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ABSTRACT

Digital signal processing is a rapidly evolving field with growth in science and
engineering. As a result of these developments, we are using more and more digital data in

our work and daily life.

However, the large amount of data usually prevents us from using digital processing
equipment effectively. Moreover, with”the increase in the number of such equipment

around, noise reduction is becoming more important.

In this thesis these two main fields of digital signal processing , signal compression and
filtering, are studied. In chapter two, lossy compression schemes are explained. In chapter
three and four, filtering of one and two dimensional signals are given respectively. Chapter
four covers a new type of compression method that can also be used as a filter and that
solves the problem of filtering broadband deterministic signals. A compression between
this last method called the “Occam Filter” and the others is madé. The results show that

Occam filter outperforms the other methods especially when medical data is in question.
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OZET

Saylsal Isaret Isleme fen ve miihendislik bilimlerindeki ilerlemete paralel ‘olarak
gelismektedir. Bu gelismelerin sonucu olarak da hayatimizin bircok alaninda daha ¢ok

sayisal data iglemleri girmisgtir.

Fakat, sayisal data miktarinin biyiiklagli, sayisal cihazlarn etkin kullammim
engellemektedir. Dahasi, etraftaki elektronik cihazlarin g¢oklugu elektronik giiriiltiiyii
arttirmistir.

Bu tezde, sinyal islemenin iki ana konusu olan ve yukarida belirtilen problemleri
¢ozmeye caligan sinyal sikistirma ve filtreleme incelenmigtir. Ikinci konuda kayiph
sikistirma teknikleri, {iglinci ve dordiincii konuda sirasiyla bir ve iki boyutlu filtreleme
teknikleri, besinci konuda sikistirarak filtreleme yapan yeni bir teknik olan Occam filtre
anlatilmigtir. Altinct konuda ise klasik sikigtirma ve filtreleme yontemleri ile Occam
filtreleme deneysel olarak karsilagtirilmigtir. Sonugta, 6zellikle tek boyutta, Occam filtrenin

diger yéntemlerden daha iyi oldugu anlagilmugtir.



CONTENTS
page
Contents | vV
List of Figures | ? IX
List of Tables X

Chapter One

INTRODUCTION
Chapter two
SIGNAL COMPRESSION

2.1 Introduction 3
2.2 Fundamentals 3
2.2.1 Measuring Information 3
2.2.2 Data Redundancy 5
2.2.2.1 Coding Redundancy 6
2.2.2.2 Interpixel Redundancy 7
2.2.2.3 Psychovisual Redundancy 8
2.2.3 Fidelity Criteria 9
2.3 Signal Compression Frame Work 10
2.4 Run Length Coding 12
2.5 Transform Coding 12
2.5.1 General Transform Description 13

2.5.2 KLT

—
(%



2.5.3 DCT
2.5.4 DFT
2.5.5 Choosing the Right Transform
2.5.6 Block Size Selection
2.5.7 Bit Allocation
2.5.7.1 Zonal Coding
2.5.7.1 Threshold Coding
2.6 Vector Quantization
2.6.1 Training
2.6.2 Quantization
2.6.2.1 First Method
2.6.2.2 Second Method

Chapter Three

ONE DIMENTIONAL SIGNAL FILTERING

3.1 introduction
3.2 FIR Filter Specifications
3.2.1 FIR Design
3.2.2 Windows
3.2.3 Filter Transformations
3.3 Design of Recursive Filters
3.3.1 Analog Filter Design
3.3.1.1 Butterworth Filter
3.3.1.2 Chebyshev Filter
3.3.1.3 Bessel Filter
3.3.1.4 Frequency transformations

3.3.1.5 s-z Domain Transformations

3.3.1.5.1 The Impulse Invariant Method
3.3.1.5.2 Modified Impulse Invariant Method
3.3.1.5.3 Matched z Transform Method

VI

15
16
16
18
18
18
19
19
20
21
21
21

23
23
25
27
29
30
30
30
34
40
45
47
47
49
50



Chapter Four
TWO DIMENTIONAL SIGNAL FILTERING

4.1 Introduction
4.2 Background
4.2.1 Spatial Domain Methods
4.2.2 Frequency Domain Methods
4.3 Spatial Filtering
4.3.1 Smoothing Filters
4.3.1.1 Lowpass Filtering
4.3.1.2 Median Filtering
4.3.2 Sharpening Filters
4.3.2.1 Basic Highpass Spatial Filtering
4.3.2.2 Highboost Filtering
' 4.3.2.3 Derivative Filters
4.4 Filtering in the Frequency Domain
4.4.1 Lowpeass Filtering
4.4.2 Highpass Filtering

Chapter Five
OCCAM FILTERS
5.1 Introduction
5.2 Noise Strength
5.3 Description of the Algorithm
Chapter Six
APPLICATIONS

6.1 Introduction

vl

51
51
51
53
55
57
57
58
58
58
59
60
62
62
64

66
67
71

72



VI

6.2 Experiments for Filters 73
6.3 Experiments for Compression 73
6.4 Results of the Filter Experiments ' 73
6.5 Comparison of the Filter Types 75
6.6 Results of the Compression Experiments 88
6.7 Comparison of the Compression Types 98
6.8 Image Filtering with Occam Filters 98
6.9 Image Experiments and Results 100

Chapter Seven

CONCLUSION

References 103



IX

LIST OF TABLE

page

Table 2.1 Variable-Length Coding Example 7



Figure 2.1
Figure 2.2

Figure 2.3

Figuré 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9

Figure 3.10
Figure 3.11

LIST OF FIGURES

General compression Scheme
A Transform Coding System:
(a) encoder
(b) decoder
The Periodicity implicit in the 1-D:
(a) DFT
(b) DCT
Digital Filter Specifications a)L.P b)HP ¢)BP d)BS
Ideal Lowpass Filter Response '
The Impulse Response of an Ideal (Zero Phase Shift) LP Filter
The Impulse Response of an Approximating Filter
Ideal and Approximate Frequency Responses
Loss of LP normalized Butterworth Approximations
Roots of Third Order Butterworth
The Equiripple Passband Characteristic
Plots of
a) Third Order Chebyshev Function
b) Fourth Order Chebyshev Function
¢) Third Order Chebyshev Approximation
d) Fourth Order Chebyshev Approximation
Locus of Roots of Chebyshev Approximation |
Characteristics of a Fourth Order Chebyshev (A,,=0.5 dB):
a) Loss
b) Delay
c) Step Input
d) Step Response

10
13

17

24
25
26
27
27
32
34
35
39

39
40

page



Figure 3.12

Figure 3.13
Figure 3.14
Figure 3.15

Figure 3.16
Figure 3.17
Figure 3.18

Figure 4.1

Figure 4.2
Figure 4.3

Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9

- Figure 4.10

Figure 4.11

Characteristics of a Fourth Order Butterworth (A,

14X

=3 dB);
a) Loss

b) Delay

¢) Step Input

d) Step Response

Loss of LP Bessel Approximations

Delay of LP Bessel Approximations

Characteristics of a Fourth Order Bessel Approximation (A,,,=3 dB);
a) Loss

b) Delay

c¢) Step Input

d) Step Response
Block Diagram of the Frequency Transformation Procedure
A typical Band-pass Function

A typical Band-reject Function

A3 x 3 Neighborhood about a Point (x, y) in an Image

Gray-level Transformation Functions for Contrast Enhancement
Top:Cross-Sections of Basic Shapes for Circularly Symmetric Frequency
Domain Filters.Bottom: Cross-Section of Corresponding Spatial Domain
Filters.

A 3x3 Mask with Arbitrary Coefficients (Weights)

A Basic Highpass Spatial Filter

Mask Used for High-Boost Spatial Filtering

A 3x3 Region of an Image and Various Masks Used to Compute the
Derivative at Point Labeled Zs

a)Perspective Plot of an Ideal Lowpass Filter Transfer Function

b) Filter Cross-Section

a) A Butterworth Lowpass Filter

b) Radial Cross-Section for n=1

Perspective Plot and Radial Cross-Section of Ideél Highpass Filter
Perspective |

Plot and Radial Cross-Section of Butterworth Highpass Filter for n=1

X1

41

43
44
44

45
46
47

52

53
56

57

58

60

61

63

64

64

65



Figure 5.1
Figure 5.2
Figure 5.3
Figure 6.1

Figure 6.2
Figure 6.3

Figure 6.4

Figure 6.5

Figure 6.6

Figure 6.7

Figure 6.8

Figure 6.9

[Mlustrative Plot of Compressed Size Versus Allowed Loss for the Noise
Sequence

[ustrative Plot of Compressed Size Versus Allowed Loss for the Noise-
Free Sequence

ustrative Plot of Compressed Size Versus Allowed Loss for the Noisy
Sequence with Second Derivative Plot :
a) Frequency Response of Noise

b) Frequency Response of No‘isy Sequence

a) Plot of Noise-Free Sequence

b) Noisy Sequence

c¢) Lowpass Filtered Sequence ( n=300,Wn=0.2)

a) Lowpass Filtered Sequence ( n=300,Wn=0.7)

b) Lowpass Filtered Sequence ( n=2,Wn=0.2)

¢) Lowpass Filtered Sequence ( n=2,Wn=0.7)

a) Butterworh Filter Magnitude Response

b) Phase Response

Results of Butterworth Filters

a) Rp=0.1dB

b) Rp=1dB

c) Rp=10dB

a) Chebyshev Filter Magnitude Response

b) Phase Response

Resulfs of Chebyshev Filters

a) A= 0.1dB, Rp=0.5dB

b) A= 1dB, Rp=0.5dB

c) A= 10dB, Rp=0.5dB

Results of Chebyshev Filters

a) A= 0.1dB, Rp=0.1dB

b) A= 1dB, Rp=0.1dB

c) A=10dB, Rp=0.1dB

a) Bessel Filter Magnitude Response

b) Phase Response

XII

68

69

70

76

77

78

79

80

81

82

83

84



Figure 6.10

Figure 6.11

Figure 6.12

Figure 6.13
Figure 6.14

Figure 6.15

Figure 6.16

Figure 6.17
Figure 6.18

Figure 6.19

Figure 6.20

Results of Bessel Filters

a) n=2, Wn=0.05dB

b) n=2, Wn=0.1dB

¢)n=2, Wn=0.2dB

a) Plot of Compressed Size Versus Allowed Loss

b) Second Derivative

a) Original Noise-Free Signal

b)Wiener Filtered Sequence

¢) Occam Filtered Sequence

ECG Signal

a) Decompressed Sequence After it is Compressed by Vector
Quantization

b) Decompressed Sequence After it is Compressed by DCT
¢) Decompressed Sequence After it is Compressed by Run Length
Coding

a) Plot of the Compressed Size versus Allowed Loss €

b) Second Derivative

Results of Occam Compressed Sequences

a)e=0.15

b) £ =0.34

c)e=0.8

EMG Signal

a) Decompressed Sequence After it is Compressed by Vector
Quantization

b) Decompressed Sequence After it is Compressed by DCT
c) Decompressed Sequence After it is Compressed by Run Length
Coding |

a) Plot of the Compressed Size versus Allowed Loés €

b) Second Derivative

Results of Occam Compressed Sequences

a) € =500

b)e=1112

XIII

85

86

87

89

90

91

92

94
95

96

97



Figure 6.21

c) € =1500

a) Original Image

b) Noisy Image

¢) Lowpassed Filtered Image
d) Occam Filtered Image

¢) Median Filtered Image

f) f domain Filtered Image

X1V

101



CHAPTER ONE
INTRODUCTION

The developments in electronic technology eased data processing. However, it seems

the more the technology develops, the more data there is to process.

For example, the growth in medical electronics and space technology brought with it a
large number of data collected by instruments. The number of data is far more than that
could be stored and moreover, during the transmission and collection of data, noise causes

problem.

Compression and filtering are two branches of signal processing that deal with these

problems.

To understand compression, clear distinction .must be made between data and
information. Data is the means by which information is carried. The aim of compression is
to find the minimum amount of data that can carry the same amount of information. The

redundancy of data that the compression tries to ignore is grouped as:

1. coding redundancy,
2. intersample redundancy,

3. psychovisual redundancy.

