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ON THE CONSTRUCTION OF STUDENT GROUPS IN A PROBLEM 
BASED LEARNING SYSTEM THROUGH FUZZY LOGIC  

CONSIDERING VARIOUS OBJECTIVES  
 

ABSTRACT 
 

Fuzziness is a concept that was suggested in 1965 by Zadeh that has improved 

rapidly until today and that has a number of successful applications in many fields. 

The reason why it has such successful applications and it can be applied in many 

fields is that it allows expression and analysis of the problems we encounter in daily 

life more realistically and, thanks to this, it produces more realistic solutions to 

problems. Therefore, the concept of fuzziness and the theories suggested and the 

methods developed on this concept are gaining more and more importance day by 

day. 

 

The creation of suitable learning conditions for students is of great importance in 

the method of problem based learning system which has been continuing in the 

Department of Statistics at Dokuz Eylül University since 2001. The most important 

of these conditions is the suitable composition of student groups for the purposes of 

instruction. For instance, level-based student groups can be composed by dividing 

students according to their success levels or balanced student groups can be 

constituted by students of each success level taking place in each group in 

approximate equal numbers. In addition, student groups can also be constituted by 

choosing students completely randomly. However, it is quite important that student 

evaluation grades, which are the fundamental elements used in the group constitution 

strategies mentioned here, should also be determined suitably. Especially while 

carrying out such performance evaluations, the opinion formed about the student is 

both quite difficult to turn into numerical expressions and vary according to each 

instructor. Thus, there exists the requirement of a system in which the student 

performance evaluations will be carried out verbally in a more suitable way for 

human structure of thinking and in which numerical results will later be obtained by 

using this information. 
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In this dissertation work, a student performance evaluation system and a student 

group assignment system have been developed by searching for a solution for the 

above-mentioned problems. Five distinct group assignment strategies have been 

introduced within the group assignment system. Borland C++ Builder 6.0 Software 

Development Kit (SDK) was used for the implementation of the mentioned methods 

with a view to provide a solution. 

 

Keywords: Fuzzy logic, Performance evaluation, Optimization, Assignment problem 
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AKTİF EĞİTİMDE FARKLI AMAÇLAR DOĞRULTUSUNDA ÖĞRENCİ 
GRUPLARININ BULANIK MANTIK YARDIMIYLA OLUŞTURULMASI 

 

ÖZ 

 

Bulanıklık kavramı 1965 yıllında Zadeh tarafından önerilen, günümüze kadar 

hızla gelişme gösteren ve birçok alanda çok miktarda başarılı uygulamaları olan bir 

kavramdır. Bu kadar başarılı uygulamasının oluşu ve birçok alanda 

uygulanabilmesinin sebebi ise günlük hayatta karşılaştığımız problemleri daha 

gerçekçi ifade etmeyi sağlaması, analiz etmesi ve bu sayede sorunlara da daha 

gerçekçi çözümler üretmesidir. Dolayısıyla bulanıklık kavramı ve bu kavram üzerine 

önerilen teoriler, geliştirilen yöntemler günden güne daha da önem kazanmaktadır. 

 

Dokuz Eylül Üniversitesi İstatistik Bölümü’nde 2001 yılından beri devam etmekte 

olan probleme dayalı öğrenim sisteminde, öğrenciler için uygun öğrenme 

koşullarının yaratılması çok büyük önem taşımaktadır. Bu koşullardan en önemlisi 

öğrenci gruplarının farklı amaçlar doğrultusunda uygun olarak oluşturulmasıdır. 

Buradaki “farklı amaçlar” ifadesinden kastedilen, öğretim sürecine yöneliktir. 

Örneğin, öğrencilerin başarı seviyelerine göre ayrılarak elde edilen seviye temelli 

öğrenci grupları ya da her başarı seviyesinden öğrencinin her grupta yaklaşık eşit 

sayılarda olmasıyla oluşacak dengeli öğrenci grupları oluşturulabilir. Bununla 

birlikte öğrencilerin tamamen rasgele seçilmesiyle de öğrenci grupları oluşturulabilir. 

Fakat burada bahsedilen grup oluşturma stratejilerinde kullanılan temel unsur olan 

öğrenci değerlendirme puanlarının da uygun olarak belirlenmiş olması oldukça 

önemlidir. Özellikle bu tür performans değerlendirmeleri yapılırken öğrenci 

hakkında oluşan düşüncelerin sayısal ifadelere dönüşmesi hem oldukça güçtür hem 

de her öğretim elemanına göre değişiklik göstermektedir. Dolayısıyla öğrenci 

performans değerlendirmelerinin insan düşünce yapısına daha uygun bir şekilde 

sözel olarak yapılacağı, daha sonra da bu bilgiler kullanılarak sayısal sonuçların elde 

edileceği bir sistemin gerekliliği söz konusudur.  

 

Bu tez çalışmasında yukarıda anlatılan problemlere çözüm arayışıyla bir öğrenci 

performans değerlendirme sistemi ve öğrenci grup atama sistemi geliştirilmiştir. 
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Grup atama sistemi içinde 5 ayrı grup atama stratejisi tanıtılmıştır. Her iki ana 

yöntem için ise çözüm yapmayı sağlaması açısından iki ayrı Borland C++ Builder 

6.0 kodu oluşturulmuştur. 

 

Anahtar sözcükler: Bulanık mantık, Performans değerlendirmesi, Optimizasyon, 

Atama problemi 
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CHAPTER ONE 

INTRODUCTION 
 

What lays the foundations for many problems in daily life is the unification of two 

elements, abundant information and abundant uncertainty, which is, in other words, 

the problem of “complexity”. The decision of simplifying complexity by making a 

satisfactory exchange between the available information and the amount of 

uncertainty underlies the solution of the problem of complexity. In other words, it 

means increasing the amount of uncertainty by undervaluing some complete 

information in favor of uncertainty. However, a stronger summary description occurs 

in this way. Actually, uncertainty or indefiniteness, the characteristics of the natural 

language, should not be perceived as the loss or meaninglessness of the accuracy of 

language. 

 

Independent of a certain issue, one of the methods used in coping with complexity 

is the theory of fuzzy logic. Briefly, fuzzy logic can be defined as modeling semantic 

flexibility present in the nature of the linguistic data. This method has almost 

unlimited application areas. There are countless exist successful applications of fuzzy 

logic in various fields such as engineering, psychology, artificial intelligence, 

pharmaceutical technology, medicine, decision theory, pattern recognition, 

meteorology and sociology. 

 

Suggested first in 1965 by Zadeh, fuzzy sets are the generalized forms of classical 

sets and there exists a soft transitivity instead of the strict distinction between 

members and nonmembers in fuzzy sets. In classical sets, an element of the universe 

is either an element of a set or not. That is to say, their membership degrees of being 

or not being an element of a set can be stated as 1 and 0 respectively. However, in 

fuzzy sets, membership function has values in the interval of [0, 1]. Therefore, the 

membership function of a fuzzy set shows the belongingness degrees of all elements 

to the set. Generally, as Zadeh also stated, any areas can be fuzzified and, therefore, 

classical sets can be generalized by the concept of fuzzy set. 
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Fuzziness is generally confused with the concept of probability. Similar to 

probabilities, fuzzy membership degrees also have the same values. However, these 

values are not probability values. Fuzziness is a form of uncertainty. There are 

uncertainties in defining concepts such as “old car” or “large house” or in the 

meanings of words. Nevertheless, uncertainty in probability is related to randomness. 

In other words, an expression’s being probabilistic is only that an expression contains 

a kind of possibility or that the results of clearly defined but randomly occurred 

events. Therefore, fuzziness and randomness are different in nature; that is to say, 

both are different types of uncertainty. Fuzziness indicates uncertainties in 

“subjective” human thoughts, emotions or spoken language whereas randomness is 

“objective” statistics in natural sciences. If it is required to model this perspective, 

fuzzy models and probabilistic models are different kinds of information; fuzzy 

memberships express similarities between objects while probabilities give 

information about relative frequencies (Lin & Lee, 1996). 

 

While forming student groups for different purposes, various criteria have been 

used in problem based learning system in the Department of Statistics, Dokuz Eylül 

University since 2001. Among the reasons why these criteria are being considered 

and why they are of crucial importance are; 

1. To prepare a suitable learning atmosphere for students 

2. To provide adaptation between students with each other in a group (or in other 

words, encourage team work in any condition) 

3. Constituting group dynamics by bringing students with different characteristics 

together. 
 

Briefly, the purpose of forming the student groups is to affect their learning 

positively. 
 

There are many criteria that lecturers take into consideration while planning new 

groupings. Among these elements, the opinion of each lecturer about the student, 

their numerical assessments and students’ relationships with each other are of crucial 

importance. In addition, these groups are regularly rebuilt with different students in 

order to make them get to know each other better and so that they can learn how to 
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behave professionally in an atmosphere which they will hova to work with 

individuals of different characteristics. This process requires long term commitments 

with great responsibility of the lectureres which is necessary for considering too 

many criteria together. 
 

As mentioned above, we use linguistic variables and assessments that we are 

accustomed to during such tasks. It usually gets difficult to agree on the most suitable 

view among many other expert views, because of the lecturers’ assessment of 

students with different point of views. In other words, the fact that many lecturers 

have different points of view while evaluating the performances of students causes 

the performance of a student likely to be evaluated differently. It is considered 

appropriate to obtain an agreed decision, that is to say, that a new evaluation system 

is required which reflects the opinions of all lecturers or an experienced group of 

lecturers. Therefore, a system was proposed in order to each student to be evaluated 

by a common performance evaluation system and then form the student groups by 

using these evaluations. So, the solution of this problem directed us to use fuzzy set, 

fuzzy clustering and assignment methods. 
 

This thesis contains six chapters. In Chapter 2, brief information about fuzzy sets 

and basic operations on fuzzy sets is given. Also, extended information on an 

important clustering tecnique, Fuzzy c-means method, which is needed in student 

clustering for construction of student groups is given in this chapter. In Chapter 3 and 

4, we present an optimization approach for the evaluation of student performances 

and five heuristic assignment approaches for constitution of student groups 

respectively. Chapter 5 presents some real problem examples and the numerical 

results of our performance evaluation and heuristic assignment approaches. Also, 

two Borland C++ Builder 6.0 applications, which are developed for the evaluation of 

student performances and construction of student groups, are mentioned in     

Chapter 5. Finally, conclusions will be presented in Chapter 6.  
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CHAPTER TWO 

FUZZY SETS AND LINGUISTIC VARIABLES 

 

2.1 Definitions and Operations on Fuzzy Sets 

 

As mentioned above, fuzzy sets introduce vagueness by eliminating the sharp 

boundary dividing members of the class from nonmembers in the group. 

Consequently, the transition between full membership and nonmembership is graded. 

Hence, fuzzy sets can be denoted as a generalization of the crisp sets. However, some 

theories are unique for the fuzzy sets. 

 

Zadeh defines fuzzy set in 1965 as below, 

 

Definition 2.1: A fuzzy set is characterized by a membership function mapping 

the elements of a space, or universe of discourse U  to the unit interval [ ]1,0  (Zadeh, 

1965). That is, [ ]1,0:~
→UA . Thus, a fuzzy set A~  in the universe of discourse U  

may be represented as a set of ordered pairs of an element Ux∈  and its grade of 

membership function which is shown as below, 

 

{ }UxxxA A ∈= ))(,(~
~μ                    (2.1) 

 

where )(~ xAμ  is the degree of membership of x  and it indicates the degree that x  

belongs to A~ . 

 

From now on, we will refer to A~  as A for convenience. 

 

Some of the important features of fuzzy sets are as follows; 

1. The support of a fuzzy set A is the crisp set of all Ux∈  such that 0)( >xAμ . 

That is, 

 { }0)()(Supp >∈= xUxA Aμ               (2.2) 
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2. The core of a fuzzy set A is the crisp set of all Ux∈ , which satisfies a unit 

level of membership in A. More formally, 

 { }1)()(Core =∈= xUxA Aμ               (2.3) 

 

3. The element Ux∈  at which 5.0)( =xAμ  is called the crossover point. 

 

4. The height of a fuzzy set A is the supremum of )(xAμ  over U . That is, 

 )(sup)Height( xA A
x
μ≡                  (2.4) 

 

5. A fuzzy set A is normal when the height of the fuzzy set is “1”, that is 

1)(sup =x
x
μ , otherwise it is subnormal. 

 

6. A nonempty fuzzy set A can always be normalized by dividing )(xAμ  by the       

height of A. 
 

Convexity of fuzzy sets plays an important role in fuzzy set theory. A fuzzy set is 

convex if and only if each of its α -cuts is a convex set. Equivalently, a fuzzy set A is 

convex if and only if 
 

))(),(min())1(( 2121 xxxx AAA μμλλμ ≥−+ ,  [ ]1,0,, 21 ∈∈ λUxx .       (2.5) 

 

In addition, the cardinality of a fuzzy set can be defined as the summation of the 

membership grades of all elements of x in A which is similar to the crisp set theory. 

That is, 
 

∑
∈

=
Ux

A xA )(μ .                       (2.6) 

 

For a discrete universe of discourse U , a fuzzy set A can be written by using the 

support of A as 
 

∑
=

=+++=
n

i
iinn xxxxA

1
2211 μμμμ K             (2.7) 
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where “+” indicates the union of the elements, “/” is employed to link the elements 

of the support with their grades of membership in A and 0)( >= iAi xμμ . If U  is not 

discrete, but is an interval of real numbers, below notation can be used, 
 

∫=
U

A xxA )(μ                       (2.8) 

 

where ∫  indicates the union of the elements in A (Klir & Folger; 1988; Lin & Lee, 

1996; Pedrycz & Gomide, 1998). 

 

In the next section, some important fundamental set operations on fuzzy sets are 

mentioned. 

 

2.1.1 Fundamental Set Operations on Fuzzy Sets 

 

While in classical clusters an element can only be member of a single cluster, in 

fuzzy cluster an element can be attached to different clusters with different 

membership values. Therefore, fuzzy cluster operators are interested in the 

membership values of each element. 

 

Let A and B be two fuzzy sets in the universe of discourse U . 

1. Complement: For [ ]1,0)( ∈xAμ , the complement of A is defined by its 

membership function as  

Uxxx AA ∈∀−= ),(1)( μμ                   (2.9) 

 

2. Intersection: The intersection of fuzzy sets A and B is defined as 

[ ] Uxxxxxx BABABA ∈∀∧==
Δ

∩ ),()()(),(min)( μμμμμ      (2.10) 

 

3. Union: The union of fuzzy sets A and B is defined by 

[ ] Uxxxxxx BABABA ∈∀∨==
Δ

∪ ),()()(),(max)( μμμμμ      (2.11) 

where ∨  indicates the max operation. 
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4. Equality: A and B are equal if and only if )()( xx BA μμ =  is satisfied for all 

Ux∈ . If )()( xx BA μμ ≠  for some Ux∈ , then BA ≠ . But this definition of 

equality is crisp. To check the degree of equality of two fuzzy sets, similarity 

measure can be used which is defined as shown below. This measure takes 

values in closed interval [ ]1,0 . 

 
BA
BA

BABAE
∪
∩

==≡
Δ

)(degree),(                 (2.12) 

 

5. Subset: If )()( xx BA μμ ≤  for all Ux∈  then BA⊆ . If BA⊆  and BA ≠ , then 

A is proper subset of B; that is BA⊂ . Subsethood measure which is used to 

check the degree that A is a subset of B is shown below. 

 
A

BA
BABAS

∩
=⊆≡
Δ

)(degree),(                 (2.13) 

 

6. DeMorgan’s laws: 

 
BABA

BABA

∪=∩

∩=∪                     (2.14) 

 

7. Cartesian product: Let nAAA ,,, 21 K  be fuzzy sets in nUUU ,,, 21 K , 

respectively. The Cartesian product of nAAA ,,, 21 K  is a fuzzy set in the 

product space nUUU ××× K21  with the membership function as 

   [ ])(,),(),(min),,,( 2121 2121 nAAAnAAA xxxxxx
nn

μμμμ KKK

Δ

××× = ,     (2.15) 

   where nn UxUxUx ∈∈∈ ,,, 2211 K . 

 

8. Algebraic sum: The algebraic sum of two fuzzy sets is defined as 

 )().()()()( xxxxx BABABA μμμμμ −+=
Δ

+             (2.16) 

 

9. Algebraic product: The algebraic product of two fuzzy sets is defined as 

 )().()( xxx BABA μμμ
Δ

⋅ =                   (2.17) 
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10. Bounded sum: The bounded sum of two fuzzy sets is defined as 

 { })()(,1min)( xxx BABA μμμ +=
Δ

⊕               (2.18) 

 

11. Bounded difference: The bounded difference of two fuzzy sets is defined as 

 { })()(,0max)( xxx BABA μμμ −=
Δ

−               (2.19) 

 

2.1.2 Fuzzy Relations 

 

The notion of relations in science and engineering, essentially donates the 

discovery of relations between observations and variables. The crisp relation 

represents the presence or absence of interactions between the elements of two or 

more sets. However, fuzzy relation has been obtained by generalizing this concept to 

allow for various degrees of interactions between elements. Hence, a fuzzy relation is 

based on the philosophy that everything is related to each other to some extent or 

unrelated.  

 

 A fuzzy relation is a fuzzy set defined on the Cartesian product of crisp sets 

{ }nXXX ,,, 21 K , where tuples ),,,( 21 nxxx K  may have varying degrees of 

membership ( )nR xxx ,,, 21 Kμ  within the relation. That is, 

 

( ) ( ) ( ) iiXXX nnRn XxxxxxxxXXXR
n

∈= ∫ ××× K
KKK

21
,,,,,,,,,, 212121 μ       (2.20) 

 

In the simplest case, consider two crisp sets 21, XX . Then 

 

  ( ) ( ) ( )( ) ( ){ }2121212121 ,,,,, XXxxxxxxXXR R ×∈= μ             (2.21) 

 

is a fuzzy relation on 21 XX × . It is clear that a fuzzy relation is a fuzzy set. 
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 A special fuzzy relation called binary fuzzy relation plays an important role in 

fuzzy set theory. This concept is a fuzzy relation between two sets X and Y and it is 

denoted by ( )YXR , .  

 

 There are more convenient forms of representation of binary fuzzy relations 

( )YXR ,  in addition to the membership function. Let { }nxxxX ,,, 21 K=  and 

{ }myyyY ,,, 21 K= . First, the fuzzy relation ( )YXR ,  can be expressed by a mn×  

matrix as below. 

 

 ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) mnmnRnRnR

mRRR

mRRR

yxyxyx

yxyxyx
yxyxyx

YXR

×
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

,,,

,,,
,,,

,

21

22212

12111

μμμ

μμμ
μμμ

K

MOMM

K

K

      (2.22) 

 

 An important operation on fuzzy relations is the composition of fuzzy relations. 

Basically, there are two types of composition operators: max-min composition and 

min-max composition.  

 

Let ),( YXP  and ),( ZYQ  be two fuzzy relations on YX ×  and ZY × , 

respectively. The max-min composition of ),( YXP  and ),( ZYQ , denoted as 

),(),( ZYQYXP o , is defined as 
 

 )],(),,(min[max),( zyyxzx QPYyQP μμμ
∈

Δ
=o ,  ZzXx ∈∀∈∀ ,      (2.23) 

 

The min-max composition of ),( YXP  and ),( ZYQ , denoted as ),( YXP □ ),( ZYQ , 

is defined as 
 

 μ P□Q )],(),,(max[min),( zyyxzx QPYy
μμ

∈

Δ
= ,   ZzXx ∈∀∈∀ ,      (2.24) 
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The max-min composition is the most commonly used composition operation. 

These compositions can be generalized to other compositions by replacing the min 

operator in max-min composition and max operator in min-max composition with 

any t-norm and t-conorm operators, respectively. 

  

A similar operator on two binary fuzzy relations is called relational joint. Let 

),( YXP  and ),( ZYQ  be two binary fuzzy relations. Then the relational joint of P  

and Q  can be shown as below for each YyXx ∈∈ ,  and Zz∈ . 
 

Pμ [ ]),(),,(min),,( zyyxzyx QPQ μμ
Δ

=             (2.25) 

 

Some basic properties of the relations are as follows: 

1. Reflexivity: A fuzzy relation ),( XXR  is reflexive if and only if 1),( =μ xxR  

for all Xx∈ . This property states that all diagonal elements of the relation 

are equal to 1. If it is not satisfied for all Xx∈ , then the relation is called 

antireflexive. If it is not the case for some Xx∈ , then ),( XXR  is irreflexive.  

 

2. Symmetry: A fuzzy relation ),( XXR  is symmetric if and only if 

),(),( xyyx RR μ=μ  for all Xyx ∈, . If the equality is not satisfied for all 

members of the support of the relation, then it is called anti-symmetric. If it is 

not satisfied for all Xyx ∈,  then ),( XXR  is called strictly anti-symmetric. 

Whenever this equality is not satisfied for some Xyx ∈, , the relation is 

called asymmetric. 

 

3. Transitivity: A fuzzy relation ),( XXR  is transitive if and only if 

[ ]),(),,(minmax),( zyyxzx RRYyR μμ≥μ
∈

 for all 2),( Xzx ∈ . If this inequality 

does not hold for all 2),( Xzx ∈ , then ),( XXR  is called anti-transitive. If it 

is satisfied for only some members of X but not all, then it is called 

nontransitive. 
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2.1.3 The Resolution and Extension Principle 

 

Another important property of fuzzy sets, which requires us to understand α -

level sets, is called as resolution principle. An α -level set of a fuzzy set A is a crisp 

set αA  that contains all the elements of U  having a membership grade in A greater 

than or equal to α . That is, 
 

{ }αμα ≥∈= )(xUxA A ,  ( ]1,0∈α             (2.26) 

 

If { }αμα >∈= )(xUxA A , then αA  is called a strong α -cut. 

 

Consequently, resolution principle, which is defined as the membership function 

of A can be expressed in terms of the membership functions of its α -cuts, according 

to 
 

[ ]
( ))(sup)(

1,0
xx AA α

μαμ
α

∧=
∈

,  Ux∈∀              (2.27) 

 

where ∧  denotes the min operation and )(xAα
μ  is the membership function of the            

crisp set αA , 

 

⎩
⎨
⎧ ∈

=
otherwise0

 ifonly  and if1
)( α

α
μ

Ax
xA              (2.28) 

 

This leads to the following representation of a fuzzy set A using the resolution 

principle. Let ααA  denote a fuzzy set with the membership function 

)]([)( xx AA αα
μαμα ∧= ,  Ux∈∀ .             (2.29) 

 

Then the resolution principle states that the fuzzy set A can be expressed as given 

below. 

U
A

AA
Λ∈

=
α

αα   or      ∫=
1

0
αα AA               (2.30) 
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The resolution principle indicates that a fuzzy set A can be decomposed into αα A , 

( ]1,0∈α . On the other hand, a fuzzy set A can be retrieved as a union of its αα A , 

which is called the representation theorem. 

 

The extension principle is one of the most important tools of fuzzy set theory, 

which is used for translation of crisp set into their fuzzy set framework and extends 

point-to-point mappings to mappings for fuzzy sets.  

 

Let X  and Y  be two crisp sets and YXf →: . Let A  be a fuzzy set in X  where 

nn xxxA μμμ +++= K2211 .  The extension principle states that,  

 

( ) )()()()( 22112211 nnnn xfxfxfxxxfAf μμμμμμ +++=+++= KK .      (2.31) 

 

If more than one element of X  is mapped by function f  to the same element 

Yy∈ , then the maximum of the membership grades of these elements is chosen as 

the membership grade of y  in )(Af . If no element x  in X  is mapped to y , then 

the membership grade of y is zero. 

 

Often a function f  maps ordered tuples of elements of different sets 

nXXX ,,, 21 K  as ( ) Yyyxxxf n ∈= ,,,, 21 K . Let nAAA ,,, 21 K  be n  fuzzy sets in 

nXXX ,,, 21 K , respectively. The extension principle allows the function 

( )nxxxf ,,, 21 K  to be extended to act on the n  fuzzy subsets of X , nAAA ,,, 21 K , 

such that 
 

),,,( 21 nAAAfB K=                   (2.32) 

 

where B  is the fuzzy image of nAAA ,,, 21 K  through function f . The fuzzy set 

B  is defined as  
 

{ }XxxxxxxfyyyB nnB ∈== ),,,(),,,,())(,( 2121 KKμ     (2.33) 
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where 
 

)](,),(),(min[sup)( 21
),,,(

21
21

nAAA
xxxfy

B xxxy
n

n

μμμμ K
K=

= .       (2.34) 

 

2.1.4 Aggregation and Defuzzification Operations 

 

Aggregation operations are used to combine several fuzzy sets to produce a single 

common fuzzy set. Aggregation operation is defined as below.  

 

[ ] [ ]1,01,0: →nh ,    2≥n                  (2.35) 

 

When applied to n  fuzzy sets defined on U , h  produces an aggregate fuzzy set A  

by operating on the membership grades of each Ux∈  in the aggregated set. Thus, 

 

 Uxxxxhx
nAAAA ∈∀= )),(,),(),(()(

21
μμμμ K         (2.36) 

 

(Klir & Folger, 1988). 

  

 An aggregation must satisfy the boundary and the monotonic conditions. In 

addition to these conditions h  is a continuous and a symmetric function in all its 

arguments. Hence, fuzzy unions and intersections can be viewed as                        

special aggregation operations and they do not produce any                        

aggregates of )(,),(),(
21

xxx
nAAA μμμ K  that produce values between 

))(,),(),(min(
21

xxx
nAAA μμμ K  and ))(,),(),(max(

21
xxx

nAAA μμμ K . Aggregates, which 

are between these values, are usually called as averaging operations. Hence, 

averaging operators are aggregation operations for which  

 

))(,),(max())(,),(())(,),(min(
111

xxxxhxx
nnn AAAAAA μμμμμμ KKK ≤≤ . (2.37) 
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One typical parametric averaging operator is the generalized means, which is 

defined as  

α
α

α

μ
μμμ

1

1
)]([

))(,),(),((
21

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=
∑
=

Δ

n

x
xxxh

n

i
A

AAA

i

n
K           (2.38) 

 

where ℜ∈α  but 0≠α . When α  approaches ∞−  then αh  becomes 

))(,),(),(min(
21

xxx
nAAA μμμ K , and when α  approaches ∞  then αh  becomes 

))(,),(),(max(
21

xxx
nAAA μμμ K . 

 

 An important extension of the generalized means is the weighted generalized 

means and is defined as 

α
α

α μμμμ
1

1
21 )]([),,,);(,),(),((

21
⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=

Δ n

i
AinAAA xwwwwxxxh

in
KK    (2.39) 

 

where 0≥iw  and 1
1

=∑ =

n

i iw . The weights express the relative importance of the 

aggregated set. This operation is useful in decision-making problems where different 

criteria differ in importance (Lin & Lee, 1996). 

 

 Ordered weighted averaging operator (OWA) is another important aggregation 

operator is proposed by Yager (1988). Essentially, this operator is a weighted sum 

whose arguments are ordered. By using these operators, researchers can obtain 

aggregation results which lie in between “and” and “or” operators’ which means “all 

the criteria must be satisfied” and “any of the criteria must be satisfied” respectively.  

 

Let niwi ,...,1, =  and 1
1

=∑ =

n

i iw . The sequence of membership values )( iA xμ  

can be ordered as )()()( 21 nAAA xxx μμμ ≤≤≤ K . Thus, this operator can be shown 

as below. 
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∑
=

=
n

i
iAi xwOWA

1

)(μ                   (2.40) 

 

If niwi ,...,1, =  values are chosen equal to n1  then the result will be the 

arithmetic mean. If only 11 =w  and the other weight values are chosen equal to zero 

then the On the contrary, if 1=nw  and the other weight values chosen equal to zero 

then the operator will act as an “and” operator. 

 

Yager extends this operator in 2004 as Generalized OWA Aggregation operators 

(GOWA) to provide a new class of operators. 

