
DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES

DESIGN AND CONTROL OF BALANCING

ROBOT

by

Ozan ENGİNOĞLU

July, 2012

İZMİR

DESIGN AND CONTROL OF BALANCING

ROBOT

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the

Degree of Master of Mechatronics in

Mechatronics Engineering, Mechatronics Engineering Program

by

Ozan ENGİNOĞLU

July, 2012

İZMİR

 iii

ACKNOWLEDGEMENTS

 First, I would like to express my sincere appreciation to my supervisor Assist.

Prof. Dr. Tolga SÜRGEVİL for his support and guidance from the beginning to the

very end of this study. Under his guidance I had the chance to learn and improve

myself in various subjects which I believe will be of great importance in my future

academic studies and career.

 I also want to thank Sezai AKTÜRK and “BAST Saç İşleme ve Boya Sanayi

Ticaret LTD. ŞTİ.” for providing me the laser cut aluminium sheets to be used in my

first balancing robot design.

 Finally, I owe my wife and family a big dept of gratitude for always being there

for me and making me feel determined to complete my study.

Ozan ENGİNOĞLU

 iv

DESIGN AND CONTROL OF BALANCING ROBOT

ABSTRACT

 This thesis is concentrated on the problem of balancing a two wheeled robot using

the angle feedback. To calculate the pendulum angle, accelerometer and gyroscope

sensors are used. The readings received from these sensors are processed using

Kalman filtering to eliminate the noise caused by vibration and a clean noiseless

signal is obtained. Then PID controller is used on the filtered angle feedback to

balance the robot.

 Calculations and the control of the robot are performed using a microcontroller,

which processes sensor signals and generates logic signals to drive the motors of the

robot.

 The design used as a prototype is prepared in Solidworks. All parts are drawn in

3D and materials are assigned to these parts to obtain parameters like mass and

inertia values of the pendulum and the wheels that are used in simulations.

 In order to determine the PID controller parameters to be used in the system,

Simulink is used to prepare the block diagram of the whole closed-loop system. For

this purpose, mathematical equations of the system are obtained and these equations

are implemented in Simulink as balancing robot system block. Also, other system

parts like PID controller, PWM pulse generator and Kalman filtering blocks are

added into simulation to construct a platform as close as possible to real system.

After the simulation model is prepared, design optimization tool in Simulink is used

to find PID parameters which give a feasible solution for the control of the balancing

robot.

 v

 Finally, obtained PID parameters are experimented in the prototype design and the

angle of the robot is logged and compared with the simulation results.

Keywords : Balancing robot, inverted pendulum, Kalman filter, PID controller

 vi

DENGE ROBOTUNUN TASARIM VE KONTROLÜ

ÖZ

 Bu tez iki tekerlekli bir robotu açı geribeslemesi kullanarak dengede tutma

problemi üzerine yoğunlaşmıştır. Sarkaç açısının hesaplanması için ivme ölçer ve

jiroskop sensörleri kullanılmıştır. Bu sensörlerden gelen veriler, titreşim sonucu

oluşan paraziti yok etmek için Kalman filtresi kullanılarak işlenmiş ve temiz,

parazitsiz bir sinyal elde edilmiştir. PID denetleyicisi, robotu dengede tutmak için,

filtre edilmiş açı geribeslemesi üzerinde kullanılmıştır.

 Robot’un hesaplamaları ve kontrolü, motorları sürmek için sensör sinyallerini

işleyen ve lojik sinyalleri üreten bir mikrodenetleyici kullanılarak

gerçekleştirilmiştir.

 Prototip olarak kullanılan tasarım Solidworks’de hazırlanmıştır. Bütün parçalar üç

boyutlu olarak çizilmiş ve simulasyonlarda kullanılan sarkaç ve tekerlerin kütle ve

atalet momentleri gibi parametrelerinin elde edilebilmesi için bu parçalara malzeme

ataması yapılmıştır.

 Sistemde kullanılacak olan PID denetleyicisi parametrelerini tespit edebilmek

için, bütün kapalı-çevrim sistemin blok diyagramının hazırlanmasında Simulink

kullanılmıştır. Bu amaçla sistemin matematiksel eşitlikleri çıkartılmış ve bu eşitlikler

Simulink’de denge robotu sistem bloğu olarak uygulanmıştır. Ayrıca PID

denetleyici, PWM pulse oluşturucusu ve Kalman filtresi blokları da gerçek sisteme

mümkün olduğunca yakın bir platform oluşturmak için simulasyona eklenmiştir.

Simulasyon modeli hazırlandıktan sonra, Simulink’deki tasarım optimizasyon aracı

kullanılarak denge robotu’nun kontrolü için uygun çözümü veren PID parametreleri

bulunmuştur.

 vii

 Son olarak, elde edilen PID parametreleri tasarlanan prototip’de denenmiş ve

robot’un sarkaç açısı simulasyon sonuçları ile karşılaştırılması için kayıt edilmiştir.

Anahtar Sözcükler : Denge robotu, ters sarkaç, Kalman filtresi, PID denetleyicisi

 viii

CONTENTS

Page

M.Sc. THESIS EXAMINATION RESULT FORM .. ii!

ACKNOWLEDGEMENTS .. iii!

ABSTRACT .. iv!

ÖZ ... vi

CHAPTER ONE - INTRODUCTION ... 1!

CHAPTER TWO - SYSTEM MODELING .. 6

2.1 Direct Current Motor .. 7!
2.2 Wheels .. 10!
2.3 Pendulum .. 13!
2.4 Linearization of Equations. .. 15

CHAPTER THREE - DESIGN OF BALANCING ROBOT SYSTEM 17

3.1 Mechanical Design ... 17!
3.2 Electrical Design .. 22!

3.2.1 Microcontroller Board ... 22!
3.2.2 DC Motor .. 23!
3.2.3 DC Motor Driver ... 24!
3.2.4 IMU Analog Combo Board ... 27!

3.2.4.1 Accelerometer .. 28!
3.2.4.2 Gyroscope .. 33!

3.3 Electrical Connections ... 34!
3.4 Implementation of Control Algorithms .. 35!

 ix

3.4.1 Sensor Fusion .. 35!
3.4.1.1. Kalman Filter .. 36!

3.4.2 PID Control ... 42!
3.4.2.1 Effects of PID Controller Parameters .. 43

CHAPTER FOUR - COMPARISON OF SIMULATION AND

EXPERIMENTAL RESULTS .. 47

4.1 System Modeling and Parameters .. 48!
4.2 Modeling of Closed-loop Control System ... 53!
4.3 Real System Implementation and Control ... 56

CHAPTER FIVE - CONCLUSIONS ... 64

REFERENCES ... 66!

NOMENCLATURE ... 69!

APPENDIX ... 70!

 1

CHAPTER ONE

INTRODUCTION

Two wheeled balancing robots have attracted many researchers because of its

naturally unstable and nonlinear structure. Its properties provide a good environment

for researchers to test various control theories on the subject and see how they

behave in a complicated nonlinear system like this. Along with its scientific

attraction, two wheeled robots have many advantages; they are small, simple and

also good at climbing inclined planes, which makes them useful as personal

transporting devices. Spot spin feature makes these robots usable in factories or in

narrow places etc. (Karla, Dipesh & Stol, 2007).

In order to balance a two wheeled robot, different approaches can be applied on

the system. Although the main objective of the system is simple; to stabilize the

robot at its vertical position, various types of methods of calculating the pendulum

angle of the robot and various filters to eliminate the signal noises and different

control theories can be applied to this system. In the literature, various designs and

methods can be found for two wheeled balancing robots. Some of them are listed

below;

nBot - David P. Anderson from Southern Methodist University has achieved to

develop a very stable and award winning balancing robot shown in Figure 1.1. This

robot uses an Inertial Measurement Unit (IMU) board consisting of an accelerometer

and a gyroscope. Kalman filter is used to filter the readings of these sensors. In

addition to angle information, position angle, which is obtained using motor

encoders, is also used as a feedback to stabilize the position of the robot in horizontal

axis (Anderson, 2010).

2

Figure 1.1 View of Nbot balancing

robot (Anderson, 2010)

Joe - Researchers developed a two-wheeled balancing robot, shown in Figure 1.2,

with weights on the top to simulate a driver standing on the robot. In the Joe

balancing robot, encoders of the motors and gyroscope are used to calculate the

inclination of the robot. As a controller pole placement method is used and in order

to balance the robot, different pole placements are tested (Grasser, D’Arrigo,

Colombi & Rufer, 2002).

Figure 1.2 View of Joe balancing

robot. (Grasser et al., 2002)

Segway - A commercial application of balancing robots has been started to be

used with Segway personal transporter as shown in Figure 1.3. It was invented by

Dean Kamen and announced in 2001. The design included a base where people

3

would stand and a stick on the front to direct it by the user. Since Segway is designed

to carry people, IMU board includes 5 gyroscopes where three are used and two are

placed as backup. After the success of Segway, the company has presented different

models. For instance adventure, golf, cargo or commuter Segways are among those.

Segways can go up to 20 km/h and a range of 38 km. (Segway Personal Transporter

Webpage).

Figure 1.3 Segway PT

(Segway Personal Transporter Webpage)

Other than classical control way of balancing; driving the motors according to the

pendulum angle, different approaches to the problem are also available in the

literature. Kalra et al. (2007) have researched the benefits of a reaction wheel they

placed on the top of the robot, which can be seen in Figure 1.4. The aim of adding a

reaction wheel to the system is to deliver the required balancing torque with this

mechanism instead of base balancing wheels. Linear Quadratic Regulator (LQR)

controller is used in this system for balancing the robot. Energy efficiency and

balancing are compared with the system without a reaction wheel. As a result, using

hybrid mechanism provided a better balancing and used %21 less energy (Kalra et

al., 2007).

