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and dedicated efforts which contributed a lot for completion of my thesis.

Finally, I owe thanks to a very special person, Tunç Taşkınarda for his continued
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ROBUST ESTIMATOR BASED RECEIVER DESIGN IN DIGITAL

COMMUNICATION SYSTEMS

ABSTRACT

In this thesis, baseband and band-pass waveform design is proposed to transmit

and receive binary information under non-Gaussian impulsive noise environment. The

additive channel noise is modelled by α-stable distribution. Differing from the previous

studies, the signal detection problem under α-stable noise is analysed by considering

both symmetrical and skewed cases. It is shown that signal detection performance

decreases when the noise exhibits asymmetric behaviour.

Once the destructive effect of skewness of the noise on communication is

determined, two strategies are proposed to reduce the skewness of the channel noise.

The first attempt is to add α-stable noise having the same impulsiveness and opposite

skewness at the input of the receiver in order to symmetrize the resultant noise. This

operation corresponds to stochastic resonance phenomena. As the second approach,

the robust estimators are utilized to increase the signal detection performance under

skewed impulsive noise by introducing novel waveform design which is primarily

based on converting signal to be transmitted into an intentionally antipodal waveform.

The receiver undoes the same operation and uses robust estimators to reduce the

skewed α-stable noise on the deterministic signal to recover the transmitted binary

information even if the channel noise distribution is not known in advance.

In order to expose the improvement of the proposed methods, coherent detection

and non-coherent differential modulation based waveform design are proposed to

illustrate the enhancement in bit error rate, respectively. The antipodal waveform

design provides digital communication for not only skewed α-stable noise but also

any non-Gaussian noise having symmetric and/or skewed distribution.

Keywords: Skewed α-stable distribution, robust estimators, stochastic resonance,

digital communication
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SAYISAL HABERLEŞME SİSTEMLERİNDE GÜRBÜZ KESTİRİCİ

TABANLI ALICI TASARIMI

ÖZ

Bu tezde, Gauss olmayan dürtüsel gürültü ortamında ikili bilgi iletmek ve almak

için temel bant ve bant geçiren dalga formu tasarımı önerilmektedir. Eklentisel kanal

gürültüsü α-kararlı dağılım ile modellenmiştir. Önceki çalışmalardan farklı olarak

α-kararlı gürültü altında sinyal tespit problemi, hem simetrik hem de eğik durumlar

dikkate alınarak analiz edilmiştir. Gürültü asimetrik davranış gösterdiğinde sinyal

tespit performansının düştüğü gösterilmiştir.

Gürültünün eğikliğinin haberleşme üzerindeki yıkıcı etkisi belirlendikten sonra,

kanal gürültüsünün eğikliğini azaltmak için iki yaklaşım önerilmektedir. İlk yaklaşım,

ortaya çıkan gürültüyü simetrik hale getirmek için, alıcının girişine aynı dürtüselliğe

ve zıt eğikliğe sahip α-kararlı gürültü eklemektir. Bu durum stokastik rezonans

olayına karşılık gelir. İkinci yaklaşım, gürbüz kestiriciler kullanarak, iletilecek sinyali

antipodal bir dalga formuna kasıtlı olarak dönüştürmeye dayanan yeni dalga formu

tasarımı sunarak eğik dürtüsel gürültü altında sinyal tespit performansını arttırmaktır.

Alıcı aynı işlemi geri alır ve kanal gürültü dağılımı önceden bilinmese bile, iletilen

ikili bilgiyi kurtarmak için deterministik sinyal üzerindeki eğik α-kararlı gürültüyü

azaltmak için gürbüz kestiriciler kullanır.

Önerilen yöntemlerin gelişimini ortaya koymak için, sırasıyla bit hata hızında artışı

göstermek için tutarlı tespit ve tutarlı olmayan diferansiyel modülasyon tabanlı dalga

formu tasarımı önerilmektedir. Antipodal dalga formu tasarımı, sadece eğik α-kararlı

gürültü için değil, aynı zamanda simetrik ve/veya eğik dağılımlı Gauss olmayan

gürültü için sayısal haberleşme sağlar.

Anahtar kelimeler: Asimetrik α-kararlı dağılım, gürbüz kestiriciler, stokastik

rezonans, sayısal haberleşme
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CHAPTER ONE

INTRODUCTION

One of the main problems in the physical layer in digital communication is the

modelling of the receiver according to conventional assumptions. The strongest

assumption in the statistical signal processing for communication is that noise in the

channel that determines the design of estimators, sensors and filters have a Gaussian

distribution. However, many of the real life noise processes like atmospheric noise,

underwater acoustic noise and several man made noise types are classified as non -

Gaussian environment. The recent studies propose that the noise is ensured to exhibit

non-Gaussian characteristic especially impulsive nature (Win et al., 2009).

As an overview, the signal detection problem is begun to be formalized in a

non-Gaussian environment (Kassam & Thomas, 1987). Generally, the channel noise

is assumed to be Gaussian to simplify design and implementation of detectors (Nikias

& Shao, 1995). The impulsive noise contains outliers which cause the distribution to

be heavy tailed (Zoubir et al., 2012). The appropriate model for heavy tailed

distributions is Alpha stable distribution (SαS). In the presence of impulsive noise,

designing of a linear detector according to the Gaussian assumption is not suitable for

impulsive nature because the impulsive noise significantly decreases error

performance (increasing error probability and rate of false alarm) (Nikias & Shao,

1995). To minimize those types of effects optimum and sub optimum detectors are

extensively designed in the presence of symmetrical α-stable (SαS) noise (Nikias &

Shao, 1995). In the general case, explicit-form of probability density function (pdf) of

alpha stable noise does not exist (Kassam & Thomas, 1987). Hence for alpha stable

noise, designing of only sub-optimum receivers are possible. Subsequently, a receiver

design is proposed that includes analytical expression of a near optimal detector under

impulsive noise (Kuruoglu et al., 1998). In symmetric alpha stable noise, sub

optimum detection can be analysed to have low complexity by applying adaptive

threshold (Saleh et al., 2012) and by defining some detectors such as Cauchy detector,

soft limiter (Sureka & Kiasaleh, 2013). In different studies and approaches,

performance of signal detection are observed where noise in the channel is thought as
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mixture of both SαS and Gauss distribution (Wang et al., 2008; Khalil et al., 2011).