  

Besides the aggregation operation, defuzzification is another important operation 

in the theory of fuzzy sets and it is used to transform fuzzy values into crisp values. 

There are four most often used defuzzification mechanisms in the fuzzy control 

theory: the mean of maxima (MOM), the center of area (COA), the center of means, 

and the midpoint of an area procedures (Klir & Folger, 1988; Roychowdhury & 

Pedrycz, 2001). In addition to these methods, many approaches were suggested. 

From these methods, MOM and COA methods and WABL (Weighted Averaging 

Based on The Levels) method which is proposed and investigated by Nasibov(2002, 

2003a, 2003b, 2005, 2007e) are used in this thesis. 

 

In MOM method, defuzzified value is the mean of the ix  elements, which have 

maximum membership values. Mathematical form is as shown below. 
 

∑
=

=
m

i

i

m
x

AMOM
1

)(                    (2.41) 

  

COA is also known as the Center of Gravity (COG) method in the fuzzy 

literature. The COA method determines the center of area of membership function 

and is defined as in (2.42). 
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∫

∫
∞

∞−

∞

∞−=
dxx

dxxx
ACOA

A

A

)(

)(
)(

μ

μ
                 (2.42) 

 
The mathematical form of WABL method is defined by Nasibov (2002, 2003a) as 

below. 
 

( )

+→=+≥≥

=

⋅+=

∫

∫

Epcccc

dp

dpRcLcAI

RLRL

ARAL

]1,0[:,1,0,0

1)(

)()()()(

1

0

1

0

αα

αααα

           (2.43) 

 

WABL parameters Lc  and Rc  represent the weights of )(αAL  and )(αAR  

functions respectively. )(αAL  and )(αAR  functions are the left and right sides of the 

fuzzy number. )(αAL  is a non-decreasing and )(αAR  is a non-increasing and both 

are left continuous functions. )(αp  is the distribution function of the importance of 

the level sets. By using the distribution function, WABL adds all level sets into the 

defuzzification process (Nasibov, 2003b). 

 

2.2 Linguistic Variables and Its Constitution Methods 

 

2.2.1 Linguistic Variables 

  

Linguistic variable is an important concept in many areas, especially in fuzzy 

logic, approximate reasoning, fuzzy expert systems etc. Fundamentally, a linguistic 

variable can be defined as a variable whose values are words or sentences in natural 

languages. For example, “heat” is a linguistic variable and can take a range of the 

values such as {very cold, cold, mild, hot, very hot,…}. Zadeh introduced the 

concept of linguistic variables in 1975 to provide a means of approximate 

characterization of phenomena that are too complex or too hard to define in 

conventional quantitative terms.  
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 A linguistic variable is characterized by a quintuple denoted by ( )( )MGUxTx ,,,,  

in which x is the name of the variable; ( )xT  is the term set of x, that is the set of 

names of linguistic values of x with each value being a fuzzy set defined on U; G is a 

syntactic rule for generating the names of values of x; and M is a semantic rule for 

associating each value of x with its meaning. 

 

In general, a linguistic variable involves a finite number of primary terms such as 

“absent”, “few”, “middle”, etc. a finite number of hedges such as “very”, “more”, 

“less”, etc. and the connectives and and or, and the negation not. These terms are 

referred to as modifiers. Some important fuzzy set operations, which are used in 

defining linguistic hedges, are as shown below. 

 

1. Concentration: This operation is used to obtain a membership function, which is 

more concentrated around the points with higher membership grades. For 

example, “very” is the one of the frequently used concentration operation. 
 

( )2
CON(A) )()( xx Aμμ =                   (2.44) 

 
( )xμ

x  
Figure 2.1 Concentration of a membership function 
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2. Dilation: This operation has the opposite effect of the concentration operation. 
 

( ) 21
DIL(A) )()( xx Aμμ =                   (2.45) 

 

( )xμ

x  
Figure 2.2 Dilation of a membership function 

 

3. Intensification: The membership values in interval [ ]5.0,0  are diminished while 

the grades of membership in interval ( ]1,5.0  are elevated. This operation is 

shown as in Figure 2.3 and defined as below.  
 

 
( ) [ ]

( )⎪⎩

⎪
⎨
⎧

−−

∈
=

otherwise,)(121

5.0,0)(,)(2
)(

2

2

INT(A)
x

xx
x

A

AA

μ

μμ
μ         (2.46) 

 

( )xμ

x

1

0,5

 
   Figure 2.3 Intensification of a membership function 

 

4. Fuzzification: This operation is complementary to that of intensification and it is 

defined as below.  
 

 
[ ]

( )⎪⎩

⎪
⎨
⎧

−−

∈
=

otherwise,2)(11

5.0,0)(,2)(
)(FUZZ(A)

x

xx
x

A

AA

μ

μμ
μ        (2.47) 
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2.2.2 Parametric Constitution Methods of Linguistic Variables 

 

Parametric and statistical methods can be used in populating linguistic variables. 

Parametric methods are mainly based on parametric fuzzy numbers. That is to say, 

the membership function of a linguistic variable that can be given by parametric 

fuzzy numbers. 

 

Some of the frequently preferred membership function types which reflect the 

linguistic variables are as follows; 

1. Triangular membership function: 
 

[ )

[ ]
⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

>

∈
−
−

∈
−
−

<

=

cx

cbx
bc
xc

bax
ab
ax

ax

xA

,0

,,

,,

,0

)(~μ               (2.48) 

 

2. Trapezoidal membership function: 
 

[ )

[ )

[ ]
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

>

∈
−
−

∈

∈
−
−

<

=

dx

dcx
cd
xd

cbx

bax
ab
ax

ax

xA

,0

,,

,,1

,,

,0

)(~μ                (2.49) 

 

3. S - membership function: 
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4. Γ - membership function: 
 

⎪⎩

⎪
⎨
⎧

>−

≤
=

−− axe

ax
x

axkA ,1

,0
)( 2)(

~μ             (2.51) 

  

In the application section of this work, triangular and trapezoidal fuzzy numbers 

will be used. 

 

2.2.3 Fuzzy Clustering Approach to Constitution of Linguistic Variables 

 

So as to constitute the membership function of a linguistic variable depending on 

statistics, data mining techniques are used. The most frequently used technique 

among these techniques is the fuzzy clustering. 

 

Clustering methods are unsupervised learning methods that are used to organize 

data into groups based on similarities among the individual data items. Most 

clustering algorithms are useful in situations where little prior knowledge exists.  

 

In general, the clustering methods can be investigated into five main classes; 

partitioning methods, hierarchical methods, density-based methods, grid-based 

methods, and model-based methods. In partitioning methods, the k-means algorithm 

and the k-medoids algorithm are the most known and important methods. Based on 

the hierarchical decomposition form, hierarchical methods can be classified as being 

agglomerative or divisive. The methods, which have been developed based on the 

notion of density, are called density-based methods. DBSCAN, and OPTICS, are 

amongs the examples of such methods. Grid-based methods quantize the object 

space into a finite number of cells to form a grid structure. Advantage of these 

methods is the short computational time. STING is a typical example of grid-based 

methods. Lastly, the model-based methods hypothesize a model for each of the 

clusters and find the best fit of the data for the given models (Han & Kamber, 2001). 
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As briefly mentioned above, many clustering algorithms have been discussed in 

literature. Since clusters can formally be seen as subsets of the data set, one possible 

classification of clustering methods can be according to whether the subsets are 

fuzzy or crisp (hard). In hard clustering, an object either does or does not belong to a 

cluster and this means partitioning the data into a specified number of mutually 

exclusive subsets. On the other hand in fuzzy clustering, the boundary between 

clusters may not be precisely defined or in another words, these methods allow the 

elements to belong to several clusters with different membership grades. 

 

In recent years, many approaches have been investigated by many researchers on 

fuzzy clustering methods (Bezdek, 1981; Bobrowski & Bezdek, 1991; Dunn, 1973; 

Gordon, 1981; Hathaway & Bezdek, 1993). One of the most widely used clustering 

methods is the Fuzzy c-means (FCM) algorithm, which was introduced by Dunn 

(1973) and developed by Bezdek (1981). This algorithm is also a generalization of 

the k-means algorithm. 

 

2.2.3.1 Fuzzy c-Means 

In clustering techniques a general form of the objective function is 
 

∑∑∑
= = =

=
c

i

n

j
kj

c

k
ijjkij vxdxwgvJ

1 1 1
),(]),([),( μμ ,          (2.52) 

 

where )( jxw  is the priori weight for each jx , ]),([ ijjxwg μ  is the degree of 

fuzziness of the partition matrix, and ),( kj vxd  is the degree of dissimilarity between 

the data jx  and the supplement element kv , which can be considered the central 

vector of the kth cluster. Several distance measures can be used to represent degree of 

dissimilarity as Minkowski, Euclidean, Mahalanobis, Tchebyschev, Hamming (city 

block) or maximum distances. Each of these distance measures indicates a different 

view of the data because of their geometry. Thus, the most appropriate distance 

measure can be selected by using the pattern of data.  
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The degree of dissimilarity must satisfy the following axioms. 

i. kjvxd kj ,,0),( ∀≥  

ii. jxxd jj ∀= ,0),(  

iii. ).,(),( jkkj xvdvxd =  

 

Let { }nxxxX ,,, 21 K=  be a finite set of elements in the p-dimensional Euclidean 

space pℜ . The aim is to perform a partition of this collection of elements into c 

fuzzy sets, where c is a given number of clusters and the result of this fuzzy 

clustering can be expressed by a partition matrix U  such that 
 

njciijU ,,1,,,1][ KK === μ                    (2.53) 

 

where ijμ  is a numerical value in ]1,0[  and denotes the degree to which the element 

jx  belongs to the ith cluster. There are two constraints on the value of ijμ . Firstly, a 

total membership of the element Xx j ∈  in all classes must be equal to 1; that is, 
 

.,,2,11
1

nj
c

i
ij K==∑

=

μ                 (2.54) 

 

Secondly, every constructed cluster must be nonempty and different from the entire 

set; that is, 
 

.,,2,1,0
1

cin
n

j
ij K=<<∑

=

μ                (2.55) 

   

Using these information, fuzzy clustering optimization problem can be formulated 

as follows, 
 

Minimize ,1,)(),(
1 1

2
>−= ∑∑

= =

mvxvJ
c

i

n

j
ij

m
ijiij μμ        (2.56) 

     Subject to Eqs. (2.54) and (2.55)                 
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where m is a parameter which is called exponential weight and influences the degree 

of fuzziness of the membership matrix. The minimization of this nonlinear 

optimization problem can be solved by using different methods as iterative 

minimization, simulated annealing or genetic algorithms. The most popular method 

is a simple Picard iteration for stationary points of (2.56), known as Fuzzy c-means 

algorithm. Thus, the nonlinear minimization problem can be solved by using 

Lagrange multiplier method as below, 
 

,,,2,1,
)(
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1

1 ci
x

v n

j
m

ij

n

j j
m

ij

i K==
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=
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−μ       (2.58) 

 

This system can be solved iteratively. At first, (2.57) is used to obtain the new 

center of each cluster and then (2.58) is used to obtain new fuzzy partition. Center 

values and fuzzy partitions are recalculated by repeating this procedure until (2.56) 

reaches to minimum. 

 

2.2.3.2 Cluster Validity Indexes 

An important issue for the FCM algorithm is the determination of the correct 

number of clusters, c. Some scalar measures of partitioning fuzziness are used as 

synthetic indices, called validity indicators, to point out the most plausible number of 

clusters in the data set since there is no exact solution of this problem. Some widely 

used scalar measures are given in Table 2.1 (Bezdek, 1974, 1975; Dunn, 1974; 

Fukuyamo & Sugeno, 1989; Xie & Beni, 1991, Kwon, 1998; Nasibov & Ulutagay, 

2006b). 
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Table 2.1 Some important cluster validity criteria 

Validity  
criteria Functional description 

Optimal 
cluster 
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CHAPTER THREE 

AN OPTIMIZATION APPROACH  

FOR THE EVALUATION OF STUDENT PERFORMANCES 

 

3.1 Introduction 

 

In group decision analysis, different approaches have been suggested by many 

researchers for the problem of aggregation of the individual fuzzy opinions to form a 

group consensus as the basis of group decision. These approaches are used in many 

different application areas such as evaluation of the workers’ performances, selection 

of the most suitable worker and meauring the students’ success. 
 

A multi-criteria personnel selection problem with multi-decision makers was 

studied by Chen (2000) using TOPSIS (Technique for order performance by 

similarity to ideal solution) procedure and vertex method with fuzzy information. 

TOPSIS procedure can briefly be explained as a concept where the chosen 

alternative should have the shortest distance from the positive ideal solution while 

having the furthest distance from the negative one. In addition, Saghafian and Hejazi 

(2005) proposed a modified TOPSIS for the multi-criteria decision-making problem 

with multi-decision makers. Kuo et al. (2007) proposed a new method of analysis of 

multi-criteria based on the incorporated efficient model and concepts of TOPSIS to 

solve decision-making problems with multi-judges and multi-criteria in real-life 

situations. Other studies have also been carried out by applying AHP (Analytical 

Hierarchy Process) approach suggested by Saaty (1990) on fuzzy numbers (Bonder, 

Graan & Lootsma, 1989; Kahraman, Ruan & Doğan, 2003). 
 

Bardossy et al. (1993) suggests five combination techniques and defines seven 

characteristics of the combination techniques. These five techniques are named as 

crisp weighting, fuzzy weighting, minimal fuzzy extension, convex fuzzy extension and 

mixed linear extension. Hsu and Chen (1996) propose an aggregation method, which 

is named as similarity aggregation method. In this study, pairwise similarities of 

experts’ opinions are calculated first. Then an average of these pairwise similarities 

is obtained for each expert. These average values represent their corresponding 
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experts’ agreement degrees. Finally, aggregation of experts’ opinions is obtained by 

combining the weighted averages. Lee (2002) proposes an iterative procedure for 

aggregation of the expert opinions. Wang and Parkan (2006) improved Lee’s study 

by suggesting two methods both based on the weighted distances between experts’ 

opinions. They indicate that one common opinion could be obtained from the 

decision makers’ opinions in various subjects. Ma and Zhou (2000) proposed a group 

decision support system for assessing students’ learning outcomes. Yong and Wen-

Kang (2003) obtained the consensus degree coefficient using the relative weight 

agreement degrees through weighting of the fuzzy opinions of experts. 

 

In student-centered learning system, a student’s performance is based on 

evaluation of a set of criteria where each criterion has different importance for each 

lecturer. Moreover, points awarded for any level (such as absent, few, middle, good, 

strong, etc.) in each criterion may vary between each lecturer. In our study, aggregate 

weight values, which reflect the opinions of lecturers on importance of each different 

criterion, are obtained from the relationship between linguistic evaluations and grade 

evaluations. These aggregated weight values are computed through an iterative 

procedure. Use of final aggregate weight values introduces consistency between 

different lecturers when assessing student performances. In other words, a method 

for obtaining aggregate weight values reflecting different points of views of lecturers 

for the evaluation of student performances in student-centered learning system is 

suggested. In our iterative procedure, defuzzification parameter and weight values 

are optimized in the optimization problem. Also the objective function in the 

optimization problem is based on the least square errors method. Consequently both 

defuzzified values and the least square method are the differences our study from the 

Lee’s study.  

 

This chapter is organized as follows. In Section 3.2, some approaches on 

performance evaluation problem are presented. In Section 3.3, our problem definition 

is introduced and Section 3.4 gives a detailed explanation of our solution to the 

described problem.  
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3.2 Fuzzy Optimization Approaches to Performance Evaluation 

 

Let ),,,(~
4321 aaaaA =  and ),,,(~

4321 bbbbB =  be two trapezoidal fuzzy numbers 

and )~,~(2 BAS  be the similarity measure between fuzzy numbers A~  and B~ . Different 

from Hsu’s similarity measure, Lee’s similarity measure includes a distance metric 

between fuzzy numbers, which was also used by Tong and Bonissone (1980). From 

the similarity measure, the dissimilarity measure is defined as )~,~(2 BASc − , where 

1>c . The value of c  affects the aggregation of experts opinions.  

 

Lee (2002) tries to minimize the sum of the weighted dissimilarities between 

aggregated opinion and each expert’s opinion. ),...,2,1(~ niRi =  represents its 

corresponding expert i ’s opinion and R~  represents the aggregated opinion. To find 

the R~  value, below equation must be solved, where m  is an integer 1> , c  is a 

constant 1>  and iw  values are weight degrees. 
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This optimization problem solution is introduced in Lee’s study (2002) as follows 

without proof, 
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R~  and iw~  values can be obtained only by an iterative procedure. 
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 As mentioned before, Wang and Parkan (2006) suggests two methods which are 

called LSDM (Least squares distance method) and DLSM (Defuzzification based 

least squares method). These methods are based on the solution of the optimization 

problem, which minimizes the sum of squared distances between all pairs of 

weighted opinions. In LSDM, fuzzy opinions are used whereas in DLSM, 

defuzzified values are used in calculations.  
 

Let ),...,(~
1 imii rrR =  and ),...,(~

1 jmjj rrR =  be two fuzzy numbers. m  defines the 

shape of fuzzy number. For instance if m  is 3 then the fuzzy number will be a 

triangular or if it is 4 then fuzzy the number will be a trapezoidal fuzzy number. iw  

and jw  values represent weight values.  

 

The minimization problem for the LSDM can be shown as in (3.4). 
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The solution of this optimization problem is as shown below, 

Theorem 3.1 (Wang & Parkan, 2006): Let ( )Tnww ,...,1=W  be the optimum 

solution of the problem (3.4). Then,  
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where ( )1,...,1=e  is the transpose of Te  and 1−G  is the inverse of G , elements of 

which are defined as  
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The minimization problem for the DLSM can be shown as below, 
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where iz  represents defuzzification values and are defined as below. 
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The solution of this optimization problem is given in the next theorem. 

 

Theorem 3.2 (Wang & Parkan, 2006): Let ( )Tnww ,...,1=W  be the optimum 

solution for the problem (3.7). The optimum solution can be given as below.  
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3.3 Formulation of The Performance Evaluation Problem with Linguistic 

Variables 

 

In student-centered learning system, after each problem based learning session, 

each student’s performance is assessed by using a predefined set of evaluation 

criteria. These evaluation criteria are specified as leadership, research skill, 

responsibility, discussion skill and creativity, and are defined by all lecturers in our 

department (Table 3.1). The importance, hence the weight of each evaluation 

criterion can be different for each lecturer. Consequently, even when the fuzzy 

answer can be the same for any evaluation criterion its reflection as a defuzzified 

value is highly likely to be different for each lecturer because of the different point of 
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views. Because of this, WABL method is used for defuzzification. The fundamental 

reason for use of WABL method is that this method can be adjusted for the defined 

task to produce more accurate results when compared to the other known methods 

(Nasibov, 2003a, 2003b). 
 

Table 3.1 The evaluation form for each problem-based learning session 

STUDENT NAME-SURNAME GRADE 

 p  

EVALUATION CRITERIA 

1. LEADERSHIP              1w      □ Absent               □ Middle                 □ Strong 

2. CREATIVITY              2w      □ Absent               □ Middle                 □ Strong 
3. RESEARCH SKILL        3w  □ Absent  □ Few   □ Middle  □ Good   □ Strong 

4. RESPONSIBILITY         4w  □ Absent  □ Few   □ Middle  □ Good   □ Strong 
5. DISCUSSION SKILL      5w  □ Absent  □ Few   □ Middle  □ Good   □ Strong 

 
 

3.3.1 Determination of The Evaluation Criteria and Their Values 
 

The fuzzy numbers of the evaluation criteria are determined as triangular and 

trapezoidal fuzzy numbers as shown in Figure 3.1 and Figure 3.2. 
 

0 10050

ABSENT MIDDLE STRONG

1

x

)(xμ

9010

    Figure 3.1 Membership function for the criteria Leadership and Creativity. 
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   Figure 3.2 Membership function for the criteria Research Skill, Responsibility and Discussion Skill. 
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In general, membership function of the trapezoidal fuzzy number ),,,( dcbaA=  is 

as follows. 
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In this equation, a trapezoidal fuzzy number transforms into a triangular fuzzy 

number when cb = . Similarly, a triangular fuzzy number can be denoted as a 

trapezoidal fuzzy number. 

 

The defuzzification values of ijR~  fuzzy numbers can be obtained from any of 

defuzzification methods such as explained in Lin and Lee (1996), Mendel (2001), 

Pedrycz and Gomide (1998). However, for the reason indicated in the beginning of 

this section, we have concentrated on the use of WABL method in our study.  

 

WABL values that are used in our study for the defuzzification of the triangular 

and trapezoidal fuzzy numbers can be calculated as below. 

 

Theorem 3.3 (Nasibov & Mert, 2005; 2007e): Let ),,( cbaA =  be a triangular fuzzy 

number. qqp αα )1()( += , 0≥q  and Lc , Rc  can be any values that satisfy normality 

and positivity conditions. The WABL value of the fuzzy number A  can be 

calculated as follows. 
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Theorem 3.4 (Nasibov & Mert, 2005; 2007e): Let ),,,( dcbaA=  be a trapezoidal 

fuzzy number with membership function (3.10). qqp αα )1()( += , 0≥q  and Lc , Rc  

can be any values that satisfy normality and positivity conditions. The WABL value 

of the fuzzy number A  can be calculated as follows. 
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3.3.2 An Optimization Formulation of The Performance Evaluation Problem 

 

Assume that n  student performances will be evaluated by using m  evaluation 

criteria. The evaluation results are indicated as ijR~  for each student i  as to criterion 

j  where ni ,,1K=  and mj ,,1K= . nppp ,,, 21 K  are the numerical values of 

students’ grades after evaluation of each respective student. Also 

( )Tmwww ,,, 21 K=W  represents the unknown weights of the m  evaluation criteria. 

ijR  values are the defuzzified values of the ijR~  fuzzy values. Our objective function 

is to minimize the sum of squared distances between all grade evaluations and the 

defuzzified values of linguistic evaluations of each criterion. Therefore, our 

nonlinear optimization problem can be constituted as follows. 
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Problem (3.13) is investigated in the next section. 
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3.4 Solution Method and Algorithm of The Performance Evaluation Problem 

 

3.4.1 An Optimal Solution of The Problem for Fixed β  

 

We want to determine the jw , mj ,...,1=  values that minimize the expression 

)(WL . There is no sign restriction and no upper limit for the value of mjw j ,...,1, = . 

Increasing values of mjw j ,...,1, =  show their effectiveness and the signs show their 

positive or negative effect which will be found as below. 

 
Theorem 3.5: Vector ( )Tmwww **

2
*
1 ,,, K=*W , which represents the optimum solution for 

the problem (3.13), is as below,  
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where ( )1,,1,1 K=e  is the transpose of Te  and 1−G  is the inverse of G . G  and TR  

matrices and W  and P  vectors are respectively as follows. 
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Proof: Lagrange multiplier method can be applied to the problem (3.13) as below. 
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that can be simplified as  
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Expression (3.20) can be rewritten in matrix form as 
 

0=−− ePRGW λT                   (3.21) 
 

where G  and TR  matrices are defined in (3.15) and (3.16) respectively. As defined 

in problem (3.13), sum of all weight values must be equal to “1” and this restriction 

can be rewritten as below. 
 

1=WeT                       (3.22) 

Consequently, (3.21) and (3.22) can be solved together as 
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and 
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As a result, weight values can be calculated for each evaluation criterion owing to 

the equation (3.24).  

 

3.4.2  An Optimal Solution of The Problem for Optimal β  

 

The calculated weight values that in previous section are valid for the optimism 

degree of Rc=β  which is predefined before the calculations explained above. 

Therefore, the weight values, which are calculated for the optimal optimism degree, 

will also be the optimal solution. With this point of view, we can expand problem 

(3.13) by using equation (3.12) as shown in (3.25). In other words, when we 

rearrange defuzzification operation of fuzzy values ijR~  with WABL method, the 

solution below will provide us both the optimal optimism degree *β  and optimal 

weight values *
jw  for the obtained *β .  
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),,,( ijijijij dcba  values are the fuzzy number characteristics for each evaluation 

criterion value ijR~ . By substituting Rc  with β , Lc  with β−1  and using definitions 

(3.26) and (3.27), defuzzified value ijR  can be written as (3.28) by using the 

Theorem 3.4. 
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By derivation the goal function of problem (3.25) with respect to β  and equating to 

zero we obtain, 
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or in the matrix form, 
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Lemma 3.1: ),( WβL  is a convex function with respect to β .  

Proof:  
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In the matrix form it could be shown as below. 
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In Figure 3.3, SSE (Sum of squared error) versus β  for different data sets is 

shown. It can be seen that all these functions are convex functions. 
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Figure 3.3 Beta values versus SSE values for six data sets. 

 

Any standard optimization procedure (Golden Section, Binary Section, etc.) can 

be used for the calculation of β  value because of convexity of ),( WβL  function 

with respect to β  values.  
 

3.4.3 An Iterative Solution Algorithm of The Problem 
 

In this section, a more effective iterative algorithm than classical optimization 

methods (for example Golden Section method), which is explained below, is 

suggested. 
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Initially, R  and  ( ) PRG
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PRGeeGW T
T

TT
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=  are calculated as the solution 

of problem (3.25) by using an initial 0β . Then, new 
WB)AB)(AW

WB)(AP)(BW
−−
−−

−=
(TT

T

β  is 

calculated by using 0W  and iterations are repeated. In other words, the optimal 

solution of problem (3.25) could be obtained as related to the iteration 
**

21100 WWW →→→→→→→ ββββ L . We can illustrate this procedure as an 

algorithm as shown below. 

 

Algorithm 3.1: 
 
Step 0. Linguistic evaluations like leadership, creativity, etc. are entered for each 

student, 

Step 1. Numerical grade values, which coincide with the linguistic evaluations, are 

entered. ( P  vector) 

Step 2. 0>ε  certainty is defined, 0β  and k  are initialized as 0.5 and 0 respectively. 

Step 3. For the kβ  value, ijR  for ni ,...,1=  and mj ,...,1=  are calculated from 

formula (3.28). 

Step 4. G is calculated from formula (3.15) and then 1−G  is obtained. 

Step 5. *
jw  for mj ,...,1=  are calculated from formula (3.24). 

Step 6. A and B matrices are calculated from formulas (3.26) and (3.27). 

Step 7. *β  value is obtained from formula (3.31). 

Step 8. If εββ <− *
k  then go to Step 10. 

Step 9. Update k  as 1+k  and kβ  as *β , then go to Step 3. 

Step 10. *
jw  for mj ,...,1=  and *β  are determined as optimal parameters. 

Step 11. Stop. 

 

When compared with classical optimization algorithms, this algorithm gives more 

effective results. The results of this comparison are given in Chapter 5. 
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CHAPTER FOUR 

GROUP CONSTITUTION PROBLEM  

WITH DIFFERENT STRATEGIES 

 

4.1 Introduction 
 

Although the name “assignment problem” seems to have first discussed in 1952 

by Votaw and Orden, in fact, it was firstly recognized in the beginning of the 

development of practical solution methods and variations on the assignment problem 

in Kuhn’s study (1955). Afterwards, many variations of the problem have been 

studied by many researchers (Caron, Hansen, & Jaumard, 1999; Cattrysse & Van 

Wassenhove, 1992; Daskalai, Birbas, & Housos, 2004; Dell’Amico & Martello, 

1997; Duin & Volgenant, 1991; Ford & Fulkerson, 1966; Gross, 1959; Gupta & 

Punnen, 1988; Martello, Pulleyblank, Toth, & Werra, 1984; Punnen & Aneja, 1993; 

Werra, 1985). Workers’ placement problems, bin packing problems, and task 

allocations problems can be given as some examples of the variations of the 

assignment problems. 
 