4

Figure 1.4 Balancing robot with a reaction wheel.

(Karla et al., 2007)

As stated previously, balancing robot is a suitable platform to test control theories.

In the research of Lahdhiri, Carnal & Alouani (1994) a fuzzy rule based controller is

developed for solving cart - pendulum balancing problem in real time. Similarly

Muškinja & Tovornik (2000) have balanced an inverted pendulum on a rail system

by using fuzzy logic controller. In their research, balancing starts from the downright

position, which is pendulum’s initial position and it is swung to turn it around and

balance. Combination of control theories is also studied on the balancing robot such

as the research of Sun & Gan (2010). In this research, LQR controller is combined

with PID controller and they have accomplished to balance the robot within a larger

inclination angle.

In this thesis, in order to find the pendulum angle of the robot, an IMU board

including an accelerometer and a gyroscope sensor is used and for filtering the noisy

signal, Kalman filter is applied. To balance the robot at the upright position, PID

controller is implemented on the system in a closed-loop structure.

This thesis is divided into five chapters. In the second chapter, the nonlinear

equations of the system are obtained by evaluating the pendulum, the wheels and the

DC motors one by one and then combining their equations together. In the third

chapter, the prototype design of the balancing robot, which is prepared using

Solidworks 3D Cad software is shown. Components used on the balancing robot and

also the structures of Kalman filtering and PID controller are explained. In the forth

5

chapter, obtaining system parameters are explained. The open loop and the closed-

loop system models and their results are given. The PID controller parameters are

obtained using the design optimization tool and they are experimented on the

prototype design. The results of the experiment are logged and real system results are

compared with the simulation results. In the fifth chapter, conclusions and

recommendations are given for future studies.

 6

CHAPTER TWO

SYSTEM MODELING

In order to investigate the behavior of balancing robot through computer

simulations, mathematical modeling of the system should be derived at the first step.

The dynamic and linearized models based on simple inverted pendulum, which is

applied to two wheel balancing robot, can be found in literature (Baik, 2008; Grasser

et al., 2002; Jeong & Takahashi, 2008; Kadir, 2005; Ooi, 2003; Quintero, 2008). The

modeling of the designed balancing robot based on the derivation of mathematical

expressions is shown below. These equations were used to simulate the non-linear

behavior of the robot. At the end of the chapter, linear equations are also shown

which can be used to obtain linear state space modeling of the system.

The basic scheme of a two wheeled balancing robot is shown in Figure 2.1. In

order to obtain these mathematical expressions, balancing robot will be considered in

three parts: DC Motor, Wheels and Pendulum. Then combining the equations of

these three parts, two nonlinear equations, which represent the whole system, are

obtained.

Figure 2.1 Balancing robot basic scheme.

7

2.1 Direct Current Motor

In the balancing robot two identical DC Motors with a metal gearbox, which has

the ratio of 29:1, are used. The motors are very important during balancing and the

performance of the balancing robot depends on the capability of the motors like

ability to accelerate, backlash etc. Although two separate DC motors are used in the

designed system, they can be considered to be a single motor driving a single shaft

that delivers torque to the wheels (Kadir, 2005; Ooi, 2003).

The modeling of a single DC motor driving one wheel can be found in (Ooi,

2003) and its diagram is shown in Figure 2.2. When the armature voltage Va is

applied to the motor armature terminals, a current ia is drawn by the armature (rotor)

windings, which has a resistance of ! and an inductance of !. With the flowing !!

current in the armature of the motor, a magnetic field, which interacts with the stator

magnetic field, is produced. As a result, a torque !! is produced acting on the rotor

and motor starts to turn with this torque. This torque is varying linearly with the

armature current as follows:

 !! = !!!! (2.1)

Figure 2.2 Diagram of a DC Motor (Ooi, 2003)

A back electromotive force voltage occurs due to the movement of coils through

the magnetic field of the motor and this voltage is always proportional to the angular

velocity of shaft as expressed as follows:

8

 !! = !!!! (2.2)

Using Kirchhoff’s Voltage Law with the motor’s electrical circuit, which is shown

in Figure 2.2, we obtain the following expression.

!! − !!! − ! !!!!" − !! = 0 (2.3)

The friction torque on the shaft of the motor is assumed to be varying linearly

with the shaft angular velocity. Considering this, the sum of the torques acting on the

shaft of the dc motor is equal to the product of angular acceleration of the rotor and

rotor inertia, i.e,

 ! = !!! (2.4)

!! − !!! − !! = !! !"
!" (2.5)

 Substituting equation (2.1) into (2.5) gives us the following equation.

 !!!! − !!! − !! = !! !"
!" (2.6)

 By rearranging (2.6) and leaving the derivative term alone, we find the angular

acceleration of the shaft.

!"
!" =

!!!!
!!

− !!!
!!
− !!

!!
 (2.7)

 Substituting (2.2) into (2.3) gives the following equation.

!! − !!! − ! !!!!" − !!! = 0 (2.8)

9

 Derivative of the current can be obtained from the equation (2.8) as follows:

!!!
!" =

!!
! −

!!!
! − !!!

! (2.9)

Some given terms shown in DC motor circuit are so small, they can be neglected.

In DC Motor circuit these negligible terms are inductance and motor friction

constants. Until now they were considered as a part of the circuit.

By neglecting the motor friction in equation (2.7), new equation becomes as

follows:

!"
!" =

!!!!
!!

− !!
!!

 (2.10)

and after neglecting the inductance term equation (2.9) can be expressed in steady

state as:

 !! = !!
! −

!!!
! (2.11)

 The current found in (2.11) is substituted in equation (2.10) to acquire a new

equation with the parameters km (mechanical motor constant), ke (electrical motor

constant), Va (armature voltage), ! (angular velocity of the shaft), IR (Inertia of

rotor), R (resistance of motor) and !! (torque generated).

!"
!" =

!!
!!

!!
! −

!!!
! − !!

!!
 (2.12)

!"
!" =

!!!!
!!!

− !!!!!
!!!

− !!
!!

 (2.13)

 The angular displacement of the rotor is expressed as !! = !. This equation is

used to form a convenient state-space model. This model represents the dynamics of

DC Motors as shown below:

10

!
!"
!!
! = !!

! =
0 1
0 − !!!!

!!!
!!
! +

0 0
!!
!!!

− !
!!

!!
!! (2.14)

! = 1 0 !!
! + 0 0 !!

!! (2.15)

2.2 Wheels

In the project two wheels are used and wheels with high friction surfaces are

preferred on purpose. Thus, it is assumed that the wheels will not slip on the ground.

 To integrate wheels into other parts of the robot, they will be studied alone using

free body diagram method as shown in Figure 2.3 (Ooi, 2003). All the forces applied

on the wheels will be shown and Newton’s Law of Motion will be used to find the

equations of motion. Since the used wheels are same, the equations will be found for

just one wheel.

Figure 2.3 Free body diagram of

the wheel. (Ooi, 2003)

The sum of all the forces along the x-axis is expressed as:

!! − ! = !!! (2.16)

11

 Also, the torques about the center of the wheel should be equal to the inertia of the

wheel multiplied by the angular acceleration. Equation of torque equilibrium can be

stated as follows:

 ! − !!! = !!!! (2.17)

There are two torques on the shaft of the motor. These are !! and !! and they are

always in counter directions. The torque motor produces is the difference between

these two. So it can be expressed as

 ! = !! − !! (2.18)

 By using (2.5) with kf is neglected, motor torque can be written as

!! = !! !"
!" + !! (2.19)

 Substituting equation (2.19) into (2.18) following statement is acquired.

 ! = !! !"
!" (2.20)

 !! is neglected in the system and substituting equation (2.13) into (2.20) the

torque equation is obtained as follows:

 ! = !!!!
! − !!!!!

! − !!
!!

 (2.21)

 Equation (2.21) is substituted into (2.17) and it yields to

!!!!
! − !!!!!!

! − !!! = !!!! (2.22)

12

 After arranging the equation (2.22), the friction force on the wheel in terms of

system parameters is acquired.

!! = !!!!
!" − !!!!!!

!" − !!!!
! (2.23)

 Now we can replace the Hf term used in (2.16) with the term we just found in

(2.23).

!!! = !!!!
!" − !!!!!!

!" − !!!!
! − ! (2.24)

 As wheels turns, rotational motion is transformed into linear motion. With the

following two equations this transformation can be applied on motion equations.

!!! = ! (2.25)

!!! = ! (2.26)

 Substituting equations (2.25) and (2.26) in (2.24), the motion equation was found

for a wheel as follows:

!!! = !!!!
!" − !!!!!

!!! − !!!
!! − ! (2.27)

 Until now, acquired equations were found considering just one wheel. Since

balancing robot has two wheels, the equation (2.27) is multiplied by two and

arranged as follows:

2!!! = 2 !!!!!" − 2 !!!!!!!! − 2 !!!!! − 2! (2.28)

2 !! + !!
!! ! = !!!!!

!" − !!!!!!
!!! − 2! (2.29)

13

2.3 Pendulum

 As a third and final step towards obtaining the motion equations, pendulum of the

balancing robot will be examined. Once it’s motion equations are found, it’ll also be

integrated with the DC motor and wheel equations. The free body diagram of the

pendulum is shown in Figure 2.4 (Ooi, 2003).

Figure 2.4 Free body Diagram of the pendulum.

