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ANALYSIS OF GENETIC DATA VIA DATA MINING METHODS AND ITS 

APPLICATIONS  

 

ABSTRACT 

 

The prediction of the complete structure of genes is one of the important tasks of 

bioinformatics, especially in eukaryotes. A crucial part in gene structure prediction is 

to determine the splice sites in the coding region. Identification of splice sites 

depends on the precise recognition of the boundaries between exons and introns of a 

given DNA sequence. This problem can be formulated as a classification of sequence 

elements into „exon-intron‟ (EI), „intron-exon‟ (IE) or „None‟ (N) boundary classes.  

 

In this thesis, we propose a new Weighted Position Specific Scoring Method 

(WPSSM) to recognize splice sites which uses a position-specific scoring matrix 

constructed by nucleotide base frequencies.  A genetic algorithm is used in order to 

tune the weight and threshold parameters of the positions on. This method comprises 

of three phases: learning phase, identification phase and validation phase. In this 

study, the optimal position weights and threshold parameter are found via genetic 

algorithm. The proposed WPSS method poses efficient results compared to the 

performance of various methods proposed in the literature. Computational 

experiments are conducted on the DNA sequence dataset from „UCI Repository of 

machine learning databases‟. 

 

Keywords: Exon-Intron Splice Sites, Weighted Position Specific Scoring Method, 

Genetic Algorithm. 
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GENETİK VERİLERİN VERİ MADENCİLİĞİ YÖNTEMLERİ İLE 

İNCELENMESİ VE UYGULAMALARI  

 

ÖZ 

 

 Özellikle ökaryotlarda gen yapılarının tahmin edilmesi biyoenformatiğin önemli 

konularından biridir. Gen yapılarının tahmin edilmesindeki en önemli konu kodlanan 

bölgelerdeki kesim bölgeleridir. Kesim bölgelerinin belirlenmesi de verilen DNA 

dizisindeki eksonlar ve intronlar arasındaki bölgelerin doğru tanımlanmasına 

bağlıdır. Bu problem dizi elementlerinin „exon-intron‟ (EI), „intron-exon‟ (IE) or 

„None‟ (N) sınıfları olarak sınıflandırılması olarak tanımlanabilir.  

 

Bu tez çalışmasında, kesim bölgelerini belirlemek için geliştirilen yeni bir yöntem 

olan ve nükleotit baz frekanslarından oluşan spesifik pozisyonel skorlama matrisini 

kullanan Ağırlıklandırılmış Pozisyonel Skorlama Metodu (WPSSM) önerilmiştir. 

Ayrıca optimal ağırlıkların ve eşik değerinin belirlenmesinde genetik algoritma 

kullanılmıştır. Bu metod öğrenme, tanımlama ve geçerlilik aşamaları olmak üzere üç 

aşamadan oluşmaktadır. Önerilen WPSS metodu literatürdeki pek çok metodun 

performansıyla karşılaştırıldığında etkili sonuçlar vermiştir. Hesaplamalar, „UCI 

Repository of machine learning databases‟ veri tabanından alınan DNA dizileri 

üzerinde gerçekleştirilmiştir. 

 

Anahtar Kelimeler: Ekson-Intron Kesim Bölgeleri, Ağırlıklandırılmış 

Pozisyonel Skorlama Metodu, Genetik Algoritma. 
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1 

CHAPTER ONE 

INTRODUCTION 

 

Bioinformatics is a multidisciplinary research area at the interface between 

computer science and biological science. Bioinformatics involves the technology that 

uses computers for storage, retrieval, manipulation, and distribution of information 

related to biological macromolecules such as DNA, RNA, and proteins (Xiong, 

2006).  

 

The ultimate aim of the bioinformatics is to better understand a living cell and 

how it functions at the molecular level by using computer technology. Sequence 

analysis of DNA sequences is one of the important tasks in bioinformatics.  

 

The required information for the smallest living unit cell to regularly perform 

cellular activities, are hidden in DNA molecules, the kernel known as the brain of the 

cell. A DNA molecule which is a giant molecular chain contained in all living cells is 

considered as a "knowledge bank" since it contains genetic information. 

 

Specific regions which encode knowledge of our physical features and 

physiological activities on the DNA are called “genes”. These genes encode the 

various proteins and provide continuing of our lives. The identification of genes is a 

major task in bioinformatics. However, gene structure needs to be predicted for the 

accurate identification of genes. Recognizing splice sites in eukaryotic genes play an 

important role in identifying gene structure. The accurate identification of the splice 

sites depends on correct estimation of exon-intron structures. This accurate 

identification problem can be formulized as a classification problem. 

 

Recently, many splice site classification/prediction methods have been proposed. 

These methods can be classified as probabilistic methods (Salzberg, 1997; Chen et 

al., 2005; Pertea et al., 2001; Marashi et al., 2006a; Zhang and Marr, 1993; Castello 

and Guigo, 2004; Cai et al., 2000), neural networks and support vector machines 

(Marashi et al., 2006b; Reese et al., 1997; Sun et al., 2003; Reese, 2001; Zhang et al., 
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2003; Sonnenburg, 2002; Degroeve et al., 2005; Rajapakse et al., 2005; Baten et al., 

2006; Sonnenburg et al., 2007; Ratsch et al., 2006), and methods based on 

discriminant analysis (Chuang and Roth, 2001; Zhang and Luo, 2003). Many works 

posed that machine learning methods has better results than canonical pattern 

matching based classification methods. The main methods which have good results 

are knowledge based neural network (KBANN) which combines explanation based 

and empirical learning methods (Noordewier et al., 1991), probabilistic model which 

estimates position-specific probabilities of splice sites (Pertea et al., 2001), Genomic 

Splice Site Prediction (GSSP) method which characterizes the interdependency 

among the nucleotides and base positions based on the eigen-patterns (Tsai et al., 

2009), BRAIN algorithm which infers Boolean formulae from examples and 

considers the splicing rules, and Hierarchical Multi-classifier which use many 

classification methods (Lumini and Nanni, 2006). Also, there are influential models 

based on weight matrix model (WMM). The WMM weights can be optimized using 

a neural network method (Brunak et al., 1991). Another model uses the position-

specific compositional biases in splice sites (Staden, 1984).  

 

In this study, Weighted Position-Specific Scoring Method has been proposed as a 

new method concerning the classification of three classes of splice sites as “EI”, 

“IE”, and “NONE” classes. In this method, weighted position-specific scores which 

consist of frequencies of DNA sequence elements are used. The weights of the 

positions and threshold parameter have been calculated via genetic algorithm. The 

preliminary results of this study are presented in (Nasibov and Tunaboylu, 2010a). 

The developed study of preliminary results is presented in (Nasibov and Tunaboylu, 

2010b). 

 

This thesis is composed of five chapters. This introductory chapter is an overview 

of  bioinformatics and preliminary works of this classification problem.  

 

In Chapter 2, underlying methods used in the WPSSM as position specific scoring 

matrix, genetic algorithm and ten-fold cross validation method are discussed in a 

detail. The definitions and algorithms of these methods are covered. 
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In Chapter 3, the definitions of WPSSM‟s phases as learning, identification and 

validation phases are presented in detail; and their flow-diagrams are presented. 

 

Later, starting from Chapter 4, preliminary WPSSM and improved WPSSM are 

applied to dataset from „UCI Repository and Machine Learning‟ to classify 

sequences. The results are prensented and compared with each other and other works 

in the literature. 

 

In the conclusion part of this thesis, the results, novelty and advantages of the 

WPSSM are discussed.  

 

1.2 Historical Development of Bioinformatics 

 

The development of bioinformatics as a field is the result of advances in both 

molecular biology and computer science over the past 30–40 years. Bioinformatics 

arose as a fusion of two trends in biology: the application of computer programs to 

the analysis of protein and nucleotide sequences and the storage of molecular 

sequences in computer databases. The history of databases started in 1965 with the 

work of Margaret Dayhoff and her Atlas of Protein Sequences, which became the 

foundation for the first online database, the Protein Information Resource. 

Subsequently, in the early 1970s, the Brookhaven National Laboratory established 

the Protein Data Bank for archiving three-dimensional protein structures. 