In real life, assignment problems are very usual. These problems contain 

optimally matching the elements of two or more sets. When there are two sets, they 

may be referred to as “tasks” and “agents”. For example, “tasks” may be jobs that 

need to be done and “agents” the people or machines that can do them. In general, 

assignment problems involves assignment each of task to individual agent. However, 

these problems may have different structures according to the matching that needs to 

be performed between tasks and agents such as assignment of multiple tasks to the 

same agent or multiple agents to a single task. In our group constitution problem, 

students must be assigned to individual groups similar to the assignment of multiple 

tasks to a single agent. 
 

In this chapter, the heuristic assignment approaches proposed in this dissertation 

are examined as the objective, mathematical model, algorithm and assignment type. 

In this study, for the assignment process that is taken into consideration, some 

improvements also can be made with respect to the definite properties after the 
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suggested application of assignment process to the groups in fact. For example, while 

assigning students to different groups, improvements to ensure approximately equal 

distribution of genders within each group or to group students who understand each 

other well enough etc. can be used. Similar studies of such kind of assignment 

process with use of such improvements are presented in Nasibov (2004), Nasibov 

and Nasibova (2003c) and Nasibov and Kınay (2006c, 2006d). However, in this 

study, such improvements are not employed for the assignment process..  
 

Besides, so as to be able to use the heuristic assignment approaches mentioned in 

this chapter, first of all students have to be divided into clusters according to their 

success status. Therefore, the FCM method mentioned in Chapter 2 was used as the 

clustering method. The clusters that are constituted are named as success clusters. 

For success clusters are identified: “very good”, “good”, “middle” and “bad”. 
 

4.2 Random Group Constitution Strategies 
 

Three heuristic methods are proposed so as to be used in the assignment of 

students into different groups and the mathematical models of two of these methods 

are proposed. These methods are named as balanced random assignment, simple 

random assignment, and level-based random assignment. The working mechanisms 

of these methods are detailed as follows. 
 

4.2.1 Balanced Random Assignment 
 

The purpose of using this assignment method is to form small groups that reflect 

the features of the whole class. That is to say, regardless the group sizes, students 

from all success clusters will be distributed equally between each group. The 

mathematical model of this method is as follows. 
 

Suppose we want to assign n  students to k  groups as balanced random. Let the 

success grade of each student be shown as nipi ,...,1, = . In addition, suppose it ijx  

takes value of “1” if student i  is assigned to group j, otherwise it takes “0”. That is,  

⎩
⎨
⎧

=
otherwise,0

 group  toassigned is student  if,1 ji
xij          (4.1) 
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There exist the following two constraints in the assignment of n  students to m  

groups as balanced random: 
 

a. A student can be assigned to only one group. That is to say, 

nix
k

j
ij ,...,1,1

1
==∑

=

.                 (4.2) 

 

b. Group sizes have to be approximately equal. Therefore, the student numbers 

in each group have to be as much as the upper limit of kn  at the most and 

the lower limit of kn  at the least.  

kj
k
nx

k
n n

i
ij ,...,1,

1
=⎥⎥

⎤
⎢⎢
⎡≤≤⎥⎦

⎥
⎢⎣
⎢ ∑

=

              (4.3) 

 

So as to carry out balanced random assignment or, in other words, to assign 

students to small groups to reflect the structure of the class, the solution which 

minimizes the sum of squares of the difference between group averages and the 

general average of the class would be the optimum solution. That is to say, 

mathematically, the optimization of the problem (4.4) is required under the 

constraints (4.1)-(4.3). The problem (4.4) is shown with the constraints as follows. 

min

2

1

1 →
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s. t.                          
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{ } kjnixij ,...,1,,...,11,0 ==∈  

 

In this kind of assignment problems, since it is mostly not possible even to  

describe the problem in any available software programmes, heuristic solution 

algorithms are developed for this and other proposed assignment methods. Thus, the 
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algorithm of the heuristic approach developed for the solution of this mathematical 

model is as follows. 

 

Algorithm 4.1: 

Step   0.   The numerical grade evaluations of the students are calculated.  

Step   1.   Success clusters are constituted for students by using clustering algorithm. 

Step   2.   Students are selected randomly from the success cluster “Very Good” and 

they are assigned to groups one by one. When the number of groups to be constituted 

is completed, assignment is carried on to the first group again and this continues. 

Step   3.  Students are selected one by one randomly from the success cluster “Good” 

and assignment is carried on where the assignment remained. The same procedure is 

carried out also for the success clusters “Middle” and “Bad” and the assignment 

procedure is terminated.  
 

The demonstration of the method is as in Figure 4.1.  

...

Group 1 Group k...

 
Figure 4.1 Working way of Balanced 

Random Assignment method 

 

For example, suppose that 19 students will be assigned to 4 groups. Let 5 of these 

students belong to the cluster “Very Good”, 3 to “Good”, 8 to “Middle” and 3 to 

“Bad”. The assignment of the students according to this assignment principle would 

be as in Table 4.1. 
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Table 4.1 Assignment results according to Balanced Random Assignment method 

Group 1 Group 2 Group 3 Group 4 
VG 
VG 
M 
M 
B 

VG 
G 
M 
M 
B 

VG 
G 
M 
M 
B 

VG 
G 
M 
M 
 

 

4.2.2 Simple Random Assignment 

 

In this assignment method, the assignment of students to the groups is completely 

random. That is to say, without paying attention in which cluster the students are, 

students are assigned to groups completely in a random manner. The only constraint 

in this procedure is again that the number of students in each group to be 

approximately equal. Also according to the simple random assignment method, the 

assignment type is identical to the previous method. The algorithm of this method is 

as follows. 

 

Algorithm 4.2: 

Step  0.   The numerical grade evaluations of the students are calculated. 

Step  1.   Without using any clustering procedures, students are chosen randomly one 

by one and assigned to groups respectively. 

 

4.2.3 Level-Based Random Assignment 
 

In the level-based random assignment method, provided that students are again 

selected randomly from within each success cluster as in balanced random 

assignment method, assignment procedure is carried out in a way that students with 

similar grades will gather in one group. Therefore, the aim of this method is to form 

groups from students with similar grades.  
 

The mathematical model of this assignment method is given in problem (4.5). The 

objective function of this method is based on the principle of maximization of the 

squares of the differences between the total grades in each group. The constraints are 

identical to those of problem (4.4). 



44 
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The algorithm of this heuristic approach proposed for the solution of this model is 

as follows. 

 

Algorithm 4.3: 

Step   0.   The numerical grade evaluations of the students are calculated.  

Step   1.    Success clusters are formed for students by using clustering algorithm. 

Step   2.   Students are selected randomly from the success cluster “Very Good” and 

assigned one by one to the same group. When the number of students to be assigned 

to the group is attained, the following students are assigned to the following group. 

Step   3.  Students are selected randomly one by one from the success cluster “Good” 

and the assignment procedure is carried on from where the assignment remained. The 

same procedure is carried out for the success clusters “Middle” and “Bad” as well 

and the assignment procedure is terminated.  

 

In this method, the assignment type of students to groups is a little bit different 

from the first two methods and as in Figure 4.2. Furthermore, the results over the 

same example given at the end of section 4.2.1 according to this assignment principle 

would be as in Table 4.2. 
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...

Group 1 Group k...

 
Figure 4.2 Working way of Level-

Based Random Assignment 

 

Table 4.2 Assignment results according to Level-Based Random Assignment 

Group 1 Group 2 Group 3 Group 4 
VG 
VG 
VG  
VG  
VG  

G 
G  
G 
M 
M 

M 
M 
M 
M 
M 

M 
B 
B 
B 

 

4.3 Deterministic Group Constitution Strategies 

 

Two heuristic methods are proposed so as to be used in the assignment of students 

in groups and their respective mathematical models are formulated. These methods 

are named balanced assignment and level-based assignment. The working 

mechanisms of these methods are summarized as below. 
 

4.3.1 Balanced Assignment 
 

The aim of using this assignment method is similar to the aim of using the 

balanced random assignment method. In this method, it is intended to form student 

groups which would represent the characteristics of the whole class much better than 

random balanced assignment. Briefly, it is aimed at reaching a closer result to 

optimum. 
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The mathematical model is given in (4.6). The objective function of this method is 

based on the principle of minimization of the squares of the differences between the 

total grades in the groups constituted.  
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Actually, the objective functions of problem (4.4) and (4.6) are the same. The 

algorithm of the heuristic approach developed for the solution of this mathematical 

model is as follows.  

 

Algorithm 4.4: 

Step   0.   The numerical grade evaluations of the students are calculated.  

Step  1.  All students are arranged in descending order according to their grades. 

( )()2()1( nppp ≤≤≤ K ) 

Step  2.   The first student is assigned to the first group, the second one is assigned to 

the second group etc. until student k is assigned to the last group k. After this, the 

next student is assigned to the last group k and the following students are continued 

to be assigned towards the first group. The assignment procedure is carried on in this 

way and all students are assigned to groups.  

 

To understand this algorithm better, the assignment type is demonstrated in Figure 

4.3. 
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...

Group 1 Group k...

 
Figure 4.3 Working way of 

Balanced Assignment 

 

Therefore, the groups formed according to this assignment principle will be as in 

Table 4.3. Since all students are arranged in descending order, the solution of this 

assignment method is unique.  

 
Table 4.3 Assignment results according to Balanced Assignment 

Group 1 Group 2 Group 3 Group 4 
p(1) 

p(8) 
p(9) 
p(16) 
p(17) 

p(2) 

p(7) 

p(10) 

p(15) 

p(18) 

p(3) 

p(6) 

p(11) 

p(14) 

p(19) 

p(4) 

p(5) 

p(12) 

p(13) 

 

To compare the validity of the grouping by using this method an error ratio 

calculated. This is obtained by the ratio of the difference between the highest and 

lowest of the group averages to the highest and lowest of the student grades and the 

results are given under the title of “Group Constitution Results” in Chapter 5.  

  

jiji

ji

ji

pp

pp

−

−
=

,

,

max

max
RatioError                   (4.7) 

 

In this equation, ip  and jp  values indicate the average grade of the groups 

constituted as a result of assignment when kji ,...,1, =  and  ip  and jp  values 

indicate the grades of the students when kji ,...,1, = . 
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4.3.2 Level-Based Assignment 

 

In the final method, the aim is identical with the level-based random assignment 

method. However, since students are arranged according to the their grades here, like 

in the previous method, students with much similar grades will gather.  

 

The objective function in this method is based on the maximization of the sum of 

squares of the differences between the total grades of the students in each group. 

Therefore, the mathematical model of the level-based assignment approach is as in 

problem (4.8). 

 

max
2

1

1

2

111

1

2
21

→⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∑ ∑ ∑∑

=

−

= ==

k

k

k

k

n

i
iik

n

i
iik pxpx              (4.8) 

 s. t. 

nix
k

j
ij ,...,1,1

1
==∑

=

                   

kj
k
nx

k
n n

i
ij ,...,1,

1
=⎥⎥

⎤
⎢⎢
⎡≤≤⎥⎦

⎥
⎢⎣
⎢ ∑

=

                

{ } kjnixij ,...,1,,...,11,0 ==∈                 

  

Algorithm 4.5: 

Step   0.   The numerical grade evaluations of the students are calculated.  

Step  1.  All students are arranged in descending order according to their grades. 

( )()2()1( nppp ≤≤≤ K ) 

Step  2. The assignment starts by filling the first group with students until this group 

is full. When the number of students to be assigned to the group is reached, the 

following students continue to be assigned to the following group. 

 

The group results according to this assignment principle for the same example 

will be as in Table 4.4. Since all students are arranged in descending order, the 
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solution of this assignment method is also unique, like the solution of the previous 

method. 

 
Table 4.4 Assignment results according to Level-Based Assignment  

Group 1 Group 2 Group 3 Group 4 
p(1) 

p(2) 
p(3) 
p(4) 
p(5) 

p(6) 

p(7) 

p(8) 

p(9) 

p(10) 

p(11) 

p(12) 

p(13) 

p(14) 

p(15) 

p(16) 

p(17) 

p(18) 

p(19) 
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CHAPTER FIVE 

APPLICATIONS AND EXPERIMENTAL RESULTS 

 

5.1 Introduction 

 

In this chapter, the analysis results concerning the efficiency of the iterative 

method proposed for the student performance evaluation are given. The efficiency 

results for the balanced assignment method, one of the assignment strategies 

proposed for the constitution of student groups, have been obtained and examined by 

using data in different sample sizes and according to different numbers of group 

assignments. Furthermore, besides numerical results, Optimal Weights Evaluation 

and Group Constitution programs, implemented in Borland C++ Builder 6.0 SDK, 

are explained in detail. 

 

5.2 Performance Evaluation Tools and Experimental Results 

 

5.2.1 Performance Evaluation Tools 

 

In this section, detailed information is given concerning the forms, functional 

modules and informative components constituted in the Optimal Weights Evaluation 

program. 

 

5.2.1.1 Forms 

When the program starts to run, the window in Figure 5.1 appearson the screen. 

Student data is entered in this window. This  data can be entered either one by one 

for each student or form a file consisting this information for each student. Provided 

that data is entered one by one, “Number of Students” field has to be populated first. 

For every “Student No” entered, all the linguistic evaluation results and the 

equivalent graduations are entered and “Save” button is clicked. Owing to this 

procedure, data will be saved as lines into c:\RRR.txt, for each student. The “Student 

No” field has to be populated with increments of one for each student to be entered 

later on. “Show” button can be used at any time to display the contents of the flat file 
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in the text box on the right handside of the form. The information to be displayed 

here will show the numerical results of the students’ linguistic evaluations and their 

grade values which were calculated on the basis of the “Beta” value determined 

previously.  

 

In order to calculate the parameters representing the information entered, it is 

required to push “Optimize” button, which performs the Algorithm 3.1. As a result of 

this procedure, parameters will have been determined for the student evaluations that 

have been entered, the calculated value will have been transferred to the “Beta” value 

on the window and at the same time, these results will have been transferred to 

“Grade Calculation” part in order to be used in the required calculations. The image 

of the program, where the parameters have been estimated by pushing “Optimize” 

button after the data are entered one by one, is as in Figure 5.2. 
 

 
Figure 5.1 Opening window of the Optimal Weights Evaluation program. 
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Figure 5.2 Image after the information is read from the file and the “Optimize” button is pushed. 

 

If the data is to be read from the flat file, first of all, the data has to be encoded as 

shown in Figure 5.3. This file must be saved as c:\RRR.txt. Each line in this file is 

composed of students order number, the grade evaluation result of the student, 

followed by five columns of encoded results of performance evaluation criteria. The 

encoding procedure is in the form of Absent=0, Middle=1 and Strong=2 for the first 

two criteria while it is in the form of Absent=0, Few=1, Middle=2, Good=3 and 

Strong=4 for the other three criteria. After the file is created in this way, data 

matrices are populated by clicking the “Read” button. Later on, as in the previous, 

“Optimize” button is pushed and optimum optimism degree, β , and mjw j ,1, =  

optimal weight values are determined owing to the iterative method.  
 

 
Figure 5.3 Image of the file where 
encoded student information exists. 
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After “Golden Section” activating the button, the new screen in Figure 5.4 will 

appear. Data to be used for obtaining the optimum optimism degree will be entered 

in this screen regardless the way the student data is entered. When the “Golden 

Section” button on this form is activated, the result will be as in Figure 5.5. This 

window has been implemented so as to debug the iterative method proposed in this 

dissertation work according to the well-known Golden Section method. 
 

 
Figure 5.4 Golden Section window. 

 
Figure 5.5 Image after the information is read from the file and the “Golden Section” button is pushed. 
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After the parameter calculation procedure by the iterative method, in order to 

automatically carry out the new student performance evaluations by using the 

obtained values, it is required to click the “Grade Calculation” button on the Optimal 

Weights Evaluation form. When this button is clicked, the form in Figure 5.6 appears 

on the screen. As it is observed, the result of the optimum optimism degree on this 

screen appears next to the “Beta” field and the weight values determined for each 

criterion appear at the end of the each linguistic evaluation of its respective criteria. 

Later, this optimism degree and weight values will be used in the new grade 

calculations. 

 

Firstly, the number of students, for which grade evaluation will be carried out, is 

entered into the “Number of Students” field. Then, name and surname is entered into 

the “Name” field for the student and marking is carried out concerning the linguistic 

evaluation criteria. By clicking the “Save” button, the student data will be saved and 

the student will be graded using this entered data which will also be displayed on the 

screen. Evaluation results can be obtained in the same way for all students until all 

students are entered. “Show” button can be used at any time to display all the 

evaluation results as a list as shown in Figure 5.7.  

 

 
Figure 5.6 Grade Calculator window. 
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Figure 5.7 Image after information is saved and “Show” button is pushed. 

 

5.2.1.2 Functional Modules 

Following are the functional modules assigned to the corresponding buttons on 

Optimal Weights Evaluation, Golden Section and Grade Calculator forms and their 

functions: 

 

Save: It saves the results of linguistic performance evaluation for students and the 

numerical grade values given in return for them in c:\ RRR.txt file. 

 

Show: Writes the defuzzified values of the results of the linguistic performance 

evaluation by using “Beta” value, determined previously, from the data saved in the 

flat file and the single numerical grade value given in return for these values on the 

right screen. 

 

Read: Reads the previously created flat file which contains the students’ data and 

populates the concerned matrices with this data for future calculations. 

 

Optimize: In the light of the available information, it calculates the values of the 

parameters by using the iterative method. 

 

Golden Section: “Golden Section” button on the Optimal Weights Evaluation 

form enables transition to the Golden Section program. The “Golden Section” button 
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after transitioning to this program enables the estimation of parameters by using the 

Golden Section method. 

 

Grade Calculation: Similar to the “Golden Section” button, this button enables 

transition from Optimal Weights Evaluation window to Grade Calculator window. 

 

Write: Saves all results displayed on the right hand side of the screen into the 

c:\RRRMemolines.txt file. 

 

Reset: Clears the contest of the flat file c:\RRR.txt. 

 

Result: Saves the obtained optimum optimism degree and weight values into the 

c:\RRRresult.txt file. 

 

5.2.1.3 Informative Components 

Number of Students: Represents the size of the dataset, in other words, the class 

size. 

 

Student No: Indicates the order of the student whose data have been entered. 

 

Beta: The value of optimism degree used during the defuzzification procedure of 

the linguistic performance evaluations is entered. Since this value can have values at 

the interval of [ ]1,0 , midpoint value has been entered as default. 

 

Grade: While data are entered separately, the information about the numerical 

grade value given as a result of the linguistic performance evaluations of each 

student is written. 

 

Beta1 and Beta2: Initially, they include 0.382 and 0.618 values respectively. 

Then, they are changed automatically by using the interval determining formula in 

Golden Section method. 
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Name: It enables entering the name of the student whose numerical grade value 

will be determined in return for linguistic performance evaluations. 

 

5.2.2 Performance Evaluation Results 

 

Our suggested method has been developed as a software application in C++ 

algorithmic language and 6 data sets have been used in our experiments. 5 lecturers 

have been asked to assign a numerical grade for 20 students’ linguistic evaluations 

on a set of criteria and these results are presented in Table 5.1. 
 

Table 5.1 Five data sets obtained from 5 lecturers. 
Evaluation Criteria Lecturers’ Grade Evaluations  

L C R.S R D.S Lec-1 Lec-2 Lec-3 Lec-4 Lec-5 
1 M M F F M 40 45 40 40 52 
2 M S G G G 80 75 80 65 80 
3 A A F F F 30 15 15 15 32 
4 A M M M F 45 45 35 35 48 
5 S S G G S 85 90 80 90 92 
6 S S S S S    100    100    100    100   100 
7 M A F F M 30 25 30 30 44 
8 A A F M F 30 25 20 20 36 
9 S M G G G 75 75 75 75 80 
10 A M F M M 40 40 35 35 48 
11 M M G G S 75 70 70 50 76 
12 A A A A A   0 10   0   0 20 
13 M M S S S 80 75 85 80 84 
14 M M M M M 50 50 40 50 60 
15 S S M M S 80 75 80 80 84 
16 M S M M G 75 70 70 65 72 
17 A S M G M 70 65 60 55 64 
18 A A A F F 20 30 10 10 28 
19 S S F F S 60 75 65 70 76 

St
ud

en
t N

o 

20 S M G M G 75 70 70 70 76 
L=Leadership, C=Creativity, R.S=Research Skill, R=Responsibility, D.S=Discussion Skill. 
A=Absent, F=Few, M=Middle, G=Good, S=Strong. 

 

A common optimism degree and a weight value for each criterion are obtained by 

analyzing the 5 lecturers’ relevant data sets. The following methods; WABL, COA 

and MOM, have been applied to each data set individually and to the aggregate data 

set, SET-ALL. The details of process are presented in Table 5.2. In this table, the 

methods which give the minimum least square errors are highlighted in bold. As 

illustrated in the table, the value of q  can be modified and therefore WABL can 

produce better results than MOM and COA methods. 
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Table 5.2 The results of WABL, COA and MOM methods for six data sets. 

 *
1w  *

2w  *
3w  *

4w  *
5w  *β  SSE 

WABL )0( =q  0.0096 0.3058 0.4862 -0.0186 0.2171 0.6957 632.7768 

WABL )10( =q  0.0740 0.2735 0.3326 0.1589 0.1610 1.0000 509.2870 

WABL )20( =q  0.0671 0.2662 0.3024 0.1790 0.1852 1.0000 548.9734 
COA -0.1367 0.2676 0.4070 -0.0292 0.4912 - 898.5181 

SE
T

-1
 

MOM 0.0083 0.2375 0.2607 0.1736 0.3199 - 619.8824 
WABL )0( =q  0.1615 0.3684 0.1995 0.1079 0.1627 0.6395 545.0104 

WABL )10( =q  0.2065 0.3086 0.0799 0.3064 0.0987 0.9536 326.3041 

WABL )20( =q  0.2007 0.3001 0.0604 0.3242 0.1146 1.0000 334.6471 
COA 0.0432 0.3430 0.1474 0.0736 0.3928 - 788.8690 

SE
T

-2
 

MOM 0.1541 0.2847 -0.0325 0.3598 0.2341 - 450.6970 
WABL )0( =q  -0.0084 0.2797 0.6198 -0.2660 0.3748 0.5020 742.3373 

WABL )10( =q  0.0899 0.2622 0.5105 -0.0913 0.2288 0.5975 374.5684 

WABL )20( =q  0.0925 0.2588 0.4994 -0.0764 0.2257 0.6077 351.8783 

WABL )160( ≥q  0.0936 0.2549 0.4859 -0.0609 0.2265 0.6050 ≤ 331.0163 
COA -0.0521 0.2788 0.6524 -0.3088 0.4297 - 840.3809 

SE
T

-3
 

MOM 0.0884 0.2516 0.4725 -0.0566 0.2441 - 331.0723 
WABL )0( =q  0.2959 0.2992 0.2798 0.0136 0.1114 0.5230 948.9585 

WABL )10( =q  0.3388 0.2714 0.1660 0.2257 -0.0018 0.6473 402.4287 

WABL )20( =q  0.3374 0.2668 0.1572 0.2415 -0.0030 0.6817 370.6944 

WABL )35( ≥q  0.3362 0.2644 0.1525 0.2490 -0.0021 0.7014 ≤ 356.3858 
COA 0.2478 0.2929 0.3116 -0.0525 0.2002 - 1155.5135 

SE
T

-4
 

MOM 0.3193 0.2595 0.1196 0.2654 0.0362 - 357.4269 
WABL )0( =q  0.2265 0.2313 0.1783 0.1768 0.1871 0.8922 32.4472 

WABL )10( =q  0.1514 0.1714 -0.0867 0.3935 0.3704 1.0000 534.5341 

WABL )20( =q  0.1401 0.1636 -0.1117 0.4118 0.3963 1.0000 672.0539 
COA -0.0268 0.1455 -0.0329 0.1909 0.7233 - 1038.6621 

SE
T

-5
 

MOM 0.0600 0.1345 -0.1061 0.3507 0.5610 - 1055.4155 
WABL )0( =q  0.1372 0.2974 0.3530 0.0024 0.2099 0.6512 4959.6541 

WABL )10( =q  0.1852 0.2607 0.2341 0.1872 0.1328 0.9796 3732.1042 

WABL )20( =q  0.1776 0.2538 0.2078 0.2072 0.1536 1.0000 3790.1983 
COA 0.0151 0.2656 0.2971 -0.0252 0.4474 - 6145.2656 SE

T
-A

L
L

 

MOM 0.1260 0.2336 0.1428 0.2185 0.2791 - 4332.4927 

 

Optimum solutions by using both our iterative method and the well-known 

Golden Section method are obtained for different certainty levels for comparing the 

effectiveness of two methods. Comparative table is shown below (Table 5.3). 
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Table 5.3 Number of iterations of the suggested iterative )0( =q  and Golden Section methods. 
Iterations Certainty level Method 

SET1 SET2 SET3 SET4 SET5 SET-ALL 
Suggested Iterative   9 9  2  6   9   9 001.0=ε  

Golden Section 15 15 15 15 15 15 
Suggested Iterative 12 12   6 10 11 12 0001.0=ε  

Golden Section 20 20 20 20 20 20 
Suggested Iterative 15 15 10 14 14 15 00001.0=ε  

Golden Section 24 24 24 24 24 24 
Suggested Iterative 18 18 14 17 17 18 000001.0=ε  

Golden Section 29 29 29 29 29 29 
 

The comparison of our iterative method and Golden Section method is performed 

with sign test instead of Wilcoxon sign rank test because of the asymmetrical 

distribution of data. As shown in Table 5.3, when the results are investigated 

separately for each certainty level, the number of iterations in Golden Section 

method remains constant. On the other hand, the number of iterations changes in our 

iterative method. Although, the number of iterations increases as certainty level 

decrease for both methods, our iterative method needs less iteration in comparison to 

Golden Section. When significance of the difference between the numbers of 

iterations in both methods is investigated by using the sign test, the result is 

significant with 0313.0=p  at 05.0=α  level. As a result, it can be said that our 

proposed method can produce more optimal solutions in less number of iterations 

when compared to Golden Section method. 
 
Table 5.4 The results of iterative method for SET-ALL data set with 10=q . 

Iteration 
numbers 

β  5,1, =jw j  SSE 

1 0.5000 0.11917 0.23974 0.15960 0.18827 0.29322 4451.0432 
2 0.7369 0.15512 0.25160 0.18947 0.19484 0.20898 3927.0836 
3 0.8637 0.17175 0.25678 0.21105 0.19263 0.16779 3777.8210 
4 0.9260 0.17918 0.25900 0.22304 0.19012 0.14867 3742.0216 
5 0.9552 0.18248 0.25997 0.22896 0.18862 0.13996 3734.1757 
6 0.9685 0.18396 0.26039 0.23174 0.18787 0.13603 3732.5293 
7 0.9746 0.18463 0.26058 0.23302 0.18752 0.13426 3732.1907 
8 0.9773 0.18492 0.26067 0.23359 0.18736 0.13346 3732.1217 
9 0.9786 0.18506 0.26070 0.23386 0.18728 0.13310 3732.1077 
10 0.9791 0.18512 0.26072 0.23397 0.18725 0.13294 3732.1049 
11 0.9794 0.18514 0.26073 0.23403 0.18723 0.13287 3732.1043 
12 0.9795 0.18516 0.26073 0.23405 0.18723 0.13283 3732.1042 
13 0.9796 0.18516 0.26073 0.23406 0.18723 0.13282 3732.1042 

 

Demonstration of proposed iterative method applied on SET-ALL dataset for 

0001.0=ε  can be seen in Table 5.4. Starting from 5.0=β , the suggested iterative 

procedure obtains the *β  and 5,1,* =jw j  values as a target-driven process. 
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5.3 Group Constitution Tools and Experimental Results 
 

5.3.1 Group Constitution Tools 
 

In this section, detailed information is given concerning the forms, functional 

modules, and informative components constituted in Group Constitution program. 
 

5.3.1.1 Forms 

So as to constitute student groups under different strategies, firstly, all students 

have to be divided into clusters according to their success status. In this section of the 

work, the program entitled Visual Clustering 2.0, constituted in the work of Ulutagay 

(2004) and Nasibov and Ulutagay (2006a), is used in order to determine which 

student belongs to which group. Therefore, the completion of clustering procedure 

will be the first step towards constituting the student groups.  
 

