

DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES

ANALYSIS OF GENETIC DATA VIA DATA

MINING METHODS AND ITS APPLICATIONS

by

Sezin TUNABOYLU

 June, 2011

İZMİR

ANALYSIS OF GENETIC DATA VIA DATA

MINING METHODS AND ITS APPLICATIONS

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Master of Science

in Statistics

by

Sezin TUNABOYLU

June, 2011

İZMİR

ii

iii

ACKNOWLEDGMENTS

 I would like to thank my advisor, Prof. Dr. Efendi NASĠBOĞLU for his

direction, assistance, and guidance throughout my Master of Science years. I feel

very special to have worked with him.

Finally, words alone cannot express the thanks I owe to my husband Çağdaş

Tunaboylu for his help and encouragement. And a special thanks to my parents Leyla

and Hasan TANSI for their endless encouragement and support throughout my life.

Sezin TUNABOYLU

iv

ANALYSIS OF GENETIC DATA VIA DATA MINING METHODS AND ITS

APPLICATIONS

ABSTRACT

The prediction of the complete structure of genes is one of the important tasks of

bioinformatics, especially in eukaryotes. A crucial part in gene structure prediction is

to determine the splice sites in the coding region. Identification of splice sites

depends on the precise recognition of the boundaries between exons and introns of a

given DNA sequence. This problem can be formulated as a classification of sequence

elements into „exon-intron‟ (EI), „intron-exon‟ (IE) or „None‟ (N) boundary classes.

In this thesis, we propose a new Weighted Position Specific Scoring Method

(WPSSM) to recognize splice sites which uses a position-specific scoring matrix

constructed by nucleotide base frequencies. A genetic algorithm is used in order to

tune the weight and threshold parameters of the positions on. This method comprises

of three phases: learning phase, identification phase and validation phase. In this

study, the optimal position weights and threshold parameter are found via genetic

algorithm. The proposed WPSS method poses efficient results compared to the

performance of various methods proposed in the literature. Computational

experiments are conducted on the DNA sequence dataset from „UCI Repository of

machine learning databases‟.

Keywords: Exon-Intron Splice Sites, Weighted Position Specific Scoring Method,

Genetic Algorithm.

v

GENETİK VERİLERİN VERİ MADENCİLİĞİ YÖNTEMLERİ İLE

İNCELENMESİ VE UYGULAMALARI

ÖZ

 Özellikle ökaryotlarda gen yapılarının tahmin edilmesi biyoenformatiğin önemli

konularından biridir. Gen yapılarının tahmin edilmesindeki en önemli konu kodlanan

bölgelerdeki kesim bölgeleridir. Kesim bölgelerinin belirlenmesi de verilen DNA

dizisindeki eksonlar ve intronlar arasındaki bölgelerin doğru tanımlanmasına

bağlıdır. Bu problem dizi elementlerinin „exon-intron‟ (EI), „intron-exon‟ (IE) or

„None‟ (N) sınıfları olarak sınıflandırılması olarak tanımlanabilir.

Bu tez çalışmasında, kesim bölgelerini belirlemek için geliştirilen yeni bir yöntem

olan ve nükleotit baz frekanslarından oluşan spesifik pozisyonel skorlama matrisini

kullanan Ağırlıklandırılmış Pozisyonel Skorlama Metodu (WPSSM) önerilmiştir.

Ayrıca optimal ağırlıkların ve eşik değerinin belirlenmesinde genetik algoritma

kullanılmıştır. Bu metod öğrenme, tanımlama ve geçerlilik aşamaları olmak üzere üç

aşamadan oluşmaktadır. Önerilen WPSS metodu literatürdeki pek çok metodun

performansıyla karşılaştırıldığında etkili sonuçlar vermiştir. Hesaplamalar, „UCI

Repository of machine learning databases‟ veri tabanından alınan DNA dizileri

üzerinde gerçekleştirilmiştir.

Anahtar Kelimeler: Ekson-Intron Kesim Bölgeleri, Ağırlıklandırılmış

Pozisyonel Skorlama Metodu, Genetik Algoritma.

vi

CONTENTS

 Page

M.Sc. THESIS EXAMINATION RESULT FORM .. Error! Bookmark not defined.

ACKNOWLEDGMENTS ... ii

ABSTRACT .. iv

ÖZ .. v

CHAPTER ONE - INTRODUCTION ... 1

1.2 Historical Development of Bioinformatics .. 3

1.3 Tasks in Bioinformatics .. 4

1.4 Splice Sites ... 8

CHAPTER TWO - MATERIALS and METHODS ... 12

2.1 Dataset .. 12

2.2 Position-Specific Scoring Matrix (PSSM) ... 12

2.2.1 The computational steps of PSSM ... 13

2.2.2 Prediction of the Sample‟s Class ... 14

2.2.3 PSSM Example .. 15

2.3 Genetic Algorithm (GA) .. 17

2.3.1 Terminologies of Genetic Algorithm ... 18

2.3.2 Operators of Genetic Algorithm .. 20

2.4 Cross Validation Method .. 31

vii

CHAPTER THREE - WEIGHTED POSITION-SPECIFIC SCORING

METHOD ... 34

3.1 Learning Phase ... 34

3.2 Identification Phase .. 35

3.3 Validation phase ... 37

CHAPTER FOUR - RESULTS AND DISCUSSION ... 40

CHAPTER FOUR - CONCLUSION ... 46

REFERENCES.. 48

APPENDIX .. 53

1

CHAPTER ONE

INTRODUCTION

Bioinformatics is a multidisciplinary research area at the interface between

computer science and biological science. Bioinformatics involves the technology that

uses computers for storage, retrieval, manipulation, and distribution of information

related to biological macromolecules such as DNA, RNA, and proteins (Xiong,

2006).

The ultimate aim of the bioinformatics is to better understand a living cell and

how it functions at the molecular level by using computer technology. Sequence

analysis of DNA sequences is one of the important tasks in bioinformatics.

The required information for the smallest living unit cell to regularly perform

cellular activities, are hidden in DNA molecules, the kernel known as the brain of the

cell. A DNA molecule which is a giant molecular chain contained in all living cells is

considered as a "knowledge bank" since it contains genetic information.

Specific regions which encode knowledge of our physical features and

physiological activities on the DNA are called “genes”. These genes encode the

various proteins and provide continuing of our lives. The identification of genes is a

major task in bioinformatics. However, gene structure needs to be predicted for the

accurate identification of genes. Recognizing splice sites in eukaryotic genes play an

important role in identifying gene structure. The accurate identification of the splice

sites depends on correct estimation of exon-intron structures. This accurate

identification problem can be formulized as a classification problem.

Recently, many splice site classification/prediction methods have been proposed.

These methods can be classified as probabilistic methods (Salzberg, 1997; Chen et

al., 2005; Pertea et al., 2001; Marashi et al., 2006a; Zhang and Marr, 1993; Castello

and Guigo, 2004; Cai et al., 2000), neural networks and support vector machines

(Marashi et al., 2006b; Reese et al., 1997; Sun et al., 2003; Reese, 2001; Zhang et al.,

2

2003; Sonnenburg, 2002; Degroeve et al., 2005; Rajapakse et al., 2005; Baten et al.,

2006; Sonnenburg et al., 2007; Ratsch et al., 2006), and methods based on

discriminant analysis (Chuang and Roth, 2001; Zhang and Luo, 2003). Many works

posed that machine learning methods has better results than canonical pattern

matching based classification methods. The main methods which have good results

are knowledge based neural network (KBANN) which combines explanation based

and empirical learning methods (Noordewier et al., 1991), probabilistic model which

estimates position-specific probabilities of splice sites (Pertea et al., 2001), Genomic

Splice Site Prediction (GSSP) method which characterizes the interdependency

among the nucleotides and base positions based on the eigen-patterns (Tsai et al.,

2009), BRAIN algorithm which infers Boolean formulae from examples and

considers the splicing rules, and Hierarchical Multi-classifier which use many

classification methods (Lumini and Nanni, 2006). Also, there are influential models

based on weight matrix model (WMM). The WMM weights can be optimized using

a neural network method (Brunak et al., 1991). Another model uses the position-

specific compositional biases in splice sites (Staden, 1984).

In this study, Weighted Position-Specific Scoring Method has been proposed as a

new method concerning the classification of three classes of splice sites as “EI”,

“IE”, and “NONE” classes. In this method, weighted position-specific scores which

consist of frequencies of DNA sequence elements are used. The weights of the

positions and threshold parameter have been calculated via genetic algorithm. The

preliminary results of this study are presented in (Nasibov and Tunaboylu, 2010a).

The developed study of preliminary results is presented in (Nasibov and Tunaboylu,

2010b).

This thesis is composed of five chapters. This introductory chapter is an overview

of bioinformatics and preliminary works of this classification problem.

In Chapter 2, underlying methods used in the WPSSM as position specific scoring

matrix, genetic algorithm and ten-fold cross validation method are discussed in a

detail. The definitions and algorithms of these methods are covered.

