
DEVELOPING A NEW METHODOLOGY FOR
SOFTWARE PROJECTS

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylul University

in Partial Fulfillment of the Requirements for the Degree of Doctor of

Philosophy in Computer Engineering, Computer Engineering Program

by

Kökten Ulas BIRANT

April, 2006

IZMIR

ii

Ph.D. THESIS EXAMINATION RESULT FORM

We have read the thesis entitled “DEVELOPING A NEW METHODOLOGY

FOR SOFTWARE PROJECTS” completed by KÖKTEN ULAS BIRANT under

supervision of PROF. DR. ALP KUT and we certify that in our opinion it is fully

adequate, in scope and in quality, as a thesis for the degree of Doctor of Philosophy.

 Prof. Dr. Alp KUT

 Supervisor

 Committee Member Committee Member

 Jury Member Jury Member

 Prof.Dr. Cahit HELVACI

 Director

 Graduate School of Natural and Applied Sciences

iii

ACKNOWLEDGMENTS

 I would like to express my sincere appreciation first and foremost to my advisor,

Prof. Dr. Alp KUT, for his strong support, patience, valuable insights and

encouragement, not only in bringing this research work to a successful completion,

but also in all aspects of my academic life. He devoted his time and energy to

improve this thesis despite his busy schedule. Especially in desperate time, this thesis

is completed with his physical and moral support.

 I extend my thanks to the members of my committee, Asst. Prof. Dr. Sen ÇAKIR,

and Asst. Prof. Dr. Damla KUNTALP for their useful comments and suggestions

during my study. They prepared a path for a successful Ph.D. thesis and with their

valuable support; the “Rings” has been completed.

 I would like to thank also to Assoc. Prof. Dr. Yalçin ÇEBI, especially for his

encouraged discussions. His support on writing the thesis is also important, but I

should thank to him for his moral support.

 I have two more moral supporters in this work, after my family: Fenerbahçe,

which I am proud to be a member of and Efes Rotary Club, which brings me

valuable friendships. I should thank to all my friends in these clubs, but I will only

thank to Fenerbahçe and Efes Rotary Club, because they provide my friends, who

were always with me with their support, while I am exhausted with the hard work of

thesis.

 One of the most important thanks is to my mother and my brother. They were

always with me. Especially, my mother, Gönül DENIZERI is the most important

person for this thesis. She brought me into life, educated and taught me how I should

think and I thought the ideas in this thesis. If this thesis can be defined valuable, this

is also her achievement.

iv

 Lastly and most importantly, I would like to express my special gratitude to my

wife, Derya BIRANT. I can write too many things about her role on success of this

thesis, but I will cut short. There were too many times, when I wanted to quit my

work. I couldn’t continue and finish my study, without her support and insistence.

Especially, at last weeks of my study, she planned my life forcible. This was not so

good, but this saves my study and I am so thankful now. I prepared the ideas of this

thesis, but I can’t order, write and publish it without her.

Kökten Ulas BIRANT

v

DEVELOPING A NEW METHODOLOGY FOR SOFTWARE PROJECTS

ABSTRACT

 The research presented in this thesis is an essay of a new software development

methodology. This methodology is prepared according to the agile manifesto and

also accepts the accreditation obligation in market. Because of this obligation, the

overall system is controlled also for Capability Maturity Model via its checklist.

Another property of this management system for a software development process is

that the system also advises a natural improvement path for the company from a

chaotic work-flow to a disciplined and controlled system. This thesis includes the

entire acceptance and the usage manual of the new methodology. So, the developers,

who will try to apply this methodology in their companies, will find a complete guide

for a successful implementation with process model, role definitions and

documentation requirements.

Keywords: Software Engineering, Accreditation of Software Development

Company, Agile Manifesto, Software Development Process, Agile Software

Development Methodologies

vi

YAZILIM PROJELERI IÇIN YENI BIR METODOLOJI GELISTIRILMESI

ÖZ

 Bu tezde sunulan çalisma yeni bir yazilim gelistirme metodolojisi gelistirme

denemesidir. Söz konusu metodoloji, çevik manifesto dogrultusunda hazirlanmis

olmakla beraber, piyasadaki yetkilendirme zorunlulugu ve sorununu da kabul eder.

Bu zorunlulugu çözümleyebilmek adina Yapabilirlik Olgunlugu Modeli üzerinden

yetkilendirme çalismasi yapilmistir. Yazilim gelistirme süreçleri için olusturulan bu

sistemin bir diger özelligi de uygulayici sirkete düzensiz bir çalisma yapisindan daha

kontrollü ve disiplinli bir sisteme dogru geçerken bir rota tavsiye edebilmesidir. Ayni

zamanda tez içerisinde yeni metodolojinin onaylama raporlari ve tüm uygulama

altyapisi mevcuttur. Böylece, bu süreci sirketinde uygulamayi düsünecek

gelistiricilere de süreç modeli, rol tanimlamalari ve raporlama istekleri ile birlikte

basarili bir uygulama için gerekli tam bir kilavuz ortaya konulmustur.

Anahtar sözcükler : Yazilim Mühendisligi, Yazilim Gelistirme Sirketinin

Yetkilendirilmesi, Çevik Manifesto, Yazilim Gelistirme Süreci, Çevik Yazilim

Gelistirme Metodolojileri

vii

CONTENTS

 Page

THESIS EXAMINATION RESULT FORM .. ii

ACKNOWLEDGEMENTS .. iii

ABSTRACT.. iv

ÖZ .. v

CHAPTER ONE – INTRODUCTION .. 1

1.1 General ... 1

1.1.1 Software Engineering.. 2

1.1.2 Software Development Methodologies... 2

1.1.3 Main Points of Base Ideas... 3

1.1.3.1 Why Agile Software Development? .. 3

1.1.3.2 Why Capability Maturity Model? .. 4

1.2 The Purpose of the Thesis .. 5

1.3 Thesis Organization ... 6

CHAPTER TWO – RINGS... 8

2.1 Overview.. 8

2.2 Related Works and Basic Concepts ... 9

2.2.1 Basic Life-Cycle of Software Development ... 9

2.2.2 Agile Software Development Manifesto... 12

2.2.3 Extreme Programming .. 15

2.2.3.1 4 Values of Extreme Programming.. 15

2.2.3.2 Development Process of Extreme Programming 16

2.2.3.3 12 Practices of Extreme Programming .. 19

2.3 A new methodology: RINGS... 21

2.3.1 4 Values of RINGS ... 21

viii

2.3.2 Overall Process of Rings ... 22

2.3.2.1 Inner Ring .. 23

2.3.2.2 Transition from Inner Ring to Middle Ring................................... 28

2.3.2.3 Middle Ring ... 28

2.3.2.4 Transition from Middle Ring to Outer Ring 33

2.3.2.5 Outer Ring.. 33

2.3.3 Team Requirement of RINGS (Roles of Team Members) 38

2.3.3.1 Developers.. 40

2.3.3.2 Project Manager ... 41

2.3.3.3 Documenter .. 42

2.3.3.4 Surgeon .. 43

2.3.3.5 Software Management Tool (Software)... 45

2.3.3.6 Quality Manager... 45

2.3.4 Documentation Requirement of RINGS ... 46

2.3.4.1 General Specification Document ... 48

2.3.4.2 Version Plan ... 49

2.3.4.3 User Interface – Database Design Document 49

2.3.4.4 Procedure Documentation.. 50

2.3.4.5 User Manuals/Helps ... 51

2.3.4.6 Coding Standards ... 51

2.3.4.7 Specification Document ... 52

2.3.4.8 Unit Test Document ... 53

2.3.4.9 Documentation Standards .. 54

2.3.4.10 Quality Standards ... 54

2.3.4.11 Schedule Document ... 55

2.3.4.12 Cost Document... 55

2.3.4.13 Pricing Document... 56

2.3.4.14 General Module Specification Document.................................. 57

2.3.4.15 Project Dictionary .. 57

2.3.5 Advantages.. 58

2.3.6 Risks.. 59

ix

CHAPTER THREE – APPROVAL OF RINGS... 60

3.1 Overview.. 60

3.2 Formal Approval .. 61

3.2.1 Capability Maturity Model.. 61

3.2.2 Results of Capability Maturity Model .. 66

3.3 Usability in Market .. 74

3.3.1 Research Domain and General Comments ... 75

3.3.2 Reactions of Market .. 79

CHAPTER FOUR – CONCLUSIONS .. 84

4.1 Conclusion and Future Works.. 84

REFERENCES …………………………………………………………………… 86

APPENDICES ….………………………………………………………………… 89

A. Chrysler Comprehensive Compensation System (C3)................................... 89

B. The Rings Questionnaire.. 91

1

CHAPTER ONE

1INTRODUCTION

1.1 General

Software development is hard to classify, whether it is a job or an art. These two

complimentary opinions are partly true. The development process of software can be

defined either as a product, because of the usage areas and engineering process in

development cycle or as a work of art, because of the creation process in

development cycle. So, these two definitions are not false, but also not true.

When the software is seen as an assistant tool for the companies in several works,

as a product to earn money or as a component-based thing, which can be produced

by the parts from the similar and previously prepared products, then it may be named

as a product of an engineering job.

When the software is seen as an assistant tool for the research and development

processes to accelerate, as an application of the new ideas or as a unique compilation

for specific needs of users, then it may be named as a work of art.

The important problem begins here. For which name of software should a solution

be developed, for a software “product” or for a software “art”? Software

Development Methodologies try to solve the development problems of these

software “things” via formulating the process.

This thesis is an experiment for a new software development methodology.

According to the needs of software market, an agile software development

methodology, which bases on Extreme Programming, is defined. One of the

important additions to the existing agile development methods in market is the

maturity support to the company. This maturity support is provided via the

Capability Maturity Model from Software Engineering Institute of Carnegie Mellon

University and changes according to the parameters of company.

2

1.1.1 Software Engineering

Software Engineering can be defined as the engineering process for software. By

expanding this definition, the meaning of the software should be known. Software is

a complete product of an engineering process by developing a program. In other

words, software includes the program and whole documentation, which can be used

for development, for maintenance or for easier usage.

The first definition problem comes here into account: “Program or Software?”

“Program” is an autonomous piece of code that could be executed to solve a problem,

which is computerized. “Software” is a more general name than program and

includes “program” only as a part of the product. Other parts of software may be

listed as specification document, design document, accounting documents, project

management documents, all types of manuals.

As a result, it can be said that software engineering is an engineering discipline

for defining processes to develop such a product.

1.1.2 Software Development Methodologies

 Software development methodologies are the important results of Software

Engineering studies. The problems are defined as the faulty estimation, low quality

and not measuring the product and the development process. One of the solutions for

problems in the software market is these methodologies.

 A software development methodology is a formulization process of the successful

development. Software Engineering branch tries to formulize the successful systems

and apply them to other software developer groups. (The application process should

be thought according to the several parameters of development group, like size,

project type, experience, etc.)

3

 First try of the Software Development methodologies comes from the other

engineering practices. These practices force the engineers to run on a standard plan.

The plan often begins with a phase to understand the needs and domain of the

customer. After defining the needs, the engineers should define the solution. The

engineers define their solution with the reasons of the critical decisions on paper and

discuss them to find the best and correct way. The implementation of the solution

begins after defining every possibility and the reasons. Each phase should be well-

documented and the maintainers of the product will correct or make the software

better according to these documents. (Sommerville, 1992)

 The software development methodologies include these steps, because these

phases are similar for a good product. However, they are not the same, because each

engineered product should have different characteristics according to many different

parameters. The meanings, the lengths and the orders may differ from methodology

to methodology. (For example, heavyweight methodologies follow the defined

system in a disciplined and documented way. However, lightweight methodologies

decrease the lengths of the phase and the orders majorly when compared with the

heavyweight ones.) (Pressman, 2001)

1.1.3 Main Points of Base Ideas

1.1.3.1 Why Agile Software Development?

The production (and/or development) methodologies of base engineering products

are the inspiration of software development methodologies and there are not so many

methods to produce a product in a regular way. When it is thought to prepare a

product disciplined and controlled, the methods have the same phases; defining

requirements of customer, designing the product, implementing and maintaining in

market. So, phases of agile software developments are similar to heavy ones. But, the

agile ones have some inner differences to the other ones and these differences obtain

some advantages to these methodologies.

4

Agile software development methodologies obtain a faster development to the

companies than the classical methods. This faster development is so important for the

companies, because the technology changes also rapidly. Another rapid change will

be seen also in the customers needs. Because of these rapid changes in the software

development domain, the methodology should act according to these changes.

Another important advantage of the agile methodologies is the appropriateness to

the own unique properties of the software. The unique properties of software and

software developers are disregarded in the heavyweight methodologies. However, in

agile software development methodologies; the art and job dimensions of the

software are thought and the application was done for a faster production of software

without disregarding the creation (art) property.

1.1.3.2 Why Capability Maturity Model?

The first question to ask may be the reason of a software development model. The

software development methodologies try to ensure the quality of the product.

However, the development process and the guarantee about the success of selected

software development methodology are also important.

First reason to prepare such a model may be seen as the value of the market. The

software is one of the most valuable and expensive products in the market. When it is

thought that the resources of this product are new ideas, time and experience; then

the value of the product may be seen acceptable. And the customers should be more

deliberate, if they purchase so expensive things.

The software market has many companies, who can do similar things. The

products of these companies may be seen same from outside. However, there are

more parameters than the interface or functionality to think before signing a contract

with the development company. (For example; the ability of completing the product

at the right time, with the right resources, etc. may be seen in the criteria.) The

biggest problem here is being sure about the success of the project, before it begins.

5

The software engineers tried to prepare a model to determine a company, whether

it is safe or not, because of these reasons. The Capability Maturity Model is one of

these models. The model recommends defining a company as mature, if the company

may get the required point from the defined checklist. (For example; the

documentation archives about the previous projects of the company will be used to

determine the mentioned point.)

Capability Maturity Model was chosen in this thesis. First one of the reasons is

the reputation of the model. The model is used in several companies in several

countries. Additionally, the customers, who spend much money for software, want

Capability Maturity Model accreditation for an approval before the project begins.

The Maturity Model is a product of Software Engineering Institute of Carnegie

Mellon University. The Institute works on the model with many surveys in the

market and with a great experience on Software Engineering. Because of this

preparation method, the model may be called as one of the trustworthy models to

approve the maturity of the development company and development process.

1.2 The Purpose of the Thesis

There are some software development methodologies in the market, which are

used in the companies. And one of the major problems about the methodologies is

specifying a target group from the software development team. For example, some

methodologies focus on the problems of management and try to solve the problems

for better management. However, some methodologies focus on the programmers

and try to maximize the profits of the programmers in the process. And other

methodologies focus on project executives to maximize the finance of the company.

As seen in these examples, every methodology focuses on the (particular) actors in

the process. But, no-one tries to understand overall process, team and development

company and to maximize overall benefits.

6

Another problem for the software development methodologies is the stability of

the chosen methodology. The creators of the methodologies are thinking only about

their companies or about one type of the companies in the market. However, these

companies are changing and growing organisms. And one company may use a rapid

methodology, because of its speed and low requirements. But after some time, the

company will begin to develop larger projects and his crew will also grow up. And at

this time, the rapid methodology will be not enough for them. Yet, the system is

already running and a big change in the methodology is not possible, in general. So

the methodology may determine the project types (and also the future) of the

company. At opposite, the same problems may be found after selecting a document-

based, highly-controlled methodology. Here, the main problem is “The

methodologies don’t think over changing and improving parameters of the

companies.”

1.3 Thesis Organization

 The thesis consists of 4 chapters.

 Chapter 1 presents the general information about software engineering. Firstly, the

need of software engineering and advantages of software development

methodologies are explained. After that, the purpose of accreditation and popular

accreditation methods for software development companies are defined. With the

motivations behind this thesis are written at last part of this chapter.

