various hist-pathological stages and are heterogeneous in their 

1 
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presentation. Some chronic lesions may contain “scar” tissue composed of astrocytic 

fibers (Pu Ma, 2001). 

 

1.2.1 Signs and Symptomps of MS 

 

 MS can cause a variety of symptoms, including changes in sensation, muscle 

weakness, abnormal muscle spasms, or difficulty in moving, difficulties with 

coordination and balance, problems in speech  or swallowing, visual problems, 

fatigue and acute or chronic pain syndromes, bladder and bowel difficulties, 

cognitive impairment, or emotional symptomatology (http://en.wikipedia.org/ 

wiki/Multiple_sclerosis#_note-2,  June 2007 ) . 

 

  The main clinical measure of disability progression and severity of the symptoms 

is the Expanded Disability Status Scale or EDSS (Kurtzke, J.F., 1983). 

 

 The initial attacks are often transient, mild, and self-limited. They often do not 

prompt a health care visit and sometimes are only identified in retrospect once the 

diagnosis has been made based on further attacks. The most common initial 

symptoms reported are: Changes in sensation in the arms, legs or face (33%), 

complete or partial vision loss (16%), weakness (13%), double vision (7%), 

unsteadiness when walking (5%), and balance problems (3%) but many rare initial 

symptoms have been reported such as aphasia or psychosis (Navarro, S., Mondéjar-

Marín, B., 2005), (Jongen, P., 2006). Fifteen percent of individuals have multiple 

symptoms when they first seek medical attention (Paty, D., Studney D.,1994). For 

some people the initial MS attack is preceded by infection, trauma, or strenuous 

physical effort. 

 

1.2.2 Diagnosis of MS 

 

 Multiple sclerosis is difficult to diagnose in its early stages. In fact, definite 

diagnosis of MS cannot be made until there is evidence of at least two anatomically 

separate demyelinating events occurring at least thirty days apart (http:// en.  
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wikipedia.org/ wiki/Multiple_sclerosis#_note-2,  June 2007 ) . 

  

 Historically different criteria were used. The Schumacher criteria and Poser 

criteria were both popular. Currently, McDonald criteria represents international 

efforts to standardize the diagnosis of MS using clinical data, laboratory data, and 

radiologic data (McDonald, W., Compston A., 2001).  

  

Clinical data alone may be sufficient for a diagnosis of MS. If an individual has 

suffered two separate episodes of neurologic symptoms characteristic of MS, and the 

individual also has consistent abnormalities on physical examination, a diagnosis of 

MS can be made with no further testing. Since some people with MS seek medical 

attention after only one attack, other testing may hasten the diagnosis and allow 

earlier initiation of therapy.  

 

 Magnetic resonance imaging (MRI) of the brain and spine is often used to 

evaluate individuals with suspected MS. MRI shows areas of demyelination as bright 

lesions on T2-weighted images or FLAIR (fluid attenuated inversion recovery) 

sequences. Gadolinium contrast is used to demonstrate active plaques on T1-

weighted images. Because MRI can reveal lesions which occurred previously but 

produced no clinical symptoms, it can provide the evidence of chronicity needed for 

a definite diagnosis of MS.  

 

 Testing of cerebrospinal fluid (CSF) can provide evidence of chronic 

inflammation of the central nervous system. The CSF is tested for oligoclonal bands, 

which are immunoglobulins found in 85% to 95% of people with definite MS 

(Rudick, R., Whitaker, J., 1987). Combined with MRI and clinical data, the presence 

of oligoclonal bands can help make a definite diagnosis of MS. Lumbar puncture is 

the procedure used to collect a sample of CSF.  

 

 The brain of a person with MS often responds less actively to stimulation of the 

optic nerve and sensory nerves. These brain responses can be examined using visual 
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evoked potentials (VEPs) and somatosensory evoked potentials (SEPs). Decreased 

activity on either test can reveal demyelination which may be otherwise 

asymptomatic. Along with other data, these exams can help find the widespread 

nerve involvement required for a definite diagnosis of MS (Gronseth, G., Ashman, 

E., 2000).  

 

 Another test which may become important in the future is measurement of 

antibodies against myelin proteins such as myelin oligodendrocyte glycoprotein 

(MOG) and myelin basic protein (MBP). As of 2007, however, there is no 

established role for these tests in diagnosing MS (http:// en.wikipedia.org/ 

wiki/Multiple_sclerosis#_note-2,  June 2007 ).  

  

 The signs and symptoms of MS can be similar to other medical problems, such as 

neuromyelitis optica, stroke, brain inflammation, infections such as Lyme disease 

(which can produce identical MRI lesions and CSF abnormalities), tumors, and other 

autoimmune problems, such as lupus. Additional testing may be needed to help 

distinguish MS from these other problems (Garcia-Monco,  J.,  Miro,  J., 1990), 

(Hansen, K.,  Cruz, M., 1990), (Schluesener, H.,  Martin, R., 1989), (Kohler, J., 

Kern, U., 1988). 

 

1.2.3 Disease Course and Clinical Subtypes of MS 

 

 The course of MS is difficult to predict, and the disease may at times either lie 

dormant or progress steadily. Several subtypes, or patterns of progression, have been 

described. Subtypes use the past course of the disease in an attempt to predict the 

future course. Subtypes are important not only for prognosis but also for therapeutic 

decisions. In 1996 the United States National Multiple Sclerosis Society standardized 

the following four subtype definitions (Lublin, F.,  Reingold, S., 1996). 

 

 1.2.3.1 Relapsing-remitting  

 Relapsing-remitting describes the initial course of 85% to 90% of individuals with 

MS. This subtype is characterized by unpredictable attacks (relapses) followed by 
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periods of months to years of relative quiet (remission) with no new signs of disease 

activity. Deficits suffered during the attacks may either resolve or may be permanent. 

When deficits always resolve between attacks, this is referred to as "benign" MS.  

 

 1.2.3.2 Secondary progressive  

 Secondary progressive describes around 80% of those with initial relapsing-

remitting MS, who then begin to have neurologic decline between their acute attacks 

without any definite periods of remission. This decline may include new neurologic 

symptoms, worsening cognitive function, or other deficits. Secondary progressive is 

the most common type of MS and causes the greatest amount of disability.  

 

 1.2.3.3 Primary progressive  

 Primary progressive describes the approximately 10% of individuals who never 

have remission after their initial MS symptoms. Decline occurs continuously without 

clear attacks. The primary progressive subtype tends to affect people who are older at 

disease onset.  

 

 1.2.3.4 Progressive relapsing  

 Progressive relapsing describes those individuals who, from the onset of their MS, 

have a steady neurologic decline but also suffer superimposed attacks; and is the 

least common of all subtypes.  

 

 Special cases of the disease with non-standard behavior have also been described 

although many researchers believe they are different diseases. These cases are 

sometimes referred to as borderline forms of multiple sclerosis and are Neuromyelitis 

optica (NMO), Balo concentric sclerosis, Schilder's diffuse sclerosis and Marburg 

multiple sclerosis (Fontaine, B., 2001). 
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1.2.4 Factors triggering a relapse of MS 
 

 
 Multiple sclerosis relapses are often unpredictable and can occur without warning 

with no obvious inciting factors. Some attacks, however, are preceded by common 

triggers. In general, relapses occur more frequently during spring and summer than 

during autumn and winter. Infections, such as the common cold, influenza, and 

gastroenteritis, increase the risk for a relapse (Confavreux, C., 2002). Emotional and 

physical stress may also trigger an attack, as can severe illness of any kind.  

  

 Statistically, there is no good evidence that either trauma or surgery trigger 

relapses (Buljevac D., Hop W., 2003), (Brown R., Tennant C., 2006). People with 

MS can participate in sports, but they should probably avoid extremely strenuous 

exertion, such as marathon running. Heat can transiently increase symptoms, which 

is known as Uhthoff's phenomenon. This is why some people with MS avoid saunas 

or even hot showers. However, heat is not an established trigger of relapses (Tataru 

N., Vidal C., 2003) 

 

 Pregnancy can directly affect the susceptibility for relapse. The last three months 

of pregnancy offer a natural protection against relapses. However, during the first 

few months after delivery, the risk for a relapse is increased 20%–40%. Pregnancy 

does not seem to influence long-term disability. Children born to mothers with MS 

are not at increased risk for birth defects or other problems (Worthington J., Jones R., 

1994). 

 

 Many potential triggers have been examined and found not to influence relapse 

rates in MS. Influenza vaccination is safe, does not trigger relapses, and can therefore 

be recommended for people with MS. There is also no evidence that hepatitis B, 

varicella, tetanus, or Bacille Calmette-Guerin (BCG immunization for tuberculosis) 

increases the risk for relapse (Confavreux C., Suissa S., 2001). 
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1.2.5 Pathophysiology of MS 

 

 Although much is known about how multiple sclerosis causes damage, the reasons 

why multiple sclerosis occurs are not known (http://en.wikipedia.org/ wiki/ 

Multiple_sclerosis#_note-2,  June 2007 ).  

 

 Multiple sclerosis is a disease in which the myelin (a fatty substance which covers 

the axons of nerve cells) degenerates. According to the view of most researchers, a 

special subset of lymphocytes, called T cells, plays a key role in the development of 

MS. 

 

 According to a strictly immunological explanation of MS, the inflammatory 

processes triggered by the T cells create leaks in the blood-brain barrier (a capillary 

system that should prevent entrance of T-cells into the nervous system). These leaks, 

in turn, cause a number of other damaging effects such as swelling, activation of 

macrophages, and more activation of cytokines and other destructive proteins such as 

matrix metalloproteinases. A deficiency of uric acid has been implicated in this 

process (  Rentzos, M., Nikolaou, C., 2006). 

 

 In a person with MS, these lymphocytes recognize myelin as foreign and attack it 

as if it were an invading virus. That triggers inflammatory processes, stimulating 

other immune cells and soluble factors like cytokines and antibodies. 

 

 It is known that a repair process, called remyelination, takes place in early phases 

of the disease, but the oligodendrocytes that originally formed a myelin sheath 

cannot completely rebuild a destroyed myelin sheath. The newly-formed myelin 

sheaths are thinner and often not as effective as the original ones. Repeated attacks 

lead to successively fewer effective remyelinations, until a scar-like plaque is built 

up around the damaged axons, according to four different damage patterns 

(Lucchinetti, C., Bruck, W., 2000).  The central nervous system should be able to 

recruit oligodendrocyte stem cells capable of turning into mature myelinating 
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oligodendrocytes, but it is suspected that something inhibits stem cells in affected 

areas. 

 

 Also the axons are damaged by the attacks (Pascual A., Martínez-Bisbal M., 

2007). Often, the brain is able to compensate for some of this damage, due to an 

ability called neuroplasticity. MS symptoms develop as the cumulative result of 

multiple lesions in the brain and spinal cord. This is why symptoms can vary greatly 

between different individuals, depending on where their lesions occur. 

 

1.2.6 Causes of MS 

 

 Although many risk factors for multiple sclerosis have been identified, no 

definitive cause has been found. MS likely occurs as a result of some combination of 

both environmental and genetic factors. Various theories try to combine the known 

data into plausible explanations. Although most accept an autoimmune explanation, 

several theories suggest that MS is an appropriate immune response to an underlying 

condition. The need for alternative theories is supported by the poor results of 

present therapies, since autoimmune theory predicted greater success (Behan, P.,  

Chaudhuri, A.,  2002),  (Chaudhuri A, Behan P.,  2004), (Altmann, D., 2005). 

 

 1.2.6.1 Environmental 

 The most popular hypothesis is that a viral infection or retroviral reactivation 

primes a susceptible immune system for an abnormal reaction later in life. On a 

molecular level, this might occur if there is a structural similarity between the 

infectious virus and some component of the central nervous system, leading to 

eventual confusion in the immune system. 

 

 Since MS seems to be more common in people who live farther from the equator, 

another theory proposes that decreased sunlight exposure (Ponsonby, A., Dwyer, T., 

2003)  and possibly decreased vitamin D production may help cause MS. This theory 

is bolstered by recent research into the biochemistry of vitamin D, which has shown 

that it is an important immune system regulator. A large, 2006 study by the Harvard 
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School of Public Health, reported evidence of a link between Vitamin D deficiency 

and the onset of multiple sclerosis (Munger, K., Levin, L., 2006). Other data comes 

from an 2007 study which concluded that sun exposure during childhood reduces the 

risk of suffering MS, while controlling for genetic factors (Talat, I., 2007 ).  

 

 Other theories, noting that MS is less common in children with siblings, suggest 

that less exposure to illness in childhood leads to an immune system which is not 

primed to fight infection and is thus more likely to attack the body. One explanation 

for this would be an imbalance between the Th1 type of helper T-cells, which fight 

infection, and the Th2 type, which are more active in allergy and more likely to 

attack the body. 

 

 Other theories describe MS as an immune response to a chronic infection. The 

association of MS with the Epstein-Barr virus suggests a potential viral contribution 

in at least some individuals ( Levin, L., Munger K., 2005 ). Still others believe that 

MS may sometimes result from a chronic infection with spirochetal bacteria, a 

hypothesis supported by research in which cystic forms were isolated from the 

cerebrospinal fluid of all MS patients in a small study (Brorson, O., Brorson S., 

2001). When the cysts were cultured, propagating spirochetes emerged. Another 

bacterium that has been implicated in MS is Chlamydophila pneumoniae, it or its 

DNA has been found in the cerebrospinal fluid of MS patients by several research 

laboratories, with one study finding that the oligoclonal bands of 14 of the 17 MS 

patients studied consisted largely of antibodies to Chlamydophila antigens (Yao, S., 

Stratton, C., 2001 ). 

 

 Severe stress may also be a factor a large study in Denmark found that parents 

who had lost a child unexpectedly were 50% more likely to develop MS than parents 

who had not (Li, J., Johansen C., 2004). Smoking has also been shown to be an 

independent risk factor for developing MS ( Franklin, G., Nelson, L., 2003). 
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 1.2.6.2  Genetic 

 MS is not considered a hereditary disease. However, increasing scientific 

evidence suggests that genetics may play a role in determining a person's 

susceptibility to MS. 

 

 Some populations, such as the Roma, Inuit, and Bantus, rarely if ever get MS. The 

indigenous peoples of the Americas and Asians have very low incidence rates. 

 

 In the population at large, the chance of developing MS is less than a tenth of one 

percent. However, if one person in a family has MS, that person's first-degree 

relatives (parents, children, and siblings) have a one to three percent chance of 

getting the disease. 

 

 For identical twins, the likelihood that the second twin may develop MS if the 

first twin does is about 30%, for fraternal twins (who do not inherit identical gene 

pools), the likelihood is closer to that for non-twin siblings, or about 4%. The fact 

that the rate for identical twins both developing MS is significantly less than 100% 

suggests that the disease is not entirely genetically controlled. Some (but definitely 

not all) of this effect may be due to shared exposure to something in the 

environment, or to the fact that some people with MS lesions remain essentially 

asymptomatic throughout their lives. 