The impulsive noise components that cannot be modelled by the Gauss distribution

in the channel noise cause the receiver performance to drop dramatically. For this

reason, the literature emphasizes the function of robust estimators as filters and the

necessity of eliminating noise (Zoubir et al., 2012). A remarkable study introducing a

weighted myriad filter which is one type of robust estimator is recommended for digital

communication (Gonzales et al., 1996), and after that study is expanded to contain

weighted median filters (Gonzales & Arce, 2002). In (Djurovic & Stankovic, 2002),

L-filter based discrete Fourier transform (L-DFT) method is used to filter impulsive

noise components and it is reported that the L-DFT has poor performance compared

to weighted median / myriad filters despite the reduced complexity. Another robust

estimator is defined in (Aysal & Barner, 2007) and it is reported that the meridian filter

provides better robustness against the impulsive noise compared to the median and

myriad filters. The meridian filter is modified to have an adaptive weighted form to

improve filter performance (Stork, 2010).

The robust estimators like median, myriad and meridian filters are generally used

to estimate location parameter. It is reported that parameter estimation and noise

reduction from time-varying signals is one of the difficult problems in robust

estimation (Zoubir et al., 2012). One approximation is formulations of myriad and

meridian filters are updated to demonstrate a p-norm filter, and time-varying

behaviours happen because the input data is placed through a temporal sliding

window of specific length (Pander & Przybyla, 2012). In other studies, both L_p

norm minimization and myriad filter are used at the receiver side of a single carrier

communication (Mahmood et al., 2014b) and OFDM signal detection (Mahmood

et al., 2014a). If the amplitude variation of the deterministic signal is not negligible

compared with its average value, sliding window is not an appropriate approximation

to filter the time varying signal. In a recent study, beyond the conventional methods of

filtering which uses a sliding window, problem is considered as detection of location

estimation. The samples of periodic sinusoidal carrier signal which have the same

amplitude in each period, are grouped as repeated identical observations which have

2



equal distance in time domain (Yang et al., 2018). A similar type of approximation is

performed to design a near optimal detector for correlation detection (Zhang et al.,

2018).

The common assumption in the literature is that channel noise in non-Gaussian

environment exhibits symmetrical behaviour. Even though there was a primary

initiative to detect signals under asymmetric noise (Kassam et al., 1982), there is not

any study stressing the effect of asymmetry of non-Gaussian noise. This thesis tackles

noise reduction problem of the sinusoidal signal under asymmetric α-stable noise

using robust estimators. Inspired by non-coherent chaotic communication method

known as differential chaos shift keying, a non-coherent digital communication based

technique which is analogous to differential BPSK (DBPSK) is introduced and used,

because both the reference and information bearing signals are affected from the

channel noise and non-coherent detection is used rather than synchronous detection to

show the effect of reducing noise at the receiver. In this thesis, it is also proposed that

intentional impulsive noise is added to the receiver which has reverse skewness

parameter to improve receiver performance. The results are shown with bit error rate

simulations.

The thesis is organized as follows. The next section describes α-stable distributions

and robust estimators. The necessity of intentional noise and performance

improvement in terms of skewness parameter and generalized signal to noise ratio

(GSNR) due to stochastic resonance phenomena are given. In chapter three, signal

estimation under robust estimators with proposed sinusoidal location estimation

method for both bandpass and baseband communication system are described. The

simulations are performed and the results are concluded in the last chapter.

3



CHAPTER TWO

SIGNAL DETECTION IN NON-GAUSSIAN NOISE

In conventional signal processing applications, detection theory is utilized to decide

whether a certain signal embedded in noise is present or not. The noise parameters may

not be known in real world problems. In a general point of view, the random process

as the noise sequence corrupting deterministic signal is modelled by its probability

density function. However, if the analytical expression does not exist as is the case for

α-stable distributions, characteristic function is used to describe the probability density

function. In digital communication systems, detection theory provides to extract test

statistic in order to determine receiver characteristics in both base-band and band-pass

domain.

2.1 Alpha Stable Distribution

Although the channel noise is generally modelled with Gaussian distribution,

additive non-Gaussian noise especially exhibiting impulsive behaviour is properly

modelled by α-stable distribution.

One dimensional stable distribution can be expressed by its characteristic function

as,

ϕ(ω) =


exp

{
−σα|ω|α(1− jβsgn(ω)tan (πα)

2 ) + jµω
}
, if α , 1

exp
{
−σ|ω|(1 + jβ2

π sgn(ω)ln|ω|) + jµω
}
, if α = 1

(2.1)

where

sgn(ω) =


1, if ω > 0

0, if ω = 0

−1, if ω < 0

(2.2)

where characteristic exponent α, skewness parameter β, scale parameter σ and the

4



shift parameter µ tune the impulsiveness, asymmetry, the intensity and the location,

respectively.

In the literature, scale is alternatively defined also as dispersion γ, having the

relation γ=σα (Swami & Sadler, 2002). The distribution is said to be symmetric

around the location µ if β = 0. Since the effect of shift is not under consideration,

location parameter is discarded (µ = 0). The probability density function (pdf) of the

stable distribution can be found as (Janicki & Weron, 1994).

S α(x;σ,β,µ) =
1

2π

∫ +∞

−∞

ϕ(ω)e− jωxdω (2.3)

There is not a closed form expression for density function except for the special

cases which are Gaussian (α = 2), Cauchy (α = 1) and Levy (α = 1/2 , β = 1)

distributions (Janicki & Weron, 1994).

The density function of Gaussian distribution is given as

S 2(x;σ,0,µ) =
1

σ
√

2π
exp

(
−

(x−µ)2

2σ2

)
. (2.4)

The density function of Cauchy distribution is given as

S 1(x;σ,0,µ) =
2σ

π
[
(x−µ)2 + 4σ2

] . (2.5)

The density function of Levy distribution is given as

S 1/2(x;σ,1,µ) =

(
σ

2π

)1/2

(x−µ)−3/2exp
(
−

σ

2(x−µ)

)
. (2.6)

These pdf functions are plotted in Figure 2.1. Any other stable density has pdf

function determined numerically by the characteristic function (Samoradnitsky &

Taqqu, 1994).
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Figure 2.1 The variation on pdf with respect to α parameter (β = 0)

Alpha stable distribution is defined if α is in range 0 < α < 2. It means that the alpha

stable random variables have infinite variance (second moment), so techniques which

are used for Gaussian distribution are not applicable for alpha stable distribution. Thus,

if X is a random variable, which has α-stable distribution, the property can be defined

as,

E|X|p <∞, if p < α

E|X|p→∞, if p ≥ α
(2.7)

where E is the expectation operator. The variance is finite for only Gaussian noise as a

result of this property. An illustration of pdf according to different α and β parameter

values are given in Figures 2.1 and 2.2
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Figure 2.2 The variation on pdf with respect to β parameter (α = 1.5)

The other stable distribution properties are given as follows:

Property 2.1.1. Let X1 ∼ S α(σ1,β1,µ1) and X2 ∼ S α(σ2,β2,µ2) are independent

random variables and addition of these two random variables are resulted in

(Samoradnitsky & Taqqu, 1994).