Chapter 2 begins with details of Software Engineering methodologies and the

trendy approach: Agile Manifesto. Extreme Programming is described to form base

information about an agile software development methodology. After that, new

software development methodology, RINGS is defined. The methodology is

explained detailed with its process steps, team roles, documentation requirements,

advantages and risks.

7

In Chapter 3, the acceptance of RINGS is discussed. Two methods are used for

accreditation of RINGS. The Capability Maturity Model is described as the

accreditation method and the result of RINGS for the acceptance checklists of

Capability Maturity Model is in that chapter. Secondary acceptance method used in

this thesis, is the acceptance of market. In this chapter, the opinions of possible users

of RINGS are also defined.

In Chapter 4, the overall summary and possible future works were explained and a

conclusion about the study can be found.

As Appendices, some documentary about the success story of Extreme

Programming and the questionnaire, which is applied to project managers and

software developers for gathering their opinions about “RINGS”, may be found.

8

 CHAPTER TWO

2RINGS

2.1 Overview

“Rings” is a development methodology for software and company, which totally

accepts Agile Manifesto. The methodology supervises not only the success of the

software development project, but also the improvement of the company according

to the changing parameters.

Rings methodology is formed like 3 rings, to define different software

development processes and easier transitions between these processes according to

changes in parameters of company. (Like alteration of the types of the projects, size

of the project teams, requirements of the new projects, etc.) The changes of the

parameters cause also to change the ring used for project management.

“Rings” is a complete process definition with 3 parts. These 3 parts are the

process steps, role definitions of the developer team according to the different rings

and the documentation requirements according to the process steps.

The backbone of the developer team is programmers, which has the knowledge

about the basic software development process steps. (Not only programming, but

also requirement elicitation, design, testing, etc.) At first ring, the team should have

also a project manager. The company at second ring should also define two more

roles in the team: Surgeon and Reporter. At the third ring, the company should also

hire a quality manager.

The documentation requirements of project steps increase also ring-by-ring. At

the first ring, the documentation requirement is limited. The documents, which are

produced by the project development phases, increase by changing rings. (This

change is parallel with the complexity of the project and the possible problems of

management of the bigger development team.)

9

“Rings” has 4 key principles. These principles are the motivations behind “Rings”.

The developers should think about these ideas, while deciding something about the

software project.

In the following sections, the basic concepts about a software development

methodology may be found. In last sections of the chapter, the details of principles,

project process, team and document requirements will be detailed.

2.2 Related Works and Basic Concepts

2.2.1 Basic Life-Cycle of Software Development

Figure 2.1 Waterfall model of W. Royce

10

Software is a product, which is developed via an engineering process. After 1961,

NATO Conference, it is said that the solution of the problems on software production

is preparing software development process over a basic life cycle. According to the

experiences on other engineering disciplines, the engineers and software builders are

prepared a basic life cycle, which will be the base for developed processes. (Ghezzi,

Jazayeri and Mandrioli, 1991) (Schach, 2002)

The basic life cycle starts with the requirements analysis of the software and tries

to define the software production as a project. This project will also die with the

retirement step of the basic life cycle: (Royce, 1970)

Requirements Analysis: At the beginning, only the customers know what they

want. The transmission of this knowledge is the first problem in context. The

developer team should try to get the requests of the possible users and customers at

first. Next process is the analysis of these requirements according to the abilities and

for the highest profit. (Sommerville and Sawyer, 1997)

Requirements Specification: The collected requirements will be refined with the

whole development team to concretize the product with the requests. This stage is

also called “What to do?” – Stage. The signed specification document can be thought

as an indirect acceptance of the customer and developer about the main topics and

general boundaries of the product.

Design: The development team will try to design the overall product according to

the specified requirements. By design phase, the developers try to specify all of the

technical definitions to think about the problems, before implementation. (Because it

can be said that the earlier founded syntactic or semantic errors always costs less.)

This phase can be also called as “How to do?” – Stage.

Implementation: The designed software product will be implemented after

specifying and solving almost all of the design problems. Implementation phase can

be explained shortly as coding the prepared design via a programming language.

11

Although some researchers think that testing of the implemented codes should be

defined out of the implementation phase, the testing work will be done in the

implementation phase.

Maintenance: After implementation, the product will be send to the market or to

the unique customer. And some changes may be required to correct or improve the

product. These changes are thought as maintenance phase of a standard software life

cycle.

Retirement: The last phase of a standard life cycle is dying, which can be seen as

a metaphor for software product. When software’s maintenance is more expensive

than preparing new one, it can be said that the software enters to the retirement phase.

And some documentation work about abilities of the existing system will be begun to

facilitate nest process.

After preparing these basic milestones of software production project, the

software engineers tried to work on these components in the life cycle to be more

efficient. Some stages were called as less important or some were called as iterative

stages for specified systems. And these implementation changes are defined as

different software development processes. Waterfall, Spiral, Incremental, Extreme

Programming, SCRUM, Crystal, etc. may be seen as the most popular processes in

software development history.

According to the base manner, these development models can be classified into

two classes:

Classical models (or Heavyweight models) include the Waterfall (Royce, 1970),

Boehm’s Spiral (Boehm, 1988), and Incremental models. These models are generally

documentation-based and pay more attention on management rather than product

development. The motivation behind this is that the better management brings

naturally better result for development. These models are being used from the

beginning of the software engineering history.

12

Agile models (or Lightweight models) include the Extreme Programming, Crystal,

SCRUM, etc. These models are generally product-based models and pay more on

rapid customer satisfaction rather than long-term works. Because of this, these

models especially can’t be used widely for large projects. The motivation behind

these models is the rapid changing world and conditions in the market. The one of

oldest models from agile manifesto can be said after 2000s. In the section, Agile

Methodologies and Extreme Programming will be detailed, because the main

motivation of this thesis is agile models.

2.2.2 Agile Software Development Manifesto

After 1961 NATO Conference, the software engineers tried to model the software

development process to solve the main problems of developers and customers. And

they used other engineering disciplines as base methodologies. Because the products

of other engineering disciplines are not similar with software development, these

imported solutions couldn’t solve the problems. (It can be also said that these

methodologies delayed the solution, because other engineering disciplines are

suitable for the special situation of the software development operation. The product,

the producers, the planning phase, the experiences, etc. are so different from classical

engineering worries.)

Especially the engineers from large companies tried to change the classical

management-based systems according to the nature of the software development. In

the second half of 90s, some software engineers begun to implement their “light”

ideas in their companies and the success stories were also begun explaining in all

over the world.

Via internet, these success stories and founders of these ideas were begun to

compare. The software engineering researchers and the founders of these models are

decided that these models can be classified with some attributes against the classical

13

models. To specify these common properties, some software engineers were come

together in UTAH.

In a meeting at Wasatch Mountains (UTAH), 17 project leaders/software

developers specified these common properties. At February, 13 2001, these software

engineers signed the Agile Manifesto, which contains the common properties of the

trendy development models. The agile manifesto contains some sentences for

software development to be successful in the new software market and has some

contrary ideas:

“Agile Manifesto:

We have come to value;

“Individuals and interactions” over “Processes and tools”,

“Working software” over “Comprehensive documentation”,

“Customer collaboration” over “Contract negotiation”,

“Respond to change” over “Following a plan”.

That is while there is value on the items on the right; we value the items on the left

more.” (Agile Alliance)”

The idea behind the manifesto is the changing market requirement of the

changing world. The first rule is that the software development is a work of human

and cannot be fully automated with process rules and tools. Second attribute is that

the first condition of customer satisfaction is the working software and too detailed

documentation for management is unnecessary. The development team must have

collaboration with customer, because the customer will pay for the product. As a last

rule, the engineers said that always the conditions will change during the

development and the development team can’t resist these changes for following a

plan.

 According to this manifesto; the developers accept these following principles;

“We follow these principles;

14

a. Our highest priority is to satisfy the customer through early and continuous

delivery of valuable software.

b. Welcome changing requirements, even late in development. Agile

processes harness change for the customer's competitive advantage.

c. Deliver working software frequently, from a couple of weeks to a couple of

months, with a preference to the shorter timescale.

d. Business people and developers must work together daily throughout the

project.

e. Build projects around motivated individuals. Give them the environment

and support they need, and trust them to get the job done.

f. The most efficient and effective method of conveying information to and

within a development team is face-to-face conversation.

g. Working software is the primary measure of progress.

h. Agile processes promote sustainable development. The sponsors,

developers, and users should be able to maintain a constant pace

indefinitely.

i. Continuous attention to technical excellence and good design enhances

agility.

j. Simplicity -- the art of maximizing the amount of work not done -- is

essential.

k. The best architectures, requirements, and designs emerge from self-

organizing teams.

l. At regular intervals, the team reflects on how to become more effective,

then tunes and adjusts its behavior accordingly.”

(Principles of Agile Manifesto, n. d.)

The software developers, who signed this manifesto has their own famous

development methodologies. However, one of these methodologies becomes the

15

most famous one with its easy implementation and high understandability: Extreme

Programming.

2.2.3 Extreme Programming

Extreme Programming (XP) is the most famous agile methodology. When the

history of the Extreme Programming is investigated, Daimler Chrysler can be seen as

the first implementer. Two engineers from the software group, Kent BECK and

Ward CUNNINGHAM implemented their original ideas about development cycle in

1996. The unexpected, successful results of this implementation were spread all over

the world. With the help of the new technology, internet, the success story of the

Chrysler has become a solution for the software world. The details of C3 project of

Daimler-Chrysler may be found in Appendix A.

2.2.3.1 Four Values of Extreme Programming

Extreme Programming has four values and 12 implementation practices by

definition. Especially the four values of Extreme Programming are the physiological

differences against the classical methodologies: (Beck, 1999)

Communication: The communication for a software development is very

important for a successful development and successful software product. The

communication has two meanings here: The communication between user and

developer is the first idea of communication. The idea is that the classical

development model requires distinct phases for communication (only requirements

and specification phases) However, XP requires continuous communication with

user/customer. The second communication is between developers. Usually the

management or documentation based systems pays more attention to the

management and for easier management, the developers only communicate via tools

or reports. However, XP advocates that human can better communicate by speaking

rather than reports.

16

Simplification: The software development process can be seen as a correction

process. Because of the requirements, specification and market problems, the

developers should change the prepared software all over the time. The motivation is

that the developers can’t resist to the changes during the development. And because

of this, it is not effective to develop more complicated algorithms like an artist. The

developers should prepare their algorithms as simple as possible to decrease the

change effort and also to decrease the spend effort for change-able code.

Feedback: One of the most important problems on the software development is

the mismatch of the real-requirements on the delivery. To solve this problem, the

testing mechanisms are tried to improve by classical methodologies. However, XP

says that the real problem begins from the motivation. As a testing mechanism, the

developers might use the real users by giving the incomplete systems and taking

feedbacks from them. These feedbacks are more efficient than the automated testing

tools or more realistic than the stakeholders with customer role.

Courage: The last motivational value of Extreme Programming is being

courageous. The courage should be in each phase of the development. The

developers should be always in communication with the users. And if they have fear

for doing false, they can’t talk with the user or they can’t show the system to the

user. This will postpone the detection and correction of the errors. Or when the

developers are not courageous, the developers cannot try some revolutionary design

changes. This will cause the destruction of the creativity of the developers.

2.2.3.2 Development Process of Extreme Programming

The development process of Extreme Programming is not so different from the

classical models. Like other methodologies, Extreme Programming can be also

defined with process steps. (Wells, 2006)

17

Figure 2.2 General development cycle of an XP Project

The overall process may be seen like incremental development. For one project,

the process begins with User Stories as seen in Figure 2.2. With inputs from user

stories, system metaphor and estimations, the release plan will be prepared. After

that, according to this release plan, the iterations begin. Acceptance of iterations will

be judged with acceptance tests. When the iteration is verified by acceptance test, the

prepared iteration is integrated into the release via a customer approval.

Figure 2.3 Iteration of an XP Project

When iteration should be detailed, it can be seen that iteration is a small project

prototype. As seen in Figure 2.3, iteration begins with a planning phase via a small

risk analysis with inputs from release plan and bugs from previous iteration.

18

According to the details of the iteration plan, development cycle will begin. When

some problems are defined about the user stories or requirements, new user stories or

updates on existing ones may be gathered from users. Day by day, the outputs, new

functionalities from development will be added to the latest version. The prepared

version will be the output for overall project.

Figure 2.4 One development cycle of an iteration of an XP Project

After iteration plan is produced, the coding phase of the development may start.

(Figure 2.4) The test results and plan are the inputs of the inner - design meetings.

These meetings may be called as limited design phases. These daily meetings are for

determining and analyzing the tasks and after that the coding phase will begin.

Figure 2.5 Coding phase of an iteration of an XP Project

19

As seen in Figure 2.5, each coding phase include too many coding ideas. Coding

of new task will begin always with preparing the unit tests for new task. After that,

the coding session will be done according to pair programming. Other programming

practices for better development are refactoring and continuous integration.

2.2.3.3 12 Practices of Extreme Programming

Extreme Programming works according to 12 practices. These 12 practices are

defined with 4 values and the base of the process. While some of these practices are

new terms, some of them are already defined, but not experienced software

engineering ideas. The 12 practices of Extreme Programming are; (Fowler, 2005;

Jeffries, 2001)

1. Planning Game: The Planning game will be played with users to take their

requirements with their own technical terms. This may be seen the requirements

elicitation phase of Extreme Programming.

2. Small releases: The system will have small releases and the user will see what

he will get in small time periods.

3. Metaphor: The system should be defined with metaphors for the developers for

better understanding. The target system should be defined in a simple shared story as

a guide.

4. Simple Design: The design should be as simple as possible to gain the change-

ability. Extra complexities may be useful to increase the functional performance, but

the cost of it may be too much. So, the simple design will decrease the maintenance

and correction costs.

5. Testing: The testing is too important and the test cases should be defined before

the implementation phase. (If we will know what we will test, we can also code it

20

right) Programmers continually write unit tests, which must run for development to

continue. Customers write tests demonstrating that features are finished.

6. Refactoring: The developers should be courageous and not to fear from

refactoring the system. The development cycle should include the phases to make the

design, functionality and performance better.

7. Pair Programming: The coders will write the code as pairs. Two developers, on

one module and one computer will show better performance than two developers on

two modules. (Birant and Kut, 2004; Cockburn and Williams, 2000; Ferzli, Wiebe

and Williams, 2002)

8. Collective Ownership: The whole development team owns all of the produced

code. We cannot divide the code into pieces to specify responsibilities. So, anyone

can change any code anywhere in the system at any system.

9. 40-hour week: The developers are responsible to design code and test. And

because of this hard work, they should not to be over-worked. (Or as a more realistic

advise; never work overtime a second week in a row.)

10. On-site customer: The customers should attend the development team and if

possible, he should attend the development process full time. The practice advises

that, because the most important and true information source about project is the

customer and if the time decreases to reach the source, it will directly affect the

development time.

11. Continuous Integration: The system will be developed with pieces; however

the whole product should be prepared incremental. This means that the system

should be expanded with completed parts. Previously thought methodologies don’t

think over the integration problems. However, the development team should think

over the integration phase in Extreme Programming and should meet these problems

as early as possible.

21

12. Coding Standards: The developers should have some coding standards to

increase the readability of their codes, because collective ownership and pair

programming forces all development to understand each others code. Another

advantage of this practice is also providing the agility while team changes so often in

a company.

2.3 A new methodology: RINGS

2.3.1 4 Values of RINGS

The software development is a work between art and job. For defining the place,

first of all, the developers should have the same ideas and should be agreed on the

same principles:

Communication: The communication in the group is too important. There are two

types of communication in a development process. The communication between two

developers is important, because human being is a social creature. The information

transfer is not so easy in other ways rather than talking. So, the communication

should be clear and easy in a development process. The communication between

developers and customers is also important, because the only input about the product

is customer. So the information transfer from the customer to developer is important

for preparing the right product right.

Coordination: The software development is a job which has its own properties

and the software developers just want to feel themselves free. However, this doesn’t

mean to leave them free. The coordination via a coordinator is as important as being

free. There should be a coordination manner to coordinate the system,

communication and development process.