After the completion of the procedure of clustering students according to their 

success status, this information is transferred to a file entitled c:\\clusters.txt as in 

Figure 5.8. The information taking place on the columns of the files is the student 

order number, information about which student belongs to which cluster, the degree 

of belongingness of the student to the cluster and finally information about the grade 

value the student receives from that module respectively. 
 

 
Figure 5.8 Image of file where 
encoded student information exists 
after the clustering procedure. 
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The next step is the running of Group Constitution program. When the program is 

run, the first thing that appears on the screen is the window in Figure 5.9 
 

 
Figure 5.9 Opening window of the Group Constitution program. 

 

Since the data entry in the program is carried out only through reading from the 

file, it is required first to push “Read” button. The program image after pushing the 

button is as in Figure 5.10. In conclusion, we can see from “Number of Students” 

part that there are 61 students in the file. Furthermore, it lists the students, who have 

been divided into 4 clusters according to the clustering procedure, in descending 

order in the form of “Very Good”, “Good”, “Middle” and “Bad” for each cluster 

according to their average success. Information about how many students there are in 

each group is given next to each cluster (Figure 5.10). 
 

 
Figure 5.10 Image after the information is read from the file by “Read” button. 
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 After the information about the students is read, student groups can now be 

constituted in the desired number and by using the desired strategy. Firstly, the 

number of groups to be constituted on “Number of Group” part must be determined. 

Then, group constitution strategy, which is appropriate for the objective, is 

determined from “Assignment Method” part, which performs one of the appropriate 

algorithm of Algorithms 4.1-4.5. As it is also mentioned above, the number of 

students in each student group will be approximately equal. For instance, when we 

want to constitute 8 student groups by the Balanced Random method, the resulting 

table would be as in Figure 5.11. Students are here selected randomly from each 

cluster according to the “Balanced Random” assignment principle and assigned to 

groups on the condition that they are approximate equal in number. Therefore, no 

matter what the number of groups constituted in this assignment method is, 

approximately identical number of students will take place in each group from each 

cluster. 



 

 

     
    Figure 5.11 Result of assignment after the number of groups and the assignment method are determined. 63
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5.3.1.2 Functional Modules 

Followings are the functional modules assigned to the corresponding buttons in 

the Group Constitution program and their functions: 
 

Read: Reads the previously created flat file c:\clusters.txt, which contains the 

students’ data and populates to the concerned matrices with this data for future 

calculations. 
 

Run: It carries out the assignment procedure of students to groups according to 

the selected assignment method. 
 

5.3.1.3 Informative Components 

Number of Students: Represents the size of the dataset, in other words, the class 

size. 
 

Number of Group: How many groups the students will be divided into is 

determined on this information box. 
 

5.3.2 Group Constitution Results 
 

In order to be used in balanced assignment method, 1000 data have been created 

from each ( )216,50N , ( )210,70N  and ( )3,14Gamma  distribution with a view to 

reflecting grade values between 0-100 and samples have been constituted from these 

populations in different sample sizes by selecting randomly without replacement of 

data. Sample sizes have been determined as 30, 50, 80 and 100 and for each sample 

size, twenty data sets have been selected from the population. Then the group 

averages have been obtained by carrying out different numbers of group assignments 

from each data set constituted. Summary tables have been constituted for the sample 

sizes 30, 50, 80 and 100 for each distribution, which have been constituted according 

to different group numbers (Appendix A.1–A.12). In these tables, ipmin , jpmax , 

)min(max ji pp −  and 
jiji

ji

ji

pp

pp

−

−

,

,

max

max
values take place. So as to compare the validity 

of these obtained results, the comparison approach in Equation (4.7) has been used. 

The results obtained as a result of this approach are as in Table 5.5. 
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The reason why different group numbers are used for each sample size in 

Appendix A.1–A.12 is the desire to constitute student groups in significant sizes 

since, as it also takes place in the title of the work, student groups are arranged in 7 

to 9 people in the problem based learning sessions for the problem based learning 

system applied in the Department of Statistics at Dokuz Eylül University. Besides 

this, trials have been carried out also for 5-, 6- or 10-people group constitutions so as 

to be an example. 
 
Table 5.5 Summary table of error ratio averages. 

30=n  3=m  4=m  5=m  6=m  

)16,50( 2N  0.0174 0.0948 0.0328 0.0825

)10,70( 2N  0.0188 0.0958 0.0337 0.0811
)3,14(Gamma  0.0234 0.0969 0.0419 0.0897

50=n  5=m  6=m  7=m  8=m  

)16,50( 2N  0.0167 0.0599 0.1009 0.0796

)10,70( 2N  0.0200 0.0565 0.1099 0.0732
)3,14(Gamma  0.0227 0.0431 0.1031 0.0573

80=n  8=m  9=m  10=m 11=m

)16,50( 2N  0.0145 0.0605 0.0205 0.1006

)10,70( 2N  0.0193 0.0589 0.0213 0.1054
)3,14(Gamma  0.0264 0.0544 0.0301 0.1042

100=n  10=m  11=m 12=m 13=m

)16,50( 2N  0.0172 0.0840 0.0589 0.0905

)10,70( 2N  0.0156 0.0881 0.0582 0.0937
)3,14(Gamma  0.0245 0.0858 0.0448 0.0943

 

As also observed in Table 5.5, the means of the error ratio values are calculated in 

this way for each sample size and each group number. When this table is observed, 

the fact that the highest value among the means of error ratio is 0.1099 shows that 

there is %11 difference among group means. Actually, we also observe that this ratio 

has quite lower values than %11. Nevertheless, if an optimum solution had been 

obtained instead of the heuristic solution, these results wouldn’t have had “0” value 

again since it is the discrete optimization problem. Therefore, this algorithm in fact 

gives closer results to the optimal solution.  
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CHAPTER SIX 

CONCLUSIONS 

 

Fundamentally two mathematical systems are suggested in this work. The first 

one is the student performance evaluation system while the second one is the student 

group constitution system in parallel to different strategies. Moreover, in Borland 

C++ Builder 6.0 program, the algorithms of both systems have been constituted. The 

results of the work have been published as Nasibov and Kınay (2007a, 2007b, 2007c, 

2007d) articles. 

 

Evaluation of student performances, in other words, their gradations can be 

carried out by different lecturers, hence as a result of each lecturer having different 

opinions the same student may recieve different grades from different lecturers. 

Furthermore, these evaluations were carried out in a way that only the concerned 

lecturer gave a single numerical value to the student on his observations. 

Nevertheless, the student performance evaluation system was suggested as a result of 

the necessity of carrying out such evaluations through linguistic terms, which are 

more inclined to the human way of thinking, and later obtaining the numerical results 

of these evaluations. Hence, a mathematical model is suggested so as to eliminate the 

subjective cases as much as possible occurring during evaluation or, in other words, 

to create a common and unbiased evaluation process by joining the opinions of all 

lecturers and to estimate parameters. The solution of this model is provided by an 

iterative algorithm. Thanks to this model, the performance evaluations calculated 

against linguistic evaluations by using estimated parameters reflecting the evaluation 

strategy of all of the lecturers, whose knowledge and experience will be taken into 

consideration, will be the result of a common decision system and will reflect not 

only one but all decision-makers' opinion.  
 

Compared to other defuzzification methods, the superiority of the WABL method, 

used in calculations of the iterative method as a basis for the defuzzification of fuzzy 

data, or in other words, the linguistic variables, has been observed by numerical 

results. Furthermore, it has been tested and shown that the suggested iterative method 
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reaches the optimum parameter estimation in fewer steps when compared to the 

Golden Section method as the representative of classical optimization methods. 
 

The main purpose that constitutes the title of this work is to form student groups 

in parallel to different strategies. The most important information used in forming 

these student groups is the student performance evaluation results. Therefore, by 

using the performance evaluation system suggested in this work, the constitution of 

student groups automatically in parallel to different strategies will give better results 

within a shorter period of time.  

 

In conclusion, five heuristic assignment methods have been suggested concerning 

the creation of student groups in parallel to different strategies. Moreover, the 

mathematical model and algorithms for four of these methods have been provided. It 

has been observed that the results of one of the suggested assignment methods, 

balanced assignment method, gave quite effective results like the integer linear 

programming method and further provide these results within a very short period of 

time. Due to the identification of the problem, while the division of large groups into 

smaller groups sometimes cannot be carried out practically by ready integer linear 

programming software, this does not become a problem thanks to the suggested 

heuristic assignment method. 

 

Briefly, in this work, 

1. For student performance evaluation, the evaluation criteria have been 

determined and the evaluation form has been created by taking the opinions 

of the lecturers. 

2. For student performance evaluation, a fuzzy-logic-based approach and an 

iterative algorithm have been suggested. 

3. This method provides a common and unbiased evaluation mechanism for 

all students subjected to evaluation. 

4. So as to find the optimal solution, formulae have been given and optimality 

has been proven. 

5. Various defuzzification methods such as WABL (Weighted Averages 

Based on Levels), COA (Center of Area) and MOM (Mean of Maxima) 
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have been used in the defuzzification of fuzzy linguistic values and 

comparative analyses have been carried out. The result of the comparative 

analyses has shown that the WABL method used is more effective than 

other defuzzification methods. 

6. It has been proven as a result of experiments that the iterative solution 

algorithm is much more effective when compared to the Golden Section 

algorithm which is a representative of the classical optimization algorithms. 

7. The mathematical formulation of group constitution problems based on 

various strategies such as balanced random and level-based has been given 

and the heuristic solution algorithms have been suggested. 

8. The programs for the student performance evaluation and group 

constitution with various strategies algorithms have been implemented in 

the Borland C++ Builder SDK and calculations have been made. The result 

of the calculations has showed that the methods used are effective. 

 

For further studies, the improvements to the student groups formation process 

according to specific characteristics of students, for instance their approximate equal 

distribution according to their gender, their reevaluation according to the harmony 

among students, in other words, preventing students, who cannot get on well with 

each other, to get into the same group, can be studied. In addition, as a further work, 

a system can be developed in which the course success status of students are grouped 

according to their courses and which will enable them to be directed for the choice of 

profession close to the fields where they are successful.  
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APPENDICES 

 

APPENDIX A – Summary tables for the sample sizes 30, 50, 80 and 100 for each distribution according to different group numbers 
A.1 The group averages and error ratio results which are obtained from Balanced Assignment method for 30=n  and )16,50( 2N . 

30=n  3=m  4=m  5=m  6=m  ji pp minmax − 30=n  3=m  4=m  5=m  6=m  ji pp minmax −  

Min 69.20 68.25 69.00 68.17 Min 46.20 44.50 46.50 45.40 
Max 70.50 71.86 71.60 70.33 Max 47.60 49.71 47.83 49.40  1 
E.R. 0.0295 0.0820 0.0591 0.0492 

97-53=44 11 
E.R. 0.0200 0.0745 0.0190 0.0571 

79-9=70

Min 69.50 69.12 67.40 69.67 Min 48.50 46.12 47.50 46.20 
Max 70.50  71.29   71.60  70.50  Max 48.70 51.43 50.17 51.00 2 
E.R. 0.0312 0.0675 0.1312 0.0260 

86-54=32 12 
E.R. 0.0030 0.0792 0.0398 0.0716 

79-12=67

Min 68.00 66.50 67.00 68.17 Min 45.60 43.00 45.83 42.00 
Max 69.60 72.00 72.00 69.00 Max 46.90 49.71 46.83 49.20 3 
E.R. 0.0327 0.1122 0.1020 0.0170 

94-45=49 13 
E.R. 0.0183 0.0946 0.0141 0.1014 

80-9=71

Min 68.90 67.88 68.00 69.17 Min 50.90 47.62 50.33 47.60 
Max 70.10  71.71   72.00  70.67  Max 51.60 55.86 52.67 54.20 4 
E.R. 0.0261 0.0835 0.0870 0.0326 

97-51=46 14 
E.R. 0.0085 0.1004 0.0285 0.0805 

91-9=82

Min 70.30 68.50 69.60 69.17 Min 51.20 49.75 51.33 48.60 
Max 70.50  72.71   71.00  71.00  Max 53.60 57.29 54.00 58.60 5 
E.R. 0.0050 0.1054 0.0350 0.0458 

89-49=40 15 
E.R. 0.0300 0.0942 0.0333 0.1250 

100-20=80

Min 69.60 68.25 68.20 69.50 Min 45.30 42.62 44.83 43.40 
Max 70.30  72.29   71.00  70.67  Max 45.80 48.43 46.33 47.80 6 
E.R. 0.0189 0.1091 0.0757 0.0315 

87-50=37 16 
E.R. 0.0102 0.1184 0.0306 0.0898 

72-23=49

Min 64.50 63.25 63.60 64.17 Min 44.40 43.25 44.17 44.40 
Max 65.00  66.86   66.20  65.50  Max 46.60 48.71 47.50 48.40 7 
E.R. 0.0143 0.1031 0.0743 0.0381 

83-48=35 17 
E.R. 0.0361 0.0896 0.0546 0.0656 

86-25=61

Min 71.80 70.75 71.00 71.00 Min 55.60 53.00 55.67 54.20 
Max 72.80  74.86   74.60  74.17  Max 56.70 60.14 56.83 58.60 8 
E.R. 0.0217 0.0893 0.0783 0.0688 

100-54=46 18 
E.R. 0.0151 0.0978 0.0160 0.0603 

100-27=73

Min 66.60 64.75 65.80 65.83 Min 46.40 44.38 46.17 44.20 
Max 67.40  69.00   68.20  67.83  Max 48.10 50.57 48.67 50.60 9 
E.R. 0.0216 0.1149 0.0649 0.0541 

83-46=37 19 
E.R. 0.0304 0.1107 0.0446 0.1143 

79-23=56

Min 70.90 69.38 69.20 69.83 Min 51.10 48.88 50.67 47.80 
Max 71.30  72.71   73.20  72.17  Max 51.70 54.86 52.00 55.20 10 
E.R. 0.0093 0.0777 0.0930 0.0543 

97-54=43 20 
E.R. 0.0109 0.1088 0.0242 0.1345 

79-24=55
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A.2 The group averages and error ratio results which are obtained from Balanced Assignment method for 50=n  and )16,50( 2N . 

50=n  5=m  6=m  7=m  8=m  ji pp minmax − 50=n  5=m  6=m  7=m  8=m  ji pp minmax −  

Min 51.40 49.56 46.62 47.29 Min 49.00 46.33 44.25 45.43 
Max 53.70 54.88 54.43 55.33 Max 50.30 51.38 51.86 51.83  1 
E.R. 0.0306 0.0709 0.1041 0.1072 

83–8=75 11 
E.R. 0.0171 0.0663 0.1001 0.0843 

82-6=76

Min 52.10 49.00 46.25 47.00 Min 52.00 50.44 48.88 49.57 
Max 52.80 54.88 54.57 55.00 Max 53.50 53.50 54.86 54.17 2 
E.R. 0.0091 0.0763 0.1080 0.1038 

90–13=77 12 
E.R. 0.0227 0.0463 0.0906 0.0696 

91-25=66

Min 47.30 44.22 41.25 41.86 Min 47.50 45.11 42.25 44.29 
Max 47.70 49.38 50.86 50.00 Max 48.40 50.12 50.43 49.67 3 
E.R. 0.0047 0.0600 0.1117 0.0947 

90–4=86 13 
E.R. 0.0123 0.0687 0.1120 0.0737 

82-9=73

Min 52.90 50.22 48.75 49.14 Min 49.60 48.56 46.12 47.71 
Max 53.40 54.88 54.43 54.83 Max 51.50 52.38 53.29 52.50 4 
E.R. 0.0082 0.0764 0.0931 0.0933 

80–19=61 14 
E.R. 0.0284 0.0570 0.1069 0.0714 

87-20=67

Min 48.80 46.56 43.62 45.43 Min 50.90 48.89 46.00 48.71 
Max 49.70 50.62 51.14 50.67 Max 51.50 52.88 54.00 53.33 5 
E.R. 0.0130 0.0588 0.1090 0.0759 

84–15=69 15 
E.R. 0.0085 0.0561 0.1127 0.0651 

88-17=71

Min 47.55 48.00 46.62 47.00 Min 49.90 48.44 46.25 47.43 
Max 50.80 51.25 51.43 52.17 Max 50.80 52.00 52.14 52.83 6 
E.R. 0.0478 0.0478 0.0707 0.0760 

87–19=68 16 
E.R. 0.0141 0.0556 0.0921 0.0844 

83-19=64

Min 49.00 45.89 43.12 43.57 Min 52.30 50.44 49.25 49.71 
Max 50.70 52.25 52.00 53.17 Max 52.80 54.00 53.86 54.33 7 
E.R. 0.0205 0.0766 0.1070 0.1157 

83–0=83 17 
E.R. 0.0078 0.0556 0.0720 0.0722 

84-20=64

Min 48.20 46.56 43.62 46.14 Min 49.90 48.22 46.12 47.14 
Max 49.50 50.38 51.29 50.50 Max 52.00 53.00 55.71 52.83 8 
E.R. 0.0188 0.0554 0.1112 0.0632 

88–19=69 18 
E.R. 0.0256 0.0583 0.1169 0.0694 

100-18=82

Min 52.20 48.89 46.38 48.57 Min 50.70 48.67 47.25 47.29 
Max 52.50 54.00 54.57 54.33 Max 51.40 52.38 53.71 52.33 9 
E.R. 0.0036 0.0616 0.0987 0.0694 

94–11=83 19 
E.R. 0.0100 0.0530 0.0923 0.0721 

88-18=70

Min 50.30 48.56 45.38 47.43 Min 51.60 50.44 48.00 49.43 
Max 51.50 52.75 54.43 52.83 Max 52.60 53.38 54.14 53.50 10 
E.R. 0.0152 0.0530 0.1146 0.0684 

94–15=79 20 
E.R. 0.0154 0.0451 0.0945 0.0626 

88-23=65
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A.3 The group averages and error ratio results which are obtained from Balanced Assignment method for 80=n  and )16,50( 2N . 

80=n  8=m  9=m  10=m 11=m ji pp minmax − 80=n  8=m  9=m  10=m 11=m ji pp minmax −  

Min 49.20 47.89 48.88 45.62 Min 52.20 50.89 52.12 47.62 
Max 49.80 51.75 50.25 53.14 Max 53.40 56.50 53.38 56.00  1 
E.R. 0.0080 0.0514 0.0183 0.1003 

90–15=75 11 
E.R. 0.0152 0.0710 0.0158 0.1060 

88-9=79

Min 49.50 48.22 49.00 46.00 Min 49.60 48.44 49.50 45.62 
Max 50.30 52.75 50.25 51.86 Max 51.20 53.12 51.12 55.29 2 
E.R. 0.0114 0.0647 0.0178 0.0837 

84–14=70 12 
E.R. 0.0188 0.0551 0.0191 0.1137 

97-12=85

Min 50.30 48.78 50.12 45.62 Min 50.90 49.67 50.88 46.00 
Max 51.80 53.88 52.38 54.29 Max 52.10 54.62 52.00 55.57 3 
E.R. 0.0183 0.0622 0.0276 0.1057 

86–4=82 13 
E.R. 0.0136 0.0563 0.0128 0.1088 

97-9=88

Min 52.90 51.56 52.88 48.50 Min 49.20 47.33 49.12 44.25 
Max 53.70 56.75 53.75 57.14 Max 50.10 52.62 50.25 53.71 4 
E.R. 0.0098 0.0633 0.0106 0.1054 

96–14=82 14 
E.R. 0.0110 0.0645 0.0137 0.1154 

88-6=82

Min 47.50 46.11 47.50 42.75 Min 49.60 48.00 49.50 45.62 
Max 48.20 51.88 48.38 51.00 Max 50.10 52.88 50.50 53.14 5 
E.R. 0.0086 0.0712 0.0109 0.1019 

89–8=81 15 
E.R. 0.0066 0.0641 0.0132 0.0989 

88-12=76

Min 48.70 47.89 48.12 45.25 Min 48.50 48.33 48.62 46.00 
Max 49.30 52.25 49.50 51.14 Max 50.00 51.88 49.75 50.71 6 
E.R. 0.0091 0.0661 0.0209 0.0892 

80–14=66 16 
E.R. 0.0278 0.0656 0.0208 0.0873 

72-18=54

Min 49.50 47.67 49.50 46.00 Min 51.00 50.11 50.62 47.50 
Max 50.80 52.88 50.75 53.29 Max 52.10 54.00 51.62 54.86 7 
E.R. 0.0151 0.0606 0.0145 0.0848 

97–11=86 17 
E.R. 0.0147 0.0519 0.0133 0.0981 

92-17=75

Min 46.30 45.67 46.00 43.38 Min 52.10 50.44 51.75 48.75 
Max 47.20 49.38 47.62 49.71 Max 53.00 54.50 53.88 56.29 8 
E.R. 0.0138 0.0571 0.0249 0.0974 

85–20=65 18 
E.R. 0.0122 0.0548 0.0287 0.1018 

94-20=74

Min 51.80 50.89 51.88 46.88 Min 50.90 49.56 49.25 47.12 
Max 53.80 55.12 52.88 56.86 Max 52.30 54.75 53.00 53.86 9 
E.R. 0.0241 0.0510 0.0120 0.1202 

97–14=83 19 
E.R. 0.0187 0.0693 0.0500 0.0898 

84-9=75

Min 48.40 47.33 48.00 44.88 Min 49.00 47.67 48.50 44.75 
Max 49.80 50.75 51.00 52.57 Max 50.10 52.50 50.50 52.57 10 
E.R. 0.0179 0.0438 0.0385 0.0986 

97–19=78 20 
E.R. 0.0149 0.0653 0.0270 0.1057 

84-10=74
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A.4 The group averages and error ratio results which are obtained from Balanced Assignment method for 100=n  and )16,50( 2N . 

100=n  10=m 11=m  12=m 13=m ji pp minmax − 100=n  10=m 11=m 12=m 13=m ji pp minmax −  

Min 51.10 46.20 49.22 49.50 Min 47.10 42.40 44.78 44.88 
Max 52.60 54.33 53.38 57.00 Max 48.10 49.44 49.00 52.86  1 
E.R. 0.0174 0.0945 0.0484 0.0872 

100–14=86 11 
E.R. 0.0122 0.0859 0.0515 0.0973 

88-6=82

Min 52.00 48.70 49.89 50.25 Min 49.40 45.20 46.44 47.38 
Max 53.40 54.67 53.75 57.57 Max 50.40 51.44 51.38 54.86 2 
E.R. 0.0177 0.0756 0.0488 0.0926 

96–17=79 12 
E.R. 0.0119 0.0743 0.0587 0.0891 

94-10=84

Min 50.70 46.80 48.11 49.25 Min 46.30 42.50 44.22 45.00 
Max 51.90 53.33 52.62 55.71 Max 47.60 48.67 48.75 51.14 3 
E.R. 0.0150 0.0816 0.0564 0.0808 

94–14=80 13 
E.R. 0.0186 0.0881 0.0647 0.0878 

80-10=70

Min 49.80 45.30 46.67 47.50 Min 50.80 46.70 48.22 48.62 
Max 51.10 52.67 52.00 56.43 Max 53.10 53.78 53.62 56.86 4 
E.R. 0.0146 0.0828 0.0599 0.1003 

97–8=89 14 
E.R. 0.0261 0.0804 0.0614 0.0935 

94-6=88

Min 48.00 44.10 45.11 46.50 Min 51.50 47.20 48.78 49.88 
Max 49.80 50.67 51.50 53.00 Max 52.10 53.44 53.62 56.14 5 
E.R. 0.0234 0.0853 0.0830 0.0844 

81–4=77 15 
E.R. 0.0081 0.0844 0.0655 0.0847 

88-14=74

Min 51.20 48.30 49.00 50.00 Min 51.20 47.10 49.33 50.12 
Max 52.20 52.67 53.50 55.43 Max 52.90 55.22 53.75 58.86 6 
E.R. 0.0137 0.0599 0.0616 0.0744 

82–19=73 16 
E.R. 0.0195 0.0934 0.0508 0.1004 

97-10=87

Min 53.50 49.30 50.78 51.75 Min 48.50 44.40 46.00 46.62 
Max 55.50 57.44 55.88 60.86 Max 49.30 50.89 50.12 53.43 7 
E.R. 0.0235 0.0958 0.0600 0.1072 

100–15=85 17 
E.R. 0.0107 0.0865 0.0550 0.0907 

88-13=75

Min 47.30 43.60 44.78 46.00 Min 50.20 46.40 47.44 48.62 
Max 48.30 49.78 49.12 52.29 Max 51.30 51.89 52.25 54.71 8 
E.R. 0.0143 0.0883 0.0620 0.0899 

85–15=70 18 
E.R. 0.0145 0.0722 0.0632 0.0801 

87-11=76

Min 48.60 44.80 46.11 46.62 Min 47.40 43.40 44.78 45.88 
Max 51.10 51.56 52.12 54.29 Max 48.40 50.33 49.25 53.43 9 
E.R. 0.0294 0.0795 0.0707 0.0902 

85–0=85 19 
E.R. 0.0120 0.0835 0.0539 0.0910 

94-11=83

Min 50.30 44.00 46.89 47.75 Min 49.50 46.40 48.56 48.00 
Max 51.60 53.56 52.88 56.14  Max 51.40 52.11 51.12 54.71 10 
E.R. 0.0144 0.1062 0.0666 0.0932 

90–0=90 20 
E.R. 0.0271 0.0816 0.0367 0.0959 

94-24=70
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A.5 The group averages and error ratio results which are obtained from Balanced Assignment method for 30=n  and )10,70( 2N . 

30=n  3=m  4=m  5=m  6=m  ji pp minmax − 30=n  3=m  4=m  5=m  6=m  ji pp minmax −  

Min 69.20 68.25 68.17 69.00 Min 73.70 72.12 74.00 72.60 
Max 70.50 71.86 70.33 71.60 Max 74.40 76.71 74.17 76.20  1 
E.R. 0.0295 0.0820 0.0492 0.0591 

97-53=44 11 
E.R. 0.0163 0.1067 0.0039 0.0837 

93-50=43

Min 69.50 69.12 69.67 67.40 Min 70.50 69.88 70.50 70.00 
Max 70.50  71.29   70.50  71.60  Max 71.30 72.57 71.17 72.60 2 
E.R. 0.0312 0.0675 0.0260 0.1312 

86-54=32 12 
E.R. 0.0229 0.0770 0.0190 0.0743 

89-54=35

Min 68.00 66.50 68.17 67.00 Min 68.00 66.88 67.33 67.80 
Max 69.60 72.00 69.00 72.00 Max 68.50 69.71 68.67 69.00 3 
E.R. 0.0327 0.1122 0.0170 0.1020 

94-45=49 13 
E.R. 0.0156 0.0887 0.0417 0.0375 

87-55=32

Min 68.90 67.88 69.17 68.00 Min 70.00 68.50 69.83 69.80 
Max 70.10  71.71   70.67  72.00  Max 70.60 72.43 71.17 71.40 4 
E.R. 0.0261 0.0835 0.0326 0.0870 

97-51=46 14 
E.R. 0.0187 0.1228 0.0417 0.0500 

87-55=32

Min 70.30 68.50 69.17 69.60 Min 69.90 67.62 69.33 67.60 
Max 70.50  72.71   71.00  71.00  Max 70.00 73.29 70.83 72.40 5 
E.R. 0.0050 0.1054 0.0458 0.0350 

89-49=40 15 
E.R. 0.0019 0.1089 0.0288 0.0923 

94-42=52

Min 69.60 68.25 69.50 68.20 Min 68.30 66.75 68.00 66.80 
Max 70.30  72.29   70.67  71.00  Max 69.40 71.57 69.17 72.00 6 
E.R. 0.0189 0.1091 0.0315 0.0757 

87-50=37 16 
E.R. 0.0250 0.1096 0.0265 0.1182 

89-45=44

Min 64.50 63.25 64.17 63.60 Min 66.10 65.38 66.67 65.80 
Max 65.00  66.86   65.50  66.20  Max 67.40 68.00 67.17 67.60 7 
E.R. 0.0143 0.1031 0.0381 0.0743 

83-48=35 17 
E.R. 0.0351 0.0709 0.0135 0.0486 

84-47=37

Min 71.80 70.75 71.00 71.00 Min 70.30 67.88 70.00 67.80 
Max 72.80  74.86   74.17  74.60  Max 70.50 73.29 70.83 73.20 8 
E.R. 0.0217 0.0893 0.0688 0.0783 

100-54=46 18 
E.R. 0.0036 0.0984 0.0152 0.0982 

97-42=55

Min 66.60 64.75 65.83 65.80 Min 67.70 65.75 67.00 64.60 
Max 67.40  69.00   67.83  68.20  Max 68.00 70.57 68.17 70.80 9 
E.R. 0.0216 0.1149 0.0541 0.0649 

83-46=37 19 
E.R. 0.0062 0.1004 0.0243 0.1292 

93-45=48

Min 70.90 69.38 69.83 69.20 Min 69.40 68.12 69.17 67.80 
Max 71.30  72.71   72.17  73.20  Max 70.10 71.29 70.67 71.00 10 
E.R. 0.0093 0.0777 0.0543 0.0930 

97-54=43 20 
E.R. 0.0194 0.0878 0.0417 0.0889 

86-50=36
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A.6 The group averages and error ratio results which are obtained from Balanced Assignment method for 50=n  and )10,70( 2N . 

