LSe 27£

MINING ASSOCIATION RULE ALGORITHMS
IN LARGE DATABASES

A Thesis Submitted to the
Graduate School of Natural and Applied Sciences of
Dokuz Eyliil University
In Partial Fulfillment of the Requirements for the Degree of Master of Science

in Computer Engineering, Computer Engineering Program,
by

Semih UTKU

July, 2004
IZMiR

M.Sc THESIS EXAMINATION RESULT FORM

We certify that we have read this thesis and “MINING ASSOCIATION RULE
ALGORITHMS IN LARGE DATABASES” completed by Semih UTKU under
supervision of Prof. Dr. Alp KUT and that in our opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

V.7 =

Prof, Dr. Alp KUT

Supervisor

&
T
P
ﬂ A o A

Wi

Uf;yagﬁwn yEY R ran fe<. OF Yalc Ceg
(

Committee Member) (Committee Member)

Approved by the
Graduate School of Natural and Applied Sciences

\Q
Prof. Dr. Cahit RELWACI
Director

ii

ACKNOWLEDGEMENTS

I would like to thank my advisor, Prof. Dr. Alp KUT, for the encouragement,

support and assistance in this thesis.

I also thank my officemates Hulusi BAYSAL and Giyasettin OZCAN for their

guidance and motivation.

I thank to my family, they were always with me. Finally, thanks to my wife
Stndiiz for her patience and understandings in support of my pursue of the M.Sc.

degree.

iii

ABSTRACT

This study explains the fundamentals of association mining and analyzes
implementations of the well known association rule algorithms. Study focus on

algorithms Apriori, Eclat, FP-Growth, Partition and Dynamic Itemset Counting.

Mining association rules consist of two main steps. First step finds the set of all
frequent itemset; where the second step generates all high confidence rules among
itemsets. There are several efficient association rule algorithms. This study brieﬂy
describes and systematizes most common association rule algorithms. Common
principles and differences between the algorithms have been shown. Next, study
thoroughly investigates pros and cons of these algorithms.

Five well known association rule algorithms are implemented. This experimental
system is developed using Java under Windows 2003 Operating System. Run time
behaviours of this algorithms are analyzed and compared with using different
dataset. Finally, new approach is proposed for mining association rules. Its basic

design and details are explained for this new approach

Keywerds: Database Management Systems, Data mining, Association rules.

iv

OZET

Bu caligma, iligkili veri madenciliginin temel kavramlarim agiklar ve bilinen
iligkisel kural algoritmalarimn uygulamasimn analizlerini igerir. Uygulamalar
Apriori, Eclat, FP-Growth, Partition ve Dynamic Itemset Counting algoritmalar:

uzerinde gergeklestirilmigtir.

Veri madenciligi iligkisel kurallani iki temel agsamadan olugmaktadir. Birinci
agsamada tiim sik gecen par¢a kiimelerini bulunmakta, ikinci asamada ise tiim sik
gecen parga kiimeleri arasinda kurallan olusturulmaktadir. Yaygin olarak kullanilan
iligkisel kural algoritmalart mevcuttur. Bu ¢alismada yaygin kullanilan iliskisel kural
algoritmalari sistemlestirilmekte ve tamimlanmaktadir. Temel prensipleri ve
birbiriyle olan farklani gosterilmektedir. Aragtrmamn son asamasinda ise

algoritmalarin art1 ve eksileri ayrintili olarak incelenmektedir.

Yaygin olarak bilinen beg algoritmanin uygulamasi yapilmistir. Bu olusturulan
sistem Windows 2003 igletim sistemi ve Java platformunda gelistirilmigtir.
Uygulamalar1 yapilan algoritmalann ¢aligma performanslan analiz edilmis ve farkli
veri kiimeleri kullamlarak karsilagtirmalan yapilmigtir. Son olarak, yeni bir iliskisel
kural yaklagim Onerilecektir. Bu onerilen yapmnin temel tasarimi ve detaylari

agiklanacaktir.

Keywords: Veri Yonetim Sistemleri, Veri Madenciligi, Iliskisel kurallar.