Courage: The courage of the developers is also important in a development

process. The courage may be required by a discussion with the customers. The

22

developers should give the prepared part of the software to the customer to take the

feedback without fear. In another case, the developers should have the courage to

delete the wrong code of the software. The courage of deleting something instead of

trying to repair is too hard, but it may be necessary in some cases.

Continuous Coding: The software developers or (in general) computer engineers

don’t like to write reports. Documentation is always a problem in software

development groups. In our method, the developers are needed not to write

documents. Instead of this, some solutions will be explained in the process.

However, the principle is not to spend time to write reports for management level.

2.3.2 Overall Process of Rings

“Rings” is a development methodology for software and company, which totally

accepts Agile Manifesto. The methodology supervises not only the success of the

software development project, but also the improvement of the company.

Rings methodology is formed like 3 rings, to define different software

development processes and easier transitions between these processes according to

changes in parameters of company. (Like alteration of the types of the projects, size

of the project teams, requirements of the new projects, etc.) The changes of the

parameters also cause to change the ring used for project management.

“Rings” is a complete process definition with 3 parts. These 3 parts are the

process steps, role definitions of the developer team according to the different rings

and the documentation requirements according to the process steps.

The backbone of the developer team is programmers, which has the knowledge

about the basic software development process steps. (Not only programming, but

also requirement elicitation, design, testing, etc.) At first ring, the team should have

also a project manager. The company at second ring should also define two more

23

roles in the team: Surgeon and Reporter. At the third ring, the company should also

hire a quality manager.

The documentation requirements of project steps increase also ring-by-ring. At

the first ring, the documentation requirement is not many. The documents, which are

produced by the project development phases, increase by changing rings. (This

change is parallel with the complexity of the project and the possible problems of

management of the bigger development team.)

Figure 2.6 Overall process of “RINGS”

“Rings” has 4 key principles. These principles are the motivations behind “Rings”.

The developers should think about these ideas, while deciding something about the

software project. These mental properties are explained in next chapter.

2.3.2.1 Inner Ring

The start-up point of the process is a young software development company with

start-up projects. And the first development process for this company is “Inner Ring”.

The prudence is that the company has not so much resources and the projects are

24

small-sized or medium-sized. So, only a project manager role may be enough in this

ring. In spite of the many assignments of the project manager in other rings, the

project manager of inner ring may work only for coordination and as result; he also

may help to develop as a coder.

Figure 2.7 1st Ring of “Rings” (Inner Ring)

As seen in Figure 2.7, the process begins with requirements elicitation (User

stories). The attendees of the meeting will be the project manager, project hero (if

exists) and customer representatives. The stories of customer representatives will be

noted and a general database design and user interface design will be done.

According to the experiences of the hero and the manager, a release plan will be

published to the group and the development process begins. Before the programming

phase begins, the release plan may be the only printed document of the system. After

the functionality and the data storage is accepted by the customers, the functions of

the user interface will be written by the programmers. While coding, the unit tests are

also applied to the prepared codes and a continuous integration will be done. The

most important testing phase is taking feedbacks from the customer. While

continuous integration, the prepared codes are sent to the customer (or to the

25

customer representative) and their feedbacks are taken as test results. After all of the

coding is done, the required documents (like manuals, code definitions, etc.) will be

collected from the development environment. When focused on each of the process

steps;

• User Stories: User Stories are the requirement elicitation method of a “Rings”

process. These stories are not written formally, because the users should let

feel as free as possible by defining their needs. The formats and obligations

for not using terminology prevent the user from explaining the needs as good

as possible. So, user stories may be seen as the functionality description of

the system according to the terminology of it. The project manager and the

developers will be in this step of the process to define the requirements of the

system. They take the real functionality description according to the real

terminology of the system from the real users of it. The General Specification

document is the result of this step. This document includes the boundaries

and validation criteria of the software project.

• Version Planning: Version Planning may be seen as a primitive study of

time-estimation or schedule-planning. The Version Planning term is defined

in Extreme Programming. According to the base definition; the system should

be represented to the customers in short time periods. Each representation

should include new functional or non-functional innovations in software.

These representations are called as versions and the definitions and

estimations of the versions have two advantages: (I) The customers are

informed about the future of the software project. (II) The developers have a

time constraint to follow. So according to the user stories, the project

manager will define the production speed, the order of the functional or non-

functional requirement implementations and the representation schedule. So,

the version plan may be seen as a transition to the schedule planning. As a

result of this step, the version plan document, which include the written

conditions, should be prepared and accepted by all of the developers.

26

• User Interface – Database Design: One of the reasons of designing the

software before implementation is need of a written thing to discuss the

implementation. After the design of a product is prepared on a paper, the

chance of satisfaction of both the developers and the future users increase.

The developers may discuss easier over the solutions (for example;

algorithms, data types, etc.) of the software, when a study of solution is ready.

Also, the users of the software are trying to define their requirements.

However, after defining some requirements if the developers represent some

concrete solutions according to the defined problems; the users may see

easier, whether his definition is what he wants or not. So, the user interface

design may be seen as the concretion of the user requirements to work on

them. Also the Database Design of the system is the study of preparing the

centre of the project. According to these base designs, the developers may

easily discuss the implementation of the software.

• Individual Development: The product of the development team, in 1st ring

will be a small project. So, the team is not so large. Because of this, a detailed

and iterative development (implementation) is not considered. The

implementation of one-module product will be according to the following

process steps;

o Coding – Unit Tests: The coding phase is the easiest phase step of

“Rings” to define. The simple programming of the software is the

meaning of this step. In this phase, pair programming may be found

useful and may be used. But, the human resource of the project is

significant. If the human resource is enough, pair programming is

preferred. While coding, the unit tests will be also applied to the inner

units (Or functions) of the system to verify it.

27

o Integration – Feedbacks: Continuous integration is a meaningful

practice. To specify the problems of product, the errors of the

communication between the units is as important as the errors of the

units. So the produced units should be integrated as often as possible.

To validate the project, the feedbacks are too important. “RINGS”

accepts that the most important information source of a software

project is the user of the product. So, each version will be delivered to

user to take feedbacks about the verification and validation of the

project.

• Documentation: The documentation is the most important thing for a well-

controlled, disciplined and measured software development process. Software

development process is a production process of an invisible product and the

documentation tries to let the product visible for both developers and

customers. However, preparing formatted documents are also most

frightening nightmares for software developers. The software developers

always want to focus on programming, not on preparing documents before or

after programming. Especially, preparing documents is harder in small

projects, because it is harder to let the developers believe in importance of

documentation. But, the managers should motivate the developers to prepare

documents during development for easier maintenance and preparing a better

base for future products. Yet, the actuality is not so easy. Besides motivating

the developers and also forcing them, may be not enough. And

documentation during development is only a utopia, especially in small

projects. Inner ring advises accepting the reality. The documentation phase

may be shifted to the end of the development process. So, the developers may

focus only on development and also the customers and the project managers

will gather the required documentation. The documentation phase will start

with end of the implementation of program and will end with production of

documents. (Additionally, the requirements of documentation phase should

be as minimal as possible.)

28

2.3.2.2 Transition from Inner Ring to Middle Ring

The “Inner Ring” is not a complex process. It may be used only in small projects.

And by time, the company will work on medium-sized projects. So, the “Inner Ring”

will be not enough for these projects. (For example; in a small project,

documentation about prepared codes is not so important, because the prepared codes

are not so many. However, when the line of codes increase, the information to

remember also increase and the developers should be more documented.) For these

projects, the company will need a more-disciplined and controlled process. Because

of this, the company should change its “ring”.

While changing the process cycle, the company should be prepared. The company

should prepare its “Coding Standards”. This manual of standards are defining the

abbreviations, naming strategies and commenting of the coding group and it will be

helpful for more complex projects. When the team will change so often and when

enlarge more than a manager can coordinate, this standard will be helpful. The

adaptation time of the new comers will decrease with the help of this manual. And

with this manual, the company may start using “Middle Ring” process.

2.3.2.3 Middle Ring

After 2 or 3 projects, the cycle will be not enough to develop good projects,

because of the increased project number and maintenance requirements. At that time,

the company should go into the 2nd circle of the cycle. This circle contains more

documentation than the inner one. The requirements engineering part is divided into

two parts. In the first part, the general knowledge will be collected from the users

(maybe from the customers) However, in the second part, the deeper information will

be collected from the real users of the software by the developers. This will increase

the success chance of validation process. And some more changes will be done in the

company, which are not so hard to adapt.

29

Because the process requirements are increased, the roles of the team should also

increase. First of all, the project manager should only work for coordinating the

system. Additionally, one of the software heroes of the company will be assigned as

the surgeon of the project. Two more management group members will be added to

the list: A documenter and a project management tool (software)

Figure 2.8 2nd Ring of “Rings” (Middle Ring)

The overall process begins with a restricted requirements elicitation step (Figure

2.8). The first part of requirements engineering is the starter of the project. In the first

meeting, the management group of the project will prepare the boundaries and the

overall scenario of the software. This meeting will be done with Project Manager,

Surgeon and Customer Representatives. After the release planning, the base of

database system and user interface of the software will be decided. After that the

parts (modules, components or functionalities) of the software project begins. At

each module, the developers run a requirements engineering process by themselves

and try to code the taken requirements. The implementation phase of the cycle may

30

be seen as incremental development. The implementation details of each process

steps may be defined as follows;

• Project Basics: Project Basics is the first step of the project definition. The

management team and the customer representatives will be met on system

and discuss the basic boundaries of it. According to the level of experience of

surgeon and project manager; the basic requirements definition may be done

in this step. The collected information should be enough to define the version

plans, developer requirements, modules (component/sub-system/etc.), time

requirements, basic performance requirements, legal requirements and

financial costs. However, the functional or non-functional details of the

separated modules will not be defined in this step. The “Project Basics” will

end with preparation of the general specification document. This document

will be the overall guide for defining the boundaries of the project and as a

restrictive document for asking for new needs in future steps of project.

• Version Planning: Version Planning may be seen as a primitive study of

time-estimation or schedule-planning. The Version Planning term is defined

in Extreme Programming. According to the base definition; the system should

be represented to the customers in short time periods. Each representation

should include new functional or non-functional innovations in software.

These representations are called as versions and the definitions and

estimations of the versions have two advantages: (I) The customers are

informed about the future of the software project. (II) The developers have a

time constraint to follow. So according to the user stories, the project

manager will define the production speed, the order of the functional or non-

functional requirement implementations and the representation schedule. So,

the version plan may be seen as a transition to the schedule planning. As a

result of this step, the version plan document, which include the written

conditions should be prepared and accepted by all of the developers.

31

• Base User Interface – Database Design: One of the reasons of designing the

software before implementation is need of a written thing to discuss the

implementation. After the design of a product is prepared on a paper, the

chance of satisfaction of both the developers and the future users increase.

The developers may discuss easier over the solutions (for example;

algorithms, data types, etc.) of the software, when a study of solution is ready.

Also, the users of the software are trying to define their requirements.

However, after defining some requirements if the developers represent some

concrete solutions according to the defined problems; the users may see

easier, whether his definition is what he wants or not. So, the user interface

design may be seen as the concretion of the user requirements to work on

them. Also the Database Design of the system is the study of preparing the

centre of the project. According to these base designs, the developers may

easily discuss the implementation of the software. As a difference from the

similar step in inner ring, there is a finalization document. The work on base

user interface and database designs will be reported by the documenter.

• Module-based (or Component-based, etc.) Pair Development: The coding

phase is thought according to the Extreme Programming suggestions. Pair

Programming is advised. The overall-defined modules are detailed, designed

and coded with the pairs. There may be seen an inner development ring to

produce modules and develop final product with the following inner steps;

o User Stories: User Stories are the requirement elicitation method of a

“Rings” process. These stories are not written formal, because the

users should let feel as free as possible by defining their needs. The

formats and obligations for not using terminology prevent the user for

explaining the needs as good as possible. So, user stories may be seen

as the functionality description of the system according to the

terminology of it. The project manager and the developers will be in

this step of the process to define the requirements of the system. They

32

take the real functionality description according to the real

terminology of the system from the real users of it. The General

Specification document is the result of this step. This document

includes the boundaries and validation criteria of the software project.

For each module, the collection of user stories phase should reported

with a detailed specification document. This document should be

reported the work on elicitation process and specify also the details of

the module according to the user needs.

o Coding – Unit Tests: The coding phase is the easiest phase step of

“Rings” to define. The simple programming of the software is the

meaning of this step. In this phase, pair programming may be found

useful and may be used. But, the human resource of the project is

significative. If the human resource is enough, pair programming is

preferred. While coding, the unit tests will be also applied to the inner

units (Or functions) of the system to verify it. Each coding step should

be finished with this unit tests and the results of these test should be

reported via the documenter.

o Integration – Feedbacks: Continuous integration is a meaningful

practice. To specify the problems of product, the errors of the

communication between the units is as important as the errors of the

units. So the produced units should be integrated as often as possible.

To validate the project, the feedbacks are too important. “RINGS”

accepts that the most important information source of a software

project is the user of the product. So, each version will be delivered to

user to take feedbacks about the verification and validation of the

project. According to the feedbacks, the development process may

return to the coding phase to correct the faults or the process may go

with another module and return to a new “user stories” phase. After

the acceptance, the documenter will update the documents for users or

future products; procedure documents and user help documents.

33

2.3.2.4 Transition from Middle Ring to Outer Ring

The documentation requirement of “Middle Ring” is more than the requirements

of “Inner Ring”. However, increased resources force the development company to

increase the management, inspection and correction mechanisms in the project. The

“Outer Ring” increases these mechanisms.

When the company satisfies the 2nd stage of Capability Maturity Model, then it

can be said that the company is successfully ready to go out of the “Middle Ring”.

And if it is required, the company may use “Outer Ring”. Before this, the company

should prepare the documentation standards and quality standards. The company

should standardize the documents, because time allocated to prepare the documents

will decrease and the need of the documents will increase in time. Standardizing the

documentation processes helps the company.

The quality standards should be also documented and standardized. In first two

rings, the time and money resources are so important. However, quality of products

and quality of the company are more important for a big company. So, standards for

a good quality are important. With these standards, the company may start to use

“Outer Ring”.

2.3.2.5 Outer Ring

The process of the 3rd circle is too similar with the 2nd circle (Figure 2.9). First

important change is the increased documentation requirements of the process,

because the process supports the subcontract management and large project groups.

Second important change is the more controlled process mechanism. Our second aim

in the process starts here: A natural improved maturity. To achieve this aim, the

management team needs to be increased by one member. The Quality Manager may

be seen as the controller of metrics of process and product.

34

Figure 2.9 3rd Ring of “Rings” (Outer Ring)

The Management Group attends to the meeting to specify basics of the project.

After this meeting, the resource plan will be prepared and discussed with the

customer representatives. After corrections and acceptance, the process goes like the

“Middle Ring”. However, each phase has its own document requirements and review

of these documents. The steps of outer ring are detailed as follows;

• Project Basics: Project Basics is the first step of the project definition. The

management team and the customer representatives will be met on system

and discuss the basic boundaries of it. According to the level of experience of

surgeon and project manager; the basic requirements definition may be done

in this step. The collected information should be enough to define the version

plans, developer requirements, modules (component/sub-system/etc.), time

requirements, basic performance requirements, legal requirements and

financial costs. However, the functional or non-functional details of the

separated modules will not be defined in this step. The “Project Basics” will

35

end with preparation of the general specification document. This document

will be the overall guide for defining the boundaries of the project and as a

restrictive document for asking for new needs in future steps of project.

• Resource Planning: The assumptions for resources, that the company may

spend or that the project need started from lower level. However, in 3rd ring,

the needed resources of the project will increase dramatically. So, there

should be a planning phase to solve the possible problems, because there will

be more resources than a project manager can handle spontaneously. The

management team will work on resources and prepare an allocation plan.

After preparing this plan, the customer representatives and the management

team should also discuss the report until an agreement.