3

In Chapter 3, the definitions of WPSSM‟s phases as learning, identification and

validation phases are presented in detail; and their flow-diagrams are presented.

Later, starting from Chapter 4, preliminary WPSSM and improved WPSSM are

applied to dataset from „UCI Repository and Machine Learning‟ to classify

sequences. The results are prensented and compared with each other and other works

in the literature.

In the conclusion part of this thesis, the results, novelty and advantages of the

WPSSM are discussed.

1.2 Historical Development of Bioinformatics

The development of bioinformatics as a field is the result of advances in both

molecular biology and computer science over the past 30–40 years. Bioinformatics

arose as a fusion of two trends in biology: the application of computer programs to

the analysis of protein and nucleotide sequences and the storage of molecular

sequences in computer databases. The history of databases started in 1965 with the

work of Margaret Dayhoff and her Atlas of Protein Sequences, which became the

foundation for the first online database, the Protein Information Resource.

Subsequently, in the early 1970s, the Brookhaven National Laboratory established

the Protein Data Bank for archiving three-dimensional protein structures.

 In the beginning, the database stored less than a dozen protein structures,

compared to more than 30,000 structures today. The first sequence alignment

algorithm was developed by Needleman and Wunsch in 1970. This was a

fundamental step in the development of bioinformatics, which paved the way for the

routine sequence comparisons and database searching practiced by modern

biologists. The first protein structure prediction algorithm was developed by Chou

and Fasman in 1974. Though it is rather unimproved by today‟s standard, it

pioneered a series of developments in protein structure prediction. In the 1980s,

GenBank was established and the fast database searching algorithms such as FASTA

4

by William Pearson and BLAST by Stephen Altschul and coworkers were

developed. The start of the human genome project in the late 1980s provided a major

boost for the development of bioinformatics. The development and the increasingly

widespread use of the internet in the 1990s made instant access, exchange and

dissemination of biological data possible. These are only the major milestones in the

establishment of this new field. The fundamental reason that bioinformatics gained

prominence as a discipline was the advancement of genome studies that produced

unprecedented amounts of biological data. The explosion of genomic sequence

information generated a sudden demand for efficient computational tools to manage

and analyze the data. The development of these computational tools depended on

knowledge generated from a wide range of disciplines including mathematics,

statistics, computer science, information technology, and molecular biology. The

merger of these disciplines created an information oriented field in biology, which is

now known as bioinformatics (Xiong, 2006).

1.3 Tasks in Bioinformatics

Bioinformatics comprises of two subfields: the development of computational

tools and databases and the application of these tools and databases in generating

biological knowledge to better understand living systems. These two subfields are

complementary to each other. The tool development includes writing software for

sequence, structural, and functional analysis, as well as the construction of biological

databases. These tools are used in three areas of genomic and molecular biological

research: sequence analysis, structural analysis, and functional analysis. The analyses

of biological data often generate new problems and challenges that in turn spur the

development of new and better computational tools.

5

Figure 1.1 Application tasks of bioinformatics.

The areas of sequence analysis include sequence alignment, sequence database

searching, motif and pattern discovery, gene and promoter finding, reconstruction of

evolutionary relationships, and genome assembly and comparison. Structural

analyses include protein and nucleic acid structure analysis, comparison,

classification, and prediction. The functional analyses include gene expression

profiling, protein–protein interaction prediction, protein subcellular localization

prediction, metabolic pathway reconstruction, and simulation (Figure 1.1).

The three aspects of bioinformatics analysis are not isolated but often interact to

produce integrated results. For instance, protein structure prediction depends on

sequence alignment data; clustering of gene expression profiles requires the use of

phylogenetic tree construction methods derived in sequence analysis. Sequence-

based promoter prediction is related to functional analysis of co-expressed genes.

Gene annotation involves a number of activities, which include distinction between

6

coding and noncoding sequences, identification of translated protein sequences, and

determination of the gene‟s evolutionary relationship with other known genes;

prediction of its cellular functions employs tools from all three groups of the

analyses.

Sequence Analysis: Sequence analysis task includes sequence alignment,

sequence database searching, motif and pattern discovery, gene and promoter finding

tasks. These tasks are handled as follows.

 Sequence alignment: Sequence alignment is the procedure of comparing two

(pairwise alignment) or more (multiple sequence alignment) sequences by searching

for a series of individual characters or character patterns that are in the same order in

the sequences (Mount, 2004).

There are two types of sequence alignment, global and local. In global alignment,

an attempt is made to align the entire sequence, using as many characters as possible,

up to both ends of each sequence. Sequences that are quite similar and approximately

the same length are suitable candidates for global alignment. The global alignment is

shown in Figure 1.2.

Figure 1.2 Global alignment.

In local alignment, stretches of sequence with the highest density of matches are

aligned, thus generating one or more islands of matches or sub alignments in the

aligned sequences. Local alignments are more suitable for aligning sequences that

are similar along some of their lengths but dissimilar in others, sequences that differ

in length or sequences that share a conserved region or domain. The local alignment

is shown in Figure 1.3.

7

Figure 1.3 Local alignment.

 Sequence Database Searching: Sequence database searching can be

remarkably useful for finding the function of genes whose sequences have been

determined in the laboratory. The sequence of the gene of interest is compared with

the best matching sequences are shown and scored. If a query sequence can be

readily aligned to database sequence of a known function, structure, or biochemical

activity, the query sequence is predicted to have the same function, structure, or

biochemical activity. The strength of these predictions depends on the quality of the

alignment between the sequences. As a rough rule, if more than one-half of the

amino acid sequence of query and database proteins is identical in the sequence

alignments, the prediction is very strong. As the degree of similarity decreases,

confidence in the prediction also decreases. The programs such as FASTA and

BLAST, used for these database searches provide statistical evaluations that serve as

a guide for evaluation of the alignment scores.

 Motif and Pattern Discovery: A motif is a short conserved sequence pattern

associated with distinct functions of a protein or DNA. It is often associated with a

distinct structural site performing a particular function. A typical motif, such as a Zn-

finger motif, is ten to twenty amino acids long.

Motifs are evolutionarily more conserved than other regions of a protein and tend

to evolve as units, which are gained, lost, or shuffled as one module. The

identification of motifs in proteins is an important aspect of the classification of

protein sequences and functional annotation. Because of evolutionary divergence,

functional relationships between proteins often cannot be distinguished through

simple BLAST or FASTA database searches. In addition, proteins or enzymes often

perform multiple functions that cannot be fully described using a single annotation

8

through sequence database searching. To resolve these issues, identification of the

motifs becomes very useful.

Identification of motifs heavily relies on multiple sequence alignment as well as

profile and hidden Markov model (HMM) construction. Motifs are first constructed

from multiple alignment of related sequences. Based on the multiple sequence

alignment, commonly conserved regions can be identified. The regions considered

motifs then serve as diagnostic features for a protein family. The consensus sequence

information of motifs can be stored in a database for later searches of the presence of

similar sequence patterns from unknown sequences.

 Gene and Promoter Finding: Computational gene prediction is a prerequisite

for detailed functional annotation of genes and genomes. The process includes

detection of the location of open reading frames (ORFs) and delineation of the

structures of introns as well as exons if the genes of interest are of eukaryotic origin.

The ultimate goal is to describe all the genes computationally with near 100%

accuracy. The ability to accurately predict genes can significantly reduce the amount

of experimental verification work required.

 1.4 Splice Sites

Encoding protein genes consist of coding (exons) and non-coding (introns) in

eukaryotes. During the transcription process, introns are removed and mRNA is

formed by joining exons, then mRNA generates proteins called the translation

process. All of these processes are shown in Figure 1.4.

9

Figure 1.4 Process of generating mRNA and protein.

In DNA sequence, the border between coding region (exon) and noncoding region

(intron) is called splice site. The splice site upstream of an intron is called the donor

splice site and one that is downstream of an intron is the acceptor splice site (Fig.

1.5). Dinucleotides are frequently observed in the splice sites. In the donor splice

sites, “GT” and in the acceptor splice sites “AG” dinucleotide are consensus. The

splice sites which consist of certain consensus dinucleotide are known as canonical

splice sites (Burset et al., 2000). Sequences which have “GT” dinucleotide in the

splice sites are classified as “EI”, which have “AG” dinucleotide in the splice sites

are classified as “IE”, and which do not have any of these dinucleotide in the splice

sites are classified as “None.

10

Figure 1.5 Acceptor and donor sites of splice sites.

What is known about splicing:

 The splicing process takes place in the nucleus.

 An average mammalian gene has 7 - 8 exons spread over  16kb.

 Exons are relatively short, 100 - 200 base pairs (bp) while introns are longer

than 1kb.

 There are no reading frames in introns.

 Splice sites are generic: they do not have a specificity for individual RNA

precursors, and individual precursors do not convey specific information (such

as secondary structure) that is needed for splicing.