CONTENTS
CONLENS ...t et
List Of Tablescoooiiiiiiiiiiice e
List Of FIGUTESccoviviiiiiiee e
Chapter One
INTRODUCTION
1.1 Applications and Uses of Data Miningccc.occo.oee
1.2 ObJECHIVE......ooviiiiiieiieeeeee et
1.3 Orgamization............cccooooviiioeeeeiieioieeeieeeeieeeeeessee e eeeeeneneaseeennes
Chapter Two
MINING PROCESS
2.1 Knowledge Discovery Processcoocoovoveeniiroiiennerncenenes
2.1.1 Data EXtTaction........cc..oovuiriieiiiieinieereeneeeeeeeieesneeenanens
2.1.2 Data PreproCessingcoooveveveerirereeeieeneeeeieenerenneen
2.1.3 Data MNINGcoovovviiiieeiiieeeceitecirie e e eenanee e

2.1.4 Patern Evaluationo.oooeeoeieonooeeeeeeeeeeee e,

vi

2.1.5 Knowledge Presentationccooeiiiiiiiiiiiieeiiiiceie e 8
2.2 Types of Data Mining Pattern..............ocoviiiiiiiiiiini et 8
2.2.1 Classification and Predictionoooveeiiiiniiieiiiiieeeeeeeieee 9
2.2.1.1 Decision Tree Induction..............ccceeeiiiviiiiiiiieee e 9
22.1.2 ADecision Tree Examplecoooiiiiiiiiiiiiiiiiieecieceeeee 10

222 Association RUleScoooieiiiiiiiiiiiii e 11
2.2.3 CRUSLING. ...ooonvioiieiiieoee e 12
2231 K-Means Exampleccoooiiiviiiiiiiieeeeecee e 13

2.3 Classification vs. Association vs. Clustring ... 14

Chapter Three
ASSOCIATION RULE
3.1 Associatton Rules..... ... 16
3.2 Formal Problem DesCription............coocoiiiiiiiiioiiieioiiiee e 17
3.3 Discovery of Frequent and Closed Frequent Itemsetsccoccoooeeini.. 22
3.3.1 Closed Frequent Hemsets.............ccoociiviiioiiiriiiiiiiiceit e 23
Chapter Four
ASSOCIATION ALGORITHMS

4.1 TOrOAUCHION.oiiieiiiieeiiei ettt e et nee 26
4.2 Organization of HemMSEtS..........c.oooviiiiiii e 27
4.3 Frequent Itemsets Algorithms. ...t 28
4.3.1 Systematization of the Algorithms...................cccoooiieiiiiii e 28
4.3.2 Apriori Algorithm............cooooiiiiiiiii e 29
4.3.3 Partition AIGOTItRM..........ccoooviiiiiee e 32
4.34 DIC AlZOrithm ..o e 34
435 Eclat Algorithmt 36

43.6 FP—Growth Algorithm ... 38

vii

4.4 Frequent Closed Itemsets Algorithms ...l 41
4.4.1 Closet Algorithmc.cccooeiiieeinnnne. et r e e et e e e e aaaeeeanaaeas 42
442 Charm Algorithmccoooiiiiiii e 45

4.5 Parallel & Distributed Algorithmsc.coooiiiiiiiiii i, 48

Chapter Five
IMPLEMENTATION and
EXPERIMENTATION RESULTS

5.1 INErOAUCION. ...ttt e et e et e e nae e s 51

5.2 Implemantation Detailscocooiiiiiiiiiiiii e 52

5.3 Data SELS......ooiiiiiiie et 54

5.4 Generating Association Rules..............c.ccccoiiiiiiiii, 55

5.5 EXPEMIMENLScoooiiuiieiiiieiiieceeceie st e eseee e eeseeessne e e e e neeeenseesseeesnneeneees 56

5.6 A New Algorithm for Association Rule................cco.oocooviiiiiice 62

5.7 Summary of Algorithmsoooiiiii e 65

CONCLUSION. . ..ottt et es et sr e sa s m s e esn s sese e s 66

RETEIENCES ...ttt s et a e et et e se et et aeseesseseseaesesens 68

viii

LIST OF TABLES

Page
Table 2.1 Example Weather Dataccooooiiiiiiiice e 10
Table 2.2 k —~ means input VAIUSScooiiiiiiiriiiiieiecie e 14
Table 3.1 The transaction database transaction DB1 ... 19
Table 3.2 A Subset of Market Basketcccoooiiiiiiie e 21
Table 3.3 Single Item — Setsooooiiiee e e 21
Table 3.4 TwWo Iem — SeLScooooiiiiiiiiiiii ittt ettt 21
Table 3.5 The transaction database transaction DB2 ... 25
Table 4.1 Transaction DB3 ...t s 30
Table 4.2 The transaction database transaction DB4 ... 40
Table 4.3 Transaction DBS et ceeeeneeee 43
Table 5.1 DataSet CharaCteristiCscc.ooivvtioirieiee ettt 54
Table 5.2 Transaction DB6 (Min_support S0%)ooooiiiiiiiineieecceceee 63