To ignore the redundant data, lossy and lossless compression schemes are used. In
lossless compression no information is lost at the end of the compression and in lossy
compression some information is lost. Consequently, lossy schemes compress more than

the lossless ones.

Digital filters are also grouped into two. The first group is the FIR (Finite Impulse
Response) filters. FIR filters are designed by first finding the appropriate frequency



response and then by inverse Fourier transforming this to impulse response coefficients.
The second group is the digital filters found by applying s- to: z-transforms to existing
analog filters. Both of these groups have highpass, lowpass, bandpass and band reject types
defined according to the frequency ranges they modify.

Two dimensional filtering is a branch of picture enhancement. The approaches to
enhancement fall into two broad categories as the spatial domain and frequency domain
methods. In spatial domain methods a direct manipulation is done to the pixel values
themselves, whereas in the frequency domain methods, the Fourier Transform of a picture

1s modified.

Recently a new type of filter-compression “Occam Filter” is developed. The essence of
its algorithm is to compress the signal with a loss tolerance that is equal to the noise
strength, because a loss value that is equal to the noise strength cancels the noise. Hence,
the output compressed signal is also a filtered signal. Occam filters can be applied to higher

dimensions as well.

In this thesis, the subjects mentioned above are studied in the second, third, fourth and
fifth chapters. In the sixth chapter the results of the traditional filtering and compression
techniques are compared with the new Occam filter and it is shown that, especially in one

dimension, Occam filter outperforms the others.



CHAPTER TWO
SIGNAL COMPRESSION

2.1 Introduction

The demand for handling signals in digital form has increased dramatically in recent
years with the exponential growth in computing power over the past decade. Especially in
communications and in some branches of medicine storage of signals is very important.
However, the large number of bits required to represent the signals prevents the efficient

use of today’s computer technology.

Hence signal compression tries to solve this problem of reducing the amount of data
required to represent signals. Fortunately digital signals, in their canonical representation,
generally contain a significant amount of redundancy. Signal compression, which is the
art/science of efficient coding of data, aims to take advantage‘of this redundancy to reduce
the number of bits required to represent a signal. From the mathematical point of view ,

this amounts to transforming a sample array into statistically uncorrelated data set.
2.2 Fundamentals

As we have mentioned above, the term data compression refers to the process of
reducing the amount of data required to represent a given quantity of information. To do
this, a clear distinction must be made between data and information. They are not
synonymous. Infact data are the means by which information is conveyed.

2.2.1 Measuring Information

The fundamental premise of information theory is that the generation of information can

be modelled as a probabilistic process that can be measured in a manner that agrees with



intuition. In accordance with this supposition, a random event E that occurs with

probability P(E) is said to contain

1
I(E) = log, ?(—]5 =~log, P(E) r-array units of information. 2.1)

where I(E) is usually called the self information of E. Note that communicating that E has
not occurred conveys more information, because this outcome is less likely on the other
hand if P(E)=1, then I(E)=0 and no information is attributed to it. That is, because no
uncertainty is associated with the event, no information would be transferred by

communicating that the event has occurred.

Let’s say a source has J samples g, (j=1,...,J) with probabilities P(a)). If k source samples
are generated ( the law of large numbers stipulates that, for sufficiently large value of k,
sample a; will -on average- be output kP(a) times), the average self information obtained

from k output is

- kP(al )log P(al ) - kP(a2 ) log P(a2 )—...~1(P(aJ ) log P(aJ )

]

—ki Pa,)logP(a; ) : 2.2)

The average information per source output is H(z)

H(z) = —JéP(a JlogP(a;) 2.3)

and is called the uncertainty or the entropy of the source. It defines the average amount of

information (in r-array units/sample) obtained by observing a single source output.

If the source samples are equally probable, the entropy or uncertainty of Equation 2.3 is
maximised, then the source provides the greatest possible average information per source

sample.



2.2.2 Data Redundancy

If two individuals use a different number of words to tell the same basic story, two
different versions of the story are created, and at least one includes nonessential data. That
is, it contains data (or words) that either provide no relevant information or simply restate

that which is already known. It is thus said to contain data redundancy.

If n, and n, are taken as the number of information carrying units in the two data sets

represents the same information , relative data redundancy R, of the first data set is

1 ' |
Rp=1-— : 2.4
D CR ( )

where C, is the compression ratio

C nl
R ™ n,

(2.5)

Here, if
1) n, =n;then Cx =1 , Rp=0
which means,(relative to the second data set) the first representation of the information
contains no redundant data.
if) ny <<ny,then Cp > , Rp—1
which indicates that there is highly redundant data in the first representation relative to the
second date.
iil) ny >>ny,then Cg -0 , Rp—>—o0
which implies that second data set contains much more data than the original

representation.

For example (10:1) compression ratio means that the first data set contains 10
information carrying units (say bits ) for every 1 unit in the second or compressed data set.
In digital signal sequence compression, there are three basic data redundancies that can be

identified and explained. Namely,



1. coding redundancy,
2. intersample redundancy,

3. psychovisual redundancy.

2.2.2.1 Coding Redundancy

If r,is a value level in a signal sequence, than the probability that each r, occurs is
Pr(rk):"‘n_ k=0,1---,L-1 (2.6)

where
L: number of sample types.

n, :the number of times the k" value level occurs

n: signal sequence length (number of samples)

Taking L(r, ) as the number of bifs used to represent each value 1, we can find the

average number of bits required to represent each sample as
L-1

Lavg = Izoﬁ(fk) Py (1) @.7)
K=

[f the value levels of-a signal sequence are coded in a way that uses more code samples
than absolutely necessary to represent each value level, that is if the code fails to minimise

Equation2.7 the resulting signal sequence is said to contain coding redundancy.

In most signal sequences, certain value levels are more probable than the others. A
natural binary coding of these levels assigﬁs the same number of bits to both the most and
least probable values, thus failing to minimise Equation 2.7. However, if fewér bits to the
more probable value levels are assigned than the less probable areas, thenthis type

(Equation 2.4 type) of data compression is called variable code length.



As an example consider the 8-level signal sequence distribution shown in Table 2.1.

Table 2.1 Variable-Length Coding Example

e p.(re) Code 1 L(r) Code 2 L(r)

r, = 0.19 000 3 1o 2
ro=1/7 0.25 001 3 C 01 2
r, = 217 0.21 010 3 10 2
ry = 317 0.16 011 3 001 3
r, = 4f7 0.08 100 3 0001 4
ry = 57 0.06 101 3 00001 5
ry = 6/7 0.03 110 3 000001 6

3 000000 6

=1 .02 11t

L., for the first type of coding is 3 while for the second type of coding it is 2.7 bits.

7
Lovg = Z Ez(rk)'pr(rk)
& k=0

= 2(0.19) +2(025) +2(021) + 3(016) + 4(0.08) + 5(0.06) + 6(0.03) + 6(0.02)
= 2.7 bits

Thus, we can say that the first coded signal sequence contains coding redundancy and

the exact level of redundancy can be calculated from Equation 2.4

1
=1——=0.099
Rp 111 ?

2.2.2.2 Intersample Redundancy

This is another form of data redundancy -one directly related to the intersample
correlation within a signal sequence. Because the value of given sample can be reasonably
predicted from the value of its neighbours, the information carried by individual samples is
relatively small and much of the visual contribution of a single sample to a signal sequence

is redundant, because it could have been guessed on the basis of its neighbour’s values.



In order to reduce the intersample redundancies in a signal sequence, sample array must
be transformed into more efficient (but not visual) format. For example, the differences
between adjacent samplés can be used to represent a signal sequence. Transformations of

this type are referred to as Mappings.

Run Length coding is an example of a mapping where the samples are mapped to
sequence of pairs (g, 1)), (g, 1,), ... in which g denotes the i" value level encountered

along the line and r; the Run Length of i" run."

Given below a sequence. Four value levels 0 and 1 are used.
[ 00, 00, 01, 01, 01, 11, 10, 10, 10, 11, 11]
the signal sequence is mapped to pairs (00, 2), (01, 3), (11, 1), 10, 3), (11, 2). These pairs

of course can be further compressed.
2.2.2.3 Psychovisual Redundancy

Sometimes the eye does not respond with equal sensivity to all visual information.
Certain information simply has less relative importance than other information in normal
processing. This information is said to be psychovisually redundant. It can be eliminated

without significantly impairing the quality of signal sequence perception.

Psychovisual redundancy is fundamentally different from the redundancies discussed
earlier. Unlike coding and intersample redundancy, psychovisual redundancy is associated
with real or quantiﬁabie visual information. Its elimination is possible only because of the
information itself is not essential for normal visual processing. Since the elimination of
psychovisual redundant data results in a loss of quantitative information, it is commonly
referred to as quantization. This terminology is consistent with normal usage of the word,
which generally means the mapping of a broad range of input values to a limited number
of output values. As it is irreversible operation (visual information is lost), quantization

results in lossy data compression.



2.2.3 Fidelity Criteria

The criteria used in signal processing for defining the better signal is called the Fidelity

Criteria which has two general classes as:

1. Objective fidelity criteria
2. Subjective fidelity criteria

When the level of information loss can be expressed as a function of the original or
input signal sequence and the compressed and subsequently decompressed output signal
sequence ,it is said to be based on objective fidelity criterion a good example is the root-

mean-square.

e(x) = £(x) - f(x) (2.8)
total error:

N-1

Z:: [£) - £(9)] 2.9)

X

z

[+ =

—;7 HOE f(X)]% (2.10)

[
L=

!

Another, closely related objective fidelity criterion is the mean square signal to noise

ratio of the compressed-decompressed signal sequence

N-1
2 fx)’
SNR, = == (2.11)

N-1

> [E@ - )]

x=0

Although objective fidelity criteria offer a simple and convenient mechanism for

evaluating information loss, if decompressed signal sequences ultimately are viewed by
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Although objective fidelity criteria offer a simple and convenient mechanism for
evaluating information loss, if decompressed signal sequences ultimately are viewed by
humanbeings, measuring signal quality by the subjective evaluations of a human observer
often is more appropriate. This can be accomplished by showing a “typical” decompressed
s1gna1 sequence to an appropriate cross section of viewers and averaging their evaluations.

The evaluatlons may be made using an absolute rating scale or by means of side-by-side
comparisons of f(x) and f(x). In either case, the evaluations are said to be based on

subjective fidelity criteria
2.3 Signal Compression Frame Work

Until now some techniques that are used to compress or réduce the amount of data
required to represent a signal sequence are explained. Generally speaking compression
techniques are classified into two as lossy or lossless compression. In lossless compression,
the reconstructed signal sequence is numerically identical to the original signal sequence
on a sample by sample basis. In the lossy compression, some of the information of the
original signal sequence is lost during compression, consequently lossy compression has a
higher compression ratio as compared to lossy schemes. A general compression scheme is

illustrated in Figure 2.1.

Original signal sequence data

|

Decomposition or
Transformation

|

Quantization

|

Sample Encoding

!

Compressed Signal sequence Data

Figure 2.1 General Compression Scheme
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The signal sequence decomposition or transformation is performed to reduce the
dynamic range of signal, to eliminate redundant information, or in general to provide a
representation that can be coded more efficiently. This stage is common for lossless and

lossy techniques. A reversible operation can be performed on the original signal sequence.

The primary difference between lossy and lossless schemes is inclusion of the next
stage, namely quantization in lossy techniques. By quantising the data, the number of
poséible output samples is reduced. The type and degree of quantization has a large impact
on the bit rate and quality of lossy scheme. It is also desirable to perform the quantization
in such a way that the resulting output sequence can be subsequently encoded efficiently.
The sample encoding process might include techniques such as Huffman coding or
arithmetic coding as a means of achieving rates close to entropy of the quantised sample

source.

Since our main purpose is to use compression techniques for filtering random noise, we

will concentrate on lossy compression techniques.