• Version Planning: Version Planning may be seen as a primitive study of

time-estimation or schedule-planning. The Version Planning term is defined

in Extreme Programming. According to the base definition; the system should

be represented to the customers in short time periods. Each representation

should include new functional or non-functional innovations in software.

These representations are called as versions and the definitions and

estimations of the versions have two advantages: (I) The customers are

informed about the future of the software project. (II) The developers have a

time constraint to follow. So according to the user stories, the project

manager will define the production speed, the order of the functional or non-

functional requirement implementations and the representation schedule. So,

the version plan may be seen as a transition to the schedule planning. As a

result of this step, the version plan document, which include the written

conditions should be prepared and accepted by all of the developers.

• Base User Interface – Database Design: One of the reasons of designing the

software before implementation is need of a written thing to discuss the

implementation. After the design of a product is prepared on a paper, the

36

chance of satisfaction of both the developers and the future users increase.

The developers may discuss easier over the solutions (for example;

algorithms, data types, etc.) of the software, when a study of solution is ready.

Also, the users of the software are trying to define their requirements.

However, after defining some requirements if the developers represent some

concrete solutions according to the defined problems; the users may see

easier, whether his definition is what he wants or not. So, the user interface

design may be seen as the concretion of the user requirements to work on

them. Also the Database Design of the system is the study of preparing the

centre of the project. According to these base designs, the developers may

easier discuss the implementation of the software. As a difference from the

similar step in inner ring, there is a finalization document. The work on base

user interface and database designs will be reported by the documenter.

• Module-based (or Component-based, etc.) Pair Development: The coding

phase is thought according to the Extreme Programming suggestions. Pair

Programming is advised. The overall-defined modules are detailed, designed

and coded with the pairs. There may be seen an inner development ring to

produce modules and develop final product with the following inner steps;

o User Stories: User Stories are the requirement elicitation method of a

“Rings” process. These stories are not written formal, because the

users should let feel as free as possible by defining their needs. The

formats and obligations for not using terminology prevent the user for

explaining the needs as good as possible. So, user stories may be seen

as the functionality description of the system according to the

terminology of it. The project manager and the developers will be in

this step of the process to define the requirements of the system. They

take the real functionality description according to the real

terminology of the system from the real users of it.

37

o Prototyping: Specifying requirements is one of the biggest problems

and how the project grows; this specification will become more

problematic. So, to solve this specification problem, outer ring adds

some additional phases. Prototyping is one of the easy solutions for

defining and refining requirements. After gathering the user stories,

the developers may prepare a prototype. This prototype includes the

functional and non-functional needs of the user, which are produced

from user stories. However, these specified needs may be false,

because the user may explain the needs false or the user may

understand his needs realistically. When the users and developers

work on a prototype, they can agree on real needs of the software

project. After two sides of the project agree on the prototype, the

coding phase will start. While this operation, the documenter should

prepare two documents for a better work: The project dictionary is the

first document and should be updated to know the terminology of the

project. The General Specification document is the secondary result of

this step. This document includes the boundaries and validation

criteria of the software project. For each module, the collection of user

stories phase should be reported with a detailed specification

document. This document should report the work on elicitation

process and specify also the details of the module according to the

user needs.

o Coding – Unit tests: The coding phase is the easiest phase step of

“Rings” to define. The simple programming of the software is the

meaning of this step. In this phase, pair programming may be found

useful and may be used. But, the human resource of the project is

significant. If the human resource is enough, pair programming is

preferred. While coding, the unit tests will be also applied to the inner

units (Or functions) of the system to verify it. Each coding step should

be finished with this unit tests and the results of these test should be

reported via the documenter.

38

o Integration – Feedbacks: Continuous integration is a meaningful

practice. To specify the problems of product, the errors of the

communication between the units is as important as the errors of the

units. So the produced units should be integrated as often as possible.

To validate the project, the feedbacks are too important. “RINGS”

accepts that the most important information source of a software

project is the user of the product. So, each version will be delivered to

user to take feedbacks about the verification and validation of the

project. According to the feedbacks, the development process may

return to the coding phase to correct the faults or the process may go

with another module and return to a new “user stories” phase. After

the acceptance, the documenter will update the documents for users or

future products; procedure documents and user help documents.

Our model doesn’t advice any process model for a company which is fully

adapted to the 3rd circle, because the company in 3rd level have to have someone to

check the current process cycle and new technologies like Software Engineering

Process Group. This group should revise the current process cycle according to the

new technologies, project types, company ethics, etc. As a result, the 4th and 5th

circles will be drawn differently for each company.

2.3.3 Team Requirement of RINGS (Roles of Team Members)

“Rings” is a complete system with detailed information for a small company. This

information includes not only the process steps, but also the role definitions of the

development team.

At the first ring, the only coordinator of the system is the project manager. The

project manager tries to coordinate all of the group members and development

process. It is expected that there is a company hero in the development process. This

39

hero has a good experience and knowledge about software development. However,

he doesn’t have any experience and request to be the manager of the process.

Because of this, he can’t be the manager of the system. The project manager

specifies the modules, prepares the version list with help of hero and traces the

process according to the foresights.

In the middle ring, the management group includes 3 people and a project

management tool. The management tool will help the managers by defining the tasks

and tracing them, because the development group is not large enough to use a

managers group. With the project manager from the 1st circle, we will take the

development hero into the management group as surgeon, because we expect that the

hero has now some experiences about management. Another reason is the increasing

project number. The company may need several heroes in several projects. So if the

hero doesn’t belong only to one project, it will be cheaper. The surgery doesn’t have

a specific task from modules to do. However, he should be in all of the modules of

the software. The surgery will attend to all of the module developments when needed

like a technical manager and solves general problems like database or manner

changes. The last member of this 4 people management group is a documenter. The

documenter will try to report all of the process and development to prepare the

documentation. So the documentation phase may be ignored from here.

The management group in outer circle increases by 1 person from the previous

circle. A quality manager will be added to management group. The quality manager

will check the system and improve the quality standards. The whole management

group works also as a Software Engineering Process Group. The whole group

represents the development group in the verification and validation meetings.

The role definitions are explained according to the ring names. When the roles are

focused on, the duties, responsibilities and skills may be explained as follows;

40

2.3.3.1 Developers

The developers are simply the coders of the projects. The developer’s role has

defined in first ring and continues in other rings. They are the backbones of the

software project. The “Continuous Coding” value of “RINGS” puts the importance

forward.

According to the continuous coding value, the first and most important duty of a

developer is preparing the product. The preparation term begins with the

requirements analysis of the modules (/tasks). The developer will attend the meeting

for user stories in 1st ring, but in 2nd and 3rd rings, the developers don’t attend the

meetings, in which the project basics will be specified. After the project basics are

determined, the user stories of each task (/module) will be also gathered by the

developers. Afterwards gathering the user stories, the developer will prepare the

automated tests and code the specified requirements. The verified code will be

integrated to the system and validated by the user. This feedback phase will be also

checked by the developer. The developer will note the output of the feedbacks and

correct the problems. After the prepared task is finished and integrated into the

system without a problem, the work for this module is finished and the developer

may go to the next module (/task/component/etc.)

The developers should work as pairs, if possible. The Pair Programming practice

of Extreme Programming is very useful and the advantages of the pair programming

should be taken. The crew may be not enough in 1st ring, but in 2nd and 3rd rings, the

teams will be big enough to form pairs for development. The first advantage of pair

programming is the reduction of risk of loosing some members from team. When

two members of team work on a module, the risk will half. Additionally, the better

performance on development will be one more advantage.

The most important responsibility of a developer is coding the requirements and

producing the software. So, the developer will be responsible of documentation only

in 1st ring. This documentation is also defined as a separate phase. The developer

41

should focus on continuous coding and after the product is prepared, the documents

will be written by the developers. In 2nd and 3rd rings, the documentation duty will be

left to another role.

The developers should be experienced on coding. Because the system forces the

developer to really develop (not implement!) the software, the tricks and tips about

the programming language and Integrated Development Environment (IDE). So, he

can easily focus on analysis and design phases of a development. Additionally, the

developers should be good team members. They should work with other team

members without having trouble. The oral communication and analysis skills of a

developer are also very important, because he should do his own requirements

analysis and the most important information transmit method will be the oral

discussions in the team.

2.3.3.2 Project Manager

Project Manager is coordinator of the project. The Project Manager role will be

chosen in 1st ring. The Project Manager of the 1st ring will be the overall coordinator

of the team and will help to team for development, if needed. The first and most

important duty of a manager is keeping the communication channels of the team

open. The communication channels between the development team members and

between the developers and customers are important. So, the manager should solve

conflicts, arrange and administer meetings and be the interface between customers

and developers. Secondary duty of a project manager is planning the project and

following the success of the plan. The plan should be realistic and may contain not

detailed estimations about the inner process of the functionalities. In 1st ring,

detailing the functionalities may be the work of the project manager, but in 2nd and

3rd rings, the surgeon will help him.

In 1st ring, the project manager will be responsible for preparing and following the

version plan, solving conflicts in the system, coordinating the team and reporting the

system online. If needed, the manager may also help coding. In 2nd ring, the

42

responsibilities of Project Manager will reduce. The Manager will not code and write

documents. But because the team and the project enlarged, the manager’s problems

will also enlarge. And in 3rd ring, the group that the manager will coordinate will

increase. The user stories to manage and the modules to implement will also enlarge.

Thus the project manager should be more focused on developers, customers and

interactions between them.

The project manager can make all of the decisions, which will affect the project,

except the unsuccessfully cancellation decision.

The project manager should be a good leader and coordinator. The team will

follow the leader of the project, when there are problems with software and with

customers. So the leadership and communication skills are very important.

2.3.3.3 Documenter

The documenter will be added to the project management group in 2nd ring. The

documenter will be responsible for producing the documents. Because of the

“Continuous Coding” rule, the developers don’t prepare documents. Their only duty

is developing software. So, the documenter will follow the development cycle with

all of the members of team and fill in the blanks in the documents. The documenter

should follow the developers and prepare the documents according to the codes and

coding phase. Also, the documenter should follow the project manager and other

management roles to document the plans and management decisions.

The documenter doesn’t have any right about deciding something in project.

The documentation is not an easier work in project than developing or managing

it. The documenter should follow all of the information transfers and transactions in

the system to write down. So, the communication and intelligence skills are very

important for a documenter. Additionally, the documenter should be systematic to

handle too many information at the same time. The handled information should be

43

documented regularly and so, the documenter has to explain other’s information well

to other people, because he should be a transmitter (or “Under-liner”) between the

source (programmer or customer) and the target (customer or programmer). Because

of this, the documenter should have a good skill of writing reports. The biggest

problem for programmers is preparing documents. But there can not be used a

standard secretary to prepare the reports, because the reports will contain information

about software engineering and development. The member, who will document

someone’s code, should have information about the process that they use and about

coding the software. As result, the documenter should be a Computer Engineer or an

experienced coder.

(Additional (Practical) information: The required skills for a documenter are too

much as seen. The most important and most problematic skills are having domain

information and being regular documenters. The software engineers don’t like

documenting and the regular documenters don’t know the secrets behind software

development (either theoretical or practical secrets) Therefore, finding a documenter

will be a nightmare. As solution, it can be advised to hire interns or part-time

workers from Computer Engineering (or related departments) students. It will be

useful, because these workers will be hired with this work information and can’t

refuse. Another advantage is their information about domain. These workers will

have primitive software development knowledge, and this will be enough to follow

the system and prepare documents. (Regular documenting skill will be trained.) The

last advantage of such a work will be the adaptation and learning process of the

worker. The possible workers of future may be hired in this way and they may be

adapted to the work by not giving too many responsibilities and by taking him into

the process at every step.)

2.3.3.4 Surgeon

The project hero is one of the most effective and most problematic members of a

software development team. Project hero is the well-informed and most creative

developer in the team. He may be also well-experienced and have good information

44

about domain. However, the project hero is most problematic member, because their

common property is also non-manage-ability. The project hero may solve all of the

problems, but may not work under straight rules and with pairs. While forcing him

for such works, the performance of entire team may decrease. The surgeon is a more

managerial role for a project hero. The purpose of this role is using the creativity and

domain information of the hero, but avoiding him to work with pairs and decreasing

the communication with other members.

The surgeon will create the system design and prepare the task lists with the other

members of the team. Because of these duties, the surgeon may be also called as a

technical leader of the team. Additionally, the surgeon will prepare the adaptations of

new technologies into the projects. With this work, the surgeon may be called as an

instructor in the team. As a third work, the surgeon will be work as a developer, if

needed. If the developers need, they can call the surgeon to solve an algorithmic, a

technological or a design problem for a short time. At this time, the surgeon can use

his lancet for a short time and leave the whole designing, coding and testing work to

the developers according to his solution.

The surgeon should be in decision meetings for first project analysis and version

planning with the customer. The technical requirements and information from

experience will be added to the project via this way. The project manager will decide

everything, but the surgeon will assist him, while making technical decisions.

The surgeon will have the similar skills as a programming hero with his negative

and positive skills. As positively, a surgeon should be well-experienced and creative.

The technical background and the competence of capability will be also important

while choosing a surgeon. If a team has several project heroes in 1st ring, some

additional skills may be thought for choosing the surgeon from them, because more

than one surgeon will be too much for a team which is not bigger than 15-20

members. Additionally, a better communication skill, pair working ability, teaching-

capability and harmony with project manager may be useful as criteria.

45

2.3.3.5 Software Management Tool (Software)

The management of a team is always a problem. In 1st ring, the project manager

may manage the project. However, after 2nd ring, the team and size of the project will

be enlarged. To keep the system updated and controlled, someone should keep

everything in mind and force to remember the plan during making decisions.

A software management tool may gather information for decisions or may be

programmed for making decisions automatic.

This tool will be used to process something automatic. So, the first skill will be

keeping the team tasks and tracking the system according to this plan. Preparing

detailed automatic reports from the submitted data will be another useful skill of the

tool. The automated reports will ease the work of team for reporting the development

process for executives or standard checkers.

2.3.3.6 Quality Manager

Quality manager may be called as overall controller of the project. The first duty

of the quality manager is checking the works of project manager, surgeon,

documenter and developers. The project manager’s responsibilities are defined and

the quality manager checks the minimum requirements and quality of work. The

developer’s programming/developing work will have some coding standards and

working standards. Quality Manager will check these standards of developers. The

prepared standard metrics for software development process may be used for

specifying the quality of the work mathematically. Another work of Quality Manager

is preparing the standards and applying new process ideas in the company.

Quality Manager is responsible for designing overall process for products in a

good quality. For this reason, he may be seen more qualified than the project

manager. In the company, this answer may be true. However, the project manager is

authorized on project for the vision of executives and customers.

46

Quality Manager should be the leader of the project. The developers should see

him also in the same authorized level with project manager. For having an effect like

this, the quality manager should have a good leadership and communication skill.

One of the most important skills of a good Quality Manager is the understanding

skill. The quality manager should understand new technologies and new software

engineering trends. Other important skills for Quality Manager will be also being

attentive and being regular. The quality manager should gather information from

several ways from the members of team. This information should be well arranged

and documented for a right decision on the quality. Additionally, a more attentive

manager may easily gather the required information.

2.3.4 Documentation Requirement of RINGS

Preparing documents is the process, which differentiate software from a simple

program. The advantages of preparing documents are too many. Some of them;

• Preparing documents will make software visible for customers

• The documents will make the requirements visible for developers

• The documents will make the software discuss-able for developers

• The documents will make entire information accessible

• The documents may be used for a better/faster maintenance

• …

As seen, documenting a process and a product is useful. However, it is not so easy

to prepare the documents. Because the developers are focused on developing

solution, they can’t find enough time for documentation and writing documents are

not in skill checklist for choosing the developers. As result, the developers don’t like

preparing documents. By accepting this problem, “RINGS” will advice “Continuous

Coding” principle. “RINGS” don’t want other works rather than coding for

developers. Several solutions for this problem is put forward by the new

47

methodology like a separate “Documenting” phase step and a separate “Documenter”

role in the team.

