

DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

ON THE CONSTRUCTION OF STUDENT
GROUPS IN A PROBLEM BASED LEARNING

SYSTEM THROUGH FUZZY LOGIC
CONSIDERING VARIOUS OBJECTIVES

by

Ayşe Övgü KINAY

March, 2008

İZMİR

ON THE CONSTRUCTION OF STUDENT

GROUPS IN A PROBLEM BASED LEARNING
SYSTEM THROUGH FUZZY LOGIC

CONSIDERING VARIOUS OBJECTIVES

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Doctor of

Philosophy in Statistics Program

by

Ayşe Övgü KINAY

March, 2008

İZMİR

 ii

Ph.D. THESIS EXAMINATION RESULT FORM

 We have read the thesis entitled “ON THE CONSTRUCTION OF STUDENT

GROUPS IN A PROBLEM BASED LEARNING SYSTEM THROUGH

FUZZY LOGIC CONSIDERING VARIOUS OBJECTIVES” completed by

AYŞE ÖVGÜ KINAY under supervision of PROF. DR. EFENDİ NASİBOĞLU

and we certify that in our opinion it is fully adequate, in scope and in quality, as a

thesis for the degree of Doctor of Philosophy.

 Prof. Dr. Efendi NASİBOĞLU

 Supervisor

 Thesis Committee Member Thesis Committee Member

 Examining Committee Member Examining Committee Member

Prof. Dr. Cahit HELVACI
Director

Graduate School of Natural and Applied Sciences

 iii

ACKNOWLEDGEMENTS

Before all, I owe thanks to my very distinguished consultant Professor Dr.

Efendi NASİBOĞLU who never stopped extending me his support, time and

knowledge during the whole period my dissertation. I would like to thank my dear

head of department and instructor Professor Dr. Serdar KURT who facilitated all

hard bureaucratic procedures in my name within this period and who always believed

in my ability to complete this work. Otherwise, I would like to acknowledge my

dissertation committee member, Assoc. Prof. Dr. Kaan YARALIOĞLU for their

constructive comments and suggestions.

I thank my dear roommate and friend Burcu ÜÇER for all her support in the

completion process of this dissertation, dear Neslihan DEMİREL and Selma

GÜRLER for always encouraging me, dear Gözde ULUTAGAY for sharing her

knowledge and experience with me with her whole sincerity and all my close friends

who again always supported me in this process.

I would like to extend my whole-hearted appreciation to my invaluable husband

Rıza KINAY who has always been my greatest supporter with his patience and love

and given me unlimited strength. I would also like to thank to my beloved family

Canset & N. Ümit TEKİN, from whom I have learned a lot about life and who have

been with me whenever I am in need during my professional life and who have

always helped me in choosing the right way; my dear brother Dr. Eng. Evren

TEKİN, who shared his doctorate experiences, who never stopped helping me

whenever I was in need and who always encouraged me. Finally, I would like to

thank to my mother-in-law Fatma KINAY and Füsun & Nedim Atilla for their love,

care and generous support through the years and for their confidence in me.

Ayşe Övgü KINAY

 iv

ON THE CONSTRUCTION OF STUDENT GROUPS IN A PROBLEM
BASED LEARNING SYSTEM THROUGH FUZZY LOGIC

CONSIDERING VARIOUS OBJECTIVES

ABSTRACT

Fuzziness is a concept that was suggested in 1965 by Zadeh that has improved

rapidly until today and that has a number of successful applications in many fields.

The reason why it has such successful applications and it can be applied in many

fields is that it allows expression and analysis of the problems we encounter in daily

life more realistically and, thanks to this, it produces more realistic solutions to

problems. Therefore, the concept of fuzziness and the theories suggested and the

methods developed on this concept are gaining more and more importance day by

day.

The creation of suitable learning conditions for students is of great importance in

the method of problem based learning system which has been continuing in the

Department of Statistics at Dokuz Eylül University since 2001. The most important

of these conditions is the suitable composition of student groups for the purposes of

instruction. For instance, level-based student groups can be composed by dividing

students according to their success levels or balanced student groups can be

constituted by students of each success level taking place in each group in

approximate equal numbers. In addition, student groups can also be constituted by

choosing students completely randomly. However, it is quite important that student

evaluation grades, which are the fundamental elements used in the group constitution

strategies mentioned here, should also be determined suitably. Especially while

carrying out such performance evaluations, the opinion formed about the student is

both quite difficult to turn into numerical expressions and vary according to each

instructor. Thus, there exists the requirement of a system in which the student

performance evaluations will be carried out verbally in a more suitable way for

human structure of thinking and in which numerical results will later be obtained by

using this information.

 v

In this dissertation work, a student performance evaluation system and a student

group assignment system have been developed by searching for a solution for the

above-mentioned problems. Five distinct group assignment strategies have been

introduced within the group assignment system. Borland C++ Builder 6.0 Software

Development Kit (SDK) was used for the implementation of the mentioned methods

with a view to provide a solution.

Keywords: Fuzzy logic, Performance evaluation, Optimization, Assignment problem

 vi

AKTİF EĞİTİMDE FARKLI AMAÇLAR DOĞRULTUSUNDA ÖĞRENCİ
GRUPLARININ BULANIK MANTIK YARDIMIYLA OLUŞTURULMASI

ÖZ

Bulanıklık kavramı 1965 yıllında Zadeh tarafından önerilen, günümüze kadar

hızla gelişme gösteren ve birçok alanda çok miktarda başarılı uygulamaları olan bir

kavramdır. Bu kadar başarılı uygulamasının oluşu ve birçok alanda

uygulanabilmesinin sebebi ise günlük hayatta karşılaştığımız problemleri daha

gerçekçi ifade etmeyi sağlaması, analiz etmesi ve bu sayede sorunlara da daha

gerçekçi çözümler üretmesidir. Dolayısıyla bulanıklık kavramı ve bu kavram üzerine

önerilen teoriler, geliştirilen yöntemler günden güne daha da önem kazanmaktadır.

Dokuz Eylül Üniversitesi İstatistik Bölümü’nde 2001 yılından beri devam etmekte

olan probleme dayalı öğrenim sisteminde, öğrenciler için uygun öğrenme

koşullarının yaratılması çok büyük önem taşımaktadır. Bu koşullardan en önemlisi

öğrenci gruplarının farklı amaçlar doğrultusunda uygun olarak oluşturulmasıdır.

Buradaki “farklı amaçlar” ifadesinden kastedilen, öğretim sürecine yöneliktir.

Örneğin, öğrencilerin başarı seviyelerine göre ayrılarak elde edilen seviye temelli

öğrenci grupları ya da her başarı seviyesinden öğrencinin her grupta yaklaşık eşit

sayılarda olmasıyla oluşacak dengeli öğrenci grupları oluşturulabilir. Bununla

birlikte öğrencilerin tamamen rasgele seçilmesiyle de öğrenci grupları oluşturulabilir.

Fakat burada bahsedilen grup oluşturma stratejilerinde kullanılan temel unsur olan

öğrenci değerlendirme puanlarının da uygun olarak belirlenmiş olması oldukça

önemlidir. Özellikle bu tür performans değerlendirmeleri yapılırken öğrenci

hakkında oluşan düşüncelerin sayısal ifadelere dönüşmesi hem oldukça güçtür hem

de her öğretim elemanına göre değişiklik göstermektedir. Dolayısıyla öğrenci

performans değerlendirmelerinin insan düşünce yapısına daha uygun bir şekilde

sözel olarak yapılacağı, daha sonra da bu bilgiler kullanılarak sayısal sonuçların elde

edileceği bir sistemin gerekliliği söz konusudur.

Bu tez çalışmasında yukarıda anlatılan problemlere çözüm arayışıyla bir öğrenci

performans değerlendirme sistemi ve öğrenci grup atama sistemi geliştirilmiştir.

 vii

Grup atama sistemi içinde 5 ayrı grup atama stratejisi tanıtılmıştır. Her iki ana

yöntem için ise çözüm yapmayı sağlaması açısından iki ayrı Borland C++ Builder

6.0 kodu oluşturulmuştur.

Anahtar sözcükler: Bulanık mantık, Performans değerlendirmesi, Optimizasyon,

Atama problemi

 viii

CONTENTS

 Page

THESIS EXAMINATION RESULT FORM ... ii

ACKNOWLEDGEMENTS ... iii

ABSTRACT... iv

ÖZ .. vi

CHAPTER ONE – INTRODUCTION ... 1

CHAPTER TWO – FUZZY SETS AND LINGUISTIC VARIABLES 4

2.1 Definitions and Operations on Fuzzy Sets ... 4

 2.1.1 Fundamental Set Operations on Fuzzy Sets ... 6

 2.1.2 Fuzzy Relations .. 8

 2.1.3 The Resolution and Extension Principle .. 11

 2.1.4 Aggregation and Defuzzification Operations 13

2.2 Linguistic Variables and Its Constitution Methods.................................... 16

 2.2.1 Linguistic Variables.. 16

 2.2.2 Parametric Constitution Methods of Linguistic Variables 19

 2.2.3 Fuzzy Clustering Approach to Constitution of Linguistic Variables . 20

2.2.3.1 Fuzzy c-Means .. 21

2.2.3.2 Cluster Validity Indexes ... 23

CHAPTER THREE – AN OPTIMIZATION APPROACH FOR THE

EVALUATION OF STUDENT PERFORMANCES 25

3.1 Introduction .. 25

3.2 Fuzzy Optimization Approaches to Performance Evaluation 27

3.3 Formulation of The Performance Evaluation Problem with

 Linguistic Variables .. 29

 ix

 3.3.1 Determination of The Evaluation Criteria and Their Values............. 30

 3.3.2 An Optimization Formulation of The Performance Evaluation

 Problem... 32

3.4 Solution Method and Algorithm of The Performance Evaluation

 Problem .. 33

 3.4.1 An Optimal Solution of The Problem for Fixed β 33

 3.4.2 An Optimal Solution of The Problem for Optimal β 35

 3.4.3 An Iterative Solution Algorithm of The Problem............................... 37

CHAPTER FOUR – GROUP CONSTITUTION PROBLEM WITH

DIFFERENT STRATEGIES ... 39

4.1 Introduction .. 39

4.2 Random Group Constitution Strategies.. 40

 4.2.1 Balanced Random Assignment... 40

 4.2.2 Simple Random Assignment .. 43

 4.2.3 Level-Based Random Assignment ... 43

4.3 Deterministic Group Constitution Strategies ... 45

 4.3.1 Balanced Assignment ... 45

 4.3.2 Level-Based Assignment .. 48

CHAPTER FIVE – APPLICATIONS AND EXPERIMENTAL

RESULTS .. 50

5.1 Introduction .. 50

5.2 Performance Evaluation Tools and Experimental Results 50

 5.2.1 Performance Evaluation Tools ... 50

5.2.1.1 Forms .. 50

5.2.1.2 Functional Modules ... 55

5.2.1.3 Informative Components ... 56

 5.2.2 Performance Evaluation Results... 57

5.3 Group Constitution Tools and Experimental Results................................. 60

 x

 5.3.1 Group Constitution Tools ... 60

5.3.1.1 Forms .. 60

5.3.1.2 Functional Modules ... 64

5.3.1.3 Informative Components ... 64

 5.3.2 Group Constitution Results .. 64

CHAPTER SIX – CONCLUSIONS .. 66

REFERENCES.. 69

APPENDICES ... 76

Appendix A .. 76

Appendix B... 88

Appendix C... 104

1

CHAPTER ONE

INTRODUCTION

What lays the foundations for many problems in daily life is the unification of two

elements, abundant information and abundant uncertainty, which is, in other words,

the problem of “complexity”. The decision of simplifying complexity by making a

satisfactory exchange between the available information and the amount of

uncertainty underlies the solution of the problem of complexity. In other words, it

means increasing the amount of uncertainty by undervaluing some complete

information in favor of uncertainty. However, a stronger summary description occurs

in this way. Actually, uncertainty or indefiniteness, the characteristics of the natural

language, should not be perceived as the loss or meaninglessness of the accuracy of

language.

Independent of a certain issue, one of the methods used in coping with complexity

is the theory of fuzzy logic. Briefly, fuzzy logic can be defined as modeling semantic

flexibility present in the nature of the linguistic data. This method has almost

unlimited application areas. There are countless exist successful applications of fuzzy

logic in various fields such as engineering, psychology, artificial intelligence,

pharmaceutical technology, medicine, decision theory, pattern recognition,

meteorology and sociology.

Suggested first in 1965 by Zadeh, fuzzy sets are the generalized forms of classical

sets and there exists a soft transitivity instead of the strict distinction between

members and nonmembers in fuzzy sets. In classical sets, an element of the universe

is either an element of a set or not. That is to say, their membership degrees of being

or not being an element of a set can be stated as 1 and 0 respectively. However, in

fuzzy sets, membership function has values in the interval of [0, 1]. Therefore, the

membership function of a fuzzy set shows the belongingness degrees of all elements

to the set. Generally, as Zadeh also stated, any areas can be fuzzified and, therefore,

classical sets can be generalized by the concept of fuzzy set.

2

Fuzziness is generally confused with the concept of probability. Similar to

probabilities, fuzzy membership degrees also have the same values. However, these

values are not probability values. Fuzziness is a form of uncertainty. There are

uncertainties in defining concepts such as “old car” or “large house” or in the

meanings of words. Nevertheless, uncertainty in probability is related to randomness.

In other words, an expression’s being probabilistic is only that an expression contains

a kind of possibility or that the results of clearly defined but randomly occurred

events. Therefore, fuzziness and randomness are different in nature; that is to say,

both are different types of uncertainty. Fuzziness indicates uncertainties in

“subjective” human thoughts, emotions or spoken language whereas randomness is

“objective” statistics in natural sciences. If it is required to model this perspective,

fuzzy models and probabilistic models are different kinds of information; fuzzy

memberships express similarities between objects while probabilities give

information about relative frequencies (Lin & Lee, 1996).

While forming student groups for different purposes, various criteria have been

used in problem based learning system in the Department of Statistics, Dokuz Eylül

University since 2001. Among the reasons why these criteria are being considered

and why they are of crucial importance are;

1. To prepare a suitable learning atmosphere for students

2. To provide adaptation between students with each other in a group (or in other

words, encourage team work in any condition)

3. Constituting group dynamics by bringing students with different characteristics

together.

Briefly, the purpose of forming the student groups is to affect their learning

positively.

There are many criteria that lecturers take into consideration while planning new

groupings. Among these elements, the opinion of each lecturer about the student,

their numerical assessments and students’ relationships with each other are of crucial

importance. In addition, these groups are regularly rebuilt with different students in

order to make them get to know each other better and so that they can learn how to

3

behave professionally in an atmosphere which they will hova to work with

individuals of different characteristics. This process requires long term commitments

with great responsibility of the lectureres which is necessary for considering too

many criteria together.

As mentioned above, we use linguistic variables and assessments that we are

accustomed to during such tasks. It usually gets difficult to agree on the most suitable

view among many other expert views, because of the lecturers’ assessment of

students with different point of views. In other words, the fact that many lecturers

have different points of view while evaluating the performances of students causes

the performance of a student likely to be evaluated differently. It is considered

appropriate to obtain an agreed decision, that is to say, that a new evaluation system

is required which reflects the opinions of all lecturers or an experienced group of

lecturers. Therefore, a system was proposed in order to each student to be evaluated

by a common performance evaluation system and then form the student groups by

using these evaluations. So, the solution of this problem directed us to use fuzzy set,

fuzzy clustering and assignment methods.

This thesis contains six chapters. In Chapter 2, brief information about fuzzy sets

and basic operations on fuzzy sets is given. Also, extended information on an

important clustering tecnique, Fuzzy c-means method, which is needed in student

clustering for construction of student groups is given in this chapter. In Chapter 3 and

4, we present an optimization approach for the evaluation of student performances

and five heuristic assignment approaches for constitution of student groups

respectively. Chapter 5 presents some real problem examples and the numerical

results of our performance evaluation and heuristic assignment approaches. Also,

two Borland C++ Builder 6.0 applications, which are developed for the evaluation of

student performances and construction of student groups, are mentioned in

Chapter 5. Finally, conclusions will be presented in Chapter 6.

4

CHAPTER TWO

FUZZY SETS AND LINGUISTIC VARIABLES

2.1 Definitions and Operations on Fuzzy Sets

As mentioned above, fuzzy sets introduce vagueness by eliminating the sharp

boundary dividing members of the class from nonmembers in the group.

Consequently, the transition between full membership and nonmembership is graded.

Hence, fuzzy sets can be denoted as a generalization of the crisp sets. However, some

theories are unique for the fuzzy sets.

Zadeh defines fuzzy set in 1965 as below,

Definition 2.1: A fuzzy set is characterized by a membership function mapping

the elements of a space, or universe of discourse U to the unit interval []1,0 (Zadeh,

1965). That is, []1,0:~
→UA . Thus, a fuzzy set A~ in the universe of discourse U

may be represented as a set of ordered pairs of an element Ux∈ and its grade of

membership function which is shown as below,

{ }UxxxA A ∈=))(,(~
~μ (2.1)

where)(~ xAμ is the degree of membership of x and it indicates the degree that x

belongs to A~ .

From now on, we will refer to A~ as A for convenience.

Some of the important features of fuzzy sets are as follows;

1. The support of a fuzzy set A is the crisp set of all Ux∈ such that 0)(>xAμ .

That is,

 { }0)()(Supp >∈= xUxA Aμ (2.2)

5

2. The core of a fuzzy set A is the crisp set of all Ux∈ , which satisfies a unit

level of membership in A. More formally,

 { }1)()(Core =∈= xUxA Aμ (2.3)

3. The element Ux∈ at which 5.0)(=xAμ is called the crossover point.

4. The height of a fuzzy set A is the supremum of)(xAμ over U . That is,

)(sup)Height(xA A
x
μ≡ (2.4)

5. A fuzzy set A is normal when the height of the fuzzy set is “1”, that is

1)(sup =x
x
μ , otherwise it is subnormal.

6. A nonempty fuzzy set A can always be normalized by dividing)(xAμ by the

height of A.

Convexity of fuzzy sets plays an important role in fuzzy set theory. A fuzzy set is

convex if and only if each of its α -cuts is a convex set. Equivalently, a fuzzy set A is

convex if and only if

))(),(min())1((2121 xxxx AAA μμλλμ ≥−+ , []1,0,, 21 ∈∈ λUxx . (2.5)

In addition, the cardinality of a fuzzy set can be defined as the summation of the

membership grades of all elements of x in A which is similar to the crisp set theory.

That is,

∑
∈

=
Ux

A xA)(μ . (2.6)

For a discrete universe of discourse U , a fuzzy set A can be written by using the

support of A as

∑
=

=+++=
n

i
iinn xxxxA

1
2211 μμμμ K (2.7)

6

where “+” indicates the union of the elements, “/” is employed to link the elements

of the support with their grades of membership in A and 0)(>= iAi xμμ . If U is not

discrete, but is an interval of real numbers, below notation can be used,

∫=
U

A xxA)(μ (2.8)

where ∫ indicates the union of the elements in A (Klir & Folger; 1988; Lin & Lee,

1996; Pedrycz & Gomide, 1998).

In the next section, some important fundamental set operations on fuzzy sets are

mentioned.

2.1.1 Fundamental Set Operations on Fuzzy Sets

While in classical clusters an element can only be member of a single cluster, in

fuzzy cluster an element can be attached to different clusters with different

membership values. Therefore, fuzzy cluster operators are interested in the

membership values of each element.

Let A and B be two fuzzy sets in the universe of discourse U .

1. Complement: For []1,0)(∈xAμ , the complement of A is defined by its

membership function as

Uxxx AA ∈∀−=),(1)(μμ (2.9)

2. Intersection: The intersection of fuzzy sets A and B is defined as

[] Uxxxxxx BABABA ∈∀∧==
Δ

∩),()()(),(min)(μμμμμ (2.10)

3. Union: The union of fuzzy sets A and B is defined by

[] Uxxxxxx BABABA ∈∀∨==
Δ

∪),()()(),(max)(μμμμμ (2.11)

where ∨ indicates the max operation.

7

4. Equality: A and B are equal if and only if)()(xx BA μμ = is satisfied for all

Ux∈ . If)()(xx BA μμ ≠ for some Ux∈ , then BA ≠ . But this definition of

equality is crisp. To check the degree of equality of two fuzzy sets, similarity

measure can be used which is defined as shown below. This measure takes

values in closed interval []1,0 .

BA
BA

BABAE
∪
∩

==≡
Δ

)(degree),((2.12)

5. Subset: If)()(xx BA μμ ≤ for all Ux∈ then BA⊆ . If BA⊆ and BA ≠ , then

A is proper subset of B; that is BA⊂ . Subsethood measure which is used to

check the degree that A is a subset of B is shown below.

A

BA
BABAS

∩
=⊆≡
Δ

)(degree),((2.13)

6. DeMorgan’s laws:

BABA

BABA

∪=∩

∩=∪ (2.14)

7. Cartesian product: Let nAAA ,,, 21 K be fuzzy sets in nUUU ,,, 21 K ,

respectively. The Cartesian product of nAAA ,,, 21 K is a fuzzy set in the

product space nUUU ××× K21 with the membership function as

 [])(,),(),(min),,,(2121 2121 nAAAnAAA xxxxxx
nn

μμμμ KKK

Δ

××× = , (2.15)

 where nn UxUxUx ∈∈∈ ,,, 2211 K .

8. Algebraic sum: The algebraic sum of two fuzzy sets is defined as

)().()()()(xxxxx BABABA μμμμμ −+=
Δ

+ (2.16)

9. Algebraic product: The algebraic product of two fuzzy sets is defined as

)().()(xxx BABA μμμ
Δ

⋅ = (2.17)

8

10. Bounded sum: The bounded sum of two fuzzy sets is defined as

 { })()(,1min)(xxx BABA μμμ +=
Δ

⊕ (2.18)

11. Bounded difference: The bounded difference of two fuzzy sets is defined as

 { })()(,0max)(xxx BABA μμμ −=
Δ

− (2.19)

2.1.2 Fuzzy Relations

The notion of relations in science and engineering, essentially donates the

discovery of relations between observations and variables. The crisp relation

represents the presence or absence of interactions between the elements of two or

more sets. However, fuzzy relation has been obtained by generalizing this concept to

allow for various degrees of interactions between elements. Hence, a fuzzy relation is

based on the philosophy that everything is related to each other to some extent or

unrelated.

 A fuzzy relation is a fuzzy set defined on the Cartesian product of crisp sets

{ }nXXX ,,, 21 K , where tuples),,,(21 nxxx K may have varying degrees of

membership ()nR xxx ,,, 21 Kμ within the relation. That is,

() () () iiXXX nnRn XxxxxxxxXXXR
n

∈= ∫ ××× K
KKK

21
,,,,,,,,,, 212121 μ (2.20)

In the simplest case, consider two crisp sets 21, XX . Then

 () () ()() (){ }2121212121 ,,,,, XXxxxxxxXXR R ×∈= μ (2.21)

is a fuzzy relation on 21 XX × . It is clear that a fuzzy relation is a fuzzy set.

9

 A special fuzzy relation called binary fuzzy relation plays an important role in

fuzzy set theory. This concept is a fuzzy relation between two sets X and Y and it is

denoted by ()YXR , .

 There are more convenient forms of representation of binary fuzzy relations

()YXR , in addition to the membership function. Let { }nxxxX ,,, 21 K= and

{ }myyyY ,,, 21 K= . First, the fuzzy relation ()YXR , can be expressed by a mn×

matrix as below.

 ()

() () ()
() () ()

() () () mnmnRnRnR

mRRR

mRRR

yxyxyx

yxyxyx
yxyxyx

YXR

×
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

,,,

,,,
,,,

,

21

22212

12111

μμμ

μμμ
μμμ

K

MOMM

K

K

 (2.22)

 An important operation on fuzzy relations is the composition of fuzzy relations.

Basically, there are two types of composition operators: max-min composition and

min-max composition.

Let),(YXP and),(ZYQ be two fuzzy relations on YX × and ZY × ,

respectively. The max-min composition of),(YXP and),(ZYQ , denoted as

),(),(ZYQYXP o , is defined as

)],(),,(min[max),(zyyxzx QPYyQP μμμ
∈

Δ
=o , ZzXx ∈∀∈∀ , (2.23)

The min-max composition of),(YXP and),(ZYQ , denoted as),(YXP □),(ZYQ ,

is defined as

 μ P□Q)],(),,(max[min),(zyyxzx QPYy
μμ

∈

Δ
= , ZzXx ∈∀∈∀ , (2.24)

10

The max-min composition is the most commonly used composition operation.

These compositions can be generalized to other compositions by replacing the min

operator in max-min composition and max operator in min-max composition with

any t-norm and t-conorm operators, respectively.

A similar operator on two binary fuzzy relations is called relational joint. Let

),(YXP and),(ZYQ be two binary fuzzy relations. Then the relational joint of P

and Q can be shown as below for each YyXx ∈∈ , and Zz∈ .

Pμ []),(),,(min),,(zyyxzyx QPQ μμ
Δ

= (2.25)

Some basic properties of the relations are as follows:

1. Reflexivity: A fuzzy relation),(XXR is reflexive if and only if 1),(=μ xxR

for all Xx∈ . This property states that all diagonal elements of the relation

are equal to 1. If it is not satisfied for all Xx∈ , then the relation is called

antireflexive. If it is not the case for some Xx∈ , then),(XXR is irreflexive.

2. Symmetry: A fuzzy relation),(XXR is symmetric if and only if

),(),(xyyx RR μ=μ for all Xyx ∈, . If the equality is not satisfied for all

members of the support of the relation, then it is called anti-symmetric. If it is

not satisfied for all Xyx ∈, then),(XXR is called strictly anti-symmetric.

Whenever this equality is not satisfied for some Xyx ∈, , the relation is

called asymmetric.

3. Transitivity: A fuzzy relation),(XXR is transitive if and only if

[]),(),,(minmax),(zyyxzx RRYyR μμ≥μ
∈

 for all 2),(Xzx ∈ . If this inequality

does not hold for all 2),(Xzx ∈ , then),(XXR is called anti-transitive. If it

is satisfied for only some members of X but not all, then it is called

nontransitive.

11

2.1.3 The Resolution and Extension Principle

Another important property of fuzzy sets, which requires us to understand α -

level sets, is called as resolution principle. An α -level set of a fuzzy set A is a crisp

set αA that contains all the elements of U having a membership grade in A greater

than or equal to α . That is,

{ }αμα ≥∈=)(xUxA A , (]1,0∈α (2.26)

If { }αμα >∈=)(xUxA A , then αA is called a strong α -cut.

Consequently, resolution principle, which is defined as the membership function

of A can be expressed in terms of the membership functions of its α -cuts, according

to

[]
())(sup)(

1,0
xx AA α

μαμ
α

∧=
∈

, Ux∈∀ (2.27)

where ∧ denotes the min operation and)(xAα
μ is the membership function of the

crisp set αA ,

⎩
⎨
⎧ ∈

=
otherwise0

 ifonly and if1
)(α

α
μ

Ax
xA (2.28)

This leads to the following representation of a fuzzy set A using the resolution

principle. Let ααA denote a fuzzy set with the membership function

)]([)(xx AA αα
μαμα ∧= , Ux∈∀ . (2.29)

Then the resolution principle states that the fuzzy set A can be expressed as given

below.

U
A

AA
Λ∈

=
α

αα or ∫=
1

0
αα AA (2.30)

12

The resolution principle indicates that a fuzzy set A can be decomposed into αα A ,

(]1,0∈α . On the other hand, a fuzzy set A can be retrieved as a union of its αα A ,

which is called the representation theorem.

The extension principle is one of the most important tools of fuzzy set theory,

which is used for translation of crisp set into their fuzzy set framework and extends

point-to-point mappings to mappings for fuzzy sets.

Let X and Y be two crisp sets and YXf →: . Let A be a fuzzy set in X where

nn xxxA μμμ +++= K2211 . The extension principle states that,

())()()()(22112211 nnnn xfxfxfxxxfAf μμμμμμ +++=+++= KK . (2.31)

If more than one element of X is mapped by function f to the same element

Yy∈ , then the maximum of the membership grades of these elements is chosen as

the membership grade of y in)(Af . If no element x in X is mapped to y , then

the membership grade of y is zero.

Often a function f maps ordered tuples of elements of different sets

nXXX ,,, 21 K as () Yyyxxxf n ∈= ,,,, 21 K . Let nAAA ,,, 21 K be n fuzzy sets in

nXXX ,,, 21 K , respectively. The extension principle allows the function

()nxxxf ,,, 21 K to be extended to act on the n fuzzy subsets of X , nAAA ,,, 21 K ,

such that

),,,(21 nAAAfB K= (2.32)

where B is the fuzzy image of nAAA ,,, 21 K through function f . The fuzzy set

B is defined as

{ }XxxxxxxfyyyB nnB ∈==),,,(),,,,())(,(2121 KKμ (2.33)

13

where

)](,),(),(min[sup)(21
),,,(

21
21

nAAA
xxxfy

B xxxy
n

n

μμμμ K
K=

= . (2.34)

2.1.4 Aggregation and Defuzzification Operations

Aggregation operations are used to combine several fuzzy sets to produce a single

common fuzzy set. Aggregation operation is defined as below.