50=n  5=m  6=m  7=m  8=m  ji pp minmax − 50=n  5=m  6=m  7=m  8=m  ji pp minmax −  

Min 69.60 68.22 67.12 67.29 Min 70.90 69.00 67.12 68.43 
Max 70.10  71.00   70.86  71.17  Max 71.40 72.00 73.71 72.00  1 
E.R. 0.0135 0.0751 0.1009 0.1049 

86-49=37 11 
E.R. 0.0098 0.0588 0.1292 0.0700 

97-46=51

Min 71.30 70.78 68.75 70.29 Min 71.60 71.00 69.12 70.29 
Max 72.30  73.00   73.57  73.00  Max 72.10 72.12 74.00 72.50 2 
E.R. 0.0270 0.0601 0.1303 0.0734 

91-54=37 12 
E.R. 0.0119 0.0268 0.1161 0.0527 

97-55=42

Min 69.80   69.22 67.88 68.57 Min 68.27 69.00 68.50 68.57 
Max 70.30  70.88 71.57  70.83  Max 72.20 72.38 73.29 72.67 3 
E.R. 0.0125 0.0413 0.0924 0.0565 

93-53=40 13 
E.R. 0.0818 0.0703 0.0997 0.0853 

94-43=51

Min 70.50 69.44 66.50 68.86 Min 69.50 68.56 66.12 67.86 
Max 71.00  71.88   73.14  72.33  Max 70.10 70.50 72.00 70.67 4 
E.R. 0.0102 0.0496 0.1356 0.0709 

96-47=49 14 
E.R. 0.0128 0.0414 0.1250 0.0598 

94-47=47

Min 68.20 67.56 66.50 67.29 Min 69.30 68.11 68.00 67.71 
Max 68.80  69.38   69.86  69.33  Max 70.10 70.38 70.57 70.83 5 
E.R. 0.0167 0.0505 0.0933 0.0569 

89-53=36 15 
E.R. 0.0205 0.0580 0.0659 0.0800 

93-54=39

Min 71.20 69.11 67.62 68.43 Min 67.40 65.33 64.62 64.43 
Max 71.60  72.62   73.43  72.67  Max 68.20 68.50 70.43 68.83 6 
E.R. 0.0083 0.0732 0.1209 0.0883 

94-46=48 16 
E.R. 0.0154 0.0609 0.1116 0.0847 

98-46=52

Min 70.10 70.22 68.50 70.00 Min 68.80 67.22 65.12 66.43 
Max 71.60  71.33   72.71  71.17  Max 69.40 70.25 71.14 70.33 7 
E.R. 0.0319 0.0236 0.0897 0.0248 

100-53=47 17 
E.R. 0.0140 0.0704 0.1400 0.0908 

89-46=43

Min 70.10 68.22 66.88 68.00 Min 69.20 68.33 67.12 67.43 
Max 70.80  71.75   72.00  71.67  Max 70.50 70.75 70.86 71.00 8 
E.R. 0.0140 0.0706 0.1025 0.0733 

96-46=50 18 
E.R. 0.0342 0.0636 0.0982 0.0940 

86-48=38

Min 68.30 66.78 64.88 66.71 Min 69.40 68.33 67.25 67.57 
Max 68.90  69.62   70.86  69.83  Max 70.60 70.75 72.00 70.83 9 
E.R. 0.0136 0.0647 0.1360 0.0709 

89-45=44 19 
E.R. 0.0293 0.0589 0.1159 0.0796 

94-53=41

Min 69.30 68.00 66.38 67.57 Min 70.70 69.44 68.12 68.71 
Max 69.70  70.38   71.43  70.50  Max 71.30 72.00 71.71 72.17 10 
E.R. 0.0085 0.0505 0.1075 0.0623 

96-49=47 20 
E.R. 0.0146 0.0623 0.0875 0.0842 

89-48=41
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A.7 The group averages and error ratio results which are obtained from Balanced Assignment method for 80=n  and )10,70( 2N . 

80=n  8=m  9=m  10=m 11=m ji pp minmax − 80=n  8=m  9=m  10=m 11=m ji pp minmax −  

Min 70.10 69.22 70.00 67.00 Min 69.20 68.44 68.88 66.38 
Max 71.00 72.12 71.25 73.43 Max 70.10 71.88 70.25 71.71  1 
E.R. 0.0167 0.0538 0.0231 0.1190 

100-46=54 11 
E.R. 0.0187 0.0715 0.0286 0.1112 

84-42=42

Min 69.60 68.33 69.38 66.62 Min 70.00 69.33 69.50 67.50 
Max 70.20 71.50 70.12 72.86 Max 71.00 72.12 70.88 73.00 2 
E.R. 0.0113 0.0597 0.0142 0.1176 

96-43=53 12 
E.R. 0.0185 0.0517 0.0255 0.1019 

100-46=54

Min 70.40 69.22 70.38 67.88 Min 70.40 70.00 70.38 68.62 
Max 70.90 72.00 71.00 72.71 Max 71.30 72.25 71.62 72.71 3 
E.R. 0.0100 0.0556 0.0125 0.0968 

96-46=50 13 
E.R. 0.0214 0.0536 0.0298 0.0974 

94-52=42

Min 70.50 70.56 70.75 68.62 Min 68.50 67.78 68.50 66.25 
Max 71.70 72.62 71.38 73.57 Max 69.70 70.62 69.75 71.57 4 
E.R. 0.0293 0.0505 0.0152 0.1206 

93-52=41 14 
E.R. 0.0245 0.0581 0.0255 0.1086 

97-48=49

Min 71.70 70.67 71.38 69.00 Min 70.70 70.11 70.75 68.38 
Max 72.40 74.00 72.38 74.29 Max 71.50 73.25 71.38 73.57 5 
E.R. 0.0146 0.0694 0.0208 0.1101 

94-46=48 15 
E.R. 0.0174 0.0682 0.0136 0.1130 

93-47=46

Min 71.10 70.11 71.38 68.62 Min 69.90 68.33 69.88 66.75 
Max 72.70 73.12 72.75 74.14 Max 71.10 71.75 71.25 72.86 6 
E.R. 0.0314 0.0591 0.0270 0.1082 

97-46=51 16 
E.R. 0.0214 0.0610 0.0246 0.1091 

98-42=56

Min 68.20 67.67 67.88 66.75 Min 70.30 68.89 70.00 67.88 
Max 69.60 69.88 69.62 71.00 Max 70.80 71.88 71.00 72.57 7 
E.R. 0.0318 0.0502 0.0398 0.0966 

94-50=44 17 
E.R. 0.0106 0.0635 0.0213 0.0999 

93-46=47

Min 70.10 69.67 70.25 67.75 Min 69.40 69.00 69.75 67.62 
Max 71.00 72.25 70.88 73.00 Max 70.50 71.88 70.38 71.57 8 
E.R. 0.0173 0.0497 0.0120 0.1010 

98-46=52 18 
E.R. 0.0250 0.0653 0.0142 0.0897 

90-46=44

Min 69.20 68.89 69.00 67.12 Min 70.60 69.56 70.75 68.00 
Max 69.80 71.25 69.88 71.14 Max 71.80 72.88 71.75 73.57 9 
E.R. 0.0158 0.0621 0.0230 0.1057 

86-48=38 19 
E.R. 0.0231 0.0638 0.0192 0.1071 

98-46=52

Min 71.30 69.67 71.25 68.50 Min 69.00 67.78 68.88 66.62 
Max 71.90 73.00 72.00 73.71 Max 69.80 70.33 70.00 71.57 10 
E.R. 0.0109 0.0606 0.0136 0.0948 

98-43=55 20 
E.R. 0.0160 0.0511 0.0225 0.0989 

97-47=50
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A.8 The group averages and error ratio results which are obtained from Balanced Assignment method for 100=n  and )10,70( 2N . 

100=n  10=m 11=m  12=m 13=m ji pp minmax − 100=n  10=m 11=m 12=m 13=m ji pp minmax −  

Min 68.30 66.30 66.67 67.25 Min 71.00 67.80 69.33 69.62 
Max 68.80 69.11 69.50 71.14 Max 72.00 72.78 72.62 74.71  1 
E.R. 0.0114 0.0639 0.0644 0.0885 

90-46=44 11 
E.R. 0.0200 0.0996 0.0658 0.1018 

93-43=50

Min 71.90 68.20 70.11 70.38 Min 69.80 66.90 69.22 68.50 
Max 72.40 74.00 73.25 74.86 Max 71.20 72.44 71.38 73.57 2 
E.R. 0.0091 0.1055 0.0571 0.0815 

100-45=55 12 
E.R. 0.0255 0.1008 0.0391 0.0922 

100-45=55

Min 69.70 66.70 67.44 67.88 Min 69.30 66.70 67.89 68.25 
Max 70.30 71.67 70.75 73.71 Max 70.00 70.78 70.62 72.71 3 
E.R. 0.0103 0.0856 0.0570 0.1007 

100-42=58 13 
E.R. 0.0146 0.0850 0.0570 0.0930 

94-46=48

Min 69.80 66.80 68.22 68.50 Min 68.70 65.70 67.11 67.75 
Max 70.60 72.22 71.25 74.00 Max 69.60 70.89 70.50 73.00 4 
E.R. 0.0145 0.0986 0.0551 0.1000 

98-43=55 14 
E.R. 0.0167 0.0961 0.0628 0.0972 

96-42=54

Min 69.00 66.70 67.22 68.00 Min 68.30 66.50 67.44 67.62 
Max 69.80 70.33 70.50 72.14 Max 69.80 70.56 69.50 72.43 5 
E.R. 0.0178 0.0807 0.0728 0.0921 

90-45=45 15 
E.R. 0.0312 0.0845 0.0428 0.1001 

98-50=48

Min 70.10 67.70 68.56 68.75 Min 70.40 67.70 68.78 69.25 
Max 70.80 71.89 71.12 73.57 Max 71.00 71.67 71.62 72.57 6 
E.R. 0.0135 0.0806 0.0494 0.0927 

100-48=52 16 
E.R. 0.0143 0.0944 0.0678 0.0791 

90-48=42

Min 69.80 67.20 68.11 68.75 Min 70.70 68.50 69.00 69.50 
Max 70.30 71.22 71.12 72.57 Max 71.10 72.11 71.88 74.57 7 
E.R. 0.0114 0.0914 0.0685 0.0869 

90-46=44 17 
E.R. 0.0082 0.0737 0.0587 0.1035 

97-48=49

Min 67.80 64.90 65.89 66.50 Min 70.60 68.30 69.11 69.75 
Max 68.30 69.22 69.00 70.86 Max 71.20 72.22 72.00 74.00 8 
E.R. 0.0098 0.0847 0.0610 0.0854 

93-42=51 18 
E.R. 0.0122 0.0800 0.0590 0.0867 

94-45=49

Min 69.70 67.00 68.44 68.38 Min 70.50 68.10 69.00 69.25 
Max 71.10 71.78 71.38 74.29 Max 71.00 72.33 71.62 74.14 9 
E.R. 0.0255 0.0869 0.0533 0.1075 

100-45=55 19 
E.R. 0.0100 0.0847 0.0525 0.0979 

98-48=50

Min 69.90 67.20 68.22 68.88 Min 71.30 69.00 69.78 70.38 
Max 70.80 72.11 71.50 73.86 Max 72.10 72.89 72.25 74.29 10 
E.R. 0.0180 0.0982 0.0656 0.0996 

96-46=50 20 
E.R. 0.0178 0.0864 0.0549 0.0869 

96-51=45

 
 83



 

  

A.9 The group averages and error ratio results which are obtained from Balanced Assignment method for 30=n  and )3,14(Gamma . 

30=n  3=m  4=m  5=m  6=m  ji pp minmax − 30=n  3=m  4=m  5=m  6=m  ji pp minmax −  

Min 38.40 37.25 38.00 37.80 Min 42.70 41.25 42.33 41.60 
Max 39.50 41.29 40.50 41.20 Max 44.00 46.00 44.33 46.40  1 
E.R. 0.0268 0.0984 0.0610 0.0829 

64-23=41 11 
E.R. 0.0236 0.0864 0.0364 0.0873 

80-25=55

Min 39.90 38.75 39.50 39.20 Min 42.30 41.62 42.17 41.20 
Max 40.60 41.71 40.83 41.20 Max 43.10 43.57 43.00 43.40 2 
E.R. 0.0200 0.0847 0.0381 0.0571 

58-23=35 12 
E.R. 0.0182 0.0442 0.0189 0.0500 

68-24=44

Min 41.60 40.25 41.33 40.60 Min 37.20 36.38 37.17 36.20 
Max 42.70 44.86 43.50 44.80 Max 37.50 38.14 37.50 38.20 3 
E.R. 0.0208 0.0869 0.0409 0.0792 

73-20=53 13 
E.R. 0.0107 0.0631 0.0119 0.0714 

52-24=28

Min 41.40 40.00 41.33 40.00 Min 36.70 36.00 36.17 35.00 
Max 42.10 44.00 42.17 44.20 Max 37.30 37.86 37.33 38.60 4 
E.R. 0.0189 0.1081 0.0225 0.1135 

61-24=37 14 
E.R. 0.0167 0.0516 0.0324 0.1000 

54-18=36

Min 42.60 40.88 42.67 41.40 Min 43.60 41.62 43.00 41.80 
Max 43.00 45.14 43.17 44.60 Max 45.60 48.29 47.17 49.40 5 
E.R. 0.0100 0.1067 0.0125 0.0800 

64-24=40 15 
E.R. 0.0333 0.1110 0.0694 0.1267 

83-23=60

Min 40.80 39.25 40.17 39.00 Min 39.10 38.00 39.00 38.40 
Max 41.90 44.43 43.17 44.80 Max 39.50 40.71 39.67 40.20 6 
E.R. 0.0220 0.1036 0.0600 0.1160 

72-22=50 16 
E.R. 0.0111 0.0754 0.0185 0.0500 

58-22=36

Min 40.60 38.75 40.33 37.40 Min 42.20 41.00 42.00 39.60 
Max 41.70 43.86 41.67 43.80 Max 43.00 44.29 42.83 44.80 7 
E.R. 0.0212 0.0982 0.0256 0.1231 

69-17=52 17 
E.R. 0.0170 0.0699 0.0177 0.1106 

69-22=47

Min 43.10 42.50 42.67 42.80 Min 38.40 37.38 37.83 36.60 
Max 44.40 45.14 44.83 44.80 Max 39.20 40.14 39.17 40.20 8 
E.R. 0.0342 0.0695 0.0570 0.0526 

68-30=38 18 
E.R. 0.0186 0.0644 0.0310 0.0837 

61-18=43

Min 42.20 40.88 42.17 41.00 Min 42.80 40.50 42.67 41.80 
Max 43.00 44.29 43.17 43.40 Max 43.80 46.57 43.67 45.80 9 
E.R. 0.0258 0.1100 0.0323 0.0774 

54-23=31 19 
E.R. 0.0179 0.1084 0.0179 0.0714 

74-18=56

Min 46.40 44.75 45.83 44.80 Min 42.80 41.12 42.50 42.60 
Max 48.70 51.71 50.50 52.60 Max 43.90 46.43 44.67 45.20 10 
E.R. 0.0338 0.1024 0.0686 0.1147 

92-24=68 20 
E.R. 0.0216 0.1040 0.0425 0.0510 

72-22=50
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A.10 The group averages and error ratio results which are obtained from Balanced Assignment method for 50=n  and )3,14(Gamma . 

50=n  5=m  6=m  7=m  8=m  ji pp minmax − 50=n  5=m  6=m  7=m  8=m  ji pp minmax −  

Min 40.30 38.67 37.50 37.86 Min 38.80 38.56 37.25 37.71 
Max 41.20 41.38 43.29 41.67 Max 39.30 39.62 40.43 39.83  1 
E.R. 0.0184 0.0553 0.1181 0.0777 

68-19=49 11 
E.R. 0.0139 0.0297 0.0883 0.0589 

61-25=36

Min 40.50 39.11 37.62 38.71 Min 43.00 41.67 39.38 41.00 
Max 42.00 41.67 44.43 41.71 Max 43.50 44.12 44.86 44.33 2 
E.R. 0.0246 0.0419 0.1115 0.0492 

82-21=61 12 
E.R. 0.0106 0.0523 0.1166 0.0709 

65-18=47

Min 43.90 43.11 42.75 42.86 Min 40.00 39.89 36.75 40.00 
Max 45.80 45.50 46.29 46.00 Max 41.70 41.25 44.00 41.50 3 
E.R. 0.0373 0.0468 0.0693 0.0616 

77-26=51 13 
E.R. 0.0262 0.0209 0.1115 0.0231 

83-18=65

Min 41.30 40.22 38.25 39.14 Min 40.70 39.78 38.38 39.29 
Max 41.90 42.38 43.14 42.67 Max 41.90 42.00 43.71 42.00 4 
E.R. 0.0109 0.0391 0.0890 0.0641 

73-18=55 14 
E.R. 0.0200 0.0370 0.0890 0.0452 

82-22=60

Min 41.00 40.11 38.00 40.14 Min 44.40 43.22 42.00 42.29 
Max 42.60 42.38 44.57 42.67 Max 45.40 45.62 46.14 46.00 5 
E.R. 0.0296 0.0419 0.1217 0.0467 

75-21=54 15 
E.R. 0.0227 0.0546 0.0942 0.0844 

68-24=44

Min 42.00 40.89 38.62 40.43 Min 40.90 39.56 37.62 38.71 
Max 42.50 43.50 44.29 43.17 Max 41.80 42.25 44.14 42.17 6 
E.R. 0.0096 0.0502 0.1089 0.0527 

71-19=52 16 
E.R. 0.0158 0.0473 0.1143 0.0606 

74-17=57

Min 44.90 44.00 43.12 44.00 Min 39.10 38.33 37.12 37.14 
Max 45.40 46.12 45.86 46.17 Max 40.80 41.25 41.57 41.67 7 
E.R. 0.0152 0.0644 0.0828 0.0657 

63-30=33 17 
E.R. 0.0386 0.0663 0.1011 0.1028 

61-17=44

Min 36.60 36.22 34.62 36.00 Min 42.50 42.11 39.12 41.43 
Max 38.80 37.78 40.57 38.29 Max 44.10 43.75 46.71 44.17 8 
E.R. 0.0415 0.0294 0.1122 0.0431 

75-22=53 18 
E.R. 0.0242 0.0248 0.1150 0.0415 

83-17=66

Min 40.20 39.11 36.75 38.57 Min 40.40 39.78 37.88 39.14 
Max 41.90 41.38 43.86 41.50 Max 42.40 42.50 44.29 42.50 9 
E.R. 0.0293 0.0390 0.1225 0.0505 

77-19=58 19 
E.R. 0.0317 0.0432 0.1018 0.0533 

80-17=63

Min 43.90 42.67 41.50 42.57 Min 42.20 41.89 39.88 42.00 
Max 44.20 44.75 45.57 45.17 Max 43.60 43.62 45.43 44.00 10 
E.R. 0.0064 0.0443 0.0866 0.0552 

71-24=47 20 
E.R. 0.0269 0.0334 0.1068 0.0385 

75-23=52
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A.11 The group averages and error ratio results which are obtained from Balanced Assignment method for 80=n  and )3,14(Gamma . 

80=n  8=m  9=m  10=m 11=m ji pp minmax − 80=n  8=m  9=m  10=m 11=m ji pp minmax −  

Min 42.30 41.56 42.00 39.88 Min 42.90 42.22 43.00 40.62 
Max 43.30 44.38 43.62 45.14 Max 44.70 45.78 45.12 46.86  1 
E.R. 0.0182 0.0513 0.0295 0.0958 

74-19=55 11 
E.R. 0.0281 0.0556 0.0332 0.0974 

83-19=64

Min 41.10 40.22 41.00 38.75 Min 40.00 39.44 40.12 38.12 
Max 42.70 43.22 43.00 44.43 Max 41.10 42.22 41.62 43.57 2 
E.R. 0.0291 0.0545 0.0364 0.1032 

75-20=55 12 
E.R. 0.0212 0.0534 0.0288 0.1047 

71-19=52

Min 41.40 40.89 41.12 38.88 Min 40.40 39.44 40.38 37.88 
Max 42.80 44.00 42.88 44.86 Max 42.70 43.67 42.88 44.57 3 
E.R. 0.0255 0.0566 0.0318 0.1088 

73-18=55 13 
E.R. 0.0354 0.0650 0.0385 0.1030 

83-18=65

Min 42.40 42.22 42.75 40.88 Min 40.20 39.67 40.25 37.88 
Max 44.20 44.62 44.00 45.57 Max 42.50 42.78 42.62 44.86 4 
E.R. 0.0346 0.0462 0.0240 0.0903 

75-23=52 14 
E.R. 0.0411 0.0556 0.0424 0.1247 

77-21=56

Min 41.40 41.22 41.75 38.75 Min 41.40 40.78 41.50 39.12 
Max 43.80 44.38 44.00 46.00 Max 42.10 43.62 42.12 43.43 5 
E.R. 0.0369 0.0485 0.0346 0.1115 

83-18=65 15 
E.R. 0.0159 0.0647 0.0142 0.0978 

63-19=44

Min 40.80 40.78 41.12 39.50 Min 43.40 42.67 43.00 40.62 
Max 41.70 42.62 41.50 42.71 Max 46.10 46.33 47.25 48.71 6 
E.R. 0.0243 0.0499 0.0101 0.0869 

62-25=37 16 
E.R. 0.0391 0.0531 0.0616 0.1172 

92-23=69

Min 45.60 44.11 45.88 42.75 Min 40.60 40.22 40.62 37.88 
Max 46.50 47.75 46.25 48.29 Max 43.00 43.56 43.62 45.86 7 
E.R. 0.0155 0.0627 0.0065 0.0954 

75-17=58 17 
E.R. 0.0375 0.0521 0.0469 0.1247 

83-19=64

Min 41.10 40.11 41.00 38.62 Min 40.70 40.00 40.75 38.25 
Max 43.80 44.78 44.62 47.14 Max 41.50 42.62 41.50 43.00 8 
E.R. 0.0360 0.0622 0.0483 0.1136 

92-17=75 18 
E.R. 0.0186 0.0610 0.0174 0.1105 

61-18=43

Min 41.40 40.78 41.50 39.50 Min 41.20 40.56 41.12 39.00 
Max 42.80 43.50 42.50 44.71 Max 41.70 43.12 41.88 43.71 9 
E.R. 0.0269 0.0524 0.0192 0.1003 

73-21=52 19 
E.R. 0.0102 0.0524 0.0153 0.0962 

68-19=49

Min 41.40 40.78 41.25 39.12 Min 41.60 41.00 41.25 39.25 
Max 42.40 43.12 42.38 44.14 Max 42.30 43.25 43.25 44.43 10 
E.R. 0.0192 0.0451 0.0216 0.0965 

73-21=52 20 
E.R. 0.0143 0.0459 0.0408 0.1057 

72-23=49
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A.12 The group averages and error ratio results which are obtained from Balanced Assignment method for 100=n  and )3,14(Gamma . 