Table 5.3 Summary of Algorithms Comparisonscccoooeeriierinenienernicncenns 65

ix

LIST OF FIGURES

Page
Figure 1.1 Data Mining PTOCESSocoooeioiieiiioiiieteeiieieieeee et vesetees e esenssesesessesenns 6
Figure 2.1 Play - Decision Tree depend on the weatherccccoocoovnveiinnnnn. 11
Figure 2.2 Clustring eXampleccoooioiiienieiieieieceee et 14
Figure 4.1 Full itemset tree, for our example databaseccccoevvieiiinincnn, 27
Figure 4.2 Systematization of the Algorithms ... 29
Figure 4.3 Apriori Frequent itemsets generation process in our example database
transaction. DB3 ... e 31
Figure 4.4 Apriori and DIC ... 35
Figure 4.5 FP tree for transaction DB4 ..., 40
Figure 4.6 Mining Frequent Closed Itemsets using transaction DBS 44
Figure 4.7 Properties of Itemset & Transaction Setsccccocovevreeciirniieciien 47
Figure 4.8 Data Parallelismc..oooviiiiiiioic e 49
Figure 4.9 Task ParalleliSmcoocooiiiiiiiiic et e 50
Figure 5.1 User Interface -1ocooiiiiiiii e 52
Figure 5.2 User INerface =2cocovoeiieiiiieecec et 53
Figure 5.3 Output from the APriOrcooooviieniiiriiiieeeecie e 53
Figure 5.4 Hash Tree for Rules Generationcccooooovoeeeniiierroenicceeereeeeeen, 56
Figure 5.5 Running Time of the Algorithms for generating frequent itemsets for
“TTIOIAD TOOK” ...ttt et e e e st enas 57
Figure 5.6 Running Time of the Algorithms for generating frequent itemsets for
CPUMSD” ...ttt et e st es e e s et seeane s ssne st emnn e es e e esenns e enens 58

Figure 5.7 Running Time of the Algorithms for generating frequent itemsets for
MUSHIOOIM ..ottt e e e e e 59

Figure 5.8 Running Time of the Algorithms for generating frequent itemsets for

CHAPTER ONE
INTRODUCTION

Data Mining is a process of inferring knowlegde from databases or data
warehouses. Data mining presents new perspectives for data collection analysis. The

purpose of data mining is to idetify trends and patterns in data.

Over the past few decades, some new methods have been obtained about the
capabilities of data collection and data generation. Data collection tolls have
provided us with a huge amount of data. Data mining processes have required an
integration of techniques from multiple disciplines such as, statistics, machine
learning, database technology, pattern recognition, neural networks, information

retrieval and spatial data anaylsis.

Data mining methods has used in many different area such as, business
management, scientific, engineering, banks, data management, goverment
administration and many other applications. Data mining is an iterative process
containing several steps, beginning with the understanding and definition of a
problem and ending with the analysis of results and determine a strategy with using

the result.

Data mining, also known as knowledge discovery in databases, is a nontrial
extraction of implicit, previosly unknown and potentially useful information from
data (Frawley et al. 1991 p.127). ‘Data Mining’ and ‘Knowledge Discovery’ have
been used interchangeably. In spite of this usage, there is different meaning between
the two. Data mining algorithm cannot operate on raw data many data mining

algorithms can read and process from flat files without additional steps. Data stores

in a databases or datawarchouses so, data mining process may need to extract, format
and convert the raw data before invoking the data mining algorithm. The extraction
information can often help marketting, decision making and business management.

Data mining process is an important area in database systems.

1.1 Applications and Uses of Data Mining

Data mining has three major components. (WEB_1, 1997).
e (lustering and classification: analyze a set of data and generate a set of
grouping rules which can be used to classify future data.
e Association: implies certain association relationships among a set of objects
in a database.

e Sequence analysis: seek to discover patterns that occur in sequence.

Many business and organization collect data about their operations and use data
mining methods. Some organizations use data mining techniques to marketing. For
example to anayzes customer buying habits. To obtain of such information can help
retailers to improve marketting strategies. Banks use data mining to predict credit
risks. Insurance companies use data mining to anaylze claims patterns for fraud and
to predict high risk situations. Other applications include stok market analysis,
predicting foreign exchange rates based on current financial indicators, determining
commonalities or anomalies among classes of medical patients, modelling proteins,

and finding genes in DNA sequences.

Another data mining application area is within the operations and communications
of the organization itself. Security offices and law enforcement agencies have been
applying data mining technologies to their data sets. They have analyzed all sorts of
data sets including telephone tool calls, narcotics operations, financial crime
enterprises, criminal organizations, border crossing, terrorist activities and a wide

range of other activities. (Herwestphal C. et al., 1998, p.48).

1.2 Objective

Association Rule mining is one of the fundamental data mining method.
Association is a rule, which implies certain association relationships among set of
objects such as occur together or one implies the other. Goal of association rule is
finding associations among items from a set of transactions which contain a set of
items. Main problem of Association Rule inductions is that there are so many

possible rules.