[] []1,01,0: →nh , 2≥n (2.35)

When applied to n fuzzy sets defined on U , h produces an aggregate fuzzy set A

by operating on the membership grades of each Ux∈ in the aggregated set. Thus,

 Uxxxxhx
nAAAA ∈∀=)),(,),(),(()(

21
μμμμ K (2.36)

(Klir & Folger, 1988).

 An aggregation must satisfy the boundary and the monotonic conditions. In

addition to these conditions h is a continuous and a symmetric function in all its

arguments. Hence, fuzzy unions and intersections can be viewed as

special aggregation operations and they do not produce any

aggregates of)(,),(),(
21

xxx
nAAA μμμ K that produce values between

))(,),(),(min(
21

xxx
nAAA μμμ K and))(,),(),(max(

21
xxx

nAAA μμμ K . Aggregates, which

are between these values, are usually called as averaging operations. Hence,

averaging operators are aggregation operations for which

))(,),(max())(,),(())(,),(min(
111

xxxxhxx
nnn AAAAAA μμμμμμ KKK ≤≤ . (2.37)

14

One typical parametric averaging operator is the generalized means, which is

defined as

α
α

α

μ
μμμ

1

1
)]([

))(,),(),((
21

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=
∑
=

Δ

n

x
xxxh

n

i
A

AAA

i

n
K (2.38)

where ℜ∈α but 0≠α . When α approaches ∞− then αh becomes

))(,),(),(min(
21

xxx
nAAA μμμ K , and when α approaches ∞ then αh becomes

))(,),(),(max(
21

xxx
nAAA μμμ K .

 An important extension of the generalized means is the weighted generalized

means and is defined as

α
α

α μμμμ
1

1
21)]([),,,);(,),(),((

21
⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=

Δ n

i
AinAAA xwwwwxxxh

in
KK (2.39)

where 0≥iw and 1
1

=∑ =

n

i iw . The weights express the relative importance of the

aggregated set. This operation is useful in decision-making problems where different

criteria differ in importance (Lin & Lee, 1996).

 Ordered weighted averaging operator (OWA) is another important aggregation

operator is proposed by Yager (1988). Essentially, this operator is a weighted sum

whose arguments are ordered. By using these operators, researchers can obtain

aggregation results which lie in between “and” and “or” operators’ which means “all

the criteria must be satisfied” and “any of the criteria must be satisfied” respectively.

Let niwi ,...,1, = and 1
1

=∑ =

n

i iw . The sequence of membership values)(iA xμ

can be ordered as)()()(21 nAAA xxx μμμ ≤≤≤ K . Thus, this operator can be shown

as below.

15

∑
=

=
n

i
iAi xwOWA

1

)(μ (2.40)

If niwi ,...,1, = values are chosen equal to n1 then the result will be the

arithmetic mean. If only 11 =w and the other weight values are chosen equal to zero

then the On the contrary, if 1=nw and the other weight values chosen equal to zero

then the operator will act as an “and” operator.

Yager extends this operator in 2004 as Generalized OWA Aggregation operators

(GOWA) to provide a new class of operators.

Besides the aggregation operation, defuzzification is another important operation

in the theory of fuzzy sets and it is used to transform fuzzy values into crisp values.

There are four most often used defuzzification mechanisms in the fuzzy control

theory: the mean of maxima (MOM), the center of area (COA), the center of means,

and the midpoint of an area procedures (Klir & Folger, 1988; Roychowdhury &

Pedrycz, 2001). In addition to these methods, many approaches were suggested.

From these methods, MOM and COA methods and WABL (Weighted Averaging

Based on The Levels) method which is proposed and investigated by Nasibov(2002,

2003a, 2003b, 2005, 2007e) are used in this thesis.

In MOM method, defuzzified value is the mean of the ix elements, which have

maximum membership values. Mathematical form is as shown below.

∑
=

=
m

i

i

m
x

AMOM
1

)((2.41)

COA is also known as the Center of Gravity (COG) method in the fuzzy

literature. The COA method determines the center of area of membership function

and is defined as in (2.42).

16

∫

∫
∞

∞−

∞

∞−=
dxx

dxxx
ACOA

A

A

)(

)(
)(

μ

μ
 (2.42)

The mathematical form of WABL method is defined by Nasibov (2002, 2003a) as

below.

()

+→=+≥≥

=

⋅+=

∫

∫

Epcccc

dp

dpRcLcAI

RLRL

ARAL

]1,0[:,1,0,0

1)(

)()()()(

1

0

1

0

αα

αααα

 (2.43)

WABL parameters Lc and Rc represent the weights of)(αAL and)(αAR

functions respectively.)(αAL and)(αAR functions are the left and right sides of the

fuzzy number.)(αAL is a non-decreasing and)(αAR is a non-increasing and both

are left continuous functions.)(αp is the distribution function of the importance of

the level sets. By using the distribution function, WABL adds all level sets into the

defuzzification process (Nasibov, 2003b).

2.2 Linguistic Variables and Its Constitution Methods

2.2.1 Linguistic Variables

Linguistic variable is an important concept in many areas, especially in fuzzy

logic, approximate reasoning, fuzzy expert systems etc. Fundamentally, a linguistic

variable can be defined as a variable whose values are words or sentences in natural

languages. For example, “heat” is a linguistic variable and can take a range of the

values such as {very cold, cold, mild, hot, very hot,…}. Zadeh introduced the

concept of linguistic variables in 1975 to provide a means of approximate

characterization of phenomena that are too complex or too hard to define in

conventional quantitative terms.

17

 A linguistic variable is characterized by a quintuple denoted by ()()MGUxTx ,,,,

in which x is the name of the variable; ()xT is the term set of x, that is the set of

names of linguistic values of x with each value being a fuzzy set defined on U; G is a

syntactic rule for generating the names of values of x; and M is a semantic rule for

associating each value of x with its meaning.

In general, a linguistic variable involves a finite number of primary terms such as

“absent”, “few”, “middle”, etc. a finite number of hedges such as “very”, “more”,

“less”, etc. and the connectives and and or, and the negation not. These terms are

referred to as modifiers. Some important fuzzy set operations, which are used in

defining linguistic hedges, are as shown below.

1. Concentration: This operation is used to obtain a membership function, which is

more concentrated around the points with higher membership grades. For

example, “very” is the one of the frequently used concentration operation.

()2
CON(A))()(xx Aμμ = (2.44)

()xμ

x
Figure 2.1 Concentration of a membership function

18

2. Dilation: This operation has the opposite effect of the concentration operation.

() 21
DIL(A))()(xx Aμμ = (2.45)

()xμ

x
Figure 2.2 Dilation of a membership function

3. Intensification: The membership values in interval []5.0,0 are diminished while

the grades of membership in interval (]1,5.0 are elevated. This operation is

shown as in Figure 2.3 and defined as below.

() []

()⎪⎩

⎪
⎨
⎧

−−

∈
=

otherwise,)(121

5.0,0)(,)(2
)(

2

2

INT(A)
x

xx
x

A

AA

μ

μμ
μ (2.46)

()xμ

x

1

0,5

 Figure 2.3 Intensification of a membership function

4. Fuzzification: This operation is complementary to that of intensification and it is

defined as below.

[]

()⎪⎩

⎪
⎨
⎧

−−

∈
=

otherwise,2)(11

5.0,0)(,2)(
)(FUZZ(A)

x

xx
x

A

AA

μ

μμ
μ (2.47)

19

2.2.2 Parametric Constitution Methods of Linguistic Variables

Parametric and statistical methods can be used in populating linguistic variables.

Parametric methods are mainly based on parametric fuzzy numbers. That is to say,

the membership function of a linguistic variable that can be given by parametric

fuzzy numbers.

Some of the frequently preferred membership function types which reflect the

linguistic variables are as follows;

1. Triangular membership function:

[)

[]
⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

>

∈
−
−

∈
−
−

<

=

cx

cbx
bc
xc

bax
ab
ax

ax

xA

,0

,,

,,

,0

)(~μ (2.48)

2. Trapezoidal membership function:

[)

[)

[]
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

>

∈
−
−

∈

∈
−
−

<

=

dx

dcx
cd
xd

cbx

bax
ab
ax

ax

xA

,0

,,

,,1

,,

,0

)(~μ (2.49)

3. S - membership function:

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

≥

⎟
⎠
⎞

⎢⎣
⎡ +

∈⎟
⎠
⎞

⎜
⎝
⎛

−
−

−

⎟
⎠
⎞

⎢⎣
⎡ +

∈⎟
⎠
⎞

⎜
⎝
⎛

−
−

<

=

bx

bbax
ab
bx

baax
ab
ax

ax

xA

,1

,
2

,21

2
,,2

,0

)(
2

2

~μ (2.50)

20

4. Γ - membership function:

⎪⎩

⎪
⎨
⎧

>−

≤
=

−− axe

ax
x

axkA ,1

,0
)(2)(

~μ (2.51)

In the application section of this work, triangular and trapezoidal fuzzy numbers

will be used.

2.2.3 Fuzzy Clustering Approach to Constitution of Linguistic Variables

So as to constitute the membership function of a linguistic variable depending on

statistics, data mining techniques are used. The most frequently used technique

among these techniques is the fuzzy clustering.

Clustering methods are unsupervised learning methods that are used to organize

data into groups based on similarities among the individual data items. Most

clustering algorithms are useful in situations where little prior knowledge exists.

In general, the clustering methods can be investigated into five main classes;

partitioning methods, hierarchical methods, density-based methods, grid-based

methods, and model-based methods. In partitioning methods, the k-means algorithm

and the k-medoids algorithm are the most known and important methods. Based on

the hierarchical decomposition form, hierarchical methods can be classified as being

agglomerative or divisive. The methods, which have been developed based on the

notion of density, are called density-based methods. DBSCAN, and OPTICS, are

amongs the examples of such methods. Grid-based methods quantize the object

space into a finite number of cells to form a grid structure. Advantage of these

methods is the short computational time. STING is a typical example of grid-based

methods. Lastly, the model-based methods hypothesize a model for each of the

clusters and find the best fit of the data for the given models (Han & Kamber, 2001).

21

As briefly mentioned above, many clustering algorithms have been discussed in

literature. Since clusters can formally be seen as subsets of the data set, one possible

classification of clustering methods can be according to whether the subsets are

fuzzy or crisp (hard). In hard clustering, an object either does or does not belong to a

cluster and this means partitioning the data into a specified number of mutually

exclusive subsets. On the other hand in fuzzy clustering, the boundary between

clusters may not be precisely defined or in another words, these methods allow the

elements to belong to several clusters with different membership grades.

In recent years, many approaches have been investigated by many researchers on

fuzzy clustering methods (Bezdek, 1981; Bobrowski & Bezdek, 1991; Dunn, 1973;

Gordon, 1981; Hathaway & Bezdek, 1993). One of the most widely used clustering

methods is the Fuzzy c-means (FCM) algorithm, which was introduced by Dunn

(1973) and developed by Bezdek (1981). This algorithm is also a generalization of

the k-means algorithm.

2.2.3.1 Fuzzy c-Means

In clustering techniques a general form of the objective function is

∑∑∑
= = =

=
c

i

n

j
kj

c

k
ijjkij vxdxwgvJ

1 1 1
),(]),([),(μμ , (2.52)

where)(jxw is the priori weight for each jx ,]),([ijjxwg μ is the degree of

fuzziness of the partition matrix, and),(kj vxd is the degree of dissimilarity between

the data jx and the supplement element kv , which can be considered the central

vector of the kth cluster. Several distance measures can be used to represent degree of

dissimilarity as Minkowski, Euclidean, Mahalanobis, Tchebyschev, Hamming (city

block) or maximum distances. Each of these distance measures indicates a different

view of the data because of their geometry. Thus, the most appropriate distance

measure can be selected by using the pattern of data.

22

The degree of dissimilarity must satisfy the following axioms.

i. kjvxd kj ,,0),(∀≥

ii. jxxd jj ∀= ,0),(

iii.).,(),(jkkj xvdvxd =

Let { }nxxxX ,,, 21 K= be a finite set of elements in the p-dimensional Euclidean

space pℜ . The aim is to perform a partition of this collection of elements into c

fuzzy sets, where c is a given number of clusters and the result of this fuzzy

clustering can be expressed by a partition matrix U such that

njciijU ,,1,,,1][KK === μ (2.53)

where ijμ is a numerical value in]1,0[and denotes the degree to which the element

jx belongs to the ith cluster. There are two constraints on the value of ijμ . Firstly, a

total membership of the element Xx j ∈ in all classes must be equal to 1; that is,

.,,2,11
1

nj
c

i
ij K==∑

=

μ (2.54)

Secondly, every constructed cluster must be nonempty and different from the entire

set; that is,

.,,2,1,0
1

cin
n

j
ij K=<<∑

=

μ (2.55)

Using these information, fuzzy clustering optimization problem can be formulated

as follows,

Minimize ,1,)(),(
1 1

2
>−= ∑∑

= =

mvxvJ
c

i

n

j
ij

m
ijiij μμ (2.56)

 Subject to Eqs. (2.54) and (2.55)

23

where m is a parameter which is called exponential weight and influences the degree

of fuzziness of the membership matrix. The minimization of this nonlinear

optimization problem can be solved by using different methods as iterative

minimization, simulated annealing or genetic algorithms. The most popular method

is a simple Picard iteration for stationary points of (2.56), known as Fuzzy c-means

algorithm. Thus, the nonlinear minimization problem can be solved by using

Lagrange multiplier method as below,

,,,2,1,
)(

)(

1

1 ci
x

v n

j
m

ij

n

j j
m

ij

i K==
∑
∑

=

=

μ

μ
 (2.57)

.,,2,1;,,2,1,1

1

)1(2 njci

vx

vxc

k

m

kj

ij

ij KK ==

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

−
=

∑ =

−μ (2.58)

This system can be solved iteratively. At first, (2.57) is used to obtain the new

center of each cluster and then (2.58) is used to obtain new fuzzy partition. Center

values and fuzzy partitions are recalculated by repeating this procedure until (2.56)

reaches to minimum.

2.2.3.2 Cluster Validity Indexes

An important issue for the FCM algorithm is the determination of the correct

number of clusters, c. Some scalar measures of partitioning fuzziness are used as

synthetic indices, called validity indicators, to point out the most plausible number of

clusters in the data set since there is no exact solution of this problem. Some widely

used scalar measures are given in Table 2.1 (Bezdek, 1974, 1975; Dunn, 1974;

Fukuyamo & Sugeno, 1989; Xie & Beni, 1991, Kwon, 1998; Nasibov & Ulutagay,

2006b).

24

Table 2.1 Some important cluster validity criteria

Validity
criteria Functional description

Optimal
cluster

number

Partition
coefficient ∑∑

= =

=
c

i

n

j
ijPC n

V
1 1

21 μ),,(max cUVPC

Partition
entropy ∑∑

= =

−=
c

i

n

j
ijaijPE n

V
1 1

log1 μμ),,(min cUVPE

Separation
index)(max

),(min

i
i

jiji
SI

d
V

μδ

μμ
≠=),(max UVSI

Xie-Beni
index ⎟

⎠
⎞⎜

⎝
⎛ −

−
=

≠

= =∑ ∑
2

1 1

22

min kiki

c
i

n
j ijij

XB
vvn

vx
V

μ
),,(min cUVXB

Fukuyamo-
Sugeno index ∑∑

= =

−=
c

i

n

j
iXij

m
ijFS vmdvxdV

m
1 1

22)],(),([μ),,(min cUVFS

Kwon
⎟
⎠
⎞⎜

⎝
⎛ −

−+−
=

≠

= = =∑ ∑ ∑
2

1 1 1

22

min

1

kiki

c
i

n
j

c
i iijij

K
vv

vv
c

vx
V

μ
),,(min cUVK

Fuzzy Joint
Points criteria

))},(ˆmin1({max),(min
,

max yxTdXXdV
kXyxk

ji

jiFJP
∈≠

−⋅−=

),,(max αUVFJP

25

CHAPTER THREE

AN OPTIMIZATION APPROACH

FOR THE EVALUATION OF STUDENT PERFORMANCES

3.1 Introduction

In group decision analysis, different approaches have been suggested by many

researchers for the problem of aggregation of the individual fuzzy opinions to form a

group consensus as the basis of group decision. These approaches are used in many

different application areas such as evaluation of the workers’ performances, selection

of the most suitable worker and meauring the students’ success.

A multi-criteria personnel selection problem with multi-decision makers was

studied by Chen (2000) using TOPSIS (Technique for order performance by

similarity to ideal solution) procedure and vertex method with fuzzy information.

TOPSIS procedure can briefly be explained as a concept where the chosen

alternative should have the shortest distance from the positive ideal solution while

having the furthest distance from the negative one. In addition, Saghafian and Hejazi

(2005) proposed a modified TOPSIS for the multi-criteria decision-making problem

with multi-decision makers. Kuo et al. (2007) proposed a new method of analysis of

multi-criteria based on the incorporated efficient model and concepts of TOPSIS to

solve decision-making problems with multi-judges and multi-criteria in real-life

situations. Other studies have also been carried out by applying AHP (Analytical

Hierarchy Process) approach suggested by Saaty (1990) on fuzzy numbers (Bonder,

Graan & Lootsma, 1989; Kahraman, Ruan & Doğan, 2003).

Bardossy et al. (1993) suggests five combination techniques and defines seven

characteristics of the combination techniques. These five techniques are named as

crisp weighting, fuzzy weighting, minimal fuzzy extension, convex fuzzy extension and

mixed linear extension. Hsu and Chen (1996) propose an aggregation method, which

is named as similarity aggregation method. In this study, pairwise similarities of

experts’ opinions are calculated first. Then an average of these pairwise similarities

is obtained for each expert. These average values represent their corresponding

26

experts’ agreement degrees. Finally, aggregation of experts’ opinions is obtained by

combining the weighted averages. Lee (2002) proposes an iterative procedure for

aggregation of the expert opinions. Wang and Parkan (2006) improved Lee’s study

by suggesting two methods both based on the weighted distances between experts’

opinions. They indicate that one common opinion could be obtained from the

decision makers’ opinions in various subjects. Ma and Zhou (2000) proposed a group

decision support system for assessing students’ learning outcomes. Yong and Wen-

Kang (2003) obtained the consensus degree coefficient using the relative weight

agreement degrees through weighting of the fuzzy opinions of experts.

In student-centered learning system, a student’s performance is based on

evaluation of a set of criteria where each criterion has different importance for each

lecturer. Moreover, points awarded for any level (such as absent, few, middle, good,

strong, etc.) in each criterion may vary between each lecturer. In our study, aggregate

weight values, which reflect the opinions of lecturers on importance of each different

criterion, are obtained from the relationship between linguistic evaluations and grade

evaluations. These aggregated weight values are computed through an iterative

procedure. Use of final aggregate weight values introduces consistency between

different lecturers when assessing student performances. In other words, a method

for obtaining aggregate weight values reflecting different points of views of lecturers

for the evaluation of student performances in student-centered learning system is

suggested. In our iterative procedure, defuzzification parameter and weight values

are optimized in the optimization problem. Also the objective function in the

optimization problem is based on the least square errors method. Consequently both

defuzzified values and the least square method are the differences our study from the

Lee’s study.

This chapter is organized as follows. In Section 3.2, some approaches on

performance evaluation problem are presented. In Section 3.3, our problem definition

is introduced and Section 3.4 gives a detailed explanation of our solution to the

described problem.

27

3.2 Fuzzy Optimization Approaches to Performance Evaluation

Let),,,(~
4321 aaaaA = and),,,(~

4321 bbbbB = be two trapezoidal fuzzy numbers

and)~,~(2 BAS be the similarity measure between fuzzy numbers A~ and B~ . Different

from Hsu’s similarity measure, Lee’s similarity measure includes a distance metric

between fuzzy numbers, which was also used by Tong and Bonissone (1980). From

the similarity measure, the dissimilarity measure is defined as)~,~(2 BASc − , where

1>c . The value of c affects the aggregation of experts opinions.

Lee (2002) tries to minimize the sum of the weighted dissimilarities between

aggregated opinion and each expert’s opinion.),...,2,1(~ niRi = represents its

corresponding expert i ’s opinion and R~ represents the aggregated opinion. To find

the R~ value, below equation must be solved, where m is an integer 1> , c is a

constant 1> and iw values are weight degrees.

() () ()

⎭
⎬
⎫

⎩
⎨
⎧

=≥==

→−=

∑

∑

=

=

1,0),,...,,(

t.s.

min)~,~(~,

1
21

1
2

n

i
iin

n

i
i

m
i

wwwwwWWM

RRScwRWZ

 (3.1)

This optimization problem solution is introduced in Lee’s study (2002) as follows

without proof,

()
()∑

∑ =
=

=
n

i
i

m
in

i
m

i

Rw
w

R
1

1

~~
~

1~ 0

0
, (3.2)

()[]
()[]∑ =

−

−

−

−
=

n

j

m
i

m
i

i
RRSc

RRSc
w

1

)1(1
2

)1(1
2

0

0

)~,~(1

)~,~(1~ (3.3)

R~ and iw~ values can be obtained only by an iterative procedure.

28

 As mentioned before, Wang and Parkan (2006) suggests two methods which are

called LSDM (Least squares distance method) and DLSM (Defuzzification based

least squares method). These methods are based on the solution of the optimization

problem, which minimizes the sum of squared distances between all pairs of

weighted opinions. In LSDM, fuzzy opinions are used whereas in DLSM,

defuzzified values are used in calculations.

Let),...,(~
1 imii rrR = and),...,(~

1 jmjj rrR = be two fuzzy numbers. m defines the

shape of fuzzy number. For instance if m is 3 then the fuzzy number will be a

triangular or if it is 4 then fuzzy the number will be a trapezoidal fuzzy number. iw

and jw values represent weight values.

The minimization problem for the LSDM can be shown as in (3.4).

()

niww

rwrwJ

i

n

i
i

n

i

n

ij
j

m

k
jkjiki

,...,1,0,1

s.t.

min

1

1 1 1

2

=≥=

→⎥
⎦

⎤
⎢
⎣

⎡
−=

∑

∑∑ ∑

=

=
≠
= =

 (3.4)

The solution of this optimization problem is as shown below,

Theorem 3.1 (Wang & Parkan, 2006): Let ()Tnww ,...,1=W be the optimum

solution of the problem (3.4). Then,

01

1

≥= −

−

eGe
eGW T (3.5)

where ()1,...,1=e is the transpose of Te and 1−G is the inverse of G , elements of

which are defined as

⎪
⎪
⎩

⎪⎪
⎨

⎧

≠=−

==−
=

∑

∑

=

=

jinjirr

njirn
g

m

k
jkik

m

k
ik

ij

;,...,1,,

,...,1,)1(

1

1

2

 (3.6)

29

The minimization problem for the DLSM can be shown as below,

()

niww

zwzwJ

i

n

i
i

n

i

n

ij
j

jjii

,...,1,0,1

s.t.

min

1

1 1

2

=≥=

→−=

∑

∑∑

=

=
≠
=

 (3.7)

where iz represents defuzzification values and are defined as below.

 ∑
=

=
m

k
iki r

m
z

1

1 (3.8)

The solution of this optimization problem is given in the next theorem.

Theorem 3.2 (Wang & Parkan, 2006): Let ()Tnww ,...,1=W be the optimum

solution for the problem (3.7). The optimum solution can be given as below.

()
ni

z
z

w n

k k

i
i ,...,1,

1
1

1

==
∑ =

 (3.9)

3.3 Formulation of The Performance Evaluation Problem with Linguistic

Variables

In student-centered learning system, after each problem based learning session,

each student’s performance is assessed by using a predefined set of evaluation

criteria. These evaluation criteria are specified as leadership, research skill,

responsibility, discussion skill and creativity, and are defined by all lecturers in our

department (Table 3.1). The importance, hence the weight of each evaluation

criterion can be different for each lecturer. Consequently, even when the fuzzy

answer can be the same for any evaluation criterion its reflection as a defuzzified

value is highly likely to be different for each lecturer because of the different point of

30

views. Because of this, WABL method is used for defuzzification. The fundamental

reason for use of WABL method is that this method can be adjusted for the defined

task to produce more accurate results when compared to the other known methods

(Nasibov, 2003a, 2003b).

Table 3.1 The evaluation form for each problem-based learning session

STUDENT NAME-SURNAME GRADE

 p

EVALUATION CRITERIA

1. LEADERSHIP 1w □ Absent □ Middle □ Strong

2. CREATIVITY 2w □ Absent □ Middle □ Strong
3. RESEARCH SKILL 3w □ Absent □ Few □ Middle □ Good □ Strong

4. RESPONSIBILITY 4w □ Absent □ Few □ Middle □ Good □ Strong
5. DISCUSSION SKILL 5w □ Absent □ Few □ Middle □ Good □ Strong

3.3.1 Determination of The Evaluation Criteria and Their Values

The fuzzy numbers of the evaluation criteria are determined as triangular and

trapezoidal fuzzy numbers as shown in Figure 3.1 and Figure 3.2.

0 10050

ABSENT MIDDLE STRONG

1

x

)(xμ

9010

 Figure 3.1 Membership function for the criteria Leadership and Creativity.

0 10030 50 70

ABSENT FEW MIDDLE GOOD STRONG

1

x

)(xμ

10 90

 Figure 3.2 Membership function for the criteria Research Skill, Responsibility and Discussion Skill.

31

In general, membership function of the trapezoidal fuzzy number),,,(dcbaA= is

as follows.

[)

[)

[]
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

>

∈
−
−

∈

∈
−
−

<

=

dx

dcx
cd
xd

cbx

bax
ab
ax

ax

xA

,0

,,

,,1

,,

,0

)(~μ (3.10)

In this equation, a trapezoidal fuzzy number transforms into a triangular fuzzy

number when cb = . Similarly, a triangular fuzzy number can be denoted as a

trapezoidal fuzzy number.

The defuzzification values of ijR~ fuzzy numbers can be obtained from any of

defuzzification methods such as explained in Lin and Lee (1996), Mendel (2001),

Pedrycz and Gomide (1998). However, for the reason indicated in the beginning of

this section, we have concentrated on the use of WABL method in our study.

WABL values that are used in our study for the defuzzification of the triangular

and trapezoidal fuzzy numbers can be calculated as below.

Theorem 3.3 (Nasibov & Mert, 2005; 2007e): Let),,(cbaA = be a triangular fuzzy

number. qqp αα)1()(+= , 0≥q and Lc , Rc can be any values that satisfy normality

and positivity conditions. The WABL value of the fuzzy number A can be

calculated as follows.

⎥
⎦

⎤
⎢
⎣

⎡
−

+
+

++⎥
⎦

⎤
⎢
⎣

⎡
−

+
+

−=)(
2
1)(

2
1)(ab

q
qacbc

q
qccAI LR (3.11)

32

Theorem 3.4 (Nasibov & Mert, 2005; 2007e): Let),,,(dcbaA= be a trapezoidal

fuzzy number with membership function (3.10). qqp αα)1()(+= , 0≥q and Lc , Rc

can be any values that satisfy normality and positivity conditions. The WABL value

of the fuzzy number A can be calculated as follows.

⎥
⎦

⎤
⎢
⎣

⎡
−

+
+

++⎥
⎦

⎤
⎢
⎣

⎡
−

+
+

−=)(
2
1)(

2
1)(ab

q
qaccd

q
qdcAI LR (3.12)

3.3.2 An Optimization Formulation of The Performance Evaluation Problem

Assume that n student performances will be evaluated by using m evaluation

criteria. The evaluation results are indicated as ijR~ for each student i as to criterion

j where ni ,,1K= and mj ,,1K= . nppp ,,, 21 K are the numerical values of

students’ grades after evaluation of each respective student. Also

()Tmwww ,,, 21 K=W represents the unknown weights of the m evaluation criteria.

ijR values are the defuzzified values of the ijR~ fuzzy values. Our objective function

is to minimize the sum of squared distances between all grade evaluations and the

defuzzified values of linguistic evaluations of each criterion. Therefore, our

nonlinear optimization problem can be constituted as follows.

mjw

pRwL

m

j
j

n

i

m

j
iijj

,...,1,1

t.s.

min)(

1

1

2

1

==

→⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

∑

∑ ∑

=

= =

W

 (3.13)

Problem (3.13) is investigated in the next section.

33

3.4 Solution Method and Algorithm of The Performance Evaluation Problem

3.4.1 An Optimal Solution of The Problem for Fixed β

We want to determine the jw , mj ,...,1= values that minimize the expression

)(WL . There is no sign restriction and no upper limit for the value of mjw j ,...,1, = .

Increasing values of mjw j ,...,1, = show their effectiveness and the signs show their

positive or negative effect which will be found as below.