100=n  10=m 11=m  12=m 13=m ji pp minmax − 100=n  10=m 11=m 12=m 13=m ji pp minmax −  

Min 41.50 38.60 40.89 40.75 Min 41.50 39.20 39.78 40.38 
Max 44.30 45.56 43.56 47.71 Max 41.80 42.67 42.62 44.57  1 
E.R. 0.0394 0.0980 0.0376 0.0981 

92-21=71 11 
E.R. 0.0065 0.0754 0.0619 0.0912 

64-18=46

Min 41.20 38.80 39.56 40.38 Min 42.10 39.90 40.89 41.12 
Max 43.20 44.56 42.50 46.29 Max 42.70 43.89 43.12 45.57 2 
E.R. 0.0317 0.0914 0.0467 0.0938 

82-19=63 12 
E.R. 0.0120 0.0798 0.0447 0.0889 

72-22=50

Min 41.60 38.80 39.78 40.25 Min 42.00 39.40 41.56 41.12 
Max 42.60 44.22 42.62 45.86 Max 43.60 44.89 43.62 46.57 3 
E.R. 0.0169 0.0919 0.0483 0.0950 

77-18=59 13 
E.R. 0.0254 0.0871 0.0328 0.0865 

82-19=63

Min 42.60 39.70 41.89 41.50 Min 42.60 40.10 41.00 41.75 
Max 44.00 45.33 44.50 47.57 Max 44.30 45.67 44.00 47.71 4 
E.R. 0.0219 0.0880 0.0408 0.0949 

82-18=64 14 
E.R. 0.0283 0.0928 0.0500 0.0994 

80-20=60

Min 43.30 41.10 42.56 42.25 Min 42.40 39.30 40.67 41.12 
Max 45.00 46.00 44.75 47.57 Max 44.10 45.89 43.50 47.71 5 
E.R. 0.0288 0.0831 0.0372 0.0902 

83-24=59 15 
E.R. 0.0262 0.1014 0.0436 0.1014 

82-17=65

Min 40.20 38.40 40.11 39.38 Min 39.70 37.50 38.00 38.50 
Max 41.80 42.44 42.50 44.29 Max 40.50 41.44 41.12 42.71 6 
E.R. 0.0286 0.0722 0.0427 0.0877 

77-21=56 16 
E.R. 0.0174 0.0857 0.0679 0.0916 

63-17=46

Min 40.60 38.40 39.22 39.75 Min 42.30 40.00 40.78 41.25 
Max 41.10 41.67 41.88 43.14 Max 44.10 45.56 43.50 47.43 7 
E.R. 0.0116 0.0760 0.0617 0.0789 

63-20=43 17 
E.R. 0.0295 0.0911 0.0446 0.1013 

82-21=61

Min 39.40 37.30 38.22 38.38 Min 40.18 38.30 40.00 40.12 
Max 41.50 42.33 40.56 44.43 Max 42.10 44.00 42.38 45.71 8 
E.R. 0.0339 0.0812 0.0376 0.0976 

83-21=62 18 
E.R. 0.0309 0.0919 0.0383 0.0901 

80-18=62

Min 39.00 36.60 37.67 37.38 Min 41.30 38.90 40.56 40.00 
Max 39.40 40.44 39.62 41.57 Max 42.80 44.33 43.12 47.00 9 
E.R. 0.0085 0.0818 0.0417 0.0893 

65-18=47 19 
E.R. 0.0231 0.0836 0.0395 0.1077 

82-17=65

Min 42.40 40.00 41.44 41.50 Min 41.80 39.70 40.89 41.00 
Max 44.90 46.00 44.22 48.71 Max 43.80 44.44 43.25 47.00 10 
E.R. 0.0352 0.0845 0.0391 0.1016 

92-21=71 20 
E.R. 0.0339 0.0804 0.0400 0.1017 

82-23=59
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APPENDIX B – Borland C++ Builder 6.0 Code for Optimal Weights Evaluation 

 
//------------------------------------------------------------------ 
#include <vcl.h> 
#include <stdio.h> 
#include <conio.h> 
#include <math.h> 
#pragma hdrstop 
#include "OED_GS.h" 
#include "Unit2_GS.h" 
#include "Unit3_GS.h" 
int n1,h,z,p,k,k1,k3,i,i1,j,j1,ogrno,MAXOGR,y; 
double 
xx,yyy,x,yy,X,XX[200],Y,v,t,pot,mem[200],po[200],R[200][5],R1[200][5],R2[200][5],G[20
0][200],GI[200][200],e[200],et[200]; 
double 
A[200],c[200],w[200],d[200],f[200],g[200],fg,o[200],Z[200],GIT,tahmin[200],beta; 
double Duru(int a,int b,int c,int d,double beta); 
double Duru1(int a,int b,int c,int d); 
double Duru2(int a,int b,int c,int d); 
char s1[20],s[100]; 
bool dosya=false; 
double nbeta0,nbeta1,pay1,pay2,pay3,pay4,payda1,payda2; 
double eb=0.0,ek=1000000.0,son=0.0; 
#define m 5 
#define n 100 
#define qq 10 
//------------------------------------------------------------------ 
#pragma package(smart_init) 
#pragma link "CSPIN" 
#pragma resource "*.dfm" 
TForm1 *Form1; 
//------------------------------------------------------------------ 
__fastcall TForm1::TForm1(TComponent* Owner) 
        : TForm(Owner) 
{ 
DecimalSeparator='.'; 
} 
//------------------------------------------------------------------ 
void __fastcall TForm1::Button1Click(TObject *Sender) 
{ 
FILE *ff=fopen("c:\\RRR.txt","a"); 
if(!dosya) 
  { 
  MAXOGR=Edit1->Text.ToInt(); 
  ogrno=CSpinEdit1->Value; 
  A[ogrno]=Edit3->Text.ToDouble(); 
  fprintf(ff,"%d %6.2f %d %d %d %d %d\n",ogrno,A[ogrno], 
   RadioGroup1->ItemIndex, 
   RadioGroup2->ItemIndex, 
   RadioGroup3->ItemIndex, 
   RadioGroup4->ItemIndex, 
   RadioGroup5->ItemIndex); 
  fclose(ff); 
  } 
dosya=false; 
{ 
switch(RadioGroup1->ItemIndex) 
        { 
        case 0: R[ogrno][0]=Duru(0,0,10,50,beta); 
               R1[ogrno][0]=Duru1(0,0,10,50); 
               R2[ogrno][0]=Duru2(0,0,10,50);break; 
        case 1: R[ogrno][0]=Duru(10,50,50,90,beta); 
               R1[ogrno][0]=Duru1(10,50,50,90); 
               R2[ogrno][0]=Duru2(10,50,50,90);break; 
        case 2: R[ogrno][0]=Duru(50,90,100,100,beta); 
               R1[ogrno][0]=Duru1(50,90,100,100); 
               R2[ogrno][0]=Duru2(50,90,100,100);break; 
        } 
switch(RadioGroup2->ItemIndex) 
        { 
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        case 0: R[ogrno][1]=Duru(0,0,10,50,beta); 
               R1[ogrno][1]=Duru1(0,0,10,50); 
               R2[ogrno][1]=Duru2(0,0,10,50);break; 
        case 1: R[ogrno][1]=Duru(10,50,50,90,beta); 
               R1[ogrno][1]=Duru1(10,50,50,90); 
               R2[ogrno][1]=Duru2(10,50,50,90);break; 
        case 2: R[ogrno][1]=Duru(50,90,100,100,beta); 
               R1[ogrno][1]=Duru1(50,90,100,100); 
               R2[ogrno][1]=Duru2(50,90,100,100);break; 
        } 
switch(RadioGroup3->ItemIndex) 
        { 
        case 0: R[ogrno][2]=Duru(0,0,10,30,beta); 
               R1[ogrno][2]=Duru1(0,0,10,30); 
               R2[ogrno][2]=Duru2(0,0,10,30);break; 
        case 1: R[ogrno][2]=Duru(10,30,30,50,beta); 
               R1[ogrno][2]=Duru1(10,30,30,50); 
               R2[ogrno][2]=Duru2(10,30,30,50);break; 
        case 2: R[ogrno][2]=Duru(30,50,50,70,beta); 
               R1[ogrno][2]=Duru1(30,50,50,70); 
               R2[ogrno][2]=Duru2(30,50,50,70);break; 
        case 3: R[ogrno][2]=Duru(50,70,70,90,beta); 
               R1[ogrno][2]=Duru1(50,70,70,90); 
               R2[ogrno][2]=Duru2(50,70,70,90);break; 
        case 4: R[ogrno][2]=Duru(70,90,100,100,beta); 
               R1[ogrno][2]=Duru1(70,90,100,100); 
               R2[ogrno][2]=Duru2(70,90,100,100);break; 
        } 
switch(RadioGroup4->ItemIndex) 
        { 
        case 0: R[ogrno][3]=Duru(0,0,10,30,beta); 
               R1[ogrno][3]=Duru1(0,0,10,30); 
               R2[ogrno][3]=Duru2(0,0,10,30);break; 
        case 1: R[ogrno][3]=Duru(10,30,30,50,beta); 
               R1[ogrno][3]=Duru1(10,30,30,50); 
               R2[ogrno][3]=Duru2(10,30,30,50);break; 
        case 2: R[ogrno][3]=Duru(30,50,50,70,beta); 
               R1[ogrno][3]=Duru1(30,50,50,70); 
               R2[ogrno][3]=Duru2(30,50,50,70);break; 
        case 3: R[ogrno][3]=Duru(50,70,70,90,beta); 
               R1[ogrno][3]=Duru1(50,70,70,90); 
               R2[ogrno][3]=Duru2(50,70,70,90);break; 
        case 4: R[ogrno][3]=Duru(70,90,100,100,beta); 
               R1[ogrno][3]=Duru1(70,90,100,100); 
               R2[ogrno][3]=Duru2(70,90,100,100);break; 
        } 
switch(RadioGroup5->ItemIndex) 
        { 
        case 0: R[ogrno][4]=Duru(0,0,10,30,beta); 
               R1[ogrno][4]=Duru1(0,0,10,30); 
               R2[ogrno][4]=Duru2(0,0,10,30);break; 
        case 1: R[ogrno][4]=Duru(10,30,30,50,beta); 
               R1[ogrno][4]=Duru1(10,30,30,50); 
               R2[ogrno][4]=Duru2(10,30,30,50);break; 
        case 2: R[ogrno][4]=Duru(30,50,50,70,beta); 
               R1[ogrno][4]=Duru1(30,50,50,70); 
               R2[ogrno][4]=Duru2(30,50,50,70);break; 
        case 3: R[ogrno][4]=Duru(50,70,70,90,beta); 
               R1[ogrno][4]=Duru1(50,70,70,90); 
               R2[ogrno][4]=Duru2(50,70,70,90);break; 
        case 4: R[ogrno][4]=Duru(70,90,100,100,beta); 
               R1[ogrno][4]=Duru1(70,90,100,100); 
               R2[ogrno][4]=Duru2(70,90,100,100);break; 
        } 
} 
} 
//------------------------------------------------------------------ 
double Duru(int a,int b,int c,int d,double beta) 
{ 
double Sonuc1; 
beta=Form1->Edit2->Text.ToDouble(); 
Sonuc1=beta*(d-((qq+1.0)/(qq+2.0))*(d-c))+(1-beta)*(a+((qq+1.0)/(qq+2.0))*(b-a)); 
return Sonuc1; 
} 
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//------------------------------------------------------------------ 
double Duru1(int a,int b,int c,int d) 
{ 
double Sonuc2; 
Sonuc2=(d-((qq+1.0)/(qq+2.0))*(d-c)); 
return Sonuc2; 
} 
//------------------------------------------------------------------ 
double Duru2(int a,int b,int c,int d) 
{ 
double Sonuc3; 
Sonuc3=(a+((qq+1.0)/(qq+2.0))*(b-a)); 
return Sonuc3; 
} 
//------------------------------------------------------------------ 
void __fastcall TForm1::Button3Click(TObject *Sender) 
{ 
MAXOGR=Edit1->Text.ToInt(); 
Memo1->Lines->Clear(); 
beta=Form1->Edit2->Text.ToDouble(); 
{ 
sprintf(s,"Beta=%.4lf ------------------------",beta); 
Memo1->Lines->Add(s); 
for(i=0;i<MAXOGR;i++) 
  { 
  char s1[20],s[100]; 
  strcpy(s,""); 
  for(j=0;j<5;j++) 
    { 
    sprintf(s1,"%6.2lf ",R[i][j]); 
    strcat(s,s1); 
    } 
    sprintf(s1,"%7.2lf ",A[i]); 
    strcat(s,s1); 
    Memo1->Lines->Add(s); 
  } 
  Memo1->Lines->Add(""); 
} 
} 
//------------------------------------------------------------------ 
void __fastcall TForm1::Button4Click(TObject *Sender) 
{ 
Memo1->Lines->SaveToFile("c:\\RRRMemolines.txt"); 
} 
//------------------------------------------------------------------ 
void __fastcall TForm1::Button2Click(TObject *Sender) 
{ 
int ki=0; 
int flag=0; 
 
Memo1->Lines->Clear(); 
 
l1: 
beta=Form1->Edit2->Text.ToDouble(); 
nbeta1=beta; 
do 
{ 
Button6->Click(); 
sprintf(s,"==============="); 
Memo1->Lines->Add(s); 
sprintf(s," %d. ITERATION",++ki); 
Memo1->Lines->Add(s); 
sprintf(s,"==============="); 
Memo1->Lines->Add(s); 
nbeta0=nbeta1; 
XX[ki]=nbeta0; 
sprintf(s,"BETA = %.4lf ",nbeta0); 
Memo1->Lines->Add(s); 
 
char s[100],s1[100]; 
double e[m]= {1.0,1.0,1.0,1.0,1.0}; 
 
for(i=0;i<m;i++) 
  { 



91 

  

  G[i][j]=0.0; 
  for(j=0;j<m;j++) 
      { 
      for(p=0;p<n;p++) 
      G[i][j]=G[i][j]+R[p][i]*R[p][j]; 
      } 
  } 
 
for(i=0;i<m;i++) 
  { 
  et[i]=e[i]; 
  } 
 
for(i=0;i<m;i++) 
  { 
  for(j=0;j<m;j++) 
      { 
      GI[i][j]=G[i][j]; 
      } 
  } 
 
h=m*2; 
n1=m; 
 
for(i=0;i<m;i++) 
  { 
  for(j=n1;j<h;j++) 
      { 
      j1=j-i; 
      if(j1-m<0) GI[i][j]=0; 
      if(j1-m==0) GI[i][j]=1; 
      } 
  } 
 
for(k=0;k<m;k++) 
  { 
  k1=k; 
  k3=k+m; 
 
  uc: 
  if(GI[k][k]!=0) goto bir; 
  i1=k; 
 
  if(GI[i1][k]!=0) goto iki; 
 
goto uc; 
 
bir: 
  for(j=0;j<h;j++) 
  GI[k][j]=GI[k][j]+GI[i1][j]; 
 
iki: 
  for(j=0;j<h;j++) 
  GI[k+m][j]=GI[k][j]/GI[k][k]; 
 
    for(i=k1;i<k3;i++) 
      { 
      t=GI[i][k]; 
      for(j=0;j<h;j++) 
      GI[i][j]=GI[i][j]-GI[k+m][j]*t; 
      } 
  } 
 
for(i=0;i<m;i++) 
  { 
  for(j=0;j<m;j++) 
      { 
      GI[i][j]=GI[i+m][j+m]; 
      } 
  } 
for(i=0;i<m;i++)               
  { 
  d[i]=0.0; 
  for(p=0;p<m;p++) 
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  d[i]=d[i]+GI[i][p]*e[p]; 
  } 
 
for(j=0;j<m;j++)          
  { 
  f[j]=0.0; 
  for(p=0;p<m;p++) 
  f[j]=f[j]+et[p]*GI[p][j]; 
  } 
 
for(i=0;i<m;i++)         
  { 
  g[i]=0.0; 
  for(p=0;p<n;p++) 
  g[i]=g[i]+R[p][i]*A[p]; 
  } 
 
for(i=0;i<1;i++)         
  { 
  fg=0.0; 
  for(p=0;p<m;p++) 
  fg=fg+f[p]*g[p]; 
  } 
 
v=1.0-fg;           
 
for(i=0;i<m;i++) 
  { 
  o[i]=0.0; 
  o[i]=o[i]+d[i]*v; 
  } 
 
GIT=0.0;                     
for(i=0;i<m;i++) 
  { 
  for(j=0;j<m;j++) 
  GIT=GIT+GI[i][j]; 
  } 
 
for(j=0;j<m;j++)                 
  Z[j]=1.0*o[j]/GIT; 
 
for(j=0;j<m;j++)                 
  { 
  c[j]=0.0; 
  for(p=0;p<m;p++) 
  c[j]=c[j]+GI[j][p]*g[p]; 
  } 
 
for(j=0;j<m;j++)          
  { 
  w[j]=Z[j]+c[j]; 
  } 
Memo1->Lines->Add(""); 
sprintf(s,"----w[j]----"); 
Memo1->Lines->Add(s); 
for(j=0;j<m;j++) 
  { 
  sprintf(s,"   %1.5f",w[j]); 
  Memo1->Lines->Add(s); 
  } 
 
for(i=0;i<n;i++)               
  { 
  tahmin[i]=0.0; 
  for(p=0;p<n;p++) 
  tahmin[i]=tahmin[i]+R[i][p]*w[p]; 
  } 
 
for(i=0;i<n;i++) 
  po[i]=pow(A[i]-tahmin[i],2); 
 
sprintf(s,""); 
Memo1->Lines->Add(s); 
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pot=0.0; 
for(i=0;i<n;i++) pot+=po[i]; mem[ki]=pot; 
sprintf(s,"SSE= %.4lf",pot); 
Memo1->Lines->Add(s); 
 
pay4=0.0; 
payda2=0.0; 
 
for(i=0;i<n;i++) 
  { 
  payda1=pay1=pay2=pay3=0.0; 
  for(j=0;j<m;j++) 
  pay1=pay1+(R2[i][j]*w[j]); 
  pay2=pay1-A[i]; 
  for(j=0;j<m;j++) 
  pay3=pay3+w[j]*(R1[i][j]-R2[i][j]); 
  pay4=pay4+pay2*pay3; 
  for(j=0;j<m;j++) 
  payda1=payda1+w[j]*(R1[i][j]-R2[i][j]); 
  payda2=payda2+pow(payda1,2); 
  } 
 
nbeta1=-1.0*pay4/payda2; 
Memo1->Lines->Add(""); 
 
{ 
Form1->Edit2->Text=nbeta1; 
Form2->Edit2->Text=nbeta1; 
} 
Form2->Edit4->Text=w[0]; 
Form2->Edit5->Text=w[1]; 
Form2->Edit6->Text=w[2]; 
Form2->Edit7->Text=w[3]; 
Form2->Edit8->Text=w[4]; 
 
for(i=0;i<m;i++) 
for(j=0;j<m*2;j++) 
G[i][j]=0.0; 
Memo1->Lines->Add(""); 
} 
 
while((flag==0) && (fabs(nbeta0-nbeta1)>0.000001)); 
if(flag==0){ 
  if(nbeta1<0.0) nbeta1=0.0; 
  if(nbeta1>1.0) nbeta1=1.0; 
  Form1->Edit2->Text=nbeta1; 
  Form2->Edit2->Text=nbeta1; 
  flag=1; goto l1; 
} 
Form1->Edit2->Text=nbeta0; 
Form2->Edit2->Text=nbeta0; 
} 
//------------------------------------------------------------------ 
void __fastcall TForm1::Button5Click(TObject *Sender) 
{ 
FILE *ff=fopen("c:\\RRR.txt","w"); 
fclose(ff); 
} 
//------------------------------------------------------------------ 
void __fastcall TForm1::Button6Click(TObject *Sender) 
{ 
FILE *ff=fopen("c:\\RRR.txt","r"); 
int k=0,k1,k2,k3,k4,k5; 
while(!feof(ff)){ 
  fscanf(ff,"%d",&ogrno); 
  fscanf(ff,"%lf %d %d %d %d %d",&A[ogrno],&k1,&k2,&k3,&k4,&k5); 
  RadioGroup1->ItemIndex=k1; 
  RadioGroup2->ItemIndex=k2; 
  RadioGroup3->ItemIndex=k3; 
  RadioGroup4->ItemIndex=k4; 
  RadioGroup5->ItemIndex=k5; 
  k++; 
  dosya=true; 
  Button1->Click(); 
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} 
fclose(ff); 
Edit1->Text=k; 
MAXOGR=k; 
} 
//------------------------------------------------------------------ 
void __fastcall TForm1::FormCreate(TObject *Sender) 
{ 
dosya=false; 
} 
//------------------------------------------------------------------ 
void __fastcall TForm1::Button7Click(TObject *Sender) 
{ 
FILE *ff=fopen("c:\\RRRresult.txt","w"); 
if(!dosya){ 
  fprintf(ff,"%2.5f %2.5f %2.5f %2.5f %2.5f %2.5f",nbeta1,w[0],w[1],w[2],w[3],w[4]); 
  fclose(ff); 
} 
dosya=false; 
} 
//------------------------------------------------------------------ 
void __fastcall TForm1::Button8Click(TObject *Sender) 
{ 
Form2->Show(); 
} 
//------------------------------------------------------------------ 
void __fastcall TForm1::Button9Click(TObject *Sender) 
{ 
Form3->Show(); 
} 
//------------------------------------------------------------------ 
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Golden Section Unit 
//------------------------------------------------------------------ 
#include <vcl.h> 
#include <stdio.h> 
#include <conio.h> 
#include <math.h> 
#pragma hdrstop 
#include "OED_GS.h" 
#include "Unit2_GS.h" 
int n1,h,z,p,k,k1,k3,i2,i1,j2,j1,ogrno,MAXOGR1,y; 
double x,yy,X,Y,v,t,pot,po[100],R3[100][5],G[100][100],GI[100][100],e[100],et[100]; 
double 
A1[100],c[100],w[100],d[100],f[100],g[100],fg,o[100],Z[100],GIT,tahmin[100],beta; 
double Duru(int a,int b,int c,int d,double beta); 
char s1[20],s[100]; 
bool dosya=false; 
double nbeta0,nbeta1,pay1,pay2,pay3,pay4,payda1,payda2; 
AnsiString NAME[100]; 
#define m 5 
#define qq 10 
//------------------------------------------------------------------ 
#pragma package(smart_init) 
#pragma link "CSPIN" 
#pragma resource "*.dfm" 
TForm2 *Form2; 
//------------------------------------------------------------------ 
__fastcall TForm2::TForm2(TComponent* Owner) 
        : TForm(Owner) 
{ 
} 
//------------------------------------------------------------------ 
void __fastcall TForm2::Button1Click(TObject *Sender) 
{ 
w[0]=Form2->Edit4->Text.ToDouble(); 
w[1]=Form2->Edit5->Text.ToDouble(); 
w[2]=Form2->Edit6->Text.ToDouble(); 
w[3]=Form2->Edit7->Text.ToDouble(); 
w[4]=Form2->Edit8->Text.ToDouble(); 
MAXOGR1=Form2->Edit1->Text.ToInt(); 
 
FILE *ff=fopen("c:\\RRR1.txt","a"); 
if(!dosya) 
{ 
  ogrno=Form2->CSpinEdit1->Value; 
  fprintf(ff,"%d %d %d %d %d %d %5s\n",ogrno, 
   RadioGroup1->ItemIndex, 
   RadioGroup2->ItemIndex, 
   RadioGroup3->ItemIndex, 
   RadioGroup4->ItemIndex, 
   RadioGroup5->ItemIndex, 
   NAME[ogrno]=Edit9->Text); 
  fclose(ff); 
} 
dosya=false; 
{ 
switch(RadioGroup1->ItemIndex) 
        { 
        case 0: R3[ogrno][0]=Duru(0,0,10,50,beta);break; 
        case 1: R3[ogrno][0]=Duru(10,50,50,90,beta);break; 
        case 2: R3[ogrno][0]=Duru(50,90,100,100,beta);break; 
        } 
switch(RadioGroup2->ItemIndex) 
        { 
        case 0: R3[ogrno][1]=Duru(0,0,10,50,beta);break; 
        case 1: R3[ogrno][1]=Duru(10,50,50,90,beta);break; 
        case 2: R3[ogrno][1]=Duru(50,90,100,100,beta);break; 
        } 
switch(RadioGroup3->ItemIndex) 
        { 
        case 0: R3[ogrno][2]=Duru(0,0,10,30,beta);break; 
        case 1: R3[ogrno][2]=Duru(10,30,30,50,beta);break; 
        case 2: R3[ogrno][2]=Duru(30,50,50,70,beta);break; 
        case 3: R3[ogrno][2]=Duru(50,70,70,90,beta);break; 
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        case 4: R3[ogrno][2]=Duru(70,90,100,100,beta);break; 
        } 
switch(RadioGroup4->ItemIndex) 
        { 
        case 0: R3[ogrno][3]=Duru(0,0,10,30,beta);break; 
        case 1: R3[ogrno][3]=Duru(10,30,30,50,beta);break; 
        case 2: R3[ogrno][3]=Duru(30,50,50,70,beta);break; 
        case 3: R3[ogrno][3]=Duru(50,70,70,90,beta);break; 
        case 4: R3[ogrno][3]=Duru(70,90,100,100,beta);break; 
        } 
switch(RadioGroup5->ItemIndex) 
        { 
        case 0: R3[ogrno][4]=Duru(0,0,10,30,beta);break; 
        case 1: R3[ogrno][4]=Duru(10,30,30,50,beta);break; 
        case 2: R3[ogrno][4]=Duru(30,50,50,70,beta);break; 
        case 3: R3[ogrno][4]=Duru(50,70,70,90,beta);break; 
        case 4: R3[ogrno][4]=Duru(70,90,100,100,beta);break; 
        } 
} 
 
for(i2=0;i2<MAXOGR1;i2++) 
  { 
  A1[i2]=0.0; 
  for(j2=0;j2<m;j2++) 
  A1[i2]=A1[i2]+R3[i2][j2]*w[j2]; 
  } 
if (A1[ogrno]<0.0) 
A1[ogrno]=0.0; 
if(A1[ogrno]>100.0) 
A1[ogrno]=100.0; 
Form2->Edit3->Text=A1[ogrno]; 
} 
//------------------------------------------------------------------ 
double Duru(int a,int b,int c,int d,double beta) 
{ 
double Sonuc1; 
beta=Form2->Edit2->Text.ToDouble(); 
Sonuc1=beta*(d-((qq+1.0)/(qq+2.0))*(d-c))+(1-beta)*(a+((qq+1.0)/(qq+2.0))*(b-a)); 
return Sonuc1; 
} 
//------------------------------------------------------------------ 
void __fastcall TForm2::Button3Click(TObject *Sender) 
{ 
MAXOGR1=Form2->Edit1->Text.ToInt(); 
Memo1->Lines->Clear(); 
beta=Form2->Edit2->Text.ToDouble(); 
 
sprintf(s,"      NAME-SURNAME       GRADE"); 
Memo1->Lines->Add(s); 
sprintf(s,"==============================="); 
Memo1->Lines->Add(s); 
 