 

 Further indications that more than one gene is involved in MS susceptibility 

comes from studies of families in which more than one member has MS. Several 

research teams found that people with MS inherit certain regions on individual genes 

more frequently than people without MS. Of particular interest is the human 

leukocyte antigen (HLA) or major histocompatibility complex region on 

chromosome 6. HLAs are genetically determined proteins that influence the immune 

system. However, there are other genes in this region which are not related to the 

immune system. 
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 The HLA patterns of MS patients tend to be different from those of people 

without the disease. Investigations in northern Europe and America have detected 

three HLAs that are more prevalent in people with MS than in the general 

population. Studies of American MS patients have shown that people with MS also 

tend to exhibit these HLAs in combination that is, they have more than one of the 

three HLAs more frequently than the rest of the population. Furthermore, there is 

evidence that different combinations of the HLAs may correspond to variations in 

disease severity and progression. 

 

 A large study examining 334,923 single nucleotide polymorphisms (small 

variations in genes) in 931 families showed that apart from HLA-DRA there were 

two genes in which polymorphims strongly predicted MS; these were the IL2RA (a 

subunit of the receptor for interleukin 2) and the IL7RA (idem for interleukin 7) 

genes. Mutations in these genes were already known to be associated with diabetes 

mellitus type 1 and other autoimmune conditions; the findings therefore support the 

notion that MS is an autoimmune disease  (http://content.nejm.org/cgi/ content/ 

full/NEJMoa073493v1,  June 2007). 

 

 Studies of families with multiple cases of MS and research comparing proteins 

expressed in humans with MS to those of mice with EAE suggest that another area 

related to MS susceptibility may be located on chromosome 5. Other regions on 

chromosomes 2, 3, 7, 11, 17, 19, and X have also been identified as possibly 

containing genes involved in the development of MS. 

 

 These studies strengthen the theory that MS is the result of a number of factors 

rather than a single gene or other agent. Development of MS is likely to be 

influenced by the interactions of a number of genes, each of which (individually) has 

only a modest effect. Additional studies are needed to specifically pinpoint which 

genes are involved, determine their function, and learn how each gene's interactions 

with other genes and with the environment make an individual susceptible to MS. 
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1.2.7 Epidemiology 

 

 In northern Europe, continental North America, and Australasia, about one of 

every 1000 citizens suffers from multiple sclerosis, whereas in the Arabian 

peninsula, Asia, and continental South America, the frequency is much lower. In 

sub-Saharan Africa, MS is extremely rare. With important exceptions, there is a 

north-to-south gradient in the northern hemisphere and a south-to-north gradient in 

the southern hemisphere, with MS being much less common in people living near the 

equator ( http://www.fedem.org /revista/ n16/kurtzkeing.htm, June 2007). Climate, 

diet, geomagnetism, toxins, sunlight exposure, genetic factors, and infectious 

diseases have all been discussed as possible reasons for these regional differences. 

Environmental factors during childhood may play an important role in the 

development of MS later in life. This idea is based on several studies of migrants 

showing that if migration occurs before the age of fifteen, the migrant acquires the 

new region's susceptibility to MS. If migration takes place after age fifteen, the 

migrant keeps the susceptibility of his home country (Marrie, R., 2004). 

 

 MS occurs mainly in Caucasians. It is twentyfold lower in the Inuit people of 

Canada than in other Canadians living in the same region. It is also rare in the Native 

American tribes of North America, Australian Aborigines and the Maori of New 

Zealand.  Scotland appears to have the highest rate of MS in the world  (Rothwell, P., 

Charlton, D., 1998). The reasons for this are unknown. These few examples point out 

that either genetic background or lifestyle and cultural factors play an important role 

in the development of MS. 

 

 As observed in many autoimmune disorders, MS is more common in females than 

males; the mean sex ratio is about two females for every male. In children (who 

rarely develop MS) the sex ratio may reach three females for each male. In people 

over age fifty, MS affects males and females equally. Onset of symptoms usually 

occurs between fifteen to forty years of age, rarely before age fifteen or after age 

sixty. 
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 As previously discussed, there is a genetic component to MS. On average one of 

every 25 siblings of individuals with MS will also develop MS. Almost half of the 

identical twins of MS-affected individuals will develop MS, but only one of twenty 

fraternal twins. If one parent is affected by MS, each child has a risk of only about 

one in forty of developing MS later in life ( Sadovnick, A., Ebers, G., 1996). 

 

 Finally, it is important to remark that advances in the study of related diseases 

have shown that some cases formerly considered MS are not MS at all. In fact, all the 

studies before 2004 can be affected by the impossibility to distinguish MS and 

Devic's disease (NMO) reliably before this date. The error can be important in some 

areas, and is considered to be 30% in Japan (Weinshenker, B., 2005 ).  

  

1.3 Detection of MS with MRI 

 

      MRI detects not only these chronic astrocytic lesions but also the acute 

edematous patches, with varying amounts of demyelination and inflammatory cell 

infiltration, typical of newer lesions (Hadjiprocopic, A., 2003). These lesional 

components (referred to as MS plaques) are also readily observable post-mortem. 

The  inherent  heterogeneity  of   the  lesions,  which  is  reflected  on    MR    images 

causes some of the difficulties encountered while attempting to separate lesions from 

healthy brain tissue and cerebro-spinal fluid compartments using segmentation 

approaches based on signal intensity characteristics alone. Fig. 1.1 shows MS 

plaques in a typical slice from a proton density (T1) weighted MRI image. 

          
   (a)             (b) 

   Figure 1.1   (a) MRI image with                                       (b) MS lesions  

   BrainWeb: Simulated Brain Database, http://www.bic.mni.mcgill.ca/brainweb/ 
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Fig. l.1 (a) shows the image itself while Fig. 1.1 (b) has been overlaid the  

regions of interest indicating the presence of MS lesions. Note how the lesions are 

detected almost invariably in the white matter of the brain. Observation of the 

characteristic plaques over time in MS patients shows how the demyelination of 

nerves is a reversible and recurrent process in these patients.  

 

In a majority of patients, over time with and without treatment, MS lesions grow 

and shrink and some lesions may show confluence with others. It is important to be 

able to quantitatively assess the numbers and sizes of MS lesions in patients 

undergoing therapy for the disease, and several large scales clinical trials are under 

way to determine which quantitative measures obtained from the MR images are 

most useful for assessing the impact of drugs on the disease. Fig. l.1 (b) shows  the 

typical manner in which lesions are quantified in many centers. Much recent research 

in MS using MRI has been directed toward automating the quantitation of MS 

lesions in the brain (Narayana P.A.,2004).  

 

 

1.4 Automated Detection of Multiple Sclerosis (MS) Brain Lesions  in Magnetic 

Resonance Imaging (MRI) 

 

Artificial intelligence techniques of machine learning, pattern recognition  and 

the use of domain knowledge were employed in the segmentation or automated 

detection of Multiple Sclerosis (MS) lesions in Magnetic Resonance Images of the 

human brain. Segmentation enables the quantitative measurement of MS lesion 

volumes, making it important for the study of the disease, the evaluation of drug 

treatments, and MS patient follow-up. Manual segmentation of MS lesions is tedious, 

timeconsuming,  and difficult. Magnetic Resonance Images contain noise and 

artifacts which can cause regions of hyperintensity similar to that of MS lesions. 

Hence, purely data driven techniques of automated segmentation such as intensity 

thresholding, edge-detection,  and multispectral feature-space classification tend to 

produce a large number of false positive lesions even when images have been 

preprocessed to reduce impurities. 
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 We can consider the automated segmentation methods as supervised and 

unsupervised techniques. Supervised techniques are needed to training  data to 

classify the clusters. Artificial Neural Networks, Parzen Windows, Hidden Markov 

Random Fields etc. are required  to training data. Unsupervised techniques do not 

require training data. The Fuzzy Clustering Techniques are unsupervised techniques 

and they calculate the clusters and cluster centers with considering  the mean and 

distance values (Duda Richard O.,2001). 

 

In this thesis, the goal is,  segmentation of the MS lesion areas from healty brain 

tissues using pattern recognition techniques from T1, T2 and PD weighted MRI 

images. These techniques are:   

• Fuzzy C-Means clustering 

• K-Means clustering 

• K-Medoid clustering 

• Principle component analysis 

• Independent component analysis 

• Artificial neural networks  

 

Comparison of  the supervised techniques (Multilayer Perceptron 

Backpropagation Neural Networks) and unsupervised techniques (Fuzzy C-Means, 

K-Means, K-Medoid, Principle Component Analysis and Independent Component 

Analysis) are evaluated. The results are compared according to their sensitivity, 

accuracy and time and from the all conserened tecniques, optimum one is suggested.     

 

In the first chapter, our motivation is given. In the second chapter; Methodology 

of magnetic resonance imaging is considered; The third chapter, classification of the 

methods for brain tissues specially MS lessions by using MRI images summarizes;  

The forth chapter, our application methods and their analysis results depending on 

several criteria are given.  Finally in the fifth chapter, evaluation of the results and 

our suggestions are presented.    
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CHAPTER TWO 

MAGNETIC RESONANCE IMAGING 

 

2.1      Magnetic   Resonance Imaging 

 

MRI (Magnetic Resonance Imaging) is a nonionizing technique with full three 

dimensional capabilities. The major uses of MRI are in the areas of assessing brain 

disase, spinal disorders, angiography, cardiac function, and musculoskeletal damage 

(Hornak J.P., 2007). 

 

The patient is placed inside a strong magnetic field about 1.5 T. (10000 times 

strong then earth’s magnetic field).  

 

 In general MRI is based on a property of the nucleus called magnetic spin 

moment. Any charged spinning particle creates an electromagnetic field, like a   bar 

magnet with the magnetic field pointing from the South Pole to the North Pole. Only 

charged   nuclei have this property. The single proton of hydrogen has two   possible 

energy states,   one resulting from each direction of spin (Figure 2.1). 

 

 
  

         Figure 2.1  A single proton with spin,  

         produces a magnetic moment,  μ.. 

         (Mbah, Henry Osita, 2006) 
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In order to obtain an MRI signal, transitions must be induced between the protons 

in the parallel and antiparallel energy levels. To produce a signal, magnetic energy 

must be supplied to the protons at larmor frequency in order to stimulate transitions.  

 

0w Bγ=                            ( Eq.   2.1) 

w = larmor frequency 

γ =  gyromagnetic ratio of the nucleus 

0B = magnetic field 

Other nuclei with different number of protons, will have more energy states. 

Only elements with unpaired number of protons can be used in MRI, if there were an 

even number of protons, the spins would cancel each other out. Hydrogen is the 

element being used, because of its high abundance in all human tissues.  

 

All protons in hydrogen will create their own magnetic field, called magnetic 

dipole moment. If there is no external magnetic field, the magnetic dipole moment 

will cancel out because of the high number of nuclei, and there will be no net 

magnetic field. If we then impose an external field B0 in the z-direction, the protons 

will align towards the north or to the south. But around one in a million extra spins 

will point north, creating a net magnetisation in the direction of B0. Actually, each 

proton will neither point directly towards north, nor directly towards south, but will 

begin to precess around the z-axis, see Figure 2.2. 

 
Figure 2.2  Precession of the magnetic dipole moment 

around the z-axis when exposed to a static magnetic 

field B0. (Mbah, Henry Osita,2006). 
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However, the protons are not in phase, and this causes a net magnetisation in the 

direction of the external field B0. The frequency at which the proton precesses around 

the axis of the external magnetic field is given by the Larmor equation. 

 

Consider a hydrogen proton being placed in a strong static magnetic field B0 

along the z-axis. If upon the static magnetic field we transmit a RF (Radio 

Frequency) pulse along the x-axis perpendicular to the z-axis, the proton will start to 

precess around the axis of the RF field. Consequently the proton will begin to precess 

about the x-axis. This precessional frequency will be: 

 

Wo = γ | B1|                      (Eq. 2.2) 

B1 =  magnetic field of the RF pulse. 

 

 B1 (e.g. 50mT) is oscillating and weak compared to B0 (1.5T). These two 

precessional frequencies result in a spiral motion of the net magnetisation vector 

from the z axis into the xy plane. 

 

If the frequency of the RF is equal to the Larmor frequency Wo of B0, then 

resonance occurs, and the RF pulse will add energy to the proton. The magnetization 

vector will flip into the x-y plane, and the protons will then be in phase. This causes 

transversal magnetization. In MRI we transmit such a RF with the correct frequency 

causing resonance, and we can decide the flip angle from the duration and the 

strength of the pulse. 

 

When the RF pulse is turned off, the protons will proceed back into their state of 

equilibrium under the influence of the static magnetic field B0. This process creates 

an electromagnetic pulse from the protons, and the strength of this pulse is dependent 

on the concentration of protons in that specific area where the signal is generated. RF 

coils which is usually placed directly around, or next to, the tissue to be imaged 

delivers this energy . RF coil is designed for stored as much of the  magnetic enery as 

posibble in the near field region. The most efficient  coil design is based on 

resonance electric circuits which has a  resonant   frequency rw  that stored in the coil  
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is maximum. 

 

1
rw

LC
=                            (Eq. 2.3) 

L = inductance of the RF coil 

C = capacitance 

 

This electromagnetic pulse is measured by the coil surrounding the patient, and 

the strength of this pulse is proportional to the proton density, hence we can create an 

image which depends on the proton density. To ensure spatial information from the 

received signal and locate it in space, gradient coils are used to create small 

perturbations of the static magnetic field. Three orthogonal coils are used to achieve 

this. Because of these gradients of the static field, each RF frequency will have a 

unique volume of response, and the signal is unique with regard to location. 

 

RF coils can be classified in according to their usages and geometries. In 

according to their geometry, surface coil, quadrature surface coil, soleneid and 

birdcage coil are some of them. RF coils are also classified as transmit, receive, 

transmit-receive and multicoil arrays. A multicoil array typically receives only and 

they are used to increase sensitivity. 

The readout MR signal is a mix of RF waves with different amplitudes, 

frequencies and phases, containing spatial information. This signal is digitalized and 

raw data are written into a data matrix called K-space. K-space data are equivalent to 

a Fourier plane. To go from a  k-space data to an image requires using a 2D inverse 

Fourier Transform. 
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Figure 2.3 Schematic diagram of a MRI scanner. (http://users. 

fmrib.ox.ac.uk/~stuart/thesis/chapter_2/section2_6.html#3) 

 

Frequency-encoding and phase-encoding are done so that data is spatially 

encoded by differences in frequency and phase, amenable to analysis by Fourier 

transform. In k-space, fx-coordinates (horizontal spatial frequencies) and fy-

coordinates (vertical spatial frequencies) of the Fourier plane are replaced by kx and 

ky-coordinates.  