 The apparatus for splicing is not tissue specific: RNA can usually be spliced

properly by any cell, whether or not it is usually synthesised in that cell.

 Experiments show that any 5' splice site can in principle be connected to any 3'

splice site, i.e., only local information is relevant in the splicing process.

 In higher eukaryotes, 18 - 40 bp upstream of the 3' site, lies the branch site. To

this site the GU from the 5' site connects to an A of the branch site.

11

Why splice site detection is important? A complete understanding of splice sites

does not only help to correctly predict mRNA and thus proteins from DNA, but can

also be of great help in localization of the genes. Actually several other sites, like

start and stop codons, branch points, promotors and terminators of transcription and

various transcription factor binding sites belonging to the class of local sites can help

to detect genes (Haussler, 1998). In computational gene finding, these signals are

often contrasted with variable length regions, like exons and introns. While the latter

are recognised by methods called content sensors, the former can be recognised by,

e.g., weight matrices, decision trees, etc., methods named signal sensors (Haussler,

1998).

12

CHAPTER TWO

MATERIALS and METHODS

In this thesis, the proposed method is based on the position specific scoring matrix

and a genetic algorithm is utilized for optimization of the weight and threshold

parameters. Also in the validation phase, cross validation method is used. In this

chapter, these methods are explained in a detail and dataset is covered.

2.1 Dataset

Nowadays, high technology eases reaching to electronic version of DNA data.

Many valuable researches can be done using these data. In our work, the data is taken

from „UCI Repository of machine learning databases‟ (Asuncion and Newman,

2007). This data set consists of 3190 sequences with 60 nucleotides. It contains 767

„EI‟, 768 „IE‟, and 1655 „None‟ sequences. These sequences have „A‟, „C‟, „T‟, „G‟

nucleotides and also „D‟, „N‟, „S‟, „R‟ ambiguity characters. These characters based

on the following rules:

• „D‟ = „A‟, „G‟, or „T‟

• „N‟ = „A‟, „C‟, „T‟, or „G‟

• „S‟ = „C‟, or „G‟

• „R‟ = „A‟ or „G‟

 2.2 Position-Specific Scoring Matrix (PSSM)

PSSM is a table which covers probability information of amino acids or

nucleotides in each position. In this table, positions of the residues are in rows and

name of the residues are in columns or vice versa. The values in the table are log

odds scores (Xiong, 2006).

13

Let { , 1,..., }kX x k N  , be a learning set of sequences with (60)n n  residues,

where { , , , }, 1,...,k

ix A C T G i n  . Row frequencies of each residue at each column

position are counted first to construct a PSS matrix. The frequencies are normalized

via dividing positional frequencies of each residue by overall frequencies. Finally,

logarithms (generally to the base of 2) of the values are calculated.

2.2.1 The computational steps of PSSM

The computational steps for construction of the PSSM are given in Algorithm 1.

Algorithm 1 (Construction of PSS Matrix).

Input: { , 1,..., }kX x k N  , set of sequences, where { , , , }, 1,...,k

ix A C T G i n  ;

Output: XPSSM is positional scoring matrix with 4 n dimension for class X .

[,]XPSSM j i , is a score of thj residue, { , , , }j A C T G in thi position, 1,...,i n .

Step 1. Construct the nucleotide based frequency table by following formula:

, 1,..., , , , ,

i

ji

j

c
f i n j A C T G

N
  

where,
i

jf is a frequency of thj residue at thi position;
i

jc is a count of thj residue at

thi position; N is a count of sequences;

Step 2. Normalize the values by dividing overall frequencies of each nucleotide

base. Overall frequencies and normalization is calculated by following formulas:

1 , , , ,
()

n
i

j

i
j

c

o j A C T G
n N

 




, 1,..., , , , ,

i

ji

j

j

f
p i n j A C T G

o
  

where,
jo is an overall frequency of thj residue;

i

jp is a normalized frequency of

thj residue in thi position;

Step 3. Take the log odds of these values by following formula:

2[,] (), 1,..., , , , ,i

X jPSSM j i Log p i n j A C T G  

14

where, [,]XPSSM j i is log odd score of thj residue at thi position for given class X ;

End.

Position specific scoring matrix (PSSM) is usually used in multiple sequence

alignment (MSA) problems. But in this study, PSSM is used for classification of

splice-junction sequences of DNA. After the construction of PSSM, match scores of

residues of given sequence are added. The total match score shows how the given

sequence is similar to sequence family. Also, this score can be interpreted as the

probability of sequence fitting as 2score times more likely than by random chance. As

a conclusion, the new sequence with high score can be classified as a member of the

sequence family.

2.2.2 Prediction of the Sample’s Class

After PSS matrices of each class are constructed by Algorithm 1, another

algorithm (Algorithm 2) is used to predict the class of a given sequence.

Algorithm 2.

Input:

a) Score vectors EIPSSM , IEPSSM and NonePSSM , which are calculated for „EI‟,

„IE‟ and „None‟ classes respectively by using Algorithm 1.

b) Given * * * *

1 2(, ,...,)nx x x x sequence which is needed to be classified, where

* { , , , }, 1,...,ix A C T G i n  .

 Output: Class of the given *x sequence (*()class x).

Step 1. Scoring vectors belonging to „EI‟, „IE‟ and „None‟ classes of the *x

sequence are calculated by using EIPSSM , IEPSSM and NonePSSM matrices,

respectively:

* * * *

1 2() ([,1], [,2],..., [,])EI EI EI EI nS x PSSM x PSSM x PSSM x n ,

* * * *

1 2() ([,1], [,2],..., [,])IE IE IE IE nS x PSSM x PSSM x PSSM x n ,

15

* * * *

1 2() ([,1], [,2],..., [,])None None None None nS x PSSM x PSSM x PSSM x n ,

where
*

[.][,]iPSSM x i is a scoring value of *

ix residue in thi position for a handled

[.]class .

 Step 2. Scores belonging to „EI‟, „IE‟ and „None‟ classes of given *x sequence

are calculated by using *()EIS x , *()IES x and *()NoneS x scoring vectors:

* *

1

() ()
n

i

EI EI

i

s x S x


 ,

* *

1

() ()
n

i

IE IE

i

s x S x


 ,

* *

1

() ()
n

i

None None

i

s x S x


 ,

where
[.]

*()iS x is a thi component of
*

[.]()S x vector.

 Step 3. The class of *x sequence is identified as follows:

* * * *

{ , , }

() arg max{ (), (), ()}EI IE None
EI IE None

class x s x s x s x ;

 End.

2.2.3 PSSM Example

The construction of a PSS matrix is shown in the following example. Assume that

there is a class of five sequences with ten residues (Table 1).

 Table 2.1 Sequence table

This sequence table is converted to frequency matrix with Step 1 of Algorithm 1

(Table 2).

16

Table 2.2 Frequency matrix

The values of the above table are normalized with Step 2 of Algorithm 1 (Table

3).

Table 2.3 Normalized values

Finally, the log odds of these values are calculated (Table 4).

Table 2.4 Log odds

Let assume that there is a sequence as * { , , , , , , , , , }x A C G G T A C C T T and we

have to find its fitting score to the class. We can calculate the fitting score of the

sequence *x by using Algorithm 2 as follows:

*() 0.3219 0.32 0.24 0.239 1.32 0 (0.68) 0.907 0.32 1.322

4.3099

s x           



From the above equation, the score of *x (i.e., *()s x) is found as 4.3099.

Respectively, *x sequence may be confidently classified as a member of sequence

17

family and fits the matrix as 4.30992 or approximately 20 times more likely than by

random chance.

2.3 Genetic Algorithm (GA)

Genetic algorithms in particular became popular through the work of John

Holland in the early 1970s. Genetic algorithms (GAs) are the derivative-free

stochastic optimization methods based on the terms of natural selection and

evolutionary processes. The popularity of GAs, depends on independence from

functional derivatives and incorporation of the following characteristics (Jang et al.,

1997):

 GAs are parallel-search procedures which can be applied on parallel-processing

machines for speeding up their operations.

 GAs are implemented in both continuous and discrete optimization problem.

 GAs are stochastic and less likely to get trapped in local minima, which

inevitably are present in any practical optimization application.

 GAs‟ flexibility simplifies both structure and determination of parameter in

complex systems like neural networks and fuzzy systems.

GAs encode each point with binary codes which are called chromosome, and each

point related to “fitness” value. Instead of one point, GAs usually keep a set of points

as a population or gene pool, which is then evolved repeatedly toward a better overall

fitness value. In each generation, the GA constructs a new population using genetic

operators such as crossover and mutation; members with higher fitness values are

more likely to survive and to participate in crossover operations. After a number of

generations, the population contains members with better fitness values; this is

analogous to Darwinian models of evolution by random mutation and natural

selection. GAs and their variants are sometimes referred to as methods of population

based optimization that improves performance by upgrading entire populations rather

than individual members.

http://en.wikipedia.org/wiki/John_Henry_Holland
http://en.wikipedia.org/wiki/John_Henry_Holland

18

It is necessary to perform certain operations over these individuals for Genetic

Algorithms to find a best optimum solution. This section discusses the basic

terminologies and operators used in Genetic Algorithms to achieve a good enough

solution for possible terminating conditions (David, 1991).