The objective of this thesis is to explain the fundamentals of Association Mining.
Next, briefly describe and systematize most common association rule algorithms.
There are several efficient association rule algorithms. Additionally, new proposals
offered for algorithms that improve run time for generating association rules or
frequent itemset. We thoroughly investigate pros and cons of these algorithms. In
this thesis, a new approach proposed for mining association rules and its basic design

and details explained.

Most of association rule algorithms generate Association Rule in two steps:
1. Find all frequent item sets;

The foundation of Association Rule algorithm is fact that any subset of a frequent
itemset must also be a frequent item set. i.e., if {4AB} is a frequent item set,
both {4} and {B} should be a frequent item set

Iteratively find frequent item sets with cardinality from 1 to £ (k-item set)

2. Use frequent item sets to generate strong rules having minimum confidence.

1.3 Organization

This thesis includes five chapters except the first introduction chapter. Each
chapter gives a summary on the topic mentioned on this chapter firstly, and then

makes a detailed explanation of this topic. The thesis is organized as follows:

Chapter Two explain the basic fundamental description of data mining and mining
process. Chapter Three, identify the association rule concepts, Chapter Four describe
the most common algorithms furthermore we show the common principles and
differences between the algorithms. Chapter Five describes the design and
implementation of algorithms and experimentation results are presented. Later on,
algorithms are compared and explain the design and details of our new approach.
Chapter Six concludes the study explained in this thesis with a summary of our result

and comments.

CHAPTER TWO
MINING PROCESS

The aim of the database system is to store of raw data. Definition of the data
mining is the process of inferring knowledge from the database system. Discovery
process for reach the knowledge consists of an iterative sequence of the steps. This
chapter describes the mining process steps and define the types of data mining

pattern.

2.1 Knowledge Discovery Process

Understanding and definition the problem is the first step in data mining process.
Once a problem has been defined, relevent data must be collected. The relevent data
is extracted from an existing database or data warchouse. Figure 1.1 illustrate the
data mining process. Data mining process consist of the following steps. (Han J. &
Kamber M., 2000).

2.1.1 Data Extraction

Data extraction process extracts usefull subsets of data for mining. Goals of the
extraction process are, identifying concerned information in the database and
processing the database into some suitable form to analysis by the data mining
algorithms.

Data for modelling can be stored in many different sources. These sources are,

databases, data-warehouses, web sites, flat files,etc.. Relevant data are collected from

these sources during the extraction process. While the extraction process proceed some
operations can be applied on the data. If the source includes the dublicate data which
requires more storage space and creates the problem of maintaining consistency, these

data are eliminated from the source database.

E

é

4 i
| a--------»“-@\:

i
{
!
!
i
!
i
i
i
{
!
!
{
i
|
i
H

Figure 1.1 Data Mining Process

2.1.2 Data Preprocessing

Data preparation is one of the most important steps in the data mining process. Large
database systems generally contain errors in the stored data. Examine the data for errors,
outlines and missing values to the quality of the data. This is the most time consuming
and most important step in the data preparation process. Robustness is an important '
property for the data mining systems. So, some techniques are used to managing to data
in this process.

Data cleaning can be applied to remove noise and inconsistency in the data. There are
many reasons for noisy and incomplete data. Some of methods are used to filling in the

missing values. The most famous one is the regression methods for data cleaning. Data

cleaning. Data integration merges data from multiple sources. These sources may
include multipe databases, data cubes, or flat files. The main problem of the
integration is data confliction. Data transformation operations used for
normalizations and aggregation. Data are transformed or integrated into form suitable
for mining. Data transformation process includes smoothing, generalization,
normalization and aggregation techniques. Data reduction operation used for reduce
the data size by using one of the data aggregation, dimension reduction or data
comparison methods. Data reduction methods can be used to minimizing

represantation of the data, while reducing the loss of information content.

2.1.3 Data Mining

All of the raw data are created and cleaned in the previous steps. Thus, data are
prepared for the data mining stage. Prepared data might contain many attributes and

we have to select a subset of the attibutes for using in data mining process.

A Data mining algorithm takes data as input and produces output in the form of
models or patterns. In this step an intelligent methods are applied in order to extract
data patterns. Visualization, classification, clustring, regression or association
algorithms are used for different problem. There are many algorithmic approaches to
extracting useful information from data. As these are the basis for this thesis we will

defer discussion of the specifies until later sections.

2.1.4 Patern Evaluation

Data mining system generate lots of patterns, or rules. Only small fraction of the
patterns which are generated from the data mining system are interested to any given
problem. Patterns have to be easily understood, useful, and interesting. An interesting
pattern represents knowledge. After determination of the knowledge function, some

measured functions which are used to separate uninteresting patterns from

knowledge, are used for the data mining process. For example, association rules use

support and confidence measure functions to determine the rules.