X1 + X2 ∼ S α(σ,β,µ) (2.8)

where σ = (σ1
α+σ2

α)
1
α , β =

β1σ1
α+β2σ2

α

σ1α+σ2α
, µ = µ1 +µ2.

Property 2.1.2. Let X ∼ S α(σ,β,µ) and y is a real constant which is added to X random

variable. The result can be shown as in Eq. (2.9) (Samoradnitsky & Taqqu, 1994).

X + y ∼ S α(σ,β,µ+ y) (2.9)

Property 2.1.3. Let X ∼ S α(σ,β,µ) and c is a non-zero real constant which is

multiplied by X random variable. The result can be shown as in Eq. (2.10)

(Samoradnitsky & Taqqu, 1994).
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cX ∼ S α(|c|σ, sign(c)β,cµ) if α , 1

cX ∼ S 1(|c|σ, sign(c)β,cµ− 2
πc(ln |c|)σβ) if α = 1

(2.10)

Property 2.1.4. The effect of the skewness parameter can be given for 0 < α < 2 in

Eq. (2.11) (Samoradnitsky & Taqqu, 1994).

X ∼ S α(σ,β,0) ⇐⇒ −X ∼ S α(σ,−β,0) (2.11)

Property 2.1.5. X ∼ S α(σ,β,µ) is called as symmetric distribution only for the case

β = µ = 0 (Samoradnitsky & Taqqu, 1994).

Property 2.1.6. When α , 1, X ∼ S α(σ,β,µ) is called as strictly stable only for the

case µ = 0 (Samoradnitsky & Taqqu, 1994).

Property 2.1.7. When α = 1, X ∼ S 1(σ,β,µ) is called as strictly stable only for the

case β = 0 (Samoradnitsky & Taqqu, 1994).

2.2 Antipodal Signal Detection

In digital communication, antipodal signalling, obviously corresponds to baseband

binary phase shift keying (BPSK) modulation. Considering the set of observations in

discrete time within a symbol duration, the baseband antipodal signal detection

problem can be formulated as decision of DC level A having different sign as given in

(2.12),
H0 : x[n] = −A + w[n]

H1 : x[n] = A + w[n]
(2.12)

where n = 0, 1, . . . , N. The noise components w[.] are assumed to be independent and

identically distributed and to have distribution w[.] ∼ S α(.;σ,β,0). The probability

densities with respect to each antipodal signal reflecting the binary hypothesis is shown

in Figure 2.3.

8
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Figure 2.3 Binary hypothesis under α-stable noise

According to Figure 2.3, it is observed that conditional likelihood functions are not

identical due to the asymmetry of the noise in the channel. The probability of error can

be obtained as,

Pe = P(H1|H0)P(H0) + P(H0|H1)P(H1). (2.13)

Since message bits are equally likely P(H1) = P(H0) = 1/2, the error probabilities

are not equal and probability of error can be written as,

Pe =
1
2

P(H1|H0) +
1
2

P(H0|H1). (2.14)

The probability of error can be approximated by substituting Eq. (2.6) and (2.12) in

(2.14) as follows,

Pe =
1

4π

[∫ 0

−∞

∫ ∞

−∞

ϕ(ω)e− jω(x+A)dωdx +

∫ ∞

0

∫ ∞

−∞

ϕ(ω)e− jω(x−A)dωdx
]
. (2.15)

Although the error probability is a function of noise intensity, it is more convenient

to express variation of error with respect to signal to noise ratio. Since the noise has

9



infinite variance for α<2, the term "generalized signal to noise ratio (GSNR)" (Sureka

& Kiasaleh, 2013) is defined as,

GS NR = 10log
A2

γ
. (2.16)

For the sake of simplicity, dispersion is taken to be γ = 1. Then, the signal amplitude

can be tuned for specified GSNR value as,

A =

√
10

GS NR
10 . (2.17)

The probability of error can be redefined as a function of GSNR as,

Pe(GS NR) =
1

4π

[∫ 0

−∞

∫ ∞

−∞

e−σ
α|ω|α(1− jβsgn(ω)tan (πα)

2 ))e− jω(x+

√
10

GS NR
10 )dω dx

+

∫ ∞

0

∫ ∞

−∞

e−σ
α|ω|α(1− jβsgn(ω)tan (πα)

2 ))e− jω(x−

√
10

GS NR
10 )dωdx

] (2.18)

where the impulsiveness is assumed to lie within the interval 1<α≤ 2 and β ∈ [−1,+1].

Numerical simulations are given with respect to GSNR which illustrates the effect

of noise parameters to error probability. In Figure 2.4, the probability of error for

antipodal signalling under symmetric α-stable (SαS) distribution is illustrated with

respect to various characteristic exponents.

It is significant to observe that the error probability becomes apparently poorer

when the noise characteristic is even slightly impulsive. The error performance is

observed to be dramatically worse especially for decreasing characteristic exponent α,

i.e., increasing impulsiveness.
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Figure 2.4 Probability of error under symmetric α-stable noise (β = 0)
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Figure 2.5 Probability of error for fixed α = 0.8 by tuning β
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Figure 2.6 Probability of error for fixed β = 1 by tuning α

The effect of skewness on probability of error are investigated by tuning skewness

for fixed characteristic exponent and tuning characteristic exponent for fixed skewness

as shown in Figures 2.5 and 2.6, respectively. It is quite apparent that, probability of

error gets worse when the stable noise becomes more skewed and / or more impulsive

for fixed impulsiveness (Cek & Senturk, 2018).

It can be shown that the error performance can be improved at the receiver if the

noise is converted to exhibit symmetric behaviour (Cek & Senturk, 2018). In addition

to error probability, the receiver operating characteristics (ROC) gives a clue about

how the skewness affects ROC curves which are shown in the next section.

2.3 Receiver Operating Characteristics

The receiver operating characteristic (ROC) is the graphical representation which

gives relations between the true positive rate and false positive rate which corresponds

to probability of detection (PD) and probability of false alarm (PFA), respectively in
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detection theory. The curve shows the relationship between PD on x axis and PFA

on the y axis. The variation of PD with respect to PFA is essential to be analysed in

order to exhibit the effect of both skewness and impulsiveness of the noise together.

Before analysing the effect of skewness, the false alarm and detection probabilities are

expressed by approximate analytical expressions given in Eq. (2.19) and Eq. (2.20),

respectively.