Theorem 3.5: Vector ()Tmwww **

2
*
1 ,,, K=*W , which represents the optimum solution for

the problem (3.13), is as below,

() PRG
eGe

PRGeeGW* T
T

TT
1

1

11 1 −
−

−−

+
−

= , (3.14)

where ()1,,1,1 K=e is the transpose of Te and 1−G is the inverse of G . G and TR

matrices and W and P vectors are respectively as follows.

mm

n

i
im

n

i
imi

n

i
imi

n

i
imi

n

i
i

n

i
ii

n

i
imi

n

i
ii

n

i
i

RRRRR

RRRRR

RRRRR

×===

===

===

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

∑∑∑

∑∑∑

∑∑∑

1

2

1
2

1
1

1
2

1

2
2

1
21

1
1

1
21

1

2
1

L

MOMM

L

L

G (3.15)

nmnmmm

n

n

T

RRR

RRR
RRR

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

L

MOMM

L

L

21

22212

12111

R (3.16)

34

1

2

1

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

mmw

w
w

M
W

1

2

1

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

nnp

p
p

M
P (3.17)

Proof: Lagrange multiplier method can be applied to the problem (3.13) as below.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= ∑∑ ∑

== =

12)(
11

2

1

m

j
j

n

i

m

j
iijj wpRwL λW (3.18)

Letting 0)(
=

∂
∂

zw
L W for each mz ,...,1= we obtain

∑ ∑
= =

==−⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

∂
∂ n

i
iz

m

j
iijj

z
mzRpRw

w
L

1 1
,...,1,022)(λW (3.19)

that can be simplified as

∑ ∑
= =

==−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

n

i
izi

m

j
izijj mzRpRRw

1 1
,...,1,0λ (3.20)

Expression (3.20) can be rewritten in matrix form as

0=−− ePRGW λT (3.21)

where G and TR matrices are defined in (3.15) and (3.16) respectively. As defined

in problem (3.13), sum of all weight values must be equal to “1” and this restriction

can be rewritten as below.

1=WeT (3.22)

Consequently, (3.21) and (3.22) can be solved together as

eGe
PRGe

1

11
−

−−
= T

TT
*λ (3.23)

35

and

() PRG
eGe

PRGeeGW* T
T

TT
1

1

11 1 −
−

−−

+
−

= (3.24)

As a result, weight values can be calculated for each evaluation criterion owing to

the equation (3.24).

3.4.2 An Optimal Solution of The Problem for Optimal β

The calculated weight values that in previous section are valid for the optimism

degree of Rc=β which is predefined before the calculations explained above.

Therefore, the weight values, which are calculated for the optimal optimism degree,

will also be the optimal solution. With this point of view, we can expand problem

(3.13) by using equation (3.12) as shown in (3.25). In other words, when we

rearrange defuzzification operation of fuzzy values ijR~ with WABL method, the

solution below will provide us both the optimal optimism degree *β and optimal

weight values *
jw for the obtained *β .

()[]

10

,...,1,1

 :s.t

min1),(

1

1

2

1

≤≤

==

→⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−+=

∑

∑ ∑

=

= =

β

βββ

mjw

pBAwL

m

j
j

n

i

m

j
iijijjW

 (3.25)

),,,(ijijijij dcba values are the fuzzy number characteristics for each evaluation

criterion value ijR~ . By substituting Rc with β , Lc with β−1 and using definitions

(3.26) and (3.27), defuzzified value ijR can be written as (3.28) by using the

Theorem 3.4.

36

)(
2
1

ijijijij cd
q
qdA −
+
+

−= (3.26)

)(
2
1

ijijijij ab
q
qaB −
+
+

−= (3.27)

ijijij BAR)1(ββ −+= (3.28)

By derivation the goal function of problem (3.25) with respect to β and equating to

zero we obtain,

()[] ()[] 02),(
1 11

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+−=

∂
∂

∑ ∑∑
= ==

n

i

m

j
ijijj

m

j
iijjijjijj BAwpBwBwAwL β

β
β W (3.29)

Thus we have,

∑ ∑

∑ ∑

= =

= =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−=
n

i

m

j
ijijj

n

i

m

j
iijjijijj

BAw

pBwBAw

1 1

22

1 1

)(

))((
β (3.30)

or in the matrix form,

**

**

(WB)AB)(AW

WB)(AP)(BW

−−

−−
−=

TT

T

β (3.31)

Lemma 3.1:),(WβL is a convex function with respect to β .

Proof:

[]

[] 0)()(

)()(),(

2
111

2
11111112

2

≥−++−+

++−++−=
∂

∂

nmnmmnn

mmm

BAwBAw

BAwBAwL

KK

KK
β
β W

 (3.32)

37

In the matrix form it could be shown as below.

[] [] 0≥−− B)W(AB)W(A T (3.33)

Where

mnnmnmnnnn

mm

mm

BABABA

BABABA
BABABA

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−−
−−−

=−

L

MOMM

L

L

2211

2222222121

1112121111

BA ,

1

2

1

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

mmw

w
w

M
W

In Figure 3.3, SSE (Sum of squared error) versus β for different data sets is

shown. It can be seen that all these functions are convex functions.

Beta values

SS
E

va
lu

es

Figure 3.3 Beta values versus SSE values for six data sets.

Any standard optimization procedure (Golden Section, Binary Section, etc.) can

be used for the calculation of β value because of convexity of),(WβL function

with respect to β values.

3.4.3 An Iterative Solution Algorithm of The Problem

In this section, a more effective iterative algorithm than classical optimization

methods (for example Golden Section method), which is explained below, is

suggested.

38

Initially, R and () PRG
eGe

PRGeeGW T
T

TT
1

1

11

0
1 −

−

−−

+
−

= are calculated as the solution

of problem (3.25) by using an initial 0β . Then, new
WB)AB)(AW

WB)(AP)(BW
−−
−−

−=
(TT

T

β is

calculated by using 0W and iterations are repeated. In other words, the optimal

solution of problem (3.25) could be obtained as related to the iteration
**

21100 WWW →→→→→→→ ββββ L . We can illustrate this procedure as an

algorithm as shown below.

Algorithm 3.1:

Step 0. Linguistic evaluations like leadership, creativity, etc. are entered for each

student,

Step 1. Numerical grade values, which coincide with the linguistic evaluations, are

entered. (P vector)

Step 2. 0>ε certainty is defined, 0β and k are initialized as 0.5 and 0 respectively.

Step 3. For the kβ value, ijR for ni ,...,1= and mj ,...,1= are calculated from

formula (3.28).

Step 4. G is calculated from formula (3.15) and then 1−G is obtained.

Step 5. *
jw for mj ,...,1= are calculated from formula (3.24).

Step 6. A and B matrices are calculated from formulas (3.26) and (3.27).

Step 7. *β value is obtained from formula (3.31).

Step 8. If εββ <− *
k then go to Step 10.

Step 9. Update k as 1+k and kβ as *β , then go to Step 3.

Step 10. *
jw for mj ,...,1= and *β are determined as optimal parameters.

Step 11. Stop.

When compared with classical optimization algorithms, this algorithm gives more

effective results. The results of this comparison are given in Chapter 5.

39

CHAPTER FOUR

GROUP CONSTITUTION PROBLEM

WITH DIFFERENT STRATEGIES

4.1 Introduction

Although the name “assignment problem” seems to have first discussed in 1952

by Votaw and Orden, in fact, it was firstly recognized in the beginning of the

development of practical solution methods and variations on the assignment problem

in Kuhn’s study (1955). Afterwards, many variations of the problem have been

studied by many researchers (Caron, Hansen, & Jaumard, 1999; Cattrysse & Van

Wassenhove, 1992; Daskalai, Birbas, & Housos, 2004; Dell’Amico & Martello,

1997; Duin & Volgenant, 1991; Ford & Fulkerson, 1966; Gross, 1959; Gupta &

Punnen, 1988; Martello, Pulleyblank, Toth, & Werra, 1984; Punnen & Aneja, 1993;

Werra, 1985). Workers’ placement problems, bin packing problems, and task

allocations problems can be given as some examples of the variations of the

assignment problems.

In real life, assignment problems are very usual. These problems contain

optimally matching the elements of two or more sets. When there are two sets, they

may be referred to as “tasks” and “agents”. For example, “tasks” may be jobs that

need to be done and “agents” the people or machines that can do them. In general,

assignment problems involves assignment each of task to individual agent. However,

these problems may have different structures according to the matching that needs to

be performed between tasks and agents such as assignment of multiple tasks to the

same agent or multiple agents to a single task. In our group constitution problem,

students must be assigned to individual groups similar to the assignment of multiple

tasks to a single agent.

In this chapter, the heuristic assignment approaches proposed in this dissertation

are examined as the objective, mathematical model, algorithm and assignment type.

In this study, for the assignment process that is taken into consideration, some

improvements also can be made with respect to the definite properties after the

40

suggested application of assignment process to the groups in fact. For example, while

assigning students to different groups, improvements to ensure approximately equal

distribution of genders within each group or to group students who understand each

other well enough etc. can be used. Similar studies of such kind of assignment

process with use of such improvements are presented in Nasibov (2004), Nasibov

and Nasibova (2003c) and Nasibov and Kınay (2006c, 2006d). However, in this

study, such improvements are not employed for the assignment process..

Besides, so as to be able to use the heuristic assignment approaches mentioned in

this chapter, first of all students have to be divided into clusters according to their

success status. Therefore, the FCM method mentioned in Chapter 2 was used as the

clustering method. The clusters that are constituted are named as success clusters.

For success clusters are identified: “very good”, “good”, “middle” and “bad”.

4.2 Random Group Constitution Strategies

Three heuristic methods are proposed so as to be used in the assignment of

students into different groups and the mathematical models of two of these methods

are proposed. These methods are named as balanced random assignment, simple

random assignment, and level-based random assignment. The working mechanisms

of these methods are detailed as follows.

4.2.1 Balanced Random Assignment

The purpose of using this assignment method is to form small groups that reflect

the features of the whole class. That is to say, regardless the group sizes, students

from all success clusters will be distributed equally between each group. The

mathematical model of this method is as follows.

Suppose we want to assign n students to k groups as balanced random. Let the

success grade of each student be shown as nipi ,...,1, = . In addition, suppose it ijx

takes value of “1” if student i is assigned to group j, otherwise it takes “0”. That is,

⎩
⎨
⎧

=
otherwise,0

 group toassigned is student if,1 ji
xij (4.1)

41

There exist the following two constraints in the assignment of n students to m

groups as balanced random:

a. A student can be assigned to only one group. That is to say,

nix
k

j
ij ,...,1,1

1
==∑

=

. (4.2)

b. Group sizes have to be approximately equal. Therefore, the student numbers

in each group have to be as much as the upper limit of kn at the most and

the lower limit of kn at the least.

kj
k
nx

k
n n

i
ij ,...,1,

1
=⎥⎥

⎤
⎢⎢
⎡≤≤⎥⎦

⎥
⎢⎣
⎢ ∑

=

 (4.3)

So as to carry out balanced random assignment or, in other words, to assign

students to small groups to reflect the structure of the class, the solution which

minimizes the sum of squares of the difference between group averages and the

general average of the class would be the optimum solution. That is to say,

mathematically, the optimization of the problem (4.4) is required under the

constraints (4.1)-(4.3). The problem (4.4) is shown with the constraints as follows.

min

2

1

1 →

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−∑
∑

=

=
k

j j

n

i
iij

x
n

px
 (4.4)

s. t.

nix
k

j
ij ,...,1,1

1
==∑

=

kj
k
nx

k
n n

i
ij ,...,1,

1
=⎥⎥

⎤
⎢⎢
⎡≤≤⎥⎦

⎥
⎢⎣
⎢ ∑

=

{ } kjnixij ,...,1,,...,11,0 ==∈

In this kind of assignment problems, since it is mostly not possible even to

describe the problem in any available software programmes, heuristic solution

algorithms are developed for this and other proposed assignment methods. Thus, the

42

algorithm of the heuristic approach developed for the solution of this mathematical

model is as follows.

Algorithm 4.1:

Step 0. The numerical grade evaluations of the students are calculated.

Step 1. Success clusters are constituted for students by using clustering algorithm.

Step 2. Students are selected randomly from the success cluster “Very Good” and

they are assigned to groups one by one. When the number of groups to be constituted

is completed, assignment is carried on to the first group again and this continues.

Step 3. Students are selected one by one randomly from the success cluster “Good”

and assignment is carried on where the assignment remained. The same procedure is

carried out also for the success clusters “Middle” and “Bad” and the assignment

procedure is terminated.

The demonstration of the method is as in Figure 4.1.

...

Group 1 Group k...

Figure 4.1 Working way of Balanced

Random Assignment method

For example, suppose that 19 students will be assigned to 4 groups. Let 5 of these

students belong to the cluster “Very Good”, 3 to “Good”, 8 to “Middle” and 3 to

“Bad”. The assignment of the students according to this assignment principle would

be as in Table 4.1.

43

Table 4.1 Assignment results according to Balanced Random Assignment method

Group 1 Group 2 Group 3 Group 4
VG
VG
M
M
B

VG
G
M
M
B

VG
G
M
M
B

VG
G
M
M

4.2.2 Simple Random Assignment

In this assignment method, the assignment of students to the groups is completely

random. That is to say, without paying attention in which cluster the students are,

students are assigned to groups completely in a random manner. The only constraint

in this procedure is again that the number of students in each group to be

approximately equal. Also according to the simple random assignment method, the

assignment type is identical to the previous method. The algorithm of this method is

as follows.

Algorithm 4.2:

Step 0. The numerical grade evaluations of the students are calculated.

Step 1. Without using any clustering procedures, students are chosen randomly one

by one and assigned to groups respectively.

4.2.3 Level-Based Random Assignment

In the level-based random assignment method, provided that students are again

selected randomly from within each success cluster as in balanced random

assignment method, assignment procedure is carried out in a way that students with

similar grades will gather in one group. Therefore, the aim of this method is to form

groups from students with similar grades.

The mathematical model of this assignment method is given in problem (4.5). The

objective function of this method is based on the principle of maximization of the

squares of the differences between the total grades in each group. The constraints are

identical to those of problem (4.4).

44

max

2

1

1 →

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−∑
∑

=

=
k

j j

n

i
iij

x
n

px
 (4.5)

s. t.

nix
k

j
ij ,...,1,1

1
==∑

=

kj
k
nx

k
n n

i
ij ,...,1,

1
=⎥⎥

⎤
⎢⎢
⎡≤≤⎥⎦

⎥
⎢⎣
⎢ ∑

=

{ } kjnixij ,...,1,,...,11,0 ==∈

The algorithm of this heuristic approach proposed for the solution of this model is

as follows.

Algorithm 4.3:

Step 0. The numerical grade evaluations of the students are calculated.

Step 1. Success clusters are formed for students by using clustering algorithm.

Step 2. Students are selected randomly from the success cluster “Very Good” and

assigned one by one to the same group. When the number of students to be assigned

to the group is attained, the following students are assigned to the following group.

Step 3. Students are selected randomly one by one from the success cluster “Good”

and the assignment procedure is carried on from where the assignment remained. The

same procedure is carried out for the success clusters “Middle” and “Bad” as well

and the assignment procedure is terminated.

In this method, the assignment type of students to groups is a little bit different

from the first two methods and as in Figure 4.2. Furthermore, the results over the

same example given at the end of section 4.2.1 according to this assignment principle

would be as in Table 4.2.

45

...

Group 1 Group k...

Figure 4.2 Working way of Level-

Based Random Assignment

Table 4.2 Assignment results according to Level-Based Random Assignment

Group 1 Group 2 Group 3 Group 4
VG
VG
VG
VG
VG

G
G
G
M
M

M
M
M
M
M

M
B
B
B

4.3 Deterministic Group Constitution Strategies

Two heuristic methods are proposed so as to be used in the assignment of students

in groups and their respective mathematical models are formulated. These methods

are named balanced assignment and level-based assignment. The working

mechanisms of these methods are summarized as below.

4.3.1 Balanced Assignment

The aim of using this assignment method is similar to the aim of using the

balanced random assignment method. In this method, it is intended to form student

groups which would represent the characteristics of the whole class much better than

random balanced assignment. Briefly, it is aimed at reaching a closer result to

optimum.

46

The mathematical model is given in (4.6). The objective function of this method is

based on the principle of minimization of the squares of the differences between the

total grades in the groups constituted.

min
2

1

1

2

111

1

2
21

→⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∑ ∑ ∑∑

=

−

= ==

k

k

k

k

n

i
iik

n

i
iik pxpx (4.6)

 s. t.

nix
k

j
ij ,...,1,1

1
==∑

=

kj
k
nx

k
n n

i
ij ,...,1,

1
=⎥⎥

⎤
⎢⎢
⎡≤≤⎥⎦

⎥
⎢⎣
⎢ ∑

=

{ } kjnixij ,...,1,,...,11,0 ==∈

Actually, the objective functions of problem (4.4) and (4.6) are the same. The

algorithm of the heuristic approach developed for the solution of this mathematical

model is as follows.

Algorithm 4.4:

Step 0. The numerical grade evaluations of the students are calculated.

Step 1. All students are arranged in descending order according to their grades.

()()2()1(nppp ≤≤≤ K)

Step 2. The first student is assigned to the first group, the second one is assigned to

the second group etc. until student k is assigned to the last group k. After this, the

next student is assigned to the last group k and the following students are continued

to be assigned towards the first group. The assignment procedure is carried on in this

way and all students are assigned to groups.

To understand this algorithm better, the assignment type is demonstrated in Figure

4.3.

47

...

Group 1 Group k...

Figure 4.3 Working way of

Balanced Assignment

Therefore, the groups formed according to this assignment principle will be as in

Table 4.3. Since all students are arranged in descending order, the solution of this

assignment method is unique.

Table 4.3 Assignment results according to Balanced Assignment

Group 1 Group 2 Group 3 Group 4
p(1)

p(8)
p(9)
p(16)
p(17)

p(2)

p(7)

p(10)

p(15)

p(18)

p(3)

p(6)

p(11)

p(14)

p(19)

p(4)

p(5)

p(12)

p(13)

To compare the validity of the grouping by using this method an error ratio

calculated. This is obtained by the ratio of the difference between the highest and

lowest of the group averages to the highest and lowest of the student grades and the

results are given under the title of “Group Constitution Results” in Chapter 5.

jiji

ji

ji

pp

pp

−

−
=

,

,

max

max
RatioError (4.7)

In this equation, ip and jp values indicate the average grade of the groups

constituted as a result of assignment when kji ,...,1, = and ip and jp values

indicate the grades of the students when kji ,...,1, = .

48

4.3.2 Level-Based Assignment

In the final method, the aim is identical with the level-based random assignment

method. However, since students are arranged according to the their grades here, like

in the previous method, students with much similar grades will gather.

The objective function in this method is based on the maximization of the sum of

squares of the differences between the total grades of the students in each group.

Therefore, the mathematical model of the level-based assignment approach is as in

problem (4.8).

max
2

1

1

2

111

1

2
21

→⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∑ ∑ ∑∑

=

−

= ==

k

k

k

k

n

i
iik

n

i
iik pxpx (4.8)

 s. t.

nix
k

j
ij ,...,1,1

1
==∑

=

kj
k
nx

k
n n

i
ij ,...,1,

1
=⎥⎥

⎤
⎢⎢
⎡≤≤⎥⎦

⎥
⎢⎣
⎢ ∑

=

{ } kjnixij ,...,1,,...,11,0 ==∈

Algorithm 4.5:

Step 0. The numerical grade evaluations of the students are calculated.

Step 1. All students are arranged in descending order according to their grades.

()()2()1(nppp ≤≤≤ K)

Step 2. The assignment starts by filling the first group with students until this group

is full. When the number of students to be assigned to the group is reached, the

following students continue to be assigned to the following group.

The group results according to this assignment principle for the same example

will be as in Table 4.4. Since all students are arranged in descending order, the

49

solution of this assignment method is also unique, like the solution of the previous

method.

Table 4.4 Assignment results according to Level-Based Assignment

Group 1 Group 2 Group 3 Group 4
p(1)

p(2)
p(3)
p(4)
p(5)

p(6)

p(7)

p(8)

p(9)

p(10)

p(11)

p(12)

p(13)

p(14)

p(15)

p(16)

p(17)

p(18)

p(19)

50

CHAPTER FIVE

APPLICATIONS AND EXPERIMENTAL RESULTS

5.1 Introduction

In this chapter, the analysis results concerning the efficiency of the iterative

method proposed for the student performance evaluation are given. The efficiency

results for the balanced assignment method, one of the assignment strategies

proposed for the constitution of student groups, have been obtained and examined by

using data in different sample sizes and according to different numbers of group

assignments. Furthermore, besides numerical results, Optimal Weights Evaluation

and Group Constitution programs, implemented in Borland C++ Builder 6.0 SDK,

are explained in detail.

5.2 Performance Evaluation Tools and Experimental Results

5.2.1 Performance Evaluation Tools

In this section, detailed information is given concerning the forms, functional

modules and informative components constituted in the Optimal Weights Evaluation

program.

5.2.1.1 Forms

When the program starts to run, the window in Figure 5.1 appearson the screen.

Student data is entered in this window. This data can be entered either one by one

for each student or form a file consisting this information for each student. Provided

that data is entered one by one, “Number of Students” field has to be populated first.

For every “Student No” entered, all the linguistic evaluation results and the

equivalent graduations are entered and “Save” button is clicked. Owing to this

procedure, data will be saved as lines into c:\RRR.txt, for each student. The “Student

No” field has to be populated with increments of one for each student to be entered

later on. “Show” button can be used at any time to display the contents of the flat file

51

in the text box on the right handside of the form. The information to be displayed

here will show the numerical results of the students’ linguistic evaluations and their

grade values which were calculated on the basis of the “Beta” value determined

previously.

In order to calculate the parameters representing the information entered, it is

required to push “Optimize” button, which performs the Algorithm 3.1. As a result of

this procedure, parameters will have been determined for the student evaluations that

have been entered, the calculated value will have been transferred to the “Beta” value

on the window and at the same time, these results will have been transferred to

“Grade Calculation” part in order to be used in the required calculations. The image

of the program, where the parameters have been estimated by pushing “Optimize”

button after the data are entered one by one, is as in Figure 5.2.

Figure 5.1 Opening window of the Optimal Weights Evaluation program.

52

Figure 5.2 Image after the information is read from the file and the “Optimize” button is pushed.

If the data is to be read from the flat file, first of all, the data has to be encoded as

shown in Figure 5.3. This file must be saved as c:\RRR.txt. Each line in this file is

composed of students order number, the grade evaluation result of the student,

followed by five columns of encoded results of performance evaluation criteria. The

encoding procedure is in the form of Absent=0, Middle=1 and Strong=2 for the first

two criteria while it is in the form of Absent=0, Few=1, Middle=2, Good=3 and

Strong=4 for the other three criteria. After the file is created in this way, data

matrices are populated by clicking the “Read” button. Later on, as in the previous,

“Optimize” button is pushed and optimum optimism degree, β , and mjw j ,1, =

optimal weight values are determined owing to the iterative method.

Figure 5.3 Image of the file where
encoded student information exists.

53

After “Golden Section” activating the button, the new screen in Figure 5.4 will

appear. Data to be used for obtaining the optimum optimism degree will be entered

in this screen regardless the way the student data is entered. When the “Golden

Section” button on this form is activated, the result will be as in Figure 5.5. This

window has been implemented so as to debug the iterative method proposed in this

dissertation work according to the well-known Golden Section method.

Figure 5.4 Golden Section window.

Figure 5.5 Image after the information is read from the file and the “Golden Section” button is pushed.

54

After the parameter calculation procedure by the iterative method, in order to

automatically carry out the new student performance evaluations by using the

obtained values, it is required to click the “Grade Calculation” button on the Optimal

Weights Evaluation form. When this button is clicked, the form in Figure 5.6 appears

on the screen. As it is observed, the result of the optimum optimism degree on this

screen appears next to the “Beta” field and the weight values determined for each

criterion appear at the end of the each linguistic evaluation of its respective criteria.

Later, this optimism degree and weight values will be used in the new grade

calculations.

Firstly, the number of students, for which grade evaluation will be carried out, is

entered into the “Number of Students” field. Then, name and surname is entered into

the “Name” field for the student and marking is carried out concerning the linguistic

evaluation criteria. By clicking the “Save” button, the student data will be saved and

the student will be graded using this entered data which will also be displayed on the

screen. Evaluation results can be obtained in the same way for all students until all

students are entered. “Show” button can be used at any time to display all the

evaluation results as a list as shown in Figure 5.7.

Figure 5.6 Grade Calculator window.

55

Figure 5.7 Image after information is saved and “Show” button is pushed.

5.2.1.2 Functional Modules

Following are the functional modules assigned to the corresponding buttons on

Optimal Weights Evaluation, Golden Section and Grade Calculator forms and their

functions:

Save: It saves the results of linguistic performance evaluation for students and the

numerical grade values given in return for them in c:\ RRR.txt file.

Show: Writes the defuzzified values of the results of the linguistic performance

evaluation by using “Beta” value, determined previously, from the data saved in the

flat file and the single numerical grade value given in return for these values on the

right screen.

Read: Reads the previously created flat file which contains the students’ data and

populates the concerned matrices with this data for future calculations.

Optimize: In the light of the available information, it calculates the values of the

parameters by using the iterative method.

Golden Section: “Golden Section” button on the Optimal Weights Evaluation

form enables transition to the Golden Section program. The “Golden Section” button

56

after transitioning to this program enables the estimation of parameters by using the

Golden Section method.

Grade Calculation: Similar to the “Golden Section” button, this button enables

transition from Optimal Weights Evaluation window to Grade Calculator window.

Write: Saves all results displayed on the right hand side of the screen into the

c:\RRRMemolines.txt file.

Reset: Clears the contest of the flat file c:\RRR.txt.

Result: Saves the obtained optimum optimism degree and weight values into the

c:\RRRresult.txt file.

5.2.1.3 Informative Components

Number of Students: Represents the size of the dataset, in other words, the class

size.

Student No: Indicates the order of the student whose data have been entered.

Beta: The value of optimism degree used during the defuzzification procedure of

the linguistic performance evaluations is entered. Since this value can have values at

the interval of []1,0 , midpoint value has been entered as default.

Grade: While data are entered separately, the information about the numerical

grade value given as a result of the linguistic performance evaluations of each

student is written.

Beta1 and Beta2: Initially, they include 0.382 and 0.618 values respectively.

Then, they are changed automatically by using the interval determining formula in

Golden Section method.

57

Name: It enables entering the name of the student whose numerical grade value

will be determined in return for linguistic performance evaluations.

5.2.2 Performance Evaluation Results

Our suggested method has been developed as a software application in C++

algorithmic language and 6 data sets have been used in our experiments. 5 lecturers

have been asked to assign a numerical grade for 20 students’ linguistic evaluations

on a set of criteria and these results are presented in Table 5.1.

Table 5.1 Five data sets obtained from 5 lecturers.
Evaluation Criteria Lecturers’ Grade Evaluations

L C R.S R D.S Lec-1 Lec-2 Lec-3 Lec-4 Lec-5
1 M M F F M 40 45 40 40 52
2 M S G G G 80 75 80 65 80
3 A A F F F 30 15 15 15 32
4 A M M M F 45 45 35 35 48
5 S S G G S 85 90 80 90 92
6 S S S S S 100 100 100 100 100
7 M A F F M 30 25 30 30 44
8 A A F M F 30 25 20 20 36
9 S M G G G 75 75 75 75 80
10 A M F M M 40 40 35 35 48
11 M M G G S 75 70 70 50 76
12 A A A A A 0 10 0 0 20
13 M M S S S 80 75 85 80 84
14 M M M M M 50 50 40 50 60
15 S S M M S 80 75 80 80 84
16 M S M M G 75 70 70 65 72
17 A S M G M 70 65 60 55 64
18 A A A F F 20 30 10 10 28
19 S S F F S 60 75 65 70 76

St
ud

en
t N

o

20 S M G M G 75 70 70 70 76
L=Leadership, C=Creativity, R.S=Research Skill, R=Responsibility, D.S=Discussion Skill.
A=Absent, F=Few, M=Middle, G=Good, S=Strong.

A common optimism degree and a weight value for each criterion are obtained by

analyzing the 5 lecturers’ relevant data sets. The following methods; WABL, COA

and MOM, have been applied to each data set individually and to the aggregate data

set, SET-ALL. The details of process are presented in Table 5.2. In this table, the

methods which give the minimum least square errors are highlighted in bold. As

illustrated in the table, the value of q can be modified and therefore WABL can

produce better results than MOM and COA methods.

58

Table 5.2 The results of WABL, COA and MOM methods for six data sets.