(Ooi, 2003)

 Since the reaction forces of both wheels to the chassis are considered to be the

same in direction and value, !! = !! = ! assumption is made. The sum of all

forces along the x-axis is equal to the mass of pendulum multiplied by the

acceleration of robot as follows:

 !! = !!! (2.30)

2! −!!!!! !"# !! +!!!!!
! !"# !! = !!! (2.31)

 Reaction forces of both wheels on horizontal direction is

2! = !!! +!!!!! !"# !! −!!!!!
! !"# !! (2.32)

14

The sum of all the forces perpendicular to the robot chassis are linearly

proportional with mass of pendulum and acceleration on that direction.

 2! !"# !! + 2! !"# !! −!!! !"# !! −!!!!! = !!! !"# !! (2.33)

 Sum of the moments around the COG of the pendulum is

 ! = !!! (2.34)

−2!" !"# !! − 2!" !"# !! − 2! = !!!! (2.35)

 C torque term was found previously in equation (2.21). After applying linear

transformation functions (2.25) and (2.26), torque equation becomes

 ! = !!!!
! − !!!!!

!" (2.36)

2! = !!!!!
! − !!!!!!

!" (2.37)

 Substituting (2.37) into (2.35), following statements are derived

−2!" !"# !! − 2!" !"# !! − !!!!!
! + !!!!!!

!" = !!!! (2.38)

 −2!" !"# !! − 2!" !"# !! = !!!! + !!!!!
! − !!!!!!

!" (2.39)

 By multiplying equation (2.33) with length of pendulum, we get the following

equation

 2!" !"# !! + 2!" !"# !! −!!!" !"# !! −!!!!!! = !!!! !"# !! (2.40)

To eliminate P and H terms from the equations (2.39) and (2.33), equations are

summed.

!!!!!!
!" − !!!!!

! − !!!! −!!!" !"# !! −!!!!!! = !!!! !"# !! (2.41)

15

 Substituting (2.29) into (2.32) also eliminates H term from the equation.

2 !! + !!
!! ! = !!!!!

!" − !!!!!!
!!! −!!! −!!!!! !"# !! +!!!!!

! !"# !! (2.42)

 Rearranging equations (2.41) and (2.42),

!! !! +!!!! = !!!!!!
!" − !!!!!

! −!!!" !"# !! −!!!! !"# !! (2.43)

! !!!!!!!!!!!!!!
!! = !!!!!

!" − !!!!!!
!!! −!!!!! !"# !! +!!!!!

! !"# !! (2.44)

and the nonlinear equations of the system in the final form obtained as follows:

!! = !!!!!!
!" !!!!!!!

− !!!!!
! !!!!!!!

− !!!" !"# !!
!!!!!!!

− !!!! !"# !!
!!!!!!!

 (2.45)

! =
!!!!!
!" !!!!!!!

!!! !!!!!! !"# !!!!!!!!
! !"# !!

!!!!!!!!!!!!!!
!!

 (2.46)

!! =
! !!!!!!!!!!!!!!

!! !!!!!!
!! !!!!!!!

!!! !!!!!! !"# !!
!!! !"# !!

 (2.47)

! = !" !! !!!!!!! !!!!!!
! !!!!" !"# !!!!!!! !"# !!
!!!!!

 (2.48)

Equation (2.45), (2.46), (2.47) and (2.48) are the balancing robot’s non-linear

equations. By using (2.45) and (2.46) it is possible to simulate the behavior of the

balancing robot system.

2.4 Linearization of Equations.

 By simplifying non-linear equations given above, they will be turned into linear

equations and state space model of the system will be obtained. In order to linearize

16

these equations, some assumptions should be made. It is assumed that the pendulum

is away from the upright position by an angle of !, which is a very small angle.

Hence,

!! = ! + ! (2.49)

!"# !! = −1 (2.50)

!"# !! = −! (2.51)

!!!
!"

!
= 0 (2.52)

 By applying all given three assumptions, non-linear equations of balancing robot

turns into two linear equations as follows:

! = !!!
!!!!!!!

! + !!!!!
!" !!!!!!!

! − !!!
! !!!!!!!

!! + !!!"
!!!!!!!

! (2.53)

! = !!!
!" !!!!!!!!! !!!

!! − !!!!!
!!! !!!!!!!!! !!!

! + !!!
!!!!!!!!! !!!

! (2.54)

 Linearized equations (2.53) and (2.54) can be expressed in state space model

form. Since equations are complex, two new terms are given as !!and!! to simplify

the equations.

!
!
!
!

=

0 1 0 0
0 !!!!! !!!"!!!!!!!!

!!!!
!!!!!!

! 0
0
0

0
!!!!! !"!!!!

!!!!

0 1
!!!"#
! 0

!
!
!
!

+

0
!!! !!!!!!!!!!!"

!"#
0

!!! !!!!!"
!"#

!! (2.55)

where,

! = !!! + 2!!!! !! + !!
!! (2.56)

! = 2!! + !!!
!! +!! (2.57)

 17

CHAPTER THREE

DESIGN OF BALANCING ROBOT SYSTEM

The balancing robot system consists of a lot of important parts, which should be

carefully studied in order to understand how it works. Every part used in this project

is carefully selected considering system requirements. In this chapter, the subsystems

constituting the balancing robot and their working principles are explained. Also, the

electrical connection diagrams of the electrical components used in the design of the

robot are given.

3.1 Mechanical Design

Making a robot balance itself can be accomplished by a combination of a well-

designed control system, right chosen sensors & actuators and a well-balanced

mechanical design. A good mechanical design is important, because, even the

subsystems are properly chosen, the robot will not be able to balance itself without it.

Design of the balancing robot has been performed using Solidworks 3D CAD

Software. The rendered view of the robot drawing obtained from Solidworks is

shown in Figure 3.1. This software is chosen because it is based directly on 3D

modeling of the mechanical parts. Each mechanical part of the robot can be drawn

and then these parts can be assembled in the software. Also, it is possible to assign

materials to the created parts and acquire realistic technical properties of the whole

assembly. It is also possible to make static and dynamic analysis of the robot but in

this thesis Solidworks is used for drawing and modeling purposes. The inertia of the

wheels and the chassis, which are used in simulation models, are obtained using this

software. Otherwise, an experimental setup would be needed to calculate these

inertia values of the robot.

 For this balancing robot two different designs are manufactured. At the beginning,

the design shown in Figure 3.1 has been made. But since this design consists of a lot

of aluminum plates especially at the lower levels of the robot, COG of the robot was

close to the rotational axis of the wheels.

18

Figure 3.1 First (left) and second (right) manufactured balancing robot designs.

 Since COG of the balancing the robot is an important parameter of the system and

the higher COG the easier it balances, another design is manufactured with a higher

COG. The comparison of COG of both balancing robots can be seen in Figure 3.1. In

the new design, the length between the COG of the pendulum and the rotational axis

is increased from 6 cm to 8.3 cm. The pendulum’s total height is also increased from

30.5 cm to 35.5 cm. Pendulum weight of the robot has reduced from 1.150 kg to

1.086 kg. The system parameters obtained from new design’s properties are listed in

Table 4.1 in Section 4.

COG

Rotation Axis

19

Figure 3.2 Rendered view of designed balancing robot in Solidworks

 While designing a balancing robot, there are some important aspects that have to

be considered. The most important one is center of gravity (COG) of the robot.

Considering the coordinate center as shown in Figure 3.2 (Solidworks drawing

showing COG and X,Y,Z coordinates), X and Y coordinates of COG should be as

close as possible to the coordinate center (i.e., zero) because if these two coordinates

are far from zero, the robot is going to lean in these directions. Since leaning of the

robot by itself without any motor force is not intended, the COG should be optimally

located on the center of X and Y coordinates. Also, Z coordinate of the COG should

be as high as possible for a proper balancing. In order to move the Z coordinate of

the COG upwards, components with more weight (battery, microcontroller etc.)

should be placed at the top of robot.

The easiest way to explain the concept of moving the COG to a higher position is

by imagining a person trying to balance a small and then a tall stick on his/her finger.

It is easier to balance a tall stick rather than small one because of the rotational

inertia. Inertia increases proportionally with the mass and square of length between

20

COG and rotational axis. When the rotational inertia is high, it flips over slower and

gives the robot some more time to be balanced.

Figure 3.3 Front and left and top views of the balancing robot.

In Figure 3.3, front, left and top views of the robot obtained from Solidworks

drawings are given. The list of the parts shown in Figure 3.3 is as follows:

Mid Plate

Bottom Plate

Standoff

Nut
DC Motor Hub

Wheel

21

• Bottom plate (made of light wood)

• Middle plate (made of light wood)

• Standoffs (made of aluminum)

• Nuts (made of steel)

• DC Motors (Pololu 12 V Motors with encoders)

• Hub (Used to connect wheels to the shaft of the motor)

• Motor connector (used to connect DC motor to the plate)

• Wheel (Pololu wheels with high friction)

During the design of the robot, sensors (accelerometer and gyroscope), motor

driver and microcontroller boards are not modeled since they are light so they don’t

have a significant effect on calculation of inertia. The masses of these parts are added

while assigning materials to the plates to which they are attached in Solidworks

model of the robot.

In the design of the robot, an easy assembly of the sensors, motor driver, DC

motors, and microcontroller were considered. Accelerometer - Gyroscope combo

board and motors are mounted on the bottom plate, while microcontroller and motor

driver boards are mounted on the middle plate. Since COG is important, a

symmetrical placement of these components is necessary. Also, the most critical part

of the system; accelerometer – gyroscope combo board is located close to the

rotational axis of DC motors. The reason it is placed close to the rotational axis is to

avoid centrifugal and inertial forces acting on the transducers.

During the placement of the components, it was necessary to fix them to their

places properly. The vibration of the parts may cause an error in sensor readings,

which are acquired from Acc-Gyro board. Especially, accelerometer is very sensitive

to vibration. That is why the accelerometer is used together with the gyroscope

module in the combo board. The output of the Acc-Gyro combo board is filtered to

obtain a noiseless signal.