PFA = P{T > 0;H0} =
1

2π

∫ ∞

0

∫ ∞

−∞

ϕ(ω)e− jω(x+A)dωdx (2.19)

PD = P{T > 0;H1} =
1

2π

∫ ∞

0

∫ ∞

−∞

ϕ(ω)e− jω(x−A)dωdx (2.20)

where T is the test statistic obtained from Neyman Pearson test (Kay, 1993). Before

analysing the effect of skewness, the noise is assumed to have symmetric α-stable

distribution (β=0).
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Figure 2.7 Variation of ROC characteristic with respect to different α values (β = 0)

The comparison of ROC curves including different characteristic exponent in terms

of detection and false alarm probabilities are illustrated in Figure 2.7. It is clearly seen
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that when the impulsiveness of the noise is increased, i.e. α is decreased, the detection

performance is poorer for fixed false alarm probability.
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Figure 2.8 Variation of ROC characteristic with respect to different β values, (GSNR = 3 dB, α=1.5)
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Figure 2.9 Variation of ROC characteristic with respect to different β values, (GSNR = -3 dB, α=1.5)
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The investigation of ROC characteristics under skewed α-stable noise is shown in

Figure 2.8 for fixed GSNR=3 dB and in Figure 2.9 for fixed GSNR=-3 dB,

respectively. It is observed in both of plots that the detection performance alternates

with respect the sign of the skewness and increasing false alarm probability. The

negative skewness is observed to yield increased detection performance compared to

both symmetrical and positive skewed stable noise whereas the detection performance

becomes lowest when the false alarm probability is increased (Cek & Senturk, 2018).

Also, the effect of characteristic exponent and GSNR are illustrated in Figure 2.10

and Figure 2.11 for fixed skewness ( β=1). It is obvious that detection probability

increases with respect to false alarm probability when GSNR increases, as expected.

When the noise exhibits more impulsive behaviour as shown in Figure 2.10 (α=0.8),

the same behaviour is observed noting that the detection performance for the fixed false

alarm rate decreases.
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Figure 2.10 Variation of ROC characteristic with respect to different GSNR values (α = 0.8, β = 1)
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Figure 2.11 Variation of ROC characteristic with respect to different GSNR values (α = 1.5, β = 1)

2.4 Stochastic Resonance in Skewed α-Stable Noise

Improvement on detection of deterministic signal provided by adding noise at an

optimum intensity can be described as stochastic resonance phenomenon. In other

words, stochastic resonance occurs when the random noise provides a better system

performance in non-linear systems (Mcdonnell et al., 2008). In the literature, stochastic

resonance is widely used to detect the weak signals. According to uncontrollable noise

intensity, noise-induced stochastic resonance is in limited range in most applications,

so the parameter-induced stochastic resonance is found in more study areas (Jiao et al.,

2016, July).

At the receiver, intentional noise having different skewness is added to the channel

noise exhibiting skewed impulsive distribution in order to achieve stochastic

resonance, and improvement in receiver performance occurs when the asymmetry

value of the added noise is in contrast to the asymmetry of the noise in the channel.

The error performance becomes better when the impulsive noise is symmetric. In this
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case, intentional noise should be designed to bring total symmetry to zero.
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Figure 2.12 Bit error rate performance change according to β parameter (α = 1.4)

The error performance becomes better when the impulsive noise is symmetric so,

intentional noise should be designed to bring the total symmetry to zero. Figure 2.12

shows the receiver performance which becomes better when the impulsive noise is

symmetric. The BER performance improvement increases if impulsiveness decreases

but the effect of β is more apparent when the impulsiveness increases.

By adding intentional noise components with the same characteristic exponent

which has distribution wm[.] ∼ S α(α,βm,σm,0; x) the signal in the receiver is obtained

as follows

r[n] = s[n] + w[n] + wm[n]. (2.21)

The noise is wr[n] = w[n]+wm[n] obtained as a result of the above equation and the

asymmetry and scaling values of the noise wr[.] ∼ S α(α,βr,σr,0; x) are given in Eq.

(2.22)
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βr =
βσα+βmσ

α
m

σα+σαm
, σr = (σα+σαm)

1
α . (2.22)

This situation corresponds physically to the stochastic resonance event and it is

determined that the performance reaches the best value in combination of the

asymmetry parameter and noise intensity that provides resonance. It is proposed to

add intentional noise at the receiver having opposite skewness to increase the receiver

performance.

BER performance improvement using stochastic resonance is given in Section 3.5

where robust estimators are utilized.
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CHAPTER THREE

SIGNAL DETECTION USING ROBUST ESTIMATORS

Basically, digital communication systems consist of three main sections: channel,

transmitter and receiver. The transmitter transmits the message generated by the

information source over the channel. At this point, the signal is disrupted due to

undesirable conditions in the channel and transmitted to the receiver. The receiver has

the task of working to create the original signal by various methods (Haykin, 2014).

Typical digital communication scheme is given in Figure 3.1. Since source encoding

and channel encoding are not concentrated on this study, raw binary information is

considered to transmit the baseband and/or bandpass message.

Figure 3.1 Block diagram of a typical digital communication system (Haykin, 2014)

Communication system can be characterized as baseband and bandpass with

respect to modelling based on unmodulated and modulated signal, respectively. If no

modulation is applied to transmit the signal, it is called a baseband system, and if it is
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moved to a higher frequency band than the frequency band it is in, it can be called a

bandpass system. In baseband system, no frequency shifting is needed to transmit

signal.

Digital modulation is the process of converting a bit stream into a waveform for

transmission over a specific channel. Digital modulation techniques are required for

wireless communication and provide higher information capacity, security and quality

compared to analog communication systems.

Phase Shift Keying (PSK) is one of the digital modulation techniques. This

technique is used to transmit data by changing phase of the reference signal which has

constant frequency. PSK is more robust to additive noise than the Amplitude Shift

Keying (ASK). ASK uses symbols with different amplitudes and is sensitive to

additional noise. On the other hand, PSK is much more bandwidth efficient than

Frequency Shift Keying (FSK) because different FSK uses different frequency

symbols that are not bandwidth efficient. The simplest modulation waveform can be

expressed as binary PSK which corresponds to transmitting and receiving antipodal

waveforms.

3.1 Coherent and Non-Coherent Systems

A digital communication system can be classified with detection techniques. If

there is a phase information for transmitted carrier at the receiver, the system is

expressed as coherent. This system employs coherent detection, and both frequency

and phase are synchronized and it is also known as synchronous detection. Generally

coherent system includes phase recovery circuit which provides reproducing the

transmitted signal. Unlike coherent systems, non-coherent systems do not require

phase information and synchronism is not needed for this type of systems.

The creation of demodulation carrier for coherent systems can be done using

various techniques. The use of these techniques complicates the design of the

receiver. If system is non coherent, it becomes simpler to design when compared to
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coherent systems but error probability becomes worse.