Completeness of the data mining is an another patern evaluation problem.
Generally, data mining system cannot generate all of the interesting pattern. Thus,
data mining algorithms use some constraints and interestingness measures to ensure
the completeness of mining. Hence, optimization problem is one of the important

problem for the data mining.

2.1.5 Knowledge Presentation

Visualization and Knowledge represantation techniques are used to present the
mined knowledge to the user. We have made a final pass through the data mining

process, we are ready to implement some strategy based on the discovered patterns.

An important goal of data mining is to apply what has been learned. In the
knowledge presantation step some possible actions formed from the successful
apllication. Creation of a report or technical article, relocation of retail items for
purchase or placement of selected items on sale together, funding of a new scientific
study motivated by what has been learned from a knowledge discovery process are

some possible example.

2.2 Types of Data Mining Pattern

This section describes the types of data mining pattern which are classification,
association rule and clustring. There are many different algorithms are used in these

data mining pattern.

2.2.1 Classification and Prediction

Classification is the process of finding set of functions. One important feature of a
classifer that is important to data miners is that the resulting function be ultimately
understandable. The predicted attribute is called the class. Result functions describe
data classes or concepts. The purpose of the classification and prediction method is
to predict the class of objects whose class label is unknown. Each record consists of a

goal attribute and a set of predicting attributes.

Training data set used to derive this model. There are more powerful classification
technique like Classification Rules (IF - THEN), Mathematical Formula, Decision
Trees or Neural Networks. In this part, I describe decision tree which is the famous

methods for classification and prediction.

2.2.1.1 Decision Tree Induction

A decision tree is a tree structure using for a visual representation of the
classification technique. Internal nodes denotes a tests on predicting attributes,
branch denotes a outcome of the test, and leaf nodes represents the value predicted
for the goal attribute.

There are many other classification methods can be used to finding set of classes.
These methods are Bayesian classification which is the statistical classifiers based on
Bayes Theorm. Classification by Backpropagation is a neural network learning
algorithm. K — nearest neighbour classification, genetic algorithm, fuzzy set and
rough set are the other classification methods. A decision tree is constructed by
initially selecting a subset of instances from a training set. This subset is then used by
the algorithm to construct a decision tree. The steps of the decision tree algorithms
summarized as follows: (Hofer J., & Brezany P., 2004, p.41)

10

create a node N;
if samples are all of the same class, C then
return N as a leaf node labeled with the class C;
if attribute-list is empty then
return N as a leaf node labeled with the most
common class 1n samples;
select test-attribute, the attribute among attribute-
list
with the highest information gain;
label node N with test-attribute;
for each known value a; of test-attribute grow a branch
from node N for the condition test-attribute=a;;
let s; be the set of samples in samples for which
test-
attribute=a;;
if s; is empty then
attach a leaf labeled with the most common class in
samples;
else attach the node returned by Generate
decision tree;

2.2.1.2 A Decision Tree Example

Decision Tree algorithm searches through the space of possible decision trees
from simplest to increasingly complex, guided by the information gain heuristic.
Table 2.1 includes some data for construct the decision tree and figure 2.1 illustrates

the example.

Table 2.1 Example Weather Data

Qutlook | Temperature | Humidty | Windy Play
Sunny Hot High False No
Sunny Hot High True No
Overcast | Hot High False Yes
Rainly Mild High False Yes
Rainly Cool Normal | True No
Rainly Cool Normal | True No
Overcast | Cool High True Yes
Sunny Cool Normal | True Yes

11

o Outlook ¢
T rainly
sunny
3;3» pvercast .
o ; i
& v T T
e ¢ wind y
: Yes L wmey
{ humidty B S
.. - s
e T = PN
high N false - ., frue
1gh - - normal . “\
< . d
- k_h\‘ ‘-‘ &

! Mo Yes Yes N

Figure 2.1 Play - Decision Tree depend on the weather

2,2,2 Association Rules

The objective of this thesis is to explain the fundamentals of Association Mining.
Association rules and association algorithms are the basis for this thesis we will defer

discussion of the specifies until later chapters.

Association rule mining helps in finding interesting association relationships
among large set of data items. The discovery of such associations can help develop

strategies to predict.

An association rule is a relationship. An Association Rule is a rule of the format
LHS (left hand side) => RHS (ride hand side). X and Y where X, Y < I (both side

contains sets of items) and XNY =& (don’t share common items).

Briefly, an Association Rule is an expression;

X = Y, where X and Y are set of items.