Clinical MRI studies acquire a series of slices through the anatomical area of 

interest, each slice has tickness. Slice selection directions are important and 

accomplishes by RF puls application to the magnetic field gradients. The choice of 

slice select direction of the images can be obtained by coronal (y), axial (z) and 

sagittal (x).  
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                       (a)                 (b) 

 

        

            (c) 

    Figure 2.4  (a) Axial  image. (b) Sagittal image. (c) Coronal image ( MRI Images were taken                

 from GATA.  ) 

With the emission of MR signals, the spin system returns to the low energy state 

usually by two spin relaxation mechanisms: longitudinal relaxation and  transverse 

relaxation. In longitudinal relaxation, when the RF pulse is switched off, the 

longitudinal magnetization increases. The time that takes for the longitudional 

magnetization to go back to its original value is described by the longitudinal 

relaxation time, called T1. At the same time transfer magnetization decreases and 
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disappeares. The time constant describing how fast transversal magnetization 

vanishes is called the transverse magnetization relaxation time. Figure 2.5  shows the 

longitudinal and transverse magnetization curves versus time for T1 and T2 weighted 

images. 

 

(a)                                                      (b)  

                Figure 2.5 longitudinal and transverse magnetization curves versus time for    

                T1 and T2 weighted images  (Pu Ma, 2001) . 

 

Appropriately time puls sequences can give three types of images. T1 weighted, 

Proton Density and T2 weighted. The spin echo puls sequences is the most 

commonly used pulse sequences and the dual echo spin pulse sequences can be used 

to obtain both T2 and PD weighted images simultaneously. All spin echo sequences 

include a slice selective 90 o puls followed by one or more 180 o pulses. The 180o 

pulses here acts as a wall from which the protons bounce back like echoes. Thus, the 

resulting strong signal is called an echo, or spin echo. The repetition time TR (a 

period between two puls sequences) and the echo time TE (a period between the start 

of the RF puls and echo) determine how the resulting image is weighted. A short TR 

and short TE will give a T1 weighted image. A long TR and short TE will give a 

proton density image. A long TR and long TE will give a T2 weighted image. 
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T1 weighted images have very high contrast between  cerebrospinal  fluid  (CSF) 

and other brain tissues. However lesions are not easly identifiable. In PD images the 

CSF is dark with high contrast to both gray matter and lesions. The contrast between 

other tissues of interest such as between gray matter or white matter or between 

lesions and gray matter is not very high. In T2 weighted images both CSF and 

lesions appear as bright regions and the contrast between the brain parenchyma and 

the CSF is high. Figure 2.6 shows the T1, T2 and PD MRI images. 

          

       (a)            (b) 

 

     (c) 

   Figure 2.6  (a) PD  (b) T2  (c) T1  weighted images. ( MRI Images were taken  from GATA.  ) 
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CHAPTER THREE 

IMAGE CLUSTERING METHODS 

 

Pattern recognition techniques can be classified into two broad cathegories: 

unsupervised and supervised techniques. An unsupervised technique doesn’t use a 

prior class identifiers, whereas a supervised technique uses a data set with known 

data classifications (Yen J., 2000). These two types of techniques are 

complementary. For example, unsupervised clustering can be used to produce 

classification information needed by a supervised pattern recognition technique. In 

the area of pattern recognition and image processing, unsupervised clustering is often 

used to perform the task of segmenting the images. This is because image 

segmentation can be viewed as kind of data clustering problem where each data point 

describe a set of image features associated to each pixel.  

 

3.1 Unsupervised Learning and Clustering  

 

Unsupervised clustering is motivated by the need to find interesting patterns or 

groupings in a given set of data.  

 

Conventional clustering algorithms find a hard partition of given dataset based on 

certain criteria that evaluate the goodness of a partition. Hard partition means that 

each data belong  to exactly one cluster of the partition. 

 

Let X be a set of data and xi be an element of X. A partition P={C1,C2,…..CL} of 

X is “hard” if and only if; 

 ∀ xi ∈  X  ∃Cj ∈  P such that xi ∈  Cj 

 

This condition assures that the partition covers all data points in X. However,  if; 

∀ xi ∈  X  xi ∈  Cj⇒xi ∉Ci where k≠ j, Ck, Cj∈P then all clusters in the partition 

are mutually exclusive. 

 

24 



 25

In many real world clustering problems some data points partially belong to 

multiple clusters rather then a single cluster exclusively. For example, a pixel in a 

magnetic resonance image may corresponde to mixture of  a different types of 

tissues. 

 

A soft clustering algorithm finds a soft partition of a given data setbased on 

certain criteria. In soft partition, a data can partially belong to multiple clusters. 

∀ xi ∈  X ,    ∀Cj ∈  P          0 ≤  
jCμ ( xi) ≤  1 

∀ xi ∈  X,    ∃Cj ∈  P such that  
jCμ ( xi) >0 , where 

jCμ ( xi) denotes the degree to 

which xi belongs to cluster Cj.  

 

A type of soft clustering of special interest is one that ensures the membership 

degree of a point x in all clusters adding up to one, 

( )
jC i

j

xμ∑                    ix X∀ ∈                                                                      (Eq    3.1) 

A soft partition that satisfies this additional condition is called a constrained soft 

partition (Cuevas J. Erik, 2004) 

 

3.2 Clustering Algorithms 

 

3.2.1 K-means and K-medoid algorithms 

 

The K-means and K-medoid  hard partitioning methods are simple and popular 

methods. From an Nxn dimensional data set K-means and K-medoid algorithms 

allocates each data point to one of c clusters to minimize the within cluster sum of 

squares: 
2

1 i

c

k i
i k A

x v
= ∈

−∑∑                     (Eq    3.2) 

Ai is a set of data points in the ith cluster 

vi  mean for that points over cluster i ( cluster prototypes) 
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1 ,
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i
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v x A

N
== ∈
∑

                   (Eq    3.3) 

iN  number of objects in iA . 

In K-medoid clustering the cluster centers are the nearest objects to the mean of 

data in one cluster (Balasko B.,2006). 

 

3.2.2 Fuzzy C-means algorithm  

 

The Fuzzy C-means clustering algorithm is based on the minimization of an 

objective function called C-means functional (Bezdek J. C., 1975). 

 
2

1 1
( ; , ) ( )

c N
m

ik k i
i k A

J X U V x vμ
= =

= −∑∑              (Eq    3.4) 

Where 

1 2[ , ,.... ], n
c iV v v v v R= ∈ , 

V is a vector of cluster centers (prototypes). 

Squared inner-product distance norm: 
22 ( ) ( )T

ikA k i k i k iA
D x v x v A x v= − = − −                  (Eq    3.5) 

 

From equation 3.4 total variance of xk from vi can be seen. The minimization of 

the c-means functional represents a non-linear optimization problem that can be 

solved by using a variety of available methods, ranging from grouped coordinate 

minimization, over simulated annealing to genetic algorithms. The most popular 

method, however, is a picard iteration through the first order conditions for stationary 

points of equation 3.4, known as fuzzy c-means (FCM) algorithm. 

J by means of Lagrange multipliers: 

 

2

1 1 1 1
( ; , ) ( ) ( 1)

c N N c
m

ik ikA k ik
i k k i

J X U V Dμ λ μ
= = = =

= + −∑∑ ∑ ∑              (Eq    3.6) 

If  2 0, ,ikAD i k> ∀  and 1m > , then ( , ) n c
fcU V M R ×∈ ×  may minimize Equation 

3.4 only if, 
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∑
  ,  1 i c≤ ≤                              (Eq    3.8) 

This equation gives vi as the weighted mean of the data items that belong to a 

cluster, where the weights are the membership degrees. The FCM algorithm is a 

simple iteration through equation 3.7 and 3.8. 

 

The FCM algorithm computes with the standard Euclidian distance norm, which 

induces hyperspherical clusters. Hence it can only detect clusters with the same 

shape and oriantation, because the common choice of norm inducing matrix is A=I or 

it can be chosen as an nxn diagonal matrix that accounts for different variances in the 

directions of the coordinate axes of X. 
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             (Eq    3.9) 

 

A can be defined as the inverse of the nxn covariance matrix.  
1A F −=                      (Eq    3.10) 

1

1 ( )( )
N

T
k k

k

F x x x x
N =

= − −∑                (Eq    3.11) 

Here x  denotes the sample mean of the data. In this case, A induces the 

mahalanobis norm on nR (Balasko B.,2006). 
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3.3 Component Analysis 

 

Component analysis is an unsupervised approach to finding the right features 

from the data. Principle component analysis projects d-dimensional data onto a lower 

dimensional subspace in a way that is optimal in a sum squared error sense. Non 

linear component analysis typically implemented by neural techniques is a non linear 

generalization of  principle  component  analysis. In independent component  anaysis  

those directions in feature space that show the independence of signals. This method  

is particularly helpful for segmenting signals from multiple sources (Duda Richard 

O., 2001). 

 

3.3.1 Principle Component Analysis (PCA) 

 

Principle component analysis ( PCA ) involves a mathematical procedure that 

transforms a number of possibly corraleted variables into a smaller number of 

uncorraleted variables called principle components. The first principle component 

accounts for as much of the variability in the data as possible, and each succeeding 

component accounts for as much of the remaining variability as possible. The main 

objectives of PCA are (Balasko B.,2006): 

• Identify new meaningful underlying variables 

• Discover or reduce the dimensionality of the data set. 

 

If we assume that representing all of the vectors in a set of n dimensional samples 

x1,…,xn by a single vector x0. To find a vector x0 such that the sum of the squared 

distances between x0 and the various xk is as small as possible. The squared error 

criterion function is (Duda Richard O., 2001): 

 
2

0 0 0
1

( )
n

k
k

J x x x
=

= −∑                  (Eq    3.12) 

That computes the 0x  that minimizes 0J . 

If 0x =m, where m is the sample mean: 
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1 1 1
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k k k
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= = =

= − − − − + −∑ ∑ ∑       (Eq    3.16) 

2 2

0
1 1

n n

k
k k

x m x m
= =

= − + −∑ ∑                (Eq    3.17) 

 

The second part of the equation 3.17 is independent of x0. So that the choice of 

x0=m minimizes the expression. 

 

The sample mean is a zero dimensional representation of the data set. For another 

representation  a unit vector can be used.  

e is the unit vector in the direction of the line. The equation of line is: 

x m eα= +                                 (Eq    3.18) 

α is corresponds to the distance of any point x from the mean m. The 

representation of xk by km a e+ than optimal set of coefficients can be calculated by 

minimizing the squarred error criterion function: 
2 2

1 1
1 1

( ,..., , ) ( ) ( )
n n

n k k k k
k k

J a a e m a e x a e x m
= =

= + − = − −∑ ∑      (Eq    3.19) 

2
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1 1 1
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n n n
t

k k k k
k k k

a e a e x m x m
= = =

= − − + −∑ ∑ ∑          (Eq    3.20) 

If e =1 then ak can be obtain as: 

( )t
k ka e x m= −                    (Eq    3.21) 

The meaning of the result is the projecting of the xk onto the line in the direction 

of e.To finding best direction of e, the scatter matrix ( S ) can be used: 

 
1
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= − −∑                (Eq    3.22) 
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If S is used in the squared error criteria: 
2

2 2
1

1 1 1
( ) 2

n n n

k k k
k k k

J e a a x m
= = =

= − + −∑ ∑ ∑             (Eq    3.23) 
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2

1

n
t

k
k

e Se x m
=

= − + −∑                  (Eq    3.26) 

The vector e, that minimizes J1 also maximizes te Se .  

 

Let λ be the undetermined multiplier. The differantiate with respect to e: 

( 1)t tu e Se e eλ= − −                  (Eq    3.27) 

2 2u Se e
e

λ∂
= −

∂
                   (Eq    3.28) 

Setting this gradient vector equal to zero, e must be an eigenvector of the scatter 

matrix: 

Se eλ=                      (Eq    3.29) 

To find the best dimensional projection of the data it should be projected onto a 

line through the sample mean in the direction of the eigenvector of the scatter matrix 

having the largest eigenvalue. This result can be readily extended from a one 

dimensioanl projection to a d/ dimensional projection : 
/

1

d

i i
i

x m a e
=

= +∑                    (Eq    3.30) 

Where /d d≤ . The criterion function is: 

/

/

2

1 1

n d

ki i kd
k i

J m a e x
= =

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
∑ ∑               (Eq    3.31) 

Minimized when the vectors /1,.... d
e e are the /d  eigenvectors of the scatter matrix 

having the largest eigenvalues. Because the scatter matrix is real and symmetric, 

these eigenvectors are orthogonal. They form a naturel set of basis vectors for 
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representing any feature vector x. The coefficients ai are the component of x and they 

are called to principle components (Duda Richard O., 2001). 

 

3.3.2 Nonlinear Component Analysis (NLCA) 

 

Principle component analysis yields a k-dimensional linear subspace of feture 

space that best represents the full data according to a minimum square error 

criterion(Duda Richard O., 2001). If the data represent complicated interactions of 

features, then the linear subspace may be a poor representation and nonlinear 

components may be needed. This can be obtained with a neural network approach 

which has d input and d output layers and k<d middle layer. In this middle layer 

nonlinear components can be revealed. 

 

3.3.3 Independent Component Analysis (ICA) 

 

Independent component analysis finds the most independent mapping directions 

from each other.  

Suppose there are d independent scalar source signals xi(t) for i=1,2,…,d where 

time index t is 1<t<T.  

The multivariate density function is (Duda Richard O., 2001): 

1

[ ( )] [ ( )]
d

i
i

p x t p x t
=

=∏                  (Eq    3.32) 

If there is k dimensional data, and A is a kxd matrix then: 

( ) ( )s t Ax t=                     (Eq    3.33) 

The goal of ICA is to extract d components in s that are independent. 

If k=d is choosen, the distrubution in the outputs is related to the distribution 

where J is the Jacobian matrix: 

( )( ) s
y

p sp y
J

=                    (Eq    3.34) 
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∂
=

∂∏                    (Eq    3.36) 

The final stage as a linear transform of the source signals: 

0[ ]sy f W w= +                    (Eq    3.37) 

0w  is the bias vector and [.]f  is typically choosen as sigmoid. The central goal 

in ICA is to find the parameters W and 0w  so as to make the outputs yi as 

independent from one to  another as posibble (Duda Richard O., 2001) . 