 *
1w *

2w *
3w *

4w *
5w *β SSE

WABL)0(=q 0.0096 0.3058 0.4862 -0.0186 0.2171 0.6957 632.7768

WABL)10(=q 0.0740 0.2735 0.3326 0.1589 0.1610 1.0000 509.2870

WABL)20(=q 0.0671 0.2662 0.3024 0.1790 0.1852 1.0000 548.9734
COA -0.1367 0.2676 0.4070 -0.0292 0.4912 - 898.5181

SE
T

-1

MOM 0.0083 0.2375 0.2607 0.1736 0.3199 - 619.8824
WABL)0(=q 0.1615 0.3684 0.1995 0.1079 0.1627 0.6395 545.0104

WABL)10(=q 0.2065 0.3086 0.0799 0.3064 0.0987 0.9536 326.3041

WABL)20(=q 0.2007 0.3001 0.0604 0.3242 0.1146 1.0000 334.6471
COA 0.0432 0.3430 0.1474 0.0736 0.3928 - 788.8690

SE
T

-2

MOM 0.1541 0.2847 -0.0325 0.3598 0.2341 - 450.6970
WABL)0(=q -0.0084 0.2797 0.6198 -0.2660 0.3748 0.5020 742.3373

WABL)10(=q 0.0899 0.2622 0.5105 -0.0913 0.2288 0.5975 374.5684

WABL)20(=q 0.0925 0.2588 0.4994 -0.0764 0.2257 0.6077 351.8783

WABL)160(≥q 0.0936 0.2549 0.4859 -0.0609 0.2265 0.6050 ≤ 331.0163
COA -0.0521 0.2788 0.6524 -0.3088 0.4297 - 840.3809

SE
T

-3

MOM 0.0884 0.2516 0.4725 -0.0566 0.2441 - 331.0723
WABL)0(=q 0.2959 0.2992 0.2798 0.0136 0.1114 0.5230 948.9585

WABL)10(=q 0.3388 0.2714 0.1660 0.2257 -0.0018 0.6473 402.4287

WABL)20(=q 0.3374 0.2668 0.1572 0.2415 -0.0030 0.6817 370.6944

WABL)35(≥q 0.3362 0.2644 0.1525 0.2490 -0.0021 0.7014 ≤ 356.3858
COA 0.2478 0.2929 0.3116 -0.0525 0.2002 - 1155.5135

SE
T

-4

MOM 0.3193 0.2595 0.1196 0.2654 0.0362 - 357.4269
WABL)0(=q 0.2265 0.2313 0.1783 0.1768 0.1871 0.8922 32.4472

WABL)10(=q 0.1514 0.1714 -0.0867 0.3935 0.3704 1.0000 534.5341

WABL)20(=q 0.1401 0.1636 -0.1117 0.4118 0.3963 1.0000 672.0539
COA -0.0268 0.1455 -0.0329 0.1909 0.7233 - 1038.6621

SE
T

-5

MOM 0.0600 0.1345 -0.1061 0.3507 0.5610 - 1055.4155
WABL)0(=q 0.1372 0.2974 0.3530 0.0024 0.2099 0.6512 4959.6541

WABL)10(=q 0.1852 0.2607 0.2341 0.1872 0.1328 0.9796 3732.1042

WABL)20(=q 0.1776 0.2538 0.2078 0.2072 0.1536 1.0000 3790.1983
COA 0.0151 0.2656 0.2971 -0.0252 0.4474 - 6145.2656 SE

T
-A

L
L

MOM 0.1260 0.2336 0.1428 0.2185 0.2791 - 4332.4927

Optimum solutions by using both our iterative method and the well-known

Golden Section method are obtained for different certainty levels for comparing the

effectiveness of two methods. Comparative table is shown below (Table 5.3).

59

Table 5.3 Number of iterations of the suggested iterative)0(=q and Golden Section methods.
Iterations Certainty level Method

SET1 SET2 SET3 SET4 SET5 SET-ALL
Suggested Iterative 9 9 2 6 9 9 001.0=ε

Golden Section 15 15 15 15 15 15
Suggested Iterative 12 12 6 10 11 12 0001.0=ε

Golden Section 20 20 20 20 20 20
Suggested Iterative 15 15 10 14 14 15 00001.0=ε

Golden Section 24 24 24 24 24 24
Suggested Iterative 18 18 14 17 17 18 000001.0=ε

Golden Section 29 29 29 29 29 29

The comparison of our iterative method and Golden Section method is performed

with sign test instead of Wilcoxon sign rank test because of the asymmetrical

distribution of data. As shown in Table 5.3, when the results are investigated

separately for each certainty level, the number of iterations in Golden Section

method remains constant. On the other hand, the number of iterations changes in our

iterative method. Although, the number of iterations increases as certainty level

decrease for both methods, our iterative method needs less iteration in comparison to

Golden Section. When significance of the difference between the numbers of

iterations in both methods is investigated by using the sign test, the result is

significant with 0313.0=p at 05.0=α level. As a result, it can be said that our

proposed method can produce more optimal solutions in less number of iterations

when compared to Golden Section method.

Table 5.4 The results of iterative method for SET-ALL data set with 10=q .

Iteration
numbers

β 5,1, =jw j SSE

1 0.5000 0.11917 0.23974 0.15960 0.18827 0.29322 4451.0432
2 0.7369 0.15512 0.25160 0.18947 0.19484 0.20898 3927.0836
3 0.8637 0.17175 0.25678 0.21105 0.19263 0.16779 3777.8210
4 0.9260 0.17918 0.25900 0.22304 0.19012 0.14867 3742.0216
5 0.9552 0.18248 0.25997 0.22896 0.18862 0.13996 3734.1757
6 0.9685 0.18396 0.26039 0.23174 0.18787 0.13603 3732.5293
7 0.9746 0.18463 0.26058 0.23302 0.18752 0.13426 3732.1907
8 0.9773 0.18492 0.26067 0.23359 0.18736 0.13346 3732.1217
9 0.9786 0.18506 0.26070 0.23386 0.18728 0.13310 3732.1077
10 0.9791 0.18512 0.26072 0.23397 0.18725 0.13294 3732.1049
11 0.9794 0.18514 0.26073 0.23403 0.18723 0.13287 3732.1043
12 0.9795 0.18516 0.26073 0.23405 0.18723 0.13283 3732.1042
13 0.9796 0.18516 0.26073 0.23406 0.18723 0.13282 3732.1042

Demonstration of proposed iterative method applied on SET-ALL dataset for

0001.0=ε can be seen in Table 5.4. Starting from 5.0=β , the suggested iterative

procedure obtains the *β and 5,1,* =jw j values as a target-driven process.

60

5.3 Group Constitution Tools and Experimental Results

5.3.1 Group Constitution Tools

In this section, detailed information is given concerning the forms, functional

modules, and informative components constituted in Group Constitution program.

5.3.1.1 Forms

So as to constitute student groups under different strategies, firstly, all students

have to be divided into clusters according to their success status. In this section of the

work, the program entitled Visual Clustering 2.0, constituted in the work of Ulutagay

(2004) and Nasibov and Ulutagay (2006a), is used in order to determine which

student belongs to which group. Therefore, the completion of clustering procedure

will be the first step towards constituting the student groups.

After the completion of the procedure of clustering students according to their

success status, this information is transferred to a file entitled c:\\clusters.txt as in

Figure 5.8. The information taking place on the columns of the files is the student

order number, information about which student belongs to which cluster, the degree

of belongingness of the student to the cluster and finally information about the grade

value the student receives from that module respectively.

Figure 5.8 Image of file where
encoded student information exists
after the clustering procedure.

61

The next step is the running of Group Constitution program. When the program is

run, the first thing that appears on the screen is the window in Figure 5.9

Figure 5.9 Opening window of the Group Constitution program.

Since the data entry in the program is carried out only through reading from the

file, it is required first to push “Read” button. The program image after pushing the

button is as in Figure 5.10. In conclusion, we can see from “Number of Students”

part that there are 61 students in the file. Furthermore, it lists the students, who have

been divided into 4 clusters according to the clustering procedure, in descending

order in the form of “Very Good”, “Good”, “Middle” and “Bad” for each cluster

according to their average success. Information about how many students there are in

each group is given next to each cluster (Figure 5.10).

Figure 5.10 Image after the information is read from the file by “Read” button.

62

 After the information about the students is read, student groups can now be

constituted in the desired number and by using the desired strategy. Firstly, the

number of groups to be constituted on “Number of Group” part must be determined.

Then, group constitution strategy, which is appropriate for the objective, is

determined from “Assignment Method” part, which performs one of the appropriate

algorithm of Algorithms 4.1-4.5. As it is also mentioned above, the number of

students in each student group will be approximately equal. For instance, when we

want to constitute 8 student groups by the Balanced Random method, the resulting

table would be as in Figure 5.11. Students are here selected randomly from each

cluster according to the “Balanced Random” assignment principle and assigned to

groups on the condition that they are approximate equal in number. Therefore, no

matter what the number of groups constituted in this assignment method is,

approximately identical number of students will take place in each group from each

cluster.

 Figure 5.11 Result of assignment after the number of groups and the assignment method are determined. 63

64

5.3.1.2 Functional Modules

Followings are the functional modules assigned to the corresponding buttons in

the Group Constitution program and their functions:

Read: Reads the previously created flat file c:\clusters.txt, which contains the

students’ data and populates to the concerned matrices with this data for future

calculations.

Run: It carries out the assignment procedure of students to groups according to

the selected assignment method.

5.3.1.3 Informative Components

Number of Students: Represents the size of the dataset, in other words, the class

size.

Number of Group: How many groups the students will be divided into is

determined on this information box.

5.3.2 Group Constitution Results

In order to be used in balanced assignment method, 1000 data have been created

from each ()216,50N , ()210,70N and ()3,14Gamma distribution with a view to

reflecting grade values between 0-100 and samples have been constituted from these

populations in different sample sizes by selecting randomly without replacement of

data. Sample sizes have been determined as 30, 50, 80 and 100 and for each sample

size, twenty data sets have been selected from the population. Then the group

averages have been obtained by carrying out different numbers of group assignments

from each data set constituted. Summary tables have been constituted for the sample

sizes 30, 50, 80 and 100 for each distribution, which have been constituted according

to different group numbers (Appendix A.1–A.12). In these tables, ipmin , jpmax ,

)min(max ji pp − and
jiji

ji

ji

pp

pp

−

−

,

,

max

max
values take place. So as to compare the validity

of these obtained results, the comparison approach in Equation (4.7) has been used.

The results obtained as a result of this approach are as in Table 5.5.

65

The reason why different group numbers are used for each sample size in

Appendix A.1–A.12 is the desire to constitute student groups in significant sizes

since, as it also takes place in the title of the work, student groups are arranged in 7

to 9 people in the problem based learning sessions for the problem based learning

system applied in the Department of Statistics at Dokuz Eylül University. Besides

this, trials have been carried out also for 5-, 6- or 10-people group constitutions so as

to be an example.

Table 5.5 Summary table of error ratio averages.

30=n 3=m 4=m 5=m 6=m

)16,50(2N 0.0174 0.0948 0.0328 0.0825

)10,70(2N 0.0188 0.0958 0.0337 0.0811
)3,14(Gamma 0.0234 0.0969 0.0419 0.0897

50=n 5=m 6=m 7=m 8=m

)16,50(2N 0.0167 0.0599 0.1009 0.0796

)10,70(2N 0.0200 0.0565 0.1099 0.0732
)3,14(Gamma 0.0227 0.0431 0.1031 0.0573

80=n 8=m 9=m 10=m 11=m

)16,50(2N 0.0145 0.0605 0.0205 0.1006

)10,70(2N 0.0193 0.0589 0.0213 0.1054
)3,14(Gamma 0.0264 0.0544 0.0301 0.1042

100=n 10=m 11=m 12=m 13=m

)16,50(2N 0.0172 0.0840 0.0589 0.0905

)10,70(2N 0.0156 0.0881 0.0582 0.0937
)3,14(Gamma 0.0245 0.0858 0.0448 0.0943

As also observed in Table 5.5, the means of the error ratio values are calculated in

this way for each sample size and each group number. When this table is observed,

the fact that the highest value among the means of error ratio is 0.1099 shows that

there is %11 difference among group means. Actually, we also observe that this ratio

has quite lower values than %11. Nevertheless, if an optimum solution had been

obtained instead of the heuristic solution, these results wouldn’t have had “0” value

again since it is the discrete optimization problem. Therefore, this algorithm in fact

gives closer results to the optimal solution.

66

CHAPTER SIX

CONCLUSIONS

Fundamentally two mathematical systems are suggested in this work. The first

one is the student performance evaluation system while the second one is the student

group constitution system in parallel to different strategies. Moreover, in Borland

C++ Builder 6.0 program, the algorithms of both systems have been constituted. The

results of the work have been published as Nasibov and Kınay (2007a, 2007b, 2007c,

2007d) articles.

Evaluation of student performances, in other words, their gradations can be

carried out by different lecturers, hence as a result of each lecturer having different

opinions the same student may recieve different grades from different lecturers.

Furthermore, these evaluations were carried out in a way that only the concerned

lecturer gave a single numerical value to the student on his observations.

Nevertheless, the student performance evaluation system was suggested as a result of

the necessity of carrying out such evaluations through linguistic terms, which are

more inclined to the human way of thinking, and later obtaining the numerical results

of these evaluations. Hence, a mathematical model is suggested so as to eliminate the

subjective cases as much as possible occurring during evaluation or, in other words,

to create a common and unbiased evaluation process by joining the opinions of all

lecturers and to estimate parameters. The solution of this model is provided by an

iterative algorithm. Thanks to this model, the performance evaluations calculated

against linguistic evaluations by using estimated parameters reflecting the evaluation

strategy of all of the lecturers, whose knowledge and experience will be taken into

consideration, will be the result of a common decision system and will reflect not

only one but all decision-makers' opinion.

Compared to other defuzzification methods, the superiority of the WABL method,

used in calculations of the iterative method as a basis for the defuzzification of fuzzy

data, or in other words, the linguistic variables, has been observed by numerical

results. Furthermore, it has been tested and shown that the suggested iterative method

67

reaches the optimum parameter estimation in fewer steps when compared to the

Golden Section method as the representative of classical optimization methods.

The main purpose that constitutes the title of this work is to form student groups

in parallel to different strategies. The most important information used in forming

these student groups is the student performance evaluation results. Therefore, by

using the performance evaluation system suggested in this work, the constitution of

student groups automatically in parallel to different strategies will give better results

within a shorter period of time.

In conclusion, five heuristic assignment methods have been suggested concerning

the creation of student groups in parallel to different strategies. Moreover, the

mathematical model and algorithms for four of these methods have been provided. It

has been observed that the results of one of the suggested assignment methods,

balanced assignment method, gave quite effective results like the integer linear

programming method and further provide these results within a very short period of

time. Due to the identification of the problem, while the division of large groups into

smaller groups sometimes cannot be carried out practically by ready integer linear

programming software, this does not become a problem thanks to the suggested

heuristic assignment method.

Briefly, in this work,

1. For student performance evaluation, the evaluation criteria have been

determined and the evaluation form has been created by taking the opinions

of the lecturers.

2. For student performance evaluation, a fuzzy-logic-based approach and an

iterative algorithm have been suggested.

3. This method provides a common and unbiased evaluation mechanism for

all students subjected to evaluation.

4. So as to find the optimal solution, formulae have been given and optimality

has been proven.

5. Various defuzzification methods such as WABL (Weighted Averages

Based on Levels), COA (Center of Area) and MOM (Mean of Maxima)

68

have been used in the defuzzification of fuzzy linguistic values and

comparative analyses have been carried out. The result of the comparative

analyses has shown that the WABL method used is more effective than

other defuzzification methods.

6. It has been proven as a result of experiments that the iterative solution

algorithm is much more effective when compared to the Golden Section

algorithm which is a representative of the classical optimization algorithms.

7. The mathematical formulation of group constitution problems based on

various strategies such as balanced random and level-based has been given

and the heuristic solution algorithms have been suggested.

8. The programs for the student performance evaluation and group

constitution with various strategies algorithms have been implemented in

the Borland C++ Builder SDK and calculations have been made. The result

of the calculations has showed that the methods used are effective.

For further studies, the improvements to the student groups formation process

according to specific characteristics of students, for instance their approximate equal

distribution according to their gender, their reevaluation according to the harmony

among students, in other words, preventing students, who cannot get on well with

each other, to get into the same group, can be studied. In addition, as a further work,

a system can be developed in which the course success status of students are grouped

according to their courses and which will enable them to be directed for the choice of

profession close to the fields where they are successful.

69

REFERENCES

Babuška, R. (2001). Fuzzy and neural control-DISC course lecture notes,

Netherlands.

Bardossy, A., Duckstein, L., & Bogardi, L. (1993). Combination of fuzzy numbers

representing expert opinions, Fuzzy Sets and Systems, 57, 173-181.

Bezdek, J.C. (1974). Fuzzy mathematics in pattern classification, Ph.D. Thesis,

Applied Mathematics Center, Cornell University, Ithaca.

Bezdek, J.C. (1975). Mathematical models for systematics and taxonomy, In proc. 8th

Int. Conf. On Numerical Taxonomy, San Fransisco, 143-166.

Bezdek, J.C. (1981). Pattern recognition with fuzzy objective function algorithms,

Plenum Press, New York.

Bobrowski, L., & Bezdek, J.C. (1991). C-means clustering with 1I and ∞I norms,

IEEE Transactions on Systems, Man, and Cybernetics, 21, 545-554.

Bonder, C.G.E., Graan, J.G., & Lootsma, F.A. (1989). Multicriteria decision analysis

with fuzzy pairwise comparisons, Fuzzy Sets and Systems, 29, 133-143.

Caron, G., Hansen, P., & Jaumard, B. (1999). The assignment problem with seniority

and job priority constraints, Operations Research, 47(3), 449-454.

Cattrysse, D.G., & Van Wassenhove, L.N. (1992). A survey of algorithms for the

generalized assignment problem, European Journal of Operational Research,

60(3), 260-272.

Chen, C-T. (2000). Extensions of the TOPSIS for group decision-making under

fuzzy environment, Fuzzy Sets and Systems, 114, 1-9.

70

Daskalai, S., Birbas, T., & Housos, E. (2004). An integer programming for a case

study in university timetabling, European Journal of Operational Research,

153(1), 117-135.

Dell’Amico, M., & Martello, S. (1997). The k-cardinality assignment problem,

Discrete Applied Mathematics, 76(1-3), 103-121.

Duin, C.W., & Volgenant, A. (1991). Minimum deviation and balanced optimization:

A unified approach, Operations Research Letters, 10(1), 43-48.

Dunn, J.C. (1973). A fuzzy relative of the ISODATA process and its use in detecting

compact well-separated clusters, Journal of Cybernetics, 3(3), 32-57.

Dunn, J.C. (1974). Well-separated clusters and optimal fuzzy partitions, Journal of

Cybernetics, 4, 95-104.

Ford Jr., L.R., & Fulkerson, D.R. (1966). Flows in Networks, Princeton University

Press, Princeton NJ.

Fukuyamo, Y., & Sugeno, M. (1989). A new method for choosing the number of

clusters for the fuzzy c-means method, In proc. 5th Fuzzy System Symp., 247-250.

Gordon, A.D. (1981). Classification, University Press, Cambridge.

Gross, O. (1959). The bottleneck assignment problem, The RAND Symposium on

Mathematical Programming (Linear Programming and Extension), The Rand

Corporation, Paper P-1630, March 16-20.

Gupta, S.K., & Punnen, A.P. (1988). Minimum deviation problems, Operations

Research Letters, 7(4), 201-204.

Han, J., & Kamber, M. (2001). Data mining concepts and techniques, Morgan

Kaufmann Publishers.

71

Hathaway, R.J., & Bezdek, J.C. (1993). Switching regression models and fuzzy

clustering, IEEE Transactions on Fuzzy Systems, 1, 195-204.

Hsu, H.M., & Chen, C.T. (1996). Aggregation of fuzzy opinions under group

decision making, Fuzzy Sets and Systems, 79, 279-285.

Kahraman, C., Ruan, D., & Doğan, I. (2003). Fuzzy group decision-making for

facility location selection, Information Sciences, 157; 135-153.

Klir, G.J., & Folger, T.A. (1988). Fuzzy sets, uncertainty, and information,

Prentice & Hall.

Kuhn, H.W. (1955). The Hungarian method for the assignment problem, Naval

Research Logistics Quarterly, 2(1&2), 83-97.

Kuo, M-S., Tzeng G-H., & Huang, W-C. (2007). Group decision-making based on

concepts of ideal and anti-ideal points in fuzzy environment, Mathematical and

Computer Modeling, 45, 324-339.

Kwon, S.H. (1998). Cluster validity index for fuzzy clustering, Electronic Letters,

34(22), 2176-2177.

Lee, H.S. (2002). Optimal consensus of fuzzy opinions under group decision making

environment, Fuzzy Sets and Systems, 132, 303-315.

Lin, C-T., & Lee, C.S. G. (1996). Neural fuzzy systems, Prentice & Hall.

Ma, J., & Zhou, D. (2000). Fuzzy set approach to the assessment of student-centered

learning, IEEE Transactions on Education, 43(2), 237-241.

Martello, J., Pulleybank, W.R., Toth, P., & de Werra, D. (1984). Balanced

optimization problems, Operations Research Letters, 3(5), 275-278.

72

Mendel, J.M., (2001). Uncertain rule-based fuzzy logic systems, Prentice & Hall.

Nasibov, E.N. (2002). Certain integral characteristics of fuzzy numbers and a visual

interactive method for choosing the strategy of their calculation, Journal of

Computer and System Sciences International, 41(4), 584-590.

Nasibov, E.N. (2003a). Aggregation of fuzzy values in linear programming

problems, Automatic Control and Computer Sciences, 37(2),1-11.

Nasibov, E.N., & Shikhlinskaya, R. (2003b). Adjustment of the parameters of

WABL-aggregation for locating the center of gravity of polynomial-type fuzzy

number. Automatic Control and Computer Sciences, 37(6), 34-42.

Nasibov E.N., Nasibova R.A. (2003c). OWA and MIN Aggregation methods in

fuzzy bin-packing problem. Transac. of the National Academy of Sciences of

Azerbaijan, Phus.-tech. and math. series, 2, 45-50.

Nasibov E.N. (2004). An Algorithm for Constructing an Admissible Solution to the

Bin Packing Problem with Fuzzy Constraints, Journ. of Comp. and Syst. Sci. Int.,

43(2), 205-212.

Nasibov, E.N., & Mert, A. (2005). On WABL and COA defuzzifications for

polynomial shape triangular and trapezoidal fuzzy numbers, In Proc. ICSCCW-

2005, Antalya, Turkey, 149-158.

Nasibov, E.N., & Ulutagay, G. (2006a). Program tools for fuzzy clustering analysis,

In Proc. Inf. Tech. and Telecomm. in Education and Science, May 20-26, Antalya,

Turkey, 195-197.

Nasibov, E.N., & Ulutagay, G. (2006b). A new fuzzy joint points criteria for cluster

validity, In Proc. Int. Conf. On Modeling and Simulation (AMSE), Konya,

Turkey, 625-629.

73

Nasibov, E.N., & Kınay, A.Ö. (2006c). Kaliteli İş Paylaşımı Problemi için Bulanık

Mantık Yaklaşımı, In Proc. Yöneylem Araştırması ve Endüstri Mühendisliği 26.

Ulusal Kongresi, July 3-5, Kocaeli, Turkey, 360-363.

Nasibov, E.N., & Kınay, A.Ö. (2006d). Kaliteli İş Paylaşımı Problemi için Bulanık

Mantık Yaklaşımı, İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 5(10),

13-22.

Nasibov, E.N., & Kınay, A.Ö. (2007a). Aktif Eğitimde Öğrenci Performans

Değerlendirme Stratejisinin Bulanık Regresyon Yaklaşımıyla Belirlenmesi, In

Proc. 5. İstatistik Kongresi ve Risk Ölçümleri ve Yükümlülük Toplantısı, May 20-

24, Antalya, Turkey, 413-418.

Nasibov, E.N., & Kınay, A.Ö. (2007b). Öğrenci Performanslarının

Değerlendirilmesinde Optimal Katsayıların Belirlenmesi için İteratif Bir Yöntem,

In Proc. Yöneylem Araştırması ve Endüstri Mühendisliği 27. Ulusal Kongresi,

July 02-04, İzmir, Turkey, 8-13.

Nasibov, E.N., & Kınay, A.Ö. (2007c). An Iterative Method for Student

Performances Assessment in Fuzzy Evaluations, In Proc. ICSCCW-2007, August

27-28, Antalya, Turkey, 242-250.

Nasibov, E.N., & Kınay, A.Ö. (2007d). An Iterative Approach For Graduation of

Student Performances Based on Linguistic Evaluations, Information Sciences,

submitted.

Nasibov, E.N., & Mert, A. (2007e). On methods of defuzzification of parametrically

represented fuzzy numbers, Automatic Control and Computer Sciences, 41(5),

265-273.

Pedrycz, W., & Gomide, F. (1998). An introduction to fuzzy sets, The MIT Press.

74

Roychowdhury, S., & Pedrycz, W. (2001). A survey of defuzzification strategies.

International Journal of Intelligent Systems, 16, 679-695.

Punnen, A.P., & Aneja, Y.P. (1993). Categorized assignment scheduling: A tabu

search approach, Journal of The Operational Research Society, 44(7), 673-679.

Saghafian, S., & Hejazi, S.R. (2005). Multi-criteria group decision making using a

modified fuzzy TOPSIS procedure, Proceedings of the CIMCA-IAWTIC’05.

Saaty, T.L. (1990). How to make a decision: The analytic hierarchy process,

European Journal of Operational Research, 48, 9-26.

Tong, R.M., & Bonissone, P.P. (1980). A linguistic approach to decision making

with fuzzy sets, IEEE Trans. Systems Man Cybernet, 10, 716-723.

Türkşen, I. B. (2005). An ontological and epistemological perspective of fuzzy set

theory, Elsevier Science.

Xie, X., & Beni, G. (1991). A validity for fuzzy clustering, IEEE Transactions On

Pattern Analysis Machine Intelligence, 3, 841-846.

Ulutagay, G. (2004). Bulanık c-ortalamalar kümeleme analizi ve uygulamaları,

M.Sc. Thesis, Ege Üniversitesi, İzmir, Türkiye.

Votaw, D.F. & Orden, A. (1952). The personnel assignment problem, Symposium on

Linear Inequalities and Programming, SCOOP 10, US Air Force, USA, 155-163.

Wang, Y-M., & Parkan, C. (2006). Two new approaches for assessing the weights of

fuzzy opinions in group decision analysis, Information Sciences, 176, 3538-3555.

de Werra, D. (1985). An introduction to timetabling, European Journal of

Operational Research, 19(2), 151-162.

75

Yager, R.R. (1988). On ordered weighted averaging aggregation operators in

multicriteria decision making, IEEE Transactions On Systems, Man, And

Cybernetics, 18(1), 183-190.

Yager, R.R. (2004). Generalized OWA aggregation operators, Fuzzy Optimization

and Decision Making, 3, 93-107.

Yong, D., & Wen-Kang, S. (2003). Aggregating fuzzy opinions under group decision

making, Journal of Computer and Systems Sciences International, 42(5), 727-731.

Zadeh, L. A. (1965). Fuzzy Sets, Information and Control, 8, 338-353.

Zadeh, L. A. (1975). The concept of a linguistic variable and its application to

approximate reasoning, Part I, Information Sciences, 8, 199-249.

APPENDICES

APPENDIX A – Summary tables for the sample sizes 30, 50, 80 and 100 for each distribution according to different group numbers
A.1 The group averages and error ratio results which are obtained from Balanced Assignment method for 30=n and)16,50(2N .

30=n 3=m 4=m 5=m 6=m ji pp minmax − 30=n 3=m 4=m 5=m 6=m ji pp minmax −

Min 69.20 68.25 69.00 68.17 Min 46.20 44.50 46.50 45.40
Max 70.50 71.86 71.60 70.33 Max 47.60 49.71 47.83 49.40 1
E.R. 0.0295 0.0820 0.0591 0.0492

97-53=44 11
E.R. 0.0200 0.0745 0.0190 0.0571

79-9=70

Min 69.50 69.12 67.40 69.67 Min 48.50 46.12 47.50 46.20
Max 70.50 71.29 71.60 70.50 Max 48.70 51.43 50.17 51.00 2
E.R. 0.0312 0.0675 0.1312 0.0260

86-54=32 12
E.R. 0.0030 0.0792 0.0398 0.0716

79-12=67

Min 68.00 66.50 67.00 68.17 Min 45.60 43.00 45.83 42.00
Max 69.60 72.00 72.00 69.00 Max 46.90 49.71 46.83 49.20 3
E.R. 0.0327 0.1122 0.1020 0.0170

94-45=49 13
E.R. 0.0183 0.0946 0.0141 0.1014

80-9=71

Min 68.90 67.88 68.00 69.17 Min 50.90 47.62 50.33 47.60
Max 70.10 71.71 72.00 70.67 Max 51.60 55.86 52.67 54.20 4
E.R. 0.0261 0.0835 0.0870 0.0326

97-51=46 14
E.R. 0.0085 0.1004 0.0285 0.0805

91-9=82

Min 70.30 68.50 69.60 69.17 Min 51.20 49.75 51.33 48.60
Max 70.50 72.71 71.00 71.00 Max 53.60 57.29 54.00 58.60 5
E.R. 0.0050 0.1054 0.0350 0.0458

89-49=40 15
E.R. 0.0300 0.0942 0.0333 0.1250

100-20=80

Min 69.60 68.25 68.20 69.50 Min 45.30 42.62 44.83 43.40
Max 70.30 72.29 71.00 70.67 Max 45.80 48.43 46.33 47.80 6
E.R. 0.0189 0.1091 0.0757 0.0315

87-50=37 16
E.R. 0.0102 0.1184 0.0306 0.0898

72-23=49

Min 64.50 63.25 63.60 64.17 Min 44.40 43.25 44.17 44.40
Max 65.00 66.86 66.20 65.50 Max 46.60 48.71 47.50 48.40 7
E.R. 0.0143 0.1031 0.0743 0.0381

83-48=35 17
E.R. 0.0361 0.0896 0.0546 0.0656

86-25=61

Min 71.80 70.75 71.00 71.00 Min 55.60 53.00 55.67 54.20
Max 72.80 74.86 74.60 74.17 Max 56.70 60.14 56.83 58.60 8
E.R. 0.0217 0.0893 0.0783 0.0688

100-54=46 18
E.R. 0.0151 0.0978 0.0160 0.0603

100-27=73

Min 66.60 64.75 65.80 65.83 Min 46.40 44.38 46.17 44.20
Max 67.40 69.00 68.20 67.83 Max 48.10 50.57 48.67 50.60 9
E.R. 0.0216 0.1149 0.0649 0.0541

83-46=37 19
E.R. 0.0304 0.1107 0.0446 0.1143

79-23=56

Min 70.90 69.38 69.20 69.83 Min 51.10 48.88 50.67 47.80
Max 71.30 72.71 73.20 72.17 Max 51.70 54.86 52.00 55.20 10
E.R. 0.0093 0.0777 0.0930 0.0543

97-54=43 20
E.R. 0.0109 0.1088 0.0242 0.1345

79-24=55

 76

A.2 The group averages and error ratio results which are obtained from Balanced Assignment method for 50=n and)16,50(2N .