22

3.2 Electrical Design

Main electrical and electronic components used in the control of the robot will be

introduced here. These components are as follows;

• Microcontroller Board (Arduino Uno)

• DC Motor (Pololu DC Motor with 29:1 metal gearbox)

• DC Motor Driver (Dual VNH3SP30 Motor Driver Carrier MD03A)

• Acc-Gyro Combo Board (IMU 5 Degrees of freedom IDG500/ADXL335)

3.2.1 Microcontroller Board

 Arduino Uno microcontroller board, shown in Figure 3.4, is an open source

electronics prototyping platform designed with ATmega328 microcontroller. It is

designed for easy use and compatibility with different platforms. Since it is provided

by a USB interface, it is possible to supply power to the board and upload programs

to the microcontroller. This facility makes programming much easier to the user.

Figure 3.4 Arduino Uno front view (Arduino Uno Webpage)

ATmega328 microcontroller can be programmed using C programming language

provided in Arduino development environment. The uploaded programs on the

Arduino can be run standalone or, if desired, by means of serial communication

which enables to get data from microcontroller to PC simultaneously using a USB

23

cable. All data that has been used to draw graphs are acquired via serial port

connection of Arduino board to PC. Some of the features of the Arduino Uno

microcontroller board are 14 digital I/O pins (6 of them provide PWM output), 6

analog input pins, 32 KB flash memory, and 10-bit ADC. The detailed specifications

of Arduino UNO microcontroller board can be found in (Arduino Uno Webpage). In

this system 3 analog input pins are used to get data from Acc-Gyro combo board, 4

digital output pins are used to send direction data to the motor driver for each motor,

and 2 PWM output pins are used to set the speeds of the DC motors.

Filtering of the input signals, PWM waveform generation, and closed-loop control

algorithm for balancing the robot were implemented for the Arduino microcontroller

using development software.

3.2.2 DC Motor

A right chosen DC motor is of great importance for this project because even the

drive signal sent from the microcontroller to DC motor driver is correct, if the DC

motors are not capable of working with the desired RPM (revolutions per minute), it

would be impossible to balance the robot. In Figure 3.5 the isometric view of the DC

motors is given. The specifications of the DC motors used in this thesis are given in

Table 3.1 (Pololu DC Motor Webpage).

Figure 3.5 Pololu DC Motor isometric view

(Pololu DC Motor Webpage)

24

Table 3.1 Specifications of Pololu DC Motor

(Pololu DC Motor Webpage)

Gear Ratio 29:1

Free Run Speed (at 6 Volts) 175 RPM

Free Run Current (at 6 Volts) 250 mA

Stall Current (at 6 Volts) 2500 mA

Stall Torque (at 6 Volts) 55 oz.in

Free Run Speed (at 12 Volts) 350 RPM

Free Run Current (at 12 Volts) 300 mA

Stall Current (at 12 Volts) 5000 mA

Stall Torque (at 12 Volts) 110 oz.in

With the new design, the DC motors have been also changed. The old DC motor

used with the old design was a Faulhaber 2342012CR (Faulhaber DC Motor

Datasheet). This motor had a gearbox with a high reduction ratio (69:1) and free run

speed of 117 RPM, which increases the torque but decreases the speed of the shaft.

Maximum speed of used DC motors are important especially when the pendulum

angle of the balancing robot gets away from the upright position because of a force

input from outside or irregular ground surface where motors need to run at full speed

to get under the pendulum to balance itself again. If the motor speed is not enough,

falling pendulum angle can not be corrected and balancing becomes impossible.

3.2.3 DC Motor Driver

In order to drive two DC motors, the VNH3SP30 Dual DC motor driver shown in

Figure 3.6 is used. DC motors that have been used for this project are supplied with

12 Volts and each draw approximately 5 A at stall state.

25

Figure 3.6 VNH3SP30 Dual DC motor driver

(Pololu DC Motor Driver Webpage)

Since the output pins of the microcontroller unit (Arduino UNO) can supply up to

40 mA, a motor driver unit is necessary to drive these motors. After considering

several DC motor drivers, Pololu VNH3SP30 Dual DC motor driver is chosen. Some

of the features of VNH3SP30 DC motor driver are 10 kHz of maximum PWM

frequency and operating supply voltage up to 36 V. The detailed specifications of the

driver are given in (VNH3SP30 Datasheet). This driver can drive motors up to

current of 20 A and since the motors used in the project draw up to 5 A current each,

this driver will be enough for the purpose.

 Motor driver is connected to the microcontroller from its !"! (clockwise input),

!"! (counter clockwise input) and PWM (pulse width modulation input) pins and

motors’ positive and negative terminals are connected to the driver’s !"#! and

!"#! pins (shown in Figure 3.14). By using these pins with the Arduino

development environment it is possible to rotate the motor in a desired rotation,

specify its speed and make the motor break its speed.

In the Table 3.2 truth diagram of the motor driver is given (VNH3SP30

Datasheet). So, for instance, if a connected motor is going to be turned in clockwise

direction, a HIGH signal (+5 Volts) needs to be send to !"! pin and a LOW signal (0

Volts) to the !"! pin. These two pins are used to define the rotation direction of the

motors. An additional PWM pin on the motor driver is used to give the motor its

speed. !"! and !"! pins shown in Figure 3.4 are statuses of high-side and low-side

26

switches and they need to be externally pulled high for functions to actualize. In case

of fault detection these two pins are pulled low by the device.

Table 3.2 Truth table of the motor driver.

(VNH3SP30 Datasheet)

!"! !"! !"! !"! !"#! !"#! Comment

1 1 1 1 HIGH HIGH Break to !!!

1 0 1 1 HIGH LOW Clockwise

0 1 1 1 LOW HIGH Counter Clockwise

0 0 1 1 LOW LOW Break to GND

 The working principle of a DC motor drive can be understood from the given

schematic in Figure 3.7. H-bridge schematic and its connections with the

microcontroller are given below.

Figure 3.7 H-Bridge circuit of the dc motor driver.

(VNH3SP30 Datasheet)

27

According to the Table 3.2, if the DC motor is going to rotate clockwise, !"! pin

is set HIGH and !"! pin is set LOW. In this case !!! voltage (12 Volts motor

supplying voltage) connects to the ground over !"! and !"! transistors. Conversely,

if the motor is going to rotate counter clockwise, !"! pin is set as LOW and !"! pin

is set as HIGH. This pin configuration makes the supplying voltage go over !"! and

!"! transistors to the ground and gives the motor a reverse motion.

3.2.4 IMU Analog Combo Board

The Combo IMU board that has been used in the system has two sensors on it.

One of them is the accelerometer and the other one is gyroscope. Using the

measurements of these two sensors, a filtered and clean signal is acquired which

gives inclination of the robot relative to the ground plane. The basic reason of

combining the measurements of accelerometer and gyroscope is that both units have

flaws if they are used separately. In Figure 3.8 IMU combo board is shown.

Figure 3.8 Top and bottom layer view of combo board

with IDG500 Gyroscope and ADXL335

Accelerometer. (Sparkfun IMU Board Webpage)

Accelerometers are very sensitive to noises like motor vibration. Since two DC

motors are used in the system and IMU board is placed very close to them, the

vibration noise caused by the motors is a big problem while reading realistic results

from the sensor.

28

Gyroscope sensor doesn’t easily get affected from the vibration noise like

accelerometer does but it has drifting problem due to the integration while

calculating the angular velocity. That means, the readings from the gyroscope will

linearly drift over time with the ratio stated in its datasheet.

Fortunately it is possible to combine these two sensors, eliminate the flaws and

acquire accurate information from them using sensor fusion methods (such as

Kalman filtering, Bayesian and Dempster-Shafer inference methods) (Elmenreich,

2002). Before getting into sensor fusion, these individual sensors will be explained in

detail in the following sections.

3.2.4.1 Accelerometer

 General specifications of the ADXL335 accelerometer are shown in Table 3.3

(ADXL335 Datasheet). When using this sensor, data from ACC_X and ACC_Z pins

are used in order to calculate the angle (!!) between gravitation force vector and Z

coordinate which indicates leaning of the robot through the forward / backward

direction.

Table 3.3 Specifications of ADXL335 accelerometer.

(ADXL335 Datasheet)

Measurement Rate ±3.6 g

Sensitivity at !!"# ,!!"# ,!!"# 300 !"!

Zero g Voltage at !!"# ,!!"# ,!!"# 1.5 V

Supply Current 350 !"

Reference voltage !!"# 3.3 V

To understand the working principles of this unit an imaginary cube shaped box

with a ball inside will be imagined. It is assumed that the box is in a no gravitation

area that can not affect the position of the ball. So the ball will float in the center of

29

the box if no forces are applied which means the readings of the accelerometer in this

case will be zero g for each axis (Starlino IMU Guide Webpage).

Each wall of the accelerometer box represents an axis. It is assumed these walls

are pressure sensitive. If the box is placed on earth, due to the gravitation force, the

ball hits the ground wall as shown in Figure 3.9. In this case the readings of the

accelerometer for the Z axis shows -1g and 0g for X and Y axes.

Figure 3.9 Gravitation force effect on the ball.

Previously a single axis accelerometer output is analyzed but in case triaxial

accelerometer is used it is possible to detect inertial forces on three walls at the same

time. Assume that the box is placed on earth again but this time with an angle of 45

degrees relative to the ground surface. In this case the ball will touch 2 walls as in

Figure 3.10.

30

Figure 3.10 Gravitation force effecting on two axes.

The readings of the accelerometer will be -0.71g for X and Z axes and 0g for Y

axis. The magnitude on the walls reduces because the pressure the ball puts on the

walls are shared on two walls.