2.3.1 Terminologies of Genetic Algorithm

Gene: In the biology, specific region which are encoding knowledge of our

physical features and physiological activities are called “gene”. In the GA, the genes

may describe a possible solution to a problem, without actually being the solution. A

gene is a bit string of arbitrary lengths. The bit string is a binary representation of

number of intervals from a lower bound. A gene is the GA‟s representation of a

single factor value for a control factor, where control factor must have an upper

bound and lower bound (Fig. 2.1).

Figure 2.1 Representation of gene.

Allele: Allele, in biology, is the term given to the appropriate range of values for

genes. In genetic algorithms, an allele is the value of the gene (or genes).

Chromosome: A chromosome is a sequence of genes (Fig. 2.2).

Figure 2.2 Representation of chromosome.

Genotype: The genotype is the structure of the solution produced by the genetic

program (Fig. 2.3).

19

Phenotype: The actual values of a genome (its position in the solution space) are

called the phenotype (Fig. 2.3). While the genotype expresses the overall properties

of the genetic algorithm by defining the nature of the chromosome, the phenotype

represents an individual expression of the genome (or genotype). This is somewhat

similar to the relationship between classes and objects in an object-oriented

programming language: a class represents the definition of an object, whereas an

object represents a concrete instantiation of a class.

Figure 2.3 Representation of genotype and phenotype.

Population: A population is a collection of individuals. A population consists of a

number of individuals being tested, the phenotype parameters defining the

individuals and some information about search space (Fig. 2.4).

Figure 2.4 Representation of Population.

20

2.3.2 Operators of Genetic Algorithm

There are many genetic operators. The major genetic operators are selection,

mutation and crossover operators (Pham and Karaboğa, 2000). These operators are

covered in detail.

 Initial Population Selection: Initial population selection is done randomly

with a probability depending on the relative fitness of the individuals so that best

ones are often chosen for reproduction than poor ones.

 Encoding schemes: Encoding is a process of representing individual genes.

The process can be performed using bits, numbers, trees, arrays, lists or any other

objects. The encoding depends mainly on solving the problem. For example, one can

encode directly real or integer numbers. There are various kinds of encoding

schemes.

Binary Encoding: The most common way of encoding is a binary string, which

would be represented as in Fig. 2.5. Binary coded strings with 1s and 0s are mostly

used. The length of the string depends on the accuracy.

Figure 2.5 Binary encoding.

Each chromosome encodes a binary (bit) string. Each bit in the string can

represent some characteristics of the solution. Every bit string, therefore, is a solution

but not necessarily the best solution. Another possibility is that the whole string can

represent a number. The way bit strings can code differs from problem to problem.

21

Binary encoding gives many possible chromosomes with a smaller number of

alleles. On the other hand this encoding is not natural for many problems and

sometimes corrections must be made after genetic operation is completed.

Octal Encoding: This encoding uses string made up of octal numbers (0–7) as in

Fig. 2.6.

Figure 2.6 Octal encoding.

Hexadecimal Encoding: This encoding uses string made up of hexadecimal

numbers (0–9, A–F) as in Fig. 2.7.

Figure 2.7 Hexadecimal encoding.

Permutation Encoding (Real Number Coding): Every chromosome is a string of

numbers, which represents the number in sequence. Sometimes corrections have to

be done after genetic operation is completed. In permutation encoding, every

chromosome is a string of integer/real values, which represents number in a sequence

(Fig. 2.8).

Figure 2.8 Permutation encoding.

22

Permutation encoding is only useful for ordering problems. Even for these

problems some particular crossover and mutation corrections must be made to leave

the chromosome consistent.

Value Encoding: Every chromosome is a string of values and the values can be

anything connected to the problem. This encoding produces best results for some

special problems. Direct value encoding can be used in problems, where some

complicated values, such as real numbers, are used. Use of binary encoding for this

type of problems would be very difficult. In value encoding, every chromosome is a

string of some values. Values can be anything connected to problem, form numbers,

real numbers or characters to some complicated objects (Fig. 2.9).

Figure 2.9 Value encoding.

Value encoding is appropriate for some special problems. On the other hand, for

this encoding, it is often necessary to develop some new specific crossover and

mutation for the problem.

 Fitness evaluation: The first step after the creating the generation is to

calculate the fitness value of each individual. The fitness of an individual in a genetic

algorithm is the value of an objective function for its phenotype. For calculating

fitness, the chromosome has to be first decoded and the objective function has to be

evaluated. The fitness not only indicates how good the solution is, but also

corresponds to how close the chromosome is to the optimal one.

 Selection: After the evaluation, we have to generate a new population from

the current generation. Selection operator determines which parents participate in

23

producing offspring for the next generation, and it is analogous to survival of the

fittest in natural selection (Baker, 1985). The selection can be made according to

various criteria such as Roulette Wheel Selection, Rank Selection, Random

Selection, Tournament Selection, and Elitism Selection.

Roulette-wheel selection: Roulette selection is one of the traditional GA selection

techniques. The commonly used reproduction operator is the proportionate

reproductive operator where a string is selected from the mating pool with a

probability proportional to the fitness. The principle of roulette selection is a linear

search through a roulette wheel with the slots in the wheel weighted in proportion to

the individual‟s fitness values. A target value which is a random proportion of the

sum of the fit nesses in the population is set.

The Roulette process can also be explained as follows: The expected value of an

individual is fitness divided by the actual fitness of the population. Each individual is

assigned to slice of the roulette wheel, the size of the slice being proportional to the

individual‟s fitness. The wheel is spun N times, where N is the number of individuals

in the population. On each spin, the individual under the wheel‟s marker is selected

to be in the pool of parents for the next generation (Fig. 2.10).

Steps of the Roulette Wheel Selection is as follows:

Step1. Sum the fitness of each member of the population.

Step2. Determine the relative fitness of each member of the population.

Step3. Generate a random number (SPIN) between zero and some predefined

maximum value (MAX).

Step4. Select next individual.

Step5. From SPIN, subtract the individual‟s relative proportion of MAX (i.e.,

relative fitness times MAX).

Step6. Repeat steps 4 and 5 until SPIN is less than or equal to zero.

Step7. Repeat steps 3 to 6 until mating pool is full.

24

Figure 2.10 Roulette wheel selection.

Random Selection: This technique randomly selects a parent from the population.

In terms of disruption of genetic codes, random selection is a little more disruptive

than roulette wheel selection.

Rank Selection: The Roulette wheel will have a problem when the fitness values

differ very much. If the best chromosome fitness is 90%, its circumference occupies

90% of Roulette wheel, and then other chromosomes have too few chances to be

selected. Rank Selection ranks the population and every chromosome receives fitness

from the ranking. The worst has a fitness of 1 and the best has a fitness of N. It

results in slow convergence but prevents too quick convergence. It also keeps up

selection pressure when the fitness variance is low. It preserves diversity and hence

leads to a successful search. In effect, potential parents are selected and a tournament

is held to decide which of the individuals will be the parent.

25

Tournament Selection: An ideal selection strategy should be such that it is able to

adjust its selective pressure and population diversity so as to fine-tune GA search

performance. Unlike the Roulette wheel selection, the tournament selection strategy

provides selective pressure by holding a tournament competition among uN

individuals.

The best individual from the tournament is the one with the highest fitness, which

is the winner of uN . Tournament competitions and the winner are then inserted into

the mating pool. The tournament competition is repeated until the mating pool for

generating new offspring is filled. The mating pool comprising of the tournament

winner has higher average population fitness. The fitness difference provides the

selection pressure, which drives GA to improve the fitness of the succeeding genes.

This method is more efficient and leads to an optimal solution.

Elitism Selection: The first best chromosome or the few best chromosomes are

copied to the new population. The rest is done in a classical way. Such individuals

can be lost if they are not selected to reproduce or if crossover or mutation destroys

them. This significantly improves the GA‟s performance.

 Reproduction: Reproduction in genetic programming is asexual, thus

imitating the process of budding in biology. Through reproduction, an identical copy

of the individual selected is carried over into the next generation: survival of the

fittest. Fitness proportionate reproduction is the asexual reproduction of

chromosomes selected stochastically from the population. According to Koza, “the

operation of fitness proportionate reproduction for the genetic programming

paradigm is the basic engine of Darwinian reproduction and survival of the fittest”

[Koza, 1990; Grant, 1995]. In other words, the selection of individual chromosome is

based on a probability that is relative to that chromosome‟s relative fitness within its

population.

26

 Crossover: To use the potential of the current gene pool, we use crossover

operators to generate new chromosomes that will hopefully retain good features from

the previous generation (Sivanandam and Deepa, 2007).