In general, any of the components of a lossy scheme may be implemented in an
adaptive or nonadaptive mode. A compression scheme is adaptive, if the structure of a
component or its parameters changes locally within a signal sequence to take advantage of
variations in local statistics. Adaptivety offers the potential for improved performance in
exchange for an increase in complexity. The adaptivity can be achieved either in a casual or

a noncasual fashion.

In systems with casual adaptivity, the coder parameters are based only on the previously
reconstructed sample values and any process leading to a decision at the encoder is
duplicated at the decoder. These systems have the advantage of requiring no overhead
information. Unfortunately there are two disadvantages associated with such system. First,
the encoder may fail to adopt to abrupt changes in input statistics that can not be inferred
from previously reconstructed values. Second, casual adaptivity usually increases the
complexity of the encoder and the decoder by the same amount since the decoder must

duplicate the decision making process of the encoder.
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not available at the decoder, the encoder must send additional bits to the decoder to inform
it of émy adaptations. Although this results in a higher bit rate, it also increases the overall
systefn performance. Moreover, the increase in the decoder complexity due to adaptation
minimal since the decoder does not need to repeat the adaptation selection process at the

encoder.
In the following sections different approaches to compression are explained.
2.4 Run Length Coding

An effective coding type to represent each row of a signal sequence or bit plane by a
sequence of lengths that describe successive runs of sample values is Run Length coding.

Since a coding is done compression is achieved.

Although Run Length coding is in itself an effective method of compressing a signal
sequence, additional compression can be realised by variable-length coding the Run

Lengths themselves. Run Length coding is done as follows:

1. The first sample value is taken as the reference value (Vo) and a counter C is
initialised.

2. A threshold value t is predefined.

3. While V-t <nextsample value <V ;+1t, the counter C is increased by one.

4. When a sample value does not satisfy the inequality of step three, V. and the C are
kept as the first pair and that new sample value is defined as the new V.

5. C s initialised.

6. Steps 3, 4 and 5 are repeated until all the samples are done.
2.5 Transform Coding

Another type of compression technique is the transform coding which is based on
modifying the transform of a signal sequence. In transform coding, by using a reversible,
linear transform (such as DCT, FT ) the signal sequence is mapped onto a set of transform

coefficients, which are then quantised and coded. A significant number of coefficients in
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coefficients, which are then quantised and coded. A significant number of coefficients in

most natural signal sequences have small magnitudes

quantized or even discarded entirely with little signal sequence distortion.

therefore they can be coarsely

Input C(]mstruct ‘Forward Quanti Symbol Compressed
S > e Xn . R b4 Quantizer
Sequence \”‘ Fransform r’* Encoder r‘_’“ Sequence
Blocks
(a)
. ) Meérge »
Compressed—p | Symbol Inversie g Decompressed
Sequence Decoder Transform Blocks Sequence
{b)

Figure 2.2 A Transform Coding System: (a) encoder; (b) decoder

In Figure 2.2 a typical transform coding system is shown. An input signal sequence is

first divided into 1xn blocks. Next, the transform of each block is taken to form the block

transform arrays. Then the coefficients which have small magnitudes are eliminated or

coarsely quantized by the quantizer. As the last step, the output of the quantizer is coded

adaptively as explained in section 2.3. To get the decompressed signal sequence from the

compressed one, the inverse transform of the block is taken after it is decoded and they are

merged to form the whole signal sequence.

One thing to notice here is that the compression is achieved during the quantization not

transformation!

2.5.1 General Transform Description

An nxn signal sequence f(x) can be expressed as a function of its 1D transform T(u)

n-1

f(x) = Y, T(u) h(x,u)

u=0

x=0,1,...,n-1

(2.12)
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H, =[h©, v, - h(‘h-l,u)]

F which is an 1xn matrix containing the samples of f(x) can be defined as a linear
combination of H, matrices which are the basis signal sequences of the transform used to

compute he series expansion weighting coefficients T(u)

F= nz—:T(u)Hu (2.13)

u=0

A masking function is formed to eliminate the coefficients which satisfy a truncating

function, (which make the smallest contribgtﬁiﬁgg}gﬂthg Ms__iﬂggglﬂs_gqungg), '

F= njiT(u)m(u)Hv (2.14)

{0 if T(u) satisfies a specified truncating criterion.
m(u) =

1 otherwise (2.15)
The mean square error between block F and its approximation F i,
( n-1 n-1 2
= B3|l 2 T(wH, - X, T(Wm(WH, 2.16)
u=0 u=0
( n-1 2 |
= E1 T(wH,[1 - m(u)] (2.17)
.L u=0
n-1
=2, ohwll-mw] (2.18)
u=0

where “F - 13" is the matrix norm of (F-F) and 0% (u) 18 the variance of the coefficient

at transform location (u). The final simplification is based on the orthonormal nature of the
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where ”F - f*‘“ is the matrix norm of (F—F) and o ?[.( .y 18 the variance of the coefficient

at transform location (u). The final simplification is based on the orthonormal nature of the
basis signal sequences and the assumption that the samples of F are generated by a random
process with zero mean and known covariance. The total mean square approximation
error thus is the sum of the variances of the discarded transform coefficients (that is, the
coefficients for which m(u)=0, so that [1-m(u)] in Equation 2.18 is 1) transformations that
redistribute or pack the most information into the fewest coefficients provide the best
block approximations and consequently the smallest reconstruction errors. Finally, under
the assumptions that led to Equation 2.18, the mean square error of the blocks of an NxN
signal sequence are identical. Thus the mean square error (being measure of average error)

of the signal sequence equals the mean square error of a single block.
2.5.2 Karhunen - Loéve (KLT) Transform

The KLT Transform of a signal sequence is found by the following steps,

—

. A 1xN signal sequence matrix is divided into 1xn blocks of sequeﬁces.
2. The autocorrelatibn matrix of the whole signal sequence C is calculated
3. The eigen values of the C are found by ‘
IC-1Al=0
4. The eigenvectors are computed
c-8; =A;-9;
5. hand & are put in descending order
6. Transform vector is performed by
D = [5 " .5mx]
7. Transform is done by
v, = Ox;
1. By keeping only the fist j elements of v, (masking the rest) a compression of J/n® is
achieved

Vi=[V, V, -V, 00 - 00 0



16

2.5.3 Discrete Cosine Transform (DCT)

The one dimensional DCT for an 1xN signal sequence f{(x) is

C(u):z—Zf(x)cos{@%Bﬁ} (2.19)

x=0 .

u=0,12,--.N~-1

and the inverse discrete cosine transform is

N-I
£(x) = —T%Zoc(u)C(u) cos {(—23(—;%93 } (2.20)
u=0

x=0,12,--- N-1

where

1
a(u) =12 e’ (2.21)
1 for u=12,--N-1

2.5.4 Discrete Fourier Transform (DFT)

The one dimensional DFT pair is:

F(u) = 2 f(x)- exp[f jZn(%ﬂ u=0,1,---,N-1 (2.22)
1 & ) ux
f(x) = —ﬁ}: F(u)- exp{ Jzn(ﬁ—ﬂ x=0,1,--,N—1 ' (2.23)

2.5. Choosing the Right Transform

Transform coding systems based on KLT, DCT, DFT or Walsh-Hadamard (WHT) and

various other transforms have been studied extensively. To choose which one of the
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Although for most natural signal sequences DCT is better then WHT or KLT in
information packing ability, the mean square error described by the Equation2.10 is
minimized by KLT for any input signal sequence or retained coefficient. However because
KLT is data dependent, calculating the signal sequence basis for, each signal sequence. is a
nontrivial task, therefore sinusoidal transforms such as DFT or DCT which have_fixed
signal sequence base sets are preferred. Infect nonsinusoidal transforms such as WHT or
Haar transform are easier to apply, but sinusoidal transforms show a closer performance to

the information packing ability of optimal KLT.

When DFT of a signal sequence is taken, a block like appearance forms on the signal
sequence which is called the “blocking artefact” which results when the boundaries
between the block sequences become visible. This is because of the Gibbs phenomenon.
This phenomenon occurs because of the FT fails to converge uniformly at discontinuities,
Fourier expansions take on the mean values. That is, at the boundaries of the block
sequences discontinuities are formed and at these boundaries, the blocks take on the mean

value of the boundaries.

Boundary
Points

(b

Figure 2.3 The Periodicity Implicit in the 1-D (a) DFT and (b) DCT

As shown in Figure 2.3 DCT minimizes this blocking artefact. Moreover, for most
natural signal sequences DCT packs the most information into the fewest coefficients. The
KLT basis signal sequences of a first order Markov signal sequence source closely

resemble the DCT’s basis signal sequences (Ahmet [1974] ) as the correlation between
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KLT basis signal sequences of a first order Markov signal sequence source closely
resemble the DCT’s basis signal sequences (Ahmet [1974] ) as the correlation between
adjacent samples approaches one, the input independent XKLT basis signal sequences
become identical to the input independent DCT basis signal sequences, (Clarke [1985]). In
addition to these properties, DCT has the advantage of being implemented in a single

integrated circuit.

As a result, DCT provides a good compromise between information packing ability and
computational complexity and reduces the blocking artefact. Therefore it is proved be a
such practical value that it has become the international standard for transform coding

systems.
2.5.6 Block Size Seléction

Another significant factor affecting transform coding error and computational
complexity is block size. In most applications, signal sequences are subdivided so that the
correlation (redundancy) between adjacent block is reduced to some acceptable level and
so that n is an integer power of 2 where, as before, n is the block dimension. The latter
condition simplifies the computation of the block transforms. In general, both the level of
compression and computational complexity increase as the block size increases. The most

popular block size are 1x8 and 1x16.
2.5.7 Bit Allocation

The reconstruction error associated with the truncated series expansion of Equation 2.14
is a function of the number and relative importance of the transform coefficients that are
discarded, as well as the precision that is used to represent the retained coefficients. In most
transf(‘)rm coding systems, the retained coefficients are selected on the basis of maximum
variance, called zonal coding, or on the basis of maximum magnitude, called threshold
coding. The overall process of truncating, quantizing, and coding the coefficients of a

transformed block is commonly called bit allocation.
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2.5.7.1 Zonal Coding

Zonal coding is based on the information theory concept of viewing information as
uncertainty. Therefore the transform coefficients of maximum variance carry the most
picture information and should be retained in the coding process. The variances themselves
can be calculated directly from the ensemble of transformed block arrays or based on an
assumed signal sequence model (say, a Markov autocorrelation function). In either case the
zonal sampling process can be viewed, ir} accordance wifh Equﬁtion 2.14, as multiplying
each T(u) by the corresponding element in a zonal mask, which is constructed by placing a
1 in the locations of maximum variance and a 0 in all other locations. Coefficients of
maximum variance usually are located around the origin of a signal sequence transform,

resulting in the typical zonal mask .
2.5.7.2 Threshold Coding

Zonal coding usually is implemented by using a single fixed mask for all blocks.
Threshold coding, however, is inherently, adaptive in the sense that the location of the
transform coefficients retained for each block vary from one signal sequence to another.
Infect, threshold coding is the adoptive transform coding approach most often used in
practice because of its computational simplicity. The underlying concept is that, for any
block, the transform coefficients of largest magnitude make the most significant
contribution to reconstructed block quality. Because the locations of the maximum
coefficients vary from one block to another, the elements of T(u)m(u) normally are

reordered (in a predefined manner) to form a 1-D, run-length coded sequence.

2.6 Yector Quantization

Vector quantization is a compression that can be used alone or as a submethod of

another compression method.
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In this method, each of m sample which we have a value between [k, 1] of a signal
sequenceis mapped onto the closest on f different values. Where n<<m, an k<<n<</¢.

There are two main mapping methods as training and quantization,
2.6.1 Training

An example to training is Pairwise Nearest Neighbour method which is explained in

following steps.

1- The signal sequence is divided into 1xm blocks. (The signal se(juence in the examples is
divided into 1x2 blocks for a better explanation)

2- Each block accepted as a point in space, the value of these points are unimportant, but
the coordinates are the sample values of the block.

3~ The no of quantization levels (mentioned as n above ) is decided.