50=n 5=m 6=m 7=m 8=m ji pp minmax − 50=n 5=m 6=m 7=m 8=m ji pp minmax −

Min 51.40 49.56 46.62 47.29 Min 49.00 46.33 44.25 45.43
Max 53.70 54.88 54.43 55.33 Max 50.30 51.38 51.86 51.83 1
E.R. 0.0306 0.0709 0.1041 0.1072

83–8=75 11
E.R. 0.0171 0.0663 0.1001 0.0843

82-6=76

Min 52.10 49.00 46.25 47.00 Min 52.00 50.44 48.88 49.57
Max 52.80 54.88 54.57 55.00 Max 53.50 53.50 54.86 54.17 2
E.R. 0.0091 0.0763 0.1080 0.1038

90–13=77 12
E.R. 0.0227 0.0463 0.0906 0.0696

91-25=66

Min 47.30 44.22 41.25 41.86 Min 47.50 45.11 42.25 44.29
Max 47.70 49.38 50.86 50.00 Max 48.40 50.12 50.43 49.67 3
E.R. 0.0047 0.0600 0.1117 0.0947

90–4=86 13
E.R. 0.0123 0.0687 0.1120 0.0737

82-9=73

Min 52.90 50.22 48.75 49.14 Min 49.60 48.56 46.12 47.71
Max 53.40 54.88 54.43 54.83 Max 51.50 52.38 53.29 52.50 4
E.R. 0.0082 0.0764 0.0931 0.0933

80–19=61 14
E.R. 0.0284 0.0570 0.1069 0.0714

87-20=67

Min 48.80 46.56 43.62 45.43 Min 50.90 48.89 46.00 48.71
Max 49.70 50.62 51.14 50.67 Max 51.50 52.88 54.00 53.33 5
E.R. 0.0130 0.0588 0.1090 0.0759

84–15=69 15
E.R. 0.0085 0.0561 0.1127 0.0651

88-17=71

Min 47.55 48.00 46.62 47.00 Min 49.90 48.44 46.25 47.43
Max 50.80 51.25 51.43 52.17 Max 50.80 52.00 52.14 52.83 6
E.R. 0.0478 0.0478 0.0707 0.0760

87–19=68 16
E.R. 0.0141 0.0556 0.0921 0.0844

83-19=64

Min 49.00 45.89 43.12 43.57 Min 52.30 50.44 49.25 49.71
Max 50.70 52.25 52.00 53.17 Max 52.80 54.00 53.86 54.33 7
E.R. 0.0205 0.0766 0.1070 0.1157

83–0=83 17
E.R. 0.0078 0.0556 0.0720 0.0722

84-20=64

Min 48.20 46.56 43.62 46.14 Min 49.90 48.22 46.12 47.14
Max 49.50 50.38 51.29 50.50 Max 52.00 53.00 55.71 52.83 8
E.R. 0.0188 0.0554 0.1112 0.0632

88–19=69 18
E.R. 0.0256 0.0583 0.1169 0.0694

100-18=82

Min 52.20 48.89 46.38 48.57 Min 50.70 48.67 47.25 47.29
Max 52.50 54.00 54.57 54.33 Max 51.40 52.38 53.71 52.33 9
E.R. 0.0036 0.0616 0.0987 0.0694

94–11=83 19
E.R. 0.0100 0.0530 0.0923 0.0721

88-18=70

Min 50.30 48.56 45.38 47.43 Min 51.60 50.44 48.00 49.43
Max 51.50 52.75 54.43 52.83 Max 52.60 53.38 54.14 53.50 10
E.R. 0.0152 0.0530 0.1146 0.0684

94–15=79 20
E.R. 0.0154 0.0451 0.0945 0.0626

88-23=65

 77

A.3 The group averages and error ratio results which are obtained from Balanced Assignment method for 80=n and)16,50(2N .

80=n 8=m 9=m 10=m 11=m ji pp minmax − 80=n 8=m 9=m 10=m 11=m ji pp minmax −

Min 49.20 47.89 48.88 45.62 Min 52.20 50.89 52.12 47.62
Max 49.80 51.75 50.25 53.14 Max 53.40 56.50 53.38 56.00 1
E.R. 0.0080 0.0514 0.0183 0.1003

90–15=75 11
E.R. 0.0152 0.0710 0.0158 0.1060

88-9=79

Min 49.50 48.22 49.00 46.00 Min 49.60 48.44 49.50 45.62
Max 50.30 52.75 50.25 51.86 Max 51.20 53.12 51.12 55.29 2
E.R. 0.0114 0.0647 0.0178 0.0837

84–14=70 12
E.R. 0.0188 0.0551 0.0191 0.1137

97-12=85

Min 50.30 48.78 50.12 45.62 Min 50.90 49.67 50.88 46.00
Max 51.80 53.88 52.38 54.29 Max 52.10 54.62 52.00 55.57 3
E.R. 0.0183 0.0622 0.0276 0.1057

86–4=82 13
E.R. 0.0136 0.0563 0.0128 0.1088

97-9=88

Min 52.90 51.56 52.88 48.50 Min 49.20 47.33 49.12 44.25
Max 53.70 56.75 53.75 57.14 Max 50.10 52.62 50.25 53.71 4
E.R. 0.0098 0.0633 0.0106 0.1054

96–14=82 14
E.R. 0.0110 0.0645 0.0137 0.1154

88-6=82

Min 47.50 46.11 47.50 42.75 Min 49.60 48.00 49.50 45.62
Max 48.20 51.88 48.38 51.00 Max 50.10 52.88 50.50 53.14 5
E.R. 0.0086 0.0712 0.0109 0.1019

89–8=81 15
E.R. 0.0066 0.0641 0.0132 0.0989

88-12=76

Min 48.70 47.89 48.12 45.25 Min 48.50 48.33 48.62 46.00
Max 49.30 52.25 49.50 51.14 Max 50.00 51.88 49.75 50.71 6
E.R. 0.0091 0.0661 0.0209 0.0892

80–14=66 16
E.R. 0.0278 0.0656 0.0208 0.0873

72-18=54

Min 49.50 47.67 49.50 46.00 Min 51.00 50.11 50.62 47.50
Max 50.80 52.88 50.75 53.29 Max 52.10 54.00 51.62 54.86 7
E.R. 0.0151 0.0606 0.0145 0.0848

97–11=86 17
E.R. 0.0147 0.0519 0.0133 0.0981

92-17=75

Min 46.30 45.67 46.00 43.38 Min 52.10 50.44 51.75 48.75
Max 47.20 49.38 47.62 49.71 Max 53.00 54.50 53.88 56.29 8
E.R. 0.0138 0.0571 0.0249 0.0974

85–20=65 18
E.R. 0.0122 0.0548 0.0287 0.1018

94-20=74

Min 51.80 50.89 51.88 46.88 Min 50.90 49.56 49.25 47.12
Max 53.80 55.12 52.88 56.86 Max 52.30 54.75 53.00 53.86 9
E.R. 0.0241 0.0510 0.0120 0.1202

97–14=83 19
E.R. 0.0187 0.0693 0.0500 0.0898

84-9=75

Min 48.40 47.33 48.00 44.88 Min 49.00 47.67 48.50 44.75
Max 49.80 50.75 51.00 52.57 Max 50.10 52.50 50.50 52.57 10
E.R. 0.0179 0.0438 0.0385 0.0986

97–19=78 20
E.R. 0.0149 0.0653 0.0270 0.1057

84-10=74

 78

A.4 The group averages and error ratio results which are obtained from Balanced Assignment method for 100=n and)16,50(2N .

100=n 10=m 11=m 12=m 13=m ji pp minmax − 100=n 10=m 11=m 12=m 13=m ji pp minmax −

Min 51.10 46.20 49.22 49.50 Min 47.10 42.40 44.78 44.88
Max 52.60 54.33 53.38 57.00 Max 48.10 49.44 49.00 52.86 1
E.R. 0.0174 0.0945 0.0484 0.0872

100–14=86 11
E.R. 0.0122 0.0859 0.0515 0.0973

88-6=82

Min 52.00 48.70 49.89 50.25 Min 49.40 45.20 46.44 47.38
Max 53.40 54.67 53.75 57.57 Max 50.40 51.44 51.38 54.86 2
E.R. 0.0177 0.0756 0.0488 0.0926

96–17=79 12
E.R. 0.0119 0.0743 0.0587 0.0891

94-10=84

Min 50.70 46.80 48.11 49.25 Min 46.30 42.50 44.22 45.00
Max 51.90 53.33 52.62 55.71 Max 47.60 48.67 48.75 51.14 3
E.R. 0.0150 0.0816 0.0564 0.0808

94–14=80 13
E.R. 0.0186 0.0881 0.0647 0.0878

80-10=70

Min 49.80 45.30 46.67 47.50 Min 50.80 46.70 48.22 48.62
Max 51.10 52.67 52.00 56.43 Max 53.10 53.78 53.62 56.86 4
E.R. 0.0146 0.0828 0.0599 0.1003

97–8=89 14
E.R. 0.0261 0.0804 0.0614 0.0935

94-6=88

Min 48.00 44.10 45.11 46.50 Min 51.50 47.20 48.78 49.88
Max 49.80 50.67 51.50 53.00 Max 52.10 53.44 53.62 56.14 5
E.R. 0.0234 0.0853 0.0830 0.0844

81–4=77 15
E.R. 0.0081 0.0844 0.0655 0.0847

88-14=74

Min 51.20 48.30 49.00 50.00 Min 51.20 47.10 49.33 50.12
Max 52.20 52.67 53.50 55.43 Max 52.90 55.22 53.75 58.86 6
E.R. 0.0137 0.0599 0.0616 0.0744

82–19=73 16
E.R. 0.0195 0.0934 0.0508 0.1004

97-10=87

Min 53.50 49.30 50.78 51.75 Min 48.50 44.40 46.00 46.62
Max 55.50 57.44 55.88 60.86 Max 49.30 50.89 50.12 53.43 7
E.R. 0.0235 0.0958 0.0600 0.1072

100–15=85 17
E.R. 0.0107 0.0865 0.0550 0.0907

88-13=75

Min 47.30 43.60 44.78 46.00 Min 50.20 46.40 47.44 48.62
Max 48.30 49.78 49.12 52.29 Max 51.30 51.89 52.25 54.71 8
E.R. 0.0143 0.0883 0.0620 0.0899

85–15=70 18
E.R. 0.0145 0.0722 0.0632 0.0801

87-11=76

Min 48.60 44.80 46.11 46.62 Min 47.40 43.40 44.78 45.88
Max 51.10 51.56 52.12 54.29 Max 48.40 50.33 49.25 53.43 9
E.R. 0.0294 0.0795 0.0707 0.0902

85–0=85 19
E.R. 0.0120 0.0835 0.0539 0.0910

94-11=83

Min 50.30 44.00 46.89 47.75 Min 49.50 46.40 48.56 48.00
Max 51.60 53.56 52.88 56.14 Max 51.40 52.11 51.12 54.71 10
E.R. 0.0144 0.1062 0.0666 0.0932

90–0=90 20
E.R. 0.0271 0.0816 0.0367 0.0959

94-24=70

 79

A.5 The group averages and error ratio results which are obtained from Balanced Assignment method for 30=n and)10,70(2N .

30=n 3=m 4=m 5=m 6=m ji pp minmax − 30=n 3=m 4=m 5=m 6=m ji pp minmax −

Min 69.20 68.25 68.17 69.00 Min 73.70 72.12 74.00 72.60
Max 70.50 71.86 70.33 71.60 Max 74.40 76.71 74.17 76.20 1
E.R. 0.0295 0.0820 0.0492 0.0591

97-53=44 11
E.R. 0.0163 0.1067 0.0039 0.0837

93-50=43

Min 69.50 69.12 69.67 67.40 Min 70.50 69.88 70.50 70.00
Max 70.50 71.29 70.50 71.60 Max 71.30 72.57 71.17 72.60 2
E.R. 0.0312 0.0675 0.0260 0.1312

86-54=32 12
E.R. 0.0229 0.0770 0.0190 0.0743

89-54=35

Min 68.00 66.50 68.17 67.00 Min 68.00 66.88 67.33 67.80
Max 69.60 72.00 69.00 72.00 Max 68.50 69.71 68.67 69.00 3
E.R. 0.0327 0.1122 0.0170 0.1020

94-45=49 13
E.R. 0.0156 0.0887 0.0417 0.0375

87-55=32

Min 68.90 67.88 69.17 68.00 Min 70.00 68.50 69.83 69.80
Max 70.10 71.71 70.67 72.00 Max 70.60 72.43 71.17 71.40 4
E.R. 0.0261 0.0835 0.0326 0.0870

97-51=46 14
E.R. 0.0187 0.1228 0.0417 0.0500

87-55=32

Min 70.30 68.50 69.17 69.60 Min 69.90 67.62 69.33 67.60
Max 70.50 72.71 71.00 71.00 Max 70.00 73.29 70.83 72.40 5
E.R. 0.0050 0.1054 0.0458 0.0350

89-49=40 15
E.R. 0.0019 0.1089 0.0288 0.0923

94-42=52

Min 69.60 68.25 69.50 68.20 Min 68.30 66.75 68.00 66.80
Max 70.30 72.29 70.67 71.00 Max 69.40 71.57 69.17 72.00 6
E.R. 0.0189 0.1091 0.0315 0.0757

87-50=37 16
E.R. 0.0250 0.1096 0.0265 0.1182

89-45=44

Min 64.50 63.25 64.17 63.60 Min 66.10 65.38 66.67 65.80
Max 65.00 66.86 65.50 66.20 Max 67.40 68.00 67.17 67.60 7
E.R. 0.0143 0.1031 0.0381 0.0743

83-48=35 17
E.R. 0.0351 0.0709 0.0135 0.0486

84-47=37

Min 71.80 70.75 71.00 71.00 Min 70.30 67.88 70.00 67.80
Max 72.80 74.86 74.17 74.60 Max 70.50 73.29 70.83 73.20 8
E.R. 0.0217 0.0893 0.0688 0.0783

100-54=46 18
E.R. 0.0036 0.0984 0.0152 0.0982

97-42=55

Min 66.60 64.75 65.83 65.80 Min 67.70 65.75 67.00 64.60
Max 67.40 69.00 67.83 68.20 Max 68.00 70.57 68.17 70.80 9
E.R. 0.0216 0.1149 0.0541 0.0649

83-46=37 19
E.R. 0.0062 0.1004 0.0243 0.1292

93-45=48

Min 70.90 69.38 69.83 69.20 Min 69.40 68.12 69.17 67.80
Max 71.30 72.71 72.17 73.20 Max 70.10 71.29 70.67 71.00 10
E.R. 0.0093 0.0777 0.0543 0.0930

97-54=43 20
E.R. 0.0194 0.0878 0.0417 0.0889

86-50=36

 80

A.6 The group averages and error ratio results which are obtained from Balanced Assignment method for 50=n and)10,70(2N .

50=n 5=m 6=m 7=m 8=m ji pp minmax − 50=n 5=m 6=m 7=m 8=m ji pp minmax −

Min 69.60 68.22 67.12 67.29 Min 70.90 69.00 67.12 68.43
Max 70.10 71.00 70.86 71.17 Max 71.40 72.00 73.71 72.00 1
E.R. 0.0135 0.0751 0.1009 0.1049

86-49=37 11
E.R. 0.0098 0.0588 0.1292 0.0700

97-46=51

Min 71.30 70.78 68.75 70.29 Min 71.60 71.00 69.12 70.29
Max 72.30 73.00 73.57 73.00 Max 72.10 72.12 74.00 72.50 2
E.R. 0.0270 0.0601 0.1303 0.0734

91-54=37 12
E.R. 0.0119 0.0268 0.1161 0.0527

97-55=42

Min 69.80 69.22 67.88 68.57 Min 68.27 69.00 68.50 68.57
Max 70.30 70.88 71.57 70.83 Max 72.20 72.38 73.29 72.67 3
E.R. 0.0125 0.0413 0.0924 0.0565

93-53=40 13
E.R. 0.0818 0.0703 0.0997 0.0853

94-43=51

Min 70.50 69.44 66.50 68.86 Min 69.50 68.56 66.12 67.86
Max 71.00 71.88 73.14 72.33 Max 70.10 70.50 72.00 70.67 4
E.R. 0.0102 0.0496 0.1356 0.0709

96-47=49 14
E.R. 0.0128 0.0414 0.1250 0.0598

94-47=47

Min 68.20 67.56 66.50 67.29 Min 69.30 68.11 68.00 67.71
Max 68.80 69.38 69.86 69.33 Max 70.10 70.38 70.57 70.83 5
E.R. 0.0167 0.0505 0.0933 0.0569

89-53=36 15
E.R. 0.0205 0.0580 0.0659 0.0800

93-54=39

Min 71.20 69.11 67.62 68.43 Min 67.40 65.33 64.62 64.43
Max 71.60 72.62 73.43 72.67 Max 68.20 68.50 70.43 68.83 6
E.R. 0.0083 0.0732 0.1209 0.0883

94-46=48 16
E.R. 0.0154 0.0609 0.1116 0.0847

98-46=52

Min 70.10 70.22 68.50 70.00 Min 68.80 67.22 65.12 66.43
Max 71.60 71.33 72.71 71.17 Max 69.40 70.25 71.14 70.33 7
E.R. 0.0319 0.0236 0.0897 0.0248

100-53=47 17
E.R. 0.0140 0.0704 0.1400 0.0908

89-46=43

Min 70.10 68.22 66.88 68.00 Min 69.20 68.33 67.12 67.43
Max 70.80 71.75 72.00 71.67 Max 70.50 70.75 70.86 71.00 8
E.R. 0.0140 0.0706 0.1025 0.0733

96-46=50 18
E.R. 0.0342 0.0636 0.0982 0.0940

86-48=38

Min 68.30 66.78 64.88 66.71 Min 69.40 68.33 67.25 67.57
Max 68.90 69.62 70.86 69.83 Max 70.60 70.75 72.00 70.83 9
E.R. 0.0136 0.0647 0.1360 0.0709

89-45=44 19
E.R. 0.0293 0.0589 0.1159 0.0796

94-53=41

Min 69.30 68.00 66.38 67.57 Min 70.70 69.44 68.12 68.71
Max 69.70 70.38 71.43 70.50 Max 71.30 72.00 71.71 72.17 10
E.R. 0.0085 0.0505 0.1075 0.0623

96-49=47 20
E.R. 0.0146 0.0623 0.0875 0.0842

89-48=41

 81

A.7 The group averages and error ratio results which are obtained from Balanced Assignment method for 80=n and)10,70(2N .

80=n 8=m 9=m 10=m 11=m ji pp minmax − 80=n 8=m 9=m 10=m 11=m ji pp minmax −

Min 70.10 69.22 70.00 67.00 Min 69.20 68.44 68.88 66.38
Max 71.00 72.12 71.25 73.43 Max 70.10 71.88 70.25 71.71 1
E.R. 0.0167 0.0538 0.0231 0.1190

100-46=54 11
E.R. 0.0187 0.0715 0.0286 0.1112

84-42=42

Min 69.60 68.33 69.38 66.62 Min 70.00 69.33 69.50 67.50
Max 70.20 71.50 70.12 72.86 Max 71.00 72.12 70.88 73.00 2
E.R. 0.0113 0.0597 0.0142 0.1176

96-43=53 12
E.R. 0.0185 0.0517 0.0255 0.1019

100-46=54

Min 70.40 69.22 70.38 67.88 Min 70.40 70.00 70.38 68.62
Max 70.90 72.00 71.00 72.71 Max 71.30 72.25 71.62 72.71 3
E.R. 0.0100 0.0556 0.0125 0.0968

96-46=50 13
E.R. 0.0214 0.0536 0.0298 0.0974

94-52=42

Min 70.50 70.56 70.75 68.62 Min 68.50 67.78 68.50 66.25
Max 71.70 72.62 71.38 73.57 Max 69.70 70.62 69.75 71.57 4
E.R. 0.0293 0.0505 0.0152 0.1206

93-52=41 14
E.R. 0.0245 0.0581 0.0255 0.1086

97-48=49

Min 71.70 70.67 71.38 69.00 Min 70.70 70.11 70.75 68.38
Max 72.40 74.00 72.38 74.29 Max 71.50 73.25 71.38 73.57 5
E.R. 0.0146 0.0694 0.0208 0.1101

94-46=48 15
E.R. 0.0174 0.0682 0.0136 0.1130

93-47=46

Min 71.10 70.11 71.38 68.62 Min 69.90 68.33 69.88 66.75
Max 72.70 73.12 72.75 74.14 Max 71.10 71.75 71.25 72.86 6
E.R. 0.0314 0.0591 0.0270 0.1082

97-46=51 16
E.R. 0.0214 0.0610 0.0246 0.1091

98-42=56

Min 68.20 67.67 67.88 66.75 Min 70.30 68.89 70.00 67.88
Max 69.60 69.88 69.62 71.00 Max 70.80 71.88 71.00 72.57 7
E.R. 0.0318 0.0502 0.0398 0.0966

94-50=44 17
E.R. 0.0106 0.0635 0.0213 0.0999

93-46=47

Min 70.10 69.67 70.25 67.75 Min 69.40 69.00 69.75 67.62
Max 71.00 72.25 70.88 73.00 Max 70.50 71.88 70.38 71.57 8
E.R. 0.0173 0.0497 0.0120 0.1010

98-46=52 18
E.R. 0.0250 0.0653 0.0142 0.0897

90-46=44

Min 69.20 68.89 69.00 67.12 Min 70.60 69.56 70.75 68.00
Max 69.80 71.25 69.88 71.14 Max 71.80 72.88 71.75 73.57 9
E.R. 0.0158 0.0621 0.0230 0.1057

86-48=38 19
E.R. 0.0231 0.0638 0.0192 0.1071

98-46=52

Min 71.30 69.67 71.25 68.50 Min 69.00 67.78 68.88 66.62
Max 71.90 73.00 72.00 73.71 Max 69.80 70.33 70.00 71.57 10
E.R. 0.0109 0.0606 0.0136 0.0948

98-43=55 20
E.R. 0.0160 0.0511 0.0225 0.0989

97-47=50

 82

A.8 The group averages and error ratio results which are obtained from Balanced Assignment method for 100=n and)10,70(2N .

100=n 10=m 11=m 12=m 13=m ji pp minmax − 100=n 10=m 11=m 12=m 13=m ji pp minmax −

Min 68.30 66.30 66.67 67.25 Min 71.00 67.80 69.33 69.62
Max 68.80 69.11 69.50 71.14 Max 72.00 72.78 72.62 74.71 1
E.R. 0.0114 0.0639 0.0644 0.0885

90-46=44 11
E.R. 0.0200 0.0996 0.0658 0.1018

93-43=50

Min 71.90 68.20 70.11 70.38 Min 69.80 66.90 69.22 68.50
Max 72.40 74.00 73.25 74.86 Max 71.20 72.44 71.38 73.57 2
E.R. 0.0091 0.1055 0.0571 0.0815

100-45=55 12
E.R. 0.0255 0.1008 0.0391 0.0922

100-45=55

Min 69.70 66.70 67.44 67.88 Min 69.30 66.70 67.89 68.25
Max 70.30 71.67 70.75 73.71 Max 70.00 70.78 70.62 72.71 3
E.R. 0.0103 0.0856 0.0570 0.1007

100-42=58 13
E.R. 0.0146 0.0850 0.0570 0.0930

94-46=48

Min 69.80 66.80 68.22 68.50 Min 68.70 65.70 67.11 67.75
Max 70.60 72.22 71.25 74.00 Max 69.60 70.89 70.50 73.00 4
E.R. 0.0145 0.0986 0.0551 0.1000

98-43=55 14
E.R. 0.0167 0.0961 0.0628 0.0972

96-42=54

Min 69.00 66.70 67.22 68.00 Min 68.30 66.50 67.44 67.62
Max 69.80 70.33 70.50 72.14 Max 69.80 70.56 69.50 72.43 5
E.R. 0.0178 0.0807 0.0728 0.0921

90-45=45 15
E.R. 0.0312 0.0845 0.0428 0.1001

98-50=48

Min 70.10 67.70 68.56 68.75 Min 70.40 67.70 68.78 69.25
Max 70.80 71.89 71.12 73.57 Max 71.00 71.67 71.62 72.57 6
E.R. 0.0135 0.0806 0.0494 0.0927

100-48=52 16
E.R. 0.0143 0.0944 0.0678 0.0791

90-48=42

Min 69.80 67.20 68.11 68.75 Min 70.70 68.50 69.00 69.50
Max 70.30 71.22 71.12 72.57 Max 71.10 72.11 71.88 74.57 7
E.R. 0.0114 0.0914 0.0685 0.0869

90-46=44 17
E.R. 0.0082 0.0737 0.0587 0.1035

97-48=49

Min 67.80 64.90 65.89 66.50 Min 70.60 68.30 69.11 69.75
Max 68.30 69.22 69.00 70.86 Max 71.20 72.22 72.00 74.00 8
E.R. 0.0098 0.0847 0.0610 0.0854

93-42=51 18
E.R. 0.0122 0.0800 0.0590 0.0867

94-45=49

Min 69.70 67.00 68.44 68.38 Min 70.50 68.10 69.00 69.25
Max 71.10 71.78 71.38 74.29 Max 71.00 72.33 71.62 74.14 9
E.R. 0.0255 0.0869 0.0533 0.1075

100-45=55 19
E.R. 0.0100 0.0847 0.0525 0.0979

98-48=50

Min 69.90 67.20 68.22 68.88 Min 71.30 69.00 69.78 70.38
Max 70.80 72.11 71.50 73.86 Max 72.10 72.89 72.25 74.29 10
E.R. 0.0180 0.0982 0.0656 0.0996

96-46=50 20
E.R. 0.0178 0.0864 0.0549 0.0869

96-51=45

 83

A.9 The group averages and error ratio results which are obtained from Balanced Assignment method for 30=n and)3,14(Gamma .

30=n 3=m 4=m 5=m 6=m ji pp minmax − 30=n 3=m 4=m 5=m 6=m ji pp minmax −

Min 38.40 37.25 38.00 37.80 Min 42.70 41.25 42.33 41.60
Max 39.50 41.29 40.50 41.20 Max 44.00 46.00 44.33 46.40 1
E.R. 0.0268 0.0984 0.0610 0.0829

64-23=41 11
E.R. 0.0236 0.0864 0.0364 0.0873

80-25=55

Min 39.90 38.75 39.50 39.20 Min 42.30 41.62 42.17 41.20
Max 40.60 41.71 40.83 41.20 Max 43.10 43.57 43.00 43.40 2
E.R. 0.0200 0.0847 0.0381 0.0571

58-23=35 12
E.R. 0.0182 0.0442 0.0189 0.0500

68-24=44

Min 41.60 40.25 41.33 40.60 Min 37.20 36.38 37.17 36.20
Max 42.70 44.86 43.50 44.80 Max 37.50 38.14 37.50 38.20 3
E.R. 0.0208 0.0869 0.0409 0.0792

73-20=53 13
E.R. 0.0107 0.0631 0.0119 0.0714

52-24=28

Min 41.40 40.00 41.33 40.00 Min 36.70 36.00 36.17 35.00
Max 42.10 44.00 42.17 44.20 Max 37.30 37.86 37.33 38.60 4
E.R. 0.0189 0.1081 0.0225 0.1135

61-24=37 14
E.R. 0.0167 0.0516 0.0324 0.1000

54-18=36

Min 42.60 40.88 42.67 41.40 Min 43.60 41.62 43.00 41.80
Max 43.00 45.14 43.17 44.60 Max 45.60 48.29 47.17 49.40 5
E.R. 0.0100 0.1067 0.0125 0.0800

64-24=40 15
E.R. 0.0333 0.1110 0.0694 0.1267

83-23=60

Min 40.80 39.25 40.17 39.00 Min 39.10 38.00 39.00 38.40
Max 41.90 44.43 43.17 44.80 Max 39.50 40.71 39.67 40.20 6
E.R. 0.0220 0.1036 0.0600 0.1160

72-22=50 16
E.R. 0.0111 0.0754 0.0185 0.0500

58-22=36

Min 40.60 38.75 40.33 37.40 Min 42.20 41.00 42.00 39.60
Max 41.70 43.86 41.67 43.80 Max 43.00 44.29 42.83 44.80 7
E.R. 0.0212 0.0982 0.0256 0.1231

69-17=52 17
E.R. 0.0170 0.0699 0.0177 0.1106

69-22=47

Min 43.10 42.50 42.67 42.80 Min 38.40 37.38 37.83 36.60
Max 44.40 45.14 44.83 44.80 Max 39.20 40.14 39.17 40.20 8
E.R. 0.0342 0.0695 0.0570 0.0526

68-30=38 18
E.R. 0.0186 0.0644 0.0310 0.0837

61-18=43

Min 42.20 40.88 42.17 41.00 Min 42.80 40.50 42.67 41.80
Max 43.00 44.29 43.17 43.40 Max 43.80 46.57 43.67 45.80 9
E.R. 0.0258 0.1100 0.0323 0.0774

54-23=31 19
E.R. 0.0179 0.1084 0.0179 0.0714

74-18=56

Min 46.40 44.75 45.83 44.80 Min 42.80 41.12 42.50 42.60
Max 48.70 51.71 50.50 52.60 Max 43.90 46.43 44.67 45.20 10
E.R. 0.0338 0.1024 0.0686 0.1147

92-24=68 20
E.R. 0.0216 0.1040 0.0425 0.0510

72-22=50

 84

A.10 The group averages and error ratio results which are obtained from Balanced Assignment method for 50=n and)3,14(Gamma .