Single Point Crossover: The traditional genetic algorithm uses single point

crossover, where the two mating chromosomes are cut once at corresponding points

and the sections after the cuts exchanged. Here, a cross-site or crossover point is

selected randomly along the length of the mated strings and bits next to the cross-

sites are exchanged. If appropriate site is chosen, better children can be obtained by

combining good parents else it severely hampers string quality. Single point

crossover is illustrated as in Fig. 2.11 and it can be observed that the bits next to the

crossover point are exchanged to produce children. The crossover point can be

chosen randomly.

Figure 2.11 Single Point Crossover.

Two Point Crossover: In two-point crossover, two crossover points are chosen

and the contents between these points are exchanged between two mated parents.

Apart from single point crossover, many different crossover algorithms have been

devised, often involving more than one cut point. It should be noted that adding

further crossover points reduces the performance of the GA. The problem with

27

adding additional crossover points is that building blocks are more likely to be

disrupted. However, an advantage of having more crossover points is that the

problem space may be searched more thoroughly.

In Figure 2.12 the dotted points indicate the crossover points. Thus the contents

between these points are exchanged between the parents to produce new children for

mating in the next generation.

Figure 2.12 Two Point Crossover.

Uniform Crossover: In the uniform crossover each gene in the offspring is

created by copying the corresponding gene from one or the other parent chosen

according to a random generated binary crossover mask of the same length as the

chromosomes. Where there is a 1 in the crossover mask, the gene is copied from the

first parent, and where there is a 0 in the mask the gene is copied from the second

parent. A new crossover mask is randomly generated for each pair of parents.

Offsprings, therefore, contain a mixture of genes from each parent. The number of

effective crossing point is not fixed, but will average 2/L (where L is the

chromosome length).

In Figure 2.13, new children are produced using uniform crossover approach. It

can be noticed, that while producing child 1, when there is a 1 in the mask, the gene

28

is copied from the parent 1 else from the parent 2. On producing child 2, when there

is a 1 in the mask, the gene is copied from parent 2, when there is a 0 in the mask; the

gene is copied from the parent 1.

 Figure 2.13 Uniform Crossover

Crossover Probability: The basic parameter in crossover technique is the

crossover probability (cP). Crossover probability is a parameter to describe how

often crossover will be performed. If there is no crossover, offspring are exact copies

of parents. If there is crossover, offspring are made from parts of both parent‟s

chromosome. If crossover probability is 100%, then all offspring are made by

crossover. If it is 0%, whole new generation is made from exact copies of

chromosomes from old population (but this does not mean that the new generation is

the same!). Crossover is made in hope that new chromosomes will contain good parts

of old chromosomes and therefore the new chromosomes will be better. However, it

is good to leave some part of old population survives to next generation.

 Mutation: Crossover makes use of current gene potentials, but if the

population does not include all the encoded information needed to solve a particular

problem, no amount of gene mixing can produce a satisfactory solution. For this

reason, a mutation operator capable of spontaneously generating new chromosomes

is contained (Fig. 2.14). The most common way of applying mutation is to flip a bit

with a probability equal to a very low given mutation rate. A mutation operator can

prevent any single bit from converging to a value throughout the entire population

29

and, more important, it can prevent the population from converging and stagnating at

any local optima.

Figure 2.14 Mutation Operator.

The types of mutation are as follows:

Flip Bit Mutation: A mutation operator that simply inverts the value of the chosen

gene (0 goes to 1 and 1 goes to 0). This mutation operator can only be used for

binary genes.

Boundary Mutation: A mutation operator that replaces the value of the chosen

gene with either the upper or lower bound for that gene (chosen randomly). This

mutation operator can only be used for integer and float genes.

Non-Uniform Mutation: A mutation operator that increases the probability that

the amount of the mutation will be close to 0 as the generation number increases.

This mutation operator keeps the population from stagnating in the early stages of the

evolution then allows the genetic algorithm to fine tune the solution in the later

stages of evolution. This mutation operator can only be used for integer and float

genes.

Uniform Mutation: A mutation operator that replaces the value of the chosen gene

with a uniform random value selected between the user-specified upper and lower

bounds for that gene. This mutation operator can only be used for integer and float

genes.

1 0 0 1 1 1 1 0 1 0 0 1 1 1 0 0

Mutated Bit

30

Gaussian Mutation: A mutation operator that adds a unit Gaussian distributed

random value to the chosen gene. The new gene value is clipped if it falls outside of

the user-specified lower or upper bounds for that gene. This mutation operator can

only be used for integer and float genes.

Mutation Probability: An important parameter in the mutation technique is the

mutation probability (mP). The mutation probability decides how often parts of

chromosome will be mutated. If there is no mutation, offspring are generated

immediately after crossover (or directly copied) without any change. If mutation is

performed, one or more parts of a chromosome are changed. If mutation probability

is 100%, whole chromosome is changed, if it is 0%, nothing is changed. Mutation

generally prevents the GA from falling into local extremes. Mutation should not

occur very often, because then GA will in fact change to random search.

How the Genetic Algorithm Works: The algorithm begins by creating a random

initial population. Then the algorithm creates a sequence of new populations. At each

step, the algorithm uses the individuals in the current generation to create the next

population. To create the new population, each member of the current population is

scored by computing its fitness value. Then, the raw fitness scores are scaled to

convert them into a more usable range of values. It selects members, called parents,

based on their fitness. Some of the individuals in the current population that have

lower fitness are chosen as elite. These elite individuals are passed to the next

population. Children are produced from the parents. Children are produced either by

making random changes to a single parent mutation or by combining the vector

entries of a pair of parents crossover. The current population is replaced with the

children to form the next generation. The algorithm stops when one of the stopping

criteria is met. The outline above can be summarized by the following steps

(Goldberg, 1989):

Step 1: Determine the initial population with randomly generated individuals and

compute fitness value.

31

Step 2: Select two individuals from the population with probabilities proportional

to their fitness values.

Step 3: Apply crossover with the probabilities equals to crossover rate.

Step 4: Apply mutation with the probabilities equals to mutation rate.

Step 5: Repeat the steps 2 - 4 until sufficient member is generated for the next

generation.

Step 6: Repeat the steps 2-5 until a stopping criteria is satisfied.

Step 7: Output the best solution of the last generation as an approximate optimal

solution.

End.

Figure 2.15 is the figure illustrating how to produce the next generation from the

current one.

 Figure 2.15 Producing the Next Generation in GAs.

2.4 Cross Validation Method

Cross-Validation is a statistical method of evaluating and comparing learning

algorithms by dividing data into two segments: one used to learn or train a model and

the other used to validate the model. In typical cross-validation, the training and

validation sets must cross-over in successive rounds such that each data point has a

chance of being validated against. The basic form of cross-validation is k-fold cross-

validation. Other forms of cross-validation are special cases of k-fold cross-

32

validation or involve repeated rounds of k-fold cross-validation such as leave-one-

out cross-validation and 2k cross-validation.

In K-fold cross-validation, the original sample is randomly partitioned into K

subsamples. Of the K subsamples, a single subsample is retained as the validation

data for testing the model, and the remaining K − 1 subsamples are used as training

data. The cross-validation process is then repeated K times (the folds), with each of

the K subsamples used exactly once as the validation data. The K results from the

folds then can be averaged to produce a single estimation. The advantage of this

method over repeated random sub-sampling is that all observations are used for both

training and validation, and each observation is used for validation exactly once. 10-

fold cross-validation is commonly used (McLachlan et al., 2004). Ten fold cross-

validation is the standard way of measuring the error rate of a learning scheme on a

particular dataset; for reliable results, 10 times 10-fold cross-validation. To show the

working mechanism of k-fold cross validation, three-fold cross validation is

illustrated in Figure 2.16.

 Figure 2.16 Three-fold Cross Validation.

In stratified K-fold cross-validation, the folds are selected so that the mean

response value is approximately equal in all the folds. In the case of a dichotomous

classification, this means that each fold contains roughly the same proportions of the

two types of class labels.

33

There are two possible goals in cross-validation:

1) To estimate performance of the learned model from available data using one

algorithm. In other words, to gauge the generalizability of an algorithm.

2) To compare the performance of two or more different algorithms and find

out the best algorithm for the available data, or alternatively to compare the

performance of two or more variants of a parameterized model.

These two goals are highly related, since the second goal is automatically

achieved if one knows the accurate estimates of performance.

34

CHAPTER THREE

WEIGHTED POSITION-SPECIFIC SCORING METHOD

We developed a weighted position-specific scoring method by using position

specific scoring matrix, genetic algorithm and 10-fold cross validation. In this

method, the process consists of learning, identification and validation phases. These

phases will be covered in detail.