4- Each point is paired with its closest neighbour. The distance is calculated as

d= \/(XI - x2)2 +(y; — y2)2 (each point must be used once.)
5- The center of each pair is calculated using

_Yitys

= =
2

¥ T3
6- The pairs are deleted and only their center points are left.
7- The number of points in the space is decreased to its one half.
8- steps 4,5 and 6 are repeated till the number of points in space equals the preferred
quantization level.
The average of the coordinates of each point left is calculated and the averages form a

codebook.

Xi TV

Pont taverage — 2

10- The value of the each sample of the original signal sequence is compared with the

values of the codebook and the closest codebook value is taken to represent the sample.
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2.6.2 Quantization
There are several types of quantization. Two most popular ones are given below.
2.6.2.1 First Method

1- Each sample of the original signal sequence is represented in space as in the pairwise
nearest neighbour method.

2- The center of gravity of the points C, is calculated by taking the average of points.

3- Two neighbouring points C,, and C,, are framed by
Cy =C,+A
Cp=Cy—A

according to a A value chosen previously.

4- C, is deleted from space.

5- The points which are closer to C,, is grouped under C;, and the rest is grouped under
Cp-

6- Steps 2, 3 and 4 are applied to these new groups separately.

7- The C,, and C, calculated in step 6 is compared with previously calculated C,, and
Cos-

8- Steps 2, 3, and 4 are repeated till the two C,; and C,, that follow one another is the
same. There are the real averages.

9- All the original signal sequence points are grouped under these two real averages
(according to their distance under whichever of the two avera;ges as closest.)

10- A codebook of two values is formed by these real averages .

11- If more codebook values are wanted,‘ steps 1-10 are repeated to reach the two groups

separately.
2.6.2.2 Second Method !

1- Points of signal sequence are formed in space as in the preceding methods.
2- Center of gravity C, is calculated

3- The furthers point to C, is found (C, )

4- The furthers point to C, is found (C, )
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5- The points that are closest to C, is grouped under C, and the rest is grouped under C, .
6- The center of gravity of each group is found. (C,, and C,)

7- The average of the coordinates of C,, and Cy, is calculated.

X01 + Yo
CO] argz 2 ’
C _ X2 tYo2
02 arg™ 2

8- Instead of the original signal sequence sample, C, ,, or C‘O2 ,}S send -whichever is
closest in value-

9- If a codebook of more values are expected then steps 1-6 are repeated on each group
separately as if they were on original signal sequence.

10- If steps 1-6 are repeated k times, then 2" valued codebook is found.
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CHAPTER THREE
ONE DIMENTIONAL SIGNAL FILTERING

3.1 Introduction
The problem of designing filters can be approached from two ways:

i) We can specify the frequency response of the filter and by inverse Fourier
transform we can determine from this the impulse response . coefficients. This
leads to Nonrecursive (or Finite Impulse Response -FIR-) filters.

ii) We can apply transformations from s plane to z plane to existing analog filters.
3.2 FIR Filter Specifications

Digital filters are usually specified in the frequency domain in terms of the
frequency ranges which they are to leave unaffected and those which are to be
removed from any input signal. The amplitude response of .the four main types
are shown in Figure 3.1. It should be remembered that the frequency response of a
discrete system is periodic with period o, and so we need only consider the

response on the interval [-0/2, ®/2].
As for the phase response, it is impossible to achieve zero phase shift over the

entire frequency range, but it is possible to achieve a linear phase response in

nonrecursive filter which has a gain (transfer) function

G(z) = _gaiz"i 3.1
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By definition of the z-transform of the impulse response {g(n)} of the filter

(3.2)
i=0
Gle ™) (Gi(e 7))
Fee—tt— e R —
1 1
i i
1 1
L . ; -~
o2 -0, O o2 e ol —w, 0 o &R o
(@) {b)
IGle 7)) iGale M)l A
Ty = 7
a | r
Y 1 T lT T - S— - . P " - { . -
~W/2—p —thg —01 0y Wy W @2 © —yf2 ~t g~y 0 th wy w; 7 "
) {d)
Figure 3.1 Digital Filter Specifications a)LLP b)HP ¢)BP d)BS
Hence from (3.1) and (3.2) we have
(i)=a;, 0<i<m
B (3.3)
gli)=0

1>m

and so the coefficients a; in the difference equation defining the filter are just the

impulse response coefficients.

Let m be even, say m=2N, and write
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_ e—ijT{ o(0) oiNoT g(l)ej(N—l)mT-i-, Ag(N)+.. .+g(2N)e—jN°’T} (3.3)

Then if we impose the conditions

g(0) = g(2N)
g(l) = g{zN ~1) .4
dN+D;gN~H
then we obtain
G{eT) = e~JwT{g(N) +Nz; (i) cos (N ~ i)coT]} (3.5)

Since the expression in brackets is real the phase response of the filter is -NaT,

which is a linear function of ®.

G(e }“T)A
1 e
—of2 e w02 "o
. ‘\

LG’y :8=—hoT

Figure 3.2 Ideal Lowpass Filter Response.
3.2.1 FIR Design

The complete design specification of an ideal lowpass filter is shown in Figure

3.2. The amplitude and phase responses are included on the same graph.
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Since

AT
0 otherwise
g(n) will be
T si -Aw, T
ol - ool Rodt] o 3.7)

1 (n-Vo,T

If we regard the zero phase shift in the interval [ -0/2, ©/2], then A=0 and if

for example =048, then from 2.3.1 we have

1sinnn/4 1

g(n) = Zm = Zsm c(nn/4) (3.8)
where
sinc(x) = SIoX (3.9
X
gln
111 I” “I St
111 -2 0 2 4l16}[810 12 " n

Figure 3.3 The Impulse Response of an Ideal (Zero Phase Shii:t) LP Filter

From the impulse response sequence of Equation 3.8 shown in Figure 3.3 we
can see that an ideal LP filter with zero phase shift can never be achieved because

of two reasons. First, the filter is noncausal since g(n)#0 for some n<0, and so
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cannot be implemented in real time. Second, it is not a finite impulse response

filter since g(n) #0 for infinitely many n.

If we truncate the impulse response so that g(n)=0 for In l >10, and introduce a
delay of A=10 in Equation 3.7, then we obtain the approximate impulse response

g,(n) shown in Figure 3.4. By Equation 3.5 we see that the frequency response of

{ g,(n)} is given by

| Ga(ej"’T)=e“j“’“’T{ga(lo)+2§ga(i)cos[(10—i)mT]} 3 (3.10)

[eAlp)]

1.1
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Figure 3.5 Ideal and Approximate Frequency Responses

3.2.2 Windows

In the pervious section, a realizable FIR filter is obtained by truncating the

exact impulse response and introducing a delay. Truncating an impulse response
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g={g(n)} outside the interval In|<N is equivalent to multiplying g by the

sequence wy defined by

1 ifjn] <N

]

0 iflnl>N (3.11)
Thus g,(n) is given by
ga(n) = g(n)wg(n) (3.12)

wy(n) is called the rectangular window. More generally, if {w(n)} is any sequence,

g.(n) = g(n)w(n) (3.13)

It can be shown that the frequency spectrum of the rectangular window has
large side lobes of alternating sign [2]. In order to overcome this problem, a
window function which has a large central lobe and small side lobes can be

defined as

a+(1—-a)cos(nn/N) if|ln <N

3.
0 ifln| > N (3.14)

wy(n) ={

wy(n) is called the von Hann window for a=0.5 and for a=0.54 is called the

Hamming window.
The Blackman window , defined by

0.42 +05cos(nn/N) +0.08 cos(2nn/N) if|n] <N
0 if|n| >N

wp(nT) ={

(3.15)

reduces the ripple compared with the last two windows, but a wider lobe width.
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The Kaiser window, defined by

w (nT) = {IO(B)/IO(O‘) iffn] <N

3.16
0 ifln| > N (3.16)
where o is a parameter and
/2
B=ofl~(n/N)?} (3.17)

a good trade-off between ripple ratio and primary lobe width.

Here I(x) is the zeroth-order Bessel function of the first kind, defined by the

series

© 2
Io(x)=1+k§1{%(x/2)k} (3.18)

3.2.3 Filter Transformations

We can obtain other types of filters such as HP, BP, BR form LP filters by

applying some transformations given below

D) gup(n) =(~1)"gLp(n) (3.19)
2)gpp(n) = (2 cosnmoT)ng (n) (3.20)
mo%center frequency
= Og-( O )p
®,= 0O+ ©,)p

3) 8(0)ss=1- g(0)gp, 8()ps™ &(M)gp, N=+1,42,... A (3.21)
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3.3 Design of Recursive Filters

As explained in section 3.1, another method of filtering digital information is
to use analog filters which are transformed to z-plane. In the following section

some analog filters are given.

3.3.1 Analog Filter Design

In the following sections, fist Lowpass Analog Filters which have the general

form

H(jo)| =1+ k(o) =1+ = (3.22)

where H(s) is the desired loss function and K(s) =N(s)\D(s) is a rational function

in s, will be explained. Then adaptation of LP filters to other types will be given.

General requirements for a LP filter are, passband from dc to @, , the stopband
from ®, to infinity, the maximum passband loss A ,, and the minimum stopband

IOSS Amin'

l3.3.1.1 Butterworth Filter

The simplest lowpass Butterworth approximation is derived by assuming that

K(s) is a polynomial of the form:

K(s) = (i} (3.23)

®p
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where € is a constant, n is the order of the polynomial, and o, is the.desired

passband edge frequency. The corresponding loss function is

i

’H(Jm)| _ Vin{jo)

2( © )Zn‘ ‘

At dc, from Equation 3.24 the loss is seen to be unity. The slope of the function

at dc is obtained by expanding Equation 3.25 as a binomial series. Near =0,

SO

{ 2n i 2n ! 4n 1 6n

s s s s
1+82[—J = 1+—82[‘—‘J ——a{—} +_86[——] +... (3.25)
I ©p 2 0y 8 \0y) 16 (o,

This expression shows that the first 2n-1 derivatives are zero at ®=0. Such K(s)
was chosen to be an n-th order polynomial, this is the maximum number of
derivatives that can be made to zero. Thus the slope is as flat as possible at dc. For
this reason the Butterworth approximation is known as the maximally flat

approximation. From Equation 3.24 the loss is given by

[ 2n

S

Alo) = 10logy 1+82L_J
®p

} dB (3.26)

In particular the loss at , is
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Alo,) = 10l0go1+5?)

and at high frequencies (0>>w,) the loss asymptotically apprqaches

A\
2010g108('m£} (3.27)
p

In terms of normalized frequency
0= gvn[_‘ﬂ_] (3.28)

the loss is given by
A(Q) = 10log;p(1+0") (3.29)

In Figure 3.6 the loss of normalized Butterworth approximations are given for

- some n.

l 100
H 90
n =
pd 80 T
4 / 70
A g
- 60 8
/ 3 /k/ Pou
- g - 50 g
r // // -§
- 2 L1190 §
8, T L e @
! A 1
? P 1// L~ =120
1 2 e 1" 1
I el B g 74 — °
1 2 3 4 5 68 .810 15 2 3 4 5 67 8910
.

Figure 3.6 Loss of LP normalized Butterworth Approximations
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Thus far the magnitude of the loss function, namely |H(j(o |, is explained.

Derivation of H(s) from the expression of | H(jw | is as follows:
[H(s)* = H(s)H(-s) (3.30)

where s is the normalized frequency variable Z+jQ. Now the roots of H(s) are the
roots of H(-s), reflected about the origin. Since the desiredfmust have all its poles

in the left half s plane, we must associate the left half plane roots of | H(jo |2

with H(s) and right half plane roots of | H(jo | ? with H(-s).

H(j)” =1+ 0" =1+[—(jQ)2]n (3.31)
Extending this to the s domain

() = 1+(s?)" (3.32)
The roots of | H(jo | ? are obtained i)y solving the equation

1+(s2)" =0 (3.33)

The solution of this equation is:

an(zk +n- 1}}
S = expL; P where k=1,2....,2n (3.34)

These 2n roots are located on the unit circle and are equally spaced at n/n

radian intervals. The s domain loss function is therefore given by
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H(s) = I[1[s-s;) (335)

where s; are the lett half plane roots of Equation 3.33.