In the first ring, the user stories should be documented after the first requirements

engineering phase. There is a specification report before version planning. After

version planning the version plan will be published. In the documentation phase in

the first ring, the general documentation should be done. (For example; procedure

information, user manuals …)

From inner ring to middle ring, some standards should be developed. A coding

standard for the company has to be prepared according to the needs and experiences

of the company.

In the middle ring, the boundaries of the software will be prepared from the first

requirements engineering phase. The secondary document from this phase is also the

quality standards for the project. Like first ring, a version planning document will be

published.

From middle ring to outer ring, a documentation standard and the general quality

standards document will be published.

In the outer ring, an archive document will be published after each phase. These

documents will be traced and checked by customer with a feedback. These

documents include; project boundaries, resources, version plan, database – user

interface basics, procedure library, resource updates, … Some additional documents

like a project dictionary should also be added to the project. This dictionary will

contain the meanings of the technical terms in the concept of the software.

Documentation is the most important thing for management and coordination.

For a better management and easier maintenance, required things should be well-

documented. The requirement of documentation increases ring-by-ring. The

documents of “RINGS” are as follows;

48

2.3.4.1 General Specification Document

General Specification Document will be used in 1st, 2nd and 3rd rings. In 1st ring,

the General Specification Document is the first and only document to report the

requirements and needs of the user during the development. After development of the

product, some detailed requirements documents may be produced according to the

customer requests. In 2nd and 3rd rings, the document contains the information, which

is gathered from “Project Basics” step. So, the document has only the basic needs

and most important constraints about the project. The inner details of modules (or

sub-projects) will be detailed in the document, which will be prepared after “User

Stories” phase.

The report will be prepared in a formal way. The language should be formal (not

native), but it should not be technical. The target readers of this document will be

users, customers, developers and executives. As result, the document should be

readable for all of these classes. A small General Specification Document should at

least contain the following sub-chapters:

• General description of the product

• Schedule constraints from User/Customer

• Cost estimations

• Technical constraints

• Gathered User Stories

o Description

o Priority

o Accepter (if possible)

The General Specification Document is the responsibility of the management

group of the team. In 1st ring, the team can’t be divided and the writer group will be

all of the team. (The Project Manager will be actual writer.) In 2nd and 3rd ring, the

49

management group will attend to the “Project Basics” meeting and prepare the

document. The documenter of the management group will be the actual writer of it.

2.3.4.2 Version Plan

Version Plan will be produced on each ring after version planning phases. The

plan may be seen the obligation of the development group to the customer about the

delivery. The versions will be prepared by the management group and contain the

functionalities of each delivery.

Version Plan has not so different and complex structure. So, a structured report

may be enough and useful. The structure may contain the following information at

least;

• General Version List

• Due dates for each version

• User stories for each version

• Accepter for each version

The development group should prepare the version plan. After preparation this

plan, the project manager may write down the document. In 2nd and 3rd rings, this

document will be written by the documenter member of team.

2.3.4.3 User Interface – Database Design Document

User Interface and Database are two base things for a software project. The

designs of these bases should be documented to memorize the desires for critical

decisions, either by the users or by the developers. This document will be prepared in

all of the rings. In 1st ring, only one document may be enough. However, in 2nd or 3rd

rings, the document should be updated after each module development.

50

The language of the report should be as structured as possible. Because the report

will be a help for developers, the structured plan will be useful for a technical and

focused reading. The structure may be as follows;

• General User Interface description

• Interface prototypes for each module

• Interface prototypes for critical functions

• Reasons for interface decisions

• General Database description

• Database / Table structures

• Reasons for database decisions

This document will be produced by the developers in 1st ring. In 2nd and 3rd rings,

the documenter will write down the document after the meetings of the management

group. The updates on the User Interface/Database Design document will be also

done by the documenter.

2.3.4.4 Procedure Documentation

Procedure documentation contains all of the documents about the procedures.

The reason of such a document is to maximize the reusability of the program. The

details of the procedures will be prepared at the end of the project in 1st ring. At 1st

ring, this document will be written at the last phase of the process. At 2nd and 3rd ring,

this document will be prepared after each integration phase.

The procedure documentation will be prepared as a structured manner. The

documentation may be thought in two parts. First part of the procedure

documentation is re-writing the codes according to the standards and commenting.

Second part is a separate document, which contains the following information;

• Procedure Name

• Procedure Description/Definition

51

• Procedure Inputs/Outputs

The documentation will be prepared by the developers at first ring. However, at

2nd and 3rd rings, the responsibility will be taken by the documenter. The documenter

will write the document according to the information from the developers. The code

commenting should be also done by the documenter. But the developers may be

often needed, if the coding standards are not so descriptive.

2.3.4.5 User Manuals/Helps

User Manuals and Helps will be prepared at “Documentation” phase. However, at

2nd and 3rd rings, the documenter should also prepare the manuals, while the project

goes. In the first phases, the documenter may prepare the overall structure of the

manual and in the following phases, the structure may be filled.

The manuals and helps are product-oriented and customer-oriented reports. So,

not a common report format may be prepared for the manuals. However, according

to the reason of the document, it can be said that the document will contain usages of

the methods, critical use-cases and definition of the user interface.

The document should be prepared by the developers at 1st ring. However, at the

other rings, the documenter will prepare the documents and approve by the

customers.

2.3.4.6 Coding Standards

Coding Standards document is a standardization effort of the team to maximize

the code ownership and pair programming. The document should be prepared before

running the 2nd ring according to the addictions of the team and the successful

examples from the market.

52

The document should be prepared in a structured manner, because it will be used

as a reference manual. The standards will be;

• General description

• Overall structure for a program

• Overall structure for a module

• Commenting syntax and semantic

• Naming standards

• Abbreviation standards

• Test Code standards

• Test Data standards

The document will be prepared and used by entire team.

2.3.4.7 Specification Document

Specification Document is a minimal type of General Specification document. It

will be started to be prepared from 2nd ring. The document will contain detailed

information about the modules (or sub-projects).

Because the document will be read by the user, customer and developers, the

document should be prepared for different types of readers. The document should

contain besides some information, maybe in native language, for users and customers

and also some structured information for developers and maintainers. At least, the

following sections should be in document;

• The cross-reference to general specification document

• New user stories

• Functional and non-functional requirements of the module

• Task specifications for the module

• Versions of this document

53

The specifications about the modules will be done by the project manager and

surgeon of the project. The documentation of these meetings will be done by the

documenter and should be approved by the attendees of the meetings. (Project

manager, documenter, customer representatives, and users)

2.3.4.8 Unit Test Document

Because “RINGS” accepts the Extreme Programming, automatic unit testing is

one of the important things of coding phase. In 1st ring, the developers will also use

test-first design manner, but they should not document the unit tests, because the

developers don’t have so many time resources and it is not necessary to document

the unit tests for a project of 1-3 months. However, in 2nd and 3rd rings, the growing

team and growing project resources will force the team to document and archive the

unit tests.

The unit tests will be in a structured manner, because the first resource of this

information will be the automatic testing tools. And the information from these tools

should be documented for easier archiving. The structure of this document;

• The general description of the module to be tested

• Name of the unit test

• Reason of the unit test

• User Story of the unit test (if possible)

• Code of the unit test

• Data of the unit test

• Commenting standard of results of the unit test

This document will be prepared by the documenter according to the information

from automatic tools and developers.

54

2.3.4.9 Documentation Standards

The documentation standards will be prepared before the team goes to the 3rd ring.

Before this ring, the documents may be prepared according to the standards of

“RINGS” and the standards of the literature. But, after 2nd ring, the development

group should produce their own standards for documentation.

The documentation standards document is a structure for other documents. So,

the document will contain all of the future documents and detailed information for

them.

The standards will be prepared by the project manager, documenter and new-

coming quality manager. The quality manager will write down the standard rules

besides for the format and also for the content of the documents of the system.

2.3.4.10 Quality Standards

Quality standard is a new term for software development. In 3rd ring, the team

should have standard quality metrics to measure. So, in 3rd ring, the written quality

standards will be used to define the process.

The quality standards will have two types of information. Overall quality

standards for the process and company may be defined in native language. But the

standards for program codes and documentations should be automatic measurable

and structured. As example for measurable standards;

• Standard structures for documents

• Development speed metrics

• User story standards

• Commenting standards

55

The quality standards may be used in all of the rings. But, the standards will be

first documented in 3rd ring by the quality manager and project manager.

2.3.4.11 Schedule Document

The schedule document is an approval and discussion document. In 1st and 2nd

rings, the schedule document may be not necessary, because the system has not so

much time resources and the team has not so much human resources for preparing so

detailed reports.

The document will have not so different information. Because of this, the

structure is not so large;

• General iteration plan

• Name of iteration

• Description of iteration

• User stories for the iteration

• Deadline for the iteration

• Possible team arrangement for the iteration

The document will be prepared by the management group. The project manager

and surgeon will be first responsible management group members by preparing the

document. The Quality Manager will review the documents and discuss the quality

and feasibility of the document. The documenter will write the all project and team

memory.

2.3.4.12 Cost Document

The cost document is another version of schedule document and is also an

approval and discussion document. In 1st and 2nd rings, the cost document may be not

necessary, because the system has not so much time resources and the team has not

so much human resources for preparing so detailed reports like schedule document.

56

The document will have not so different information. Because of this, the

structure is not so large;

• General iteration plan

• Name of iteration

• Possible cost of iteration

• Possible financial resource for the iteration

The document will be prepared by the management group. The project manager

and surgeon will be first responsible management group members by preparing the

document. The Quality Manager will review the documents and discuss the quality

and feasibility of the document. The documenter will write the all project and team

memory.

2.3.4.13 Pricing Document

The pricing document will be produced according to many different parameters.

The cost document will be the base of this document. This document will be

prepared in the 3rd ring.

The language of the pricing document should be also divided into two parts. The

native language will be used to define the reasons of the pricing. After that, a

structured table will be used to detail the prices.

The members, who will prepare the document is so many like the parameters.

The pricing document will be prepared by the project manager and surgeon, but be

reviewed by the executive.

57

2.3.4.14 General Module Specification Document

General Module Specification document is a result of the estimation phases. The

document is prepared after version planning phase according to the information from

the schedule and cost documents in 3rd ring.

The specification document is not so different then other specification documents

in the same ring or previous rings. Because the document will be read by the user,

customer and developers, the document should be prepared for different types of

readers. The document should contain besides some information, maybe in native

language, for users and customers and also some structured information for

developers and maintainers. At least, the following sections should be in document;

• The cross-reference to general specification document

• New user stories

• Functional and non-functional requirements of the module

• Task specifications for the module

• Versions of this document

The specifications about the modules will be done by the project manager and

surgeon of the project. The documentation of these meetings will be done by the

documenter and should be approved by the attendees of the meetings. (Project

manager, documenter, customer representatives, and users)

2.3.4.15 Project Dictionary

Project dictionary is the naming strategy of overall system. Each term of the

system has two meanings. One of them is the meaning of the term for the user and

the other is the meaning for the developer. To define and standardize the terminology

for the system, the project dictionary will be needed in 3rd ring.

58

The project dictionary should be in a structure. The columns of a structure may

contain the following information;

• The term

• The description of the term for user

• The description of the term for developer

• The coding type of the term (if possible)

The project dictionary will be prepared by the developers, surgeon and users.

After that, the documenter will document and update the list.

2.3.5 Advantages

Software Development Methodologies are only thinking according to the

properties of the current company. However, “Rings” starts with a young software

company and tries also to design the future of it. This is the time parameter of

“Rings”. It brings the time parameter into the software development processes. So,

the software development process of the company begins with a simple form and

grows up into a more complex form according to the augmentation of the problems

and resources. This situation provides also easier adaptation to disciplined

methodologies.

The parts of “Rings” are familiar to the software development companies. The

theme that the method focuses on is the changing requirements and resources of the

company and the obligation of process changes. So, “Rings” focuses on the resources

of the companies and try to prepare a roadmap to the young company to be a mature

one.

Each phase of the “Rings” is developed according to the incremental development

manner and agile software development ideas. So the rapid development and higher

satisfaction of customer are the expected advantages of it, because the base

methodologies and ideas are the proofs for these results.

59

2.3.6 Risks

“Rings” is not already widely used. So, the usage problems and advantages are

not proofed by the companies. The advantages are only expectations because of their

base methodologies. The widely used base ideas are the guarantee of success of

“Rings”.

“Rings” is prepared for a young company. The expectations for this company are;

low resources, chaotic programming, low discipline, low documentation and small

projects. The method starts in this case and provides an incremental expansion.

However, if the starter company tries to break the “Rings” from a ring and start to

use it from there? This situation is a risk. The system is solid with its process steps,

principles and implementation. So, when the company breaks the implementation

order of “Rings”, this may break all construction of the system.

One of the most important disadvantages of agile software development

methodologies is the dependency to the human-being. “Rings” is dependent to the

work of the developers and managers. The risks (especially in first ring) cannot be

handled with high discipline and documentation, because of the high agility and this

human-dependency may cause some problems in application according to the

experience of the developers.

60

CHAPTER THREE

3APPROVAL OF RINGS

3.1 Overview

Overall software development methodologies and “Rings” is defined in previous

chapters. The most critical risk of the new methodology is the risk, that the method is

not used in any company. Therefore, it will not be seen trustworthy.

Two solutions may be found to build trust;

• Checking the maturity of the methodology (the company, who ideally uses

“Rings”)

• Taking comments of the possible users of software market

The first approval method is for checking the method for the general rules of

software market. Capability Maturity Model is prepared with the comments from

different parts of the software market. The needs of customers, developers,

executives, etc. had collected to guarantee the success, before starting the project.

The model works with a checklist for the ideal company (mature company). As an

approval model, the ideal application of “Rings” may be checked according to this

checklist. When all (most) of the entries in the checklist can be covered with the

rules of “Rings”, then it can be said that the company, who applies all rules will have

the defined maturity level.

Comments of the professionals may be used as a secondary approval of “Rings”.

The method will be used in the market and therefore the comments of them will be

very important. For such an approval, a questionnaire was prepared for taking the

existing problems, which may be solved with changes in development method.

Additionally, interviews were made with these professionals about the usability of

“Rings”.

61

3.2 Formal Approval

3.2.1 Capability Maturity Model

One of the most important problems for customers is the reliability of the

developers. To show the reliability of a developer, the Carnegie Mellon University

Software Engineering Institute has developed one of the famous accreditation

models. By using this model, the customers may see how the developer is reliable.

(The reliability here can be defined as conforming to time/cost specifications,

obtaining high maintainability, expandability, etc.)

Figure 3.1 Process stages of Capability Maturity Model

This famous accreditation system is called CMM (Capability Maturity Model).

Capability Maturity Model is a model to classify the software development

companies. This model has 5 stages for different levels of maturity. (Paulk, Curtis,

Chrissis and Weber, 1993)

62

Initial stage: This Maturity Model stage is a heroic system. There is a software

hero, who can solve all problems. The process is not defined. The results may be

successful, but it is not guaranteed, because the overall system is human-oriented.

There is no defined checklist for this maturity level, because this level determines

that nothing about software engineering can be seen in the company.

Repeatable stage: In second stage, the process is defined to repeat the process of a

successful product development. The developers are not experienced with software

engineering practices, but they have capabilities to implement previously tried

process. For approving a company as mature at Level 2, the following checklist

should be covered:

Requirements Management

Goal 1: System requirements allocated to software are controlled to

establish a baseline for software engineering and management use.

Goal 2: Software plans, products, and activities are kept consistent with the

system requirements allocated to software.

Software Project Planning

Goal 1: Software estimates are documented for use in planning and tracking

the software project.

Goal 2: Software project activities and commitments are planned and

documented.

Goal 3: Affected groups and individuals agree to their commitments related

to the software project.

Software Project Tracking and Oversight

Goal 1: Actual results and performances are tracked against the software

plans.

Goal 2: Corrective actions are taken and managed to closure when actual

results and performance deviate significantly from the software plans.