 

3.4  Supervised Learning 

 

3.4.1 Multilayer Neural Networks 

 

Neurocomputing is concerned with processing information. Unlike its 

programmed computing counterpart, a neurocomputing approach to information 

processing first involves a learning process within an artificial neural network 

architecture that adaptively responds to inputs according to a learning rule. After a 

neural network has learned what it needs to know, the trained network can be used to 

perform certain tasks depending on the particuliar application. Neural networks have 

the ability to learn from their environment and to adapt to it in an interactive manner 

similar to their biological counterparts. Indeed, this is an exiciting prospect because 

of the vast possibilities that exist for performing certain functions with artificial 

neural networks that can emulate the comparable biological function (Ham Fredric 

M., 2001). 
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3.4.1.1 A Neuron Model 

An artificial neuron can be referred to as a processing element or a threshold 

logic unit. A neuron is an information processing unit that roughly resembles its 

biological counterpart. There are four basic components of the model.  

 

The continous valued input to the synapsis is a vector a vector signal 1nx R ×∈ , 

with the individual vector components given as  jx , for j=1,2,…,n, that is 

1 2[ , ,..., ]T
nx x x x= . Therefore, each vector component jx  is the input to the jth 

synapse and connected the neuron q through a synaptic weight qjw , that is jx  is 

multiplied by the syneptic weight qjw . The summing device acts as add all the 

signals that are broadcast in to the adder. Output of the adder qu , is a linear 

combination of inputs to the synepsis. The activation function (.)f  serves to limiting 

the amplitude of the neuron output qy when (.)f  is a nonlinear function. The 

threshold qθ  is usually externally applied and lowers the cummulative input to the 

activation function. Therefore, qθ  is subtracted from the output of the linear 

combiner  qu   before  the  activation  is  applied.  Figure 3.1  shows  a  simple neuron  

model. 

 
  Figure 3.1  Nonlinear model of an artificial neuron.  (Frederic M. Ham, Ivica   

   Costanic  “Principles of  Neurocomputing for Science and Engineering” p.25) 

 

Mathematically the operation of the artificial neuron can be described as : 
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1

n
T T

q qj j q q
j

u w x w x x w
=

= = =∑               (Eq    3.38) 

 Where 1 2[ , ,..., ]nx x x x=  and 1
1 2[ , ,..., ]T n

q q q qnw w w w R ×= ∈ .The output activation 

function is : 

( ) ( )q q q qy f v f u θ= = −                (Eq    3.39) 

1

n

q qj j q
j

y f w x θ
=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑                (Eq    3.40) 

 

 

 3.4.1.2  Backpropagation Learning Algorithm ( MLP NN) 

  Backpropagation is the most widely used learning process in neural networks. 

Figure 3.2 shows an example of the multilayer perceptron neural network 

architecture. The extension of the derivation to the general case when the network 

has more than two hidden layers is straightforward (Ham Fredric M., 2001). 

 

 
Figure 3.2 An example of a three layer feedforward MLP NN architecture. 

(Frederic M. Ham, Ivica Costanic “Principles of Neurocomputing for Science and 

Engineering” p.107) 
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The standard backpropagation algorithm for training of the MLP NN is based on 

the steepest descent gradient approach applied to the minimization of an energy 

function representing the instantaneous error (Ham Fredric M., 2001). 

( ) ( ) ( )
3

2
(3) (3) (3)

,
1

1 1
2 2

nT

q q out q out qh out h
h

E d x d x d x
=

= − − = −∑       (Eq    3.41) 

qd  is the desired network output for the qth  input pattern and (3)
out qx y= is the 

actual output of the MLP network shown in figure 2.2. In general the method which 

has derived at Eq 2.48 is called the online method and it has minimum memory 

storage requeriments. 

  

Using the steepest descent gradient approach,  the learning rule for a network 

weight in any one of the network layer is: 

( )
( )

s s
ji s

ji

Eqw
w

μ ∂
Δ = −

∂
                 (Eq    3.42) 

S is the appropriate network layer and 0μ >  is the corresponding learning rate  

parameter.  

Derivations of the seperate learning rules for weights in the output and of the 

MLP NN is: 
( ) ( ) ( ) ( )

,( 1) ( )s s s s s
ji ji out iw k w k xμ δ+ = +             (Eq    3.43) 

( ) ( ) ( )
,( ) ( )

s s s
j qh out i jd x g vδ = −                (Eq    3.44) 

For hidden layers: 

1( ) ( 1) ( 1) ( )

1
( )

ss
n

s s s
j h hj j

h
w g vδ δ

+
+ +

=

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∑              (Eq    3.45) 

Where g(.)  is the first dervative of the f(.). 
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CHAPTER FOUR 

MS SEGMENTATION 

4.1 The Data 

 For applications of the segmentation techniques, quantitative (numerical) data is 

considered. The data used in the applications is taken from the McGill University 

Simulated Brain Data Base (BrainWeb: Simulated Brain Database, 

http://www.bic.mni.mcgill.ca/brainweb/), ( April 2007). These data sets  are T1, T2, 

PD weighted and  for supervised techniques, target MS lesions labeled MRI images 

with 181x217x181 sized. Each MRI image set has 181 x217 images and 181 slices. 

According to the application techniques, images are reshaped to new matrices as Nxn 

size. N=181x217 and n is the observation number. 

 

 Figure 4.1 shows the 105. slices T1,T2,PD weighted bands and target ( MS 

lesions) images. Also Figure 4.2 shows the 100. slices T1,T2,PD weighted bands and 

target ( MS lesions) images. 

 
    Figure 4.1 ( a ) T1 weighted  ( B ) T2 weighted ( c ) PD  (d ) Target MRI images  

 

 
    Figure 4.2 ( a ) T1 weighted  ( B ) T2 weighted ( c ) PD  ( d ) Target MRI images  
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4.2 Segmentation Methods  

 

 Segmentation methods can be classified as supervised and unsupervised 

techniques. Unsupervised methods are known as clustering techniques. Supervised 

methods need labeled data for training. The techniques, which were used in this 

study, are given below: 

Unsupervised Techniques: 

• Fuzzy C Means Clustering 

• K-Means Clustering 

• K-Medoid Clustering 

• Principle Component Analysis 

• Independent Component Analysis 

Supervised Technique: 

• Feedforward Multilayer Perceptron Neural Network 

Figure 4.3 shows these segmentation algorithms. 

 

 
 
Figure 4.3 Segmentation algorithms 
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4.3 Input Data 

 

 In order to obtain clustering analysis, first of all, new input data must be  

composed to application of  the segmentation process (Özkurt A., 2007). These input 

data are related to the T1,T2 and PD images of the specific MRI image with different 

nonlinear equations, like square root or logaritmic functions(Ren, H.,2000). These 

band composition techniques are given below (Özkurt A., 2007): 
3
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Where 1B   is the T1 weighted reshaped MRI image, 2B is the T2 weighted reshaped 

MRI image and  3B  is the PD weighted reshaped MRI image.   

 

 

4.4 Segmentation With Clustering Techniques 

 

4.4.1 Fuzzy C Means Clustering 

 

The Fuzzy C-Means Clustering algorithm uses the minimization  of the Fuzzy C-

Means functional. The function calculates the standard Euclidian distance norm, the 

norm inducing matix is an nxn identity matrix. The result of the partition is collected 

in structure arrays.  

If c is the cluster number, first of all the  cluster means are calculated with: 

 

( 1)

( ) 1

( 1)
,

1
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,1
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i N
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i k
k

x
v i c

μ

μ

−

=

−

=

= < <
∑

∑
                (Eq 4.1) 

Where 1,2,..l =  
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The distences between pixels and cluster means are: 
2 ( ) ( ),1 ,1T
ikA k i k iD x v A x v i c k N= − − ≤ ≤ ≤ ≤           (Eq 4.2) 

Where A is the norm-inducing matrix. 

The partition matrix is: 

( )
, 2

( 1)

1

1l
i k

mc
ikA

j jkA

D
D

μ
−

=

=
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∑

                  (Eq 4.3) 

     Algorithm for the fuzzy c-means clustering is shown in the figure 4.4. 

 

Fuzzy c-means clustering is accomplished using MATLAB fuzzy clustering 

toolbox (Balasko B., 2006). In the application stage, first of all, 100. slice has been 

used for clustering. Input data for the clustering is non-linear combination of the  T1-

T2-PD images (Özkurt A., 2007).  Some of the results are shown in the figure 4.5.  

 

                                 
           Figure 4.4 Algorithm for the 

            FCM. 

 

Computation of the 
cluster means 

Computation of the 
euclidian distances. 

Update of the 
partition matrix. 
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   Figure 4.5 Result cluster classes of the FCM algoritm 

 

Figure 4.6 shows the clustered image with histogram. We can see the lesions 

cleary from the segmented images.  

  
    Figure 4.6 FCM clustered image and histogram. 
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However, if we apply a threshold to the image some of the CSF and gray matter  

parts are also seen as lesions. Figure 4.7 shows the thresholded result image. Figure 

4.8 (a) shows original T1 image. Figure 4.8 (b) shows the original “gold” MS lesions 

image. Figure 4.8 (c) shows clustered image. Figure 4.8 (d) shows thresholded result 

image. 

  
             Figure 4.7 Thresholded image. 

  
      Figure 4.8      (a) Source T1 image slice number: 100   (b)  MS lesions 
                (c)   Clustering with FCM image             (d) Result image. 

 

 If we choose another slice (105) for same application, figure 4.9 shows the results. 
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         Figure 4.9 (a) Source T1 image slice number: 105  (b) MS lesions 

                             (c) Clustering with FCM image      (d) Result image. 

 

4.4.2  K Means Clustering 

 

K means clustering is a hard partition method. This means that, data are grupped in 

an exclusive way, so that if a certain data belongs to a definite cluster then it couldn’t 

be included in another cluster. The algorithm for k-means clustering starts with 

computing the distances for all data points. 
2 ( ) ( ),1 ,1T
ik k i k iD x v x v i c k N= − − ≤ ≤ ≤ ≤            (Eq. 4.4) 

 

Where c is the number of clusters and first iv  is the random cluster center. Then 

calculation of the cluster centers is continous until ( ) ( 1)

1

max 0.
n

l l

k

v v −

=

− ≠∏  
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i
jl

i
i

x
v

N
==
∑

                      (Eq. 4.5) 

Then partition matrix is calculated.  

The algorithm for the k-means clustering is shown in the figure 4.10. 
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        Figure 4.10 Algorithm for  

        k-means clustering 

 

For implementation of the MRI image to this algorithm, same slices (100, 105) are 

chosen.  

 

K-means clustering is accomplished using MATLAB “fuzzy clustering toolbox” 

(Balasko B., 2006). In the application stage, first of all, 100. slice has been used for 

clustering. Input data for the clustering is non-linear combination of the  T1-T2-PD 

images (Özkurt A., 2007).  Some of the results are shown in the figure 4.11.  

Initialization of the 
random cluster 
centers. 

Computation of the 
distance of each 
pixel’s to the cluster 
centers. 

Calculation of the 
cluster centers until 
difference between 
each cluster center not 
equal to zero 
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          Figure 4.11  Some of the clustered images with  

         k-means algorithm. 

 
                     Figure 4.12  A clustered image with it’s histogram. 

   

 Figure 4.12 shows the clustered image and histogram. 
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 After thresholding for seperate specified areas, lesions and CSF areas didn’t 

appear clearly. Figure 4.13 (d)  shows the result thresholded image.  

 
     Figure 4.13  (a) Source T1 image slice number: 100   (b) MS lesions  

                         ( c)   Clustering with K-means  image      (d) Result image.     

  

Application for slice 105, has given the similar result as slice 100. CSF, lesions and 

skull didn’t seperate clearly. Figure 4.14 (a) shows original T1 image. Figure 4.14 (b) 

shows the original “gold” MS lesions image. Figure 4.14 (c) shows clustered image. 

Figure 4.14 (d) shows thresholded result image. 
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.         
     Figure 4.14 (a) Source T1 image slice number: 105  

      (b) MS lesions 

        (c)   Clustering with K-means  image  

          (d) Result image. 

 

4.4.3  K- Medoid  Clustering 

 

 K-Medoid clustering is different from K-Means clustering. In K-Medoid 

clustering, the cluster centers are the nearest objects to the mean of data in one 

cluster. 

1iV v X i c= ∈ ≤ ≤                           (Eq. 4.6) 

Algorithm starts with the same as Eq. 4.4. Then original K-means cluster centers 

are calculated.  

 1( )*

iN

i
jl

i
i

x
v

N
==
∑

                            (Eq. 4.7) 

 Nearest data points to be the cluster centers are chosen. 

 2* * *( ) ( )T
ik k i k iD x v x v= − −                         (Eq. 4.8) 
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 Calculation of the cluster centers is continous until ( ) ( 1)

1

max 0.
n

l l

k

v v −

=

− ≠∏  

 

Then partition matrix is calculated.  Algorithm for the k-medoid clustering is 

shown in figure 4.15. 

 

 
            Figure 4.15  Algortihm for 

             k-medoid clustering 

 

Initialization of the 
random cluster 
centers. 

Computation of the 
distance of each 
pixel’s to the cluster 
centers. 

 
Calculation of the 
cluster centers 
(original k-means 
clusters) 

Choosing the nearest 
data points to be the 
cluster centers  

Calculation of the 
cluster centers until 
difference between 
each cluster center not 
equal to zero 
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For implementation of the MRI image to this algorithm, same slices (100 and 105) 

are choosen.  

 

 

 K-means clustering is accomplished using MATLAB  “fuzzy clustering toolbox” 

(Balasko B., 2006). In the application stage, first of all, 100. slice has been used for 

clustering. Input data for the clustering is non-linear combination of the  T1-T2-PD 

images (Özkurt A., 2007).   

 

Some of the results are shown in figure 4.16. 

 
       Figure 4.16  Some of the clustered images with 

      k-medoid algorithm. 
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Figure 4.17  shows  one of the clustered  image and it’s histogram. 

 
      Figure 4.17  Image that clustered with K-medoid algorithm and it’s  
           histogram. 

 

 After thresholding for seperate specified areas, lesions and CSF areas didn’t 

appear clearly. . Figure 4.18 (a) shows original T1 image. Figure 4.18 (b) shows the 

original “gold” MS lesions image. Figure 4.18 (c) shows clustered image. Figure 4.18 

(d) shows thresholded result image  

 
        Figure 4.18   (a) Source T1 image slice number: 100  

            (b) MS lesions 
              (c) Clustering with K-medoid  image    

            (d) Result image. 
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4.5 Principle Component Analysis ( PCA) 

 

Principle Component Analysis is the projection of the n-dimensional data into a 

lower q-dimensional data. First, the d-dimensional mean vector μ  and dxd 

covariance matrix Σ are computed for all data sets. Next, the Eigenvectors and 

Eigenvalues are computed, and they are sorted according to decreasing Eigenvalue. 

The Eigenvector associated with the largest Eigenvalue has the same direction as the 

first principle component.  