3.1 Learning Phase

In the learning phase, we calculate the position frequencies and then construct the

position-specific scoring matrices for these classes by using logarithms of the

position specific nucleotide probabilities for each learning class („EI‟, ‟IE‟ and

„None‟). To compare the efficiency of our method, a position specific scoring matrix

is constructed by each variant as normalization step and without normalization step

and the results are compared.

A threshold parameter (t) is used to consider deterministic odds-impact of

observed frequencies with respect to the distance from the natural frequency. The

optimal position weights (w) and optimal threshold (t) are computed by using

genetic algorithm for the learning set. Flow chart of the learning phase is shown in

Figure 2.17.

35

Figure 2.17 Learning phase flow chart.

3.2 Identification Phase

In the identification phase, the optimal weights and threshold calculated from

learning phase are applied to each sequence in the test set. Then each sequence

classified into „EI‟, „IE‟, „None‟ classes. The flow chart of identification phase is

illustrated in Figure 2.18.

36

Figure 2.18 Identification phase flow chart.

Algorithm of the identification phase is as follows:

Algorithm 3 (WPSSM).

Input:

a) EIPSSM , IEPSSM and NonePSSM which are calculated for „EI‟, „IE‟ and

„None‟ classes by using Algorithm 1.

b) * * * *

1 2(, ,...,)nx x x x sequence which is needed to be classified,

where * { , , , }, 1,...,ix A C T G i n  .

Output: Class of *x sequence (*()class x) .

37

Step 1. Scoring vectors belonging to „EI‟, „IE‟ and „None‟ classes of *x sequence

are calculated by using EIPSSM , IEPSSM and NonePSSM matrices, respectively:

* * * *

1 2() ([,1], [,2],..., [,])EI EI EI EI nS x PSSM x PSSM x PSSM x n ,

* * * *

1 2() ([,1], [,2],..., [,])IE IE IE IE nS x PSSM x PSSM x PSSM x n ,

* * * *

1 2() ([,1], [,2],..., [,])None None None None nS x PSSM x PSSM x PSSM x n ,

where
*

[.][,]iPSSM x i is a scoring value of *

ix residue in thi position for the [.]class .

 Step 2. Scores of the given sequence *x , *()EIS x , *()IES x and *()NoneS x belonging

to „EI‟, „IE‟ and „None‟ classes are calculated by using the scoring vectors:

* *

1

() (())
n

i

EI i EI

i

s x w S x t


   ,

* *

1

() (())
n

i

IE i IE

i

s x w S x t


   ,

* *

1

() (())
n

i

None i None

i

s x w S x t


   ,

where iw is a weight of thi position;
*

[.]()iS x is a thi component of
*

[.]()S x vector; t

is threshold value.

Step 3. The class of *x sequence is identified as follows:

* * * *

{ , , }

() arg max{ (), (), ()}EI IE None
EI IE None

class x s x s x s x ;

End.

3.3 Validation phase

Now, let { , 1,..., }kX x k N  , be a learning set of sequences with (60)n n 

residue where { , , , }, 1,...,k

ix A C T G i n  . The classes of test sequences are

38

predicted as explained in the identification phase. The aim of this phase is to measure

the accuracy.

In the literature, True Positive (TP), False Positive (FP), True Negative (TN) and

False Negative (FN) values, and different indexes which are calculated from these

values, are generally used to measure the validation of a method. Here, FP is a count

of sequences which are incorrectly assigned to predicted class; FN is a count of

sequences which are not assigned to predicted class as incorrect; TP is a count of

sequences which are accurately assigned to predicted class; TN is a count of

sequences which are not assigned to predicted class as accurate.

In our study, three classes are used as „EI‟, „IE‟, „None‟ (Table 3.1). TP, TN, FP

and FN values are calculated from the formulas in Table 3.2, where ija indicates

number of predicted sequences.

Table 3.1. Confusion matrix for each class

Table 3.2. TN, TP, FN and FP rates formulas for each class

Error rates (ERs) are computed according to true/false classification results with

the following formula:

39

FP FN
ER

TP TN FP FN




  
 (3.1)

Also overall error rate (OER) is computed with the below formula:

{ , , }

{ , , }

()

1
()

i i

i EI IE N

i i i i

i EI IE N

TP TN

OER
TP TN FP FN







 
  




 (3.2)

40

CHAPTER FOUR

RESULTS AND DISCUSSION

In this work, our proposed method has been applied to data set from the „UCI

Repository of machine learning databases‟ which contains 3190 samples and each

sample is a sequence of 60 nucleotides (Asuncion and Newman, 2007). This data set

includes 767 „EI‟, 768 „IE‟ and 1655 „None‟ sequences.

In the preliminary works of our study, 2140 sequences which include 517 EI, 518

IE and 1105 N, are taken as learning set. The rest of this data set which contains

1050 sequences with 250 EI, 250 IE and 550 N, are taken as test set; and this test set

is classified by using weights and threshold computed from learning set. The optimal

position weights and threshold in the learning phase of our study found by genetic

algorithm are as in Table 4.1. The classification results are shown in Table 4.2.

Table 4.1 The optimal position weights and threshold computed by GA

41

Table 4.2 Classification Results for the Test Set

Results
Predicted

EI IE N

 EI 244 4 2

Actual IE 5 238 7

 N 9 16 525

Error rates are computed from the table above for each class with equation (3.1).

The error rates are: „EI‟ %1.9, „IE‟ %3.0, and „NONE‟ %3.32.

We repeated the experiments without using threshold parameter to investigate

efficiency of this parameter. The classification results are found as in Table 4.3.

Table 4.3 Classification results for test set without using

the threshold parameter

Results
Predicted

EI IE N

 EI 242 5 3

Actual IE 5 238 7

 N 11 18 521

The error rates without using threshold parameter are: „EI‟ %2.28, „IE‟ %3.33,

and „NONE‟ %3.71. It is seen that using threshold parameter decreased error rates

and improved the effectiveness of the method. Error rates of the WPSSM are shown

in the Table 4.4.

Table 4.4. Error rates of WPSSM.

Methods ‘EI’ % ‘IE’ % ‘N’ %
Overall Error

Rates (%)

WPSSM 1,9 3 3,32 2,74

WPSSM without Threshold 2,28 3,33 3,71 3.107

In the developed work of our study, 10-fold cross-validation method is applied to

this data set. In this method, the dataset is broken into 10 sets of size n/10 of the each

fold containing 319 sequences. One fold is selected as test set and the rest folds are

selected as learning set. This process is repeated 10 times and then the mean

42

accuracy is taken. The test sets are classified by using the optimal weights and

threshold computed from learning sets.

The optimal position weights and threshold in the learning phase of our study

found by genetic algorithm are as follows (Table 4.5).

Table 4.5 The optimal position weights and threshold computed by GA

In the learning set, weights and threshold parameters are calculated by genetic

algorithm with tuned options as Generations, Initial Population, Population Size,

Stall Gen Limit, Stall Time Limit, Elite Count. In the computations, maximum

iteration number is taken as 30 (Generations=30), initial population is taken as „w‟

vector with 1 61 dimension ones vector which includes 1 60 ones for weights and

a one for threshold in the last position (Initial Population), population size is taken as

30 (Population Size=30). The algorithm is stopped if the weighted average change in

the fitness function value over 5000 stall generations (Stall Gen Limit=5000) is less

than function tolerance. Also, the algorithm is stopped if there is no improvement in

the best fitness value for an interval of time in seconds specified by 2000 (Stall Time

Limit=2000). Five individuals are taken as elite count (Elite Count=5) for each

generation.

43

The classification results are shown in Table 4.6. Each cell in Table 4.6 consists

of average classification count and average classification rate. Moreover, the error

rates and overall error rates for each class are computed for each fold by the equation

(3.1-3.2). The mean of error rates for classes „EI‟, „IE‟ and „None‟ are found as

%2.73, %2.70, and %3.17, respectively.

Table 4.6 Classification results for the test set

We repeated the experiments with normalization step and without threshold

parameter to investigate superiority of this parameter to normalization step. The

classification results are found as in Table 4.7. This table consists of average

classification counts and rates.

Table 4.7 Classification results for test set with normalization step and without

threshold parameter

The error rates of WPSSM with normalization step and without threshold

parameter are %2.70, %2.92, and %3.35 for the classes „EI‟, „IE‟ and „None‟,

respectively. It is seen that using threshold parameter decreases error rates and

44

improves the effectiveness of the method than normalization step. Error rates of the

WPSSM are shown in Table 4.8.

Table 4.8 Error rates of WPSSM

Also performance measurements such as specificity (Sp), sensitivity (Sn),

Mathew‟s correlation coefficient (MCC) and accuracy rate are computed via

following formulas:

TP
Sn

TP FN



 (4.1)

TN
Sp

TN FP



 (4.2)

TP TN
Accuracy

TP TN FP FN




  
 (4.3)

() () () ()

TP TN FP FN
MCC

TP FP TP FN TN FP TN FN

  


      
 (4.4)

Performance parameters are found as in Table 4.9.