 

 In the beginning, the database stored less than a dozen protein structures, 

compared to more than 30,000 structures today. The first sequence alignment 

algorithm was developed by Needleman and Wunsch in 1970. This was a 

fundamental step in the development of bioinformatics, which paved the way for the 

routine sequence comparisons and database searching practiced by modern 

biologists. The first protein structure prediction algorithm was developed by Chou 

and Fasman in 1974. Though it is rather unimproved by today‟s standard, it 

pioneered a series of developments in protein structure prediction. In the 1980s, 

GenBank was established and the fast database searching algorithms such as FASTA 
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by William Pearson and BLAST by Stephen Altschul and coworkers were 

developed. The start of the human genome project in the late 1980s provided a major 

boost for the development of bioinformatics. The development and the increasingly 

widespread use of the internet in the 1990s made instant access, exchange and 

dissemination of biological data possible. These are only the major milestones in the 

establishment of this new field. The fundamental reason that bioinformatics gained 

prominence as a discipline was the advancement of genome studies that produced 

unprecedented amounts of biological data. The explosion of genomic sequence 

information generated a sudden demand for efficient computational tools to manage 

and analyze the data. The development of these computational tools depended on 

knowledge generated from a wide range of disciplines including mathematics, 

statistics, computer science, information technology, and molecular biology. The 

merger of these disciplines created an information oriented field in biology, which is 

now known as bioinformatics (Xiong, 2006).  

 

1.3 Tasks in Bioinformatics 

 

Bioinformatics comprises of two subfields: the development of computational 

tools and databases and the application of these tools and databases in generating 

biological knowledge to better understand living systems. These two subfields are 

complementary to each other. The tool development includes writing software for 

sequence, structural, and functional analysis, as well as the construction of biological 

databases. These tools are used in three areas of genomic and molecular biological 

research: sequence analysis, structural analysis, and functional analysis. The analyses 

of biological data often generate new problems and challenges that in turn spur the 

development of new and better computational tools. 
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Figure 1.1 Application tasks of bioinformatics. 

 

The areas of sequence analysis include sequence alignment, sequence database 

searching, motif and pattern discovery, gene and promoter finding, reconstruction of 

evolutionary relationships, and genome assembly and comparison. Structural 

analyses include protein and nucleic acid structure analysis, comparison, 

classification, and prediction. The functional analyses include gene expression 

profiling, protein–protein interaction prediction, protein subcellular localization 

prediction, metabolic pathway reconstruction, and simulation (Figure 1.1). 

 

The three aspects of bioinformatics analysis are not isolated but often interact to 

produce integrated results. For instance, protein structure prediction depends on 

sequence alignment data; clustering of gene expression profiles requires the use of 

phylogenetic tree construction methods derived in sequence analysis. Sequence-

based promoter prediction is related to functional analysis of co-expressed genes. 

Gene annotation involves a number of activities, which include distinction between 
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coding and noncoding sequences, identification of translated protein sequences, and 

determination of the gene‟s evolutionary relationship with other known genes; 

prediction of its cellular functions employs tools from all three groups of the 

analyses.  

 

Sequence Analysis: Sequence analysis task includes sequence alignment, 

sequence database searching, motif and pattern discovery, gene and promoter finding 

tasks. These tasks are handled as follows. 

 

 Sequence alignment: Sequence alignment is the procedure of comparing two 

(pairwise alignment) or more (multiple sequence alignment) sequences by searching 

for a series of individual characters or character patterns that are in the same order in 

the sequences (Mount, 2004). 

 

There are two types of sequence alignment, global and local. In global alignment, 

an attempt is made to align the entire sequence, using as many characters as possible, 

up to both ends of each sequence. Sequences that are quite similar and approximately 

the same length are suitable candidates for global alignment. The global alignment is 

shown in Figure 1.2. 

 

 

Figure 1.2 Global alignment. 

 

In local alignment, stretches of sequence with the highest density of matches are 

aligned, thus generating one or more islands of matches or sub alignments in the 

aligned sequences. Local alignments are more suitable for aligning sequences that 

are similar along some of their lengths but dissimilar in others, sequences that differ 

in length or sequences that share a conserved region or domain. The local alignment 

is shown in Figure 1.3. 
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Figure 1.3 Local alignment. 

 

 Sequence Database Searching: Sequence database searching can be 

remarkably useful for finding the function of genes whose sequences have been 

determined in the laboratory. The sequence of the gene of interest is compared with 

the best matching sequences are shown and scored. If a query sequence can be 

readily aligned to database sequence of a known function, structure, or biochemical 

activity, the query sequence is predicted to have the same function, structure, or 

biochemical activity. The strength of these predictions depends on the quality of the 

alignment between the sequences. As a rough rule, if more than one-half of the 

amino acid sequence of query and database proteins is identical in the sequence 

alignments, the prediction is very strong. As the degree of similarity decreases, 

confidence in the prediction also decreases. The programs such as FASTA and 

BLAST, used for these database searches provide statistical evaluations that serve as 

a guide for evaluation of the alignment scores. 

 

 Motif and Pattern Discovery: A motif is a short conserved sequence pattern 

associated with distinct functions of a protein or DNA. It is often associated with a 

distinct structural site performing a particular function. A typical motif, such as a Zn-

finger motif, is ten to twenty amino acids long. 

 

Motifs are evolutionarily more conserved than other regions of a protein and tend 

to evolve as units, which are gained, lost, or shuffled as one module. The 

identification of motifs in proteins is an important aspect of the classification of 

protein sequences and functional annotation. Because of evolutionary divergence, 

functional relationships between proteins often cannot be distinguished through 

simple BLAST or FASTA database searches. In addition, proteins or enzymes often 

perform multiple functions that cannot be fully described using a single annotation 
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through sequence database searching. To resolve these issues, identification of the 

motifs becomes very useful. 

 

Identification of motifs heavily relies on multiple sequence alignment as well as 

profile and hidden Markov model (HMM) construction. Motifs are first constructed 

from multiple alignment of related sequences. Based on the multiple sequence 

alignment, commonly conserved regions can be identified. The regions considered 

motifs then serve as diagnostic features for a protein family. The consensus sequence 

information of motifs can be stored in a database for later searches of the presence of 

similar sequence patterns from unknown sequences. 

 

 Gene and Promoter Finding: Computational gene prediction is a prerequisite 

for detailed functional annotation of genes and genomes. The process includes 

detection of the location of open reading frames (ORFs) and delineation of the 

structures of introns as well as exons if the genes of interest are of eukaryotic origin. 

The ultimate goal is to describe all the genes computationally with near 100% 

accuracy. The ability to accurately predict genes can significantly reduce the amount 

of experimental verification work required. 

 

  1.4 Splice Sites  

 

Encoding protein genes consist of coding (exons) and non-coding (introns) in 

eukaryotes. During the transcription process, introns are removed and mRNA is 

formed by joining exons, then mRNA generates proteins called the translation 

process. All of these processes are shown in Figure 1.4.   
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Figure 1.4 Process of generating mRNA and protein. 

 

In DNA sequence, the border between coding region (exon) and noncoding region 

(intron) is called splice site. The splice site upstream of an intron is called the donor 

splice site and one that is downstream of an intron is the acceptor splice site (Fig. 

1.5).  Dinucleotides are frequently observed in the splice sites. In the donor splice 

sites, “GT” and in the acceptor splice sites “AG” dinucleotide are consensus. The 

splice sites which consist of certain consensus dinucleotide are known as canonical 

splice sites (Burset et al., 2000).  Sequences which have “GT” dinucleotide in the 

splice sites are classified as “EI”, which have “AG” dinucleotide in the splice sites 

are classified as “IE”, and which do not have any of these dinucleotide in the splice 

sites are classified as “None. 
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Figure 1.5 Acceptor and donor sites of splice sites. 

 

What is known about splicing: 

 The splicing process takes place in the nucleus. 

 An average mammalian gene has 7 - 8 exons spread over    16kb. 

  Exons are relatively short, 100 - 200 base pairs (bp) while introns are longer 

than 1kb. 

 There are no reading frames in introns. 