 

Covariance of the data set is: 

1 ( )( )T
k kF x v x v

N
= − −                   (Eq. 4.9) 

N is the number of objects in the data set. 

v is the mean of the data. 

 

Principle component analysis is based on the projection of correlated high 

dimensional data onto a hyperplane (Tipping M. E., 1999). For mapping, to  reduce 

the  dimensionality of the data set, the first nonzero Eigenvalues and the 

corresponding Eigenvectors of the data set are used. F is the covariance matrix that 

includes the Eigenvalues in its diagonal in decreasing order. The  iU  matrix includes 

the eigenvectors corresponding to the eigenvalues in its columns. The vector ,i ky  is a 

q dimensional reduced representation of the observed vector kx . 

1
, ( ) ( )T

i k i k i ky W x W x−= =                 (Eq. 4.10) 

iW  is the weight matrix that contains the q principle orthonormal axes in its 

column. 
1
2

, ,i i q i qW U= Λ                         (Eq. 4.11) 

 

The algorithm for principle component analysis is shown in figure 4.19. This 

projection method is also known as Kahunen-Loeve Transform. 

 



 51

              
               Figure 4.19  Algorithm of PCA 
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As we can see from the section 4.4.1, 4.4.2 and 4.4.3 clustering methods are not 

enough segment the lesions. The combination of the Principle Component Analysis 

with the overlapping (FCM) and exclusive (K-means and K-medoid) clustering 

methods, gives more succesfull results. PCA clustering is accomplised by MATLAB 

with  “fuzzy clustering toolbox” (Balasko B., 2006). 

  

Result segmented images  are compared with the real MS lesions images and  

evaluated with two different methods. 

 

The first comparing method is  comparing the real MS lesions images and result 

segmented images pixels  and finding false positive and negative pixels. Ratio of the 

true located pixels of the result image to the  lesion area pixels of the target image  

gives the percentage of the performance. 

 

The MATLAB code for calculation of the percentage of the  true pixels is below: 

 
testim=zeros(m,n); 

% b is the target image  

% result is the segmented image 

for i=1:m; 

    for j=1:n; 

        if b(i,j)==result2(i,j); 

            testim(i,j)=0; 

            else testim(i,j)=255; 

        end 

         

    end 

end  

% testim image gives difference between target 

% and result images 

%calculate error 

ms=length(find(b==255))%target pixel number 
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tp=length(find((b==255)&(result2==255)))  

  

w1=ms-tp %false negative pixels 

ts=length(find(testim==255))  

rs=length(find(result2==255)) 

w2=rs-tp %false positive pixels 

 %percent of true pixels 

tt=(tp/ms)*100 

 

 

The second method is root mean square error (RMSE) (Liu Zheng ,  2006).  

[ ]2

1 1

( , ) ( , )
M N

m n
R m n I m n

RMSE
M N

= =

−
=

×

∑∑
            (Eq. 4.12) 

Where, ( , )R m n is the referance image and ( , )I m n is the target image. M N×  is 

the size of the images. 

 

4.5.1 FCM With PCA 

 

Application of the Fuzzy C Means clustered images together with the Principle 

Component Analysis and using the same data sets gives more specific segmentation 

results for lesions. 

 

Figure 4.20 shows  the results of the FCM plus  PCA  algorithm after 61 FCM 

iteration where the input of the PCA algorithm is data set from FCM input. Figure 

4.21 shows the selected clustered image and it’ s histogram. Figure 4.22 (a) shows the 

original T1 image. Figure 4.22 (b) shows the original MS lesions. Figure 4.22 (c) 

shows the segmented image by using fuzzy c-means and principle component 

analysis  algorithms. Figure 4.22 (d) shows the thresholded result lesions of  slice 100 

of data set. 
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                    Figure 4.20  Different of the clustered results  

                             of the Fuzzy C-Means  clustering  with  

      Principle Component Analysis for   slice 100. 

 

 
           Figure 4.21  (a) FCA+PCA clustered image 

                               (b)  Histogram  of the clustered image 
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                 Figure 4.22    (a) Original image for slice 100  

           (b)  MS lesions 

                    (c) Segmented image with  FCM and PCA  

           (d)  Result Image 

Figure 4.23 shows the threshold value according to true vs false pixels. 

 
              Figure 4.23 The variation of threshold  

               value  true pixels  vs false pixels. 

After 61 FCM iteration and PCA operation, comparision of the MS lesions image 

and result image , we can find 74.70% of lesion areas of slice 100. RMSE=0.86 

 

 According to histogram and threshold curve, the threshold value is selected 205 

which gives the optimal true pixel and false positive pixel. 

Figure 4.24 shows the same application’s results for slice 105. 
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                 Figure 4.24 (a) Original image for slice 105   

            (b)  MS lesions 

                       (c) Segmented image for FCM and PCA algorithm   

                 (d)  Thresholded Image 

 

 Figure 4.25 shows the graphic of the variation of threshold value vs true pixels 

and  false pixels. 

 
             Figure 4.25 The variation of threshold 

             value   true   pixels  vs  false pixels. 

After 268 FCM iteration and PCA operation, comparision of the MS lesions 

image and result image , we can find 52.52% of lesion areas of slice 105. 

RMSE=0.72 
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Figure 4.26  shows the same applications results for slice 110. After 79 FCM 

iteration and PCA operation, comparision of the MS lesions image and result image , 

we can find  81.08%  of lesion areas of slice 110. RMSE= 0.9. 

 

 

 
        Figure 4.26 (a) Original image for slice 110                (b)  MS lesions 

            (c) Segmented image for FCM and PCA algorithm   (d)  Result Image 

 

Figure 4.27 shows the graphic of the variation of threshold value vs true pixels and  

false pixels. 

 
          Figure 4.27 The variation of threshold 

           curve  true  pixels  vs  false pixels. 
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4.5.2 K-Means With PCA 

 

 The combination of K-means and PCA also gives more accurate results. 

Application of the K-Means clustered images together with the Principle Component 

Analysis and using the same data sets gives more specific segmentation results for 

lesions. 

 

             Figure 4.28 shows clustered images. Figure 4.29  shows segmented image and the 

histogram for finding threshold value. 

 
         Figure 4.28  Some of the clustered results of the 

        K-Means clustering with Principle Component  

        Analysis for   slice 100. 
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         Figure 4.29 (a) K-Means+PCA segmented image  

               (b) Histogram 

 Figure 4.30 shows the graphic of the variation of threshold value vs true pixels 

and  false pixels. According to histogram and threshold graphic, the threshold value 

is selected 205. 

 

 
         Figure 4.30 The variation of threshold value  

         vs true pixels  and false pixels. 

 

 

Figure 4.31  shows result images. 
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    Figure 4.31  (a) original T1 image   (b) MS lesions. 

                            (c) Clustered image with K-means and PCA.    

           (d) Result image. 

Comparision of the MS lesions  image and result segmented image , we can find 

74.70% of lesion areas. RMSE is 0.86. 

 

Figure 4.32 shows the results for same application to slice 105 , we can find 

52.2% of lesion areas. RMSE is 0.72. 

 
       Figure 4.32 (a) original T1 image for slice 105.   (b) MS lesions . 

                       (c) Clustered image with K-means and PCA.      (d) Result image. 
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Figure 4.33 shows the histogram of the selected cluster of slice 105 

 

 
      Figure 4.33 (a) K-Means+PCA segmented image  

                (b) Histogram 

 

 Figure 4.34 shows the graphic of the variation of threshold value vs true pixels 

and  false pixels. According to histogram and threshold graphic, the threshold value 

is selected 205. 

 

 
             Figure 4.34 The variation of threshold 

              value    true pixels  vs  false pixels. 

 

Figure 4.35 shows the results for same application to slice 110 , we can find  

81.08%  of lesion areas. RMSE is 0.9. 
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         Figure 4.35   (a) Original T1 image for slice 110     

                     (b) Original MS lesions. 

                                 (c) Clustered image with K-means and PCA.  

                       (d) Result thresholded  image. 

  

Figure 4.36 shows the histogram of the selected cluster of slice 110. 

 
    Figure 4.36  (a) K-Means+PCA segmented image  

           (b) Histogram 

 Figure 4.37 shows the graphic of the variation of threshold value, true pixels vs  

false pixels. According to histogram and threshold graphic, the threshold value is 

selected 205. 
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            Figure 4.37 The variation of threshold 

                  value    true pixels  vs  false pixels. 
4.5.3 K-Medoid With PCA 

  The combination of K-medoid and PCA and the results are below. Figure 4.38 

shows clustered images. K-medoid results are very similar to the K-means results 

lesion clusters as can be clearly seen. The difference between k-means and k-medoid 

is in the calculation of the cluster centers.  

 
             Figure 4.38 Some of the results for combination of  

        the  K-medoid and PCA Segmentation. 
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Figure 4.39 shows the selected clustered image and histogram. 

 

 
          Figure 4.39  (a) K-Medoid+PCA segmented image (b) Histogram 

 

 Figure 4.40 shows the graphic of the variation of threshold value, true pixels vs  

false pixels. According to histogram and threshold graphic, the threshold value is 

selected 205. 

 
        Figure 4.40 The variation of threshold 

         value ,   true pixels  vs  false pixels. 
 

Figure 4.41 (a) shows original T1 image. Figure 4.41 (b) shows the original “gold” 

MS lesions image. Figure 4.41 (c) shows clustered image. Figure 4.41 (d) shows 

thresholded result image 
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                   Figure 4.41  (a) original T1 image for slice 100.  (b) MS lesions 

        (c) Clustered image with K-medoid and PCA.      (d) Result image. 

Comparision of the target image and result image , we can find 74.70% of lesion 

areas. RMSE is 0.86. 

Figure 4.42 shows the results for same application to slice 105,   we can find 

52.2%  of lesion areas. RMSE is 0.72. 

 
   Figure 4.42 (a) original T1 image for slice 105. (b) MS lesions. 

                     (c) Clustered image with K-medoid and PCA.   (d) Result image. 



 66

Figure 4.43 shows the selected clustered image and histogram. 

 
      Figure 4.43  (a) K-Medoid+PCA segmented image (b) Histogram 

 Figure 4.44 shows the graphic of the variation of threshold value, true pixels vs  

false pixels. According to histogram and threshold graphic, the threshold value is 

selected 205. 

 
        Figure 4.44 The variation of threshold  value ,  

         true pixels  vs  false pixels. 
 

Figure 4.45 shows the results for same application to slice 110,   we can find 

81.08% of lesion areas. RMSE is 0.9. 
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    Figure 4.45 (a) original T1 image for slice 110.        (b) MS lesions. 

                      (c) Clustered image with K-medoid and PCA.           (d) Result image. 

 

Figure 4.46 shows the selected clustered image and histogram. 

  
   Figure 4.46  (a) K-Medoid+PCA segmented image (b) Histogram 

  

 Figure 4.47 shows the graphic of the variation of threshold value, true pixels vs  

false pixels. According to histogram and threshold graphic, the threshold value is 

selected 205. 
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        Figure 4.47 The variation of threshold  value ,  

        true pixels  vs  false pixels. 

 

4.6 Independent Component Analysis (ICA) 

 

 In the Independent Component Analysis (ICA), source signal s(t) is registered as 

x(t). Where 1( ) [ ( ),...., ( )]ns t s t s t=  and  1( ) [ ( ),...., ( )]mx t x t x t= .  If a nonlinear 

interference appears, A is the interefence matrix between source and observed 

signals, ( ) ( )x t As t= . The goal here is estimation of the source signals from the 

observed signals and find inverse interference matrix where  1( ) ( ) ( )y t Wx t A x t−= = . 

If there is no information about the sources, in  a blind source seperation case, 

statistical independence of the independent component analysis sources and has no 

Gaussian probability density function asumptions can be considered (Özkurt A., 

2007) . 

 

 The input bands are 24 different non-linear composition of the MRI images. In the 

application stage, first of all 100. slice has been used for clustering. Independent 

Component Analysis  is accomplised by MATLAB ICALAB toolbox. Results are 

below.  

 We have 24 inputs and 24 different independent components. Figure 4.48 shows 

these results. Figure 4.49 shows the selected ICA clustered image and histogram. 
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        Figure 4.48 Independent components of the slice 100. 

 
(a) (b) 

     Figure 4.49  (a) Independent Component Analysis Clustered Image 

            (b) Histogram 

 

 Figure 4.50  shows the graphic of the variation of threshold value, true pixels vs  

false pixels. According to histogram and threshold graphic, the threshold value is 

selected 154. 
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        Figure 4.50 The variation of threshold  value ,  

        true pixels  vs  false pixels. 

 
        

 Figure 4.51 shows the original T1 image  and MS lesions images with ICA 

clustered and result thresholded  image. 

 
    Figure 4.51   (a) Original T1 image     (b) MS lesions. 

                (c) ICA clustered image (d) Result image 

Comparision of the target image and result image , we can find 87.93 %  of lesion 

areas. RMSE is 0.93. 
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Figure 4.52 shows the results for same application to slice 110 , we can find  

54.05 %of lesion areas. RMSE is 0.73. 

 
        Figure 4.52      (a) Original T1 image    (b) MS lesions 

                  (c) ICA clustered image (d) Result image 

Figure 4.53 shows the selected clustered image and histogram. 
 

 
    Figure 4.53       (a) Independent Component Analysis Clustered Image 

            (b) Histogram 

 Figure 4.54  shows the graphic of the variation of threshold value, true pixels vs  

false pixels. According to histogram and threshold graphic, the threshold value is 

selected 154. 
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          Figure 4.54  The variation of threshold  value ,  

        true pixels  vs  false pixels. 
Figure 4.55 shows the results for same application to slice 105 , we can find % 

34.4444 of lesion areas. RMSE is 0.58. 

 

            
           Figure 4.55      (a) Original T1 image  (b) MS lesions 

                  (c) ICA clustered image  (d) Result image 
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4.7 Segmentation With Neural Networks 

 

 There are many different approaches used to classify artificial neural network. For 

example, neural networks can be classified according to how they learn or the type of 

training that is required, the various application they perform. Those that use 

activation functions versus basis functions, whether they are recurrent or 

nonrecurrent, the type of training inputs. Neural networks can be classify three main 

class: 

i) Single layer feedforward networks. 

ii) Multilayer feedforward networks. 

iii) Recurrent networks. 

Multilayer feedforward networks have common and complex nerveous system. 

Typically have several levels of hidden layers. Partially connected are more common 

than fully connected. Multilayer feedforward networks are also have supervised 

learning rules. 

 

4.7.1 Segmentation With Feedforward Multilayer Perceptron Algorithms 

 

The first step for training the multilayer perceptron by using the standard 

backpropagation algorithm is initialize the network synaptic weights to small random 

values. The scaling factor for initialize the weights is depend to the number of 

component in input layers and number of neurons in hidden layer. 