12

Each rule is assigned two factors:

Support x sy - 6 (XUY) = (XUY) / # of tubles (where probability denotes as 6)

Confidence x»y -6 (X | Y) ={(XUY)/ «(X)

The aim of the algorithm is to discover all association rules with

Sup > minimum_Sup and

Conf > minimum_Conf.

2.2.3 Clustring

Another kind of data mining pattern is a clustring model, also called a
segmentation model. Clustring is the process of grouping the data into class. The
goal of the clustring is to take a set of objects which are records in a database or
datawarehouses and to partition them into number of groups or clusters. (Berkhin P.
& Software A., 2002).

Clustring is the process of grouping the data into classes. The process of deciding
how to use clustring pattern is the task for domain expert and data mining analyst.
They work together to understand each cluster. Cluster analysis method has been
used in pattern recognition, data analysis and image processing. After clustering, we
can apply classification methods to discover rules predicting membership in a given

class.

Clustering techniques have been studied overall in statistics, machine learning and
data mining. Clustering can be used on the principle of maximizing the intra-class
similarity and minimizing the interclass similarity. Cluster analyzes is used in
different area. In marketing, characterize customer groups based on purchasing

pattern. In Earthquake studies, observed earthquake epicenters should be clustered.

13

In biology, it can be used to categorize genes with similarity, animal taxonomies.

Clustering may also used in Land use, City planning and Insurance.

There are many techniques which are hierarchical methods, partitioning methods,
density—based methods, grid—based methods, and model-based methods, are used in
clustring analyzes. 1 describe the classical partioning methods which is the
commonly used for clustring. K — means method is the most well known technique

used in partioning methods.

The first step of the k- means algortihm, choose a value of K, next, k instances are
selected randomly. Each instance is then placed in the cluster to which it is most
similar. Then cluster center are updated until an iteration of the algorithm shows no

change in the cluster centers.

Here is the algorithm of k-means.

arbitrarily choose k objects as the initial cluster
centers;
repeat

assign each object to the cluster to which the
object is the most similar,

based on the mean value c¢f the objects in the
cluster;

update the cluster means;
until no change;

2.2.3.1 K -Means Example

For our example we will use the ten instances in table 2.2. For to make easy name
of the attributes x and y, respectively and map the instances onto an x-y coordinate
system. All Data objects are arrenged in the rectangle. Let k=2, and k- means
algorithm illustrated in figure 2.2. The repeatation operation continue until no change
of the objects. The running steps of the k-means algorithm is given above. (This
example is inspired from the Han J. & Kamber M., 2000, p.352)

Table 2.2 k — means input values.

Instance X Y
1 3 4
2 4 5
3 3 6
4 5 1
5 4 7
6 3 8
7 5 5
8 7 3
9 8 5
10 7 5
, T
% ,f“{"-\.
1 £ I A
T N
~ T — —»
F Add T
N each L kY Update
: ohject =Y the
Y = T . t-ohjﬂae + . }3‘ cluster
closer) \ means
b cenite F
of the
= T
k=g class S :
| J!,.@sz = —
Choose k elements as) %‘. 7 ‘ai Updste
the initial chaster T T ¢ 7 the
centers. Ei ' cluster
o means

Figure 2.2 Clustring example.

2.3 Classification vs. Association vs. Clustring

14

i = o

e e

In this chapter defines the types of data mining pattern which are classification,

association and clustring. These data mining pattern explained above. (Association

Rule is investigated in next chapter). Here is the comparison of the pattern.

Classification:

v" a single goal attribute and a set of predicting attributes

v’ part of the problem is to determine the relevance of the predicting attributes

v’ quality of a discovered rule is much more difficult to assess

15

v' the difficulty is to design effective algorithms to discover high-quality
knowledge

Association:
v all items can appear either in the antecedent or in the consequent of the rule
v' quality of a discovered rule is depended on Sup and Conf factors.
v" the system simply has to find a// rules determined by user-defined Sup and
Conf
v the difficulty is to design efficient algorithms
Clustering:
v’ no special attribute
v all attributes are usually considered equally relevant
v the difficulty is the quality of the discovered clusters

v" used mainly for data exploration and data summarization

CHAPTER THREE
ASSOCIATION RULE

Types of data mining patterns are explained in the previous chapter. Concepts and
fundamentals of Association Mining which is the important and popular for data
mining application thoroughly investigated in this chapter.

3.1 Associaiton Rules

Association rule mining explores for interesting relationships among items in a
given data set. Association analysis is used for market basket or transaction data
analysis. Market basket process finds associations between the different items. An
objective of association rule mining is to develop a systematic method using the

given data set and finds relationships between the different items.