 Splice sites are generic: they do not have a specificity for individual RNA 

precursors, and individual precursors do not convey specific information (such 

as secondary structure) that is needed for splicing. 

 The apparatus for splicing is not tissue specific: RNA can usually be spliced 

properly by any cell, whether or not it is usually synthesised in that cell. 

 Experiments show that any 5' splice site can in principle be connected to any 3' 

splice site, i.e., only local information is relevant in the splicing process. 

 In higher eukaryotes, 18 - 40 bp upstream of the 3' site, lies the branch site. To 

this site the GU from the 5' site connects to an A of the branch site. 
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Why splice site detection is important? A complete understanding of splice sites 

does not only help to correctly predict mRNA and thus proteins from DNA, but can 

also be of great help in localization of the genes. Actually several other sites, like 

start and stop codons, branch points, promotors and terminators of transcription and 

various transcription factor binding sites belonging to the class of local sites can help 

to detect genes (Haussler, 1998). In computational gene finding, these signals are 

often contrasted with variable length regions, like exons and introns. While the latter 

are recognised by methods called content sensors, the former can be recognised by, 

e.g., weight matrices, decision trees, etc., methods named signal sensors (Haussler, 

1998).
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CHAPTER TWO 

MATERIALS and METHODS 

 

In this thesis, the proposed method is based on the position specific scoring matrix 

and a genetic algorithm is utilized for optimization of the weight and threshold 

parameters. Also in the validation phase, cross validation method is used. In this 

chapter, these methods are explained in a detail and dataset is covered. 

 

2.1 Dataset 

 

Nowadays, high technology eases reaching to electronic version of DNA data. 

Many valuable researches can be done using these data. In our work, the data is taken 

from „UCI Repository of machine learning databases‟ (Asuncion and Newman, 

2007). This data set consists of 3190 sequences with 60 nucleotides. It contains 767 

„EI‟, 768 „IE‟, and 1655 „None‟ sequences. These sequences have „A‟, „C‟, „T‟, „G‟ 

nucleotides and also „D‟, „N‟, „S‟, „R‟ ambiguity characters. These characters based 

on the following rules: 

 

• „D‟ = „A‟, „G‟, or „T‟ 

• „N‟ = „A‟, „C‟, „T‟, or „G‟ 

• „S‟ = „C‟, or „G‟ 

• „R‟ = „A‟ or „G‟ 

 

 2.2 Position-Specific Scoring Matrix (PSSM)  

 

PSSM is a table which covers probability information of amino acids or 

nucleotides in each position. In this table, positions of the residues are in rows and 

name of the residues are in columns or vice versa. The values in the table are log 

odds scores (Xiong, 2006).  
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Let { , 1,..., }kX x k N  , be a learning set of sequences with ( 60)n n   residues, 

where { , , , }, 1,...,k

ix A C T G i n  . Row frequencies of each residue at each column 

position are counted first to construct a PSS matrix. The frequencies are normalized 

via dividing positional frequencies of each residue by overall frequencies. Finally, 

logarithms (generally to the base of 2) of the values are calculated.  

 

2.2.1 The computational steps of PSSM 

 

The computational steps for construction of the PSSM are given in Algorithm 1. 

 

Algorithm 1 (Construction of PSS Matrix). 

Input: { , 1,..., }kX x k N  , set of sequences, where { , , , }, 1,...,k

ix A C T G i n  ; 

Output: XPSSM  is positional scoring matrix with 4 n  dimension for class X . 

[ , ]XPSSM j i , is a score of thj  residue, { , , , }j A C T G   in thi  position, 1,...,i n . 

Step 1. Construct the nucleotide based frequency table by following formula: 

, 1,..., , , , ,

i

ji

j

c
f i n j A C T G

N
  

       
  

where, 
i

jf  is a frequency of thj residue at thi position; 
i

jc  is a count of thj residue at 

thi  position; N  is a count of sequences; 

Step 2. Normalize the values by dividing overall frequencies of each nucleotide 

base. Overall frequencies and normalization is calculated by following formulas: 

1 , , , ,
( )

n
i

j

i
j

c

o j A C T G
n N

 



 

, 1,..., , , , ,

i

ji

j

j

f
p i n j A C T G

o
    

where, 
jo  is an overall frequency of thj  residue; 

i

jp  is a normalized frequency of  

thj  residue in thi  position;  

Step 3.  Take the log odds of these values by following formula: 

2[ , ] ( ), 1,..., , , , ,i

X jPSSM j i Log p i n j A C T G    
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where, [ , ]XPSSM j i  is log odd score of thj residue at thi position for given class X ; 

End. 

 

Position specific scoring matrix (PSSM) is usually used in multiple sequence 

alignment (MSA) problems. But in this study, PSSM is used for classification of 

splice-junction sequences of DNA. After the construction of PSSM, match scores of 

residues of given sequence are added. The total match score shows how the given 

sequence is similar to sequence family. Also, this score can be interpreted as the 

probability of sequence fitting as 2score  times more likely than by random chance. As 

a conclusion, the new sequence with high score can be classified as a member of the 

sequence family.  

 

2.2.2 Prediction of the Sample’s Class 

 

After PSS matrices of each class are constructed by Algorithm 1, another 

algorithm (Algorithm 2) is used to predict the class of a given sequence. 

 

Algorithm 2. 

Input:  

a) Score vectors EIPSSM , IEPSSM  and NonePSSM , which are calculated for „EI‟, 

„IE‟ and „None‟ classes respectively by using Algorithm 1. 

b) Given * * * *

1 2( , ,..., )nx x x x  sequence which is needed to be classified, where 

* { , , , }, 1,...,ix A C T G i n  .   

 

 Output: Class of the given *x  sequence ( *( )class x ). 

Step 1. Scoring vectors belonging to „EI‟, „IE‟ and „None‟ classes of the *x  

sequence are calculated by using EIPSSM , IEPSSM  and NonePSSM  matrices, 

respectively: 

* * * *

1 2( ) ( [ ,1], [ ,2],..., [ , ])EI EI EI EI nS x PSSM x PSSM x PSSM x n , 

* * * *

1 2( ) ( [ ,1], [ ,2],..., [ , ])IE IE IE IE nS x PSSM x PSSM x PSSM x n , 
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* * * *

1 2( ) ( [ ,1], [ ,2],..., [ , ])None None None None nS x PSSM x PSSM x PSSM x n , 

where 
*

[.][ , ]iPSSM x i  is a scoring value of *

ix  residue in thi  position for a handled 

[.]class . 

 Step 2. Scores belonging to „EI‟, „IE‟ and „None‟ classes of given *x  sequence 

are calculated by using *( )EIS x , *( )IES x  and *( )NoneS x  scoring vectors: 

* *

1

( ) ( )
n

i

EI EI

i

s x S x


 , 

* *

1

( ) ( )
n

i

IE IE

i

s x S x


 , 

* *

1

( ) ( )
n

i

None None

i

s x S x


 , 

where  
[.]

*( )iS x  is a thi  component of 
*

[.]( )S x  vector. 

 Step 3.  The class of *x  sequence is identified as follows: 

* * * *

{ , , }

( ) arg max{ ( ), ( ), ( )}EI IE None
EI IE None

class x s x s x s x ; 

 End. 

 

2.2.3 PSSM Example 

 

The construction of a PSS matrix is shown in the following example. Assume that 

there is a class of five sequences with ten residues (Table 1). 

 

 Table 2.1 Sequence table 

 

 

This sequence table is converted to frequency matrix with Step 1 of Algorithm 1 

(Table 2). 
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Table 2.2 Frequency matrix 

 

The values of the above table are normalized with Step 2 of Algorithm 1 (Table 

3). 

 

Table 2.3 Normalized values 

 

Finally, the log odds of these values are calculated (Table 4). 

 

Table 2.4 Log odds 

 

Let assume that there is a sequence as * { , , , , , , , , , }x A C G G T A C C T T  and we 

have to find its fitting score to the class. We can calculate the fitting score of the 

sequence  *x  by using Algorithm 2 as follows: 

*( ) 0.3219 0.32 0.24 0.239 1.32 0 ( 0.68) 0.907 0.32 1.322

4.3099

s x           

  

From the above equation, the score of  *x   (i.e., *( )s x ) is found as 4.3099. 