0
10.7n nγ =                     (Eq. 4.13) 

0n  is the number of components in the input layer 

1n  number of neurons in hidden layer. 

1
2

1

ij
ij n

ij
i

w
w

w
γ

=

=

∑
                   (Eq. 4.14) 

ijw  is weight for each neuron. 

The second step is present an input pattern and calculate the network responce 

from the set of training input and output patterns. 
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The third step is comparision of the network response with the actual output of the 

network and computution of local errors. 
( ) ( ) ( )

,( ) ( )s s s
j qh out j jd x g vδ = −               (Eq. 4.15) 

( )s
jδ  is the error for output layer. 

qd  is the desired network output. 

outx  is the actual output of the network. 

v  is the activity level for ith level. 

1
( ) ( 1) ( 1) ( )

1
( )

sn
s s s s

j h hj j
h

w g vδ δ
+

+ +

=

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∑              (Eq 4.16) 

Equation 4.15 shows the error for hidden layers. 

The fourth step is update of the network weights in according to equation 3.12. 
( ) ( ) ( ) ( ) ( )

,( 1) ( )s s s s s
ji ji j out iw k w k xμ δ+ = +             (Eq. 4.17) 

 

The last step is contiune the step two through four until the network reaches a 

predetermined level of accuracy in producing the adequate response for all the 

training patterns. 

 

After training the system, the result weights can be used to simulate different 

input data.  

 

Neural network segmentation with feedforward multilayer perceptron method  is 

accomplised by MATLAB Neural Network Toolbox. Input data for the clustering is 

combination of T1-T2-PD images. 

 

4.7.2 Application of Feedforward Multilayer PerceptronNeural Network 

 

The input for training the network is the combination of T1, T2 and PD weighted 

images. The  combination of these three images are feeded as input to the network. 

Training targets are chosen the target slice of the same MRI images. 16 input and 16 

hidden layer and 1 output layer were  used. As an activation function, tan-sigmoid 

transfer function was used. 400 epochs are chosen for the training epochs and after 
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system was trained, the network was simulated with the training data again. Figure 

4.56 shows the performance curve and table 4.1 shows the training weights and bias 

values after 400 epoch. 

 
         Figure 4.56  Training of the system with  

                               400 epochs 

 
Table 4.1 Neuron weights and bias values 

Layer1_Weights Layer1_Bias Layer2_Weights Layer2_Bias

0.6802 0.0658 0.6036 -7.7974 5.0769 0.2893 

0.2828 -1.0518 -0.7050 7.3973 0.0046  

-0.2127 -0.1757 -0.5201 -1.1599 -0.5143  

-0.1727 -0.0396 0.1228 3.3188 14.8532  

-1.2199 -0.1999 -0.0644 -4.7986 -1.1221  

-1.2192 0.4724 0.7404 1.9998 11.0729  

0.3333 0.2548 -0.1285 6.6871 1.5080  

-2.5918 2.6181 1.2653 -4.7060 -0.1760  

0.1582 0.0636 -0.1590 -1.4747 -9.2721  

-1.4843 0.4197 0.5851 2.9028 5.0691  

-0.0865 -0.0826 0.0313 16.6073 -31.1109  

0.4582 -0.2269 -0.0372 -1.3992 1.3818  

-0.0722 -0.1426 -0.2334 -0.7747 0.0369  

0.1324 0.0969 -0.1407 -0.3431 18.4735  

-0.3896 0.6937 0.0892 1.0112 0.9157  

0.0410 0.2808 0.0887 1.0352 0.3738  
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Figure 4.57  shows the training result and histogram.  

 
                 Figure 4.57  (a) Simulated image 100               (b) Histogram 

 

 

According to the histogram from figure 4.56, lesion areas appear bright. After a 

simple thresholding  result image is shown in figure 4.58 (a). Figure 4.58 (b) shows 

the target MS lesions image. 

 
         Figure 4.58 (a) Result of the simulated image of slice 100. (b) MS lesions 

 

Calculation of the  error between the ANN simulated image and target image: 

 With the comparision of the target MS lesions image and result image , we can 

find %81.3230 of the lesion areas. In according to Eq 4.7 root mean square error 

value is: 

 RMSE=0.9. 
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After training and simulating system, the same network was used to simulate 

different MRI image, slice 105 and 110. Figure 4.60 shows the simulated  image 105 

and it’s histogram. Figure 4.59 shows the target MS lesions  image of slice 105 and 

the thresholded result  image. Figure 4.61 shows the simulated image 110 and it’s 

histogram. Figure 4.62 shows the target image of slice 110 and the thresholded result  

image.  
                

 
                       Figure 4.59   (a) MS lesions             (b)  result ann image of slice 105. 

 
            

      Figure 4.60 (a) ANN simulated image  (slice 105)    (b)     Histogram 

 
    
Comparision of the target image 105 and result image 105 , we can find %79.444 of 

the lesion areas. In according to Eq 4.7 root mean square error value is: 
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 RMSE=0.89. 

 

 
          (a)                                                       (b) 

       Figure 4.61 (a) ANN simulated image  (slice 110)  (b) Histogram 

 

 
                         Figure 4.62  (a) MS lesions                (b)  result image of slice 110. 

 

     Comparision of the target image 110 and result image 110 , we can find   

89.189 % of the lesion areas. In according to Eq 4.7 root mean square error value is: 

RMSE= 0.94. 
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4.8 Comparison Of All The Techniques 

 

Comparison of the different unsupervised and supervised techniques according to 

false negative, false positive and true pixel numbers are given in the table 4.2.  

 
Table 4.2 Comparison of the pattern recognition techniques in according to the pixel numbers for 

slices 100, 105 and 110. 

Pattern Recognition 
Technique 

FCA+PCA K-Means 
+PCA 

K-Medoid 
+PCA ICA ANN 

Slice 
100 

Target pixels 
number 257 257 257 257 257 

True pixels in 
the result 

image 
192 192 192 230 209 

False 
negative 

pixels 
65 65 65 27 48 

False positive 
pixels 96 96 96 192 7 

Slice 
105 

Target pixels 
number 180 180 180 180 180 

True pixels in 
the result 

image 
94 94 94 62 143 

False 
negative 

pixels 
86 86 86 118 37 

False positive 
pixels 1 1 1 0 2 

Slice 
110 

Target pixels 
number 74 74 74 74 74 

True pixels in 
the result 

image 
60 60 60 40 66 

False 
negative 

pixels 
14 14 14 34 8 

False positive 
pixels 24 24 24 201 1 
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 Another comparison critera is elapsed time. Comparison of the  elapsed times for 

each algorithm are given in table 4.3. 

 
Table 4.3 Comparison of the elapsed times, root mean square errors and result true pixels percentages 

of  the different slices. 

Pattern 

Recognition 

Technique 

Percentage of the 

true pixels (%) 
Elapsed 
Time (seconds) 

RMSE 

Slice 

100 

Slice 

105 

Slice 

110 

Slice 

100 

Slice 

105 

Slice 

110 

Slice 

100 

Slice 

105 

Slice

110 

 
FCM+PCA 

 
74.7 52.2 81.08 35.93 150.71 46.76 0.86 0.72 0.9 

 

K-

MEANS+PCA 

 

74.7 52.2 81.08 8.75 12.50 14.97 0.86 0.72 0.9 

 

K-

MEDOID+PCA 

 

74.7 52.2 81.08 5.35 13.16 5.75 0.86 0.72 0.9 

 

ICA 

 

89.49 34.44 54.05 0.41 0.40 0.34 0.94 0.58 0.73 

 

ANN 

 

81.32 79.44 89.18 0.14* 0.14* 0.21* 0.90 0.89 0.94 

 

* These elapsed times are needed for simulation of the system. Training time for 

the system is 451.47 seconds with Intel Core2 CPU, 1.83 GHz and 1 GB RAM.  
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As can be seen from the  tables, unsupervised clustering techniques are not as 

successful as supervised neural network techniques.  The neural network system 

finds  true pixels of the lesion areas with average % 83 success. The neural network 

system is trained with slice 100 and simulated with slice 100, 105 and 110 and 

multilayer feedforward backpropagation algorithm is used with 16 input, 16 hidden 

layers and 1 output layer.   

 

     We can compare these results different evaluation criterias as : 

• Elapsed time. 

• Percentage of the  true pixels. 

• False positive pixel numbers. 

• False negative pixel numbers. 

• Sensitivity 

• Specificity 

 

4.8.1 Comparison of Elapsed Times 

 

 Elapsed time is the time duration of the operating algorithm. Because of  the 

artificial neural networks systems are needed to be train, it can be seen as the slowest 

technique. But, after training the system, simulation takes the shortest time duration 

between the all techniques. In clustering techniques, independent component analysis 

is the fastest and fuzzy c-means clustering with principle component analysis is the 

slowest technique. Although  k-means and k-medoid algorithms are very similar to 

each other, k-medoid algorithm has better elapsed time score then k-means 

algorithm. 

 

4.8.2 Comparison of  Percentage of the  True Pixels  

 

 This comparision is very much related to the location of the lesions in the 

processing image slice. For example, in slice 100 and 110, the lesions have contrast 

with CSF or white matter but in the slice 105, the lesions are distributed in the gray 
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matter and there is no very significant contrast between the neighbouring pixels. 

Thats why, we can see the lowest true pixel percentages on this image. 

 

  In general, again neural network system gives the most reliable results. If we 

consider component analysis  techniques, fuzzy c-means, k-means and k-medoid 

clustering techniques with principle component analysis gives more accurate results 

then the  independent component analysis.  

 

4.8.3 Comparison of the False Positive Pixel Numbers 

 

     False positive pixels means that, there are some error pixels which are not 

supposed to be in the segmented image. Between these techniques, artificial neural 

network technique has less positive pixels then other clustering tehniques.  

 

4.8.4 Comparison of the False Negative Pixel Numbers 

 

     False negative pixels means that there are some missing pixels in the result lesion 

area of the image. Artificial neural network system gives less false negative pixels 

then the others. Fuzzy C-Means, K-Means and K-Medoid clustering techniques are 

same false negative pixel numbers. Although independent component analysis has 

the best score in the false positive pixel number, according to this criteria, it has more 

missing pixels then the others. There is an erosion between lesion areas and healty 

brain tissues in the independent component analysis.  

 

4.8.5 Sensitivity 

 

 The calculation of sensitivity is: 

    TPSensitivity
TP FN

=
+

 

TP=True Pixels 

FN=False Negative Pixels 
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 4.8.5.1 Sensitivity of  clustering methods 

 Fuzzy C-Means, K-Means and K-Medoid Clustering Methods gives very close 

results:  

 For slice 100: 

 192
192 65

Sensitivity =
+

=0.74 

For slice 105: 

94
94 86

Sensitivity =
+

=0.52 

 

For slice 110: 

60
60 14

Sensitivity =
+

=0.81 

Average sensitivity is 0.69 

 

 4.8.5.2 Sensitivity of   independent component analysis method 

  The sensitivity calculation of the independent component analysis method is 

below: 

 For slice 100: 

230
230 27

Sensitivity =
+

=0.89 

For slice 105: 

62
62 118

Sensitivity =
+

=0.34 

For slice 110: 

40
40 34

Sensitivity =
+

=0.54 

Average sensitivity is 0.59 

 

 4.8.5.3 Sensitivity of   multilayer backpropagation neural network method 

 The sensitivity calculation of multilayer backpropagation neural network method 

is below:  
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For slice 100: 

209
209 48

Sensitivity =
+

=0.81 

For slice 105: 

143
143 37

Sensitivity =
+

=0.79 

For slice 110: 

66
66 8

Sensitivity =
+

=0.89 

Average sensitivity is 0.83 

 

4.8.6 Specificity 

 

 Calculation of the specificity is below: 

TNSpecificity
TN FP

=
+

 

TN=True Negatives. 

FP=False Positives. 

 

 4.8.6.1 Specificity  of  clustering methods 

 Fuzzy C-Means, K-Means and K-Medoid Clustering Methods gives very close 

results:  

For slice 100: 

39020
39020 96

Specificity =
+

=0.998 

For slice 105: 

39097
39097 1

Specificity =
+

=0.999 

For slice 110: 

39203
39203 24

Specificity =
+

=0.999 

Average specificity is 0.998 
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 4.8.6.2 Specificity  of   independent component analysis method 

 The specificity calculation of the independent component analysis method is 

below: 

 

For slice 100: 

39020
39020 192

Specificity =
+

=0.995 

For slice 105: 

39097
39097 0

Specificity =
+

=1 

For slice 110: 

39203
39203 201

Specificity =
+

=0.994 

Average specificity is 0.996 

 

 4.8.6.3 Specificity  of   multilayer backpropagation neural network method 

 The specificity calculation of multilayer backpropagation neural network method 

is below: 

For slice 100: 

39020
39020 7

Specificity =
+

=0.999 

 

For slice 105: 

39097
39097 2

Specificity =
+

=0.999 

For slice 110: 

39203
39203 1

Specificity =
+

=0.999 

Average specificity is 0.999 
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4.9 Result 

 

 According to comparison of the sensitivity and specificity criterias, multilayer 

backpropagation neural network algorithm has the best sensitivity and specificity 

between all techniques. 

  

 Clustering techniques with principle component analysis, are better then the 

independent component analysis’s sensitivity and specificity. 

 

4.10 GUI 

 

 In order to compare different segmentation methods, a segmentation GUI has 

been developed. MATLAB is necessary to execute the segmentation GUI. Figure 

4.63 shows this GUI. 

 

 
    Figure 4.63  Segmentation GUI. 

 

 The first part of the GUI is to select the slice number and segmentation type. 

Figure 4.64 shows the algorithms that can be selected. Slice number can be selected 

from the floading bar on the  left bottom of the GUI.  After selecting the slice 

number, segmentation type is selected from the window. Segment button starts the 
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segmentation for selected algorithm. After the segmentation process, the left side of 

the GUI shows the original “gold”  MS lesions image and right side shows the 

segmented image. We can see the differances from this window. 

 

  

 
 Figure 4.64 Selection of the segmentation types and slice number. 

 

 After saving  the segmentated image, we can choose another algorithm and 

compare them with compare button. Figure 4.65 shows the comparison of the Fuzzy 

C-Means+PCA and K-Means+PCA algorithms. This GUI can be used to compare 

the  different segmentation algorithms as Independent Component Analysis and 

Multilayer Back Propagation Neural Network Algorithm.  
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4.65 Comparision of the segmentation methods by using segmentation GUI. 
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CHAPTER FIVE 

CONCLUSION 

 

In this thesis, different segmentation methods are applied to the efficient 

automatic segmentation of Multiple Sclerosis (MS) for obtaining lesions from T1, 

T2, PD weighted brain  MR images. These systems are based on pixel classifications.  