Association is a rule, which implies certain association relationships among set of
objects such as occur together or one implies the other. (Kumar P., 2001) Goal of
association rule is finding associations among items from a set of transactions which
contain a set of items. Main problem of Association Rule inductions is that there are
so many possible rules. A typical association rule mining algorithm has the following
components:

» Structure (used for implementation of the pattern)
» Score function (simply binary function, support and confidence)
» Search method (systematic search methods)

»> Data management technique (number of linear scan through the database)

17

Search and data management components are the most critical components. Thus,

aim of the all proposals is to design efficient algorithms for association mining.

Efficient algorithms are needed which restrict the search space for minimize the
algorithmic complexity and interesting rules must be picked from the set of
generated rules. The search space for enumeration of all frequent item sets is 2",
where m represents the number of items. The rule generation step’s complexity is O
(r.2"), where r is the number of frequent item sets, and / is the longest frequent item
set. (M. J. Zaki, 2000).

Mining association rules can be divided into two sub-problems:

- Find all frequent itemsets which have the support greater than the minimum
predetermined min_sup in the transaction database.
- Generate all association rules X=Y, which have confidence greater than

predetermined min_conf.

3.2 Formal Problem Description

Association Rule problem can be described as follows (R. Agrawal et al. 1993):

Let I = {iy, i, i3 ... iy} be a set of items. Each transaction, 7, is also a set of items
which non-empty subset of 7, is called an itemset, and Tc I. An itemset with % items
is called a k-itemset.

An Association Rule is a rule of the format LHS (left hand side) => RHS (ride
hand side). X and Y where X, Y c I (both side contains sets of items) and XNY =
(don’t share common items).

Briefly, an Association Rule is an expression;

X = Y, where X and Y are set of items.

18

Above rule shows the transaction of the database which contain X tend to contain
Y. various metrics describe the utility of an association rule. The most common one
is the percent of all transaction containing AUB, called the support. The support of
the rule denoted as sup(X =Y). The other one is the percent of transactions
containing B among transactions containing A, called the confidence. The confidence
of the rule denoted as conf(X =Y). They defined as;

Support x—y - ¢ (XUY) = (XUY) / # of tubles (where probability denotes as c)

Confidence x—y - 6 (X | Y) =(XUY)/ (X)

Generally, the algorithm finds a subset of Association Rule that satisfies certain
constraints. Minimum Support and Minimum Confidence are commonly used
constraints for the association rules. Given a user specified minimum support
threshold and minimum confidence threshold, the aim of the association rule mining
is to find complete set of association rules in the database with support and

confidence passing thresholds, respectively.

An itemset is frequent if its support is higher than or equal to a given minimum

support (min_sup) value Support y —y >min_sup.

A rule is confident if its confidence is more than or equal to a given minimum

confidence (min_conf) value Confidence x —y >min_conf.

Most of association rule algorithms generate Association Rule in two steps (Z.
Zheng et al. 2001):

1. Find all frequent item sets;

The foundation of Association Rule algorithm is fact that any subset of a
frequent item set must also be a frequent item set. i.e., if {AB} is a frequent
item set, both {4} and {B} should be a frequent item set

Iteratively find frequent item sets with cardinality from 1 to & (k-item set)

19

2. Use frequent item sets to generate strong rules having minimum confidence.

The first step, find all frequent item sets, is expensive in terms of computation,
memory usage and I/O resources. Much of the research effort in association rule
algorithms has been related to improving the efficiency of this first step. The second
step, use frequent item sets to generate strong rules having minimum confidence, is
relatively certain, but it can still be very expensive when solving real-world

problems.

Example-3.1 (Association rule mining):

Transaction database, transaction DB1, shown in Table 3.1. We use <2, {A, B,
C}> is a transaction, in which 2 is the transaction identifier, and {A, B, C} is an
itemset. Given min_support = 40% and min_confidence = 50%, association rules can

be mined as two-step process.

1. Find all frequent itemsets.
80% of all transactions contain {A}
40% of all transactions contain {B}
80% of all transactions contain {D}
40% of all transactions containing {A, B}
40% of all transactions containing {A, D}

2. Generate all association rules on each frequent itemset.

Table 3.1 the transaction database transaction DB1

Transaction_id Items in
transaction
A B Min support = 40 %

A CD Min confidence = 50 %
A F
A, DB
D

A (BN

20

Forrule 4 = D:
Support = Support ({4uD}) = 40%
Confidence = Support ({4uD}) / Support ({4}) =50%

In this example, we generate the association rules 4 = D (all transactions which
contain {A} also contain {D}), 4 = B, AB = D, AD = C: with given min_sup &
min_conf thresholds.

These rules are very simple, understandable and useful for association rule
mining. However, the determination of these rules is a major challenge due to the

very large data sets and the large number of potential rules.