50=n 5=m 6=m 7=m 8=m ji pp minmax − 50=n 5=m 6=m 7=m 8=m ji pp minmax −

Min 40.30 38.67 37.50 37.86 Min 38.80 38.56 37.25 37.71
Max 41.20 41.38 43.29 41.67 Max 39.30 39.62 40.43 39.83 1
E.R. 0.0184 0.0553 0.1181 0.0777

68-19=49 11
E.R. 0.0139 0.0297 0.0883 0.0589

61-25=36

Min 40.50 39.11 37.62 38.71 Min 43.00 41.67 39.38 41.00
Max 42.00 41.67 44.43 41.71 Max 43.50 44.12 44.86 44.33 2
E.R. 0.0246 0.0419 0.1115 0.0492

82-21=61 12
E.R. 0.0106 0.0523 0.1166 0.0709

65-18=47

Min 43.90 43.11 42.75 42.86 Min 40.00 39.89 36.75 40.00
Max 45.80 45.50 46.29 46.00 Max 41.70 41.25 44.00 41.50 3
E.R. 0.0373 0.0468 0.0693 0.0616

77-26=51 13
E.R. 0.0262 0.0209 0.1115 0.0231

83-18=65

Min 41.30 40.22 38.25 39.14 Min 40.70 39.78 38.38 39.29
Max 41.90 42.38 43.14 42.67 Max 41.90 42.00 43.71 42.00 4
E.R. 0.0109 0.0391 0.0890 0.0641

73-18=55 14
E.R. 0.0200 0.0370 0.0890 0.0452

82-22=60

Min 41.00 40.11 38.00 40.14 Min 44.40 43.22 42.00 42.29
Max 42.60 42.38 44.57 42.67 Max 45.40 45.62 46.14 46.00 5
E.R. 0.0296 0.0419 0.1217 0.0467

75-21=54 15
E.R. 0.0227 0.0546 0.0942 0.0844

68-24=44

Min 42.00 40.89 38.62 40.43 Min 40.90 39.56 37.62 38.71
Max 42.50 43.50 44.29 43.17 Max 41.80 42.25 44.14 42.17 6
E.R. 0.0096 0.0502 0.1089 0.0527

71-19=52 16
E.R. 0.0158 0.0473 0.1143 0.0606

74-17=57

Min 44.90 44.00 43.12 44.00 Min 39.10 38.33 37.12 37.14
Max 45.40 46.12 45.86 46.17 Max 40.80 41.25 41.57 41.67 7
E.R. 0.0152 0.0644 0.0828 0.0657

63-30=33 17
E.R. 0.0386 0.0663 0.1011 0.1028

61-17=44

Min 36.60 36.22 34.62 36.00 Min 42.50 42.11 39.12 41.43
Max 38.80 37.78 40.57 38.29 Max 44.10 43.75 46.71 44.17 8
E.R. 0.0415 0.0294 0.1122 0.0431

75-22=53 18
E.R. 0.0242 0.0248 0.1150 0.0415

83-17=66

Min 40.20 39.11 36.75 38.57 Min 40.40 39.78 37.88 39.14
Max 41.90 41.38 43.86 41.50 Max 42.40 42.50 44.29 42.50 9
E.R. 0.0293 0.0390 0.1225 0.0505

77-19=58 19
E.R. 0.0317 0.0432 0.1018 0.0533

80-17=63

Min 43.90 42.67 41.50 42.57 Min 42.20 41.89 39.88 42.00
Max 44.20 44.75 45.57 45.17 Max 43.60 43.62 45.43 44.00 10
E.R. 0.0064 0.0443 0.0866 0.0552

71-24=47 20
E.R. 0.0269 0.0334 0.1068 0.0385

75-23=52

 85

A.11 The group averages and error ratio results which are obtained from Balanced Assignment method for 80=n and)3,14(Gamma .

80=n 8=m 9=m 10=m 11=m ji pp minmax − 80=n 8=m 9=m 10=m 11=m ji pp minmax −

Min 42.30 41.56 42.00 39.88 Min 42.90 42.22 43.00 40.62
Max 43.30 44.38 43.62 45.14 Max 44.70 45.78 45.12 46.86 1
E.R. 0.0182 0.0513 0.0295 0.0958

74-19=55 11
E.R. 0.0281 0.0556 0.0332 0.0974

83-19=64

Min 41.10 40.22 41.00 38.75 Min 40.00 39.44 40.12 38.12
Max 42.70 43.22 43.00 44.43 Max 41.10 42.22 41.62 43.57 2
E.R. 0.0291 0.0545 0.0364 0.1032

75-20=55 12
E.R. 0.0212 0.0534 0.0288 0.1047

71-19=52

Min 41.40 40.89 41.12 38.88 Min 40.40 39.44 40.38 37.88
Max 42.80 44.00 42.88 44.86 Max 42.70 43.67 42.88 44.57 3
E.R. 0.0255 0.0566 0.0318 0.1088

73-18=55 13
E.R. 0.0354 0.0650 0.0385 0.1030

83-18=65

Min 42.40 42.22 42.75 40.88 Min 40.20 39.67 40.25 37.88
Max 44.20 44.62 44.00 45.57 Max 42.50 42.78 42.62 44.86 4
E.R. 0.0346 0.0462 0.0240 0.0903

75-23=52 14
E.R. 0.0411 0.0556 0.0424 0.1247

77-21=56

Min 41.40 41.22 41.75 38.75 Min 41.40 40.78 41.50 39.12
Max 43.80 44.38 44.00 46.00 Max 42.10 43.62 42.12 43.43 5
E.R. 0.0369 0.0485 0.0346 0.1115

83-18=65 15
E.R. 0.0159 0.0647 0.0142 0.0978

63-19=44

Min 40.80 40.78 41.12 39.50 Min 43.40 42.67 43.00 40.62
Max 41.70 42.62 41.50 42.71 Max 46.10 46.33 47.25 48.71 6
E.R. 0.0243 0.0499 0.0101 0.0869

62-25=37 16
E.R. 0.0391 0.0531 0.0616 0.1172

92-23=69

Min 45.60 44.11 45.88 42.75 Min 40.60 40.22 40.62 37.88
Max 46.50 47.75 46.25 48.29 Max 43.00 43.56 43.62 45.86 7
E.R. 0.0155 0.0627 0.0065 0.0954

75-17=58 17
E.R. 0.0375 0.0521 0.0469 0.1247

83-19=64

Min 41.10 40.11 41.00 38.62 Min 40.70 40.00 40.75 38.25
Max 43.80 44.78 44.62 47.14 Max 41.50 42.62 41.50 43.00 8
E.R. 0.0360 0.0622 0.0483 0.1136

92-17=75 18
E.R. 0.0186 0.0610 0.0174 0.1105

61-18=43

Min 41.40 40.78 41.50 39.50 Min 41.20 40.56 41.12 39.00
Max 42.80 43.50 42.50 44.71 Max 41.70 43.12 41.88 43.71 9
E.R. 0.0269 0.0524 0.0192 0.1003

73-21=52 19
E.R. 0.0102 0.0524 0.0153 0.0962

68-19=49

Min 41.40 40.78 41.25 39.12 Min 41.60 41.00 41.25 39.25
Max 42.40 43.12 42.38 44.14 Max 42.30 43.25 43.25 44.43 10
E.R. 0.0192 0.0451 0.0216 0.0965

73-21=52 20
E.R. 0.0143 0.0459 0.0408 0.1057

72-23=49

 86

A.12 The group averages and error ratio results which are obtained from Balanced Assignment method for 100=n and)3,14(Gamma .

100=n 10=m 11=m 12=m 13=m ji pp minmax − 100=n 10=m 11=m 12=m 13=m ji pp minmax −

Min 41.50 38.60 40.89 40.75 Min 41.50 39.20 39.78 40.38
Max 44.30 45.56 43.56 47.71 Max 41.80 42.67 42.62 44.57 1
E.R. 0.0394 0.0980 0.0376 0.0981

92-21=71 11
E.R. 0.0065 0.0754 0.0619 0.0912

64-18=46

Min 41.20 38.80 39.56 40.38 Min 42.10 39.90 40.89 41.12
Max 43.20 44.56 42.50 46.29 Max 42.70 43.89 43.12 45.57 2
E.R. 0.0317 0.0914 0.0467 0.0938

82-19=63 12
E.R. 0.0120 0.0798 0.0447 0.0889

72-22=50

Min 41.60 38.80 39.78 40.25 Min 42.00 39.40 41.56 41.12
Max 42.60 44.22 42.62 45.86 Max 43.60 44.89 43.62 46.57 3
E.R. 0.0169 0.0919 0.0483 0.0950

77-18=59 13
E.R. 0.0254 0.0871 0.0328 0.0865

82-19=63

Min 42.60 39.70 41.89 41.50 Min 42.60 40.10 41.00 41.75
Max 44.00 45.33 44.50 47.57 Max 44.30 45.67 44.00 47.71 4
E.R. 0.0219 0.0880 0.0408 0.0949

82-18=64 14
E.R. 0.0283 0.0928 0.0500 0.0994

80-20=60

Min 43.30 41.10 42.56 42.25 Min 42.40 39.30 40.67 41.12
Max 45.00 46.00 44.75 47.57 Max 44.10 45.89 43.50 47.71 5
E.R. 0.0288 0.0831 0.0372 0.0902

83-24=59 15
E.R. 0.0262 0.1014 0.0436 0.1014

82-17=65

Min 40.20 38.40 40.11 39.38 Min 39.70 37.50 38.00 38.50
Max 41.80 42.44 42.50 44.29 Max 40.50 41.44 41.12 42.71 6
E.R. 0.0286 0.0722 0.0427 0.0877

77-21=56 16
E.R. 0.0174 0.0857 0.0679 0.0916

63-17=46

Min 40.60 38.40 39.22 39.75 Min 42.30 40.00 40.78 41.25
Max 41.10 41.67 41.88 43.14 Max 44.10 45.56 43.50 47.43 7
E.R. 0.0116 0.0760 0.0617 0.0789

63-20=43 17
E.R. 0.0295 0.0911 0.0446 0.1013

82-21=61

Min 39.40 37.30 38.22 38.38 Min 40.18 38.30 40.00 40.12
Max 41.50 42.33 40.56 44.43 Max 42.10 44.00 42.38 45.71 8
E.R. 0.0339 0.0812 0.0376 0.0976

83-21=62 18
E.R. 0.0309 0.0919 0.0383 0.0901

80-18=62

Min 39.00 36.60 37.67 37.38 Min 41.30 38.90 40.56 40.00
Max 39.40 40.44 39.62 41.57 Max 42.80 44.33 43.12 47.00 9
E.R. 0.0085 0.0818 0.0417 0.0893

65-18=47 19
E.R. 0.0231 0.0836 0.0395 0.1077

82-17=65

Min 42.40 40.00 41.44 41.50 Min 41.80 39.70 40.89 41.00
Max 44.90 46.00 44.22 48.71 Max 43.80 44.44 43.25 47.00 10
E.R. 0.0352 0.0845 0.0391 0.1016

92-21=71 20
E.R. 0.0339 0.0804 0.0400 0.1017

82-23=59

 87

88

APPENDIX B – Borland C++ Builder 6.0 Code for Optimal Weights Evaluation

//--
#include <vcl.h>
#include <stdio.h>
#include <conio.h>
#include <math.h>
#pragma hdrstop
#include "OED_GS.h"
#include "Unit2_GS.h"
#include "Unit3_GS.h"
int n1,h,z,p,k,k1,k3,i,i1,j,j1,ogrno,MAXOGR,y;
double
xx,yyy,x,yy,X,XX[200],Y,v,t,pot,mem[200],po[200],R[200][5],R1[200][5],R2[200][5],G[20
0][200],GI[200][200],e[200],et[200];
double
A[200],c[200],w[200],d[200],f[200],g[200],fg,o[200],Z[200],GIT,tahmin[200],beta;
double Duru(int a,int b,int c,int d,double beta);
double Duru1(int a,int b,int c,int d);
double Duru2(int a,int b,int c,int d);
char s1[20],s[100];
bool dosya=false;
double nbeta0,nbeta1,pay1,pay2,pay3,pay4,payda1,payda2;
double eb=0.0,ek=1000000.0,son=0.0;
#define m 5
#define n 100
#define qq 10
//--
#pragma package(smart_init)
#pragma link "CSPIN"
#pragma resource "*.dfm"
TForm1 *Form1;
//--
__fastcall TForm1::TForm1(TComponent* Owner)
 : TForm(Owner)
{
DecimalSeparator='.';
}
//--
void __fastcall TForm1::Button1Click(TObject *Sender)
{
FILE *ff=fopen("c:\\RRR.txt","a");
if(!dosya)
 {
 MAXOGR=Edit1->Text.ToInt();
 ogrno=CSpinEdit1->Value;
 A[ogrno]=Edit3->Text.ToDouble();
 fprintf(ff,"%d %6.2f %d %d %d %d %d\n",ogrno,A[ogrno],
 RadioGroup1->ItemIndex,
 RadioGroup2->ItemIndex,
 RadioGroup3->ItemIndex,
 RadioGroup4->ItemIndex,
 RadioGroup5->ItemIndex);
 fclose(ff);
 }
dosya=false;
{
switch(RadioGroup1->ItemIndex)
 {
 case 0: R[ogrno][0]=Duru(0,0,10,50,beta);
 R1[ogrno][0]=Duru1(0,0,10,50);
 R2[ogrno][0]=Duru2(0,0,10,50);break;
 case 1: R[ogrno][0]=Duru(10,50,50,90,beta);
 R1[ogrno][0]=Duru1(10,50,50,90);
 R2[ogrno][0]=Duru2(10,50,50,90);break;
 case 2: R[ogrno][0]=Duru(50,90,100,100,beta);
 R1[ogrno][0]=Duru1(50,90,100,100);
 R2[ogrno][0]=Duru2(50,90,100,100);break;
 }
switch(RadioGroup2->ItemIndex)
 {

89

 case 0: R[ogrno][1]=Duru(0,0,10,50,beta);
 R1[ogrno][1]=Duru1(0,0,10,50);
 R2[ogrno][1]=Duru2(0,0,10,50);break;
 case 1: R[ogrno][1]=Duru(10,50,50,90,beta);
 R1[ogrno][1]=Duru1(10,50,50,90);
 R2[ogrno][1]=Duru2(10,50,50,90);break;
 case 2: R[ogrno][1]=Duru(50,90,100,100,beta);
 R1[ogrno][1]=Duru1(50,90,100,100);
 R2[ogrno][1]=Duru2(50,90,100,100);break;
 }
switch(RadioGroup3->ItemIndex)
 {
 case 0: R[ogrno][2]=Duru(0,0,10,30,beta);
 R1[ogrno][2]=Duru1(0,0,10,30);
 R2[ogrno][2]=Duru2(0,0,10,30);break;
 case 1: R[ogrno][2]=Duru(10,30,30,50,beta);
 R1[ogrno][2]=Duru1(10,30,30,50);
 R2[ogrno][2]=Duru2(10,30,30,50);break;
 case 2: R[ogrno][2]=Duru(30,50,50,70,beta);
 R1[ogrno][2]=Duru1(30,50,50,70);
 R2[ogrno][2]=Duru2(30,50,50,70);break;
 case 3: R[ogrno][2]=Duru(50,70,70,90,beta);
 R1[ogrno][2]=Duru1(50,70,70,90);
 R2[ogrno][2]=Duru2(50,70,70,90);break;
 case 4: R[ogrno][2]=Duru(70,90,100,100,beta);
 R1[ogrno][2]=Duru1(70,90,100,100);
 R2[ogrno][2]=Duru2(70,90,100,100);break;
 }
switch(RadioGroup4->ItemIndex)
 {
 case 0: R[ogrno][3]=Duru(0,0,10,30,beta);
 R1[ogrno][3]=Duru1(0,0,10,30);
 R2[ogrno][3]=Duru2(0,0,10,30);break;
 case 1: R[ogrno][3]=Duru(10,30,30,50,beta);
 R1[ogrno][3]=Duru1(10,30,30,50);
 R2[ogrno][3]=Duru2(10,30,30,50);break;
 case 2: R[ogrno][3]=Duru(30,50,50,70,beta);
 R1[ogrno][3]=Duru1(30,50,50,70);
 R2[ogrno][3]=Duru2(30,50,50,70);break;
 case 3: R[ogrno][3]=Duru(50,70,70,90,beta);
 R1[ogrno][3]=Duru1(50,70,70,90);
 R2[ogrno][3]=Duru2(50,70,70,90);break;
 case 4: R[ogrno][3]=Duru(70,90,100,100,beta);
 R1[ogrno][3]=Duru1(70,90,100,100);
 R2[ogrno][3]=Duru2(70,90,100,100);break;
 }
switch(RadioGroup5->ItemIndex)
 {
 case 0: R[ogrno][4]=Duru(0,0,10,30,beta);
 R1[ogrno][4]=Duru1(0,0,10,30);
 R2[ogrno][4]=Duru2(0,0,10,30);break;
 case 1: R[ogrno][4]=Duru(10,30,30,50,beta);
 R1[ogrno][4]=Duru1(10,30,30,50);
 R2[ogrno][4]=Duru2(10,30,30,50);break;
 case 2: R[ogrno][4]=Duru(30,50,50,70,beta);
 R1[ogrno][4]=Duru1(30,50,50,70);
 R2[ogrno][4]=Duru2(30,50,50,70);break;
 case 3: R[ogrno][4]=Duru(50,70,70,90,beta);
 R1[ogrno][4]=Duru1(50,70,70,90);
 R2[ogrno][4]=Duru2(50,70,70,90);break;
 case 4: R[ogrno][4]=Duru(70,90,100,100,beta);
 R1[ogrno][4]=Duru1(70,90,100,100);
 R2[ogrno][4]=Duru2(70,90,100,100);break;
 }
}
}
//--
double Duru(int a,int b,int c,int d,double beta)
{
double Sonuc1;
beta=Form1->Edit2->Text.ToDouble();
Sonuc1=beta*(d-((qq+1.0)/(qq+2.0))*(d-c))+(1-beta)*(a+((qq+1.0)/(qq+2.0))*(b-a));
return Sonuc1;
}

90

//--
double Duru1(int a,int b,int c,int d)
{
double Sonuc2;
Sonuc2=(d-((qq+1.0)/(qq+2.0))*(d-c));
return Sonuc2;
}
//--
double Duru2(int a,int b,int c,int d)
{
double Sonuc3;
Sonuc3=(a+((qq+1.0)/(qq+2.0))*(b-a));
return Sonuc3;
}
//--
void __fastcall TForm1::Button3Click(TObject *Sender)
{
MAXOGR=Edit1->Text.ToInt();
Memo1->Lines->Clear();
beta=Form1->Edit2->Text.ToDouble();
{
sprintf(s,"Beta=%.4lf ------------------------",beta);
Memo1->Lines->Add(s);
for(i=0;i<MAXOGR;i++)
 {
 char s1[20],s[100];
 strcpy(s,"");
 for(j=0;j<5;j++)
 {
 sprintf(s1,"%6.2lf ",R[i][j]);
 strcat(s,s1);
 }
 sprintf(s1,"%7.2lf ",A[i]);
 strcat(s,s1);
 Memo1->Lines->Add(s);
 }
 Memo1->Lines->Add("");
}
}
//--
void __fastcall TForm1::Button4Click(TObject *Sender)
{
Memo1->Lines->SaveToFile("c:\\RRRMemolines.txt");
}
//--
void __fastcall TForm1::Button2Click(TObject *Sender)
{
int ki=0;
int flag=0;

Memo1->Lines->Clear();

l1:
beta=Form1->Edit2->Text.ToDouble();
nbeta1=beta;
do
{
Button6->Click();
sprintf(s,"===============");
Memo1->Lines->Add(s);
sprintf(s," %d. ITERATION",++ki);
Memo1->Lines->Add(s);
sprintf(s,"===============");
Memo1->Lines->Add(s);
nbeta0=nbeta1;
XX[ki]=nbeta0;
sprintf(s,"BETA = %.4lf ",nbeta0);
Memo1->Lines->Add(s);

char s[100],s1[100];
double e[m]= {1.0,1.0,1.0,1.0,1.0};

for(i=0;i<m;i++)
 {

91

 G[i][j]=0.0;
 for(j=0;j<m;j++)
 {
 for(p=0;p<n;p++)
 G[i][j]=G[i][j]+R[p][i]*R[p][j];
 }
 }

for(i=0;i<m;i++)
 {
 et[i]=e[i];
 }

for(i=0;i<m;i++)
 {
 for(j=0;j<m;j++)
 {
 GI[i][j]=G[i][j];
 }
 }

h=m*2;
n1=m;

for(i=0;i<m;i++)
 {
 for(j=n1;j<h;j++)
 {
 j1=j-i;
 if(j1-m<0) GI[i][j]=0;
 if(j1-m==0) GI[i][j]=1;
 }
 }

for(k=0;k<m;k++)
 {
 k1=k;
 k3=k+m;

 uc:
 if(GI[k][k]!=0) goto bir;
 i1=k;

 if(GI[i1][k]!=0) goto iki;

goto uc;

bir:
 for(j=0;j<h;j++)
 GI[k][j]=GI[k][j]+GI[i1][j];

iki:
 for(j=0;j<h;j++)
 GI[k+m][j]=GI[k][j]/GI[k][k];

 for(i=k1;i<k3;i++)
 {
 t=GI[i][k];
 for(j=0;j<h;j++)
 GI[i][j]=GI[i][j]-GI[k+m][j]*t;
 }
 }

for(i=0;i<m;i++)
 {
 for(j=0;j<m;j++)
 {
 GI[i][j]=GI[i+m][j+m];
 }
 }
for(i=0;i<m;i++)
 {
 d[i]=0.0;
 for(p=0;p<m;p++)

92

 d[i]=d[i]+GI[i][p]*e[p];
 }

for(j=0;j<m;j++)
 {
 f[j]=0.0;
 for(p=0;p<m;p++)
 f[j]=f[j]+et[p]*GI[p][j];
 }

for(i=0;i<m;i++)
 {
 g[i]=0.0;
 for(p=0;p<n;p++)
 g[i]=g[i]+R[p][i]*A[p];
 }

for(i=0;i<1;i++)
 {
 fg=0.0;
 for(p=0;p<m;p++)
 fg=fg+f[p]*g[p];
 }

v=1.0-fg;

for(i=0;i<m;i++)
 {
 o[i]=0.0;
 o[i]=o[i]+d[i]*v;
 }

GIT=0.0;
for(i=0;i<m;i++)
 {
 for(j=0;j<m;j++)
 GIT=GIT+GI[i][j];
 }

for(j=0;j<m;j++)
 Z[j]=1.0*o[j]/GIT;

for(j=0;j<m;j++)
 {
 c[j]=0.0;
 for(p=0;p<m;p++)
 c[j]=c[j]+GI[j][p]*g[p];
 }

for(j=0;j<m;j++)
 {
 w[j]=Z[j]+c[j];
 }
Memo1->Lines->Add("");
sprintf(s,"----w[j]----");
Memo1->Lines->Add(s);
for(j=0;j<m;j++)
 {
 sprintf(s," %1.5f",w[j]);
 Memo1->Lines->Add(s);
 }

for(i=0;i<n;i++)
 {
 tahmin[i]=0.0;
 for(p=0;p<n;p++)
 tahmin[i]=tahmin[i]+R[i][p]*w[p];
 }

for(i=0;i<n;i++)
 po[i]=pow(A[i]-tahmin[i],2);

sprintf(s,"");
Memo1->Lines->Add(s);

93

pot=0.0;
for(i=0;i<n;i++) pot+=po[i]; mem[ki]=pot;
sprintf(s,"SSE= %.4lf",pot);
Memo1->Lines->Add(s);

pay4=0.0;
payda2=0.0;

for(i=0;i<n;i++)
 {
 payda1=pay1=pay2=pay3=0.0;
 for(j=0;j<m;j++)
 pay1=pay1+(R2[i][j]*w[j]);
 pay2=pay1-A[i];
 for(j=0;j<m;j++)
 pay3=pay3+w[j]*(R1[i][j]-R2[i][j]);
 pay4=pay4+pay2*pay3;
 for(j=0;j<m;j++)
 payda1=payda1+w[j]*(R1[i][j]-R2[i][j]);
 payda2=payda2+pow(payda1,2);
 }

nbeta1=-1.0*pay4/payda2;
Memo1->Lines->Add("");

{
Form1->Edit2->Text=nbeta1;
Form2->Edit2->Text=nbeta1;
}
Form2->Edit4->Text=w[0];
Form2->Edit5->Text=w[1];
Form2->Edit6->Text=w[2];
Form2->Edit7->Text=w[3];
Form2->Edit8->Text=w[4];

for(i=0;i<m;i++)
for(j=0;j<m*2;j++)
G[i][j]=0.0;
Memo1->Lines->Add("");
}

while((flag==0) && (fabs(nbeta0-nbeta1)>0.000001));
if(flag==0){
 if(nbeta1<0.0) nbeta1=0.0;
 if(nbeta1>1.0) nbeta1=1.0;
 Form1->Edit2->Text=nbeta1;
 Form2->Edit2->Text=nbeta1;
 flag=1; goto l1;
}
Form1->Edit2->Text=nbeta0;
Form2->Edit2->Text=nbeta0;
}
//--
void __fastcall TForm1::Button5Click(TObject *Sender)
{
FILE *ff=fopen("c:\\RRR.txt","w");
fclose(ff);
}
//--
void __fastcall TForm1::Button6Click(TObject *Sender)
{
FILE *ff=fopen("c:\\RRR.txt","r");
int k=0,k1,k2,k3,k4,k5;
while(!feof(ff)){
 fscanf(ff,"%d",&ogrno);
 fscanf(ff,"%lf %d %d %d %d %d",&A[ogrno],&k1,&k2,&k3,&k4,&k5);
 RadioGroup1->ItemIndex=k1;
 RadioGroup2->ItemIndex=k2;
 RadioGroup3->ItemIndex=k3;
 RadioGroup4->ItemIndex=k4;
 RadioGroup5->ItemIndex=k5;
 k++;
 dosya=true;
 Button1->Click();

94

}
fclose(ff);
Edit1->Text=k;
MAXOGR=k;
}
//--
void __fastcall TForm1::FormCreate(TObject *Sender)
{
dosya=false;
}
//--
void __fastcall TForm1::Button7Click(TObject *Sender)
{
FILE *ff=fopen("c:\\RRRresult.txt","w");
if(!dosya){
 fprintf(ff,"%2.5f %2.5f %2.5f %2.5f %2.5f %2.5f",nbeta1,w[0],w[1],w[2],w[3],w[4]);
 fclose(ff);
}
dosya=false;
}
//--
void __fastcall TForm1::Button8Click(TObject *Sender)
{
Form2->Show();
}
//--
void __fastcall TForm1::Button9Click(TObject *Sender)
{
Form3->Show();
}
//--

95

Golden Section Unit
//--
#include <vcl.h>
#include <stdio.h>
#include <conio.h>
#include <math.h>
#pragma hdrstop
#include "OED_GS.h"
#include "Unit2_GS.h"
int n1,h,z,p,k,k1,k3,i2,i1,j2,j1,ogrno,MAXOGR1,y;
double x,yy,X,Y,v,t,pot,po[100],R3[100][5],G[100][100],GI[100][100],e[100],et[100];
double
A1[100],c[100],w[100],d[100],f[100],g[100],fg,o[100],Z[100],GIT,tahmin[100],beta;
double Duru(int a,int b,int c,int d,double beta);
char s1[20],s[100];
bool dosya=false;
double nbeta0,nbeta1,pay1,pay2,pay3,pay4,payda1,payda2;
AnsiString NAME[100];
#define m 5
#define qq 10
//--
#pragma package(smart_init)
#pragma link "CSPIN"
#pragma resource "*.dfm"
TForm2 *Form2;
//--
__fastcall TForm2::TForm2(TComponent* Owner)
 : TForm(Owner)
{
}
//--
void __fastcall TForm2::Button1Click(TObject *Sender)
{
w[0]=Form2->Edit4->Text.ToDouble();
w[1]=Form2->Edit5->Text.ToDouble();
w[2]=Form2->Edit6->Text.ToDouble();
w[3]=Form2->Edit7->Text.ToDouble();
w[4]=Form2->Edit8->Text.ToDouble();
MAXOGR1=Form2->Edit1->Text.ToInt();