Goal 3: Changes to software commitments are agreed to by the affected

groups and individuals.

63

Software Subcontract Management

Goal 1: The prime contractor selects qualified software subcontractors.

Goal 2: The prime contractor and the software subcontractor agree to their

commitments with each other.

Goal 3: The prime contractor and the software subcontractor maintain

ongoing communications.

Goal 4: The prime contractor tracks the software subcontractor's actual

results and performance against his/her commitments.

Software Quality Assurance

Goal 1: Software quality assurance activities are planned.

Goal 2: Adherence of software products and activities to the applicable

standards, procedures, and requirements is verified objectively.

Goal 3: Affected groups and individuals are informed of software quality

assurance activities and results.

Goal 4: Noncompliance issues that cannot be resolved within the software

project are addressed by senior management.

Software Configuration Management

Goal 1: Software configuration management activities are planned.

Goal 2: Selected software work products are identified, controlled, and

available.

Goal 3: Changes to identified software work products are controlled.

Goal 4: Affected groups and individuals are informed of the status and

content of software baselines.

Defined stage: There is a standard process definition. This definition can be re-

defined according to the small changes or software product types. The process

definitions are defined for management and development phases. The developer team

is also well-informed about software engineering discipline and processes. There is

also a Software Management Group to check the on-going process and measure all

phases of development according to the defined metrics. The checklist for the Level

3 is following the section;

64

Organization Process Focus

Goal 1: Software process development and improvement activities are

coordinated across the organization.

Goal 2: The strengths and weaknesses of the software processes used are

identified relative to a process standard.

Goal 3: Organization-level process development and improvement activities

are planned.

Organization Process Definition

Goal 1: A standard software process for the organization is developed and

maintained.

Goal 2: Information related to the use of the organization's standard

software process by the software projects is collected, reviewed, and made

available.

Training Program

Goal 1: Training activities are planned.

Goal 2: Training for developing the skills and knowledge needed to perform

software management and technical roles is provided.

Goal 3: Individuals in the software engineering group and software-related

groups receive the training necessary to perform their roles.

Integrated Software Management

Goal 1: The project's defined software process is a tailored version of the

organization's standard software process.

Goal 2: The project is planned and managed according to the project's

defined software process.

Software Product Engineering

Goal 1: The software engineering tasks are defined, integrated, and

consistently performed to produce the software.

Goal 2: Software work products are kept consistent with each other.

Intergroup Coordination

Goal 1: The customer's requirements are agreed to by all affected groups.

Goal 2: The commitments between the engineering groups are agreed to by

the affected groups.

65

Goal 3: The engineering groups identify, track, and resolve intergroup

issues.

Peer Reviews

Goal 1: Peer review activities are planned.

Goal 2: Defects in the software work products are identified and removed.

Managed stage: The development group should conform the three phases of

Maturity model. Additionally, the defined metrics are tried to measure and comment

and this will obtain to control the production of the development group. The

development group can make better foresights by using the collected results from the

previously implemented projects. The addition to the checklist for Managed stage is

as follows;

Quantitative Process Management

Goal 1: The quantitative process management activities are planned.

Goal 2: The process performance of the project's defined software process is

controlled quantitatively.

Goal 3: The process capability of the organization's standard software

process is known in quantitative terms.

Software Quality Management

Goal 1: The project's software quality management activities are planned.

Goal 2: Measurable goals for software product quality and their priorities

are defined.

Goal 3: Actual progress toward achieving the quality goals for the software

products is quantified and managed.

Optimized stage: The software developer group has a defined process. The

developers have a background about the software engineering. The Software

Engineering Process Group controls the process to improve the production with the

current definitions. However, the companies on 5th level can optimize their process

model according to the new technologies and process models.

Defect Prevention

Goal 1: Defect prevention activities are planned.

66

Goal 2: Common causes of defects are sought out and identified.

Goal 3: Common causes of defects are prioritized and systematically

eliminated.

Technology Change Management

Goal 1: Incorporation of technology changes is planned.

Goal 2: New technologies are evaluated to determine their effect on quality

and productivity.

Goal 3: Appropriate new technologies are transferred into normal practice

across the organization.

Process Change Management

Goal 1: Continuous process improvement is planned.

Goal 2: Participation in the organization's software process improvement

activities is organization wide.

Goal 3: The organization's standard software process and the projects'

defined software processes are improved continuously.

3.2.2 Results of Capability Maturity Model

The “Rings” process model cannot be accredited unless it is used widely in

several companies. To accredit the model, we should observe at least 3 companies

and at least 5-7 projects (approx. 10-15 years). Because it is practically too difficult

to observe, the goals of the CMM are tried to check. It is also checked by the

responsibilities of the team members or document requirements, whether the goals

will be satisfied or not.

For Level 2: “Repeatable”;

Requirements Management

Goal 1: System requirements allocated to software are controlled to

establish a baseline for software engineering and management use.

Solution in “Rings”: The Project Manager will arrange the resource

allocation and define the project basics at the first step. According to the

67

size of the project, there is no need for a detailed resource management.

(The suggestions are about small or medium size projects.)

Goal 2: Software plans, products, and activities are kept consistent with

the system requirements allocated to software.

Solution in “Rings”: Project Manager will be responsible to define these

plans. Documenter and Project Management Tool will help him to keep the

plans, products and activities documented and consistent.

Software Project Planning

Goal 1: Software estimates are documented for use in planning and

tracking the software project.

Solution in “Rings”: The Project Manager and Surgeon will estimate the

allocations according to the management and technical thoughts.

Documenter will document these estimations and updates them when

required.

Goal 2: Software project activities and commitments are planned and

documented.

Solution in “Rings”: The activities will be defined after Project Basics

and “Version Planning” phases by Project Manager and Surgeon. The

General Specification Document and Version Plan Document contain the

activities and commitments. Documenter prepares these documents and

updates when required.

Goal 3: Affected groups and individuals agree to their commitments

related to the software project.

Solution in “Rings”: The outputs of the first two phases, Specification

Document and Version Plan will be signed by the developers and

customers.

68

Software Project Tracking and Oversight

Goal 1: Actual results and performances are tracked against the software

plans.

Solution in “Rings”: The Project Management Tool will track the project

according to the inputs from the decisions of Project Manager and Surgeon.

Documenter and Project Management Tool will document the outputs.

Goal 2: Corrective actions are taken and managed to closure when actual

results and performance deviate significantly from the software plans.

Solution in “Rings”: There is a break after each module in the feedback

phase. At this break the project manager and surgeon may think over the

plans. The experienced Project Manager and experienced Surgeon may re-

arrange the prepared development plans.

Goal 3: Changes to software commitments are agreed to by the affected

groups and individuals.

Solution in “Rings”: Some changes may be done in the feedback phase.

These changes will be applied to the documents. The new plans will be also

documented by the Documenter and the Documenter is also responsible by

confirming the new documents.

Software Subcontract Management

Goal 1: The prime contractor selects qualified software subcontractors.

Solution in “Rings”: Because the thought software development projects

are not so large, the company will not need to subcontract management.

Goal 2: The prime contractor and the software subcontractor agree to

their commitments to each other.

Solution in “Rings”: Because the thought software development projects

are not so large, the company will not need to subcontract management.

69

Goal 3: The prime contractor and the software subcontractor maintain

ongoing communications.

Solution in “Rings”: Because the thought software development projects

are not so large, the company will not need to subcontract management.

Goal 4: The prime contractor tracks the software subcontractor's actual

results and performance against its commitments.

Solution in “Rings”: Because the thought software development projects

are not so large, the company will not need to subcontract management.

Software Quality Assurance

Goal 1: Software quality assurance activities are planned.

Solution in “Rings”: The quality issues may be divided into two

sections: The quality of the software as the functional quality of the product

and the process quality of the company as the non-functional quality. The

non-functional quality issues will be planned by Project Manager. And the

functional quality issues will be planned by Surgeon. These two plans will

be defined at “Project Basics” level.

Goal 2: Adherence of software products and activities to the applicable

standards, procedures, and requirements is verified objectively.

Solution in “Rings”: For an objective verification, the project

management tool was added to the system. The verification of the standards

will be applied to this tool and the tool will check the process. (The

responsibilities of the Project Management Tool were defined at previous

sections.)

Goal 3: Affected groups and individuals are informed of software quality

assurance activities and results.

Solution in “Rings”: There is a documented coding standard in the

system. This standard will ensure mostly the product quality. For other

quality assurance activities the project manager will be responsible.

70

Additionally, the plans and successful results will be documented by

Documenter and he is also responsible to let the customers check the plans.

Goal 4: Noncompliance issues that cannot be resolved within the

software project are addressed by senior management.

Solution in “Rings”: There can be always problems, because there are

two domains in the system. First of all, the “Rings” is built on the better

direct communication in the affected groups. This mental work will reduce

the noncompliance issues. However, when some problems occur in the

project, these problems will be addressed to the managers in the system

according to the “Coordination” principle. Briefly, for managerial problems,

the Project Manager is responsible to solve them. And also Surgeon is there

to solve technical problems.

Software Configuration Management

Goal 1: Software configuration management activities are planned.

Solution in “Rings”: Software Configuration Management is thought

over version planning. Versions will be planned detailed in the “Version

Planning” phase and tracked by the Project Management Tool and Project

Manager.

Goal 2: Selected software work products are identified, controlled, and

available.

Solution in “Rings”: The general identification and control of the work

products will be handled by the Project Manager and Surgeon in the

“Project Basics” phase. But, the detailed identification of the work products

will be done by the developers in “User Stories” phase for each module. The

control and availability checks are thought over “Configuration

Management” of the software. Configuration Management is one of the

features of Project Management Tool. This tool and surgeon is the

controllers of the system. (Tool will be used for a live control and objective

71

verification. Surgeon will be used for technical and inner control of the

work products.)

Goal 3: Changes to identified software work products are controlled.

Solution in “Rings”: All changes are handled by the documenter for

updates in the prepared documents and Project Management Tool for

archiving and online controls. In short, the identifications will be controlled

by the Documenter and the Project Management Tool.

Goal 4: Affected groups and individuals are informed of the status and

content of software baselines.

Solution in “Rings”: Documenter will document all of the configuration

management activities and is responsible to be checked by the affected

groups. (Additionally, all of the baselines are open to entire group members

with the Project Management Tool.)

For Level 3: “Defined”

Organization Process Focus

Goal 1: Software process development and improvement activities are

coordinated across the organization.

Solution in “Rings”: The Project Manager will have entire coordination

responsibility in team. The development process is overall documented in

“Rings”. The Rings methodology is a complete methodology with its

process, team members, documentation requirements and process

improvement cycle.

Goal 2: The strengths and weaknesses of the software processes used are

identified relative to a process standard.

Solution in “Rings”: The Quality Manager is the only responsible

member of the team about the process improvement of the company.

However, “Rings” is prepared as a complete set with its improvements. So,

72

when the weaknesses of the current ring increase according to the project

size, team size, etc., the ring will change.

Goal 3: Organization-level process development and improvement

activities are planned.

Solution in “Rings”: Nothing about the organization-level can be

determined.

Organization Process Definition

Goal 1: A standard software process for the organization is developed

and maintained.

Solution in “Rings”: Process is defined by the “Rings”. Quality

Manager and Project Management Tool will also re-define some steps of the

plan.

Goal 2: Information related to the use of the organization's standard

software process by the software projects is collected, reviewed, and made

available.

Solution in “Rings”: The process will be tracked by the Software Project

Management Tool and the results of the tool will be reviewed and checked

by Quality Manager of management team.

Training Program

Goal 1: Training activities are planned.

Solution in “Rings”: Training activities will be defined by the Surgeon

and planned by the Project Manager, because most of the training programs

include technical issues. The Training issues are not prepared detailed, but

there is a breakpoint for training between the user stories and feedback

phases.

Goal 2: Training for developing the skills and knowledge needed to

perform software management and technical roles is provided.

73

Solution in “Rings”: The detailed training programs may be defined by

Surgeon and the process has necessary gaps for training breaks.

Goal 3: Individuals in the software engineering group and software-

related groups receive the training necessary to perform their roles.

Solution in “Rings”: The “Rings” methodology is a complete set. And

for inner ring, there should be no training phase, because of the easiness of

the process. And after each ring, the training phases should be considered.

Integrated Software Management

Goal 1: The project's defined software process is a tailored version of the

organization's standard software process.

Solution in “Rings”: Because the company starts at first ring of the

“Rings” and grows according to the rings, the process of the development

group is tailored version of the organization standard process.

Goal 2: The project is planned and managed according to the project's

defined software process.

Solution in “Rings”: The Project Manager and Project Management Tool

are responsible by tracking the project about going according to the plans.

Software Product Engineering

Goal 1: The software engineering tasks are defined, integrated, and

consistently performed to produce the software.

Solution in “Rings”: Engineering tasks are defined in the “Rings”

process list.

Goal 2: Software work products are kept consistent with each other.

Solution in “Rings”: Engineering tasks are defined in the “Rings”

process list.

74

Intergroup Coordination

Goal 1: The customer's requirements are agreed to by all affected groups.

Solution in “Rings”: Project Manager and Documenter will attend to the

meetings and they will get intergroup coordination.

Goal 2: The commitments between the engineering groups are agreed to

by the affected groups.

Solution in “Rings”: Documenter will document all of the phases and

will let the groups checked by the customers.

Goal 3: The engineering groups identify, track, and resolve intergroup

issues.

Solution in “Rings”: Project Manager will control all process.

Peer Reviews

Goal 1: Peer review activities are planned.

Solution in “Rings”: Review activities will be done by Pair

Programming and Surgeon.

Goal 2: Defects in the software work products are identified and

removed.

Solution in “Rings”: A good pair programming application will solve

most of the defects before testing phase.

3.3 Usability in Market

There are two defined important risks for “Rings”. The first one is the approval of

quality that “Rings” gathers to the company and the second one is the usability of

“Rings” practically.

75

For the first risk, the Capability Maturity Model is used. The ideal application of

“Rings” is tested via checklist of maturity model and the results shows that the

methodology will improve the process quality of a development company.

For finding answers about the second risk, a survey and a questionnaire are

applied to the possible users of the software market in Turkey.

3.3.1 Research Domain and General Comments

The research domain contains several experienced project managers, software

engineers and software developers. The answers of them will be very meaningful for

determining the usability and power of the new software development methodology

in the real world. The subjects and their comments are listed in the alphabetical

order:

Volkan ABUR: Volkan ABUR is Software Engineer-Analyst in IDEON. The

company works on software development for defined companies. His specialty is on

defining the requirements and the workflows of the customers to automate it with

software and computer support. Because of his work in company, the discussions

focus on requirements elicitation and analyze phases of “Rings”. Gathering user

stories as elicitation is a useful idea for small projects, as result. Another good idea in

“Rings” is also the incremental improvement of the product.

Hakan F. AKMERIÇ: Hakan AKMERIÇ is the general director of the

Computing Center of KIRAÇA Holding. His background is on project management.

Our first contact was done via e-mail. His first impressions were positive.

Taner AKSOY: Taner AKSOY is the general director and founder of GLOBAL

Software. Their experience is especially about software on shipping and adaptation

of software packets. The company has already 20 developers in software

development and maintenance. Our first contact was done via e-mail. And in a

meeting, it was seen that “Rings” has the process solutions that they have. His only

76

anxiety is about adaptation of the new software in the already running system on

customer side.

Ilker ARABACI: Ilker ARABACI is the general director of DATATRAINING

ETG. He is also the founder of the company. The company is specialized on

education and developing special solutions. His first impressions are positive. The

only deficiency according to Mr. ARABACI is handling network and hybrid

projects. However, the first aim of “Rings” is handling software projects. So, this

can’t be seen as a problem of “Rings”, but this may be a defect.