45

Table 4.9 Performance parameters

Sensitivity measures the proportion of actual positives which are correctly

identified and specificity measures the proportion of predicted positives which are

correctly identified. The success of a method depends on high value of both

specificity and sensitivity.

WPSSM shows significant improvements in the sensitivity and specificity of

splice sites identification. Its accuracy rate is higher than many methods in the

literature (Grau et al., 1999; Li et al., 2007). The Matthew‟s correlation coefficient

(MCC) is generally regarded as being one of the best such measures. The MCC is in

essence a correlation coefficient between the observed and predicted binary

classifications; it takes a value between −1 and +1. A coefficient of +1 represents a

perfect prediction, 0 an average random prediction and −1 an inverse prediction.

Also, WPSSM has a MCC approximately 1. It shows that proposed method is a good

classification method.

46

CHAPTER FOUR

CONCLUSION

The handled problem in this thesis is to identify, given a sequence of DNA

letters, splice sites. In this work, we proposed a novel weighted position-specific

scoring method (WPSSM). We show that our method is able to improve

classification accuracy and performance parameters in accordance with other

methods.

The WPSS method uses position weights and threshold parameter instead of a

normalization step. The optimal position weights and threshold parameter are found

via genetic algorithm. The threshold is used instead of normalization step in the

construction of the position specific scoring matrix. The normalization step of the

PSSM uses a fixed value, but the threshold in our proposed method is a tuned value

calculated by optimization procedure. As it is seen from the experimental results this

approach gives better results than classical PSSM approach. The mentioned results

poses that WPSSM can be efficient in solution of splice site recognition problem.

In the preliminary works, learning and test sets are selected randomly. This

method is applied to learning set and the weights calculated according to learning set

are tested with the test set. However, in the developed work, learning and test sets are

selected according to ten-fold cross validation method. This selection method is more

logical than random selection.

The proposed method (WPSSM) shows significant improvements in the

sensitivity and specificity of splice sites identification. Accuracy rate of this method

is higher than many other methods in the literature. Also the method has significant

Mathew‟s correlation coefficient rate.

47

When the classification error rates of our WPSSM are compared with many

methods proposed in the literature, the results of WPSSM have showed lower error

rates than many of the known methods in the literature. The methods which have the

higher results than our proposed method WPSSM are Hierarchical Multi Classifier

Method (HM), Linear Support Vector Machine (Rank SVM) and Support Vector

Machine (SVM). The comparison results are given in Table 5.1.

Table 5.1 Error rates of different methods

Methods ‘EI’ % ‘IE’ % ‘N’ %
Overall Error

Rates %

HM 0.76 1.59 1.6 1.317

Rank SVM 0.86 1.86 1.71 1.477

SVM 1.65 1.99 1.9 1.847

WPSSM 1.9 3 3.32 2.740

SUBSPACE 1.68 6.25 1.61 3.180

NN BRAIN 2.6 4.3 n.d. 3.450

BRAIN 5 4 4 4.333

KBANN 7.6 8.5 4.6 6.900

MLP 5.7 10.7 5.3 7.233

BACKPROPAGATION 5.74 10.75 5.29 7.260

PEBLS 8.18 7.55 6.86 7.530

ID3 10.6 14 8.8 11.133

COBWEB 15.04 9.46 11.8 12.100

PERCEPTRON 16.32 17.41 3.99 12.573

NEAREST NEIGHBOR 11.6 9.1 31.1 17.267

48

REFERENCES

Asuncion, A. & Newman, DJ. (2007) UCI Machine Learning Repository. Irvine, CA:

University of California, School of Information and Computer Science, Retrieved

March 2010 from (http://www.ics.uci.edu/~mlearn/MLRepository.html).

Baker, J.E. (1985) Adaptive Selection Methods for Genetic Algorithms. Proc. 1
st

Int.

Conf. Genetic Algorithms and Their Applications, Lawrence Erlbaum Associates,

Hillsdale, NJ, 100-101.

Baten, A., Chang, BCH., Halgamuge SK., & Li J. (2006) Splice site identification

using probabilistic parameters and SVM classification. BMC Bioinformatics,

7(5),15.

Brunak, S., Engelbrecht, J., & Knudsen, S. (1991) Prediction of mRNA donor and

acceptor sites from the DNA sequence. Journal of Molecular Biology, 220, 49-65.

Burset, M., Seledtsov, A., & Solovyeva, V.V. (2000) Analysis of canonical and non-

canonical splice sites in mammalian genomes. Nucleic Acids Research, 28(21),

4364-4375.

Cai, D., Delcher, A., Kao, B., & Kasif, S. (2000) Modeling splice sites with Bayes

networks. Bioinformatics, 16(2), 152-158.

Castelo, R., & Guigo, R. (2004) Splice site identification by idlBNs. Bioinformatics,

20(1), 69-76.

Chen, TM., Lu, CC., & Li, WH. (2005) Prediction of splice sites with dependency

graphs and their expanded Bayesian networks. Bioinformatics, 21(4), 471-482.

Chuang, JS., & Roth, D. (2001) Splice site prediction using a sparse network of

winnows. In Technical Report University of Illinois, Urbana-Champaign,

Champaign, IL, USA.

David, L. (1991). Handbook of Genetic Algorithms (1st ed.). Van Nonstrand

Reinhold, New York, NY.

49

Degroeve, S., Saeys, Y., Baets, BD., Rouze, P., & Peer, YVD. (2005).

SpliceMachine: predicting splice sites from high-dimensional local context

representations. Bioinformatics, 21(8), 1332-1338.

Goldberg, D.E. (1989) Genetic Algorithms in search, optimization and machine

learning (1st ed.). Addison – Wesley, Reading, MA.

Grant, K. (1995). An introduction to genetic algorithms. C/C++ Users Journal,

13(3), 45 - 58.

Grau, A., Mar, M., Molinero, H., & Daniel, L. (1999). Feature selection in

codebook based methods provides high accuracy. IJCNN’99, 3, 1856-1860.

Haussler, D.. (1998) Computational gene finding. Trends Biochem. Sci. Suppl.

Guide Bioinformatics, 12–15.

Holland, J.H. (1975). Adaptation in natural and artificial systems. University of

Michigan Press, Ann Arbor, MI.

Jang, JSR., Sun, CT., & Mizutani, E. (1997). Neuro-Fuzzy and soft computing (1st

ed.). Prentice-Hall, Inc. Simon & Schuster/A Viacom Company Upper Saddle

River, NJ 07458.

Koza, J. R. (1990). Genetic Programming: A paradigm for genetically breeding

populations of computer programs to solve problems. Technical Report No.

STAN-CS-90-314, Computer Sciences Department, Stanford University.

Li, K., Chang, D., Rouchka, E., & Chen, YY. (2007). Biological sequence mining

using Plausible Neural Network and its application to exon/intron boundaries

prediction. IEEE Symposium on Computational Intelligence in Bioinformatics

and Computational Biology, 165-169.

Lumini, A., & Nanni, L. (2006). Identifying splice-junction sequences by

hierarchical multiclassifier. Pattern Recognition Letters, 27, 1390–1396.

50

Marashi, SA., Eslahchi, C., Pezeshk, H., & Sadeghi, M. (2006a). Impact of RNA

structure on the prediction of donor and acceptor splice sites. BMC

Bioinformatics, 7, 297.

Marashi, SA., Goordarzi, H., Sadeghi, M., Eslahchi, C., Pezeshk, H. (2006b)

Importance of RNA secondary structure information for yeast donor and

acceptor splice site predictions by neural networks. Computational Biology and

Chemistry, 30, 50-57.

McLachlan GJ, Do K.A., & Ambroise C. (2004). Analyzing microarray gene

expression data (1st ed.). Wiley.

Mount D. W. (2004). Bioinformatics – sequence and genome analysis (2nd ed.).

Cold Spring Harbor Laboratory Press, New York, 283-334.

Nasibov E.N., & Tunaboylu S. (2010a). A Novel Weighted Position-Specific

Scoring Method for Splice Site Recognition in DNA Sequences. The 1.st

International Symposium on Computing in Science & Engineering, 225-230.

Nasibov E.N., & Tunaboylu S., (2010b). Classification of splice-junction

sequences via weighted position specific scoring approach. Computational

Biology and Chemistry, 34, Issues 5-6, 293-299.

Needleman, S.B. & Wunsch, C. D. (1970). A General method applicable to the

search for similarities in the amino acid sequence of two proteins. J.Mol. Biol.,

48, 443-453.

Noordewier, MO., Towell, GG., & Shavlik, JW. (1991). Training Knowledge-

Based Neural Networks to Recognize Genes in DNA Sequences. Advances in

Neural Information Processing Systems, 3, 530-536.

Pertea, M., Lin, X., & Salzberg, SL. (2001). GeneSplicer: a new computational

method for splice site detection. Nucleic Acids Research, 29(5), 1185-1190.

http://en.scientificcommons.org/43183104
http://en.scientificcommons.org/43183104

51

Pham, D.T. & Karaboğa, D. (2000). Intelligent Optimization Techniques (1st ed.).