 
for(i2=0;i2<MAXOGR1;i2++) 
  { 
  char s1[20],s[100]; 
  strcpy(s,""); 
    { 
    sprintf(s1,"%19s   %7.0f",NAME[i2],A1[i2]); 
    strcat(s,s1); 
    } 
    Memo1->Lines->Add(s); 
  } 
  Memo1->Lines->Add(""); 
} 
//------------------------------------------------------------------ 
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Grade Evaluation Unit 
//------------------------------------------------------------------ 
#include <vcl.h> 
#include <stdio.h> 
#include <conio.h> 
#include <math.h> 
#pragma hdrstop 
#include "Unit3_GS.h" 
int n1,h,z,p,k,k1,k3,i,i1,j,j1,ogrno,MAXOGR; 
double 
a1,b1,v,t,pot,mem[100],po[100],R[100][5],R1[100][5],G[100][100],GI[100][100],e[100],e
t[100]; 
double 
A[100],c[100],w[100],d[100],f[100],g[100],fg,o[100],Z[100],GIT,tahmin[100],beta; 
double nbeta0,nbeta1,beta1,beta2; 
double Duru2(int a,int b,int c,int d,double beta1); 
double Duru1(int a,int b,int c,int d,double beta2); 
char s1[20],s[100]; 
bool dosya=false; 
double v1,t1,pot1,mem1[100],po1[100],G1[100][100],GI1[100][100],e1[100],et1[100]; 
double c1[100],w1[100],d1[100],f1[100],g1[100],fg1,o1[100],Z1[100],GIT1,tahmin1[100]; 
#define m 5 
#define n 100 
#define qq 10 
//------------------------------------------------------------------ 
#pragma package(smart_init) 
#pragma link "CSPIN" 
#pragma resource "*.dfm" 
TForm3 *Form3; 
//------------------------------------------------------------------ 
__fastcall TForm3::TForm3(TComponent* Owner) 
        : TForm(Owner) 
{ 
} 
//------------------------------------------------------------------ 
void __fastcall TForm3::Button1Click(TObject *Sender) 
{ 
FILE *ff=fopen("c:\\RRR.txt","a"); 
if(!dosya) 
{ 
  MAXOGR=Edit1->Text.ToInt(); 
  ogrno=CSpinEdit1->Value; 
  A[ogrno]=Edit3->Text.ToDouble(); 
  fprintf(ff,"%d %6.2lf %d %d %d %d %d\n",ogrno,A[ogrno], 
   RadioGroup1->ItemIndex, 
   RadioGroup2->ItemIndex, 
   RadioGroup3->ItemIndex, 
   RadioGroup4->ItemIndex, 
   RadioGroup5->ItemIndex); 
  fclose(ff); 
} 
dosya=false; 
{ 
switch(RadioGroup1->ItemIndex) 
        { 
        case 0: R[ogrno][0]=Duru2(0,0,10,50,beta1); 
               R1[ogrno][0]=Duru1(0,0,10,50,beta2);break; 
        case 1: R[ogrno][0]=Duru2(10,50,50,90,beta1); 
               R1[ogrno][0]=Duru1(10,50,50,90,beta2);break; 
        case 2: R[ogrno][0]=Duru2(50,90,100,100,beta1); 
               R1[ogrno][0]=Duru1(50,90,100,100,beta2);break; 
        } 
switch(RadioGroup2->ItemIndex) 
        { 
        case 0: R[ogrno][1]=Duru2(0,0,10,50,beta1); 
               R1[ogrno][1]=Duru1(0,0,10,50,beta2);break; 
        case 1: R[ogrno][1]=Duru2(10,50,50,90,beta1); 
               R1[ogrno][1]=Duru1(10,50,50,90,beta2);break; 
        case 2: R[ogrno][1]=Duru2(50,90,100,100,beta1); 
               R1[ogrno][1]=Duru1(50,90,100,100,beta2);break; 
        } 
switch(RadioGroup3->ItemIndex) 
        { 
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        case 0: R[ogrno][2]=Duru2(0,0,10,30,beta1); 
               R1[ogrno][2]=Duru1(0,0,10,30,beta2);break; 
        case 1: R[ogrno][2]=Duru2(10,30,30,50,beta1); 
               R1[ogrno][2]=Duru1(10,30,30,50,beta2);break; 
        case 2: R[ogrno][2]=Duru2(30,50,50,70,beta1); 
               R1[ogrno][2]=Duru1(30,50,50,70,beta2);break; 
        case 3: R[ogrno][2]=Duru2(50,70,70,90,beta1); 
               R1[ogrno][2]=Duru1(50,70,70,90,beta2);break; 
        case 4: R[ogrno][2]=Duru2(70,90,100,100,beta1); 
               R1[ogrno][2]=Duru1(70,90,100,100,beta2);break; 
        } 
switch(RadioGroup4->ItemIndex) 
        { 
        case 0: R[ogrno][3]=Duru2(0,0,10,30,beta1); 
               R1[ogrno][3]=Duru1(0,0,10,30,beta2);break; 
        case 1: R[ogrno][3]=Duru2(10,30,30,50,beta1); 
               R1[ogrno][3]=Duru1(10,30,30,50,beta2);break; 
        case 2: R[ogrno][3]=Duru2(30,50,50,70,beta1); 
               R1[ogrno][3]=Duru1(30,50,50,70,beta2);break; 
        case 3: R[ogrno][3]=Duru2(50,70,70,90,beta1); 
               R1[ogrno][3]=Duru1(50,70,70,90,beta2);break; 
        case 4: R[ogrno][3]=Duru2(70,90,100,100,beta1); 
               R1[ogrno][3]=Duru1(70,90,100,100,beta2);break; 
        } 
switch(RadioGroup5->ItemIndex) 
        { 
        case 0: R[ogrno][4]=Duru2(0,0,10,30,beta1); 
               R1[ogrno][4]=Duru1(0,0,10,30,beta2);break; 
        case 1: R[ogrno][4]=Duru2(10,30,30,50,beta1); 
               R1[ogrno][4]=Duru1(10,30,30,50,beta2);break; 
        case 2: R[ogrno][4]=Duru2(30,50,50,70,beta1); 
               R1[ogrno][4]=Duru1(30,50,50,70,beta2);break; 
        case 3: R[ogrno][4]=Duru2(50,70,70,90,beta1); 
               R1[ogrno][4]=Duru1(50,70,70,90,beta2);break; 
        case 4: R[ogrno][4]=Duru2(70,90,100,100,beta1); 
               R1[ogrno][4]=Duru1(70,90,100,100,beta2);break; 
        } 
} 
} 
//------------------------------------------------------------------ 
double Duru2(int a,int b,int c,int d,double beta1) 
{ 
double Sonuc1; 
beta1=Form3->Edit2->Text.ToDouble(); 
Sonuc1=beta1*(d-((qq+1.0)/(qq+2.0))*(d-c))+(1-beta1)*(a+((qq+1.0)/(qq+2.0))*(b-a)); 
return Sonuc1; 
} 
//------------------------------------------------------------------ 
double Duru1(int a,int b,int c,int d,double beta2) 
{ 
double Sonuc2; 
beta2=Form3->Edit4->Text.ToDouble(); 
Sonuc2=beta2*(d-((qq+1.0)/(qq+2.0))*(d-c))+(1-beta2)*(a+((qq+1.0)/(qq+2.0))*(b-a)); 
return Sonuc2; 
} 
//------------------------------------------------------------------ 
void __fastcall TForm3::Button6Click(TObject *Sender) 
{ 
FILE *ff=fopen("c:\\RRR.txt","r"); 
int k=0,k1,k2,k3,k4,k5; 
while(!feof(ff)) 
{ 
  fscanf(ff,"%d",&ogrno); 
  fscanf(ff,"%lf %d %d %d %d %d",&A[ogrno],&k1,&k2,&k3,&k4,&k5); 
  RadioGroup1->ItemIndex=k1; 
  RadioGroup2->ItemIndex=k2; 
  RadioGroup3->ItemIndex=k3; 
  RadioGroup4->ItemIndex=k4; 
  RadioGroup5->ItemIndex=k5; 
  k++; 
  dosya=true; 
  Button1->Click(); 
} 
fclose(ff); 
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Edit1->Text=k; 
MAXOGR=k; 
} 
//------------------------------------------------------------------ 
void __fastcall TForm3::FormCreate(TObject *Sender) 
{ 
dosya=false; 
} 
//------------------------------------------------------------------ 
void __fastcall TForm3::Button9Click(TObject *Sender) 
{ 
Memo1->Lines->Clear(); 
sprintf(s,"Golden Section Solution:"); 
Memo1->Lines->Add(s); 
sprintf(s,"================================================================"); 
Memo1->Lines->Add(s); 
sprintf(s,"Iter.   a         b       lamda       mu       SSE1      SSE2"); 
Memo1->Lines->Add(s); 
sprintf(s,"================================================================"); 
Memo1->Lines->Add(s); 
double a2=0.0,b2=1.0; 
int ki=1; 
char s[100],s1[100]; 
beta1=a2+0.382*fabs(b2-a2); 
beta2=a2+0.618*fabs(b2-a2); 
 
do 
{ 
double e[m]= {1.0,1.0,1.0,1.0,1.0}; 
 
for(i=0;i<m;i++)                          
  { 
  G[i][j]=0.0; 
  for(j=0;j<m;j++) 
      { 
      for(p=0;p<n;p++) 
      G[i][j]=G[i][j]+R[p][i]*R[p][j]; 
      } 
  } 
 
for(i=0;i<m;i++) 
  et[i]=e[i]; 
 
for(i=0;i<m;i++) 
  { 
  for(j=0;j<m;j++) 
      { 
      GI[i][j]=G[i][j]; 
      } 
  } 
 
h=m*2; 
n1=m; 
 
for(i=0;i<m;i++) 
  { 
  for(j=n1;j<h;j++) 
      { 
      j1=j-i; 
      if(j1-m<0) GI[i][j]=0; 
      if(j1-m==0) GI[i][j]=1; 
      } 
  } 
 
for(k=0;k<m;k++) 
  { 
  k1=k; 
  k3=k+m; 
 
  uc: 
  if(GI[k][k]!=0) goto bir; 
  i1=k; 
 
  if(GI[i1][k]!=0) goto iki; 
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goto uc; 
 
bir: 
  for(j=0;j<h;j++) 
  GI[k][j]=GI[k][j]+GI[i1][j]; 
 
iki: 
  for(j=0;j<h;j++) 
  GI[k+m][j]=GI[k][j]/GI[k][k]; 
 
    for(i=k1;i<k3;i++) 
      { 
      t=GI[i][k]; 
      for(j=0;j<h;j++) 
      GI[i][j]=GI[i][j]-GI[k+m][j]*t; 
      } 
  } 
 
for(i=0;i<m;i++) 
  { 
  for(j=0;j<m;j++) 
      { 
      GI[i][j]=GI[i+m][j+m]; 
      } 
  } 
 
for(i=0;i<m;i++)              
  { 
  d[i]=0.0; 
  for(p=0;p<m;p++) 
  d[i]=d[i]+GI[i][p]*e[p]; 
  } 
 
for(j=0;j<m;j++)          
  { 
  f[j]=0.0; 
  for(p=0;p<m;p++) 
  f[j]=f[j]+et[p]*GI[p][j]; 
  } 
 
for(i=0;i<m;i++)   
  { 
  g[i]=0.0; 
  for(p=0;p<n;p++) 
  g[i]=g[i]+R[p][i]*A[p]; 
  } 
 
for(i=0;i<1;i++)        
  { 
  fg=0.0; 
  for(p=0;p<m;p++) 
  fg=fg+f[p]*g[p]; 
  } 
 
v=1.0-fg;           
 
for(i=0;i<m;i++) 
  { 
  o[i]=0.0; 
  o[i]=o[i]+d[i]*v; 
  } 
 
GIT=0.0;                    
for(i=0;i<m;i++) 
  { 
  for(j=0;j<m;j++) 
  GIT=GIT+GI[i][j]; 
  } 
 
for(j=0;j<m;j++)                 
  Z[j]=1.0*o[j]/GIT; 
 
 
for(j=0;j<m;j++)                 
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  { 
  c[j]=0.0; 
  for(p=0;p<m;p++) 
  c[j]=c[j]+GI[j][p]*g[p]; 
  } 
 
for(j=0;j<m;j++)          
  { 
  w[j]=Z[j]+c[j]; 
  } 
 
for(i=0;i<n;i++)               
  { 
  tahmin[i]=0.0; 
  for(p=0;p<n;p++) 
  tahmin[i]=tahmin[i]+R[i][p]*w[p]; 
  } 
 
for(i=0;i<n;i++) 
  { 
  po[i]=pow(tahmin[i]-A[i],2); 
  } 
 
pot=0.0; 
for(i=0;i<n;i++) pot+=po[i]; mem[ki]=pot; 
 
double e1[m]= {1.0,1.0,1.0,1.0,1.0}; 
 
for(i=0;i<m;i++)                          
  { 
  G1[i][j]=0.0; 
  for(j=0;j<m;j++) 
      { 
      for(p=0;p<n;p++) 
      G1[i][j]=G1[i][j]+R1[p][i]*R1[p][j]; 
      } 
  } 
 
for(i=0;i<m;i++) 
  et1[i]=e1[i]; 
 
for(i=0;i<m;i++) 
  { 
  for(j=0;j<m;j++) 
      { 
      GI1[i][j]=G1[i][j]; 
      } 
  } 
 
h=m*2; 
n1=m; 
 
for(i=0;i<m;i++) 
  { 
  for(j=n1;j<h;j++) 
      { 
      j1=j-i; 
      if(j1-m<0) GI1[i][j]=0; 
      if(j1-m==0) GI1[i][j]=1; 
      } 
  } 
 
for(k=0;k<m;k++) 
  { 
  k1=k; 
  k3=k+m; 
 
  alti: 
  if(GI1[k][k]!=0) goto dort; 
  i1=k; 
 
  if(GI1[i1][k]!=0) goto bes; 
 
goto alti; 
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dort: 
  for(j=0;j<h;j++) 
  GI1[k][j]=GI1[k][j]+GI1[i1][j]; 
 
bes: 
  for(j=0;j<h;j++) 
  GI1[k+m][j]=GI1[k][j]/GI1[k][k]; 
 
    for(i=k1;i<k3;i++) 
      { 
      t1=GI1[i][k]; 
      for(j=0;j<h;j++) 
      GI1[i][j]=GI1[i][j]-GI1[k+m][j]*t1; 
      } 
  } 
 
for(i=0;i<m;i++) 
  { 
  for(j=0;j<m;j++) 
      { 
      GI1[i][j]=GI1[i+m][j+m]; 
      } 
  } 
 
for(i=0;i<m;i++)               
  { 
  d1[i]=0.0; 
  for(p=0;p<m;p++) 
  d1[i]=d1[i]+GI1[i][p]*e1[p]; 
  } 
 
for(j=0;j<m;j++)          
  { 
  f1[j]=0.0; 
  for(p=0;p<m;p++) 
  f1[j]=f1[j]+et1[p]*GI1[p][j]; 
  } 
 
for(i=0;i<m;i++)         
  { 
  g1[i]=0.0; 
  for(p=0;p<n;p++) 
  g1[i]=g1[i]+R1[p][i]*A[p]; 
  } 
 
for(i=0;i<1;i++)         
  { 
  fg1=0.0; 
  for(p=0;p<m;p++) 
  fg1=fg1+f1[p]*g1[p]; 
  } 
 
v1=1.0-fg1;           
 
for(i=0;i<m;i++) 
  { 
  o1[i]=0.0; 
  o1[i]=o1[i]+d1[i]*v1; 
  } 
 
GIT1=0.0;                     
for(i=0;i<m;i++) 
  { 
  for(j=0;j<m;j++) 
  GIT1=GIT1+GI1[i][j]; 
  } 
 
for(j=0;j<m;j++)                 
  Z1[j]=1.0*o1[j]/GIT1; 
 
for(j=0;j<m;j++)                 
  { 
  c1[j]=0.0; 
  for(p=0;p<m;p++) 
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  c1[j]=c1[j]+GI1[j][p]*g1[p]; 
  } 
 
 
for(j=0;j<m;j++)          
  { 
  w1[j]=Z1[j]+c1[j]; 
  } 
 
for(i=0;i<n;i++)               
  { 
  tahmin1[i]=0.0; 
  for(p=0;p<n;p++) 
  tahmin1[i]=tahmin1[i]+R1[i][p]*w1[p]; 
  } 
 
for(i=0;i<n;i++) 
  { 
  po1[i]=pow(tahmin1[i]-A[i],2); 
  } 
 
pot1=0.0; 
for(i=0;i<n;i++) pot1+=po1[i]; mem1[ki]=pot1; 
 
 
for(i=0;i<m;i++) 
  for(j=0;j<m*2;j++) 
  { 
  G[i][j]=0.0; 
  G1[i][j]=0.0; 
  } 
/**************************GOLDEN SECTION***********************/ 
 
sprintf(s,"%2d  %8.4lf  %8.4lf  %8.4lf  %8.4lf  %8.4lf  
%8.4lf",ki,a2,b2,beta1,beta2,mem[ki],mem1[ki]); 
Memo1->Lines->Add(s); 
 
  if(mem[ki]>mem1[ki]) 
       a2=beta1; 
  else b2=beta2; 
 
beta1=a2+0.382*fabs(b2-a2); 
beta2=a2+0.618*fabs(b2-a2); 
 
Form3->Edit2->Text=beta1; 
Form3->Edit4->Text=beta2; 
beta1=Form3->Edit2->Text.ToDouble(); 
beta2=Form3->Edit4->Text.ToDouble(); 
 
mem[ki]=mem1[ki]=0.0; 
ki++; 
Button6->Click(); 
} 
while(fabs(b2-a2)>0.000001); 
sprintf(s,"================================================================"); 
Memo1->Lines->Add(s); 
sprintf(s,"Uncertainty interval of function is [%5.4lf,%5.4lf].",a2,b2); 
Memo1->Lines->Add(s); 
sprintf(s,"Interval midpoint is %5.4lf.",0.5*(a2+b2)); 
Memo1->Lines->Add(s); 
} 
//------------------------------------------------------------------ 
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APPENDIX C – Borland C++ Builder 6.0 Code for Group Constitution 

 
//------------------------------------------------------------------ 
#include <vcl.h> 
#include <stdio.h> 
#include <conio.h> 
#include <math.h> 
#include <stdlib.h> 
#include "Unit1.h" 
#include "Unit2.h" 
#define MAX(a,b) (((a)>(b))?(a):(b)) 
#pragma hdrstop 
int h=0,k=0,i,j,ogrno,MAXOGR,GROUPNO,a,b,c,d,e,f,x=0,xx=0,y=0,yy=0,g; 
double k1,k2,k3,k4,k5,top[4][4],ort[4][4],ort1[4],SORT[4],SORT1[25][25][4],hkt[4][4], 
po[200][200],var[4][4],A[100][4],A1[4][100][4],A2[4][100][4]; 
double RA[100],RAM[25][100][4],DA[4][100],DAM[25][25][4],DAMtop[25],DAMort[25], 
SA[4][100],SAM[25][100][4],DAM1[25][100][4],SAM1[25][100][4]; 
double DAMstdev[25],DAMHKT[25]; 
char s1[20],s[100]; 
int t=0,m=0,l=0,p=0; 
AnsiString AD[61]={ 
"Arda Can CANÇALAR","Samet ŞENOL","Murat UĞURLU","Bahadır AĞCA","Serdar 
ÇORLULUOĞLU","Dinçer GÖKSÜLÜK","Serdar KUZU","A.Gökhan KÜÇÜKKATİPOĞLU","İ.Çağlar 
PALAVAR","B. Kenan TELCİ","Sevil AKKAŞ","Sertaç AKSAKAL","Kenan ALIR","Esra 
ALTINER","Tuğba ASLAN","H.Resul ÇAĞLAYAN","Selim ÇAM","Beyhan ÇOBAN","Hakan 
EKİZ","Elif EMREM","Tamer EROL","Caner HATİPOĞLU","Gizem KAYA","Gökhan KAYMAK", 
"Ender KILIÇ","Özgür KORKMAZ","Murat MANSUROĞLU","Sinem NALBANT","Cemile 
ÖZDEMİR","Emre ÖZKUL","Ufuk SÖNMEZ","Onur SUBAŞI","Caner SUNGUR","Alper ŞAHİN","Aydın 
ŞANAL","Simge TORTOP","Onur TÜYSÜZOĞLU","Belma YIKILMAZ","Eylül YILDIRIM","Merve 
AKDEDE","Ufuk AKTAŞ","Servet ARSLAN","Erkan ASLANEL","Emel ÇİNKAYA","Alev 
DOĞAN","Onur ELALMAZ","Başak ERDUR","Denizhan GÖNEN","İlknur GÜMÜŞBAŞ","Fatih 
GÜRSOY","Sırma KAYITKEN","Raşit KORUMAZ","Can Ceki LEVİ","Ayşegül ÖNER","Şeyda 
SOFUOĞLU","Fatma SOĞANLI","Esra SOYLU","Şeyma TEKİN","Ümit TÜNALP","Seher 
VATANSEVER","Gülçin YANAR"}; 
//------------------------------------------------------------------ 
#pragma package(smart_init) 
#pragma resource "*.dfm" 
TForm1 *Form1; 
//------------------------------------------------------------------ 
__fastcall TForm1::TForm1(TComponent* Owner) 
        : TForm(Owner) 
{ 
DecimalSeparator='.'; 
} 
//------------------------------------------------------------------ 
void __fastcall TForm1::Button1Click(TObject *Sender) 
{ 
int k=0; 
t=0;m=0;l=0;p=0; 
int x=0,xx=0,y=0,yy=0; 
top[0][0]=top[1][0]=top[2][0]=top[3][0]=0; 
hkt[0][0]=hkt[1][0]=hkt[2][0]=hkt[3][0]=0; 
Form1->Memo1->Lines->Clear(); 
Form1->Memo2->Lines->Clear(); 
Form1->Memo3->Lines->Clear(); 
Form1->Memo4->Lines->Clear(); 
Form2->Memo1->Lines->Clear(); 
 
 
FILE *ff=fopen("c:\\clusters.txt","r"); 
while(!feof(ff)){ 
  fscanf(ff,"%lf %lf %lf %lf",&k1,&k2,&k3,&k4); 
  A[k][0]=k1; 
  A[k][1]=k2; 
  A[k][2]=k3; 
  A[k][3]=k4; 
  k++; 
} 
fclose(ff); 
Edit1->Text=k; 
MAXOGR=k; 
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for(k=0;k<MAXOGR;k++) 
   { 
   if(A[k][1]==0)      {t++;A1[0][x][0]=A2[0][x][0]=A[k][0]; 
A1[0][x][1]=A2[0][x][1]=A[k][1]; A1[0][x][2]=A2[0][x][2]=A[k][2]; 
A1[0][x][3]=A2[0][x][3]=A[k][3]; x++;} 
   else if(A[k][1]==1) 
{m++;A1[1][xx][0]=A2[1][xx][0]=A[k][0];A1[1][xx][1]=A2[1][xx][1]=A[k][1];A1[1][xx][2]
=A2[1][xx][2]=A[k][2];A1[1][xx][3]=A2[1][xx][3]=A[k][3]; xx++;} 
   else if(A[k][1]==2) {l++;A1[2][y][0]=A2[2][y][0]=A[k][0]; 
A1[2][y][1]=A2[2][y][1]=A[k][1]; A1[2][y][2]=A2[2][y][2]=A[k][2]; 
A1[2][y][3]=A2[2][y][3]=A[k][3]; y++;} 
   else                
{p++;A1[3][yy][0]=A2[3][yy][0]=A[k][0];A1[3][yy][1]=A2[3][yy][1]=A[k][1];A1[3][yy][2]
=A2[3][yy][2]=A[k][2];A1[3][yy][3]=A2[3][yy][3]=A[k][3]; yy++;} 
   } 
 
k=0,j=0,a=0; 
int z=0; 
double enbuyuk=0; 
int kk=0; 
 
ZZ1:    for(i=0;i<t;i++) 
        if(A2[0][i][0]!=0) {enbuyuk=MAX(enbuyuk,A2[0][i][3]);} 
        kk=1; 
        for(i=0;i<t;i++) 
          if (A2[0][i][0]!=0 && A2[0][i][3]==enbuyuk && kk==1) {kk++; 
SORT1[0][k][0]=A2[0][i][0]; SORT1[0][k][1]=A2[0][i][1]; SORT1[0][k][2]=A2[0][i][2]; 
SORT1[0][k][3]=A2[0][i][3]; A2[0][i][0]=A2[0][i][1]=A2[0][i][2]=A2[0][i][3]=0;} 
          { 
          enbuyuk=0; 
          k++; 
          kk=0; 
          if(i!=k) goto ZZ1; 
          } 
 
enbuyuk=0; 
k=0; 
kk=0; 
ZZZ1:   for(i=0;i<m;i++) 
        if(A2[1][i][0]!=0) {enbuyuk=MAX(enbuyuk,A2[1][i][3]);} 
        kk=1; 
        for(i=0;i<m;i++) 
          if (A2[1][i][0]!=0 && A2[1][i][3]==enbuyuk && kk==1) {kk++; 
SORT1[1][k][0]=A2[1][i][0]; SORT1[1][k][1]=A2[1][i][1]; SORT1[1][k][2]=A2[1][i][2]; 
SORT1[1][k][3]=A2[1][i][3]; A2[1][i][0]=A2[1][i][1]=A2[1][i][2]=A2[1][i][3]=0;} 
          { 
          enbuyuk=0; 
          k++; 
          kk=0; 
          if(i!=k) goto ZZZ1; 
          } 
 
enbuyuk=0; 
k=0; 
kk=0; 
ZZZZ1:  for(i=0;i<l;i++) 
        if(A2[2][i][0]!=0) {enbuyuk=MAX(enbuyuk,A2[2][i][3]);} 
        kk=1; 
        for(i=0;i<l;i++) 
          if (A2[2][i][0]!=0 && A2[2][i][3]==enbuyuk && kk==1) {kk++; 
SORT1[2][k][0]=A2[2][i][0]; SORT1[2][k][1]=A2[2][i][1]; SORT1[2][k][2]=A2[2][i][2]; 
SORT1[2][k][3]=A2[2][i][3]; A2[2][i][0]=A2[2][i][1]=A2[2][i][2]=A2[2][i][3]=0;} 
          { 
          enbuyuk=0; 
          k++; 
          kk=0; 
          if(i!=k) goto ZZZZ1; 
          } 
 
enbuyuk=0; 
k=0; 
kk=0; 
ZZZZZ1: for(i=0;i<p;i++) 
        if(A2[3][i][0]!=0) {enbuyuk=MAX(enbuyuk,A2[3][i][3]);} 
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        kk=1; 
        for(i=0;i<p;i++) 
          if (A2[3][i][0]!=0 && A2[3][i][3]==enbuyuk && kk==1) {kk++; 
SORT1[3][k][0]=A2[3][i][0]; SORT1[3][k][1]=A2[3][i][1]; SORT1[3][k][2]=A2[3][i][2]; 
SORT1[3][k][3]=A2[3][i][3]; A2[3][i][0]=A2[3][i][1]=A2[3][i][2]=A2[3][i][3]=0;} 
          { 
          enbuyuk=0; 
          k++; 
          kk=0; 
          if(i!=k) goto ZZZZZ1; 
          } 
 
    char s1[20],s[100]; 
    strcpy(s,""); 
    sprintf(s1,"      NAME-SURNAME         MEAN"); 
    strcat(s,s1); 
    Form1->Memo1->Lines->Add(s); 
    Form1->Memo2->Lines->Add(s); 
    Form1->Memo3->Lines->Add(s); 
    Form1->Memo4->Lines->Add(s); 
    strcpy(s,""); 
    sprintf(s1,"==============================="); 
    strcat(s,s1); 
    Form1->Memo1->Lines->Add(s); 
    Form1->Memo2->Lines->Add(s); 
    Form1->Memo3->Lines->Add(s); 
    Form1->Memo4->Lines->Add(s); 
 
for(k=0;k<t;k++) 
    { 
    top[0][0]+=SORT1[0][k][3]; 
    ort[0][0]=top[0][0]/t; 
    } 
 
for(k=0;k<m;k++) 
    { 
    top[1][0]+=SORT1[1][k][3]; 
    ort[1][0]=top[1][0]/m; 
    } 
 
for(k=0;k<l;k++) 
    { 
    top[2][0]+=SORT1[2][k][3]; 
    ort[2][0]=top[2][0]/l; 
    } 
 
for(k=0;k<p;k++) 
    { 
    top[3][0]+=SORT1[3][k][3]; 
    ort[3][0]=top[3][0]/p; 
    } 
 
for(k=0;k<MAXOGR;k++) 
  { 
    if (A[k][1]==0) 
    { 
    po[k][0]=pow((A[k][3]-ort[0][0]),2); 
    hkt[0][0]+=po[k][0]; 
    } 
    if (A[k][1]==1) 
    { 
    po[k][0]=pow((A[k][3]-ort[1][0]),2); 
    hkt[1][0]+=po[k][0]; 
    } 
    if (A[k][1]==2) 
    { 
    po[k][0]=pow((A[k][3]-ort[2][0]),2); 
    hkt[2][0]+=po[k][0]; 
    } 
    if (A[k][1]==3) 
    { 
    po[k][0]=pow((A[k][3]-ort[3][0]),2); 
    hkt[3][0]+=po[k][0]; 
    } 



107 

  

  } 
 
if(t==1) var[0][0]=hkt[0][0]/(t); 
else var[0][0]=hkt[0][0]/(t-1); 
if(m==1) var[1][0]=hkt[1][0]/(m); 
else var[1][0]=hkt[1][0]/(m-1); 
if(l==1)var[2][0]=hkt[2][0]/(l); 
else var[2][0]=hkt[2][0]/(l-1); 
if(p==1)var[3][0]=hkt[3][0]/(p); 
else var[3][0]=hkt[3][0]/(p-1); 
 
for(i=0;i<4;i++) 
ort1[i]=ort[i][0]; 
 
k=0; 
enbuyuk=0; 
 