FILE *ff=fopen("c:\\RRR1.txt","a");
if(!dosya)
{
 ogrno=Form2->CSpinEdit1->Value;
 fprintf(ff,"%d %d %d %d %d %d %5s\n",ogrno,
 RadioGroup1->ItemIndex,
 RadioGroup2->ItemIndex,
 RadioGroup3->ItemIndex,
 RadioGroup4->ItemIndex,
 RadioGroup5->ItemIndex,
 NAME[ogrno]=Edit9->Text);
 fclose(ff);
}
dosya=false;
{
switch(RadioGroup1->ItemIndex)
 {
 case 0: R3[ogrno][0]=Duru(0,0,10,50,beta);break;
 case 1: R3[ogrno][0]=Duru(10,50,50,90,beta);break;
 case 2: R3[ogrno][0]=Duru(50,90,100,100,beta);break;
 }
switch(RadioGroup2->ItemIndex)
 {
 case 0: R3[ogrno][1]=Duru(0,0,10,50,beta);break;
 case 1: R3[ogrno][1]=Duru(10,50,50,90,beta);break;
 case 2: R3[ogrno][1]=Duru(50,90,100,100,beta);break;
 }
switch(RadioGroup3->ItemIndex)
 {
 case 0: R3[ogrno][2]=Duru(0,0,10,30,beta);break;
 case 1: R3[ogrno][2]=Duru(10,30,30,50,beta);break;
 case 2: R3[ogrno][2]=Duru(30,50,50,70,beta);break;
 case 3: R3[ogrno][2]=Duru(50,70,70,90,beta);break;

96

 case 4: R3[ogrno][2]=Duru(70,90,100,100,beta);break;
 }
switch(RadioGroup4->ItemIndex)
 {
 case 0: R3[ogrno][3]=Duru(0,0,10,30,beta);break;
 case 1: R3[ogrno][3]=Duru(10,30,30,50,beta);break;
 case 2: R3[ogrno][3]=Duru(30,50,50,70,beta);break;
 case 3: R3[ogrno][3]=Duru(50,70,70,90,beta);break;
 case 4: R3[ogrno][3]=Duru(70,90,100,100,beta);break;
 }
switch(RadioGroup5->ItemIndex)
 {
 case 0: R3[ogrno][4]=Duru(0,0,10,30,beta);break;
 case 1: R3[ogrno][4]=Duru(10,30,30,50,beta);break;
 case 2: R3[ogrno][4]=Duru(30,50,50,70,beta);break;
 case 3: R3[ogrno][4]=Duru(50,70,70,90,beta);break;
 case 4: R3[ogrno][4]=Duru(70,90,100,100,beta);break;
 }
}

for(i2=0;i2<MAXOGR1;i2++)
 {
 A1[i2]=0.0;
 for(j2=0;j2<m;j2++)
 A1[i2]=A1[i2]+R3[i2][j2]*w[j2];
 }
if (A1[ogrno]<0.0)
A1[ogrno]=0.0;
if(A1[ogrno]>100.0)
A1[ogrno]=100.0;
Form2->Edit3->Text=A1[ogrno];
}
//--
double Duru(int a,int b,int c,int d,double beta)
{
double Sonuc1;
beta=Form2->Edit2->Text.ToDouble();
Sonuc1=beta*(d-((qq+1.0)/(qq+2.0))*(d-c))+(1-beta)*(a+((qq+1.0)/(qq+2.0))*(b-a));
return Sonuc1;
}
//--
void __fastcall TForm2::Button3Click(TObject *Sender)
{
MAXOGR1=Form2->Edit1->Text.ToInt();
Memo1->Lines->Clear();
beta=Form2->Edit2->Text.ToDouble();

sprintf(s," NAME-SURNAME GRADE");
Memo1->Lines->Add(s);
sprintf(s,"===============================");
Memo1->Lines->Add(s);

for(i2=0;i2<MAXOGR1;i2++)
 {
 char s1[20],s[100];
 strcpy(s,"");
 {
 sprintf(s1,"%19s %7.0f",NAME[i2],A1[i2]);
 strcat(s,s1);
 }
 Memo1->Lines->Add(s);
 }
 Memo1->Lines->Add("");
}
//--

97

Grade Evaluation Unit
//--
#include <vcl.h>
#include <stdio.h>
#include <conio.h>
#include <math.h>
#pragma hdrstop
#include "Unit3_GS.h"
int n1,h,z,p,k,k1,k3,i,i1,j,j1,ogrno,MAXOGR;
double
a1,b1,v,t,pot,mem[100],po[100],R[100][5],R1[100][5],G[100][100],GI[100][100],e[100],e
t[100];
double
A[100],c[100],w[100],d[100],f[100],g[100],fg,o[100],Z[100],GIT,tahmin[100],beta;
double nbeta0,nbeta1,beta1,beta2;
double Duru2(int a,int b,int c,int d,double beta1);
double Duru1(int a,int b,int c,int d,double beta2);
char s1[20],s[100];
bool dosya=false;
double v1,t1,pot1,mem1[100],po1[100],G1[100][100],GI1[100][100],e1[100],et1[100];
double c1[100],w1[100],d1[100],f1[100],g1[100],fg1,o1[100],Z1[100],GIT1,tahmin1[100];
#define m 5
#define n 100
#define qq 10
//--
#pragma package(smart_init)
#pragma link "CSPIN"
#pragma resource "*.dfm"
TForm3 *Form3;
//--
__fastcall TForm3::TForm3(TComponent* Owner)
 : TForm(Owner)
{
}
//--
void __fastcall TForm3::Button1Click(TObject *Sender)
{
FILE *ff=fopen("c:\\RRR.txt","a");
if(!dosya)
{
 MAXOGR=Edit1->Text.ToInt();
 ogrno=CSpinEdit1->Value;
 A[ogrno]=Edit3->Text.ToDouble();
 fprintf(ff,"%d %6.2lf %d %d %d %d %d\n",ogrno,A[ogrno],
 RadioGroup1->ItemIndex,
 RadioGroup2->ItemIndex,
 RadioGroup3->ItemIndex,
 RadioGroup4->ItemIndex,
 RadioGroup5->ItemIndex);
 fclose(ff);
}
dosya=false;
{
switch(RadioGroup1->ItemIndex)
 {
 case 0: R[ogrno][0]=Duru2(0,0,10,50,beta1);
 R1[ogrno][0]=Duru1(0,0,10,50,beta2);break;
 case 1: R[ogrno][0]=Duru2(10,50,50,90,beta1);
 R1[ogrno][0]=Duru1(10,50,50,90,beta2);break;
 case 2: R[ogrno][0]=Duru2(50,90,100,100,beta1);
 R1[ogrno][0]=Duru1(50,90,100,100,beta2);break;
 }
switch(RadioGroup2->ItemIndex)
 {
 case 0: R[ogrno][1]=Duru2(0,0,10,50,beta1);
 R1[ogrno][1]=Duru1(0,0,10,50,beta2);break;
 case 1: R[ogrno][1]=Duru2(10,50,50,90,beta1);
 R1[ogrno][1]=Duru1(10,50,50,90,beta2);break;
 case 2: R[ogrno][1]=Duru2(50,90,100,100,beta1);
 R1[ogrno][1]=Duru1(50,90,100,100,beta2);break;
 }
switch(RadioGroup3->ItemIndex)
 {

98

 case 0: R[ogrno][2]=Duru2(0,0,10,30,beta1);
 R1[ogrno][2]=Duru1(0,0,10,30,beta2);break;
 case 1: R[ogrno][2]=Duru2(10,30,30,50,beta1);
 R1[ogrno][2]=Duru1(10,30,30,50,beta2);break;
 case 2: R[ogrno][2]=Duru2(30,50,50,70,beta1);
 R1[ogrno][2]=Duru1(30,50,50,70,beta2);break;
 case 3: R[ogrno][2]=Duru2(50,70,70,90,beta1);
 R1[ogrno][2]=Duru1(50,70,70,90,beta2);break;
 case 4: R[ogrno][2]=Duru2(70,90,100,100,beta1);
 R1[ogrno][2]=Duru1(70,90,100,100,beta2);break;
 }
switch(RadioGroup4->ItemIndex)
 {
 case 0: R[ogrno][3]=Duru2(0,0,10,30,beta1);
 R1[ogrno][3]=Duru1(0,0,10,30,beta2);break;
 case 1: R[ogrno][3]=Duru2(10,30,30,50,beta1);
 R1[ogrno][3]=Duru1(10,30,30,50,beta2);break;
 case 2: R[ogrno][3]=Duru2(30,50,50,70,beta1);
 R1[ogrno][3]=Duru1(30,50,50,70,beta2);break;
 case 3: R[ogrno][3]=Duru2(50,70,70,90,beta1);
 R1[ogrno][3]=Duru1(50,70,70,90,beta2);break;
 case 4: R[ogrno][3]=Duru2(70,90,100,100,beta1);
 R1[ogrno][3]=Duru1(70,90,100,100,beta2);break;
 }
switch(RadioGroup5->ItemIndex)
 {
 case 0: R[ogrno][4]=Duru2(0,0,10,30,beta1);
 R1[ogrno][4]=Duru1(0,0,10,30,beta2);break;
 case 1: R[ogrno][4]=Duru2(10,30,30,50,beta1);
 R1[ogrno][4]=Duru1(10,30,30,50,beta2);break;
 case 2: R[ogrno][4]=Duru2(30,50,50,70,beta1);
 R1[ogrno][4]=Duru1(30,50,50,70,beta2);break;
 case 3: R[ogrno][4]=Duru2(50,70,70,90,beta1);
 R1[ogrno][4]=Duru1(50,70,70,90,beta2);break;
 case 4: R[ogrno][4]=Duru2(70,90,100,100,beta1);
 R1[ogrno][4]=Duru1(70,90,100,100,beta2);break;
 }
}
}
//--
double Duru2(int a,int b,int c,int d,double beta1)
{
double Sonuc1;
beta1=Form3->Edit2->Text.ToDouble();
Sonuc1=beta1*(d-((qq+1.0)/(qq+2.0))*(d-c))+(1-beta1)*(a+((qq+1.0)/(qq+2.0))*(b-a));
return Sonuc1;
}
//--
double Duru1(int a,int b,int c,int d,double beta2)
{
double Sonuc2;
beta2=Form3->Edit4->Text.ToDouble();
Sonuc2=beta2*(d-((qq+1.0)/(qq+2.0))*(d-c))+(1-beta2)*(a+((qq+1.0)/(qq+2.0))*(b-a));
return Sonuc2;
}
//--
void __fastcall TForm3::Button6Click(TObject *Sender)
{
FILE *ff=fopen("c:\\RRR.txt","r");
int k=0,k1,k2,k3,k4,k5;
while(!feof(ff))
{
 fscanf(ff,"%d",&ogrno);
 fscanf(ff,"%lf %d %d %d %d %d",&A[ogrno],&k1,&k2,&k3,&k4,&k5);
 RadioGroup1->ItemIndex=k1;
 RadioGroup2->ItemIndex=k2;
 RadioGroup3->ItemIndex=k3;
 RadioGroup4->ItemIndex=k4;
 RadioGroup5->ItemIndex=k5;
 k++;
 dosya=true;
 Button1->Click();
}
fclose(ff);

99

Edit1->Text=k;
MAXOGR=k;
}
//--
void __fastcall TForm3::FormCreate(TObject *Sender)
{
dosya=false;
}
//--
void __fastcall TForm3::Button9Click(TObject *Sender)
{
Memo1->Lines->Clear();
sprintf(s,"Golden Section Solution:");
Memo1->Lines->Add(s);
sprintf(s,"==");
Memo1->Lines->Add(s);
sprintf(s,"Iter. a b lamda mu SSE1 SSE2");
Memo1->Lines->Add(s);
sprintf(s,"==");
Memo1->Lines->Add(s);
double a2=0.0,b2=1.0;
int ki=1;
char s[100],s1[100];
beta1=a2+0.382*fabs(b2-a2);
beta2=a2+0.618*fabs(b2-a2);

do
{
double e[m]= {1.0,1.0,1.0,1.0,1.0};

for(i=0;i<m;i++)
 {
 G[i][j]=0.0;
 for(j=0;j<m;j++)
 {
 for(p=0;p<n;p++)
 G[i][j]=G[i][j]+R[p][i]*R[p][j];
 }
 }

for(i=0;i<m;i++)
 et[i]=e[i];

for(i=0;i<m;i++)
 {
 for(j=0;j<m;j++)
 {
 GI[i][j]=G[i][j];
 }
 }

h=m*2;
n1=m;

for(i=0;i<m;i++)
 {
 for(j=n1;j<h;j++)
 {
 j1=j-i;
 if(j1-m<0) GI[i][j]=0;
 if(j1-m==0) GI[i][j]=1;
 }
 }

for(k=0;k<m;k++)
 {
 k1=k;
 k3=k+m;

 uc:
 if(GI[k][k]!=0) goto bir;
 i1=k;

 if(GI[i1][k]!=0) goto iki;

100

goto uc;

bir:
 for(j=0;j<h;j++)
 GI[k][j]=GI[k][j]+GI[i1][j];

iki:
 for(j=0;j<h;j++)
 GI[k+m][j]=GI[k][j]/GI[k][k];

 for(i=k1;i<k3;i++)
 {
 t=GI[i][k];
 for(j=0;j<h;j++)
 GI[i][j]=GI[i][j]-GI[k+m][j]*t;
 }
 }

for(i=0;i<m;i++)
 {
 for(j=0;j<m;j++)
 {
 GI[i][j]=GI[i+m][j+m];
 }
 }

for(i=0;i<m;i++)
 {
 d[i]=0.0;
 for(p=0;p<m;p++)
 d[i]=d[i]+GI[i][p]*e[p];
 }

for(j=0;j<m;j++)
 {
 f[j]=0.0;
 for(p=0;p<m;p++)
 f[j]=f[j]+et[p]*GI[p][j];
 }

for(i=0;i<m;i++)
 {
 g[i]=0.0;
 for(p=0;p<n;p++)
 g[i]=g[i]+R[p][i]*A[p];
 }

for(i=0;i<1;i++)
 {
 fg=0.0;
 for(p=0;p<m;p++)
 fg=fg+f[p]*g[p];
 }

v=1.0-fg;

for(i=0;i<m;i++)
 {
 o[i]=0.0;
 o[i]=o[i]+d[i]*v;
 }

GIT=0.0;
for(i=0;i<m;i++)
 {
 for(j=0;j<m;j++)
 GIT=GIT+GI[i][j];
 }

for(j=0;j<m;j++)
 Z[j]=1.0*o[j]/GIT;

for(j=0;j<m;j++)

101

 {
 c[j]=0.0;
 for(p=0;p<m;p++)
 c[j]=c[j]+GI[j][p]*g[p];
 }

for(j=0;j<m;j++)
 {
 w[j]=Z[j]+c[j];
 }

for(i=0;i<n;i++)
 {
 tahmin[i]=0.0;
 for(p=0;p<n;p++)
 tahmin[i]=tahmin[i]+R[i][p]*w[p];
 }

for(i=0;i<n;i++)
 {
 po[i]=pow(tahmin[i]-A[i],2);
 }

pot=0.0;
for(i=0;i<n;i++) pot+=po[i]; mem[ki]=pot;

double e1[m]= {1.0,1.0,1.0,1.0,1.0};

for(i=0;i<m;i++)
 {
 G1[i][j]=0.0;
 for(j=0;j<m;j++)
 {
 for(p=0;p<n;p++)
 G1[i][j]=G1[i][j]+R1[p][i]*R1[p][j];
 }
 }

for(i=0;i<m;i++)
 et1[i]=e1[i];

for(i=0;i<m;i++)
 {
 for(j=0;j<m;j++)
 {
 GI1[i][j]=G1[i][j];
 }
 }

h=m*2;
n1=m;

for(i=0;i<m;i++)
 {
 for(j=n1;j<h;j++)
 {
 j1=j-i;
 if(j1-m<0) GI1[i][j]=0;
 if(j1-m==0) GI1[i][j]=1;
 }
 }

for(k=0;k<m;k++)
 {
 k1=k;
 k3=k+m;

 alti:
 if(GI1[k][k]!=0) goto dort;
 i1=k;

 if(GI1[i1][k]!=0) goto bes;

goto alti;

102

dort:
 for(j=0;j<h;j++)
 GI1[k][j]=GI1[k][j]+GI1[i1][j];

bes:
 for(j=0;j<h;j++)
 GI1[k+m][j]=GI1[k][j]/GI1[k][k];

 for(i=k1;i<k3;i++)
 {
 t1=GI1[i][k];
 for(j=0;j<h;j++)
 GI1[i][j]=GI1[i][j]-GI1[k+m][j]*t1;
 }
 }

for(i=0;i<m;i++)
 {
 for(j=0;j<m;j++)
 {
 GI1[i][j]=GI1[i+m][j+m];
 }
 }

for(i=0;i<m;i++)
 {
 d1[i]=0.0;
 for(p=0;p<m;p++)
 d1[i]=d1[i]+GI1[i][p]*e1[p];
 }

for(j=0;j<m;j++)
 {
 f1[j]=0.0;
 for(p=0;p<m;p++)
 f1[j]=f1[j]+et1[p]*GI1[p][j];
 }

for(i=0;i<m;i++)
 {
 g1[i]=0.0;
 for(p=0;p<n;p++)
 g1[i]=g1[i]+R1[p][i]*A[p];
 }

for(i=0;i<1;i++)
 {
 fg1=0.0;
 for(p=0;p<m;p++)
 fg1=fg1+f1[p]*g1[p];
 }

v1=1.0-fg1;

for(i=0;i<m;i++)
 {
 o1[i]=0.0;
 o1[i]=o1[i]+d1[i]*v1;
 }

GIT1=0.0;
for(i=0;i<m;i++)
 {
 for(j=0;j<m;j++)
 GIT1=GIT1+GI1[i][j];
 }

for(j=0;j<m;j++)
 Z1[j]=1.0*o1[j]/GIT1;

for(j=0;j<m;j++)
 {
 c1[j]=0.0;
 for(p=0;p<m;p++)

103

 c1[j]=c1[j]+GI1[j][p]*g1[p];
 }

for(j=0;j<m;j++)
 {
 w1[j]=Z1[j]+c1[j];
 }

for(i=0;i<n;i++)
 {
 tahmin1[i]=0.0;
 for(p=0;p<n;p++)
 tahmin1[i]=tahmin1[i]+R1[i][p]*w1[p];
 }

for(i=0;i<n;i++)
 {
 po1[i]=pow(tahmin1[i]-A[i],2);
 }

pot1=0.0;
for(i=0;i<n;i++) pot1+=po1[i]; mem1[ki]=pot1;

for(i=0;i<m;i++)
 for(j=0;j<m*2;j++)
 {
 G[i][j]=0.0;
 G1[i][j]=0.0;
 }
/**************************GOLDEN SECTION***********************/

sprintf(s,"%2d %8.4lf %8.4lf %8.4lf %8.4lf %8.4lf
%8.4lf",ki,a2,b2,beta1,beta2,mem[ki],mem1[ki]);
Memo1->Lines->Add(s);

 if(mem[ki]>mem1[ki])
 a2=beta1;
 else b2=beta2;

beta1=a2+0.382*fabs(b2-a2);
beta2=a2+0.618*fabs(b2-a2);

Form3->Edit2->Text=beta1;
Form3->Edit4->Text=beta2;
beta1=Form3->Edit2->Text.ToDouble();
beta2=Form3->Edit4->Text.ToDouble();

mem[ki]=mem1[ki]=0.0;
ki++;
Button6->Click();
}
while(fabs(b2-a2)>0.000001);
sprintf(s,"==");
Memo1->Lines->Add(s);
sprintf(s,"Uncertainty interval of function is [%5.4lf,%5.4lf].",a2,b2);
Memo1->Lines->Add(s);
sprintf(s,"Interval midpoint is %5.4lf.",0.5*(a2+b2));
Memo1->Lines->Add(s);
}
//--

104

APPENDIX C – Borland C++ Builder 6.0 Code for Group Constitution

//--
#include <vcl.h>
#include <stdio.h>
#include <conio.h>
#include <math.h>
#include <stdlib.h>
#include "Unit1.h"
#include "Unit2.h"
#define MAX(a,b) (((a)>(b))?(a):(b))
#pragma hdrstop
int h=0,k=0,i,j,ogrno,MAXOGR,GROUPNO,a,b,c,d,e,f,x=0,xx=0,y=0,yy=0,g;
double k1,k2,k3,k4,k5,top[4][4],ort[4][4],ort1[4],SORT[4],SORT1[25][25][4],hkt[4][4],
po[200][200],var[4][4],A[100][4],A1[4][100][4],A2[4][100][4];
double RA[100],RAM[25][100][4],DA[4][100],DAM[25][25][4],DAMtop[25],DAMort[25],
SA[4][100],SAM[25][100][4],DAM1[25][100][4],SAM1[25][100][4];
double DAMstdev[25],DAMHKT[25];
char s1[20],s[100];
int t=0,m=0,l=0,p=0;
AnsiString AD[61]={
"Arda Can CANÇALAR","Samet ŞENOL","Murat UĞURLU","Bahadır AĞCA","Serdar
ÇORLULUOĞLU","Dinçer GÖKSÜLÜK","Serdar KUZU","A.Gökhan KÜÇÜKKATİPOĞLU","İ.Çağlar
PALAVAR","B. Kenan TELCİ","Sevil AKKAŞ","Sertaç AKSAKAL","Kenan ALIR","Esra
ALTINER","Tuğba ASLAN","H.Resul ÇAĞLAYAN","Selim ÇAM","Beyhan ÇOBAN","Hakan
EKİZ","Elif EMREM","Tamer EROL","Caner HATİPOĞLU","Gizem KAYA","Gökhan KAYMAK",
"Ender KILIÇ","Özgür KORKMAZ","Murat MANSUROĞLU","Sinem NALBANT","Cemile
ÖZDEMİR","Emre ÖZKUL","Ufuk SÖNMEZ","Onur SUBAŞI","Caner SUNGUR","Alper ŞAHİN","Aydın
ŞANAL","Simge TORTOP","Onur TÜYSÜZOĞLU","Belma YIKILMAZ","Eylül YILDIRIM","Merve
AKDEDE","Ufuk AKTAŞ","Servet ARSLAN","Erkan ASLANEL","Emel ÇİNKAYA","Alev
DOĞAN","Onur ELALMAZ","Başak ERDUR","Denizhan GÖNEN","İlknur GÜMÜŞBAŞ","Fatih
GÜRSOY","Sırma KAYITKEN","Raşit KORUMAZ","Can Ceki LEVİ","Ayşegül ÖNER","Şeyda
SOFUOĞLU","Fatma SOĞANLI","Esra SOYLU","Şeyma TEKİN","Ümit TÜNALP","Seher
VATANSEVER","Gülçin YANAR"};
//--
#pragma package(smart_init)
#pragma resource "*.dfm"
TForm1 *Form1;
//--
__fastcall TForm1::TForm1(TComponent* Owner)
 : TForm(Owner)
{
DecimalSeparator='.';
}
//--
void __fastcall TForm1::Button1Click(TObject *Sender)
{
int k=0;
t=0;m=0;l=0;p=0;
int x=0,xx=0,y=0,yy=0;
top[0][0]=top[1][0]=top[2][0]=top[3][0]=0;
hkt[0][0]=hkt[1][0]=hkt[2][0]=hkt[3][0]=0;
Form1->Memo1->Lines->Clear();
Form1->Memo2->Lines->Clear();
Form1->Memo3->Lines->Clear();
Form1->Memo4->Lines->Clear();
Form2->Memo1->Lines->Clear();

FILE *ff=fopen("c:\\clusters.txt","r");
while(!feof(ff)){
 fscanf(ff,"%lf %lf %lf %lf",&k1,&k2,&k3,&k4);
 A[k][0]=k1;
 A[k][1]=k2;
 A[k][2]=k3;
 A[k][3]=k4;
 k++;
}
fclose(ff);
Edit1->Text=k;
MAXOGR=k;

105

for(k=0;k<MAXOGR;k++)
 {
 if(A[k][1]==0) {t++;A1[0][x][0]=A2[0][x][0]=A[k][0];
A1[0][x][1]=A2[0][x][1]=A[k][1]; A1[0][x][2]=A2[0][x][2]=A[k][2];
A1[0][x][3]=A2[0][x][3]=A[k][3]; x++;}
 else if(A[k][1]==1)
{m++;A1[1][xx][0]=A2[1][xx][0]=A[k][0];A1[1][xx][1]=A2[1][xx][1]=A[k][1];A1[1][xx][2]
=A2[1][xx][2]=A[k][2];A1[1][xx][3]=A2[1][xx][3]=A[k][3]; xx++;}
 else if(A[k][1]==2) {l++;A1[2][y][0]=A2[2][y][0]=A[k][0];
A1[2][y][1]=A2[2][y][1]=A[k][1]; A1[2][y][2]=A2[2][y][2]=A[k][2];
A1[2][y][3]=A2[2][y][3]=A[k][3]; y++;}
 else
{p++;A1[3][yy][0]=A2[3][yy][0]=A[k][0];A1[3][yy][1]=A2[3][yy][1]=A[k][1];A1[3][yy][2]
=A2[3][yy][2]=A[k][2];A1[3][yy][3]=A2[3][yy][3]=A[k][3]; yy++;}
 }

k=0,j=0,a=0;
int z=0;
double enbuyuk=0;
int kk=0;

ZZ1: for(i=0;i<t;i++)
 if(A2[0][i][0]!=0) {enbuyuk=MAX(enbuyuk,A2[0][i][3]);}
 kk=1;
 for(i=0;i<t;i++)
 if (A2[0][i][0]!=0 && A2[0][i][3]==enbuyuk && kk==1) {kk++;
SORT1[0][k][0]=A2[0][i][0]; SORT1[0][k][1]=A2[0][i][1]; SORT1[0][k][2]=A2[0][i][2];
SORT1[0][k][3]=A2[0][i][3]; A2[0][i][0]=A2[0][i][1]=A2[0][i][2]=A2[0][i][3]=0;}
 {
 enbuyuk=0;
 k++;
 kk=0;
 if(i!=k) goto ZZ1;
 }

enbuyuk=0;
k=0;
kk=0;
ZZZ1: for(i=0;i<m;i++)
 if(A2[1][i][0]!=0) {enbuyuk=MAX(enbuyuk,A2[1][i][3]);}
 kk=1;
 for(i=0;i<m;i++)
 if (A2[1][i][0]!=0 && A2[1][i][3]==enbuyuk && kk==1) {kk++;
SORT1[1][k][0]=A2[1][i][0]; SORT1[1][k][1]=A2[1][i][1]; SORT1[1][k][2]=A2[1][i][2];
SORT1[1][k][3]=A2[1][i][3]; A2[1][i][0]=A2[1][i][1]=A2[1][i][2]=A2[1][i][3]=0;}
 {
 enbuyuk=0;
 k++;
 kk=0;
 if(i!=k) goto ZZZ1;
 }

enbuyuk=0;
k=0;
kk=0;
ZZZZ1: for(i=0;i<l;i++)
 if(A2[2][i][0]!=0) {enbuyuk=MAX(enbuyuk,A2[2][i][3]);}
 kk=1;
 for(i=0;i<l;i++)
 if (A2[2][i][0]!=0 && A2[2][i][3]==enbuyuk && kk==1) {kk++;
SORT1[2][k][0]=A2[2][i][0]; SORT1[2][k][1]=A2[2][i][1]; SORT1[2][k][2]=A2[2][i][2];
SORT1[2][k][3]=A2[2][i][3]; A2[2][i][0]=A2[2][i][1]=A2[2][i][2]=A2[2][i][3]=0;}
 {
 enbuyuk=0;
 k++;
 kk=0;
 if(i!=k) goto ZZZZ1;
 }

enbuyuk=0;
k=0;
kk=0;
ZZZZZ1: for(i=0;i<p;i++)
 if(A2[3][i][0]!=0) {enbuyuk=MAX(enbuyuk,A2[3][i][3]);}

106

 kk=1;
 for(i=0;i<p;i++)
 if (A2[3][i][0]!=0 && A2[3][i][3]==enbuyuk && kk==1) {kk++;
SORT1[3][k][0]=A2[3][i][0]; SORT1[3][k][1]=A2[3][i][1]; SORT1[3][k][2]=A2[3][i][2];
SORT1[3][k][3]=A2[3][i][3]; A2[3][i][0]=A2[3][i][1]=A2[3][i][2]=A2[3][i][3]=0;}
 {
 enbuyuk=0;
 k++;
 kk=0;
 if(i!=k) goto ZZZZZ1;
 }

 char s1[20],s[100];
 strcpy(s,"");
 sprintf(s1," NAME-SURNAME MEAN");
 strcat(s,s1);
 Form1->Memo1->Lines->Add(s);
 Form1->Memo2->Lines->Add(s);
 Form1->Memo3->Lines->Add(s);
 Form1->Memo4->Lines->Add(s);
 strcpy(s,"");
 sprintf(s1,"===============================");
 strcat(s,s1);
 Form1->Memo1->Lines->Add(s);
 Form1->Memo2->Lines->Add(s);
 Form1->Memo3->Lines->Add(s);
 Form1->Memo4->Lines->Add(s);

for(k=0;k<t;k++)
 {
 top[0][0]+=SORT1[0][k][3];
 ort[0][0]=top[0][0]/t;
 }

for(k=0;k<m;k++)
 {
 top[1][0]+=SORT1[1][k][3];
 ort[1][0]=top[1][0]/m;
 }

for(k=0;k<l;k++)
 {
 top[2][0]+=SORT1[2][k][3];
 ort[2][0]=top[2][0]/l;
 }

for(k=0;k<p;k++)
 {
 top[3][0]+=SORT1[3][k][3];
 ort[3][0]=top[3][0]/p;
 }

for(k=0;k<MAXOGR;k++)
 {
 if (A[k][1]==0)
 {
 po[k][0]=pow((A[k][3]-ort[0][0]),2);
 hkt[0][0]+=po[k][0];
 }
 if (A[k][1]==1)
 {
 po[k][0]=pow((A[k][3]-ort[1][0]),2);
 hkt[1][0]+=po[k][0];
 }
 if (A[k][1]==2)
 {
 po[k][0]=pow((A[k][3]-ort[2][0]),2);
 hkt[2][0]+=po[k][0];
 }
 if (A[k][1]==3)
 {
 po[k][0]=pow((A[k][3]-ort[3][0]),2);
 hkt[3][0]+=po[k][0];
 }