It is possible to use vectorial representation of the imaginary box model as shown

in Figure 3.11.

Figure 3.11 R vector representing inertial forces

affecting on the cube model.

31

The shown vector R is the measured acceleration force and !! ,!! ,!! are

projections of the R vector on X, Y, Z planes. By using 3D Pythagorean theorem, the

following equation can be easily obtained;

!! = !!! + !!! + !!! (3.1)

 These three vectorial values are actually the readings of the accelerometer.

Accelerometers calculate inertial forces on each axis and return them as analog

values to be used in microcontroller unit. Since the used IMU board is analog, the

output of the accelerometer will be in Volts and they need to be converted into digital

values in order to be used in the system. For this purpose ADCs (analog digital

converter) are used. On Arduino UNO there are ADCs with 10-bit resolution. That

means the converted values will be between 0 and 1023.

To be able to make all these calculations in one step (especially for easy

calculation in programming) we may use the following formula (Starlino IMU Guide

Webpage);

!!,!,! =
!"#!!,!,! !!!!"#
!"#!"#$%&'($)

!!!!"#$%!"#$%
!"#$%&%'%&(! !!! (3.2)

 By calculating !! ,!! ,!! inertial force vectors, if there are no other forces other

than the gravitation, it can be assumed that the obtained vector is the gravitational

force vector, which can be used to acquire the inclination angle of the robot.

32

Figure 3.12 Angles between R vector and axes gives the

leaning of the robot.

 Figure 3.12 shows angles between gravity vector and axes. These angles are the

leaning angles of the robot and they can be calculated using the following formulas

(Starlino IMU Guide Webpage);

!!" = !"#!! !!! (3.3)

!!" = !"#!! !!! (3.4)

!!" = !"#!! !!! (3.5)

In this project, accelerometer’s X axis is the driving direction and Z axis is the

upward direction of the robot. Although the accelerometer can calculate gravitation

force for three axes, Y axis readings are not evaluated in programming stage since it

gives information on the leaning of the robot to the left or right while the robot is

balanced by rotating itself around Y axis using information on the leaning of the

robot about X and Z axes. Hence, the inclination angle of the robot can be calculated

from !!" = !"#!! !!!!.

33

3.2.4.2 Gyroscope

 Gyroscope working principles can be easily introduced using a similar model that

has been used for accelerometer. In Figure 3.13 this similar representation is shown

and gyroscope’s specifications are shown in Table 3.4 (IDG500 Datasheet).

Table 3.4 Specifications of IDG500 gyroscope.

(IDG500 Datasheet)

Full-scale Range ±500!!"#/!

Sensitivity 2.0! !"
!"# !

Zero-G voltage !!"#$%!"#$% 1.35!!"#$%

Reference voltage !!"# 3.3 V

Power Supply !!! 3∓ 0.3!!"#$%

Figure 3.13 Representative model for gyroscope.

Gyroscope measures the rotation rates around the axes. For instance in Figure

3.13 rate of changes of !!" and !!" angles are returned (rate of !!" angle is not

returned since the gyroscope used in the IMU is dual-axis) from the sensor in analog

format which then needs to be converted to digital format by ADC. Same as

accelerometer sensor, in order to get gyroscope’s measurements in !"#! units, the

34

following ADC convertion formula needs to be used to the readings of the sensor

(Starlino IMU Guide Webpage).

!"#$!!" =
!"#!"#$!"!!"#
!"#!"#$%&'($)

!!!!"#$%!"#$%
!"#$%&%'%&(! !"#! (3.6)

3.3 Electrical Connections

 All the parts that have been used in this project send or receive data from each

other. For instance, motor driver receive information data about speed and direction

from Arduino UNO for each DC motor and it sends output data to DC motors

according to the received information. Also Acc-Gyro board sends the calculated

readings to Arduino board. Since Arduino is the board carrying microcontroller unit,

it receives inputs from the sensors, evaluates them and sends an output as a result. It

is possible to call it the brain of the balancing robot.

 In order to make connections between the parts, the following wirings are used.

Boards shown in Figure 3.14 are as follows;

• Arduino UNO

• DC Motor Driver

• Acc-Gyro Board

35

Figure 3.14 Connections between parts of the balancing robot.

The software used to draw wirings is called Fritzing (Fritzing Webpage). It is an

open-source application, which can also be used for obtaining schematic and PCB

drawings of the components.

3.4 Implementation of Control Algorithms

3.4.1 Sensor Fusion

Sensor Fusion is a way to integrate two or more separate sensor data to obtain a

more accurate and realistic data (Elmenreich, 2002). In this thesis two sensors are

36

used. These are accelerometer and gyroscope sensors, which are located together on

the Combo IMU Board. These sensors’ data are used to obtain the inclination angle

of the robot. Since inclination is the only source that is used to balance this robot, it

is necessary to be sure of its accuracy. The main problem of accelerometers is that

they are easily effected from vibration. In this system accelerometer is placed near

the center of axis of rotation where two dc motors are also mounted. That is why the

sensing data acquired from the accelerometer will include a lot of noise. In order to

reduce this noise, gyroscope data is integrated with the accelerometer data using

Kalman filtering method (Åström, 2002). Unlike accelerometer, gyroscopes are

reliable in sense of vibration. They don’t get effected from the vibration but their

problem is that they drift from their initial reference in time. To overcome these

sensor problems, measurements of the accelerometer and gyroscope are used

together using Kalman filtering method described in the following section.

3.4.1.1. Kalman Filter

 Kalman filter is a way to estimate past, present and future states of a system with

a set of equations using least squares method. In order to use this filter on a system,

first, it should be able to linearized and written in state space form.

 A linear system can be mathematically expressed with a state equation (3.7) and a

measurement equation (3.8).

!! = !!!!! + !!!!! + !!!! (3.7)

!! = !!! + !! (3.8)

In these two equations ! is used as the index to determine the instant of sampling

time, !(state!matrix),!(!"#$%"&!!"#$%)!!"#!!(!"#$%&"!"'(!!"#"$) are

matrices, ! is a known input and !! is the vector that represents present state of the

system. !! and !! are process and measurement noises, respectively. Sensor

measurements that include !! measurement noise is represented with !!.

37

 In order to use Kalman filter in a system these two requirements should be met:

1. The noises should be white with normal probability.

2. Noises should be independent from each other. So there should be no

correlation between them.

Defining !!! as priori state estimate at time k and !! as posteriori state estimate at

time k, estimate errors can be written as

!!! = !! − !!! (3.9)

!! = !! − !! (3.10)

 which make the priori and posteriori estimate error coveariances as

!!! = ! !!!!!!! (3.11)

!! = ! !!!!! (3.12)

Kalman Filtering equations can be separated into two parts. One part is time

update equations and the other one is measurement update equations. These

equations are recursive and they complete each other. Kalman recursive behaviour

between these groups is shown in Figure 3.15.

Figure 3.15 Kalman Filtering recursive

behaviour.

 Time update equations take initial estimation inputs (posteriori state estimation

!!!! and error covariance !!!!) and make a prediction for the next step in time as

follows:

38

!!! = !!!!! + !!! (3.13)

!!! = !!!!!!! + ! (3.14)

Using equation (3.13) and (3.14), priori state estimation and priori error

covariance are obtained, where Q is defined as process noise covariance.

 After time update equations are applied to the initial estimation inputs and

predictions are made for the next step, these predictions are corrected using

measurement update equations.

To find the posteriori (corrected) state estimate !!. The following equation is

used:

!! = !!! + !!(!! − !!!!) (3.15)

where !! is known as blending factor and the difference (!! − !!!!) is called

measurement innovation. The blending factor is given as

!! = !!!!!
!!!!!!!!

 (3.16)

where R is the measurement noise covariance matrix.

Blending factor determines the trust degree of the Kalman filter. If the R

measurement noise value approaches zero, blending factor !! weights the

measurement innovation heavily, which also means that the sensor measurements are

trusted more and more as blending factor approaches zero. On the other hand if R

measurement noise gets bigger, sensor measurements are trusted less.

As a last step of measurement update stage, !! error covariance is corrected using

equation (3.17).

!! = (1− !!!)!!! (3.17)

39

The whole recursive system with already given equations is shown clearly in

Figure 3.16.

Figure 3.16 Kalman Filtering equations shown in two groups.

Since Kalman filtering is recursive, corrected estimations become new previous

values to be used for calculating future estimations.

 In order to show the effects of Kalman filtering, a test platform is set and raw data

of the accelerometer and output of the Kalman filtering process are shown together in

Figure 3.17.

Figure 3.17 Accelerometer raw data and Kalman filtering implementation on the data

40

As it can be easily seen from the Figure, raw accelerometer data noise is

significantly reduced with Kalman filter implementation. The output data have

neither vibration nor drifting problems. Without filtering process it would be very

hard to balance the robot using the raw data but after the filtering, a smooth data is

acquired which can be used for balancing.

Since matrix calculation in microcontrollers consume a lot of processing time,

Kalman filter’s matrix equations are implemented in algebraic form in programming

(Yong & Kwong, 2011; Baik, 2008) . In Figure 3.18, implementation of Kalman

filter in software is given as a flowchart.

41

Figure 3.18 Kalman Filter flowchart.

42

3.4.2 PID Control

The Proportional Integral Derivative (PID) controller is the most common and

widely used generic feedback mechanism. After the emerge of process control in

1940s, PID controllers are started to be used as standart tools in control and they are

still the most widely used controllers in the industry (Åström, 2002).