 

  Multilayer backpropagation  neural networks are considered as supervised 

segmentation techniques and clustering algorithms are considered as unsupervised 

techniques.   Fuzzy C-Means,    K-Means and K-medoid clustering techniques with 

Principle Component Analysis, Independent Component Analysis and Multi Layer 

Back Propagation Neural Network algorithms  are compared and results are 

evaluated.  

 

 Results are compared based on different evaluation criteria as elapsed time, 

percentage of the  true pixels, false positive pixel numbers,  false negative pixel 

numbers, sensitivity and specificity of the result images.  

 

 Because of the inhomogenities of the MRI images, some lesions are overlapping 

with the gray matter and this situation causes some false negative pixels on the result 

images.  

 

The selection of the threshold value that specifies lesions areas, is important for to 

find accurate  lesion areas . Threshold value is selected  based on the  true pixels-

false pixels graphics. The same threshold value is applied to all segmentation 

methods.  

 

  Sensitivity of the segmented images is confirmed  with the “gold” MS lesions 

images which belongs to  the related  MRI slices. This comparison has shown that, 

the segmentation success is  very related to the  location of the lesions in the 

processing image slice. For example, in the slice 100 and 110, the lesions have 

contrast with CSF or white matter but in the slice 105, lesions are distributed in the 

89 
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gray matter and there is no very significant contrast between the neighbouring pixels. 

That’ s why, on this image.we can see the lowest true pixel percentages  

 

 If we compare unsupervised hard and soft partition methods, we can see that the 

soft partition method gives more successful results than hard partition methods and 

have more elapsed time. The reason for this, is that in the  hard partition methods  a 

pixel can belong to only one cluster but in the soft partition methods a pixel can 

belong to more than one cluster and MRI images are better treated this type of 

structure.  

 

In general, supervised artificial neural network method has given the best, most 

reliable and accurate results. Despite the fact that is requires training time, 

simulations afterwards are faster  then any other technique.  

 

 5.1 Future Work 

 

 The results in this thesis are very encouraging about segmentation of MS lesions 

from MRI images. The combination of the supervised and unsupervised methods can 

give more accurate results and clustering techiques can be used to obtain training 

data where there is no available  data for train of the supervised algorithms. 

 

An automated decision algorithm can be develop in order to choose the most 

suitable clustered images from the clustering algorithms with image comparison 

techniques.  

 

The combination of supervised and unsupervised techniques can be proposed as 

hybrid method and  these algorithms can be implement in 3D images. 

 

Preprocessing of MRI images with bias filter correction or other image 

processing techniques can be improved. 
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In this thesis, multilayer backpropagation algorithm as neural approach is 

investigated. Other neural network methods can also be applied like learning 

quantization algorithms or self organizing maps for segmentation of brain tissues 

with morphological postprocessing. 
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APPENDIX 

 

 MATLAB codes: 

i.) Code for fuzzy c-means clustering with principle component analysis: 
close all 
clear all 
   
fid1 = fopen('t1.rawb', 'r'); 
c1 = fread(fid1,'uint8'); 
fclose(fid1); 
  
fid2 = fopen('t2.rawb', 'r'); 
c2 = fread(fid2,'uint8'); 
fclose(fid2); 
  
fid3 = fopen('pd.rawb', 'r'); 
c3 = fread(fid3,'uint8'); 
fclose(fid3); 
  
fid4 = fopen('hedef.rawb', 'r'); 
c4 = fread(fid4,'uint8'); 
fclose(fid4); 
  
 A1=reshape(c1,181,217,181); 
A2=reshape(c2,181,217,181); 
A3=reshape(c3,181,217,181); 
A4=reshape(c4,181,217,181); 
  
  
K=110; 
cc1=A1(:,:,K); 
cc1=double(cc1); 
cc2=A2(:,:,K); 
cc2=double(cc2); 
cc3=A3(:,:,K); 
cc3=double(cc3); 
cc4=A4(:,:,K); 
cc4=double(cc4); 
  
   
b=zeros(size(cc4)); 
  
b(find(cc4>=80))=255; %test image 
b(find(cc4<80))=0; 
  
  
[m n]=size(cc1); 
s11=reshape(cc1,1,m*n); 
s22=reshape(cc2,1,m*n); 
s33=reshape(cc3,1,m*n); 
s44=reshape(cc4,1,m*n); 
 s=zeros(24,m*n); 
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s(1,:)=s11; 
s(2,:)=s22; 
s(3,:)=s33; 
s(4,:)=s11.*s22; 
s(5,:)=s11.*s33; 
s(6,:)=s22.*s33; 
s(7,:)=sqrt(s11.*s22); 
s(8,:)=sqrt(s11.*s33); 
s(9,:)=sqrt(s22.*s33); 
s(10,:)=s11.^2; 
s(11,:)=s22.^2; 
s(12,:)=s33.^2; 
s(13,:)=sqrt(s11); 
s(14,:)=sqrt(s22); 
s(15,:)=sqrt(s33); 
s(16,:)=s11.*(255-s22); 
s(17,:)=s22.*(255-s33); 
s(18,:)=s33.*(255-s11); 
s(19,:)=s22.*(255-s11); 
s(20,:)=s33.*(255-s22); 
s(21,:)=s11.*(255-s33); 
s(22,:)=(255-s11); 
s(23,:)=(255-s22); 
s(24,:)=(255-s33);  
  
  
data.X=s'; 
  
  
  
data = clust_normalize(data,'range') 
subplot(2,1,1),plot(data.X(:,1),data.X(:,2),'x') 
data = clust_normalize(data,'var') 
subplot(2,1,2),plot(data.X(:,1),data.X(:,2),'+') 
  
  
tic 
param.c = 6; 
param.m = 24; 
result = FCMclust(data,param) 
  
  
param.q = 6; 
result = PCA(data,param,result); 
  
toc 
% 
Y=result.proj.P; 
% 
y=Y'; 
% 
  
[k,l]=size(y); 
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figure(2), 
t=1; 
for i=1:6  
    subplot(3,2,t),imagesc(reshape(y(i,:),m,n)); colormap(gray); 
    title(strcat(num2str(i),'. FCM+PCA'));colormap(gray) 
    t=t+1; 
end 
  
  
%%%% find region 
  
  
  
 
  
im=[]; 
ics=[]; 
for i=1:k 
    im=reshape(y(i,:),m,n); 
    im=im-min(min(im)); 
    im=im*(255/max(max(im))); 
    ics(:,:,i)=im; 
     
end 
 
result=ics(:,:,j(6)); 
result=round(result); 
  
  
  
a=[0:255]/256; 
aa=[a' a' a']; 
  
figure, 
subplot(121), imagesc(im),colormap(gray),title('(a) clustered image'); 
subplot(122),imhist(im,aa),title('(b) histogram'); 
  
  
  result1=zeros(size(im)); 
  
  result1(find(im>=40))=255; 
 result1(find(im<40))=0; 
  
 result2=zeros(size(im)); 
 result2(find(result1==0))=255; 
  
 figure(4),imagesc(result2),colormap(gray); 
  
  figure(5), 
  subplot(221),imagesc(cc1),colormap(gray),title ('(a) Original Image'); 
  subplot(222),imagesc(b),colormap(gray),title ('(b) Target Image'); 
  subplot(223),imagesc(result),colormap(gray),title ('(c) FCM+PCA'); 
  subplot(224),imagesc(result2),colormap(gray),title ('(d) Result Image'); 
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testim=zeros(m,n); 
% b is the target image  
% result is the segmented image 
for i=1:m; 
    for j=1:n; 
        if b(i,j)==result2(i,j); 
            testim(i,j)=0; 
            else testim(i,j)=255; 
        end 
         
    end 
end 
  
% testim iamge gives difference between target 
% and result images 
  
figure(6), imagesc(b),colormap(gray), title('target'); 
figure(7), imagesc(result2),colormap(gray), title('result'); 
  
figure(8), imagesc(testim),colormap(gray), title('difference between real target and result'); 
  
  
  
%calculate error 
ms=length(find(b==255))%target pixel number 
tp=length(find((b==255)&(result2==255)))  
  
w1=ms-tp %false negative pixels 
ts=length(find(testim==255)) 
  
rs=length(find(result2==255)) 
w2=rs-tp %false positive pixels 
  
  
%percent of true pixels 
tt=(tp/ms)*100 
  
%%%%%%%%%%%%%%%%%%%%% 
%%%%calculation of RMSE 
%%%%%%%%%%%%%%%%%%%% 
  
rmse=sqrt(tp/ms) 
 

ii.) Code for K-means clustering with principle component analysis: 
close all 
clear all 
  
  
fid1 = fopen('t1.rawb', 'r'); 
c1 = fread(fid1,'uint8'); 
fclose(fid1); 
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fid2 = fopen('t2.rawb', 'r'); 
c2 = fread(fid2,'uint8'); 
fclose(fid2); 
  
fid3 = fopen('pd.rawb', 'r'); 
c3 = fread(fid3,'uint8'); 
fclose(fid3); 
  
fid4 = fopen('hedef.rawb', 'r'); 
c4 = fread(fid4,'uint8'); 
fclose(fid4); 
  
A1=reshape(c1,181,217,181); 
A2=reshape(c2,181,217,181); 
A3=reshape(c3,181,217,181); 
A4=reshape(c4,181,217,181); 
  
  
K=110; 
cc1=A1(:,:,K); 
cc1=double(cc1); 
cc2=A2(:,:,K); 
cc2=double(cc2); 
cc3=A3(:,:,K); 
cc3=double(cc3); 
cc4=A4(:,:,K); 
cc4=double(cc4); 
  
b=zeros(size(cc4)); 
  
b(find(cc4>=80))=255; %test image 
b(find(cc4<80))=0; 
  
  
figure(1),imagesc(b),colormap(gray),title('target image'); 
  
  
  
  
[m n]=size(cc1); 
s11=reshape(cc1,1,m*n); 
s22=reshape(cc2,1,m*n); 
s33=reshape(cc3,1,m*n); 
s44=reshape(cc4,1,m*n); 
  
s=zeros(24,m*n); 
  
  
  
s(1,:)=s11; 
s(2,:)=s22; 
s(3,:)=s33; 
s(4,:)=s11.*s22; 
s(5,:)=s11.*s33; 
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s(6,:)=s22.*s33; 
s(7,:)=sqrt(s11.*s22); 
s(8,:)=sqrt(s11.*s33); 
s(9,:)=sqrt(s22.*s33); 
s(10,:)=s11.^2; 
s(11,:)=s22.^2; 
s(12,:)=s33.^2; 
s(13,:)=sqrt(s11); 
s(14,:)=sqrt(s22); 
s(15,:)=sqrt(s33); 
s(16,:)=s11.*(255-s22); 
s(17,:)=s22.*(255-s33); 
s(18,:)=s33.*(255-s11); 
s(19,:)=s22.*(255-s11); 
s(20,:)=s33.*(255-s22); 
s(21,:)=s11.*(255-s33); 
s(22,:)=(255-s11); 
s(23,:)=(255-s22); 
s(24,:)=(255-s33);  
  
  
  
  
  
data.X=s'; 
  
data = clust_normalize(data,'range') 
subplot(3,1,2),plot(data.X(:,1),data.X(:,2),'x') 
data = clust_normalize(data,'var') 
subplot(3,1,3),plot(data.X(:,1),data.X(:,2),'+') 
  
  
tic 
param.vis=1; 
param.c=6; 
param.m=4; 
param.val=2; 
  
  
result=Keymeans(data,param); 
  
  
param.q = 6; 
result = PCA(data,param,result); 
toc 
H=result.data.d; 
  
 
% 
Y=result.proj.P; 
% 
y=Y'; 
% 
  
[k,l]=size(y); 
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figure, 
t=1; 
for i=1:6  
    subplot(3,2,t),imagesc(reshape(y(i,:),m,n)); colormap(gray); 
    title(strcat(num2str(i),'. KMEANS+PCA'));colormap(gray) 
    t=t+1; 
end 
  
  
%%%% find region 
  
  
  
 
im=[]; 
ics=[]; 
for i=1:k 
    im=reshape(y(i,:),m,n); 
    im=im-min(min(im)); 
    im=im*(255/max(max(im))); 
    ics(:,:,i)=im; 
     
end 
result=ics(:,:,j(4)); 
result=round(result); 
  
a=[0:255]/256; 
aa=[a' a' a']; 
  
 figure, 
 subplot(121),imagesc(result),colormap(gray),title('(a) K-Means Clustered image'); 
 subplot(122),imhist(result,aa),title('(b) Histogram'); 
  
  
  
 result1=result; 
 result1(find(result1>=40))=255; 
 result1(find(result1<40))=0; 
  
 result2=zeros(size(result1)); 
 result2(find(result1==0))=255; 
  
  
  figure, 
 imagesc(result2),colormap(gray); 
  
  
  
  
 figure, 
  subplot(221),imagesc(cc1),colormap(gray),title('(a) original T1 image'); 



 104

  subplot(222),imagesc(b),colormap(gray),title('(b) target  image'); 
  subplot(223),imagesc(result),colormap(gray),title('(c) kmeans clustered image'); 
  subplot(224),imagesc(result2),colormap(gray),title('(d) result image'); 
   
%calculate error 
ms=length(find(b==255))%target pixel number 
tp=length(find((b==255)&(result2==255)))  
% h %true pixel number of the result image 
w1=ms-tp %false negative pixels 
ts=length(find(testim==255)) 
  
rs=length(find(result2==255)) 
w2=rs-tp %false positive pixels 
  
  
%percent of true pixels 
tt=(tp/ms)*100 
  
%%%%%%%%%%%%%%%%%%%%% 
%%%%calculation of RMSE 
%%%%%%%%%%%%%%%%%%%% 
  
rmse=sqrt(tp/ms) 
 

 

iii.) Code for K-medoid clustering with principle component analysis: 
close all 
clear all 
  
  
fid1 = fopen('t1.rawb', 'r'); 
c1 = fread(fid1,'uint8'); 
fclose(fid1); 
  
fid2 = fopen('t2.rawb', 'r'); 
c2 = fread(fid2,'uint8'); 
fclose(fid2); 
  
fid3 = fopen('pd.rawb', 'r'); 
c3 = fread(fid3,'uint8'); 
fclose(fid3); 
  
fid4 = fopen('hedef.rawb', 'r'); 
c4 = fread(fid4,'uint8'); 
fclose(fid4); 
  
A1=reshape(c1,181,217,181); 
A2=reshape(c2,181,217,181); 
A3=reshape(c3,181,217,181); 
A4=reshape(c4,181,217,181); 
  
K=110; 
cc1=A1(:,:,K); 
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cc2=A2(:,:,K); 
  
cc3=A3(:,:,K); 
  
cc4=A4(:,:,K); 
  
b=zeros(size(cc4)); 
  
b(find(cc4>=80))=255; %test image 
b(find(cc4<80))=0; 
  