After the expression of H(s) is found it must be denormalized by replacing s by

{glln]
Op

2

Figure 3.7 Roots of Third Order Butterworth
3.3.1.2 Chebysheyv Filter

The main feature of the Butterworth Filters is, the IQS§ is maximally flat at the
origin. Thus ghe approximation to a flat passband is Very; good at the origin but it
gets progressively poorer as ® approaches ®, . Moreovér,‘the attenuation provided
in the stopband is less than the attainable using some other polynomial types, such
as the Chebyshev. The increased stopband attenuation is achieved by changing the
approximation conditions in the passband. The criterion used is to minimize the
maximum deviation from the ideal flat characteristic shown in Figure 3.8. The

Chebyshev polynomials are ideal for this purpose.
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i
wy @

Figure 3.8 The Equiripple Passband Characteristic

The n-th order Chebyshev function C,(Q) is defined as

C, ()= cos(ncos“1 Q) <1 (3.36a)

= cosh(ncosh’l Q) | > 1 (3.36b)

where, 2 is the normalized frequency,

=2 | | (3.37)

The Chebyshev function can also-be expressed as a polynomial in Q, as shown

in the following. From Equation 3.36a

Cpi(Q +C,_(Q) = cos[(n +1)cos™ Q] + cos[(n ~1)cos™ Q] (3.38)

ZCos(cos*1 Q) co.s(ncos"I Q) = ZQCn(.Q) (3.39)
which yields to the recursive relationship:

Cai(©) =20C,(9) - C, () (3.40)
From Equation 3.36a we have

Co(Q) =1 | . (3.41)
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c,(Q=0 , (3.42)

The higher order polynomials are obtained from the recursive relationship of

Equation 3.40. !

A plot of the Chebyshev functions using the above polynomial form shows that
they do indeed have an equiripple characteristic in the band -1<Q<1. F igure 3.9a-b

i T
G () (G, ()
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I | ! \
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l ! 1 |
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o n=3 @ n =44
g 9
O
-
]10109 {1+ €2) y
1 /b Q — 1 Q —
(c) ' | { i)

Figure 3.9 Plots of a) Third Order Chebyshev Function b) Fourth Order
Chebyshev Function ¢) Third Order Chebyshev Approximation d) Fourth
Order Chebyshev Approximation

The Chebyshev ‘low—pass approximation function is obtained from the

Chebyshev polynomials and is given by:
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INUON L 2c(q) (3.43)

The loss functions for n=3 and n=4 are sketched in Figure 3.9c and d. The

functions ripple between a minimum of one and a maximum of 1+82  for
|Q] <1 and that the number of minima of | HGQ) | in the band -1 < Q <1 equal
to the order n. It can readily be shown that these properties apply to Chebyshev

approximations of all orders [3].

The loss at the passband frequehcy 0=0, is (Q will equal to 1 and C,(1)=1)

A

max

= 10log o1 +¢2) (3.44)

One of the objectives in considering an equiripple passband was to improve on
the stopband attenuation provided by the Butterworth filtering. The Butterworth

attenuation for ®>>w, is approximately

o n
20l0g 08 — (3.45)
P

The Chebyshev attenuation is obtained from Equation 3.43, where ©>>0,

(i.e.,£2>>1) the term €C (€2)>>1. Thus

A(Q)],,, =20log;,eC, () (3.46)

From the recursive formula, for Q>>1
c, (@) =2m1qn (3.47)

Using this expression, (3.46) reduces to
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AQ),,, = A(f;] = 2010g10[e[£J 2n1 (3.48)

Comparing Equations 3.45 and 3.48 it is ‘seen that the Chebyshev

approximation provides

2010g(2)"! = 6(n—1) dB : (3.49)
more attenuation than a Butterworth of the same order. Therefore for the same
loss requirements the Chebyshev approximation will usually require a lower order

than the Butterworth.

To find the roots of H(s) same technique is used as in the Butterworth case.

The roots are found by first evaluating the roots of | H(s) |2, where

2 _ 22

(9| =1+ Cn(Q)Igzyj (3.50)

The roots of the function can be shown to be [3]
8y =0k i‘O)k k=0,1,2,...,2n—1 (351)
where

Com(1+2k) . (1. _11]

=+sin— — -

oy _smz( " )su\h(n sinh . (3.52a)

o, = os——(1 2 j h(—l inhﬁl—lj 3.52b
c cos )
k 2 n nS ( )



39

1
i

As in the Butterworth approximation the n left half pl%ane roots corresponding
to negative o, are associated with H(s). Furthermore, from Equations 3.52a and b,

it can easily be seen that

M2 2

Oy Oy

+ =1 (3.53)
1 1 1 1

sinh(~ sinh™! —) c,osh[~ sinh™! —)
n € n €

which is the equation of an ellipse. Thus the roots of the Chebyshev

approximation lie on an ellipse in the s plane, whose real and imaginary intercepts

are indicated in Figure 3.10

The Chebyshev approximation can now be expressed in factored form, as

H(s) = T1(s-s;) (3.54)

i
where s; are the left half plane roots of Equation 3.50.

S
®

For the general LP filter H(s) can be denormalized by replacing s by [—J
p

jw

/cosh (L sinh~? }}

+1

siph {4 sinh~* 1)

!

Figure 3.10 Locus of Roots of Chebyshev Approximation
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3.3.1.3 Bessel Filter

Thus far, gain (loss) characteristics odd filter functions. are discussed, no

attention is paid to their phase and delay characteristics.

The magnitude delay of a fourth-order Chebyshev filter function (A,,=0.5
dB), are sketched in Figure 3.11a and b. The delay characteristic in the passband is
far from flat, the high frequencies being delayed much more than the low
frequencies. Considering the response to the rectangular step input shown in

. Figure 3.11c¢, the high frequencies are expected to appear at the output of the filter
later than the low frequencies. Sincé the high frequencies control the sharp rising
“edge of the step, the rise time of the pulse will be increased aé indicated in Figure
3.11d. When the high frequencies arrive at the output they show up as a high
frequency ringing in the step response. Thus, it can be seen that this Chebyshev

filter function would greatly deteriorate the time response of digital signals.

2 §
g 00—
- A
0.5
1 ]
1 Q —> 1 Q-
(a) (bb)
P T N~
QO
g g
& a
£
< &
i 11 | |
b — 4 83 i2 16
(c) (dx) £ sec.—>

Figure 3.11 Characteristics of a Fourth Order Chebyshev (A ,,=0.5 dB); a)
Loss b) Delay c) Step Input d) Step Response
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In the Butterworth Filter case, the magnitude characteristic is monotonic in the
passband and the delay is relatively flat. Figure 3.12a and b show the magnitude
and delay characteristics of a fourth order Butterworth (A,,,=3 dB). The step
response, shown in Figure 3.12c, has less ringing and the rise time is smaller than
in the Chebyshev case. It can be observed that the smoother the magnitude
characteristic the flatter is the delay characteristic. However, the smoother
magnitude characteristic of the Butterworth approximation provides much less

stopband attenuation than the equiripple Chebyshev approximation.

87——-
:
! z
o 8
2 af-
3 r__'1/\\
3
L [
1 2 — 1 Q—>
{a} (b)
‘l...-
L
°
2
£
E
<
| l | ]
4 8 12 16 ¢ sec. —-

Figure 3.12 Characteristics of a Fourth Order Butterworth (A,,,=3 dB); a)
Loss b) Delay c¢) Step Response

In the Bessel approximation the goal is to obtain as flat a delay characteristic as

possible in the passband. The loss function for the ideal delay characteristic is [2]



H(s) = %10 (3.55)

The Bessel approximation is a polynomial that approximates this ideal
characteristic. In this approximation the delay at the origih is maximally flat, that
is, as many derivatives as possible are zero at the origin. It is convenient to
consider the approximation of the normalized function, with the dc delay T, =1

second, that is,
H(s) = ¢ (3.56)

It can be shown that [3] the Bessel approximation to this normalized function is

(3.57)

where B,(s) is the n-th order Bessel polynomial which is defined by the following

recursive equation

By(s) =1 | (3.58)
By(s) =s+1 (3.59)
and

B,(s) = (2n-1)B, () + 7B, (9 . (3.60)

- Using this recursion formula the higher-order approximations of €° can be

.found.
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The loss and delay of the Bessel approximations (n=1 to 5) are sketched in
Figure 3.13 and 3.14, respectively. In these figures the normalized frequency Q is

related to @ by
Q=wT, (3.61)

Figure 3.14 shows that the higher the order n, the wider is the band of
frequencies over which the delay is flat. The delay characteristics of the Bessel
approximation are far superior to those of the Butterworth and the Chebyshev. As
a result, the step response (Figure 3.15c) is also superio;, having no overshoot.

However, the flat delay is achieved at the expense of the stopband attenuation

" which, for the Bessel approximation, is even lower than for the Butterworth.

50
40 1 0= §
3
30 ‘ /ﬁz
3 7
“ oz
8
1 Y 1
20 - 7,
' :ﬂ// 1]
4
- yaHy
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L
/2_4*1
g — f:"‘:‘;}z"/S
A 2 4 6 8 1 2 4 6 8 10

Figure 3.13 Loss of LP Bessel Approximations
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Figure 3.14 Delay of LP Bessel Approximations
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Figure 3.15 Characteristics of a Fourth Order Bessel Approximation (A, =3
dB); a) Loss b) Delay c) Step Response
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In the last few sections, LP filter approximations are explained. These can be

adapted to high-pass, symmetrical band-paés and symmetrical band reject filters.

A block diagram of the steps in the approximation of these filters is shown in

Figure 3.16.

The first step is to translate the given HP, BP or BR requirement to a related

low-pass requirement by using a frequency transformation function. The resulting

low-pass requirement is then approximated using the methods described in the

pervious sections. Finally the low-pass approximation function is transformed to

the desired HP, BP, or BR approximation function.

HP, BP, or BR LP -
requirements ] requirements

Typf(s) >

THp(S)
TBP (s)
TBR (s)

Figure 3.16 Block Diagram of the Frequency Transformation Procedure

The transformation functions are as follows:

High-pass Filters:

Typ(s) = Typ (S)IS

=cop/s

' Band-pass Filters:
First the normalized LP requirements are characterized by
Amax:' Amim Qp=1 > £2s=(0)4_0‘)3)/( ('02'0).1)

where the 0,, ©,, ®,, ®, are as described in Figure 3.17

(3.62)
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Loss dB —>

Figure 3.17 A typical Band-pass Function

Then, the required band-pass function is obtained by

Top = Tue(S)g (st ap)ms (3.63)

where

B=w, —®; is the passband width

=A/®;®, is the center (geometric mean) of the passband.

' Band-Reject Filters:
To realize the BR requirements shown in Figure 3.18, we first approximate the

LP requirements characterized by

A Auins Q=1, Q(0,-0,)/ (04-05)
After this LP requirements are approximated, the desired BR filter is found by

|
t
I

1

Tpr = TLP(S)IS=BS/(Ss +}) (3.64)

where
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B=w, ~wm; is the passband width

wy=+/®,0, is the center (geometric mean) of the passband.

Loss dB

Gy oy Wy

Figure 3.18 A typical Band-reject Function
3.3.1.5 s- to z-Domain Transformations

As mentioned earlier, the second way of obtaining digital filters is finding an
appropriate transformation from s to z domain and substituting this for s in the
analog filter transfer functions. One major drawback with this method, compared
with the nonrecursive design, is that because a linear phase characteristic can not

be obtained there is bound to be some distortion of the input signal.