Springer – Verlag, London, UK.

Rajapakse, JC., & Ho, LS. (2005). Markov encoding for detecting signals in

genomic sequences. IEEE/ACM Transactions on Computational Biology and

Bioinformatics, 2(2), 131-142.

Ratsch, G., Sonnenburg, S., & Schafer, C. (2006). Learning Interpretable SVMs

for Biological Sequence Classification. BMC Bioinformatics, 7(1), S9.

Reese, MG. (2001). Application of a time-delay neural network to promoter

annotation in the Drosophila melanogaster. Computer chem., 26(1), 51-56.

Reese, MG., Eeckman, F., Kupl, D., & Haussler, D. (1997). Improved splice site

detection in Genie. Journal of Computational Biology, 4(3), 311-324.

Salzberg, SL. (1997). A method for identifying splice sites and translation start

site in eucaryotic mRNA. Computer Applications in the Biosciences, 13(4),

384-390.

Sivanandam S.N. & Deepa S. N..(2007). Introduction to Genetic

Algorithms.Springer.

Sonnenburg, S. (2002). New methods for detecting splice junction sites in DNA

sequence. In Master's Thesis Humbold University, Germany.

Sonnenburg, S., Schweikert, G., Philips, P., Behr, J., & Rätsch, G. (2007).

Accurate splice site prediction using support vector machines. BMC

Bioinformatics, 8(10), S7.

Staden, R. (1984). Computer methods to locate signals in nucleic acid sequences.

Nucleic Acids Res., 12, 505–519.

Sun, YF., Fan, XD., & Li, YD. (2003). Identifying splicing sites in eukaryotic

RNA: Support vector machine approach. Computers in biology and medicine,

33, 17-29.

52

Tsai, KN., Lin, SH., Shih, SR., Lai, JS., & Chen, CM. (2009). Genomic splice site

prediction algorithm based on nucleotide sequence pattern for RNA viruses.

Computational Biology and Chemistry, 33, 171-175.

Xiong, J. (2006). Essential Bioinformatics (1st ed.). Cambridge University Press,

75-84.

Zhang, L., & Luo, L. (2003). Splice site prediction with quadratic discriminant

analysis using diversity measure. Nucleic Acids Research, 31(21), 6214-6220.

Zhang, M., & Marr, TG. (1993). A weight array method for splicing signal

analysis. Bioinformatics, 9, 499-509.

Zhang, XHF., Heller, K.A., Hefter, I., Leslie, C.S., & Chasin, L.A. (2003).

Sequence information for the splicing of human pre-mRNA identified by

support vector machine classification. Genome Research, 13, 2637-2650.

53

APPENDIX

Construction of the learning dataset and test dataset via ten-fold cross validation

method:

indices = crossvalind('Kfold',3190,10);

i=1:3190;

for j=1:10

 TS{j} = i(indices == j);

 LS{j} = i(indices ~=j);

 TSEI{j}=TS{j}(find(TS{j}<=767));

 TSIE{j}=TS{j}(find((TS{j}>=768)&(TS{j}<=1535)));

 TSN{j}=TS{j}(find(TS{j}>=1536));

 LSEI{j}=LS{j}(find(LS{j}<=767));

 LSIE{j}=LS{j}(find((LS{j}>=768)&(LS{j}<=1535)));

 LSN{j}=LS{j}(find(LS{j}>=1536));

end

save('DSets','TS','LS','TSEI','TSIE','TSN','LSEI','LSIE',

'LSN');

Program:

clear all

clc

global dizi EI IE N sinif pred_sinif index numEI numIE

numN w TP

global LSEInum LSIEnum LSNnum

global EItestindex EIlearnindex IEtestindex IElearnindex

Ntestindex Nlearnindex

sinif=importdata('sinif.txt',',');

konum=importdata('konum.txt',',');

dizi=importdata('dizi.txt',',');

load DSets;

error_rates=[];

for j=1:10

 EItestindex=TSEI{j};

 EIlearnindex=LSEI{j};

 IEtestindex=TSIE{j};

 IElearnindex=LSIE{j};

 Ntestindex=TSN{j};

 Nlearnindex=LSN{j};

54

 LSEInum=size(LSEI{j},2);

 LSIEnum=size(LSIE{j},2);

 LSNnum=size(LSN{j},2);

 disp(' LEARNING PROCESS ')

 spliceLearn;

% sonucLearn=['SonucLearn' 47+j];

% save (sonucLearn,'w', 'TP', 'numEI','numIE', 'numN');

 disp(' TEST PROCESS ')

 spliceTest;

 sonucTest=['SonucTest' 47+j];

 save (sonucTest,'TP', 'numEI','numIE', 'numN');

 Pred_sinif=['pred_sinif' 47+j];

 save(Pred_sinif,'pred_sinif');

 % Test seti sonucları

 nnTSEI(j)=0;

 nnTSIE(j)=0;

 nnTSN(j)=0;

 for k=TSEI{j}

 nnTSEI(j)=nnTSEI(j)+strcmp(pred_sinif{k},'EI');

 nnTSIE(j)=nnTSIE(j)+strcmp(pred_sinif{k},'IE');

 nnTSN(j)=nnTSN(j)+strcmp(pred_sinif{k},'NN');

 end

 TestMatrix_EI=[nnTSEI(j) nnTSIE(j) nnTSN(j)];

 nnTSEI(j)=0;

 nnTSIE(j)=0;

 nnTSN(j)=0;

 for k=TSIE{j}

 nnTSEI(j)=nnTSEI(j)+strcmp(pred_sinif{k},'EI');

 nnTSIE(j)=nnTSIE(j)+strcmp(pred_sinif{k},'IE');

 nnTSN(j)=nnTSN(j)+strcmp(pred_sinif{k},'NN');

 end

 TestMatrix_IE=[nnTSEI(j) nnTSIE(j) nnTSN(j)];

 nnTSEI(j)=0;

 nnTSIE(j)=0;

 nnTSN(j)=0;

 for k=TSN{j}

 nnTSEI(j)=nnTSEI(j)+strcmp(pred_sinif{k},'EI');

 nnTSIE(j)=nnTSIE(j)+strcmp(pred_sinif{k},'IE');

 nnTSN(j)=nnTSN(j)+strcmp(pred_sinif{k},'NN');

 end

 TestMatrix_N=[nnTSEI(j) nnTSIE(j) nnTSN(j)];

TestRes{j}=[TestMatrix_EI;TestMatrix_IE;TestMatrix_N];

55

 TestRes{j};

 Test_Res=['TestRes' 47+j];

 save(Test_Res, 'TestRes')

% Error Rates for each class

ER_EI(j)=(sum(TestRes{j}(2:3,1))+sum(TestRes{j}(1,2:3)))/

sum(sum(TestRes{j}));

ER_IE(j)=(sum(TestRes{j}(2,1))+sum(TestRes{j}(2,3))+

sum(TestRes{j}(1,2))+sum(TestRes{j}(3,2)))/sum(sum(

TestRes{j}));

ER_N(j)=(sum(TestRes{j}(3,1:2))+sum(TestRes{j}(1:2,3)))/

sum(sum(TestRes{j}));

error_rates=[error_rates [ER_EI(j) ;ER_IE(j) ;ER_N(j)]];

 disp({'error_rates' j});

 disp(error_rates);

 Error_Rates=['error_rates' 47+j];

 save(Error_Rates,'error_rates');

end

sum(error_rates')/10

Performance Parameters:

% Calculation of TN, TP, FN, FP for each fold.for j=1:10

for j=1:10

FP(j)=sum(TestRes{j}(2:3,1))+ sum(TestRes{j}(2,1))+

sum(TestRes{j}(2,3))+sum(TestRes{j}(3,1:2));

FN(j)=sum(TestRes{j}(1,2:3))+sum(TestRes{j}(1,2))+

sum(TestRes{j}(3,2))+sum(TestRes{j}(1:2,3));

TP(j)=sum(diag(TestRes{j}));

TN(j)=sum(sum(TestRes{j}(2:3,2:3)))+

sum(sum(TestRes{j}(1,1)))+sum(sum(TestRes{j}(3,1)))

+sum(sum(TestRes{j}(3,3)))+sum(sum(TestRes{j}(1,3)))

+sum(sum(TestRes{j}(1:2,1:2)));

end

data=[TP' TN' FP' FN']

TP=mean(TP);

TN=mean(TN);

FP=mean(FP);

FN=mean(FN);

Sn=TP/((TP)+(FN))

Sp=TN/((TN)+(FP))

56

CC=((TP*TN)-

(FP*FN))/(sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN)))

Accuracy=(TP+TN)/(TP+TN+FP+FN)

F=(2*Sn*Sp)/(Sn+Sp)

save('Measurements', 'Sn','Sp','CC','Accuracy','F')