The main working principle of a PID controller is simple; it calculates the error

between the desired setpoint and the measured process output and tries to minimize

this error by changing P, I and D process control parameters. In this balancing robot

thesis, the desired setpoint is set as the upright position of the robot. So PID

controller will try to return the robot to the upright position if it somehow with any

effects leans in any direction

Control error ! is given in equation (3.18) as the difference between reference

setpoint (upright position) and measured process variable (measured leaning of the

robot).

!(!) = !!"(!) − !(!) (3.18)

PID controller algorithm is embedded in the Arduino microcontroller. The

processing unit of the Arduino is able to calculate the error approximately ten times

in a second and sends PWM signal to motor drivers to adjust the robot to balance

itself.

PID algorithm is given in equation (3.19) and (3.20) (Åström, 2002).

!(!) = ! !(!) + !
!!

!(!)!"!
! + !!

!!(!)
!" (3.19)

!(!) = !!(!)
!!!"#$

+ !
!!

!(!)!"!
!
!!!"#$

+ !!!
!!(!)
!"

!!!"#$

 (3.20)

43

where y is the measured process variable, e is the control error and u is the control

signal. Controller parameters are given as K proportional gain, !! integral time

constant and !! derivative time constant.

Control signal u has three separate constant parameters; P, I and D. These

parameters can be interpreted as past, present and future; P term is proportional to the

present error, I term is proportional to the accumulation of past errors and D term is

the prediction of future errors. Control signal is calculated by the sum of these P, I, D

parameters which can be seen in Figure 3.19, which is constructed in MATLAB

Simulink.

Figure 3.19 PID Controller

3.4.2.1 Effects of PID Controller Parameters

Although PID control is pretty straightforward, since P, I and D terms are

depended on each other, effects of each parameter on other parameters should be put

into consideration. Each term and their effects on the system will be investigated for

a better understanding of PID control (Åström, 2002).

 For the examination of the terms, the following process transfer function is taken

as an example and the setpoint is set as 1.

!(!) = !
(!!!)! (3.21)

44

To understand proportional term’s behavior on the given process,!!! = ∞ and

!! = 0 assumptions are made and K parameter’s value is changed. The simulation

results for each K parameter are shown in Figure 3.20.

Figure 3.20 Proportional control of the process with various K values.

As it can be easily observed from the simulation results, when K gain is increased,

!(!) measured control variable is getting closer to the setpoint value which means ! !

control error is getting smaller but at the same time oscillation increases when K gain

is increased. It is also important to see that when just proportional term is used

during control, there will always be a steady state error. If elimination of steady state

error is desired, integral term has to be used.

 Integral term’s effects on the process given in equation 3.21 are shown in Figure

3.21.

Figure 3.21 Proportional - Integral (PI) Control simulation results with various !!
parameters. (Controller gain K = 1)

The effect of integral term increases when integral time !! decreases. It is also

clear from the simulation results that when integral term is used steady state error

disappears. Oscillation tendency and settling time are also increased when integral

term is used together with the proportional controller.

45

 Effects of derivative term can be seen in Figure 3.22.

Figure 3.22 Proportional - Integral - Derivative (PID) Control simulation results with various !!

parameters. (An oscillatory system with controller gain K = 3 and integral time !! = 2 is chosen)

 Derivative term has a damping effect on the system. As !! derivative time

increases, it’s effect increases and it reduces the overshoot caused by proportional

and integral terms and it also reduces the settling time of the system. But as the

derivative time gets too large, damping effect starts to decrease.

 Close relations between PID control parameters can make the tuning process quite

hard, especially in complex and nonlinear systems like a balancing robot system. To

find control parameters of the PID controller, Ziegler - Nichols frequency response

method is experienced using Table 3.5 (Åström, 2002) but since this is not an

optimal method for all systems, it is not used in the balancing robot system. Instead

of using this method, Simulink Design Optimization Toolbox is used. In the next

section this method will be explained in detail.

Table 3.5 Ziegler - Nichols frequency response method controller

parameters (Åström, 2002)

Controller K !! !!

P 0.5!! - -

PI 0.4!! 0.8!! -

PID 0.6!! 0.5!! 0.125!!

46

After calculating the PID control parameters using design optimization toolbox,

these parameters are used to calculate control output in microcontroller as shown in

the flowchart in Figure 3.23.

Figure 3.23 PID control algorithm flowchart.

 47

CHAPTER FOUR

COMPARISON OF SIMULATION AND EXPERIMENTAL RESULTS

 Simulation is imitating real world processes using softwares, which are

specialized for this purpose. Making a simulation of a process is a necessary stage,

especially for the projects that have complex and unpredictable behaviors.

Simulations make it possible to virtualize how the process is going to behave in time

and the effects of changing system parameters on the system can be easily observed.

The approximation of the simulations to the real world processes are proportional to

the details integrated into the simulations which means the more real world

conditions are integrated, the more realistic simulations are acquired.

 In this thesis, Matlab numerical computer environment is used. The whole

nonlinear equations of the balancing robot system are constructed using Simulink.

The main reason for using Simulink was that it provides model based design using

elementary blocks for dynamic systems and makes observation of the whole system

much easier when compared to code based simulations.

 While constructing the model of the balancing robot, both non-linear equations

given in (2.45) and (2.46) and linearized equations given in (2.53) and (2.54) were

used. Linearized equations, as explained in Section 2.4, are useful when the angle of

the pendulum is very close to the linearization point. But, if the pendulum angle gets

bigger, linearized equations start to give results with error. This error increases

exponentially when the pendulum angle gets bigger. This situation is shown in

Figure 4.1, which gives the response of the pendulum angle after an impulse input.

As can be seen clearly, when the pendulum angle is calculated using linearized

equations, after pendulum starts to get away from the upright position, calculated

angle value changes rapidly and goes to infinity.

48

Figure 4.1 Open-loop response of linear and nonlinear models to !! = 1! impulse input.

In this thesis, non-linear equations are used to observe the behavior of the system,

because there is always an error when linearized equations are used (even for small

angles) and when linear models are used it is not possible to see the whole behavior

of the system.

4.1 System Modeling and Parameters

Figure 4.2 Open-loop model of the balancing robot.

First, an open-loop model shown in Figure 4.2 is constructed using Simulink.

Balancing robot block consist of nonlinear equations that are given in equations

(2.45) and (2.46). It has one input and four states which are also system outputs. So it

is a SIMO (single input and multiple output) system. Its input is dc motor armature

terminal voltage (!!) and outputs are pendulum angle !! , pendulum angular

velocity !! , distance (!) and velocity (!). The equations implemented inside the

balancing robot system are shown in Figure 4.3. Since upright position of the

balancing robot equals to ! radians according to the nonlinear equations, to increase

the readability of the angle graph, an offset block with a value of ! is used in the

49

model, which subtracts that value from the angle. So the zero value that is seen on

the scope corresponds to the robot’s upright position.

Figure 4.3 Balancing robot system block, which consist of nonlinear system.

In order to simulate the system and see how it behaves, first, it’s system

parameters should be measured and entered into the simulation. System parameters

of the balancing robot which are also given in the non-linear system equations (2.45)

and (2.46), are listed in Table 4.1.

Table 4.1 System Parameters

Parameters Description Value

! DC motor armature resistance 3.8 !ℎ!

! Radius of the wheel 0.045 !

!! Mass of the wheel (including hub) 0.034 !"

!! Mass of the pendulum 1.086 !"

!! Electrical constant of the motor 0.1344962 !"!"#

50

Table 4.1 Continues

!! Torque constant of the motor 0.1344962 !"!

!! Inertia of the pendulum 0.02042542 !"!!

!! Inertia of the wheel 0.00003061 !"!!

!
Lenght between the rotational axis of

the motors and the COG of the

pendulum.

0.083 !

! Gravity force 9.81 !!!

Parameters given in Table 4.1 are obtained using different methods;

DC motor armature resistance ! is measured with a multimeter. The armature

inductance, and as a result electrical transients are neglected in the model. Radius of

the wheel ! and mass of the wheel (!!) are taken from the manufacturer’s web

site (Pololu Wheels Webpage). Mass of the pendulum !! is calculated in

Solidworks after drawing parts in the program and assigning materials to them

matching their mass. All of the parts forming the pendulum are then selected and

sum of their mass is calculated. Back emf constant (!!) and torque constant (!!) of

DC motor are measured experimentally. In order to acquire back emf constant

Equation (2.2) is used.

DC motor’s shaft is fixed to another motor and its shaft is turned with a constant

speed of 142 RPM. During this rotation, terminal voltage is measured with a

multimeter as 2 Volts. Since there is no armature current, the terminal voltage (!!) is

equal to back emf (!!). The calculation of !! and !! with conversion ratio of

gearbox included, is obtained as;

!! = !!
!!
= !

!"#!!!"
= 0.1344962! !"!"# (4.1)

51

Inertia of the pendulum (!!), inertia of the wheel (!!), length between COG of

the pendulum and the rotation axis ! and mass are calculated automatically in

Solidworks’ mass properties tool. In Figure 4.4, calculation results for !, !! and mass

of the pendulum (!!) are shown.

Figure 4.4 Calculating the parameters in Solidworks.

In Solidworks, in order to calculate properties of parts, first, they are selected

together. Selected parts are shown in blue color. Parts that construct pendulum of the

balancing robot are selected and then mass properties tool is opened for Solidworks

to calculate properties of the selected parts. To be used in inertia or COG

calculations, a reference coordinate system is needed for this tool to function

properly. Colored coordinate system shown in Figure 4.4 is selected in Solidworks to

be used in calculations.

In the properties window shown in Figure 4.4, calculated total weight of the

pendulum is given in kilograms at the top of the properties window. ! is given under

center of mass category as Y coordinate and !! is shown under Moments of Inertia:

Taken at the output coordinate system category shown as !!!. In order to find the

inertia of the wheel (!!) and mass of the wheel (!!), wheel and hub is selected and

mass properties window is opened for these parameters to be calculated by

Solidworks.