3.2 Differential Binary Phase Shift Keying (DBPSK)

Binary data in typical BPSK system are represented with two different phases and

signals. These signals s1(t) and s2(t) are expressed as in Eq. (3.1) with phases 0 and π,

s1(t) = Acos(2π fct), 0 ≤ t ≤ T

s2(t) = −Acos(2π fct), 0 ≤ t ≤ T
(3.1)

where A is the amplitude, fc is the carrier frequency, and T is the signal duration.

Typical BPSK waveform, modulator and demodulator are given in Figures 3.2, 3.3 and

3.4 respectively.
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Figure 3.2 Typical BPSK waveform

Figure 3.3 Diagram of BPSK modulator
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Figure 3.4 Diagram of BPSK coherent demodulator

Non-coherent detection does not require phase information, so DBPSK system can

be demodulated non-coherently. In DBPSK system, input bits are first differentially

encoded and modulated with BPSK modulator. Received signal r(t) can be non

coherently demodulated after differentially decoding. Regarding to unknown phase, it

can be assumed that x1(t) and x2(t) are orthogonal and have the same energy (Haykin,

2014) which are phase shifted versions of transmitted signal s1(t) and s2(t),

respectively. Received signal can be expressed as,

r(t) =


x1(t), s1(t) transmitted for 0 ≤ t ≤ T

x2(t), s2(t) transmitted for 0 ≤ t ≤ T .
(3.2)

Block diagrams for DBPSK modulator and demodulator are given in Figures 3.5

and 3.6, respectively.

Figure 3.5 Block diagram of DBPSK modulator (Xiong, 2006)
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Figure 3.6 Block diagram of DBPSK demodulator (Xiong, 2006)

The proposed communication system in this thesis can be considered as analogous

to modified DBPSK. Non-coherent detection used at the receiver causes the effect of

the proposed skewed α - stable noise suppression to be more apparent since the

reference and the information bearing signals are both affected by the channel noise.

3.3 Robust Estimator Types

Robust estimators, also known as M estimators, were originally developed in the

theory of robust statistics which are the class of maximum-likelihood (ML) type

estimators and these estimators have significant place among the robust signal

processing techniques (Aysal & Barner, 2007). Robust non-linear estimators have

critical importance for applications involving impulsive processes (e.g.,

communications systems, switching systems, biomedical signal processing radar

clutter, ocean acoustic noise as mentioned before) as heavy tailed non-Gaussian

distributions are utilized in order to model the underlying signals (Zoubir et al., 2012).

The set of samples are given as X1,X2. . . ,XN is given as a robust estimator of

location parameter θ which minimizes the Eq. (3.3)

θ̂ = argmin
N∑

i=1

ρ(Xi− θ) (3.3)

where ρ is defined as a cost function (Arce, 2005). The shape of ρ determines the

behaviour of estimator. The θ value can be examined for some special function of ρ(x),
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especially to define the robust estimators. If cost function is equal to ρ(x) = |x|, that

refers to sample median and if ρ(x) = log[k2 + x2], where k is the linearity parameter, in

this case equality is called as sample myriad. The shaping ρ(x) is the significant point

for the success of robust estimators and directly affects estimation accuracy (Arce,

2005).

Let a set of N independent samples X1,X2, . . . ,Xn, . . . ,XN and each one has the

Gaussian distribution with variance σ2. Be given as θ̂ is the ML estimation of location

and can be obtained as (Arce, 2005),

θ̂ = argmin
N∑

i=1

(Xi− θ)

=
1
N

N∑
i=1

Xi

= mean{Xi}.

(3.4)

It can be seen that sample mean process yields ML estimation from observations.

Three types of robust estimators which are median, meridian and myriad estimators

are described respectively in the next part.

3.3.1 Median Estimator

Median filter is moving along the horizontal axis by a symmetrical window on a

discrete time signal x[n]. The filter takes an equal number of data from both left and

right sides and sorts the data from the smallest to the largest. Then, the middle value

becomes filter output (Arce, 2005). For this, the filter creates a fixed length window

vector which determines the observation interval. The observation window centred at

n is given as,

x[n] = [x[n−Ml], . . . , x[n + Mr]] (3.5)
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The window may generally be come across as symmetric about x[n] which

corresponds to right window length Mr and left window length Ml to be equal to each

other. The total window size becomes Ml + Mr + 1. Since the window is mostly

assumed to be symmetric Ml = Mr = M1 and the filter output is given as,

ymed[n] = MEDIAN
(
x
[
n−M1

]
, . . . , x

[
n + M1

])
. (3.6)

3.3.2 Meridian Estimator

Meridian filter is derived by ML estimation under Cauchy distribution spacial case

of Generalized Cauchy Distribution corresponding to λ = 1 where λ is the tail

parameter, and the cost function is equal to log(δ+ |u|). δ is the robustness parameter

because the meridian filter is likelihood based and has an exact result about being

unbiased, consistent and efficient in meridian statistic (Aysal & Barner, 2007).

Consider a set of M samples x[n−M1], · · · , x[n], · · · , x[n + M1] each obeying the

Meridian distribution. The ML estimate of location, η, or sample meridian filter is

given as,

ymer[n] = MERIDIAN
(
∆; x

[
n−M1

]
, . . . , x

[
n + M1

])

= arg min
η∈R

n+M1∑
i=n−M1

log[∆+ |x[i]−η|]

(3.7)

where ∆ is referred as the medianity parameter which determines the behaviour of filter

and is also a tunable parameter. Under impulsive noise, if medianity parameter takes

small values, the filter becomes more robust (Pander & Przybyla, 2012).

25



3.3.3 Myriad Estimator

The myriad filter can be defined as a ML estimation of location which is derived

from the stable model having a cost function which can be represented as log[K2 + X2]

where K is a tunable parameter which decides the behaviour of filter. The myriad

filter properly exhibits optimally properties in several impulsive models (Arce, 2005).

It provides highly efficient filtering under non-Gaussian noise, especially for α-stable

distributed noise. Myriad filter is derived by ML estimation including special case of

Cauchy distribution as meridian filter corresponding to λ = 2 (tail parameter).

Consider a set of M samples x[n] which are identically distributed and independent

with a fixed positive (tunable) value of K, and the output of the myriad filter is given

as,

ymyr[n] = MYRIAD
(
K; x

[
n−M1

]
, . . . , x

[
n + M1

])

= arg min
ρ∈R

n+M1∑
i=n−M1

log[K2 + (x[i]−ρ)2]

(3.8)

where ρ is the location parameter and K is referred to as linearity parameter. K is

adjustable for α-stable distribution and the relation between α and K is given as (Arce,

2005),

K =

√
α

2−α
(3.9)

When K has an infinite value, the myriad is transformed into the sample average.