In the following sections, some transformations from s- tb z-domian will be

given,
3.3.1.5.1 The Impulse-Invariant Method

In this method the impulse response coefﬁcients of the digital filter
corresponds to the impulse response coefficients of the chosen analog filter at the

sampling times.
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Since this introduces allaising into the filter, this method is mostly applied to all
pole filters, such as Butterworth, Bessel or Chebyshev. For any such filter, its

transfer function can be written in the form (assuming simple poles)

Guls)= 2 Ai (3.65)
i=15—DPj
Hence,
1
ga(t) =G A(s)} = 2A (3.66)
i=1
Sampling g,,
‘ 2 KT :
gA(KT) = XAeP (3.67)
‘ i=I
and so the corresponding digital filter G,(z) is given by
n Az :
Gp(2) = Z{ga (kT)} = 2—% | (3.68)
: : i=lz—e ™! ‘

From Equation 3.68 it can be seen that a pole p; of the analog filter gives rise

to a pole €™,

of the digital filter and so are realizable analog filter leads to a
realizable digital filter. Since G, is band limited (to a reasonable approximation)
then Gp(¢") approximates G,(jo) in the interval [-n/T,n/T] and so the amplitude

and phase responses of the analog filter are preserved under this transformation.



3.3.1.5.2 Modified Impulse Invariant Method

If an analog filter is given in the form

s

](S"Zf)
(S‘Pj)

GA(S) = I?)I\ZS) =K

=

-
n

where we have m=n, then G,(s) can be written as

G, (9) = KG,,(s)/G,,(s)

where
1 1
GAI(S):D—S)’ GAZ(S)zN(S)
A m B.
G =Y Guo(s)= 22—
AI(S) Zis—p, Az() .

Applying the transformation Equation 3.68

n A.z
Gpy(2) = 2— 55,
bl J’=lz—e’ArpJ

BiZ
TZi

Gpa(2) = 3

i=lz—¢€

The overall transfer function of the approximating digital filter is then

GD(Z) = "—“—GDI(Z)

GDZ(ZS)
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(3.69)

(3.70)

(3.80)

(3.81)

(3.82)

A problem remains, however; some of the poles of 3.82 may be unstable

‘because of the zeros of Gy, This can be remedied easily, since if p; is a real pole,

then
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CHAPTER FOUR
TWO DIMENTIONAL SIGNAL FILTERING

4.1 Introduction

The principle objective of enhancement techniques is to process an image so that
the result is more suitable than the original image for a specific application. The word
“specific” is important, because it establishes at the outset that the techniques discussed are

very much problem oriented.

The approaches discussed in this chapter fall into two broad categories. Spatial
domain methods and frequency domain methods. The spatial domain refers to the image
plain itself and approaches this category based on direct manipulation of samples in an
image. Frequency domain processing techniques are based on modifying the Fourier
transform of an image. Enhancement techniques based on various combinations of methods

from these two categories are not unusual.

4.2 Background

[n this section, the fundamental ideas underlying and relating these two approaches

will be explained.
4.2.1 Spatial Domain Methods

The term spatial domain refers to the aggregate of samples composing an image,
and spatial domain methods are procedures that operate directly on these samples. Image
processing functions in the spatial domain may be expressed as

- ~

g(x,y) = T[f(x,y)] G
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where f(x, y) is the input image, g(x, y) is the processed image and T is the function

operating on f.

T may operate only on the point (x, y) of image f or it may operate on the
neighbouring samples taking point (x, y) as it’s center and forming a rectangle (sometimes
an approximation to a circle ) called a subimage around it by the neighbouring samples as

shown in Fig 4.1

L—(X, ¥)

fmage

Figure 4.1 A 3x3 Neighbourhood about a Point (x, y) in an Image

Then subimage center is moved from sample to sample applying the operator T on
each sample. The simplest form of T is when the neighbourhood is 1x1. In this case the
resultant image g depends only on the value of fat (x,y), and T becomes a grey-level

transformation (also called mapping ) function of the form
s=T(r) : (4.2)
where t and s are value levels of f(x, y) and g(x, y) respectively.

If for example, if T(r)has the form.shown in Figure 4.2 then T has the effect of

increasing the contrast on the image by darkening the valu€ levels that have a value less

than m (r<m) and lightening the value levels that are higher than m (r>m)

i
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s = T(r) s =T(r)
| !
5 [T . | ;
3 ! = L
{
™ | T 1
| |
. ! { |
B3
5 : | ; |
e L L r _ ! -
m m
Dark -s— Light Dark  -aa— Light

(a) ‘ (b)

Figure 4.2 Grey-level Transformation Functions for Contrast Enhancement

In the limiting case shown in Figure 4.2 T(r) produces two level (binary) image.
Some fairly simple, yet powerful, processing approaches can be formulated with value
level transformations. Because enhancement at any point in an image depends only on the
value level at that point, techniques in this category often are referred to as point

processing.

When larger neighbourhoods are used to allow a variety of processing functions
that go beyond just image enhancement, operations used are called masks (also referred to
as templates, windows or filters). Basically, a mask is small (say, 3x3) 2-D array, such as
the one shown in Fig 4.1 in which the values of the coefficients determine the nature of the
process, such as image sharpening. Enhancement techniques based on this type of approach

often are referred to as mask processing or filtering.

4.2.2 Frequency domain methods

The foundation of frequency domain techniques is the convolution theorem.
g(x,y) = h(x,y) * f(x,y) 4.3)

G(u,v) = H(u,v)F(u,v) 4.4
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where G(u,v), H(u,v) and F(u,v) are the Fourier transforms of g(x, y), h(x, y) and

f(x, y) respectively.

H(u, v) is called the transfer function of the proceed and in optics it is called the
optical transfer function. It is the system response to a unit impulse (that is a point of light)
and according to linear system theory, a linear, position invariant system (linear time
invariant system -if the input varies according to time-) is completely specified by its
response to an impulse. h(x, y) is the inverse transform of H(u, v) and called the impulse
response in the terminology of linear system theory. In optics h(x, y) as called the point
spread function. This name is based on the optical phenomenon that the impulse
correspond to a point of light and that an optical system responds by blurring (spreading)
the point with the degree of blurring being determined by the quality of the optical

“components. Thus the optical transfer function and the point spread function of a linear
system are Fourier transforms of each other. Equation 4.3 describes a spatial process that is
analogous to the use of the masks discussed in the previous selection. Infact the discrete
convolution expression given in Equation 4.5 basically as a mathematical representation of
mechanics involved in implementing the mask shifting process explained in Figure 4.1. For
this reason h(x, y) is often referred to as spatial convolution mask. Strictly speaking this
term is not correct in general because convolution involves flipping one of the images
about the origin. Using this name in connection with the masks in the previous section is

correct only when the mask is symmetric about its origin.

1 MoIN= 3
f(x,y)*g(x,y) =ngogof(m,n)g(x~m,y—n) x=012,.. . M-1 (4.5)

!

v=012,..,.N—1
Although it may already be obvious, we note that there is no general theory of
image enhancement. When an image is processed for visual interpretation, the viewer is
the ultimate judge of how well a particular method works. Visual evaluation of image
quality is a highly subjective process, thus making the definition of a “good image” an
elusive standard by which to compare algorithm performance. When the problem is one of
processing images for machine perception, the evaluation task is somewhat easier. For
example in dealing with a character recognition application: the best image processing

method would be the one yielding the best machine recognition results. However, even in
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situations when a clear-cut criterion of performance can be imposed on the problem, the
analyst usually is still faced with a certain amount of trial and error before being able to

settle on a particular image processing approach.
4.3 Spatial Filtering

The use of spatial masks for image processing usually is called spatial filtering and.
the masks themselves are called spatial filters. In this section we consider linear and

nonlinear spatial filters for image processing.
Linear filters are filters that satisfy
ao| +ba, — LinearFilter — af}; + bf3, (4.6)

where a and b are constants, a; and o, are two inputs and Bjand P,are the two
corresponding outputs. Consequently, linear systems have their transfer function and
impulse or point spread function as their inverse Fouler transforms of each other. These
filters can be classified into three as lowpass, bandpass and highpass filtering. A lowpass
linear filter, eliminates the high frequency components in the frequency domain while
leaving the low frequencies untouched. The highpass linear filter does the opposite. It
eliminates the low frequency components and leaves the high frequency components
untouched. Since the high frequency components of an image characterize edges and other
sharp details, the result of eliminating them -that is the lowpass filtering- is image blurring.
On the other hand the result of highpass filtering is the apparent Asharpening of edges and
other sharp details because it eliminates the low frequency compohents which characterize
slowly varying characteristics of an image such as overall contrast and average intensity.
Bandpass filtering removes selected frequency regions between low and high frequencies.
These filters are used for image restoration and are seldom of interest in image

enhancement.

Figure 4.3 shows cross sections of circularly symmetric lowpass, highpass and bandpass
filters in the frequency domain and their corresponding spatial filters. The horizontal axes

for the figures in the top row correspond to frequency and their counterparts in the bottom
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row are spatial coordinates. The shapes in the bottom row are used as guidelines for

specifying linear spatial filters.

Lowpass Highpass

° ~N 7 Vo
@ . ® ©

Figure 4.3 Top: cross Sections of Basic Shapes for Circularly Symmetric Frequency

Domain Filters. Bottom: Cross Sections of Corresponding Spatial Domain Filters

Regardless of the type of linear filter used, the basic approaches to sum the products
of predefined coefficients and the sample value level intensities under a mask at a specific

location in an image. For example, for an 3x3 mask
R=wWZ| +WyZy+.+WgZg 4.7
is calculated with the center of the mask placed at (X, y) and the value level of the value of

sample (x, y) is replaced by R. The mask is then moved to the next sample location. This

process is repeated until all the sample levels are replaced by their corresponding R value.
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s s 1 Y

Wil Wy [ W

Figﬁre 4.4 A 3x3 Mask with Arbitrary Coefficients (Weights).

Usually a new image with R values is created, so that the original sample values are

used -not the altered ones- during each R computation.

Nonlinear spatial filters also operate on neighbourhoods. In general, however, their
operation is based directly on the values of the samples in the neighbourhood under
consideration and they do not explicitly use coefficients in the manner described in

Equation 4.7. Noise reduction can be effectively achieved by nonlinear filters.
4.3.1 Smoothing Filters

Smoothing filters are used for blurring and noise reduction. There are both linear

and nonlinear smoothing filters.
4.3.1.1 Lowpass Filtering

The shape of the impulse response needed to implement a lowpass (smoothing)
spatial filter indicates that the filter has to have all positive coefficients. (See Figure 4.3a).
Although the spatial filter shape shown in Figure 4.3a can be modelled by , say, a sampled
Gaussian function, the key requirement is that all the coefficient be positive. The simplest
arrangement for a 3x3 spatial filter would be a mask in which all coefficients have a value
1. In this case R will be the sum of values of all the neighbouring samples, but this sum
may be larger than the excepted maximum value level value, so the sum is divided by 9
which gives the average of all samples in the area of the mask. For this reason, the masks
which have 1 as their coefficients are called neighbourhood averaging. In this filtering, as

the dimensions of the mask increases, blurring increases.
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4.3.1.1 Median Filtering

As mentioned above, the result of lowpass spatial filtering is blurring of edges and
other sharp details. If the objective is to achieve noise reduction rather than blurring,
median filters are used. That is the value level of each sample is replaced by the median of

its neighbourhood.

The median m of a set of values is such that half of the values in the set are less
than m and half are greater than m. For example, for a 3x3 mask, if the neighbourhood has
values (10, 15, 20, 20, 30, 15, 10, 30, 35), it is first put into ascending (or descending)
order as (10, 10, 15, 15, 20, 20, 30, 30, 35). Then the median is found as the fifth neighbour
as 20. (there are four values less than and greater than 20). Thus the principle function of
median filtering is to force points with distinct intensities to be more like their neighbours,

actually eliminating intensity spikes that appear isolated in the area of the filter mask.
4.3.2 Sharpening Filters

The principle objective of sharpening filters is to highlight fine detail in an image or
enhance detail that has been blurred.

4.3.2.1 Basic Highpass Spatial Filtering

The shape of the impulse response needed to implement a highpass (sharpening)
spatial filter indicates that the filter should have positive coefficients near its center, and
negative coefficients in the outer periphery (See Figure 4.3b). For a 3x3 mask, choosing a
positive value in the center location with negative coefficients in the rest of the mask meets

this condition.