!!

COG

!!

52

After all the parameters are found, these parameters are entered in the Balancing

Robot Block shown in Figure 4.3.

When the open-loop system simulation is run for 7 seconds, the variations of

outputs (!!,!!, !!!"#!!) with respect to time are shown in Figure 4.5. In this

simulation no motor force is used (zero volts is given as input) but a very small

initial pendulum angle of 0.01 rad (0.573!!"#$""%) leaning is given from within the

balancing robot subblock. When the angle graph is examined, it is obvious that the

leaning angle !! does not approch to zero (upright position), instead, it oscillates and

dampens about 3.14 (!). This means, since there is no feedback, it does not balance

and due to the gravity force effecting on the robot it falls down and stops at

downright position. In this model, it is considered that the pendulum can freely rotate

360° about the rotational axis of the wheels.

Figure 4.5 Open-loop behavior of the balancing robot.

53

 As stated earlier, unlike linear equations, non-linear equations give correct system

status even the pendulum angle is far from the upright position.

4.2 Modeling of Closed-loop Control System

Open-loop controller does not use any feedback in order to correct the control

error. It is just a representation of the balancing robot calculated by using the current

state of the system. However, since the aim of the balancing robot is to bring the

robot to upward position, thus make the control error equals to zero, a PID controller

is used in this thesis. Balancing robot system with a PID controller is constructed

using Simulink as shown in Figure 4.6. Since the DC motors are controlled by pulse

width modulated signals in the real system, the actual terminal voltage applied to the

motors is not a pure dc waveform. So, PWM pulse generator block is also included in

the model shown in Figure 4.6.

Figure 4.6 PID controlled balancing robot process.

As explained earlier in Section 3.4.2, PID controller tries to eliminate the control

error using !, !,! controller parameters. This control error is calculated by taking the

difference between the reference setpoint and the angle feedback. Setpoint block,

which is set to 512, indicates upward position of the robot in terms of converted

number scale of ADC, which is between 0 and 1024. In order to covert the radian to

ADC number scale, pendulum angle feedback is multiplied by a gain block

(2!! !"# = 1024). The voltage to be send to the motor driver is calculated using

54

PID algorithm in the microcontroller and then it is send to the motor driver using

PWM (Pulse Width Modulation).

In order to simulate PWM pulses, PWM Pulse Creator block is placed after the

controller. This block gets the analog voltage output as an input and transforms this

value to digital 0, +12 or -12 Volts with a frequency of 3921.56 Hz. The inner

structure of the PWM Pulse Generator block is shown in Figure 4.7.

Figure 4.7 Inside of the PWM Pulse Generator Block.

In order to control the system with a PID controller, first, parameters of the

controller should be obtained. Design Optimization Tool of Matlab is used to obtain

them. !! ,!! and !! parameters are estimated with numerical optimization by

numerous simulations using the Simulink model. In order to use this tool, several

conditions need to be entered into the system. So, optimization tool tries to find a

feasible solution, which satisfies given conditions.

For this system rise time is required to be less than 0.5 s, overshoot is to be at

most 0.03 rad, settling time is to be at most 3 s and Steady-State error is to be 0.01

rad. These conditions are entered into Design Optimization Tool as shown in Figure

4.8.

55

Figure 4.8 Tuning of PID parameters using design optimization tool.

When optimization is run for a 30 second long simulation using Pattern Search

optimization method, after several unsuccessful attempts, Matlab found a feasible

solution (shown with black signal in Figure 4.8) as

!! = 34.0240,!! = 6.9340!!"#!!! = 1.2302. Optimization result screen is shown

in Figure 4.9.

Figure 4.9 Design Optimization Result Screen.

56

4.3 Real System Implementation and Control

Arduino microcontroller’s default PWM frequency is about 490 Hz (Arduino

PWM Frequency Webpage) but it is increased to 3921.56 Hz using timers of the

microcontroller. The details of the calculation of the PWM frequency is given in

Appendix. Balancing robot moves according to the given motor force and tries to

balance itself. It’s angle is fed as feedback to be used to calculate the new error and

this cycle goes on over and over again in an infinite loop to balance the robot. The

flowchart of this infinite loop of the whole balancing robot system is given in 4.10.

57

Figure 4.10 Flowchart of the complete

balancing robot system.

58

 When the simulation is run for 10 seconds with the found PID parameters, the

following scope results were obtained as shown in Figure 4.11.

Figure 4.11 PID controlled balancing robot behavior.

 As it can be seen from the figure 4.11, an initial angle of 0.1 rad is given to test

the balancing ability of the robot and with the PID parameters, which are found using

Design Optimization Tool, balancing is successfully accomplished.

After finding a desired solution for the balancing problem with the help of the

simulations, the PID parameters obtained from simulations have been tested on the

59

real robot. In the Figure 4.12, the pendulum angle variation is given. In this figure

both filtered and unfiltered data are also shown to show the effects of Kalman filter.

Since kalman filtered data shown in Figure 4.12 is not easy to read because of the

scale, a zoomed view of this data is given in Figure 4.13.

Figure 4.12 PID controlled balancing robot’s angle variation in time (experimental results).

Figure 4.13 Zoomed view of Figure 4.12 (just Kalman filtered angle is shown).

 As it can be seen in Figure 4.12, accelerometer data is effected from environment

a lot. Kalman filtering is used to acquire realistic data using accelerometer and

gyroscope sensor readings together. As a result, Kalman filtered angle data, which

shows the leaning of the robot, oscillates around upright position with a small angle

error. In Figure 4.13, it can be seen that this error is around ∓0.5 degree.

 While simulating the system, balancing robot system block angle output always

gives noiseless signal. In order to simulate measurement noise of the accelerometer,

a Noise Generator block with an average noise variance of 0.1 rad is added to the

60

angle feedback in Simulink to test if the system would stay stable if Kalman filtering

is not applied. In Figure 4.14, a noise signal with a variance of 0.1 rad is shown.

Figure 4.14 Signal noise added to the angle feedback in order to simulate effect of noisy feedback

signal on system stability.

When the simulation is run, the robot could not balance itself and fall off to

downright position just like an openloop system as shown in Figure 4.15. As a result,

it is proved that without implementing Kalman filter, it is difficult to balance the

system with noisy angle feedback.

Figure 4.15 System response without applying Kalman filter on the noisy feedback signal.

 To see the effects of filtering on the system, Kalman filter block is added to the

constructed simulation model as shown in Figure 4.16.

61

Figure 4.16 Block diagram of the PID controlled balancing robot with Kalman filter implementation.

As stated previously in Section 3.4.1, Kalman filter process angle and angular

velocity signals together to eliminate the noise and obtain a clear signal as an output

(Ooi, 2003). Since angle signal is measured by accelerometer and it is known that it

is effected from vibrations, a noise generator with a bound of ±0.1 rad and sampling

rate of 0.01 s is added to the angle feedback in order to simulate the noise caused by

the vibrations.

When the simulation is run for 10 seconds, system response of the closed-loop

system is given in Figure 4.17.

62

Figure 4.17 Simulation results of the PID controlled balancing robot behavior (with Kalman filter)

As it can be seen from the Figure 4.16, the robot successfully balances itself with

a ripple of about 0.01 rad. Kalman filter’s ability to eliminate noise can be seen in

Figure 4.18.

Figure 4.18 Simulation result of Kalman filter output with noisy angle feedback.

63

When the simulation and experimental results are compared, it is seen that

experimental results agree with the simulation results with the PID parameters

determined from simulation models. Angle error of the robot is constrained to the

predetermined limits. The stability of the robot is maintained in the real system and

the experimental results approve this condition.

 64

CHAPTER FIVE

CONCLUSIONS

In this thesis, the objectives of this study are accomplished successfully. A two

wheeled self balancing robot prototype is designed and its control for balancing

around the upright position is accomplished.

For the design of the robot, each part forming the balancing robot is designed in

3D using Solidworks software. Materials are assigned to these parts and inertia,

mass, COG properties of the pendulum and the wheels are calculated using this

software.

In order to perform balancing of the two wheeled robot, pendulum angle which is

obtained from the Acc-Gyro IMU board is used as a feedback signal. This feedback

signal is acquired using Accelerometer and Gyroscope sensors. Accelerometer

signal, which contains noise and Gyroscope signal, which drifts over time are

combined using Kalman filter to obtain a noiseless angle signal. Then, this angle

feedback is used for calculating angle error and hence applying PID control. PID

parameters, which are related to each other, are obtained with simulations that are

constructed in Simulink. Design Optimization Tool, a numerical optimization tool

build in Simulink, is used to find a feasible solution for PID parameters. After these

parameters are found, they are experimented in manufactured balancing robot and it

has seen that found PID parameters balances the robot as desired. To check it’s

integrity precisely, experimental results are logged and they are compared with the

simulation results. It has been observed that the ripple range in the measured

inclination angle agrees with the simulations.

Although balancing of the robot is successfully achieved, there are several points,

which can be improved for better balancing as a further study.

1. Backlash of the DC motors’ gearbox is one of the reasons of the ripples.

Since balancing progress requires instant rotation changes of DC motor to

65

balance itself at the upright position, effects of the backlash are visible. A

gear mechanism without backlash, like a harmonic drive mechanism, can

improve the balancing performance.

2. PID controller, which is commonly used for controlling linear systems, is

used for controlling the nonlinear system. Although it has successfully

balanced the robot, using other control schemes are possible, for a better

balancing.