When K becomes closer to zero, the myriad has good efficiency on very impulsive

noise compared to other filters. Figure 3.7 shows the filter behaviour according to the

K parameter and Figure 3.8 shows the K parameter change for α-stable distributions.
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Figure 3.7 Behaviour of myriad filter with respect to the K parameter (Barner & Arce, 2003)

Figure 3.8 Change of K parameter for α-stable distributions (Barner & Arce, 2003)

Figure 3.9 shows the time domain filtered signal. It is observed that the robust

estimation techniques such as median filtering, myriad filtering and meridian filtering

give a certain noise reduction performance under α-stable distributed noise.
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Figure 3.9 Time domain filtered signal under impulsive noise (α = 1.4) a) Clean and noisy signals b)

Filtered signals using robust estimators

3.4 Computation of Myriad Value

One of main problems in myriad filter analysis is to reduce the computational

effort and achieve the result with minimum divergence from actual value. In this

context, most of the algorithms, such as fixed-point search (Kalluri & Arce, 2000),

polynomial approximation (Pander, 2010), branch and bound search (Nunez et al.,

2008) and fast myriad algorithm (Yue et al., 2013) use the batch processing method to

compute the myriad value. The common method for computing sample myriad filter

is the fixed-point search algorithm which minimizes the cost function computing

fixed points (Goh & Lim, 2012). In fixed-point method, when estimation is

performed, delays can occur depending on the input block size and computational

complexity increases according to repeated process for each window. Some methods

such as sequential myriad algorithm (Goh & Lim, 2012) and exponential myriad

smoothing method (Goh et al., 2017) are developed to decrease those types of effects,
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increase efficiency in computation.

3.4.1 Grid Search Algorithm

In this method no window exist and it is used for single value estimation. This

method requires taking more point from input and only returns one value. The

window length M equals 1 and length of ρ equals N. The output of the algorithm can

be expressed as,

ρ̂ =

N∑
i=1

log[K2 + (x(i)−ρ(i))2]. (3.10)

After this calculation, the index of minimum value of summation is found and and

it is searched in vector ρ to find the output value. It is a basic grid search algorithm to

compute the myriad value.

3.4.2 Sequential Algorithm

Sequential algorithm is a fast algorithm when compared to other methods. Let a set

of n independent observations be given as x1, x2, . . . , xn, . . . , xn, output of the sample

myriad ρ[n] is found solving the following equation which is the derivative of Eq.

(3.8). It is the most conventional method (Goh & Lim, 2012).

N∑
i=1

xi−ρ

K2 + (xi−ρ)2 = 0 (3.11)

Solving the previous equation is not needed for sequential algorithm. The aim of

the sequential algorithm is the updating ρ̂[n] to find the next value ρ̂[n+1]. Sequential

sample myriad includes an iterative approach and the performance of this algorithm is

measured with respect to rate of convergence.

Calculation steps of sequential algorithm are given below (Goh & Lim, 2012),
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Step 1: Calculate the gradient just once which is derived in (Goh & Lim, 2012),

Ĵ[n] =

n∑
i=1

−K2 + (xi− ρ̂[n−1])2

[K2 + (xi− ρ̂[n−1])2]2 . (3.12)

Step 2: Update the gradient Ĵ[n + 1],

Ĵ[n + 1] = Ĵ[n] +
−K2 + (xi+1− ρ̂[n])2

[K2 + (xi+1− ρ̂[n])2]2 . (3.13)

Step 3: Find the updated value ρ̂[n + 1],

ρ̂[n + 1] = ρ̂[n]− (Ĵ[n + 1])−1 xi+1− ρ̂[n]
K2 + (xi+1− ρ̂[n])2 . (3.14)

The initial value ρ̂[0] can be calculated minimizing the objective function for the

input samples (Barner & Arce, 2003). Using this algorithm simulation can be

performed. Figure 3.10 shows the convergence of myriad value.
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Figure 3.10 Convergence of myriad value according to the sequential algorithm
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3.5 Stochastic Resonance in Robust Estimation

Stochastic resonance in skewed alpha stable distributed noise is described in Section

2.4. In this section, intentional noise having the same characteristic exponent with

channel noise is added at the receiver input and then robust estimation is applied to

reduce the impulsive noise. Main difference is that intentional noise has the opposite

skewness compared with channel noise. According to Figure 3.11 lowest BER value is

observed to be achieved when the noise is symmetric in absence of intentional noise.
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Figure 3.11 BER performance change according to the β parameter (α = 1.4)

Simulations are performed over antipodal signals which corresponds to binary

phase shift keying (BPSK) modulated signal. Antipodal signalling is formulated in

Section 2.2. This can be considered as indicator of necessity of adding intentional

noise to symmetrize the resultant noise distribution. Monte Carlo simulation is

performed over 104 bits and ensemble averaging of 10 realizations. Sliding window

has identical right and left window length and the total window length is taken as

N=9 samples for robust filters.
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In Figures 3.12, 3.13 and 3.14 sample median, meridian, and myriad filters are

used respectively with fixed noise intensity for intentional noise. Bit error rate

improvement is shown in 3-D plots depending on the changing asymmetry and GSNR

in receiver when the asymmetry value of the intentional noise is in opposite direction

to the asymmetry of the noise in the channel. The asymmetry value of skewed α

-stable distributed noise is β = 0.5 and it is expected that the BER performance

reaches the best value if asymmetry parameter of intentional noise is equal to

β = −0.5.
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Figure 3.12 BER performance with respect to the parameters β - GSNR using median filter (α = 1.2)

As shown in Figures 3.12 through 3.14, there is a valley corresponding to the

opposite skewness of the channel noise when the intentional noise having this

opposite skewness is added. Therefore this performance enhancement due to noise

addition is the contribution of stochastic resonance. The point to be noted is that as

the total intensity of the intentional noise and channel noise increase, the resonance is

weakened due to the GSNR value. Although the resonance is observed more clearly

under high impulsiveness, the bit error rate performance becomes worse.
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Figure 3.13 BER performance with respect to the parameters β - GSNR using meridian filter (α = 1.2)
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Figure 3.14 BER performance with respect to the parameters β - GSNR using myriad filter (α = 1.2)
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3.6 Signal Estimation in Baseband Communication System

The differentially encoded baseband transmitter, carrying binary message {−1,+1},

can be expressed as in Eq. (3.15),

s[n] =


A, n = 1, · · · ,N/2

b.A, n = N/2 + 1, · · · ,N
(3.15)

where A is the signal amplitude and A > 0, N is the symbol duration. The received

signal under AWGN at time instant n is given as,

r[n] = s[n] + w[n]. (3.16)

Message bits are estimated by non-coherent conventional correlator receiver under

Gaussian noise as in Eq. (3.17),

b̂ = sgn
( N/2∑

n=1

r[n]r[n + N/2]
)

(3.17)

where

sgn =


1, x ≥ 0

−1, x < 0
(3.18)

and the formulation of proposed robust estimation for baseband system is given below.