Respectively, *x  sequence may be confidently classified as a member of sequence 



17 

 

 

 

family and fits the matrix as 4.30992 or approximately 20 times more likely than by 

random chance. 

 

2.3 Genetic Algorithm (GA) 

 

Genetic algorithms in particular became popular through the work of John 

Holland in the early 1970s. Genetic algorithms (GAs) are the derivative-free 

stochastic optimization methods based on the terms of natural selection and 

evolutionary processes. The popularity of GAs, depends on independence from 

functional derivatives and incorporation of the following characteristics (Jang et al., 

1997):  

 

 GAs are parallel-search procedures which can be applied on parallel-processing 

machines for speeding up their operations.  

 GAs are implemented in both continuous and discrete optimization problem. 

 GAs are stochastic and less likely to get trapped in local minima, which 

inevitably are present in any practical optimization application.  

 GAs‟ flexibility simplifies both structure and determination of parameter in 

complex systems like neural networks and fuzzy systems. 

 

GAs encode each point with binary codes which are called chromosome, and each 

point related to “fitness” value. Instead of one point, GAs usually keep a set of points 

as a population or gene pool, which is then evolved repeatedly toward a better overall 

fitness value. In each generation, the GA constructs a new population using genetic 

operators such as crossover and mutation; members with higher fitness values are 

more likely to survive and to participate in crossover operations. After a number of 

generations, the population contains members with better fitness values; this is 

analogous to Darwinian models of evolution by random mutation and natural 

selection. GAs and their variants are sometimes referred to as methods of population 

based optimization that improves performance by upgrading entire populations rather 

than individual members. 

 

http://en.wikipedia.org/wiki/John_Henry_Holland
http://en.wikipedia.org/wiki/John_Henry_Holland
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It is necessary to perform certain operations over these individuals for Genetic 

Algorithms to find a best optimum solution. This section discusses the basic 

terminologies and operators used in Genetic Algorithms to achieve a good enough 

solution for possible terminating conditions (David, 1991). 

 

2.3.1 Terminologies of Genetic Algorithm 

 

Gene: In the biology, specific region which are encoding knowledge of our 

physical features and physiological activities are called “gene”. In the GA, the genes 

may describe a possible solution to a problem, without actually being the solution. A 

gene is a bit string of arbitrary lengths. The bit string is a binary representation of 

number of intervals from a lower bound. A gene is the GA‟s representation of a 

single factor value for a control factor, where control factor must have an upper 

bound and lower bound (Fig. 2.1). 

 

 

Figure 2.1 Representation of gene. 

 

Allele: Allele, in biology, is the term given to the appropriate range of values for 

genes. In genetic algorithms, an allele is the value of the gene (or genes).  

 

Chromosome:  A chromosome is a sequence of genes (Fig. 2.2).  

 

 

Figure 2.2 Representation of chromosome. 

 

Genotype: The genotype is the structure of the solution produced by the genetic 

program (Fig. 2.3). 
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Phenotype: The actual values of a genome (its position in the solution space) are 

called the phenotype (Fig. 2.3). While the genotype expresses the overall properties 

of the genetic algorithm by defining the nature of the chromosome, the phenotype 

represents an individual expression of the genome (or genotype). This is somewhat 

similar to the relationship between classes and objects in an object-oriented 

programming language: a class represents the definition of an object, whereas an 

object represents a concrete instantiation of a class. 

 

 

Figure 2.3 Representation of genotype and phenotype. 

 

Population: A population is a collection of individuals. A population consists of a 

number of individuals being tested, the phenotype parameters defining the 

individuals and some information about search space (Fig. 2.4). 

 

Figure 2.4 Representation of Population. 
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2.3.2 Operators of Genetic Algorithm  

 

There are many genetic operators. The major genetic operators are selection, 

mutation and crossover operators (Pham and Karaboğa, 2000). These operators are 

covered in detail. 

 

 Initial Population Selection: Initial population selection is done randomly 

with a probability depending on the relative fitness of the individuals so that best 

ones are often chosen for reproduction than poor ones. 

 

 Encoding schemes: Encoding is a process of representing individual genes. 

The process can be performed using bits, numbers, trees, arrays, lists or any other 

objects. The encoding depends mainly on solving the problem. For example, one can 

encode directly real or integer numbers. There are various kinds of encoding 

schemes. 

 

Binary Encoding: The most common way of encoding is a binary string, which 

would be represented as in Fig. 2.5. Binary coded strings with 1s and 0s are mostly 

used. The length of the string depends on the accuracy. 

 

 

Figure 2.5 Binary encoding. 

 

Each chromosome encodes a binary (bit) string. Each bit in the string can 

represent some characteristics of the solution. Every bit string, therefore, is a solution 

but not necessarily the best solution. Another possibility is that the whole string can 

represent a number. The way bit strings can code differs from problem to problem.  
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Binary encoding gives many possible chromosomes with a smaller number of 

alleles. On the other hand this encoding is not natural for many problems and 

sometimes corrections must be made after genetic operation is completed.  

 

Octal Encoding: This encoding uses string made up of octal numbers (0–7) as in 

Fig. 2.6. 

 

 

Figure 2.6 Octal encoding. 

 

Hexadecimal Encoding: This encoding uses string made up of hexadecimal 

numbers (0–9, A–F) as in Fig. 2.7. 

 

 

Figure 2.7 Hexadecimal encoding. 

 

Permutation Encoding (Real Number Coding): Every chromosome is a string of 

numbers, which represents the number in sequence. Sometimes corrections have to 

be done after genetic operation is completed. In permutation encoding, every 

chromosome is a string of integer/real values, which represents number in a sequence 

(Fig. 2.8). 

 

 

Figure 2.8 Permutation encoding. 
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Permutation encoding is only useful for ordering problems. Even for these 

problems some particular crossover and mutation corrections must be made to leave 

the chromosome consistent. 

 

Value Encoding: Every chromosome is a string of values and the values can be 

anything connected to the problem. This encoding produces best results for some 

special problems. Direct value encoding can be used in problems, where some 

complicated values, such as real numbers, are used. Use of binary encoding for this 

type of problems would be very difficult. In value encoding, every chromosome is a 

string of some values. Values can be anything connected to problem, form numbers, 

real numbers or characters to some complicated objects (Fig. 2.9). 

 

 

Figure 2.9 Value encoding. 

 

Value encoding is appropriate for some special problems. On the other hand, for 

this encoding, it is often necessary to develop some new specific crossover and 

mutation for the problem. 

 

 Fitness evaluation:  The first step after the creating the generation is to 

calculate the fitness value of each individual. The fitness of an individual in a genetic 

algorithm is the value of an objective function for its phenotype. For calculating 

fitness, the chromosome has to be first decoded and the objective function has to be 

evaluated. The fitness not only indicates how good the solution is, but also 

corresponds to how close the chromosome is to the optimal one. 

 

 Selection: After the evaluation, we have to generate a new population from 

the current generation. Selection operator determines which parents participate in 
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producing offspring for the next generation, and it is analogous to survival of the 

fittest in natural selection (Baker, 1985). The selection can be made according to 

various criteria such as Roulette Wheel Selection, Rank Selection, Random 

Selection, Tournament Selection, and Elitism Selection. 

 

Roulette-wheel selection: Roulette selection is one of the traditional GA selection 

techniques. The commonly used reproduction operator is the proportionate 

reproductive operator where a string is selected from the mating pool with a 

probability proportional to the fitness. The principle of roulette selection is a linear 

search through a roulette wheel with the slots in the wheel weighted in proportion to 

the individual‟s fitness values. A target value which is a random proportion of the 

sum of the fit nesses in the population is set. 

 

The Roulette process can also be explained as follows: The expected value of an 

individual is fitness divided by the actual fitness of the population. Each individual is 

assigned to slice of the roulette wheel, the size of the slice being proportional to the 

individual‟s fitness. The wheel is spun N times, where N is the number of individuals 

in the population. On each spin, the individual under the wheel‟s marker is selected 

to be in the pool of parents for the next generation (Fig. 2.10). 