[m n]=size(cc4); 
  
s11=reshape(double(cc1),1,m*n); 
s22=reshape(double(cc2),1,m*n); 
s33=reshape(double(cc3),1,m*n); 
s44=reshape(double(cc4),1,m*n); 
  
s=zeros(24,m*n); 
  
  
  
s(1,:)=s11; 
s(2,:)=s22; 
s(3,:)=s33; 
s(4,:)=s11.*s22; 
s(5,:)=s11.*s33; 
s(6,:)=s22.*s33; 
s(7,:)=sqrt(s11.*s22); 
s(8,:)=sqrt(s11.*s33); 
s(9,:)=sqrt(s22.*s33); 
s(10,:)=s11.^2; 
s(11,:)=s22.^2; 
s(12,:)=s33.^2; 
s(13,:)=sqrt(s11); 
s(14,:)=sqrt(s22); 
s(15,:)=sqrt(s33); 
s(16,:)=s11.*(255-s22); 
s(17,:)=s22.*(255-s33); 
s(18,:)=s33.*(255-s11); 
s(19,:)=s22.*(255-s11); 
s(20,:)=s33.*(255-s22); 
s(21,:)=s11.*(255-s33); 
s(22,:)=(255-s11); 
s(23,:)=(255-s22); 
s(24,:)=(255-s33);  
  
 data.X=s'; 
  
data = clust_normalize(data,'range') 
subplot(3,1,2),plot(data.X(:,1),data.X(:,2),'x') 
data = clust_normalize(data,'var') 
subplot(3,1,3),plot(data.X(:,1),data.X(:,2),'+') 
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tic 
param.vis=1; 
param.c=6; 
param.m=24; 
param.val=2; 
result=Kmedoid(data,param); 
  
param.q = 6; 
result = PCA(data,param,result); 
toc 
  
  
a=[0:255]/256; 
aa=[a' a' a']; 
  
  
Y=result.proj.P; 
% 
y=Y'; 
% 
  
  
figure, 
[k,l]=size(y); 
for i=1:k 
    no=round(k/6); 
    subplot(no,6,i),imagesc(reshape(y(i,:),m,n)); colormap(gray); 
end 
  
figure, 
t=1; 
for i=1:6  
    subplot(3,2,t),imagesc(reshape(y(i,:),m,n)); colormap(gray); 
    title(strcat(num2str(i),'.Kmedoid+pca'));colormap(gray) 
    t=t+1; 
end 
  
  
%%%% find region 
  
  
  
im=[]; 
ics=[]; 
for i=1:k 
    im=reshape(y(i,:),m,n); 
    im=im-min(min(im)); 
    im=im*(255/max(max(im))); 
    ics(:,:,i)=im; 
     
end 
result=ics(:,:,j(4)); 
result=round(result); 
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 figure, 
 subplot(121),imagesc(result),colormap(gray),title('(a) K-Medoid and PCA Clustered Image'); 
 subplot(122),imhist(result,aa),title('(b) Histogram'); 
  
 result1=result; 
 result1(find(result1>=40))=255; 
 result1(find(result1<40))=0; 
  
 result2=zeros(size(result1)); 
 result2(find(result1==0))=255; 
  
  
  figure, 
 imagesc(result2),colormap(gray); 
  
  figure, 
  subplot(221),imagesc(cc1),colormap(gray),title('(a) original T1 image'); 
  subplot(222),imagesc(b),colormap(gray),title('(b) target  image'); 
  subplot(223),imagesc(result),colormap(gray),title('(c) kmedoid clustered image'); 
  subplot(224),imagesc(result2),colormap(gray),title('(d) result image'); 
   
  testim=zeros(m,n); 
  
for i=1:m; 
    for j=1:n; 
        if b(i,j)==result2(i,j); 
            testim(i,j)=0; 
            else testim(i,j)=255; 
        end 
         
    end 
end 
  
  
  
  
figure, imagesc(b),colormap(gray), title('target'); 
figure, imagesc(result2),colormap(gray), title('result'); 
  
figure, imagesc(testim),colormap(gray), title('difference between real target and result'); 
  
%calculate error 
ms=length(find(b==255))%target pixel number 
tp=length(find((b==255)&(result2==255)))  
% h %true pixel number of the result image 
w1=ms-tp %false negative pixels 
ts=length(find(testim==255)) 
  
rs=length(find(result2==255)) 
w2=rs-tp %false positive pixels 
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%percent of true pixels 
tt=(tp/ms)*100 
  
%%%%%%%%%%%%%%%%%%%%% 
%%%%calculation of RMSE 
%%%%%%%%%%%%%%%%%%%% 
  
rmse=sqrt(tp/ms) 
 

 

iv.) Code for independent  component analysis: 
clear all 
close all 
  
fid1 = fopen('t1.rawb', 'r'); 
c1 = fread(fid1,'uint8'); 
fclose(fid1); 
fid2 = fopen('t2.rawb', 'r'); 
c2 = fread(fid2,'uint8'); 
fclose(fid2); 
fid3 = fopen('pd.rawb', 'r'); 
c3 = fread(fid3,'uint8'); 
fclose(fid3); 
fid4 = fopen('hedef.rawb', 'r'); 
c4 = fread(fid4,'uint8'); 
fclose(fid4); 
  
A1=reshape(c1,181,217,181); 
A2=reshape(c2,181,217,181); 
A3=reshape(c3,181,217,181); 
A4=reshape(c4,181,217,181); 
  
  
m=181; 
n=217; 
  
K=110; %slice number 
  
cc1=A1(:,:,K); 
cc2=A2(:,:,K); 
cc3=A3(:,:,K); 
cc4=A4(:,:,K); 
  
cc1(find(cc1<25))=0; 
cc2(find(cc2<25))=0; 
cc3(find(cc3<25))=0; 
cc4=double(cc4); 
  
b=zeros(size(cc4)); 
b(find(cc4>=80))=255; %test image 
b(find(cc4<80))=0; 
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s11=reshape(double(cc1),1,m*n); 
s22=reshape(double(cc2),1,m*n); 
s33=reshape(double(cc3),1,m*n); 
  
s(1,:)=s11; 
s(2,:)=s22; 
s(3,:)=s33; 
s(4,:)=s11.*s22; 
s(5,:)=s11.*s33; 
s(6,:)=s22.*s33; 
s(7,:)=sqrt(s11.*s22); 
s(8,:)=sqrt(s11.*s33); 
s(9,:)=sqrt(s22.*s33); 
s(10,:)=s11.^2; 
s(11,:)=s22.^2; 
s(12,:)=s33.^2; 
s(13,:)=sqrt(s11); 
s(14,:)=sqrt(s22); 
s(15,:)=sqrt(s33); 
s(16,:)=s11.*(255-s22); 
s(17,:)=s22.*(255-s33); 
s(18,:)=s33.*(255-s11); 
s(19,:)=s22.*(255-s11); 
s(20,:)=s33.*(255-s22); 
s(21,:)=s11.*(255-s33); 
s(22,:)=(255-s11); 
s(23,:)=(255-s22); 
s(24,:)=(255-s33); 
tic 
W=amuse(s); 
y=W*s; 
toc 
  
  
figure(1), 
[k,l]=size(y); 
for i=1:k 
    no=round(k/6); 
    subplot(no,6,i),imagesc(reshape(y(i,:),m,n)); colormap(gray); 
    if i==1 title('Independent components'); end 
end 
  
% figure, imagesc(reshape(y(7,:),m,n)),colormap(gray) 
  
 
im=[]; 
ics=[]; 
[k,l]=size(y); 
for i=1:k 
    im=reshape(y(i,:),m,n); 
    im=im-min(min(im)); 
    im=im*(255/max(max(im))); 
    ics(:,:,i)=im; 
     
end 
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result=ics(:,:,j(5)); 
  
a=[0:255]/256; 
aa=[a' a' a']; 
  
figure(2), 
subplot(121), imagesc(result),colormap(gray),title('(a) ICA clustered image'); 
subplot(122),imhist(result,aa),title('(b) histogram'); 
  
  
 result1=zeros(size(result)); 
  
  
  
  
 result1(find(result>=185))=255; 
 result1(find(result<185))=0; 
  
  
  
 figure,imagesc(result1),colormap(gray); 
  
  
  
 figure(4), 
  subplot(221),imagesc(cc1),colormap(gray),title ('(a) Original Image'); 
  subplot(222),imagesc(b),colormap(gray),title ('(b) Target Image'); 
  subplot(223),imagesc(result),colormap(gray),title ('(c) ICA clustered image'); 
  subplot(224),imagesc(result1),colormap(gray),title ('(d) Result Image'); 
   
   
   
  result2=result1; 
  
   
  testim=zeros(m,n); 
  
  
for i=1:m; 
    for j=1:n; 
        if b(i,j)==result2(i,j); 
            testim(i,j)=0; 
            else testim(i,j)=255; 
        end 
         
    end 
end 
  
  
  
  
figure(5), imagesc(b),colormap(gray), title('target'); 
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figure(6), imagesc(result2),colormap(gray), title('result'); 
  
figure(7), imagesc(testim),colormap(gray), title('difference between real target and result'); 
  
  
  
%calculate error 
ms=length(find(b==255))%target pixel number 
tp=length(find((b==255)&(result1==255)))  
% h %true pixel number of the result image 
w1=ms-tp %false negative pixels 
ts=length(find(testim==255)) 
  
rs=length(find(result1==255)) 
w2=rs-tp %false positive pixels 
  
  
%percent of true pixels 
tt=(tp/ms)*100 
  
%%%%%%%%%%%%%%%%%%%%% 
%%%%calculation of RMSE 
%%%%%%%%%%%%%%%%%%%% 
  
rmse=sqrt(tp/ms) 
%%%%%%%%%%%%%%%%%%%% 
 

v.) Code for segmentation with neural networks: 
close all 
clear all 
  
  
fid1 = fopen('t1.rawb', 'r'); 
c1 = fread(fid1,'uint8'); 
fclose(fid1); 
  
fid2 = fopen('t2.rawb', 'r'); 
c2 = fread(fid2,'uint8'); 
fclose(fid2); 
  
fid3 = fopen('pd.rawb', 'r'); 
c3 = fread(fid3,'uint8'); 
fclose(fid3); 
  
fid4 = fopen('hedef.rawb', 'r'); 
c4 = fread(fid4,'uint8'); 
fclose(fid4); 
  
A1=reshape(c1,181,217,181); 
A2=reshape(c2,181,217,181); 
A3=reshape(c3,181,217,181); 
A4=reshape(c4,181,217,181); 
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K=100; 
  
  
cc1=A1(:,:,K); 
  
cc2=A2(:,:,K); 
  
cc3=A3(:,:,K); 
  
cc4=A4(:,:,K); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
b=zeros(size(cc4)); 
  
b(find(cc4>=80))=255; %test image 
b(find(cc4<80))=0; 
  
%figure,imagesc(b),colormap(gray),title('target image'); 
  
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
[m,n]=size(cc1); 
  
  
  
  
  
cc1(find(cc1<25))=0; 
cc2(find(cc2<25))=0; 
cc3(find(cc3<25))=0; 
cc4(find(cc4<25))=0; 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
  
  
  
s11=reshape(double(cc1),1,m*n); 
s22=reshape(double(cc2),1,m*n); 
s33=reshape(double(cc3),1,m*n); 
s44=reshape(double(cc4),1,m*n); 
  
  
  
  
s=zeros(3,m*n); 
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s(1,:)=s11; 
s(2,:)=s22; 
s(3,:)=s33; 
  
  
  
  
  
  
  
inp=s; 
  
out=s44; 
tic 
network=newff(minmax(inp),[16,1],{'tansig','purelin'}); 
network=init(network); 
  
network.trainParam.epochs = 400; 
network=train(network,inp,out); 
toc 
 
y=sim(network,inp); 
  
% Layer1_Weights=network.iw{1}; 
% Layer1_Bias=network.b{1}; 
% Layer2_Weights=network.lw{2}; 
% Layer2_Bias=network.b{2}; 
save Layer1_Weights ; 
save Layer1_Bias; 
save Layer2_Weights; 
save Layer2_Bias; 
Actual_Desired=[y' out']; 
Actual_Desired; 
  
% 
  
  
  
  
  
[k,l]=size(y); 
  
  
  
  
%%%% find region 
  
  
  
 
im=[]; 
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ics=[]; 
  
    im=reshape(y(1,:),m,n); 
    im=im-min(min(im)); 
    im=im*(255/max(max(im))); 
    ics(:,:)=im; 
     
result=ics(:,:,j(1)); 
result=round(result); 
  
a=[0:255]/256; 
aa=[a' a' a']; 
  
 figure(1), 
 subplot(121),imagesc(result),colormap(gray),title('(a)result ann trained and simulated image'); 
 subplot(122),imhist(result,aa),title('(b)histogram') 
  
 %save result 
  
  
result1=zeros(size(result)); 
result1(find(result>=175))=255; 
result1(find(result<175))=0; 
  
figure(2), 
imagesc(result1),colormap(gray); 
  
%save result1 
  
figure(3),imagesc(b),colormap(gray),title('orjinal'); 
figure(4),imagesc(result1),colormap(gray),title('ann simulated'); 
  
% Layer1_Weights=network.iw{1}; 
% Layer1_Bias=network.b{1}; 
% save Layer1_Bias 
% Layer2_Weights=network.lw{2}; 
% Layer2_Bias=network.b{2}; 
% save Layer2_Bias 
% Layer1_Weights; 
% save Layer1_Weights 
% Layer1_Bias; 
% save Layer2_Weights 
% Layer2_Weights; 
% Layer2_Bias; 
% Actual_Desired=[y' out']; 
% Actual_Desired; 
% save Actual_Desired 
  
  
  
 testim=zeros(m,n); 
  
  
for i=1:m; 
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    for j=1:n; 
        if b(i,j)==result1(i,j); 
            testim(i,j)=0; 
            else testim(i,j)=255; 
        end 
         
    end 
end 
  
figure(6), imagesc(b),colormap(gray), title('target'); 
figure(7), imagesc(result1),colormap(gray), title('result'); 
 
figure(8), imagesc(testim),colormap(gray), title('difference between real target and result'); 
  
%calculate error 
ms=length(find(b==255))%target pixel number 
tp=length(find((b==255)&(result2==255)))  
% h %true pixel number of the result image 
w1=ms-tp %false negative pixels 
ts=length(find(testim==255)) 
  
rs=length(find(result2==255)) 
w2=rs-tp %false positive pixels 
  
  
%percent of true pixels 
tt=(tp/ms)*100 
  
%%%%%%%%%%%%%%%%%%%%% 
%%%%calculation of RMSE 
%%%%%%%%%%%%%%%%%%%% 
  
rmse=sqrt(tp/ms) 
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