Z: for(i=0;i<4;i++) 
   enbuyuk=MAX(enbuyuk,ort1[i]); 
   for(i=0;i<4;i++) 
   if (ort1[i]==enbuyuk) {ort1[i]=0;} 
   { 
   SORT[k]=enbuyuk; 
   enbuyuk=0; 
   k++; 
   if(i!=k) goto Z; 
   } 
 
for(i=0;i<4;i++) 
if (SORT[0]==ort[i][0]) 
     { 
     h=0; 
     k=0; 
A11: char s1[20],s[100]; 
     strcpy(s,""); 
     sprintf(s1,"%23s %7.1lf",AD[int(SORT1[i][k][0])-1],SORT1[i][k][3]); 
     strcat(s,s1); 
     Form1->Memo1->Lines->Add(s); 
     A2[0][h][0]=SORT1[i][k][0]; 
     A2[0][h][1]=SORT1[i][k][1]; 
     A2[0][h][2]=SORT1[i][k][2]; 
     A2[0][h][3]=SORT1[i][k][3]; 
     h++; 
     k++; 
     if (SORT1[i][k][0]!=0) goto A11; 
     strcpy(s,""); 
     sprintf(s1,"==============================="); 
     strcat(s,s1); 
     Form1->Memo1->Lines->Add(s); 
     strcpy(s,""); 
     sprintf(s1,"MEAN= %.2f",ort[i][0]); 
     strcat(s,s1); 
     Form1->Memo1->Lines->Add(s); 
     strcpy(s,""); 
     sprintf(s1,"STDEV= %.2lf ",sqrt(var[i][0])); 
     strcat(s,s1); 
     Form1->Memo1->Lines->Add(s); 
     } 
Edit3->Text=k; 
t=k; 
 
for(i=0;i<4;i++) 
if (SORT[1]==ort[i][0]) 
     { 
     k=0; 
A12: char s1[20],s[100]; 
     strcpy(s,""); 
     sprintf(s1,"%23s %7.1lf",AD[int(SORT1[i][k][0])-1],SORT1[i][k][3]); 
     strcat(s,s1); 
     Form1->Memo2->Lines->Add(s); 
     A2[0][h][0]=SORT1[i][k][0]; 
     A2[0][h][1]=SORT1[i][k][1]; 
     A2[0][h][2]=SORT1[i][k][2]; 
     A2[0][h][3]=SORT1[i][k][3]; 
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     h++; 
     k++; 
     if (SORT1[i][k][0]!=0) goto A12; 
     strcpy(s,""); 
     sprintf(s1,"==============================="); 
     strcat(s,s1); 
     Form1->Memo2->Lines->Add(s); 
     strcpy(s,""); 
     sprintf(s1,"MEAN= %.2f",ort[i][0]); 
     strcat(s,s1); 
     Form1->Memo2->Lines->Add(s); 
     strcpy(s,""); 
     sprintf(s1,"STDEV= %.2lf ",sqrt(var[i][0])); 
     strcat(s,s1); 
     Form1->Memo2->Lines->Add(s); 
     } 
Edit4->Text=k; 
m=k; 
 
for(i=0;i<4;i++) 
if (SORT[2]==ort[i][0]) 
     { 
     k=0; 
A13:char s1[20],s[100]; 
     strcpy(s,""); 
     sprintf(s1,"%23s %7.1lf",AD[int(SORT1[i][k][0])-1],SORT1[i][k][3]); 
     strcat(s,s1); 
     Form1->Memo3->Lines->Add(s); 
     A2[0][h][0]=SORT1[i][k][0]; 
     A2[0][h][1]=SORT1[i][k][1]; 
     A2[0][h][2]=SORT1[i][k][2]; 
     A2[0][h][3]=SORT1[i][k][3]; 
     h++; 
     k++; 
     if (SORT1[i][k][0]!=0) goto A13; 
     strcpy(s,""); 
     sprintf(s1,"==============================="); 
     strcat(s,s1); 
     Form1->Memo3->Lines->Add(s); 
     strcpy(s,""); 
     sprintf(s1,"MEAN= %.2f",ort[i][0]); 
     strcat(s,s1); 
     Form1->Memo3->Lines->Add(s); 
     strcpy(s,""); 
     sprintf(s1,"STDEV= %.2lf ",sqrt(var[i][0])); 
     strcat(s,s1); 
     Form1->Memo3->Lines->Add(s); 
     } 
Edit5->Text=k; 
l=k; 
 
for(i=0;i<4;i++) 
if (SORT[3]==ort[i][0]) 
     { 
     k=0; 
A14: char s1[20],s[100]; 
     strcpy(s,""); 
     sprintf(s1,"%23s %7.1lf",AD[int(SORT1[i][k][0])-1],SORT1[i][k][3]); 
     strcat(s,s1); 
     Form1->Memo4->Lines->Add(s); 
     A2[0][h][0]=SORT1[i][k][0]; 
     A2[0][h][1]=SORT1[i][k][1]; 
     A2[0][h][2]=SORT1[i][k][2]; 
     A2[0][h][3]=SORT1[i][k][3]; 
     h++; 
     k++; 
     if (SORT1[i][k][0]!=0) goto A14; 
     strcpy(s,""); 
     sprintf(s1,"==============================="); 
     strcat(s,s1); 
     Form1->Memo4->Lines->Add(s); 
     strcpy(s,""); 
     sprintf(s1,"MEAN= %.2f",ort[i][0]); 
     strcat(s,s1); 
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     Form1->Memo4->Lines->Add(s); 
     strcpy(s,""); 
     sprintf(s1,"STDEV= %.2lf ",sqrt(var[i][0])); 
     strcat(s,s1); 
     Form1->Memo4->Lines->Add(s); 
     } 
Edit6->Text=k; 
p=k; 
} 
//------------------------------------------------------------------ 
void __fastcall TForm1::Button2Click(TObject *Sender) 
{ 
Form1->Memo1->Lines->Clear(); 
Form1->Memo2->Lines->Clear(); 
Form1->Memo3->Lines->Clear(); 
Form1->Memo4->Lines->Clear(); 
 
GROUPNO=Edit2->Text.ToInt(); 
Button1->Click(); 
int z=(MAXOGR/GROUPNO)+1; 
for(z=0;z<GROUPNO;z++) 
DAMtop[z]=0.0; 
DAMort[z]=0.0; 
 
switch(RadioGroup1->ItemIndex) 
{ 
case 0:{//BALANCED RANDOM ASSIGNMENT*************************************** 
 
for(int i=0;i<25;i++) 
   for(int j=0;j<25;j++) 
      for(int k=0;k<4;k++) 
      DAM[i][j][k]=0.0; 
 
 srand(time(NULL)); 
 for(i=0;i<t;i++) 
    { 
A:  DA[0][i]=1+rand()%t; 
        for(k=0;k<i;k++) 
          if(DA[0][i]==DA[0][k]) 
          goto A; 
     } 
 
   for(i=0;i<m;i++) 
     { 
B:   DA[1][i]=1+rand()%m; 
        for(k=0;k<i;k++) 
          if(DA[1][i]==DA[1][k]) 
          goto B; 
     } 
 
   for(i=0;i<l;i++) 
     { 
C:   DA[2][i]=1+rand()%l; 
        for(k=0;k<i;k++) 
          if(DA[2][i]==DA[2][k]) 
          goto C; 
     } 
 
   for(i=0;i<p;i++) 
     { 
D:   DA[3][i]=1+rand()%p; 
        for(k=0;k<i;k++) 
          if(DA[3][i]==DA[3][k]) 
          goto D; 
     } 
 
int k=0,j=0,a=0,z=0; 
 
     for(i=1;i<=t;i++) 
        { 
E:        for(k=0;k<t;k++) 
 
      if(DA[0][k]==i) 
           { 
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           DAM[z][a][0]=A2[0][k][0]; 
           DAM[z][a][1]=A2[0][k][1]; 
           DAM[z][a][2]=A2[0][k][2]; 
           DAM[z][a][3]=A2[0][k][3]; 
           } 
        DAMtop[z]+=DAM[z][a][3]; 
        z++; 
        if(i==t) goto F; 
        if(z==GROUPNO) {z=0; i++; a++;  goto E;} 
        } 
 
F:   if (z==GROUPNO) {z=0;a++;} 
        for(i=1;i<=m;i++) 
        { 
G:       for(k=0;k<m;k++) 
 
      if(DA[1][k]==i) 
           { 
           DAM[z][a][0]=A2[0][k+t][0]; 
           DAM[z][a][1]=A2[0][k+t][1]; 
           DAM[z][a][2]=A2[0][k+t][2]; 
           DAM[z][a][3]=A2[0][k+t][3]; 
           } 
        DAMtop[z]+=DAM[z][a][3]; 
        z++; 
        if(i==m) goto H; 
        if(z==GROUPNO) {z=0;i++;a++;  goto G;} 
        } 
 
H:   if (z==GROUPNO) {z=0;a++;} 
        for(i=1;i<=l;i++) 
        { 
I:       for(k=0;k<l;k++) 
 
      if(DA[2][k]==i) 
           { 
           DAM[z][a][0]=A2[0][k+t+m][0]; 
           DAM[z][a][1]=A2[0][k+t+m][1]; 
           DAM[z][a][2]=A2[0][k+t+m][2]; 
           DAM[z][a][3]=A2[0][k+t+m][3]; 
           } 
        DAMtop[z]+=DAM[z][a][3]; 
        z++; 
        if(i==l) goto J; 
        if(z==GROUPNO) {z=0;i++;a++;  goto I;} 
        } 
 
J:   if (z==GROUPNO) {z=0;a++;} 
        for(i=1;i<=p;i++) 
        { 
K:       for(k=0;k<p;k++) 
 
      if(DA[3][k]==i) 
           { 
           DAM[z][a][0]=A2[0][k+t+m+l][0]; 
           DAM[z][a][1]=A2[0][k+t+m+l][1]; 
           DAM[z][a][2]=A2[0][k+t+m+l][2]; 
           DAM[z][a][3]=A2[0][k+t+m+l][3]; 
           } 
        DAMtop[z]+=DAM[z][a][3]; 
        z++; 
        if(i==p) break; 
        if(z==GROUPNO) {z=0;i++;a++;  goto K;} 
        } 
 
Form2->Show(); 
Form2->Label1->Caption="BALANCED RANDOM ASSIGNMENT"; 
 
for(k=0;k<GROUPNO;k++) 
  { 
  char s1[20],s[100]; 
  strcpy(s,""); 
  sprintf(s1,"                  GROUP %d",k+1); 
  strcat(s,s1); 
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  Form2->Memo1->Lines->Add(s); 
  strcpy(s,""); 
  sprintf(s1,"NO              NAME-SURNAME    CLUSTER   MEAN"); 
  strcat(s,s1); 
  Form2->Memo1->Lines->Add(s); 
 
  strcpy(s,""); 
  sprintf(s1,"=============================================="); 
  strcat(s,s1); 
  Form2->Memo1->Lines->Add(s); 
 
     for(g=0;g<=a;g++) 
       { 
       if (DAM[k][g][0]!=0) 
         { 
         strcpy(s,""); 
         sprintf(s1,"%2d   %23s   %5.0lf   %7.1lf",g+1,AD[int(DAM[k][g][0])-
1],DAM[k][g][1],DAM[k][g][3]); 
         strcat(s,s1); 
         Form2->Memo1->Lines->Add(s); 
         } 
       } 
       strcpy(s,""); 
       sprintf(s1,"=============================================="); 
       strcat(s,s1); 
       Form2->Memo1->Lines->Add(s); 
       if(DAM[k][g-1][0]==0) {g=g-1;} 
       DAMort[k]=DAMtop[k]/g; 
        
       DAMHKT[k]=0; 
       DAMstdev[k]=0; 
 
       for(g=0;g<=a;g++) 
       if(DAM[k][g][3]!=0) {DAMHKT[k]+=pow((DAM[k][g][3]-DAMort[k]),2);} 
       if(DAM[k][g-1][0]==0) {g=g-1;} 
       DAMstdev[k]=DAMHKT[k]/(g-1); 
       strcpy(s,""); 
       sprintf(s1,"MEAN=%3.2lf   STDEV=%3.2lf ",DAMort[k],sqrt(DAMstdev[k])); 
       strcat(s,s1); 
       Form2->Memo1->Lines->Add(s); 
       Form2->Memo1->Lines->Add(""); 
  } 
break; 
} 
 
case 1:{//SIMPLE RANDOM ASSIGNMENT***************************************** 
 
for(int i=0;i<25;i++) 
   for(int j=0;j<25;j++) 
      for(int k=0;k<4;k++) 
      RAM[i][j][k]=0.0; 
 
   srand(time(NULL)); 
   for(i=0;i<MAXOGR;i++) 
        { 
L: 
        RA[i]=1+rand()%MAXOGR; 
        for(k=0;k<i;k++) 
          if(RA[i]==RA[k]) 
          goto L; 
 
        strcpy(s,""); 
        sprintf(s1," %.0lf   %.0lf ",A[i][0],RA[i]); 
        strcat(s,s1); 
        Memo1->Lines->Add(s);*/ 
        } 
 
int k=0,j=0,a=0; 
 
     for(i=0;i<MAXOGR;i++) 
        { 
M:      j=RA[i]; 
        RAM[k][a][0]=A[j-1][0]; 
        RAM[k][a][1]=A[j-1][1]; 
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        RAM[k][a][2]=A[j-1][2]; 
        RAM[k][a][3]=A[j-1][3]; 
        DAMtop[k]+=RAM[k][a][3]; 
        k++; 
        if(k==GROUPNO &&  i!=MAXOGR-1) {k=0;i++;a++; goto M;} 
        if(k==GROUPNO &&  i==MAXOGR-1) break; 
        } 
 
Form2->Show(); 
Form2->Label1->Caption="SIMPLE RANDOM ASSIGNMENT"; 
 
for(k=0;k<GROUPNO;k++) 
  { 
  char s1[20],s[100]; 
  strcpy(s,""); 
  sprintf(s1,"                  GROUP %d",k+1); 
  strcat(s,s1); 
  Form2->Memo1->Lines->Add(s); 
  strcpy(s,""); 
  sprintf(s1,"NO              NAME-SURNAME    CLUSTER   MEAN"); 
  strcat(s,s1); 
  Form2->Memo1->Lines->Add(s); 
 
  strcpy(s,""); 
  sprintf(s1,"=============================================="); 
  strcat(s,s1); 
  Form2->Memo1->Lines->Add(s); 
z=(MAXOGR/GROUPNO)+1; 
     for(a=0;a<z;a++) 
       { 
       if (RAM[k][a][0]!=0) 
         { 
         strcpy(s,""); 
         sprintf(s1,"%2d   %23s   %5.0lf   %7.1lf",a+1,AD[int(RAM[k][a][0])-
1],RAM[k][a][1],RAM[k][a][3]); 
         strcat(s,s1); 
         Form2->Memo1->Lines->Add(s); 
         } 
       } 
       strcpy(s,""); 
       sprintf(s1,"=============================================="); 
       strcat(s,s1); 
       Form2->Memo1->Lines->Add(s); 
       if(RAM[k][a-1][0]==0) {a=a-1;} 
       DAMort[k]=DAMtop[k]/a; 
 
       DAMHKT[k]=0; 
       DAMstdev[k]=0; 
 
       for(a=0;a<z;a++) 
       if(RAM[k][a][3]!=0) {DAMHKT[k]+=pow((RAM[k][a][3]-DAMort[k]),2);} 
       if(RAM[k][a-1][0]==0) {a=a-1;} 
       DAMstdev[k]=DAMHKT[k]/(a-1); 
       strcpy(s,""); 
       sprintf(s1,"MEAN=%3.2lf   STDEV=%3.2lf ",DAMort[k],sqrt(DAMstdev[k])); 
       strcat(s,s1); 
       Form2->Memo1->Lines->Add(s); 
       Form2->Memo1->Lines->Add(""); 
  } 
break; 
} 
 
case 2:{//LEVEL-BASED RANDOM ASSIGNMENT***************************** 
 
for(int i=0;i<25;i++) 
   for(int j=0;j<25;j++) 
      for(int k=0;k<4;k++) 
      SAM[i][j][k]=0.0; 
 
 srand(time(NULL)); 
 for(i=0;i<t;i++) 
     { 
N: 
     SA[0][i]=1+rand()%t; 
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        for(k=0;k<i;k++) 
          if(SA[0][i]==SA[0][k]) 
          goto N; 
     } 
 
   for(i=0;i<m;i++) 
     { 
O: 
     SA[1][i]=1+rand()%m; 
        for(k=0;k<i;k++) 
          if(SA[1][i]==SA[1][k]) 
          goto O; 
     } 
 
   for(i=0;i<l;i++) 
     { 
P: 
     SA[2][i]=1+rand()%l; 
        for(k=0;k<i;k++) 
          if(SA[2][i]==SA[2][k]) 
          goto P; 
     } 
 
   for(i=0;i<p;i++) 
     { 
Q: 
     SA[3][i]=1+rand()%p; 
        for(k=0;k<i;k++) 
          if(SA[3][i]==SA[3][k]) 
          goto Q; 
     } 
 
int k=0,j=0,a=0,z=0; 
int MAXOGR1=MAXOGR; 
 
     for(i=1;i<=t;i++) 
        { 
R:        for(k=0;k<t;k++) 
 
      if(SA[0][k]==i) 
           { 
           SAM[z][a][0]=A2[0][k][0]; 
           SAM[z][a][1]=A2[0][k][1]; 
           SAM[z][a][2]=A2[0][k][2]; 
           SAM[z][a][3]=A2[0][k][3]; 
           DAMtop[z]+=SAM[z][a][3]; 
           } 
        a++; 
        if(i==t) goto S; 
        if(a==(MAXOGR1/GROUPNO)) {if(z==0){MAXOGR1=MAXOGR-a; GROUPNO=GROUPNO-1; z++; 
i++; a=0;goto R;}else {MAXOGR1=MAXOGR1-a;GROUPNO=GROUPNO-1; z++; a=0;}} 
        } 
 
S:   if (a==(MAXOGR1/GROUPNO)) {if(z==0){MAXOGR1=MAXOGR-a; GROUPNO=GROUPNO-1; z++; 
a=0;}else {MAXOGR1=MAXOGR1-a; GROUPNO=GROUPNO-1; z++; a=0;}} 
        for(i=1;i<=m;i++) 
        { 
T:       for(k=0;k<m;k++) 
 
      if(SA[1][k]==i) 
           { 
           SAM[z][a][0]=A2[0][k+t][0]; 
           SAM[z][a][1]=A2[0][k+t][1]; 
           SAM[z][a][2]=A2[0][k+t][2]; 
           SAM[z][a][3]=A2[0][k+t][3]; 
           DAMtop[z]+=SAM[z][a][3]; 
           } 
        a++; 
        if(i==m) goto U; 
        if(a==(MAXOGR1/GROUPNO)) {MAXOGR1=MAXOGR1-a; GROUPNO=GROUPNO-1; z++; i++; 
a=0;  goto T;} 
        } 
 
U:  if (a==(MAXOGR1/GROUPNO)) {MAXOGR1=MAXOGR1-a; GROUPNO=GROUPNO-1; z++; a=0;} 
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        for(i=1;i<=l;i++) 
        { 
X:       for(k=0;k<l;k++) 
 
      if(SA[2][k]==i) 
           { 
           SAM[z][a][0]=A2[0][k+t+m][0]; 
           SAM[z][a][1]=A2[0][k+t+m][1]; 
           SAM[z][a][2]=A2[0][k+t+m][2]; 
           SAM[z][a][3]=A2[0][k+t+m][3]; 
           DAMtop[z]+=SAM[z][a][3]; 
           } 
        a++; 
        if(i==l) goto W; 
        if(a==(MAXOGR1/GROUPNO)) {MAXOGR1=MAXOGR1-a; GROUPNO=GROUPNO-1; z++; i++; 
a=0;  goto X;} 
        } 
 
W:   if (a==(MAXOGR1/GROUPNO)) {MAXOGR1=MAXOGR1-a; GROUPNO=GROUPNO-1; z++; a=0;} 
        for(i=1;i<=p;i++) 
        { 
Y:       for(k=0;k<p;k++) 
 
      if(SA[3][k]==i) 
           { 
           SAM[z][a][0]=A2[0][k+t+m+l][0]; 
           SAM[z][a][1]=A2[0][k+t+m+l][1]; 
           SAM[z][a][2]=A2[0][k+t+m+l][2]; 
           SAM[z][a][3]=A2[0][k+t+m+l][3]; 
           DAMtop[z]+=SAM[z][a][3]; 
           } 
        a++; 
        if(i==p) break; 
        if(a==(MAXOGR1/GROUPNO)) {MAXOGR1=MAXOGR1-a; GROUPNO=GROUPNO-1; z++; i++; 
a=0;  goto Y;} 
        } 
 
Form2->Show(); 
Form2->Label1->Caption="LEVEL-BASED RANDOM ASSIGNMENT"; 
GROUPNO=Edit2->Text.ToInt(); 
for(k=0;k<GROUPNO;k++) 
  { 
  char s1[20],s[100]; 
  strcpy(s,""); 
  sprintf(s1,"                  GROUP %d",k+1); 
  strcat(s,s1); 
  Form2->Memo1->Lines->Add(s); 
  strcpy(s,""); 
  sprintf(s1,"NO              NAME-SURNAME    CLUSTER   MEAN"); 
  strcat(s,s1); 
  Form2->Memo1->Lines->Add(s); 
 
  strcpy(s,""); 
  sprintf(s1,"=============================================="); 
  strcat(s,s1); 
  Form2->Memo1->Lines->Add(s); 
 
     for(g=0;g<(MAXOGR/GROUPNO)+1;g++) 
       { 
       if (SAM[k][g][0]!=0) 
         { 
         strcpy(s,""); 
         sprintf(s1,"%2d   %23s   %5.0lf   %7.1lf",g+1,AD[int(SAM[k][g][0])-
1],SAM[k][g][1],SAM[k][g][3]); 
         strcat(s,s1); 
         Form2->Memo1->Lines->Add(s); 
         } 
       } 
       strcpy(s,""); 
       sprintf(s1,"=============================================="); 
       strcat(s,s1); 
       Form2->Memo1->Lines->Add(s); 
       if(SAM[k][g-1][0]==0) {g=g-1;} 
       DAMort[k]=DAMtop[k]/g; 
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       DAMHKT[k]=0; 
       DAMstdev[k]=0; 
 
       for(g=0;g<(MAXOGR/GROUPNO)+1;g++) 
       if(SAM[k][g][3]!=0) {DAMHKT[k]+=pow((SAM[k][g][3]-DAMort[k]),2);} 
       if(SAM[k][g-1][0]==0) {g=g-1;} 
       DAMstdev[k]=DAMHKT[k]/(g-1); 
       strcpy(s,""); 
       sprintf(s1,"MEAN=%3.2lf   STDEV=%3.2lf ",DAMort[k],sqrt(DAMstdev[k])); 
       strcat(s,s1); 
       Form2->Memo1->Lines->Add(s); 
       Form2->Memo1->Lines->Add(""); 
  } 
break; 
} 
 
case 3:{//BALANCED ASSIGNMENT*************************************** 
 
for(int i=0;i<25;i++) 
   for(int j=0;j<25;j++) 
      for(int k=0;k<4;k++) 
      DAM1[i][j][k]=0.0; 
 
k=0,j=0,a=0,z=0; 
 
      for(k=0;k<MAXOGR;k++) 
           { 
EE:        DAM1[z][a][0]=A2[0][k][0]; 
           DAM1[z][a][1]=A2[0][k][1]; 
           DAM1[z][a][2]=A2[0][k][2]; 
           DAM1[z][a][3]=A2[0][k][3]; 
           DAMtop[z]+=DAM1[z][a][3]; 
           z++; 
           if (k==MAXOGR-1) {goto TT;} 
           if (z==GROUPNO) {z--; a++; k++; goto EEE;} 
           if (k!=MAXOGR-1 && z!=GROUPNO) {k++; goto EE;} 
           } 
 
EEE: for (k=k;k<MAXOGR;k++) 
           { 
           DAM1[z][a][0]=A2[0][k][0]; 
           DAM1[z][a][1]=A2[0][k][1]; 
           DAM1[z][a][2]=A2[0][k][2]; 
           DAM1[z][a][3]=A2[0][k][3]; 
           DAMtop[z]+=DAM1[z][a][3]; 
           z--; 
           if (k==MAXOGR-1) {goto TT;} 
           if (z==-1) {z++; a++; k++; goto EE;} 
           if (k!=MAXOGR-1 && z!=-1) {k++; goto EEE;} 
           } 
 
TT: Form2->Show(); 
Form2->Label1->Caption="BALANCED ASSIGNMENT"; 
for(k=0;k<GROUPNO;k++) 
  { 
  char s1[20],s[100]; 
  strcpy(s,""); 
  sprintf(s1,"                  GROUP %d",k+1); 
  strcat(s,s1); 
  Form2->Memo1->Lines->Add(s); 
  strcpy(s,""); 
  sprintf(s1,"NO              NAME-SURNAME    CLUSTER   MEAN"); 
  strcat(s,s1); 
  Form2->Memo1->Lines->Add(s); 
  strcpy(s,""); 
  sprintf(s1,"=============================================="); 
  strcat(s,s1); 
  Form2->Memo1->Lines->Add(s); 
 
 
     for(g=0;g<=a;g++) 
       { 
       if (DAM1[k][g][0]!=0) 
         { 
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         strcpy(s,""); 
         sprintf(s1,"%2d   %23s   %5.0lf   %7.1lf",g+1,AD[int(DAM1[k][g][0])-
1],DAM1[k][g][1],DAM1[k][g][3]); 
         strcat(s,s1); 
         Form2->Memo1->Lines->Add(s); 
         } 
       } 
       strcpy(s,""); 
       sprintf(s1,"=============================================="); 
       strcat(s,s1); 
       Form2->Memo1->Lines->Add(s); 
       if(DAM1[k][g-1][0]==0) {g=g-1;} 
       DAMort[k]=DAMtop[k]/g; 
 
       DAMHKT[k]=0; 
       DAMstdev[k]=0; 
 
       for(g=0;g<=a;g++) 
       if(DAM1[k][g][3]!=0) {DAMHKT[k]+=pow((DAM1[k][g][3]-DAMort[k]),2);} 
       if(DAM1[k][g-1][0]==0) {g=g-1;} 
       DAMstdev[k]=DAMHKT[k]/(g-1); 
       strcpy(s,""); 
       sprintf(s1,"MEAN=%3.2lf   STDEV=%3.2lf ",DAMort[k],sqrt(DAMstdev[k])); 
       strcat(s,s1); 
       Form2->Memo1->Lines->Add(s); 
       Form2->Memo1->Lines->Add(""); 
  } 
break; 
} 
 
case 4:{//LEVEL-BASED ASSIGNMENT************************************ 
 
for(int i=0;i<25;i++) 
   for(int j=0;j<25;j++) 
      for(int k=0;k<4;k++) 
      SAM1[i][j][k]=0.0; 
 
k=0,j=0,a=0,z=0; 
int MAXOGR1=MAXOGR; 
 
      for(k=0;k<MAXOGR;k++) 
        { 
EE1:    SAM1[z][a][0]=A2[0][k][0]; 
        SAM1[z][a][1]=A2[0][k][1]; 
        SAM1[z][a][2]=A2[0][k][2]; 
        SAM1[z][a][3]=A2[0][k][3]; 
        DAMtop[z]+=SAM1[z][a][3]; 
        a++; 
        if(k==MAXOGR-1) {goto TT1;} 
        if(k!=MAXOGR-1 && a==(MAXOGR1/GROUPNO)) {MAXOGR1=MAXOGR1-a; GROUPNO=GROUPNO-
1; z++; k++; a=0;  goto EE1;} 
        if(k!=MAXOGR-1 && a!=(MAXOGR1/GROUPNO)) {k++; goto EE1;} 
        } 
 
TT1: Form2->Show(); 
Form2->Label1->Caption="LEVEL-BASED ASSIGNMENT"; 
GROUPNO=Edit2->Text.ToInt(); 
for(k=0;k<GROUPNO;k++) 
  { 
  char s1[20],s[100]; 
  strcpy(s,""); 
  sprintf(s1,"                  GROUP %d",k+1); 
  strcat(s,s1); 
  Form2->Memo1->Lines->Add(s); 
  strcpy(s,""); 
  sprintf(s1,"NO              NAME-SURNAME    CLUSTER   MEAN"); 
  strcat(s,s1); 
  Form2->Memo1->Lines->Add(s); 
  strcpy(s,""); 
  sprintf(s1,"=============================================="); 
  strcat(s,s1); 
  Form2->Memo1->Lines->Add(s); 
 
     for(g=0;g<a;g++) 
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       { 
       if (SAM1[k][g][0]!=0) 
         { 
         strcpy(s,""); 
         sprintf(s1,"%2d   %23s   %5.0lf   %7.1lf",g+1,AD[int(SAM1[k][g][0])-
1],SAM1[k][g][1],SAM1[k][g][3]); 
         strcat(s,s1); 
         Form2->Memo1->Lines->Add(s); 
         } 
       } 
       strcpy(s,""); 
       sprintf(s1,"=============================================="); 
       strcat(s,s1); 
       Form2->Memo1->Lines->Add(s); 
       if(SAM1[k][g-1][0]==0) {g=g-1;} 
       DAMort[k]=DAMtop[k]/g; 
 
       DAMHKT[k]=0; 
       DAMstdev[k]=0; 
 
       for(g=0;g<a;g++) 
       if(SAM1[k][g][3]!=0) {DAMHKT[k]+=pow((SAM1[k][g][3]-DAMort[k]),2);} 
       if(SAM1[k][g-1][0]==0) {g=g-1;} 
       DAMstdev[k]=DAMHKT[k]/(g-1); 
       strcpy(s,""); 
       sprintf(s1,"MEAN=%3.2lf   STDEV=%3.2lf ",DAMort[k],sqrt(DAMstdev[k])); 
       strcat(s,s1); 
       Form2->Memo1->Lines->Add(s); 
       Form2->Memo1->Lines->Add(""); 
  } 
break; 
} 
} 
} 
//------------------------------------------------------------------ 
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