N-R

S R T I

Figure 4.5 A Basic Highpass Spatial Filter
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Figure 4.5 shows the classic implementation of a 3x3 sharpening filter. Note that
the sum of the coefficients is zero. Thus, when the mask is over an area of constant or
slowly varying value level, the output of the mask is zero or very small. This filter also
eliminates the zero frequency term which reduces the average value level in the image to

zero, reducing significantly the global contrast of image.

Reducing the average value of an image to zero implies that the image must have
some negative value levels. As we deal only with positive levels, the result of highpass
filtering involve some form of scaling and/or clipping so that the value levels of the final

result span the range [0, L-1].
4.3.2.2 Highboost Filtering
A highpass filter may be computed as
Highpass=Original-Lowpass
and a highboost filter is defined as

Highboost = (A)Original - Lowpass (4.8)
= (A-1)Original + Original - Lowpass
= (A-1)Original + Highpass , 4.9)

where A is called the amplification factor. When A=1, the result is a standard highpass
filter. When A>1, the part of the original signal is added back to the highpass result, which
restores partially the low frequency components lost in the highpass filtering operation. The
result highboost looks more like the original image with relative degree of edge

enhancement that depends on the value of A.

In terms of implementation, the preceding results can be combined by letting the

center weight of the mask shown in Figure 4.6 be
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w=9A—1 A1 (4.10)

| St I Gl B

Figure 4.6 Mask Used for High-Boost Spatial Filtering.
4.3.2.3 Derivative Filters

Averaging of samples over a region tends to blur detail in an image. As averaging is
analogous to integration, differentiation can be expected to have the opposite effect and

thus sharpen an image.

The most common method of differentiation in image processing applications is the

gradient of f at coordinates (x, y) is defined as the vector

[ of |

vi=| % 4.11)
o]
The magnitude of this vector,
a2 rarpl]™
Vf = mag (Vf) = (—é;) +(—&) J (4.12)

is the basis for various approaches to image differentiation. For an image as shown in
Figure 4.7a where z’s are the level values, Equation 4.11 can be approximated at point zs in
a number of ways. The simplest is to use the difference (zs - zg) in the x direction and (zs -

Zs) in the y direction, combined as
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172
vt z[(z5 ~2)" +(25 - 7)) (4.13)

instead of square roots, absolute values can be used:

szlz5 —zg|+lz5 —26|

(4.14)
Another way to approximate Equation 4.12 is to use cross differences
2 5112 |
sz[(z5~z9) +(zg — 7 ] (4.15)
U~ lzg — 2| + |z, — 2] (4.16)

Figure 4.7 b, ¢, d show masks to implement derivative filters

zZ 1 22 z3 I O 0 ]
-4 4 25 26 0 —I _-] 0
Bl B | % (b) Roberts

—
e

(a)

(d) Sobel . (c) Prewitt

———— e [ . . —_—

Figure 4.7 A 3x3 Region of an Image and Various Masks Used to Compute the

Derivative at Point Labelled zs.
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4.4 Filtering in the Frequency Domain

Enhancement in the frequency domain in principle is straight forward. We simply
compute the Fourier Transform of the image to be enhanced, multiply the result by a filter
transfer function and take the inverse transform to produce the enhanced image. Lowpass,
highpass and bandpass filtering which are explained before under spatial domain filtering
are valid for frequency as well. In practice, small spatial masks are used considerably more
than the Fourier transform because of their simplicity of implementation and speed of

operation. However, for some problems, spatial techniques are not good.

The 2-D Fourier transform pair is

F(u,v) = i £(x,y) exp|~j2n(ux + vy)|dx dy | (4.17)
and
f(x, y) = T I F(u, v) exp[ j27t(ux + vy)]dx dy (4.18)

4.4.1 Lowpass Filtering

As mentioned earlier, in lowpass filtering, the high frequency components which

indicate sharp transitions (such as noise) and edges, are eliminated.

A 2-D ideal lowpass filter (ILPF) transfer function is

() _{1 if D(u,v) < D, “19)

~ {0 ifD(u,v)>D,
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H(u, v)
H(u, v) A

0 ——————~D(u, v)
Do

@ ®

L

Figure 4.8 (a) Perspective Plot of an Ideal Lowpass Filter Ti‘ansfer Function; (b)

Filter Cross section

where, Dy is a specified nonnegative quantity, D(u, v) is the distance from point (u, v) to

the origin of the frequency plane, that is

D(u, v) = (u2 + VZ)I/Z (4.20)
And the transformed image is

G(u,v) = H(u, v) F(u,v)

which is g(x,y) = h(x,y)* f(x, y) in the spatial domain. By taking the inverse transform of
G(u, v), g(x, y), the filtered image is found.

Butterworth filter
The transfer function of the Butterworth lowpass filter (BLPF) of order n and with

cutoff frequency locus at a distance Dy from the origin is defined by the relation

1
H(u,v) = 421
(1) 1+[D(u,v)/ Do) " - 62D
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0.54
. D(u, v)
0 1 2 3 Dy
(V)] -
e

Figure 4.9 (a) A Butterworth Lowpass Filter; (b) Radial Cross Section for n=1.

4.4.2 Highpass Filtering

As explained earlier, edges and other abrupt changes in value levels are associated
with high frequency components and image sharpening can be achieved by attenuating the
low frequency components leaving the high frequency components untouched.

A 2-D ideal highpass filter (IHPF) has the transfer function H(u, v) as

0 ifD(u,v) <D,
1 ifD(u,v) > Dy

(4.22)

mmﬂ={

= D{u, v}

(b)

Figure 4.10 Perspective Plot and Radial Cross Section of Ideal Highpass Filter
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Butterworth Filter .
The transfer function of the Butterworth highpass filter (BHPF) of order n and with

cutoff frequency locus at a distance Dy from the origin is defined by the relation

!

1
1+[D0/D(u,v)]2n

mm0= (4.23)

H(u, v) H(u, v)

0.5+

(a) (b)

Figure 4.11 Perspective Plot and Radial Cross Section of Butterworth Highpass

Filter for n=1.

In typical image enhancement, f(x, y) is given and the goal after computation of

F(u, v) is to select H(u, v) so that the desired image
g(x,y) = F~'[H(u,v) - F(u,v)] : (4.25)

exhibits some extended feature of f(x, y). For instance if the edges are to be accentuated
then the high frequency components of F(u, v) must be emphasised since edges are the

regions where intensive altering -changing of sample values occur.



66

CHAPTER FIVE
OCCAM FILTERS

5.1 Introduction

Recently Imai and Iri, Nat%rajan and Konstantinides presented an efficient algorithm

that can both be used for compression and filtering of signals.

The essence of this algorithm is compressing the signal with a loss tolerance that is
equal to the strength of the noise. They observed that the loss tends to cancel out the noise,
with the cancellation depending on the compression achieved and how often the signal is
sampled, and the decompressed output is closer to the noise-free signal than the noisy

signal.

They explain why they have named the class of filters realizable by their technique as
“Qccam Filters” as “The essence of our technique is the principle of Occam’s razor (after
English philosopher William of Occam): ‘The simplest explanation of the observed

phenomenon is more likely to be correct.” (Natarajan, 1995).

Actually the algorithm answers the question: Given a piecewise linear function F:[0,1],
l F(x)-G(x) | <& and G consists of the fewest number of segments over all such functions.
This result is also extended to univariable functions in higher dimensions and the curves in

the plane. Two dimensional form of the algorithm will be given in later sections.
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5.2 Noise Strength

As mentioned above, the strength of the noise ||v” is needed for this algorithm and

how to find “ v“ can be best explained by an experiment.

If we could get the noise v itself and run the algorithm on this noise sequence for
various values of allowed loss € and plot the compressed size against the logarithm of ¢,
which is 'the rate distortion plot of v, we would get the plot in Figufe 5.1. When ¢ >”v“ ,

the noise sequence can be approximated by a constant because at such high loss tolerances

the size of the compressed signal will decrease.

If we could run the algorithm on the noise-free sequence f, then we would get the rate
distortion plot of f as shown in Figure 5.2 because, the less the allowed tolerance is the

more the number of data samples 1s.

It must be noted that on the rate distortion plot of noise-free signal there is no edge as
there is one on the rate distortion plot of the noise sequence, because the loss € is never
allowed to be more than the noise-free signal strength (the values of noise sequence values

much smaller than noise-free sequence).

When the algorithm is applied to the noisy sequence f+v, the rate distortion plot in

Figure 5.3 is the result. Because, when € <”v , the noise dominates the signal f, but when

£ >Hv| , the noise is regarded. At € =“v|| the plot makes a sharp knee point which is the

point at which the second derivative is maximum.

As a result, the algorithm works as follows: First, run the algorithm with various values
of € on the noisy sequence f+v and plot the compressed size against log(e). Next, find the
knee point &" of the plot and then, run the algorithm on f+v once more, but for this time use

¢". The result is the compressed and filtered signal.
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:
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log(e)

Figure 5.1 Illustrative Plot of Compressed Size Versus Allowed Loss for the Noise

Sequence
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Compressed Size
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Figure 5.2 Illustrative Plot of Compressed Size Versus Allowed Loss for the Noise-

Free Sequence
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Figure 5.3 Illustrative Plot of Compressed Size Versus Allowed Loss for the Noisy

Sequence with Second Derivative Plot
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5.3 Deacription of the Algorithm

The algorithm calculates the upper and the lower envelope points (f* and f) by adding
and subtracting € from the sequence values and uper and lower tangents are drawn starting
from (x,, ;) to the envelope points (X1, fi+17) and (X1, furr), then it teéts the next envelope
points and tries to draw next tangent lines to these points. This is carried on itteratively until
no tangent line exists. Then, the algorithm cuts the line in two from this point. Starts over
from the first point of the second portion regarding the first part. From this portion only the
first and the last points are recorded. the points in between are found during decompession

by linear interpolation.

The algorithm is:

input: list of points {(xi, F(x1)), (X2, F(x2))...., (xn, F(x))}, and £>0.
begin
Let x;=xi; £=F(x1);
= F(xpte; = F(x))-¢;
Construct the upper envelope U={(x, £,"), (X2, £o),..., (n, £}
and the lower envelope L=={(x,, £.), (%2, £),..., (xx, Tv)} ;
=1 ;

while U is not empty do |
=s+1;
an=(f £/ (Xe-xs);
a= (i -6/ (%-%,);
by=fe-anxs;
b= fi-aix,;
k=k+1;
while £,"> ax+b, and £ <apx,+b, do
if fk+< apxtoy, then
ar=(f" -G/ (%eX);
by=fs-anXs;
if > ajx+b; then
a=(f -1/ (Xexs);
b= f-aix,;
k=k+1;
end
let go(x)= ax+by;
‘output the end point (X1, 8p(Xk1));
XXy
f= gp(xx1);
U= U={(x57 f;—), (xk, fk*),..., (XN» fN+)},
=={(%s, &), (X, &),..., (3, B},
p=p+l;
end

end
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CHAPTER SIX
APPLICATIONS

6.1 Introduction

In this chapter our first aim is to compare the performances of the filter types explained
in Chapter 3 that of the Occam filter. Since noise is accepted to add high frequency

components to the signal, lowpass filters are used for the first three filter types of:

i) Butterworth Filter

it) Chebyshev Filter.

iii) Bessel Filter

iv) Wiener Filter which has a transfer function as H(®)=S(0)/[S(0)+N(w)] and is

commonly used in broad band signals.

Our second aim is to find out if Occam filter compresses better than the other
compression algorithms. Of the two compression experiments done, which have been
described in Chapter 2, the most efficient one from each group is selected to compare with

Occam Filter-Compression. The selected ones are:

i) Run Length Cod.
ii) Vector Quantizaion 2" method (8-Level)

1i1) DCT Compression

The programs were created in MATLAB environment to handle large number of data

easier and to use some of the matrix functions provided by MATLAB.
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6.2 Experiments for Filters

The first experiment done consists of a broad band signal corrupted with uniformly
distributed random noise. Here, the aim was to filter out the noise. The results are shown

in Figures 6.1-6.12.
6.3 Experiments for Compression

The second experiment was done on an ECG signal of a healthy person taken at the
Electronics and Electircs Department of 9 Eylul University. The results are shown in

Figures 6.13-6.16.