3. During mathematical modeling of the system, it’s assumed that a single DC

motor is driving a single shaft. So, only forward and backward balancing

movements are considered for this balancing system. For future research, a

new mathematical model can be constructed including left and right wheels

of the robot individually. Their effects of rotation on balancing can be

investigated and experimented.

4. In this balancing robot pendulum angle is used as a feedback and position of

the robot in the horizontal direction is not controlled. For position control,

encoders located at the back of the DC motors can be used and robot’s

position can also be stabilized just like pendulum angle as suggested in the

literature.

5. The main goal of this balancing robot was to balance itself where it is left off.

In addition, a control scheme can be added to the system to control the

motion of the robot in horizontal direction (route tracking).

66

REFERENCES

ADXL335 Datasheet. (n.d.). Retrieved April, 2010, from

http://www.sparkfun.com/datasheets/Components/SMD/adxl335.pdf.

Anderson, D. P. (2010). nBot, a two wheel balancing robot. Retrieved March, 2010,

from http://www.geology.smu.edu/~dpa-www/robo/nbot/.

Arduino Uno Webpage. (n.d.). Retrieved April, 2010, from

http://arduino.cc/en/Main/ArduinoBoardUno.

Arduino PWM Frequency Webpage. (n.d.). Retrieved August, 2011, from

http://arduino.cc/en/Reference/analogWrite.

Åström, K. J. (2002). Feedback systems: An introduction for scientists and

engineers. Retrieved April, 2012, from http://www.cds.caltech.edu/

~murray/amwiki/index.php/Main_Page.

ATmega328 Microcontroller Datasheet. (n.d.). Retrieved April, 2010, from

http://www.atmel.com/Images/doc8161.pdf.

Baik, K. (2008). BoRam: Balancing robot using arduino and lego. Retrieved

February, 2012, from http://boram.wdfiles.com/local--

files/start/PROJECT_REPORT_BORAM2-final.pdf.

Elmenreich, W. (2002). Sensor fusion in time-triggered systems. Retrieved March,

2012, from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.69.9299.

Faulhaber DC Motor Datasheet. (n.d.). Retrieved February, 2010, from

http://www.faulhaber.com/uploadpk/EN_2342_CR_DFF.pdf.

Fritzing Webpage. (n.d.). Retrieved February, 2011, from http://www.fritzing.org.

67

Grasser, F., D’Arrigo, A., Colombi, S., & Rufer, A. C. (2002). Joe: A mobile,

inverted pendulum. IEEE Transactions on Industrial Electronics, 49 (1), 107-114.

IDG500 Datasheet. (n.d.). Retrieved April, 2010, from

http://www.sparkfun.com/datasheets/Components/SMD/Datasheet_IDG500.pdf.

Jeong, S. & Takahashi, T. (2008). Wheeled inverted pendulum type assistant robot:

Design concept and mobile robot. Intel Serv Robotics, 1, 313-320. Retrieved

May, 2012, from SpringerLink database.

Kadir, H. B. (2005). Modeling and control of a balancing robot using digital state

space approch. Retrieved May, 2011, from http://eprints.utm.my/2721/.

Kalra, S., Dipesh, P. & Stol, K. (2007). Design and hybrid control of a two wheeled

robotic platform. Retrieved July 2010, from http://www.araa.asn.au/acra/

acra2007/papers/paper186final.pdf.

Lahdhiri, T., Carnal, C. L. & Alouani, A.T. (1994). Cart-pendulum balancing

problem using fuzzy logic control. Southeastcon '94 - Proceedings of the 1994

IEEE, 393-397.

Muškinja, N. & Tovornik, B. (2000). Controlling of real inverted pendulum by fuzzy

logic. Retrieved May, 2012, from http://www.apca.pt/~apca_docs/

CONTROLO2000/Papers/C2000_M02.pdf.

Ooi, R. C. (2003). Balancing a two-wheeled autonomous robot. Retrieved May,

2011, from http://robotics.ee.uwa.edu.au/theses/.

Pololu DC Motor Driver Webpage. (n.d.). Retrieved April, 2010, from

http://www.pololu.com/catalog/product/707.

68

Pololu DC Motor Webpage. (n.d.). Retrieved April, 2010, from

http://www.pololu.com/catalog/product/1443.

Pololu Wheels Webpage. (n.d.). Retrieved April, 2010, from

http://www.pololu.com/catalog/product/1435/specs.

Quintero, S. A. P. (2008). Controlling the inverted pendulum. Retrieved June, 2011,

from http://www.ece.ucsb.edu/~roy/student_projects/.

Segway Personal Transporter Webpage. (n.d.). Retrieved May, 2012, from

http://www.segway.com/individual/model.

Sparkfun IMU Board Webpage. (n.d.). Retrieved April, 2010, from

http://www.sparkfun.com/products/9268.

Starlino IMU Guide Webpage. (n.d.). Retrieved March, 2010, from

http://www.starlino.com/imu_guide.html.

Sun, L. & Gan, J. (2010). Researching of two-wheeled self-balancing robot base on

LQR Combined with PID. Intelligent systems and applications (ISA), 2010 2th

international workshop, 1-5.

VNH3SP30 Datasheet. (n.d.). Retrieved July, 2011, from

http://www.pololu.com/file/0J51/vnh3sp30.pdf.

Yong, C. & Kwong, C. F. (2011). Wireless controlled two wheel balancing robot.

International Journal of Network and Mobile Technologies, 2 (2), 88-109.

Retrieved May, 2012, from http://www.ijnmt.com/JournalPapers/Vol2No2/.

69

NOMENCLATURE

!! - DC motor torque (Nm)

!! - Applied torque to the shaft of the DC motor (Nm)

!! - DC motor torque constant (Nm/A)

!! - DC motor back-emf constant (Vs/rad)

!! - Friction constant (Nms/rad)

!! - DC motor armature current (A)

!! - DC motor back-emf voltage (V)

!! - Applied terminal voltage to DC motor (V)

!!- Rotation angle of the wheels (rad)

!! - Angular position of the pendulum (rad)

! - Very small angle which is used for linearization (rad)

! - DC motor shaft angular velocity (rad/s)

!! - DC motor shaft moment of inertia (kgm2)

!! - Moment of inertia of one wheel (kgm2)

!! - Moment of inertia of the pendulum (kgm2)

!! - Mass of one wheel (kg)

!! - Mass of the pendulum (kg)

! - DC motor armature resistance (Ohms)

! - DC motor armature inductance (H)

P = H - Reaction forces between one wheel and robot chassis (N)

!! - Friction force between the ground and the wheels of the robot (N)

! - Radius of the wheels (m)

! - Lenght between the rotational axis of the wheels and center of gravity (COG) of

the pendulum (m)

! - Acceleration of gravity (m/s2)

70

APPENDIX

Configuring Timers to Set PWM Frequency

Arduino use Atmel ATmega328 microcontroller and by using its timers, it is

possible to change Arduino’s default PWM frequency. In this thesis in order to speed

control two DC motors, two PWM pins are used which are connected to 10th and

11th pins of Arduino. 10th pin is connected to Timer1 and 11th pin is connected to

Timer2. So, it is necessary to configure both of these timers in order to send PWM

pulses to DC motors with the same frequency.

Each timer has it’s control registers which can be configured. Timer1’s control

registers are TCCR1A, TCCR1B and TCCR1C. Similarly, Timer2’s control registers

are TCCR2A, TCCR2B and TCCR2C. TCCR1C and TCCR2C control registers are

used only when a non-PWM mode is active. So, they won’t be configured in this

study. Also Timer1 and Timer2’s configurations are exactly same with each other,

hence just Timer1’s configurations will be shown.

TCCR1A control register is shown below. Bits are selected according to the needs

from the given tables in the ATmega328 datasheet (ATmega328 Microcontroller

Datasheet).

 TCCR1A register’s bit descriptions, selections and bit values according to the

selections are given in the table below.

Bit No Description Bit Name
Bit

Value
Selection

Bit 7:6
Compare Output Mode

for Channel A

COM1A1 0
Normal Port Operation

COM1A0 0

71

Bit 5:4
Compare Output Mode

for Channel B

COM1B1 0
Normal Port Operation

COM1B0 0

Bit 3:2 Reserved Bit
N/A 0 No selection is

possible. N/A 0

Bit 1:0
Waveform Generation

Mode

WGM11 0 PWM, Phase Correct,

8-bit mode WGM10 1

So, TCCR1A register configuration can be written in bit format as B00000001.

As a second control register: TCCR1B is shown below.

ATmega328 datasheet (http://www.atmel.com/Images/doc8161.pdf)

TCCR1B register’s bit descriptions, selections and bit values according to the

selections are given in the table below.

Bit No Description
Bit

Name

Bit

Value
Selection

Bit 7
Input Capture Noise

Canceler
ICNC1 0 Not activated

Bit 6
Input Capture Edge

Select
ICES1 0 Not activated

Bit 5 Reserved Bit N/A 0 No selection is possible.

Bit 4:3
Waveform Generation

Mode

WGM13 0 PWM, Phase Correct, 8-

bit mode WGM12 0

Bit 2:0 Clock Select

CS12 0 !"#!/!/8 (from

prescaler)
CS11 1

CS10 0

72

So, TCCR1B register configuration can be written in bit format as B00000010.

In order to calculate the PWM frequency of the configured microcontroller, the

following formula is used which is given in ATmega328 datasheet (ATmega328

Microcontroller Datasheet) for the Phase Correct PWM mode.

!!"#$%"%&' = !!"#_!/!
!. 510

where, N represents the prescaler factor (1, 8, 32, 64, 128, 256 or 1024) and

!!"#_!/! represents Arduino’s clock speed which is given in Table 3.1.

As a result, PWM frequency is found as;

!!"#$%"%&' = 16000000
8!. 510 = 3921.56!!"