Köksal ATAMAN: Köksal ATAMAN is the general director of Project offices in

BIMAR. He has experience of many years in project management. His company is

founded to develop solutions on problems of ARKAS. In last 2 years, he is the head

manager of the project “Changing process in software development of BIMAR”. The

new software development process is Extreme Programming and their aim is taking

CMM – 2.level. The first contact was obtained by email. His first impressions are

positive. His only anxiety is about the practicality of several Extreme Programming

ideas, like Pair Programming. At second contact, the usability of “Rings” was

discussed in Ataman’s office. The discussion goes around the similarities between

“Rings” and “Extreme Programming”. (Note: According to his opinions, these two

methodologies are similar, but “Rings” has the solution of the “Coordinator”

problem of Extreme Programming, which is important for controlled projects.)

 Bilgem ÇAKIR: Bilgem ÇAKIR is developer (Software Engineer) in SOBEE.

SOBEE is focused on entertainment software, 3D modeling and game development.

Mr. ÇAKIR’s most important properties in this survey are his Research and

Development experience and Rational Unified Process experience. According to his

opinions, the most important value in “Rings” is the “time” parameter in the

methodology. The build-in improvement of “Rings” is one of the most attractive

ideas of thesis.

77

Mustafa DÖNMEZ: Mustafa DÖNMEZ is Project Manager in YAPI KREDI

Bank. His experience is on information systems and project management. He has

also programmer background in his previous companies. His first impressions are

very positive. According to his e-mail, he is very impressed. However detailed

impressions couldn’t be taken. Because he is in Istanbul, discussions were made by

e-mail. According to the opinions in the questionnaire, Mr. DÖNMEZ had found

“Rings” useful and usable in the market.

Tamer GÜLCE: Tamer GÜLCE is Project Manager in TREDA. The main work

areas of Treda are counseling software development companies and other companies,

preparing intranet solutions, adaptation of software packages, etc. One of their last

important points is accreditation of TREDA and counseling on accreditation.

TREDA will be certified with ISO 9000 and CMM-3 in next days. His first

impressions are very positive.

Onur GÜNDURU: Onur GÜNDURU is the Founder-Software Engineer of

“ONUR Yazilim Ltd.”. The company works on two project types: Special software

for companies and game development. The discussions about “Rings” had gone

about the similarities with Extreme Programming. Mr. GÜNDURU has the opinion

that Agile Software Development Methodologies are more acceptable in Turkey’s

software market and the appropriation of the problems, like coordination,

documentation or requirements elicitation is a good start. Additionally, the coverage

of these problems is enough in “Rings”.

Selim HENDRICKSON: Selim HENDRICKSON is software developer in

IZTECH A.S. IZTECH A.S. works on standard software packets to control the

money in companies. Because of the heavy work load of Mr. HENDRICKSON, the

contacts were established via e-mail. Via these contacts, the positive impressions

were taken.

Ufuk ILTER: Ufuk ILTER is the project manager of DIANA. This software

company works especially on tourism software: Tourism portals, Hotel automation

78

software, etc. Mr. ILTER is the project manager of 10 software developers. The first

contact is established in his office. His first impression is very positive. “Rings” is

complete and highly usable in a software company. Additionally, they were used too

similar processes in development cycles of two software packages.

Güner MUTLU: Güner MUTLU is the leader of software development group in

BIMAR. BIMAR’s first job is preparing solutions for ARKAS. As a secondary aim,

it can be seen that selling these solutions to other companies in the same market. Mr.

MUTLU focused on the practicality of “Rings” for programmers in the discussion.

The influence from Extreme Programming in analysis phase is useful and the

documentation phase in first ring will be useful for new companies.

Koray OTAG: Koray OTAG is the general director and founder of DVP

Interactive. The main works of DVP Interactive are selling FIDELIO products

(adaptation in companies) and developing web solutions for companies. Koray

OTAG is the director of Izmir office. In the first meeting, the opinions are that the

process is completely usable for a new company. Additionally, DVP was used the

“Middle Ring” in a project. The success of this project is also a proof that the system

may be usable in a company. Details about this project had taken and the meetings

were continued. At meetings and applied questionnaire, it can be seen, that DVP had

partly used “Rings” methodology and the overall method is usable in a software

development company, which is specialized in Web projects.

Murat ÖZEMRE: Murat ÖZEMRE is the Software Project Manager of BIMAR.

BIMAR’s first job is preparing solutions for ARKAS. As a secondary aim, it can be

seen that selling these solutions to other companies in the same market. In the

discussions, impressions were good. The details of phases and the responsibilities of

the team members are the center points of discussions. The defined “Rings” was seen

enough and a good try for the starter projects of new companies.

79

3.3.2 Reactions of Market

The software development methodology, “Rings” is overall accepted by the

software development market. The Project Managers and Software Engineers as the

potential users of the system checked the methodology and their first impressions

were positive. Additionally, a questionnaire was applied to these people. In

questionnaire, some questions were asked to define the problems in their companies,

which are originated by development methodology. As second, some questions were

asked about the usability of “Rings”.

Do you use any Software Development Methodology in your
company?

Yes; 90%

No; 10%

Figure 3.2 Are the subjects familiar with any Software Development

Methodologies?

The software companies in Turkey work mostly on customer specific projects (not

software for market) and most of these companies use their specific development

processes. However, these companies have also many problems, which may be

solved with right software development methodology. (Figure 3.2)

80

Table 3.1 If you should describe the Software Development Methodology in your company, which of

the following basic phases can be defined?

Phase Absolutely (%) Often (%) Rarely (%) Absolutely Not (%)
Requirements A. 55 35 10 0

Specification 35 45 20 0
Design 55 23 11 11
Coding 100 0 0 0
Testing 55 45 0 0

Maintenance 45 33 22 0

Even the small companies in the survey, use most phases in the basic life cycle

often. All of the companies have the agreement that they can specify and define their

phases according to the definitions of Software Engineering. (Table 3.1)

Table 3.2 About Requirements Analysis

If one of your projects is thought, Yes (%) No (%)
Is there any team, which is only responsible to analyze User
Requirements?

45 55

Are the User Requirements taken in the beginning of project? 90 10
Are the User Requirements taken in the beginning of each
module?

70 30

Are there standard forms to gather User Requirements? 40 60
Do you have problems, while gathering User Requirements? 45 55
Are there any problems with gathered User Requirements? 75 25

When it is focused on Requirements Analysis phase, it can be seen the companies,

who have the resource, separate their requirements analysis department. Another fact

is that the companies want to gather the user requirements, while the project begins.

But the requirements are not proved or the phase is not repeated in the module starts.

The big companies mostly use standard forms for requirements definitions, but small

companies, even if they prepare it in every project, don’t use such documents.

It was seen that most of the companies have problems with requirements analysis.

(Common reasons are the customer’s limited knowledge and priority problems of

customers) Big companies solve these problems, with additional coordinators,

detailed documents and additional control systems. A problem in the survey is that

the small companies work with requirements analysis phase and they have also

problems with gathering needs of users. (Table 3.2)

81

Table 3.3 About Specification Phase

If one of your projects is thought, Yes (%) No (%)
Is there any team, which is only responsible to analyze User
Requirements?

35 65

(if exist) Are the Specification Documents prepared by Computer
Engineers?

60 40

Do you have standards for Specification? 65 35
Do you have problems, while preparing Specification Documents? 60 40
Are there any problems with prepared Specification Documents? 65 35

For Specification Phase, most of the companies use Computer Engineers and they

don’t have specialized teams for this job. Additionally, they use standard

documentation. However, most of the companies often have problems about the

specification. The problems are about the information transfer from users to

developers. This transfer can’t be done well with the defined specification phases.

Another problem is also keeping the specification documents updated. (Table 3.3)

Table 3.4 About Design Phase

If one of your projects is thought, Yes (%) No (%)
Is there any team, which is only responsible to prepare Design? 25 75
Do you use any assistant tools? 65 35
Do you prepare entire design in the beginning of the project? 65 35
Do you prepare entire design in the beginning of each module? 85 15
Do you use design standards? (for example UML) 50 50
Do you have problems, while preparing Designs? 35 65
Are there any problems with prepared Designs? 65 35

In software development companies, there can’t be seen a defined design team

and the development groups prefer to use design tools if possible. The companies,

which are focused on inner-projects don’t want design standards, like Unified

Modeling Language. However, the companies, who sell their products, try to use

such standards. The companies say that they have not so many problems about

design phase. But the managers bring that there will be problems, when they can’t

serve enough time for this phase. (Table 3.4)

82

Table 3.5 About Coding Phase

If one of your projects is thought, Yes (%) No (%)
Are the specialties of your Coding Team, Computer Engineers? 65 35
Do you have defined Coding Standards? 80 20
Do you have Software Heroes in your team? 45 55
Do you have general problems? 60 40

Table 3.6 About Testing Phase

If one of your projects is thought, Yes (%) No (%)
Is there any team, which is only responsible to do Testing? 35 65
Do you work with your customer, while preparing Test material? 90 10
Are the Test materials prepared in the beginning of the project? 40 60
Do you have standard forms for Testing? 45 55
Do you have problems, while preparing Tests? 90 10
Are there any problems with prepared Tests? 65 35

 When focused on implementation and testing phases, it can be seen that the small

companies use computer engineers for these phases and the guarantee of these phases

are left to individuals. However, there are defined standards, documentations and

reports for guaranteed result in bigger teams. Another fact from the survey is that the

companies see that the customers are only responsible for preparation of the testing

data. (Table 3.5, Table 3.6)

Is "Rings" similar to any existing methodologies?

Noone
20%

RUP
10%

Microsoft
10%

eXtremeProgramming
20%

Waterfall or Rings
20%

Yes, but not defined
20%

Figure 3.3 Similar Methodologies to “Rings”, according to the subject’s opinions

83

Original results have been obtained from the last section of the survey which is

only about the proposed methodology, “Rings”. Some of the managers said that they

didn’t see a methodology like “Rings”. Some said that the methodology is similar to

Agile Methodologies and some to Heavyweight ones. This result has a certain

meaning that the new methodology has something useful from the previously defined

methodologies. Every subject see “Rings” how he/she wants to see: The developers

who need a disciplined approach may use the system to improve his/her process

more documented and controlled. However, the developers who want to use an

approach for a controlled but not many documented system; they also see the system

as an introduction to the agile software development methodologies. This situation

shows that “Rings” is suitable for all development companies, either they need

disciplined or not. (Figure 3.3)

Table 3.7 Have you ever thought that your company used any phases of “Rings”?

Phases (I. Ring of “Rings”) Used Not Used
User Stories 75 25
Version Planning 90 10
Interface – Database Design 90 10
Coding – Unit Tests 100 0
Integration – Feedback 100 0
Documentation 70 30
Phases (II. Ring of “Rings”) Used Not Used
Project Basics 75 25
Version Planning 80 20
Basic Interface – Database Design 90 10
Module based User Stories 25 75
Coding – Unit Tests 90 10
Integration – Feedback 90 10
Phases (III. Ring of “Rings”) Used Not Used
Project Basics 70 30
Resource Planning 85 15
Version Planning 85 15
Basic Interface – Database Design 85 15
Module based User Stories 35 65
Prototyping 25 75
Coding – Unit Tests 80 20
Integration – Feedback 80 20

When the phases of “Rings” were thought individually, the subjects agree most of

the phases which were used in their companies; either they are mature or young

companies. All of the subjects also agree on the usability on the methodology. (Table

3.7)

84

CHAPTER FOUR

4CONCLUSIONS

4.1 Conclusion and Future Works

The software market is a market, from which the players can earn money easily

and take place, because its product (software) is place-independent. The developers

and customers may be in different places in the world and there can also be a trade

between them, for the software is an invisible product, which may run on the wires of

Internet.

However, the problems about the software also begin here. This invisible and

place-independent product should be developed in a controlled way, because its cost

is too much, which can’t be wasted easily. The Software Development

Methodologies take the place at this point. The existing methodologies are used to

concretize this development process for better estimations, for higher product quality

and for measuring it.

“Rings” is one of the studies for developing solutions for these problems in the

software market. The most important difference of the new methodology than the

existing ones is that the acceptance the rules of the nature of the software

development and trying to apply the “applicable” software engineering practices to

the projects. “Rings” is prepared with the real needs and applications of developers

in the market and this property brings it one step nearby the developers than the

existing ones.

This study explains the new methodology, “Rings”, which may be named as an

agile software development methodology, but it can be classified between Agile

Software Methodologies and Heavyweight Software Development Methodologies.

“Rings” starts as an Agile Methodology and improves the company to a

Heavyweight Methodology according to the changing needs of the company.

85

“Rings” runs on a defined scenario of a young software company. 1st ring of the

methodology is suitable for a new company, which has not so much budget and time

for completing the project. In 2nd ring, the suggestions about the company are more

resources and more responsibility for the successfully completed project. The 3rd ring

is prepared for more critical projects. (Therefore the company has more

responsibility about the projects.)

This study contains entire information which may be needed for the application in

the company. The contents of the documents in the rings, the responsibilities and the

required skills of team members and the completion criteria of the phases were

explained with details in the sections for easier implementation on the company.

After this study, the “Rings” may be inspected on real practices. The survey on

companies has the results that “Rings” is not too different than the phases that the

subjects already use. So, as an additional work, “Rings” will be announced to the

possible users and the results of application of the methodology may be the first and

most important future work. As secondary, a software engineering tool may be

developed for assistance to the project managers, who want to apply the “Rings”.

This tool may help the companies for helping on the application of the methodology

and for helping on the decision of the ring transitions.

As result, the development methodologies will help to the Turkish companies in

the world software market to develop world-wide products. “Rings” will be a good

and different study for the companies, who want to go from a local software

developer to a world-wide software development company.

86

REFERENCES

Agile Alliance, Principles of agile manifesto (n. d.). Retrieved April 12, 2006, from

http://www.agilealliance.org.

Beck, K. (1999). Extreme programming explained, Addison-Wesley Pub. Co.,

0201616416.

Birant, K.U. & Kut, R. A. (2005). Pair programming in XP, Biltek 2005,

International Informatics Congress, 11.06.2006.

Boehm, B. (1988). A spriral model of software development and enhancement, IEEE

1988, p 61 – 72.

Chrysler comprehensive compensation system (n. d.). Retrieved April 12, 2006, from

http://www.wikipedia.com.

Cockburn, A. & Williams, L. (2000). The costs and benefits of pair programming,

Extreme Programming and flexible Processes in Software Engineering, XP2000.

Endres, A. & Rombach, D. (2003). A handbook of software and systems engineering,

Addison-Wesley Pub. Co., 0321154207.

Ferzli, M., Wiebe, E. & Williams, L. (2002). Paired programming project: Focus

groups with teaching assistants and students, NCSU Technical Report, TR-2002-

16 November 25, 2002.

Fowler, M. (13 December 2005). The new methodology, Retrieved April 12, 2006,

from http://www.martinfowler.com.

Ghezzi, C., Jazayeri, M. & Mandrioli, D. (1991). Fundamentals of software

engineering, Prentice Hall Inc., 0138182043.

Highsmith, J. (2002). Agile software development ecosystems, Addison Wesley Pub.

Co., 0201760436.

87

Hohmann, L. (2003). Beyond software architecture, Addison-Wesley Pub. Co.,

0201775948.

Jeffries, R. (2001). What is extreme programming?, Retrieved April 12, 2006, from

http://www.xprogramming.com.

Keefer, G. (2003). Extreme programming considered harmful for reliable software

development 2.0, AVOCA GmbH.

Paulk, M., Curtis, B., Chrissis, B. & Weber, C. (1993). Capability maturity model for

software, Technical Report, Carnegie Mellon University Software Engineering

Institute, CMU/SEI – 93-TR-24.

Pressman, R. (2001). Software engineering , Mc-Graw Hill Pub. Co., 0073655783.

Royce, W. (1970). Managing the development of large software systems, IEEE

Wescon, August 1970, p 328-337.

Saridogan, M.E. (2004). Yazilim mühendisligi, Papatya Yayinlari, 9756797576.

Schach, S. (2002). Object-oriented and classical software engineering, McGraw-

Hill Pub. Co., 0072395591.