 

Steps of the Roulette Wheel Selection is as follows: 

 

Step1. Sum the fitness of each member of the population.  

Step2. Determine the relative fitness of each member of the population.  

Step3. Generate a random number (SPIN) between zero and some predefined 

maximum value (MAX).  

Step4. Select next individual.  

Step5. From SPIN, subtract the individual‟s relative proportion of MAX (i.e., 

relative fitness times MAX).  

Step6. Repeat steps 4 and 5 until SPIN is less than or equal to zero. 

Step7. Repeat steps 3 to 6 until mating pool is full. 
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Figure 2.10 Roulette wheel selection. 

 

Random Selection: This technique randomly selects a parent from the population. 

In terms of disruption of genetic codes, random selection is a little more disruptive 

than roulette wheel selection. 

 

Rank Selection: The Roulette wheel will have a problem when the fitness values 

differ very much. If the best chromosome fitness is 90%, its circumference occupies 

90% of Roulette wheel, and then other chromosomes have too few chances to be 

selected. Rank Selection ranks the population and every chromosome receives fitness 

from the ranking. The worst has a fitness of 1 and the best has a fitness of N. It 

results in slow convergence but prevents too quick convergence. It also keeps up 

selection pressure when the fitness variance is low. It preserves diversity and hence 

leads to a successful search. In effect, potential parents are selected and a tournament 

is held to decide which of the individuals will be the parent. 
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Tournament Selection: An ideal selection strategy should be such that it is able to 

adjust its selective pressure and population diversity so as to fine-tune GA search 

performance. Unlike the Roulette wheel selection, the tournament selection strategy 

provides selective pressure by holding a tournament competition among uN  

individuals. 

 

The best individual from the tournament is the one with the highest fitness, which 

is the winner of uN . Tournament competitions and the winner are then inserted into 

the mating pool. The tournament competition is repeated until the mating pool for 

generating new offspring is filled. The mating pool comprising of the tournament 

winner has higher average population fitness. The fitness difference provides the 

selection pressure, which drives GA to improve the fitness of the succeeding genes. 

This method is more efficient and leads to an optimal solution. 

 

Elitism Selection: The first best chromosome or the few best chromosomes are 

copied to the new population. The rest is done in a classical way. Such individuals 

can be lost if they are not selected to reproduce or if crossover or mutation destroys 

them. This significantly improves the GA‟s performance. 

 

 Reproduction: Reproduction in genetic programming is asexual, thus 

imitating the process of budding in biology. Through reproduction, an identical copy 

of the individual selected is carried over into the next generation: survival of the 

fittest. Fitness proportionate reproduction is the asexual reproduction of 

chromosomes selected stochastically from the population. According to Koza, “the 

operation of fitness proportionate reproduction for the genetic programming 

paradigm is the basic engine of Darwinian reproduction and survival of the fittest” 

[Koza, 1990; Grant, 1995]. In other words, the selection of individual chromosome is 

based on a probability that is relative to that chromosome‟s relative fitness within its 

population. 
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 Crossover:  To use the potential of the current gene pool, we use crossover 

operators to generate new chromosomes that will hopefully retain good features from 

the previous generation (Sivanandam and Deepa, 2007). 

 

Single Point Crossover: The traditional genetic algorithm uses single point 

crossover, where the two mating chromosomes are cut once at corresponding points 

and the sections after the cuts exchanged. Here, a cross-site or crossover point is 

selected randomly along the length of the mated strings and bits next to the cross-

sites are exchanged. If appropriate site is chosen, better children can be obtained by 

combining good parents else it severely hampers string quality. Single point 

crossover is illustrated as in Fig. 2.11 and it can be observed that the bits next to the 

crossover point are exchanged to produce children. The crossover point can be 

chosen randomly. 

 

 

Figure 2.11 Single Point Crossover. 

 

Two Point Crossover: In two-point crossover, two crossover points are chosen 

and the contents between these points are exchanged between two mated parents. 

Apart from single point crossover, many different crossover algorithms have been 

devised, often involving more than one cut point. It should be noted that adding 

further crossover points reduces the performance of the GA. The problem with 
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adding additional crossover points is that building blocks are more likely to be 

disrupted. However, an advantage of having more crossover points is that the 

problem space may be searched more thoroughly. 

 

In Figure 2.12 the dotted points indicate the crossover points. Thus the contents 

between these points are exchanged between the parents to produce new children for 

mating in the next generation. 

 

 

Figure 2.12 Two Point Crossover. 

 

Uniform Crossover:  In the uniform crossover each gene in the offspring is 

created by copying the corresponding gene from one or the other parent chosen 

according to a random generated binary crossover mask of the same length as the 

chromosomes. Where there is a 1 in the crossover mask, the gene is copied from the 

first parent, and where there is a 0 in the mask the gene is copied from the second 

parent. A new crossover mask is randomly generated for each pair of parents. 

Offsprings, therefore, contain a mixture of genes from each parent. The number of 

effective crossing point is not fixed, but will average 2/L  (where L  is the 

chromosome length). 

 

In Figure 2.13, new children are produced using uniform crossover approach. It 

can be noticed, that while producing child 1, when there is a 1 in the mask, the gene 
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is copied from the parent 1 else from the parent 2. On producing child 2, when there 

is a 1 in the mask, the gene is copied from parent 2, when there is a 0 in the mask; the 

gene is copied from the parent 1. 

 

 

 Figure 2.13 Uniform Crossover 

 

Crossover Probability: The basic parameter in crossover technique is the 

crossover probability ( cP ). Crossover probability is a parameter to describe how 

often crossover will be performed. If there is no crossover, offspring are exact copies 

of parents. If there is crossover, offspring are made from parts of both parent‟s 

chromosome. If crossover probability is 100%, then all offspring are made by 

crossover. If it is 0%, whole new generation is made from exact copies of 

chromosomes from old population (but this does not mean that the new generation is 

the same!). Crossover is made in hope that new chromosomes will contain good parts 

of old chromosomes and therefore the new chromosomes will be better. However, it 

is good to leave some part of old population survives to next generation. 

 

 Mutation: Crossover makes use of current gene potentials, but if the 

population does not include all the encoded information needed to solve a particular 

problem, no amount of gene mixing can produce a satisfactory solution. For this 

reason, a mutation operator capable of spontaneously generating new chromosomes 

is contained (Fig. 2.14). The most common way of applying mutation is to flip a bit 

with a probability equal to a very low given mutation rate. A mutation operator can 

prevent any single bit from converging to a value throughout the entire population 



29 

 

 

 

and, more important, it can prevent the population from converging and stagnating at 

any local optima. 

 

 

Figure 2.14 Mutation Operator. 

 

The types of mutation are as follows: 

 

Flip Bit Mutation: A mutation operator that simply inverts the value of the chosen 

gene (0 goes to 1 and 1 goes to 0). This mutation operator can only be used for 

binary genes. 

 

Boundary Mutation: A mutation operator that replaces the value of the chosen 

gene with either the upper or lower bound for that gene (chosen randomly). This 

mutation operator can only be used for integer and float genes. 

 

Non-Uniform Mutation:  A mutation operator that increases the probability that 

the amount of the mutation will be close to 0 as the generation number increases. 

This mutation operator keeps the population from stagnating in the early stages of the 

evolution then allows the genetic algorithm to fine tune the solution in the later 

stages of evolution. This mutation operator can only be used for integer and float 

genes. 

 

Uniform Mutation: A mutation operator that replaces the value of the chosen gene 

with a uniform random value selected between the user-specified upper and lower 

bounds for that gene. This mutation operator can only be used for integer and float 

genes. 

 

1 0 0 1 1 1 1 0 1 0 0 1 1 1 0 0 

Mutated Bit 
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Gaussian Mutation: A mutation operator that adds a unit Gaussian distributed 

random value to the chosen gene. The new gene value is clipped if it falls outside of 

the user-specified lower or upper bounds for that gene. This mutation operator can 

only be used for integer and float genes. 