107

 }

if(t==1) var[0][0]=hkt[0][0]/(t);
else var[0][0]=hkt[0][0]/(t-1);
if(m==1) var[1][0]=hkt[1][0]/(m);
else var[1][0]=hkt[1][0]/(m-1);
if(l==1)var[2][0]=hkt[2][0]/(l);
else var[2][0]=hkt[2][0]/(l-1);
if(p==1)var[3][0]=hkt[3][0]/(p);
else var[3][0]=hkt[3][0]/(p-1);

for(i=0;i<4;i++)
ort1[i]=ort[i][0];

k=0;
enbuyuk=0;

Z: for(i=0;i<4;i++)
 enbuyuk=MAX(enbuyuk,ort1[i]);
 for(i=0;i<4;i++)
 if (ort1[i]==enbuyuk) {ort1[i]=0;}
 {
 SORT[k]=enbuyuk;
 enbuyuk=0;
 k++;
 if(i!=k) goto Z;
 }

for(i=0;i<4;i++)
if (SORT[0]==ort[i][0])
 {
 h=0;
 k=0;
A11: char s1[20],s[100];
 strcpy(s,"");
 sprintf(s1,"%23s %7.1lf",AD[int(SORT1[i][k][0])-1],SORT1[i][k][3]);
 strcat(s,s1);
 Form1->Memo1->Lines->Add(s);
 A2[0][h][0]=SORT1[i][k][0];
 A2[0][h][1]=SORT1[i][k][1];
 A2[0][h][2]=SORT1[i][k][2];
 A2[0][h][3]=SORT1[i][k][3];
 h++;
 k++;
 if (SORT1[i][k][0]!=0) goto A11;
 strcpy(s,"");
 sprintf(s1,"===============================");
 strcat(s,s1);
 Form1->Memo1->Lines->Add(s);
 strcpy(s,"");
 sprintf(s1,"MEAN= %.2f",ort[i][0]);
 strcat(s,s1);
 Form1->Memo1->Lines->Add(s);
 strcpy(s,"");
 sprintf(s1,"STDEV= %.2lf ",sqrt(var[i][0]));
 strcat(s,s1);
 Form1->Memo1->Lines->Add(s);
 }
Edit3->Text=k;
t=k;

for(i=0;i<4;i++)
if (SORT[1]==ort[i][0])
 {
 k=0;
A12: char s1[20],s[100];
 strcpy(s,"");
 sprintf(s1,"%23s %7.1lf",AD[int(SORT1[i][k][0])-1],SORT1[i][k][3]);
 strcat(s,s1);
 Form1->Memo2->Lines->Add(s);
 A2[0][h][0]=SORT1[i][k][0];
 A2[0][h][1]=SORT1[i][k][1];
 A2[0][h][2]=SORT1[i][k][2];
 A2[0][h][3]=SORT1[i][k][3];

108

 h++;
 k++;
 if (SORT1[i][k][0]!=0) goto A12;
 strcpy(s,"");
 sprintf(s1,"===============================");
 strcat(s,s1);
 Form1->Memo2->Lines->Add(s);
 strcpy(s,"");
 sprintf(s1,"MEAN= %.2f",ort[i][0]);
 strcat(s,s1);
 Form1->Memo2->Lines->Add(s);
 strcpy(s,"");
 sprintf(s1,"STDEV= %.2lf ",sqrt(var[i][0]));
 strcat(s,s1);
 Form1->Memo2->Lines->Add(s);
 }
Edit4->Text=k;
m=k;

for(i=0;i<4;i++)
if (SORT[2]==ort[i][0])
 {
 k=0;
A13:char s1[20],s[100];
 strcpy(s,"");
 sprintf(s1,"%23s %7.1lf",AD[int(SORT1[i][k][0])-1],SORT1[i][k][3]);
 strcat(s,s1);
 Form1->Memo3->Lines->Add(s);
 A2[0][h][0]=SORT1[i][k][0];
 A2[0][h][1]=SORT1[i][k][1];
 A2[0][h][2]=SORT1[i][k][2];
 A2[0][h][3]=SORT1[i][k][3];
 h++;
 k++;
 if (SORT1[i][k][0]!=0) goto A13;
 strcpy(s,"");
 sprintf(s1,"===============================");
 strcat(s,s1);
 Form1->Memo3->Lines->Add(s);
 strcpy(s,"");
 sprintf(s1,"MEAN= %.2f",ort[i][0]);
 strcat(s,s1);
 Form1->Memo3->Lines->Add(s);
 strcpy(s,"");
 sprintf(s1,"STDEV= %.2lf ",sqrt(var[i][0]));
 strcat(s,s1);
 Form1->Memo3->Lines->Add(s);
 }
Edit5->Text=k;
l=k;

for(i=0;i<4;i++)
if (SORT[3]==ort[i][0])
 {
 k=0;
A14: char s1[20],s[100];
 strcpy(s,"");
 sprintf(s1,"%23s %7.1lf",AD[int(SORT1[i][k][0])-1],SORT1[i][k][3]);
 strcat(s,s1);
 Form1->Memo4->Lines->Add(s);
 A2[0][h][0]=SORT1[i][k][0];
 A2[0][h][1]=SORT1[i][k][1];
 A2[0][h][2]=SORT1[i][k][2];
 A2[0][h][3]=SORT1[i][k][3];
 h++;
 k++;
 if (SORT1[i][k][0]!=0) goto A14;
 strcpy(s,"");
 sprintf(s1,"===============================");
 strcat(s,s1);
 Form1->Memo4->Lines->Add(s);
 strcpy(s,"");
 sprintf(s1,"MEAN= %.2f",ort[i][0]);
 strcat(s,s1);

109

 Form1->Memo4->Lines->Add(s);
 strcpy(s,"");
 sprintf(s1,"STDEV= %.2lf ",sqrt(var[i][0]));
 strcat(s,s1);
 Form1->Memo4->Lines->Add(s);
 }
Edit6->Text=k;
p=k;
}
//--
void __fastcall TForm1::Button2Click(TObject *Sender)
{
Form1->Memo1->Lines->Clear();
Form1->Memo2->Lines->Clear();
Form1->Memo3->Lines->Clear();
Form1->Memo4->Lines->Clear();

GROUPNO=Edit2->Text.ToInt();
Button1->Click();
int z=(MAXOGR/GROUPNO)+1;
for(z=0;z<GROUPNO;z++)
DAMtop[z]=0.0;
DAMort[z]=0.0;

switch(RadioGroup1->ItemIndex)
{
case 0:{//BALANCED RANDOM ASSIGNMENT***************************************

for(int i=0;i<25;i++)
 for(int j=0;j<25;j++)
 for(int k=0;k<4;k++)
 DAM[i][j][k]=0.0;

 srand(time(NULL));
 for(i=0;i<t;i++)
 {
A: DA[0][i]=1+rand()%t;
 for(k=0;k<i;k++)
 if(DA[0][i]==DA[0][k])
 goto A;
 }

 for(i=0;i<m;i++)
 {
B: DA[1][i]=1+rand()%m;
 for(k=0;k<i;k++)
 if(DA[1][i]==DA[1][k])
 goto B;
 }

 for(i=0;i<l;i++)
 {
C: DA[2][i]=1+rand()%l;
 for(k=0;k<i;k++)
 if(DA[2][i]==DA[2][k])
 goto C;
 }

 for(i=0;i<p;i++)
 {
D: DA[3][i]=1+rand()%p;
 for(k=0;k<i;k++)
 if(DA[3][i]==DA[3][k])
 goto D;
 }

int k=0,j=0,a=0,z=0;

 for(i=1;i<=t;i++)
 {
E: for(k=0;k<t;k++)

 if(DA[0][k]==i)
 {

110

 DAM[z][a][0]=A2[0][k][0];
 DAM[z][a][1]=A2[0][k][1];
 DAM[z][a][2]=A2[0][k][2];
 DAM[z][a][3]=A2[0][k][3];
 }
 DAMtop[z]+=DAM[z][a][3];
 z++;
 if(i==t) goto F;
 if(z==GROUPNO) {z=0; i++; a++; goto E;}
 }

F: if (z==GROUPNO) {z=0;a++;}
 for(i=1;i<=m;i++)
 {
G: for(k=0;k<m;k++)

 if(DA[1][k]==i)
 {
 DAM[z][a][0]=A2[0][k+t][0];
 DAM[z][a][1]=A2[0][k+t][1];
 DAM[z][a][2]=A2[0][k+t][2];
 DAM[z][a][3]=A2[0][k+t][3];
 }
 DAMtop[z]+=DAM[z][a][3];
 z++;
 if(i==m) goto H;
 if(z==GROUPNO) {z=0;i++;a++; goto G;}
 }

H: if (z==GROUPNO) {z=0;a++;}
 for(i=1;i<=l;i++)
 {
I: for(k=0;k<l;k++)

 if(DA[2][k]==i)
 {
 DAM[z][a][0]=A2[0][k+t+m][0];
 DAM[z][a][1]=A2[0][k+t+m][1];
 DAM[z][a][2]=A2[0][k+t+m][2];
 DAM[z][a][3]=A2[0][k+t+m][3];
 }
 DAMtop[z]+=DAM[z][a][3];
 z++;
 if(i==l) goto J;
 if(z==GROUPNO) {z=0;i++;a++; goto I;}
 }

J: if (z==GROUPNO) {z=0;a++;}
 for(i=1;i<=p;i++)
 {
K: for(k=0;k<p;k++)

 if(DA[3][k]==i)
 {
 DAM[z][a][0]=A2[0][k+t+m+l][0];
 DAM[z][a][1]=A2[0][k+t+m+l][1];
 DAM[z][a][2]=A2[0][k+t+m+l][2];
 DAM[z][a][3]=A2[0][k+t+m+l][3];
 }
 DAMtop[z]+=DAM[z][a][3];
 z++;
 if(i==p) break;
 if(z==GROUPNO) {z=0;i++;a++; goto K;}
 }

Form2->Show();
Form2->Label1->Caption="BALANCED RANDOM ASSIGNMENT";

for(k=0;k<GROUPNO;k++)
 {
 char s1[20],s[100];
 strcpy(s,"");
 sprintf(s1," GROUP %d",k+1);
 strcat(s,s1);

111

 Form2->Memo1->Lines->Add(s);
 strcpy(s,"");
 sprintf(s1,"NO NAME-SURNAME CLUSTER MEAN");
 strcat(s,s1);
 Form2->Memo1->Lines->Add(s);

 strcpy(s,"");
 sprintf(s1,"==");
 strcat(s,s1);
 Form2->Memo1->Lines->Add(s);

 for(g=0;g<=a;g++)
 {
 if (DAM[k][g][0]!=0)
 {
 strcpy(s,"");
 sprintf(s1,"%2d %23s %5.0lf %7.1lf",g+1,AD[int(DAM[k][g][0])-
1],DAM[k][g][1],DAM[k][g][3]);
 strcat(s,s1);
 Form2->Memo1->Lines->Add(s);
 }
 }
 strcpy(s,"");
 sprintf(s1,"==");
 strcat(s,s1);
 Form2->Memo1->Lines->Add(s);
 if(DAM[k][g-1][0]==0) {g=g-1;}
 DAMort[k]=DAMtop[k]/g;

 DAMHKT[k]=0;
 DAMstdev[k]=0;

 for(g=0;g<=a;g++)
 if(DAM[k][g][3]!=0) {DAMHKT[k]+=pow((DAM[k][g][3]-DAMort[k]),2);}
 if(DAM[k][g-1][0]==0) {g=g-1;}
 DAMstdev[k]=DAMHKT[k]/(g-1);
 strcpy(s,"");
 sprintf(s1,"MEAN=%3.2lf STDEV=%3.2lf ",DAMort[k],sqrt(DAMstdev[k]));
 strcat(s,s1);
 Form2->Memo1->Lines->Add(s);
 Form2->Memo1->Lines->Add("");
 }
break;
}

case 1:{//SIMPLE RANDOM ASSIGNMENT***

for(int i=0;i<25;i++)
 for(int j=0;j<25;j++)
 for(int k=0;k<4;k++)
 RAM[i][j][k]=0.0;

 srand(time(NULL));
 for(i=0;i<MAXOGR;i++)
 {
L:
 RA[i]=1+rand()%MAXOGR;
 for(k=0;k<i;k++)
 if(RA[i]==RA[k])
 goto L;

 strcpy(s,"");
 sprintf(s1," %.0lf %.0lf ",A[i][0],RA[i]);
 strcat(s,s1);
 Memo1->Lines->Add(s);*/
 }

int k=0,j=0,a=0;

 for(i=0;i<MAXOGR;i++)
 {
M: j=RA[i];
 RAM[k][a][0]=A[j-1][0];
 RAM[k][a][1]=A[j-1][1];

112

 RAM[k][a][2]=A[j-1][2];
 RAM[k][a][3]=A[j-1][3];
 DAMtop[k]+=RAM[k][a][3];
 k++;
 if(k==GROUPNO && i!=MAXOGR-1) {k=0;i++;a++; goto M;}
 if(k==GROUPNO && i==MAXOGR-1) break;
 }

Form2->Show();
Form2->Label1->Caption="SIMPLE RANDOM ASSIGNMENT";

for(k=0;k<GROUPNO;k++)
 {
 char s1[20],s[100];
 strcpy(s,"");
 sprintf(s1," GROUP %d",k+1);
 strcat(s,s1);
 Form2->Memo1->Lines->Add(s);
 strcpy(s,"");
 sprintf(s1,"NO NAME-SURNAME CLUSTER MEAN");
 strcat(s,s1);
 Form2->Memo1->Lines->Add(s);

 strcpy(s,"");
 sprintf(s1,"==");
 strcat(s,s1);
 Form2->Memo1->Lines->Add(s);
z=(MAXOGR/GROUPNO)+1;
 for(a=0;a<z;a++)
 {
 if (RAM[k][a][0]!=0)
 {
 strcpy(s,"");
 sprintf(s1,"%2d %23s %5.0lf %7.1lf",a+1,AD[int(RAM[k][a][0])-
1],RAM[k][a][1],RAM[k][a][3]);
 strcat(s,s1);
 Form2->Memo1->Lines->Add(s);
 }
 }
 strcpy(s,"");
 sprintf(s1,"==");
 strcat(s,s1);
 Form2->Memo1->Lines->Add(s);
 if(RAM[k][a-1][0]==0) {a=a-1;}
 DAMort[k]=DAMtop[k]/a;

 DAMHKT[k]=0;
 DAMstdev[k]=0;

 for(a=0;a<z;a++)
 if(RAM[k][a][3]!=0) {DAMHKT[k]+=pow((RAM[k][a][3]-DAMort[k]),2);}
 if(RAM[k][a-1][0]==0) {a=a-1;}
 DAMstdev[k]=DAMHKT[k]/(a-1);
 strcpy(s,"");
 sprintf(s1,"MEAN=%3.2lf STDEV=%3.2lf ",DAMort[k],sqrt(DAMstdev[k]));
 strcat(s,s1);
 Form2->Memo1->Lines->Add(s);
 Form2->Memo1->Lines->Add("");
 }
break;
}

case 2:{//LEVEL-BASED RANDOM ASSIGNMENT*****************************

for(int i=0;i<25;i++)
 for(int j=0;j<25;j++)
 for(int k=0;k<4;k++)
 SAM[i][j][k]=0.0;

 srand(time(NULL));
 for(i=0;i<t;i++)
 {
N:
 SA[0][i]=1+rand()%t;

113

 for(k=0;k<i;k++)
 if(SA[0][i]==SA[0][k])
 goto N;
 }

 for(i=0;i<m;i++)
 {
O:
 SA[1][i]=1+rand()%m;
 for(k=0;k<i;k++)
 if(SA[1][i]==SA[1][k])
 goto O;
 }

 for(i=0;i<l;i++)
 {
P:
 SA[2][i]=1+rand()%l;
 for(k=0;k<i;k++)
 if(SA[2][i]==SA[2][k])
 goto P;
 }

 for(i=0;i<p;i++)
 {
Q:
 SA[3][i]=1+rand()%p;
 for(k=0;k<i;k++)
 if(SA[3][i]==SA[3][k])
 goto Q;
 }

int k=0,j=0,a=0,z=0;
int MAXOGR1=MAXOGR;

 for(i=1;i<=t;i++)
 {
R: for(k=0;k<t;k++)

 if(SA[0][k]==i)
 {
 SAM[z][a][0]=A2[0][k][0];
 SAM[z][a][1]=A2[0][k][1];
 SAM[z][a][2]=A2[0][k][2];
 SAM[z][a][3]=A2[0][k][3];
 DAMtop[z]+=SAM[z][a][3];
 }
 a++;
 if(i==t) goto S;
 if(a==(MAXOGR1/GROUPNO)) {if(z==0){MAXOGR1=MAXOGR-a; GROUPNO=GROUPNO-1; z++;
i++; a=0;goto R;}else {MAXOGR1=MAXOGR1-a;GROUPNO=GROUPNO-1; z++; a=0;}}
 }

S: if (a==(MAXOGR1/GROUPNO)) {if(z==0){MAXOGR1=MAXOGR-a; GROUPNO=GROUPNO-1; z++;
a=0;}else {MAXOGR1=MAXOGR1-a; GROUPNO=GROUPNO-1; z++; a=0;}}
 for(i=1;i<=m;i++)
 {
T: for(k=0;k<m;k++)

 if(SA[1][k]==i)
 {
 SAM[z][a][0]=A2[0][k+t][0];
 SAM[z][a][1]=A2[0][k+t][1];
 SAM[z][a][2]=A2[0][k+t][2];
 SAM[z][a][3]=A2[0][k+t][3];
 DAMtop[z]+=SAM[z][a][3];
 }
 a++;
 if(i==m) goto U;
 if(a==(MAXOGR1/GROUPNO)) {MAXOGR1=MAXOGR1-a; GROUPNO=GROUPNO-1; z++; i++;
a=0; goto T;}
 }

U: if (a==(MAXOGR1/GROUPNO)) {MAXOGR1=MAXOGR1-a; GROUPNO=GROUPNO-1; z++; a=0;}

114

 for(i=1;i<=l;i++)
 {
X: for(k=0;k<l;k++)

 if(SA[2][k]==i)
 {
 SAM[z][a][0]=A2[0][k+t+m][0];
 SAM[z][a][1]=A2[0][k+t+m][1];
 SAM[z][a][2]=A2[0][k+t+m][2];
 SAM[z][a][3]=A2[0][k+t+m][3];
 DAMtop[z]+=SAM[z][a][3];
 }
 a++;
 if(i==l) goto W;
 if(a==(MAXOGR1/GROUPNO)) {MAXOGR1=MAXOGR1-a; GROUPNO=GROUPNO-1; z++; i++;
a=0; goto X;}
 }

W: if (a==(MAXOGR1/GROUPNO)) {MAXOGR1=MAXOGR1-a; GROUPNO=GROUPNO-1; z++; a=0;}
 for(i=1;i<=p;i++)
 {
Y: for(k=0;k<p;k++)

 if(SA[3][k]==i)
 {
 SAM[z][a][0]=A2[0][k+t+m+l][0];
 SAM[z][a][1]=A2[0][k+t+m+l][1];
 SAM[z][a][2]=A2[0][k+t+m+l][2];
 SAM[z][a][3]=A2[0][k+t+m+l][3];
 DAMtop[z]+=SAM[z][a][3];
 }
 a++;
 if(i==p) break;
 if(a==(MAXOGR1/GROUPNO)) {MAXOGR1=MAXOGR1-a; GROUPNO=GROUPNO-1; z++; i++;
a=0; goto Y;}
 }

Form2->Show();
Form2->Label1->Caption="LEVEL-BASED RANDOM ASSIGNMENT";
GROUPNO=Edit2->Text.ToInt();
for(k=0;k<GROUPNO;k++)
 {
 char s1[20],s[100];
 strcpy(s,"");
 sprintf(s1," GROUP %d",k+1);
 strcat(s,s1);
 Form2->Memo1->Lines->Add(s);
 strcpy(s,"");
 sprintf(s1,"NO NAME-SURNAME CLUSTER MEAN");
 strcat(s,s1);
 Form2->Memo1->Lines->Add(s);

 strcpy(s,"");
 sprintf(s1,"==");
 strcat(s,s1);
 Form2->Memo1->Lines->Add(s);

 for(g=0;g<(MAXOGR/GROUPNO)+1;g++)
 {
 if (SAM[k][g][0]!=0)
 {
 strcpy(s,"");
 sprintf(s1,"%2d %23s %5.0lf %7.1lf",g+1,AD[int(SAM[k][g][0])-
1],SAM[k][g][1],SAM[k][g][3]);
 strcat(s,s1);
 Form2->Memo1->Lines->Add(s);
 }
 }
 strcpy(s,"");
 sprintf(s1,"==");
 strcat(s,s1);
 Form2->Memo1->Lines->Add(s);
 if(SAM[k][g-1][0]==0) {g=g-1;}
 DAMort[k]=DAMtop[k]/g;

115

 DAMHKT[k]=0;
 DAMstdev[k]=0;

 for(g=0;g<(MAXOGR/GROUPNO)+1;g++)
 if(SAM[k][g][3]!=0) {DAMHKT[k]+=pow((SAM[k][g][3]-DAMort[k]),2);}
 if(SAM[k][g-1][0]==0) {g=g-1;}
 DAMstdev[k]=DAMHKT[k]/(g-1);
 strcpy(s,"");
 sprintf(s1,"MEAN=%3.2lf STDEV=%3.2lf ",DAMort[k],sqrt(DAMstdev[k]));
 strcat(s,s1);
 Form2->Memo1->Lines->Add(s);
 Form2->Memo1->Lines->Add("");
 }
break;
}

case 3:{//BALANCED ASSIGNMENT***************************************

for(int i=0;i<25;i++)
 for(int j=0;j<25;j++)
 for(int k=0;k<4;k++)
 DAM1[i][j][k]=0.0;

k=0,j=0,a=0,z=0;

 for(k=0;k<MAXOGR;k++)
 {
EE: DAM1[z][a][0]=A2[0][k][0];
 DAM1[z][a][1]=A2[0][k][1];
 DAM1[z][a][2]=A2[0][k][2];
 DAM1[z][a][3]=A2[0][k][3];
 DAMtop[z]+=DAM1[z][a][3];
 z++;
 if (k==MAXOGR-1) {goto TT;}
 if (z==GROUPNO) {z--; a++; k++; goto EEE;}
 if (k!=MAXOGR-1 && z!=GROUPNO) {k++; goto EE;}
 }

EEE: for (k=k;k<MAXOGR;k++)
 {
 DAM1[z][a][0]=A2[0][k][0];
 DAM1[z][a][1]=A2[0][k][1];
 DAM1[z][a][2]=A2[0][k][2];
 DAM1[z][a][3]=A2[0][k][3];
 DAMtop[z]+=DAM1[z][a][3];
 z--;
 if (k==MAXOGR-1) {goto TT;}
 if (z==-1) {z++; a++; k++; goto EE;}
 if (k!=MAXOGR-1 && z!=-1) {k++; goto EEE;}
 }

TT: Form2->Show();
Form2->Label1->Caption="BALANCED ASSIGNMENT";
for(k=0;k<GROUPNO;k++)
 {
 char s1[20],s[100];
 strcpy(s,"");
 sprintf(s1," GROUP %d",k+1);
 strcat(s,s1);
 Form2->Memo1->Lines->Add(s);
 strcpy(s,"");
 sprintf(s1,"NO NAME-SURNAME CLUSTER MEAN");
 strcat(s,s1);
 Form2->Memo1->Lines->Add(s);
 strcpy(s,"");
 sprintf(s1,"==");
 strcat(s,s1);
 Form2->Memo1->Lines->Add(s);

 for(g=0;g<=a;g++)
 {
 if (DAM1[k][g][0]!=0)
 {

116

 strcpy(s,"");
 sprintf(s1,"%2d %23s %5.0lf %7.1lf",g+1,AD[int(DAM1[k][g][0])-
1],DAM1[k][g][1],DAM1[k][g][3]);
 strcat(s,s1);
 Form2->Memo1->Lines->Add(s);
 }
 }
 strcpy(s,"");
 sprintf(s1,"==");
 strcat(s,s1);
 Form2->Memo1->Lines->Add(s);
 if(DAM1[k][g-1][0]==0) {g=g-1;}
 DAMort[k]=DAMtop[k]/g;

 DAMHKT[k]=0;
 DAMstdev[k]=0;

 for(g=0;g<=a;g++)
 if(DAM1[k][g][3]!=0) {DAMHKT[k]+=pow((DAM1[k][g][3]-DAMort[k]),2);}
 if(DAM1[k][g-1][0]==0) {g=g-1;}
 DAMstdev[k]=DAMHKT[k]/(g-1);
 strcpy(s,"");
 sprintf(s1,"MEAN=%3.2lf STDEV=%3.2lf ",DAMort[k],sqrt(DAMstdev[k]));
 strcat(s,s1);
 Form2->Memo1->Lines->Add(s);
 Form2->Memo1->Lines->Add("");
 }
break;
}

case 4:{//LEVEL-BASED ASSIGNMENT************************************

for(int i=0;i<25;i++)
 for(int j=0;j<25;j++)
 for(int k=0;k<4;k++)
 SAM1[i][j][k]=0.0;

k=0,j=0,a=0,z=0;
int MAXOGR1=MAXOGR;

 for(k=0;k<MAXOGR;k++)
 {
EE1: SAM1[z][a][0]=A2[0][k][0];
 SAM1[z][a][1]=A2[0][k][1];
 SAM1[z][a][2]=A2[0][k][2];
 SAM1[z][a][3]=A2[0][k][3];
 DAMtop[z]+=SAM1[z][a][3];
 a++;
 if(k==MAXOGR-1) {goto TT1;}
 if(k!=MAXOGR-1 && a==(MAXOGR1/GROUPNO)) {MAXOGR1=MAXOGR1-a; GROUPNO=GROUPNO-
1; z++; k++; a=0; goto EE1;}
 if(k!=MAXOGR-1 && a!=(MAXOGR1/GROUPNO)) {k++; goto EE1;}
 }

TT1: Form2->Show();
Form2->Label1->Caption="LEVEL-BASED ASSIGNMENT";
GROUPNO=Edit2->Text.ToInt();
for(k=0;k<GROUPNO;k++)
 {
 char s1[20],s[100];
 strcpy(s,"");
 sprintf(s1," GROUP %d",k+1);
 strcat(s,s1);
 Form2->Memo1->Lines->Add(s);
 strcpy(s,"");
 sprintf(s1,"NO NAME-SURNAME CLUSTER MEAN");
 strcat(s,s1);
 Form2->Memo1->Lines->Add(s);
 strcpy(s,"");
 sprintf(s1,"==");
 strcat(s,s1);
 Form2->Memo1->Lines->Add(s);

 for(g=0;g<a;g++)

117

 {
 if (SAM1[k][g][0]!=0)
 {
 strcpy(s,"");
 sprintf(s1,"%2d %23s %5.0lf %7.1lf",g+1,AD[int(SAM1[k][g][0])-
1],SAM1[k][g][1],SAM1[k][g][3]);
 strcat(s,s1);
 Form2->Memo1->Lines->Add(s);
 }
 }
 strcpy(s,"");
 sprintf(s1,"==");
 strcat(s,s1);
 Form2->Memo1->Lines->Add(s);
 if(SAM1[k][g-1][0]==0) {g=g-1;}
 DAMort[k]=DAMtop[k]/g;

 DAMHKT[k]=0;
 DAMstdev[k]=0;

 for(g=0;g<a;g++)
 if(SAM1[k][g][3]!=0) {DAMHKT[k]+=pow((SAM1[k][g][3]-DAMort[k]),2);}
 if(SAM1[k][g-1][0]==0) {g=g-1;}
 DAMstdev[k]=DAMHKT[k]/(g-1);
 strcpy(s,"");
 sprintf(s1,"MEAN=%3.2lf STDEV=%3.2lf ",DAMort[k],sqrt(DAMstdev[k]));
 strcat(s,s1);
 Form2->Memo1->Lines->Add(s);
 Form2->Memo1->Lines->Add("");
 }
break;
}
}
}
//--

	INTRODUCTION
	FUZZY SETS AND LINGUISTIC VARIABLES
	SSE
	SET-1
	W
	WABL
	0
	0
	0
	-
	0
	0
	6
	W

	WABL
	0
	0
	0
	0
	0
	1
	5
	W

	WABL
	0
	0
	0
	0
	0
	1
	5
	C
	-
	0
	0
	-
	0
	-
	8

	WABL
	WABL
	WABL
	WABL
	WABL
	WABL
	WABL
	WABL
	WABL
	WABL
	WABL
	WABL
	WABL
	WABL
	WABL
	WABL
	WABL
	Certainty level
	M

	Method
	I

	Iterations

	Iteration numbers