The reference signal sre f in proposed transmitter is defined as,

sre f [n] =


A, n = 1, · · · ,N/4

−A, n = N/4 + 1, · · · ,N/2
(3.19)

and the proposed transmitted signal sp[n] is given as in Eq. (3.20),
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sp[n] =


sre f [n], n = 1, · · · ,N/2

b.sre f [n− N
2 ], n = N/2 + 1, · · · ,N.

(3.20)

Received signal rp[n] under α-stable distributed noise ws[n] is obtained as in Eq.

(3.21),

rp[n] = sp[n] + ws[n]. (3.21)

According to the skewness property of stable random variables, noise samples

−ws[n] have the probability density S (x;α,−β,σ,µ), i.e., multiplying by -1 provides

opposite skewness (Samoradnitsky & Taqqu, 1994). Using this property, the received

signal rp[n] is modified to result in a signal r̂[n] as given in Eq. (3.22) whose resultant

skewness is estimated to be β = 0 between intervals 1 ≤ n ≤ N/2 and N/2 + 1 ≤ n ≤ N,

r̂[n] =



rp[n] = A + ws[n], n = 1, · · · , N
4

−rp[n] = A−ws[n], n = N
4 + 1, · · · , N

2

rp[n] = b.A + ws[n], n = N
2 + 1, · · · , 3N

4

−rp[n] = b.A−ws[n], n = 3N
4 + 1, · · · ,N.

(3.22)

A sample realization of skewed stable noise whose pdf parameters are tuned to be

α = 1.5, β = 1, σ = 1 for the first 104 samples and α = 1.5, β = −1, σ = 1 for the second

104 samples is illustrated in Figure 3.15a to exhibit the opposite skewed behaviour

of the noise in time domain (A = 0). The estimated pdf from the data according to

the method given in (Koutrouvelis, 1981) is shown in Figure 3.15b for the first half,

second half and the whole data, respectively. It is clearly seen that the resultant pdf is

almost symmetric.
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Figure 3.15 a) The first half part of the received signal in Eq. (3.22) b) Estimated positive and negative

skewed noise together with resultant pdf

The median filter is separately applied to the first and the second half of r̂[n] to

estimate the reference and information bearing components Âmed and b̂Amed as given

in Eq. (3.23) and Eq. (3.24), respectively.

Âmed = MEDIAN(r̃[n];n = 1, · · · ,
N
2

) (3.23)

b̂Amed = MEDIAN(r̃[n];n =
N
2

+ 1, · · · ,N) (3.24)

Similarly, myriad filter is applied to find the reference and the information bearing

part of the baseband signal as given in Eq. (3.25) and Eq. (3.26)

Âmyr = MYRIAD(r̃[n],K;n = 1, · · · ,
N
2

) (3.25)

b̂Amyr = MYRIAD(r̃[n],K;n =
N
2

+ 1, · · · ,N). (3.26)
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The median and myriad estimated message bits b̂med and b̂myr are determined from

the filter outputs as given in Eq. (3.27) and Eq. (3.28)

b̂med = sgn(Âmed.b̂Amed) (3.27)

b̂myr = sgn(Âmyr.b̂Amyr). (3.28)

Once the received signal is modified to obtain r̂[n] in Eq. (3.22), robust filters

can be applied to the first half and the second half of the data holding reference and

information signals, respectively.

3.7 Signal Estimation in Bandpass Communication System

Modified DBPSK modulated signal is used for both baseband and bandpass

systems and robust estimation is applied for both systems in this thesis. For the

bandpass domain, s[n] is the constant envelope discrete time sinusoidal carrier which

has sampling interval Ts and bit duration Tb as given below

s[n] = Acos(2π fc
n
Ts

) (3.29)

where n = 1, · · · , Tb
Ts

= N , A is the signal amplitude and fc is the carrier frequency.

Transmitted signal sT for message bit b ∈ {−1,+1} is formulated as,

sT [n] =


s[n], n = 1, · · · ,N/2

sb[n], n = N/2 + 1, · · · ,N
(3.30)

where sb[n] is equal to b.s[n] and the first half of the carrier signal refers to reference

signal and contains the first N/2 number of samples. The second half of the carrier

signal refers to the information bearing signal i.e., binary encoded message.

Previously, alpha stable distributed noise was defined and represented by
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w[.] ∼ S (.,α,β,σ,0). Received signal under additive non-Gaussian noise at time

instant n is given as,

r[n] = sT [n] + w[n]. (3.31)

Using conventional correlator receiver, the message bit is estimated at the receiver

side and the estimated message bit b̂ is given as,

b̂ = sgn
( N/2∑

n=1

r[n]r[n + N/2]
)
. (3.32)

The formulation of the proposed robust estimation for bandpass system is given

below.

The carrier signal which has length K =
Tc
Ts

samples for each Tc = 1
fc

period. Let L

be the number of sinusoids in the reference signal which is the first half of the carrier

signal having duration Tb
2 with N

2 = L.K samples. The receiver structure which is

proposed to generate the new signal s̃[n] by modifying the transmitted sinusoidal

signal s[n] is given as,

s̃[n] =


s[n], (l−1).K + 1 ≤ n <

(
l− 1

2

)
.K

−s[n],
(
l− 1

2

)
.K + 1 ≤ n < l.K

(3.33)

where l = 1, · · · ,L. In the same way, the information bearing signal which is the second

half of the transmitted signal sb[n] is modified to obtain s̃b[n] as given in Eq. (3.34),

s̃b[n] =


sb[n], N

2 + (l−1).K + 1 ≤ n <
(
l− 1

2

)
.K + N

2

−sb[n], N
2 +

(
l− 1

2

)
.K + 1 ≤ n < l.K + N

2 .

(3.34)

The transmitted signal has two parts as reference signal and information bearing

signal. The received signal r[n] also contains the same parts rre f [n] and rb[n],

respectively, and is given as,
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r[n] =


rre f [n], n = 1, · · · ,N/2

rb[n], n = N/2 + 1, · · · ,N.
(3.35)

The transmitted signal is corrupted by additive alpha stable distributed noise and

the modified received signal r̃[n] is obtained by applying Eq. (3.33), Eq. (3.34) to Eq.

(3.35). Thus, r̃[n] is represented as,

r̃[n] =


r̃re f [n], n = 1, · · · ,N/2

r̃b[n], n = N/2 + 1, · · · ,N.
(3.36)

The chosen points having the same amplitude of time-varying sinusoidal signal are

used as input points of robust estimators which are median and myriad estimators used

as location estimators. Output of the median filter can be expressed by,

ỹmed[ñ(m)] = MEDIAN(r̃re f [ñ(m)])

ỹmed
b [ñ(m)] = MEDIAN(r̃b[ñ(m)]).