 

Mutation Probability: An important parameter in the mutation technique is the 

mutation probability ( mP ). The mutation probability decides how often parts of 

chromosome will be mutated. If there is no mutation, offspring are generated 

immediately after crossover (or directly copied) without any change. If mutation is 

performed, one or more parts of a chromosome are changed. If mutation probability 

is 100%, whole chromosome is changed, if it is 0%, nothing is changed. Mutation 

generally prevents the GA from falling into local extremes. Mutation should not 

occur very often, because then GA will in fact change to random search. 

 

How the Genetic Algorithm Works: The algorithm begins by creating a random 

initial population. Then the algorithm creates a sequence of new populations. At each 

step, the algorithm uses the individuals in the current generation to create the next 

population. To create the new population, each member of the current population is 

scored by computing its fitness value. Then, the raw fitness scores are scaled to 

convert them into a more usable range of values. It selects members, called parents, 

based on their fitness. Some of the individuals in the current population that have 

lower fitness are chosen as elite. These elite individuals are passed to the next 

population. Children are produced from the parents. Children are produced either by 

making random changes to a single parent mutation or by combining the vector 

entries of a pair of parents crossover. The current population is replaced with the 

children to form the next generation. The algorithm stops when one of the stopping 

criteria is met. The outline above can be summarized by the following steps 

(Goldberg, 1989): 

 

Step 1: Determine the initial population with randomly generated individuals and 

compute fitness value.  
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Step 2: Select two individuals from the population with probabilities proportional 

to their fitness values.   

Step 3: Apply crossover with the probabilities equals to crossover rate. 

Step 4: Apply mutation with the probabilities equals to mutation rate.  

Step 5: Repeat the steps 2 - 4 until sufficient member is generated for the next 

generation. 

Step 6:  Repeat the steps 2-5 until a stopping criteria is satisfied. 

Step 7: Output the best solution of the last generation as an approximate optimal 

solution.  

End. 

 

Figure 2.15 is the figure illustrating how to produce the next generation from the 

current one. 

 

 

  Figure 2.15 Producing the Next Generation in GAs. 

 

2.4 Cross Validation Method 

 

Cross-Validation is a statistical method of evaluating and comparing learning 

algorithms by dividing data into two segments: one used to learn or train a model and 

the other used to validate the model. In typical cross-validation, the training and 

validation sets must cross-over in successive rounds such that each data point has a 

chance of being validated against. The basic form of cross-validation is k-fold cross-

validation. Other forms of cross-validation are special cases of k-fold cross-
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validation or involve repeated rounds of k-fold cross-validation such as leave-one-

out cross-validation and 2k  cross-validation. 

 

In K-fold cross-validation, the original sample is randomly partitioned into K 

subsamples. Of the K subsamples, a single subsample is retained as the validation 

data for testing the model, and the remaining K − 1 subsamples are used as training 

data. The cross-validation process is then repeated K times (the folds), with each of 

the K subsamples used exactly once as the validation data. The K results from the 

folds then can be averaged to produce a single estimation. The advantage of this 

method over repeated random sub-sampling is that all observations are used for both 

training and validation, and each observation is used for validation exactly once. 10-

fold cross-validation is commonly used (McLachlan et al., 2004). Ten fold cross-

validation is the standard way of measuring the error rate of a learning scheme on a 

particular dataset; for reliable results, 10 times 10-fold cross-validation. To show the 

working mechanism of k-fold cross validation, three-fold cross validation is 

illustrated in Figure 2.16. 

 

 

 Figure 2.16 Three-fold Cross Validation. 

 

In stratified K-fold cross-validation, the folds are selected so that the mean 

response value is approximately equal in all the folds. In the case of a dichotomous 

classification, this means that each fold contains roughly the same proportions of the 

two types of class labels. 
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There are two possible goals in cross-validation: 

 

1) To estimate performance of the learned model from available data using one 

algorithm. In other words, to gauge the generalizability of an algorithm. 

2)  To compare the performance of two or more different algorithms and find 

out the best algorithm for the available data, or alternatively to compare the 

performance of two or more variants of a parameterized model. 

These two goals are highly related, since the second goal is automatically 

achieved if one knows the accurate estimates of performance. 
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CHAPTER THREE 

WEIGHTED POSITION-SPECIFIC SCORING METHOD 

 

We developed a weighted position-specific scoring method by using position 

specific scoring matrix, genetic algorithm and 10-fold cross validation. In this 

method, the process consists of learning, identification and validation phases. These 

phases will be covered in detail. 

 

3.1 Learning Phase 

 

In the learning phase, we calculate the position frequencies and then construct the 

position-specific scoring matrices for these classes by using logarithms of the 

position specific nucleotide probabilities for each learning class („EI‟, ‟IE‟ and 

„None‟). To compare the efficiency of our method, a position specific scoring matrix 

is constructed by each variant as normalization step and without normalization step 

and the results are compared.  

 

A threshold parameter ( t ) is used to consider deterministic odds-impact of 

observed frequencies with respect to the distance from the natural frequency. The 

optimal position weights ( w ) and optimal threshold ( t ) are computed by using 

genetic algorithm for the learning set. Flow chart of the learning phase is shown in 

Figure 2.17. 
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Figure 2.17 Learning phase flow chart. 

 

3.2 Identification Phase 

 

In the identification phase, the optimal weights and threshold calculated from 

learning phase are applied to each sequence in the test set. Then each sequence 

classified into „EI‟, „IE‟, „None‟ classes. The flow chart of identification phase is 

illustrated in Figure 2.18.  
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Figure 2.18 Identification phase flow chart. 

 

Algorithm of the identification phase is as follows: 

Algorithm 3 (WPSSM). 

Input: 

a) EIPSSM , IEPSSM  and NonePSSM  which are calculated for „EI‟, „IE‟ and 

„None‟ classes by using Algorithm 1. 

b) * * * *

1 2( , ,..., )nx x x x  sequence which is needed to be classified, 

where * { , , , }, 1,...,ix A C T G i n  . 

Output: Class of *x  sequence ( *( )class x ) . 
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Step 1. Scoring vectors belonging to „EI‟, „IE‟ and „None‟ classes of *x  sequence 

are calculated by using EIPSSM , IEPSSM  and NonePSSM  matrices, respectively: 

* * * *

1 2( ) ( [ ,1], [ ,2],..., [ , ])EI EI EI EI nS x PSSM x PSSM x PSSM x n , 

* * * *

1 2( ) ( [ ,1], [ ,2],..., [ , ])IE IE IE IE nS x PSSM x PSSM x PSSM x n , 

* * * *

1 2( ) ( [ ,1], [ ,2],..., [ , ])None None None None nS x PSSM x PSSM x PSSM x n , 

where 
*

[.][ , ]iPSSM x i  is a scoring value of *

ix  residue in thi  position for the [.]class . 

 Step 2. Scores of the given sequence *x , *( )EIS x , *( )IES x  and *( )NoneS x  belonging 

to „EI‟, „IE‟ and „None‟ classes are calculated by using the scoring vectors: 

* *

1

( ) ( ( ) )
n

i

EI i EI

i

s x w S x t


   , 

* *

1

( ) ( ( ) )
n

i

IE i IE

i

s x w S x t


   , 

* *

1

( ) ( ( ) )
n

i

None i None

i

s x w S x t


   , 

where iw  is a weight of thi  position; 
*

[.]( )iS x  is a thi  component of 
*

[.]( )S x  vector; t  

is threshold value. 

Step 3.  The class of *x  sequence is identified as follows: 

* * * *

{ , , }

( ) arg max{ ( ), ( ), ( )}EI IE None
EI IE None

class x s x s x s x ; 

End. 

 

3.3 Validation phase 

 

Now, let { , 1,..., }kX x k N  , be a learning set of sequences with ( 60)n n   

residue where { , , , }, 1,...,k

ix A C T G i n  . The classes of test sequences are 
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predicted as explained in the identification phase. The aim of this phase is to measure 

the accuracy. 

  

In the literature, True Positive (TP), False Positive (FP), True Negative (TN) and 

False Negative (FN) values, and different indexes which are calculated from these 

values, are generally used to measure the validation of a method. Here, FP is a count 

of sequences which are incorrectly assigned to predicted class; FN is a count of 

sequences which are not assigned to predicted class as incorrect; TP is a count of 

sequences which are accurately assigned to predicted class; TN is a count of 

sequences which are not assigned to predicted class as accurate. 