The third experiment was done on a EMG signal of a patient at Ege University

Hospital. The results are shown in Figures 6.17-6.20.
6.4 Results of the Filter Experiment
First, the noise-free signal function y(t) as defined below is selected.

0 t< 002
— 2
y(t) = sin(—tn—) otherwise (6.1)

Since this is a wide-band signal, it is difficult to filter it with classical filtering methods.
1000 uniformly spaced samples of y(t) is sh(‘)wn in Figure 6.2a.. Next a uniformly
distributed random noise shown in Figure 6.1, which has values [-0.1,+0.1] is added to
form the noisy signal -ny(t)- as shown in Figure 6.2b. Since noise adds high frequency

components to signals, lowpass filter types were applied.

FIR Lowpass Filter:
o 1 is the filter order, max(n) is 330, Wn is the cutoff frequency. (scaled by taking the
Nyquist frequency -which is the half of the sampling frequency 1000Hz- as 1.) Results

are shown in Figure 6.2c and 6.3.
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Ip1(t): =300, Wn=0.2
Ip1(t): n=300, Wn=0.7
Ip1(t): n=2, Wn=0.2
Ip1(t): n=2, Wn=0.7

Butterworth Filter:

The program is arranged so that it finds the best filter order for the given specifications.
stopband attenuation is always taken as 20 log,N, where N is the maximum Fourier
coefficient of noise, as shown in Figure 6.4. The results are given in Figure 6.5.

Ap is the passband attenuation.

f(t):, Ap=0.1dB | i

f2(t): Ap=1dB

f3(t): Ap=10dB

Chebyshev Filter:

The program is arranged so that it finds the best filter order for the given specifications.
The filter is given in Figure 6.6 and the results are shown in Figure 6.7.

stopband attenuation is always taken as 20 log,,N where N is the maximum Fourier
coefficient of noise.

Ap and Rp are the passband attenuation and passband ripple respectively.

cl(t): Ap=0.1, Rp=0.5
“¢2(t): Ap=1, Rp=0.5

cl(t): Ap=10, Rp=0.5

cl(t): Ap=0.1, Rp=0.1

cl(t): Ap=1, Rp=0.1

cl(t): Ap=10, Rp=0.1

Bessel Filter:

n is the filter order, max(n) is 330, Wn is the cutoff frequency. (scaled by taking the
Nyquist frequency -which is the half of the sampling frequency 1000Hz- as 1. The filter
is shown in Figure 6.9 an the results in Figure 6.10.

bl(t): n=2, Wn=0.05
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e bi(t): n=2, Wn=0.1
e bl(t): n=2, Wn=0.2

Wiener Filter:

e the algorithm explained in Chapter 3 is followed. Result is given in Figure 6.12a

Occam Filter:
e Algorithm explained above is applied.
e PSD of noisy signal is as shown in Figure 6.11.

¢ ¢ is found to be 0.1002. Result is in Figure 6.12b.

6.5 Comparison of the Filter Types

Because the noise-free signal is a wideband signal and the lowpass filters of
Butterworth, Chebyshev, Bessel and FIR filters are used, at high frequencies the filtered
signals do not follow the noise-free signal at all. If high pass filters were used, opposite

would have happened.

Another handicap with these type of filters and the Wiener filter, is that some

information such as the cutoff frequencies, or the noise strength must be known in advance.

As a result, Occam filter outperforms the other types of signals when the signal is a

broad band one and nothing is known about the signal beforehand.



magnitude of noisy signal

76

4 T [ T T T T T
3
6 3 - —
c ‘
° | | bl ; I
"02 ' | {Il \ fé‘ s b ‘K“ ﬂ b Lt I '1"" ‘l
3 i ‘[| ‘1 1 i it ! LI el | i ll | A it
5 I | CUR L A il
@ 1 | ik ] il | i ‘ .
E ‘ ' | ;

0 ! 1 1 1 iy 1 | i 1

0 100 200 300 400 500 600 700 800 900 1000
frequency ;
250 1 1 l T l T | T T
200} 1
150 .
100
50+ 8
0
0 100 200 300 400 500 600 700 800 800 1000

frequency

Figure 6.1 a) Frequency Response Spectrum of Noise b) Frequency Response

Spectrum of Noisy Sequence



77

1 T I [ 1
*\;1 0
-1 ! 1 1 1 L i ] !
0 100 200 300 400 500 600 700 800 300 1000
t
2 [ I 1 1 T T T | [
Al
= i
=0 | i U
c 1 I|| it
R ! 1 L 1 ! L B I i
0 100 200 300 400 500 600 700 800 900 1000
t .
2 [ [ T I T I [ [ T
0
o
-2

! ! | 1 | L 1 1 1
0 100 200 300 400 500 600 700 800 800 1000

Figure 6.2 a) Plot of Noise-Free Sequence b) Noisy Sequence
c¢) Lowpass Filtered Sequence ( n=300,Wn=0.2)



78

Figure 6.3 a) Lowpass Filtered Sequence ( n=300,Wn=0.7) b) Lowpass Filtered

Sequence ( n=2,Wn=0.2) c) Lowpass Filtered Sequgnce (n=2,Wn=0.7)
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6.6 Results of the Compression Experiment

The number of samples in the original sequence, which is shown in Figure 6.13, of the

first compression experiment is 1000.

Vector Quantization:
e 8 codebook values, each represented by 32 bits

e 8 level can be represented by 3 bits.

8%32 + 3*+1000 = 3256 bits used after compression.

1000+16 = 16000 bits needed for the original signal

79.65% of compression is achieved. Result is given in Figure 6.14a

DCT:

o The energy ratio (%97.99882) that is kept is arranged so that the compression ratios of

Occam filter and DCT compression is the same. Output is given in Figure 6.14b.

Run Length Coding:
e The resulting compressed signal had 673 pairs as (A, B) where A is the sample value

and B is the number of times it repeats itself. (Largest B was 20)

e 673%16+1000+4 = 14768 bits used after compression

¢ 1000+16 = 16000 bits needed for the original signal

e 7.7% of compression is achieved. The result is given in Figure 6.14c.

Occam Filter: (PSD is in Figure 6.15) '

o At £=0.15, only 720 points are left after compression. 28.00 % of compression is
achieved (Figure 6.16a).

o At £=0.34, only 517 points are left after compression. 48.40% of compression is
achieved. (Figure 6.16b).

. ‘At £=0.8, only 250 points are left after compression. 75.00% of compression is

achieved. (Figure 6.16c¢).
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The number of samples in the original sequence, which is shown in Figure 6.17, of the

second compression experiment is 121.

Vector Quantization:
e 8 codebook values, each represented by 16 bits

e 8 level can be represented by 3 bits.

816+ 3*121 = 491bits used after compression.

121%16 = 1936 bits needed for the original signal

74.64% of compression is achieved. Result is given in Figure 6.18a.

DCT:

e The energy ratio (%97.4) that is kept is arranged so that the compression ratios of

Occam filter and DCT compression is the same. Result is given in Figure 6.18b.

Run Length Coding:

e The resulting compressed signal had 91 pairs as (A, B) where A is the sample value and

B is the number of times it repeats itself. (Largest B was 20)
e 91x16+ 91x5= 1911 bits used after compression
o 121%16 = 1936 bits needed for the original signal

* 1.29% of compression is achieved. Result is given in Figure 6.18c.

Occam Filter: (PSD is in Figure 6.19)

e At e=500, only 113 points are left after compression. 6.61% of compression is achieved
(Figure 6.20a). ‘

e At £=1112, only 65 points are left after compression. 46.28% of compression is
achieved (Figure 6.20b).

s At £=1500, only 46 points are left after compression. 31.98% of compression is

achieved (Figure 6.20c).
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6.7 Comparison of Compression Types

Although there is a big growth in computer technology, mainly because of their size,
processing of medical data is still a problem. Lossless compression schemes do not
compress the large amount of data enough, on the other hand lossy compression schemes

cause to loose to much information for a right diagnosis.

From the reconstructed signals in Figure 5.18, 5.20, 5.22, 5.24, it can be seen that
Vector Quantization Compression scheme resulted as the worst case. Although it achieved
the best compression, some important information is totally lost. One may argue that it is
becaQse the codebook is only an 8-level one, however, because of the too much difference

between data samples, further leveling is impossible.

The compression ratios of Occam Filter and the DCT Compression for this signal
sequence is the same, but it is clear that the reconstructed signal of the DCT Compression

is more complex than the original.

The second best reconstructed signal is achieved by Occam Filter and it is in the
acceptable boundaries. According to the doctors, performance of the reconstructed signal
of Run-Length coding is the best. However, the compression ratio of Run Length coding is
the worst. Moreover, the problem with the Run Length Coding is to find the right threshold
value to get the best reconstructed signal. In this example, the value of the noise strength

found by the algorithm described in section 2.5 is used.

To conclude, balance between thé compression ratio and the shape of the reconstructed

signal is best achieved by Occam Filters.
6.8 Image Filtering with Occam Filters

In theory of SVD [7], any MxN image can be decomposed uniquely as

1=USV' =) o,i,v! (6.2)
i=1
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where U and V are orthogonal matrices with column vectors U,and ¥; and
Z= diag(onl,az,. ..,ocn) is a diagonal matrix.

The o, of 2 are called the singular values of I and when arranged in descending order,

give r, the rank of the matrices I because
o, 2z, 2..0,>a.,, =.=0, =0 (6.3)

However, it is observed that when an image matrice I is corrupted with noise, the last n-

r a of the noisy image N+I=NI are small but not necessarily zero [5].

From this observation, we can conclude that, given a threshold € and a as the singular

values of NI, if a window for o]

0l al <eg 6.4)

a! otherwise
B; =

is applied to NI, filtered image B = U2}V, where T} = diag(B, By ..,Bn) can be found.

As aresult, general algorithm for filtering an image can be summarised as:
divide MxN noisy image matrix NI into nxn subblocks B,
. perform SVD on each block

set to zero the singular values of each subblock that are less than a threshold €

> LN =

unite the subblocks to form the filtered image.
The problem with this algorithm is to find the right threshold value € to control the
amount of loss. The algorithm for finding € in Occam filters applies to this situation as

well.
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6.9 Experiment and Results

Accepting that to reduce the noise lowpass filtering must be done, Median, Lowpass
(window method) and Lowpass (frequency domain) are applied to a n image corrupted

with random noise.

From the results of Figure 6.21, we can conclude that two dimensional Occam Filtered

image does not perform well.
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Original Image

Median Filtered Image

Low Pass Filtered Image

Figure 6.21 a) Original Image b) Noisy Image c¢) Lowpassed ,Filtered Image d) Occam
Filtered Image ¢) Median Filtered Image f) f domain Filtered Image
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CHAPTER SEVEN
CONCLUSION

The developments in computer technology helps us to ease signal processing. However,

there are still some problems to be solved.

Especially, handling medical data is a problem. During the acquisition of the data, the
current given to the patient causes pain. Moreover, because of the human body system, the

retrieving must be repeated several times to get clear data.

After this, comes the second problem, the storage of large amount of data. To decrease
the number of data samples that hold the same amount of information is possible by
compression methods, but lossless compression does not compress enough and lossy

compression techniques loose to much of the information for a right diagnosis.

Occam Filters, as proved by the experiments done, compress the medical data much
better than the other methods. It also solves the problem of repeating the acquisition, which
causes pain, several times by its noise removing property. This second property is also
used in the random noise removal from the deterministic signals that are wide-band. As
shown in text, lowpass or highpass filters remove important part of the signal while

removing the noise because signal is a wideband one.

As a result, Occam Filters outperforms other classical methods in compressing and

filtering of medical data and deterministic signals from random noise.
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