(3.37)

In the same way, the outputs of the myriad filter can be expressed as,

ỹmyr[ñ(m)] = MYRIAD(K; r̃re f [ñ(m)])

ỹmyr
b [ñ(m)] = MYRIAD(K; r̃b[ñ(m)])

(3.38)

where

ñ(m) =



(l−1)K + m

(l− 1
2 )K −m

(l− 1
2 )K + m

lK −m

(3.39)

and l = 1, · · · ,L, m = 1, · · · , K
4 .

The input points of the robust estimator are shown in Figure 3.16. This figure
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illustrates estimator inputs which are obtained from reference signal s̃[n] having the

same amplitude within a bit duration.

 

Figure 3.16 Selected input points for the location estimator (noise-free case)
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CHAPTER FOUR

SIMULATION RESULTS

Bit error rate (BER) results are achieved by Monte Carlo simulations performed

over 104 bits of binary data and ensemble averaging of 100 realizations for baseband

domain. The data length per bit is taken as N = 20. Simulations are performed under

α-stable distributed noise using median and myriad filters for proposed baseband

system which is described in Section 3.6.

Under symmetric α-stable distributed noise, proposed method using with median

filter and the median detector applied with conventional signalling yields the identical

BER performance shown in Figure 4.1 (β = 0). Under skewed α-stable distributed

noise, the ability of noise suppression of the proposed method can be seen in Figure

4.2 compared with other detectors.
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Figure 4.1 BER performance of median filter based baseband communication system with respect to

GSNR (α = 1.2, β = 0)
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Figure 4.2 BER performance of median filter based baseband communication system with respect to

GSNR (α = 1.2, β = 1)

Similarly, the proposed method is tested on myriad filter based detector together

with conventional approach. The BER results are shown in Figure 4.3 and Figure 4.4,

having symmetric and skewed α-stable channel noise, respectively. BER improvement

is obviously seen if the noise has skewed α-stable distribution whereas an identical

BER performance is achieved if the channel noise is symmetric.
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Figure 4.3 BER performance of myriad filter based baseband communication system with respect to

GSNR (α = 1.2, β = 0)
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Figure 4.4 BER performance of myriad filter based baseband communication system with respect to

GSNR (α = 1.2, β = 1)
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Simulations are performed under α-stable distributed noise using median and

myriad filters for proposed bandpass system which is described in Section 3.7. Bit

error rate (BER) results are achieved by Monte Carlo simulation is performed and

ensemble averaging of 50 realizations for bandpass domain. L is the number of

sinusoids in the reference signal and two values of L are chosen for simulations as

L=10 and L=50. Since the the noise in the channel has infinite variance, the signal to

noise ratio is defined in terms of generalized signal to noise ratio (GSNR) as defined

in Section 2.2.
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Figure 4.5 BER performance of median filter based bandpass communication system with respect to

GSNR (α = 1.4, β = 0, L = 50)

The error performance of the communication system is shown with respect to

different methods for fixed impulsiveness α = 1.4. The proposed method gives a

better error performance compared to others. When the period of the bit duration

increases, the parameter L also increases proportionally and filter processes more

data. However, this also corresponds to decreased bit rate and there is a trade-off

between the data transmission rate and bit error rate improvement. Even the BER

performance changes with respect to L, proposed method always gives a better result
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for median filter based detector. To show this result, simulations performed for L=10,

α = 1.4 are given in Figure 4.6.
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Figure 4.6 BER performance of median filter based bandpass communication system with respect to

GSNR (α = 1.4, β = 0, L = 10)

Similarly, the proposed waveform is applied on myriad filter based detector. The

BER performances under SαS using myriad filter are shown in Figure 4.7 and Figure

4.8 with the same simulation parameters and with respect to different methods for fixed

impulsiveness α = 1.4. As with the median filter, proposed method gives better error

performance compared to others and changing of L affects the data transmission rate

and bit error rate improvement but proposed method gives a better result for both L

values.
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Figure 4.7 BER performance of myriad filter based bandpass communication system with respect to

GSNR (α = 1.4, β = 0, L = 50)
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Figure 4.8 BER performance of myriad filter based bandpass communication system with respect to

GSNR (α = 1.4, β = 0, L = 10)
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Figure 4.9 BER performance of median filter based bandpass communication system with respect to

GSNR (α = 1.4, β = 1)
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Figure 4.10 BER performance of myriad filter based bandpass communication system with respect to

GSNR (α = 1.4, β = 1)
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The simulations are performed with the same simulation parameters under

skewed-α stable distributed noise (β = 1) using median and myriad based detector.

BER performance of median and myriad filters under skewed-αS noise for different

methods are given in Figures 4.9 and 4.10.

As a result of the simulations, the skewed noise suppression ability of the proposed

signalling at the output of median and myriad filter is obviously seen and the proposed

signalling exhibits a certain superior performance compared with others.
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CHAPTER FIVE

CONCLUSION

In this thesis, a digital communication system under skewed alpha-stable noise is

analyzed. Since the major aim is to discover the effect of skewness of the channel

noise, the communication system is chosen as baseband BPSK in which the receiver

performs antipodal signal detection within a certain bit duration. It is shown that the

communication system performance decreases when the channel noise becomes more

skewed.

In order to neutralize the asymmetry in channel noise, two attempts are proposed

as the novel contribution. In the first approach, an intentional noise is added to the

received signal which results in symmetrical alpha stable noise, if the characteristic

exponent of the channel is known in advance. In order to put forward the

improvement due to stochastic resonance, the robust estimators are utilized. It is

shown that, when the intentional noise has the same characteristic exponent but

opposite skewness compared with channel noise, there is certain bit error rate

improvement. However, the assumption of the noise pdf to be known by the receiver

may not be satisfied in real life, therefore an alternative waveform design method

combined with robust estimators is proposed even if the channel exhibits symmetric

and asymmetrical behaviour and pdf is not known in advance. The waveform design

technique is primarily based on antipodalization of the signal or expressing the signal

as the combination of antipodal components. This provides the reconstruction of the

received signal to provide robust estimator to perform location estimation even if the

signal may have time varying nature. The only requirement for band-pass signals is

the frequency of the sinusoidal carrier be known. If the signal is considered to be a

baseband signal, then it is converted into antipodal form before transmitting and the

same operation is undone at the receiver. This causes the channel noise to be

combined as the positive and negative skewed noise data which results in symmetrical

noise. If the information increases, i.e., bit duration increases, the error eliminating

performance also increases.
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This method gives not only an insight to filter skewed alpha-stable noise but also

it is applicable to any non-Gaussian noise having symmetrical and/or asymmetrical

structure.
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