 

In our study, three classes are used as „EI‟, „IE‟, „None‟ (Table 3.1). TP, TN, FP 

and FN values are calculated from the formulas in Table 3.2, where ija  indicates 

number of predicted sequences. 

 

Table 3.1.  Confusion matrix for each class 

 

 

Table 3.2. TN, TP, FN and FP rates formulas for each class 

 

 

Error rates (ERs) are computed according to true/false classification results with 

the following formula: 
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FP FN
ER

TP TN FP FN




  
                                                (3.1) 

 

Also overall error rate (OER) is computed with the below formula: 

 

{ , , }

{ , , }

( )

1
( )

i i

i EI IE N

i i i i

i EI IE N

TP TN

OER
TP TN FP FN







 
  




                                              (3.2) 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

 

In this work, our proposed method has been applied to data set from the „UCI 

Repository of machine learning databases‟ which contains 3190 samples and each 

sample is a sequence of 60 nucleotides (Asuncion and Newman, 2007). This data set 

includes 767 „EI‟, 768 „IE‟ and 1655 „None‟ sequences.  

 

In the preliminary works of our study, 2140 sequences which include 517 EI, 518 

IE and 1105 N, are taken as learning set. The rest of this data set which contains 

1050 sequences with 250 EI, 250 IE and 550 N, are taken as test set; and this test set 

is classified by using weights and threshold computed from learning set. The optimal 

position weights and threshold in the learning phase of our study found by genetic 

algorithm are as in Table 4.1. The classification results are shown in Table 4.2. 

 

Table 4.1 The optimal position weights and threshold computed by GA 
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Table 4.2 Classification Results for the Test Set 

Results 
Predicted 

EI IE N 

  EI 244 4 2 

Actual IE 5 238 7 

  N 9 16 525 

 

Error rates are computed from the table above for each class with equation (3.1). 

The error rates are: „EI‟ %1.9, „IE‟ %3.0, and „NONE‟ %3.32.  

 

We repeated the experiments without using threshold parameter to investigate 

efficiency of this parameter. The classification results are found as in Table 4.3. 

 

Table 4.3 Classification results for test set without using  

the threshold parameter 

Results 
Predicted 

EI IE N 

  EI 242 5 3 

Actual IE 5 238 7 

  N 11 18 521 

 

The error rates without using threshold parameter are: „EI‟ %2.28, „IE‟ %3.33, 

and „NONE‟ %3.71. It is seen that using threshold parameter decreased error rates 

and improved the effectiveness of the method. Error rates of the WPSSM are shown 

in the Table 4.4. 

 

Table 4.4. Error rates of WPSSM. 

Methods ‘EI’ % ‘IE’ % ‘N’ % 
Overall Error 

Rates (%) 

WPSSM 1,9 3 3,32 2,74 

WPSSM without Threshold 2,28 3,33 3,71  3.107 

 

In the developed work of our study, 10-fold cross-validation method is applied to 

this data set. In this method, the dataset is broken into 10 sets of size n/10 of the each 

fold containing 319 sequences.  One fold is selected as test set and the rest folds are 

selected as learning set. This process is repeated 10 times and then the mean 
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accuracy is taken. The test sets are classified by using the optimal weights and 

threshold computed from learning sets.  

 

The optimal position weights and threshold in the learning phase of our study 

found by genetic algorithm are as follows (Table 4.5). 

 

Table 4.5 The optimal position weights and threshold computed by GA 

 

 

In the learning set, weights and threshold parameters are calculated by genetic 

algorithm with tuned options as Generations, Initial Population, Population Size, 

Stall Gen Limit, Stall Time Limit, Elite Count. In the computations, maximum 

iteration number  is taken as 30 (Generations=30), initial population is taken as „w‟ 

vector with 1 61  dimension ones vector which includes 1 60  ones for weights and 

a one for threshold in the last position (Initial Population), population size is taken as 

30 (Population Size=30). The algorithm is stopped if the weighted average change in 

the fitness function value over 5000 stall generations (Stall Gen Limit=5000) is less 

than function tolerance. Also, the algorithm is stopped if there is no improvement in 

the best fitness value for an interval of time in seconds specified by 2000 (Stall Time 

Limit=2000). Five individuals are taken as elite count (Elite Count=5) for each 

generation.  
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The classification results are shown in Table 4.6. Each cell in Table 4.6 consists 

of average classification count and average classification rate. Moreover, the error 

rates and overall error rates for each class are computed for each fold by the equation 

(3.1-3.2). The mean of error rates for classes „EI‟, „IE‟ and „None‟ are found as 

%2.73, %2.70, and %3.17, respectively. 

 

Table 4.6 Classification results for the test set 

 

 

We repeated the experiments with normalization step and without threshold 

parameter to investigate superiority of this parameter to normalization step. The 

classification results are found as in Table 4.7. This table consists of average 

classification counts and rates.  

 

Table 4.7 Classification results for test set with normalization step and without  

threshold parameter 

 

 

The error rates of WPSSM with normalization step and without threshold 

parameter are %2.70, %2.92, and %3.35 for the classes „EI‟, „IE‟ and „None‟, 

respectively. It is seen that using threshold parameter decreases error rates and 
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improves the effectiveness of the method than normalization step. Error rates of the 

WPSSM are shown in Table 4.8. 

 

Table 4.8 Error rates of WPSSM 

 

 

Also performance measurements such as specificity (Sp), sensitivity (Sn), 

Mathew‟s correlation coefficient (MCC) and accuracy rate are computed via 

following formulas: 

 

TP
Sn

TP FN



                                                             (4.1) 

 

TN
Sp

TN FP



                                                 (4.2) 

 

TP TN
Accuracy

TP TN FP FN




  
                               (4.3) 

 

( ) ( ) ( ) ( )

TP TN FP FN
MCC

TP FP TP FN TN FP TN FN

  


      
                 (4.4) 

 

Performance parameters are found as in Table 4.9. 
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Table 4.9 Performance parameters 

 

 

Sensitivity measures the proportion of actual positives which are correctly 

identified and specificity measures the proportion of predicted positives which are 

correctly identified. The success of a method depends on high value of both 

specificity and sensitivity.  

 

WPSSM shows significant improvements in the sensitivity and specificity of 

splice sites identification.  Its accuracy rate is higher than many methods in the 

literature (Grau et al., 1999; Li et al., 2007).  The Matthew‟s correlation coefficient 

(MCC) is generally regarded as being one of the best such measures. The MCC is in 

essence a correlation coefficient between the observed and predicted binary 

classifications; it takes a value between −1 and +1. A coefficient of +1 represents a 

perfect prediction, 0 an average random prediction and −1 an inverse prediction. 

Also, WPSSM has a MCC approximately 1. It shows that proposed method is a good 

classification method.  
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CHAPTER FOUR 

CONCLUSION 

 

The handled problem in this thesis is to identify, given a sequence of DNA 

letters, splice sites. In this work, we proposed a novel weighted position-specific 

scoring method (WPSSM). We show that our method is able to improve 

classification accuracy and performance parameters in accordance with other 

methods.   

 

The WPSS method uses position weights and threshold parameter instead of a 

normalization step. The optimal position weights and threshold parameter are found 

via genetic algorithm. The threshold is used instead of normalization step in the 

construction of the position specific scoring matrix. The normalization step of the 

PSSM uses a fixed value, but the threshold in our proposed method is a tuned value 

calculated by optimization procedure. As it is seen from the experimental results this 

approach gives better results than classical PSSM approach. The mentioned results 

poses that WPSSM can be efficient in solution of splice site recognition problem. 

 

In the preliminary works, learning and test sets are selected randomly. This 

method is applied to learning set and the weights calculated according to learning set 

are tested with the test set. However, in the developed work, learning and test sets are 

selected according to ten-fold cross validation method. This selection method is more 

logical than random selection.  