Sommerville, I. (1992). Software engineering, Addison-Wesley Pub. Co.,

0201565293.

Sommerville, I. & Sawyer, P. (1997). Requirements engineering: A good practice

guide, Wiley&Sons Pub., 0471974447.

Von Mayrhauser, A. (1990). Software engineering methods and management,

Academic Press Inc., 0127273204.

Wells, D. (17 February 2006). XP practices and rules, Retrieved April 12, 2006,

from http://www.extremeprogramming.org.

88

Williams, L. & Upchurch, R. (2001). Extreme programming for software engineering

education, 31st ASEE/IEEE Frontiers in Education Conference 2001.

Williams, L., Yang, K., Wiebe, E., Ferzli, M. & Miller, C. (November 2002). Pair

programming in an introductory computer science course: Initial results and

recommendations, OOPSLA Educators Symposium 2002.

89

APPENDICES

A. Chrysler Comprehensive Compensation System (C3)

The Chrysler Comprehensive Compensation System (commonly referred to as

'C3') was a project in the Chrysler Corporation to replace several payroll applications

with a single system. The new system was built using Smalltalk and Gemstone. The

software development techniques invented and employed on this project are of

interest in the history of software engineering. C3 has been referenced several books

on the Extreme Programming methodology. (Wikipedia, n. d.)

The C3 project started in 1995. The end goal was to build a new system to support

all the payroll processing for 87,000 employees by 1999 (Keefer, 2003). About a

year later Kent Beck was hired to get the thing working, at this point the system had

not printed a single paycheck.(Keefer, 2003) Beck in turn brought in Ron Jeffries. In

March 1996 the development team estimated that the system would be ready to go

into production around one year later. In 1997 the development team adopted a way

of working which is now formalized as Extreme Programming. (Highsmith, 2002)

The one-year delivery target was nearly achieved, with the actual delivery being a

couple of months late; the small delay being primarily due to lack of clarity

regarding some business requirements. A few months after this first launch, the

project's customer representative — a key role in the Extreme Programming

methodology — quit due to severe burnout and stress, and couldn't be replaced.

(Keefer, 2003)

The plan was to roll out the system to different payroll 'populations' in stages, but

C3 never managed to make another release despite two more year's development.

The C3 system only ever paid 10,000 people. (Hendrickson, 2001) Performance was

something of a problem; during development it looked like it would take 1000 hours

to run the payroll, but profiling activities reduced this to around 40 hours; another

month's effort reduced this to 18 hours and by the time the system was launched the

90

figure was 12 hours. During the first year of production the performance was

improved to 9 hours.

Chrysler was bought out by Daimler-Benz in 1998, after the merger the company

was known as DaimlerChrysler. DaimlerChrysler stopped the C3 project on 1

February 2000. (Keefer, 2003)

Frank Gerhart, a manager at the company, announced to the XP conference in

2000 that DaimlerChrysler had de facto banned XP after shutting down C3. However

some time later DaimlerChrysler resumed the use of XP.

91

B. The Rings Questionnaire

A questionnaire is applied to project managers and software developers to

software market for taking their opinions about problems of existing software

development systems and usability of “RINGS”. The questionnaire may be found as

follows; (The language of questionnaire is Turkish.)

92

DOKUZ EYLÜL ÜNIVERSITESI
BILGISAYAR MÜHENDISLIGI
BÖLÜMÜ

Anket Çalismasi

Yazilim Gelistirme Süreçleri
(“Çemberler” (“Rings”))

HAZIRLAYAN:
Aras. Gör. Kökten Ulas BIRANT (Bilgisayar Y. Müh.)
Dokuz Eylül Üniversitesi Bilgisayar Mühendisligi Bölümü
Tinaztepe Yerleskesi Buca/Izmir
ulas@cs.deu.edu.tr
http://cs.deu.edu.tr/ulas

93

Bu anket çalismasi, Dokuz Eylül Üniversitesi Bilgisayar Mühendisligi
Bölümünde sürdürülmekte olan “Yeni Bir Yazilim Gelistirme Süreci: Rings”
konulu Doktora çalismasina karsi piyasa tepkilerinin tanimlanmasi amaciyla
hazirlanmistir. Anketin hedef kitlesi yazilim üretiminde çalismis ve/veya
çalismakta olan Proje Müdürlügü, Yazilim Mühendisligi, Yazilim
Gelistiriciligi, Kodlayicilik, vb. ünvanlardaki kisilerdir.

Çalismanin ilk bölümünde anketi dolduran kisinin kendisi ve çalistigi

sirket konusunda temel bilgiler alabilmek amaciyla tanitici bilgiler
sorulmaktadir.

Çalismanin ikinci bölümünde anketi dolduran kisinin sirketinde

kullanilan yazilim gelistirme sürecinin tanimlanmasi amaciyla sorular
sorulmaktadir.

Çalismanin son bölümünde bilgileri paylasilmis olan “Çemberler”

(“Rings”) Yazilim Gelistirme Süreci hakkinda anketi dolduran kisinin
fikirleri sorulmaktadir.

Elinizdeki anketin son bölümü, terimlerle ilgili karmasanin önlenmesi

amaciyla Yazilim Mühendisligi terimlerinin tanimlanmasina ayrilmistir.

Anketin dogru sekilde ve hedef kitlesi tarafindan doldurulmasi, tez

sonucunda olusturulacak yazilim sürecinin yazilim piyasasinda
uygulanabilir olarak yayinlanmasi konusunda çok önemlidir. Anketimizi
doldurarak yaptiginiz yardim için tesekkür eder, bölümümüzde yapilacak
etkinliklerde de sizleri aramizda görmekten mutlu olacagimizi belirtirim.

Saygilarimla,

Prof.Dr. R. Alp KUT

Dokuz Eylül Üni. Bilgisayar Müh. Blm. Bsk.
Tez Danismani

Iletisim ve her türlü soru için:
Kökten Ulas BIRANT (Doktora tez ögrencisi)
Dokuz Eylül Üniversitesi Bilgisayar Mühendisligi Bölümü
Tinaztepe Yerleskesi Buca/IZMIR
ulas@cs.deu.edu.tr
http://cs.deu.edu.tr/ulas

94

Tanitici bilgiler

Firma Adi:
Web adresi:
Kurulus yili: (bilgi islem/yazilim alaninda)
Çalisma alani:

Adiniz:
Son mezun oldugunuz
okul:

Mesleginiz:
(varsa) Departmaniniz:
Göreviniz/Isiniz:
Is tecrübeniz:
(son 3)

Dokuz Eylül Üniversitesi Bilgisayar Mühendisligi Bölümünde
hazirlanacak projelerden ve/veya etkinliklerden haberdar olmak
ister misiniz?

a. Evet, bilimsel ve/veya proje bazli etkinliklerden haberdar olmak
isterim.

b. Hayir, istemiyorum.

95

Süreç Tanimlayici bilgiler

Yazilim projelerinizi nasil tanimlarsiniz?
 a. Müsteriye özel projeler (Tanimli kullanicilar)
 b. Piyasaya yönelik projeler (Tanimlanmamis kullanicilar)

Sirketinizde bir yazilim gelistirme süreci
uygulaniyor mu?

a. Evet b. Hayir

Cevabiniz “Evet”se a. Bilinen bir süreç
.....................

b. Sirketimize özel
....................

Sirketinizdeki Yazilim Gelistirme Sürecini tanimlamaniz gerekirse asagidaki
temel yazilim gelistirme süreci adimlarindan hangilerini uyguluyorsunuz?

Adim Mutlaka Siklikla Nadiren Hayir
Gereksinim
Analizi

Belirtimleme
Tasarim
Kodlama
Sinama (Test)
Bakim

Bir yazilim projenizi düsünecek olursak ... Evet Hayir
Görevi sadece müsteri gereksinimlerini toplamak olan bir ekibiniz
var mi?

Müsteri gereksinimleri proje baslangicinda mi aliniyor?
Müsteri gereksinimleri modül baslangicinda mi aliniyor?
Müsteri gereksinimleri toplamak için standart formlariniz mevcut
mu?

Müsteri gereksinimlerinin toplanmasinda sorunlar yasiyor
musunuz?

Toplanan müsteri gereksinimleri ile ilgili sorunlar (eksik/hatali/...)
yasiyor musunuz?

Müsteri gereksinimleri ile ilgili (varsa) sorunlarinizi özetleyebilir misiniz?

96

Bir yazilim projenizi düsünecek olursak ... Evet Hayir
Görevi sadece Belirtimleme Raporlarini hazirlamak olan bir
ekibiniz var mi?

(varsa) Belirtimleme Raporlarinizi Bilgisayar Mühendisleri mi
hazirliyor?

Belirtimleme Raporu Standardiniz var mi?
Belirtimleme Raporu hazirlanmasinda sorunlar yasiyor musunuz?
Hazirlanan Belirtimleme Raporu ile ilgili sorunlar (eksik/hatali/...)
yasiyor musunuz?

Belirtimleme Raporlari ile ilgili (varsa) sorunlarinizi özetleyebilir misiniz?

Bir yazilim projenizi düsünecek olursak ... Evet Hayir
Görevi sadece tasarim hazirlamak olan bir ekibiniz var mi?
Tasarim hazirlarken yazilim araci kullaniyor musunuz?
Tasarimlar proje baslangicinda mi hazirlaniyor?
Tasarimlar modül baslangicinda mi hazirlaniyor?
Tasarim standartlari kullaniyor musunuz? (örnegin UML)
Yazilimin tasarlanmasinda sorunlar yasiyor musunuz?
Hazirlanan tasarimlar ile ilgili sorunlar (eksik/hatali/...) yasiyor
musunuz?

Yazilim Tasarimi ile ilgili (varsa) sorunlarinizi özetleyebilir misiniz?

97

Bir yazilim projenizi düsünecek olursak ... Evet Hayir
Kodlayici ekibiniz Bilgisayar Mühendislerinden mi olusuyor?
Tanimli Kodlama Standartlariniz var mi?
Ekibinizde “Yazilim Kahramanlari*” var mi?
Müsteri gereksinimleri toplamak için standart formlariniz mevcut
mu?

Kodlama ile ilgili sorunlar (uzun/hatali/...) yasiyor musunuz?
Kodlama çalismaniz ile ilgili (varsa) sorunlarinizi özetleyebilir misiniz?

Bir yazilim projenizi düsünecek olursak ... Evet Hayir
Görevi sadece sinama olan bir ekibiniz var mi?
Sinama verileri hazirlanirken müsteri ile çalisma yapiliyor mu?
Sinama verileri proje baslangicinda mi hazirlaniyor?
Sinama verilerini tanimlamak için standart formlariniz mevcut
mu?

Sinama verilerinin tanimlanmasinda sorunlar yasiyor musunuz?
Tanimlanan sinama verileri ile ilgili sorunlar (eksik/hatali/...)
yasiyor musunuz?

Sinama (Test) ile ilgili (varsa) sorunlarinizi özetleyebilir misiniz?

98

Bir yazilim projenizi düsünecek olursak ... Evet Hayir
Görevi sadece yazilim bakimi olan bir ekibiniz var mi?
Bakim yapan gelistiriciler, ayni zamanda baska projelerde de
çalisiyorlar mi?

Bakim isteklerinin, gereksinimlerle çelistigi durumlar siklikla
yasaniyor mu?

Müsteri bakim isteklerini almak için standart formlariniz mevcut
mu?

Müsteri bakim isteklerinin toplanmasinda sorunlar yasiyor
musunuz?

Alinan bakim istekleri ile ilgili sorunlar (eksik/hatali/...) yasiyor
musunuz?

Müsteri gereksinimleri ile ilgili (varsa) sorunlarinizi özetleyebilir misiniz?

99

“Çemberler” (“Rings”) hakkinda

“Çemberler” , uyguladiginiz veya incelediginiz süreçlere benziyor mu? (Evet’se,
hangilerine?)

a. Hayir

b. Evet,
...
............

Iç çember Orta

çember
Dis

çember
Çemberler’in bir veya daha fazla fazini
genel olarak uyguladiginizi
düsündünüz mü?

Iç çember’i uyguladiginizi düsündüyseniz,
hangi adimlari uyguladiniz?
Adimlar Uygulandi Uygulanmadi
Kullanici Hikayeleri
Sürüm Planlama
AY-VT Tasarimi
Kodlama – Birim Sinamalari
Entegrasyon – Geri bildirimler
Raporlama

Orta çember’i uyguladiginizi
düsündüyseniz, hangi adimlari uyguladiniz?
Adimlar Uygulandi Uygulanmadi
Proje Temelleri
Sürüm Planlama
Temel AY-VT Tasarimi
Modül Temelli Kullanici Hikayeleri
Kodlama – Birim Sinamalari
Entegrasyon – Geri bildirimler

Dis çember’i uyguladiginizi düsündüyseniz,
hangi adimlari uyguladiniz?
Adimlar Uygulandi Uygulanmadi
Proje Temelleri
Kaynak Planlama
Sürüm Planlama

100

Temel AY-VT Tasarimi
Modül Temelli Kullanici Hikayeleri
Prototipleme
Kodlama – Birim Sinamalari
Entegrasyon – Geri bildirimler

Çemberlerin uygulanabilirligi konusunda ne düsünürsünüz?

Iç çember
Adimlar Uygulanabilir Uygulanamaz
Kullanici Hikayeleri
Sürüm Planlama
AY-VT Tasarimi
Kodlama – Birim Sinamalari
Entegrasyon – Geri bildirimler
Raporlama

Orta çember
Adimlar Uygulanabilir Uygulanamaz
Proje Temelleri
Sürüm Planlama
Temel AY-VT Tasarimi
Modül Temelli Kullanici Hikayeleri
Kodlama – Birim Sinamalari
Entegrasyon – Geri bildirimler

Dis çember
Adimlar Uygulanabilir Uygulanamaz
Proje Temelleri
Kaynak Planlama
Sürüm Planlama
Temel AY-VT Tasarimi
Modül Temelli Kullanici Hikayeleri
Prototipleme
Kodlama – Birim Sinamalari
Entegrasyon – Geri bildirimler

101

Tanimlamalar

YAZILIM KAHRAMANI: Yazilim sirketinde; süreçlere hakim, kodlama
konusunda tecrübeli, genel Bilgisayar Mühendisligindeki son teknolojik gelismelere
hakim, problem çözümleme konusunda yetenekleri diger takim üyelerince de kabul
edilen, projede çikabilecek herhangi bir problemde çözmesi beklenen proje
personelidir.

STANDART YAZILIM GELISTIRME SÜRECI: 60’li yillarda ilk kez Yazilim
Mühendisligi kavraminin ortaya atilmasi ile birlikte varolan Mühendislik
uygulamalarindan esinlenilerek hazirlanan ve yazilim hazirlanmasinda temel
olarak kabul edilen gelistirme adimlaridir.

a. GEREKSINIM ANALIZI: Yazilim projesinde müsteri isteklerinin toplandigi,
incelendigi, raporlandigi ve bu isteklerle ilgili sorunlarin çözümlendigi
adimdir.

b. BELIRTIMLEME: Müsteri isteklerinin raporlanmasinin ardindan müsteriyle
görüsmeler sonucunda müsteri ve gelistirici tarafindan onayli mutabakat
raporu hazirlanmasi adimidir.

c. TASARIM: Olusan müsteri isteklerine uygun olarak çözümün kodlama
öncesinde çesitli çözüm anlatim dilleriyle ifade edildigi ve üzerinde
tartisilarak çözümün nihai haline ulasildigi adimdir.

d. KODLAMA: Olusturulan tasarimin bilgisayar kodlarina dönüstürüldügü
adimdir.

e. SINAMA (TEST): Olusturulan kodlarin ve tüm sistemin, çalisma ve kabul
edilebilirlik açilarindan kontrolünün yapildigi adimdir.

f. BAKIM: Yazilimin müsteriye tesliminden sonra çikabilecek hatalarin
düzeltildigi, gelisen teknoloji ile birlikte gerekli olan gelismelerin yapildigi
adimdir.