 

The proposed method (WPSSM) shows significant improvements in the 

sensitivity and specificity of splice sites identification. Accuracy rate of this method 

is higher than many other methods in the literature. Also the method has significant 

Mathew‟s correlation coefficient rate. 
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When the classification error rates of our WPSSM are compared with many 

methods proposed in the literature, the results of WPSSM have showed lower error 

rates than many of the known methods in the literature. The methods which have the 

higher results than our proposed method WPSSM are Hierarchical Multi Classifier 

Method (HM), Linear Support Vector Machine (Rank SVM) and Support Vector 

Machine (SVM). The comparison results are given in Table 5.1. 

 

Table 5.1 Error rates of different methods 

Methods ‘EI’ % ‘IE’ % ‘N’ % 
Overall Error 

Rates % 

HM 0.76 1.59 1.6 1.317 

Rank SVM 0.86 1.86 1.71 1.477 

SVM 1.65 1.99 1.9 1.847 

WPSSM 1.9 3 3.32 2.740 

SUBSPACE 1.68 6.25 1.61 3.180 

NN BRAIN 2.6 4.3 n.d. 3.450 

BRAIN 5 4 4 4.333 

KBANN 7.6 8.5 4.6 6.900 

MLP 5.7 10.7 5.3 7.233 

BACKPROPAGATION 5.74 10.75 5.29 7.260 

PEBLS 8.18 7.55 6.86 7.530 

ID3 10.6 14 8.8 11.133 

COBWEB 15.04 9.46 11.8 12.100 

PERCEPTRON 16.32 17.41 3.99 12.573 

NEAREST NEIGHBOR 11.6 9.1 31.1 17.267 
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APPENDIX 

 

Construction of the learning dataset and test dataset via ten-fold cross validation 

method: 

indices = crossvalind('Kfold',3190,10); 

i=1:3190; 

for j=1:10 

    TS{j} = i(indices == j);  

    LS{j} = i(indices ~=j); 

     

    TSEI{j}=TS{j}(find(TS{j}<=767)); 

    TSIE{j}=TS{j}(find((TS{j}>=768)&(TS{j}<=1535))); 

    TSN{j}=TS{j}(find(TS{j}>=1536)); 

     

    LSEI{j}=LS{j}(find(LS{j}<=767)); 

    LSIE{j}=LS{j}(find((LS{j}>=768)&(LS{j}<=1535))); 

    LSN{j}=LS{j}(find(LS{j}>=1536)); 

end 

  

save('DSets','TS','LS','TSEI','TSIE','TSN','LSEI','LSIE',

'LSN'); 

 

Program: 

 

clear all 

clc 

global dizi EI IE N sinif pred_sinif index numEI numIE 

numN w TP 

global LSEInum LSIEnum LSNnum 

global EItestindex EIlearnindex IEtestindex IElearnindex 

Ntestindex Nlearnindex 

 

sinif=importdata('sinif.txt',','); 

konum=importdata('konum.txt',','); 

dizi=importdata('dizi.txt',','); 

 

load DSets; 

 

error_rates=[]; 

  

for j=1:10 

    EItestindex=TSEI{j}; 

    EIlearnindex=LSEI{j}; 

    IEtestindex=TSIE{j}; 

    IElearnindex=LSIE{j}; 

    Ntestindex=TSN{j}; 

    Nlearnindex=LSN{j}; 
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    LSEInum=size(LSEI{j},2); 

    LSIEnum=size(LSIE{j},2); 

    LSNnum=size(LSN{j},2); 

    disp(' LEARNING PROCESS ') 

    spliceLearn; 

 

% sonucLearn=['SonucLearn' 47+j]; 

% save (sonucLearn,'w', 'TP', 'numEI','numIE', 'numN'); 

 

    disp(' TEST PROCESS ') 

    spliceTest; 

    sonucTest=['SonucTest' 47+j]; 

    save (sonucTest,'TP', 'numEI','numIE', 'numN'); 

    Pred_sinif=['pred_sinif' 47+j]; 

    save(Pred_sinif,'pred_sinif'); 

  

    % Test seti sonucları 

     

    nnTSEI(j)=0; 

    nnTSIE(j)=0; 

    nnTSN(j)=0; 

    for k=TSEI{j} 

        nnTSEI(j)=nnTSEI(j)+strcmp(pred_sinif{k},'EI'); 

        nnTSIE(j)=nnTSIE(j)+strcmp(pred_sinif{k},'IE'); 

        nnTSN(j)=nnTSN(j)+strcmp(pred_sinif{k},'NN'); 

    end 

  

    TestMatrix_EI=[nnTSEI(j) nnTSIE(j) nnTSN(j)]; 

    nnTSEI(j)=0; 

    nnTSIE(j)=0; 

    nnTSN(j)=0; 

    for k=TSIE{j} 

        nnTSEI(j)=nnTSEI(j)+strcmp(pred_sinif{k},'EI'); 

        nnTSIE(j)=nnTSIE(j)+strcmp(pred_sinif{k},'IE'); 

        nnTSN(j)=nnTSN(j)+strcmp(pred_sinif{k},'NN'); 

    end 

    TestMatrix_IE=[nnTSEI(j) nnTSIE(j) nnTSN(j)];     

    nnTSEI(j)=0; 

    nnTSIE(j)=0; 

    nnTSN(j)=0; 

    for k=TSN{j} 

        nnTSEI(j)=nnTSEI(j)+strcmp(pred_sinif{k},'EI'); 

        nnTSIE(j)=nnTSIE(j)+strcmp(pred_sinif{k},'IE'); 

        nnTSN(j)=nnTSN(j)+strcmp(pred_sinif{k},'NN'); 

    end 

    TestMatrix_N=[nnTSEI(j) nnTSIE(j) nnTSN(j)]; 

     

    

TestRes{j}=[TestMatrix_EI;TestMatrix_IE;TestMatrix_N]; 
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    TestRes{j}; 

    Test_Res=['TestRes' 47+j]; 

    save(Test_Res, 'TestRes') 

     

% Error Rates for each class   

 

ER_EI(j)=(sum(TestRes{j}(2:3,1))+sum(TestRes{j}(1,2:3)))/ 

sum(sum(TestRes{j})); 

ER_IE(j)=(sum(TestRes{j}(2,1))+sum(TestRes{j}(2,3))+ 

sum(TestRes{j}(1,2))+sum(TestRes{j}(3,2)))/sum(sum( 

TestRes{j})); 

    

ER_N(j)=(sum(TestRes{j}(3,1:2))+sum(TestRes{j}(1:2,3)))/ 

sum(sum(TestRes{j})); 

 

error_rates=[error_rates [ER_EI(j) ;ER_IE(j) ;ER_N(j)]]; 

    disp({'error_rates' j}); 

    disp(error_rates); 

    Error_Rates=['error_rates' 47+j]; 

    save(Error_Rates,'error_rates'); 

end 

sum(error_rates')/10 

 

Performance Parameters:  

% Calculation of TN, TP, FN, FP for each fold.for j=1:10 

 

for j=1:10 

FP(j)=sum(TestRes{j}(2:3,1))+ sum(TestRes{j}(2,1))+ 

sum(TestRes{j}(2,3))+sum(TestRes{j}(3,1:2)); 

FN(j)=sum(TestRes{j}(1,2:3))+sum(TestRes{j}(1,2))+ 

sum(TestRes{j}(3,2))+sum(TestRes{j}(1:2,3)); 

TP(j)=sum(diag(TestRes{j})); 

TN(j)=sum(sum(TestRes{j}(2:3,2:3)))+ 

sum(sum(TestRes{j}(1,1)))+sum(sum(TestRes{j}(3,1))) 

+sum(sum(TestRes{j}(3,3)))+sum(sum(TestRes{j}(1,3))) 

+sum(sum(TestRes{j}(1:2,1:2))); 

end 

 

data=[TP' TN' FP' FN'] 

 

TP=mean(TP); 

TN=mean(TN); 

FP=mean(FP); 

FN=mean(FN); 

Sn=TP/((TP)+(FN)) 

Sp=TN/((TN)+(FP)) 
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CC=((TP*TN)-

(FP*FN))/(sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN))) 

Accuracy=(TP+TN)/(TP+TN+FP+FN) 

F=(2*Sn*Sp)/(Sn+Sp) 

save('Measurements', 'Sn','Sp','CC','Accuracy','F') 