Example-3.2 (Association rule mining):

A subset of market basket database, shown in Table 3.2. Subset database is used
to construct association rules in this example. The first step is to create single item —
sets. Single item — set represents the items count in the given subset database. In
table 3.3, the single item— sets are illustrated. Then combine single item — sets to
create two item — sets. The next step is to use the attribute value combinations from

the two item — sets table to generate three item — sets.

Table 3.2 A Subset of Market Basket

Bread Milk Cheese Detergent Sex
Yes Yes Yes Yes Male
Yes No No No Male
Yes Yes Yes No Female
No No No No Female
Yes No No No Male
Yes No Yes Yes Male
No No No No Male
Yes Yes Yes No Female
Yes No Yes No Female
No Yes No No Male

Table 3.3 Single Item — Sets
Item - Set # of Items

Bread = yes 7

Milk = no 6

Cheese = yes 5

Detergent = no 8

Sex = male 6

Sex = female 4

Table 3.4 Two Item — Sets
Two Item - Set # of Items

bread = yes & milk= no 4
bread = yes & cheese = yes 5
bread = yes & detergent = no 5
bread = yes & sex = male 4
milk = no & cheese = no 4
milk = no & detergent = no 5
milk = no & sex = male 4
cheese = no & detergent = no 5
cheese = no & sex = male 4
detergent = no & sex = female 4
detergent = no & sex =male 4

21

22

Association Rules are generated from the two and three item — sets tables. Finally,

any rule not meeting the minimum confidence value is discarded.

Possible two item — sets rules are:
Bread = yes = Cheese = yes (confidence=5/7, 71%)
Milk =no = Detergent =no (confidence =5/6, 83%)

Possible two item — sets rules are:

Cheese =no & Milk =no —=> Detergent =no {confidence =4/4 ,100%)
Milk =no = Cheese =no & Detergent =no {confidence=4/6 67%)

3.3 Discovery of Frequent and Closed Frequent Itemsets

A fundamental problem for mining association rules is to mine frequent itemsets.
An temset is frequent if its support is higher than or equal to a given minimum
support. In a transaction database, if we know the support values of all frequent
itemsets, the association rules generation is simple. Nevertheless, when the given
database which includes set of items contains large frequent itemsets, finding all the

frequent itemsets steps might be difficult.

Typical algorithms are needed which restrict the search space for minimize the
algorithmic complexity and interesting rules must be picked from the set of
generated rules. The search space for enumeration of all frequent item sets is 2™ — 2,
where m represents the number of items. (M.J. Zaki., 1999). In other words, if

frequent itemsets are long, it simply gets hard to mine the set of all frequent itemsets.

Typical algorithms begin with, computation of all the frequent 1-itemsets and then
extends one level up in every pass (2, 3, ..., n itemsets) until all frequent itemsets are

discovered. We can categorize the all itemsets in the database into three sets.

23

i. frequent : the set of discovered as frequent
ii. infrequent : the set of discovered as infrequent

iii. wunclassified : the set of all the other itemsets.

During the generation of the the frequent 1- itemsets some of the itemsets are
pruned whose count is lower than minimum support, as they don’t need to be further.
The remaining itemsets form the set of candidate. As the second step the support for

these itemsets is computed, and they are classified as either frequent or infrequent.

All these generation itemsets process requires to database scan for discover the
frequent itemsets. The cost of the frequent itemsets finding process comes from the
reading of the database (I/ O time) and the generation of the new candidates (CPU
time). The number of candidates the most important parts the entire processing time.
Decreasing the number of candidates not only can reduce the I/ O time but also can
reduce the CPU time, since fewer candidates require to be counted and generated. (
Lin D. & Kedem M. 1997). Hence, reducing the number of candidates is the critical

importance for the efficiency of the process.

In order to solve this problem, several solutions have been proposed that only
generate a representing subset of all frequent itemsets. An interesting alternative to
this problem is the mining of frequent closed itemsets and their corresponding
association rules. Frequent closed itemset approach reduce the algorithm

computation cost.

3.3.1 Closed Frequent Itemsets

A transaction database is a set of transactions, where each transaction, denoted as
a tuple (tid, items), contains a set of items (i.e., X, Y ...) and is associated with a
unique transaction identity tid. (Wang J. & Karypis G., 2004). Let I = {7}, i, i3,... in}
be the complete set of distinct items appearing in transaction database. An itemset

Y is a non-empty subset of I and is called an 1 - itemset if it contains | items. An

24

itemset {x;, x5 X3 ... X3} 1is also denoted as x;, ... x;. A transaction (tid, X) is said to
contain itemset Y if Y < X. The number of transactions in Transaction database
containing itemset Y is called the support of itemset Y , denoted as sup(Y). Given a

minimum support threshold, an itemset Y is frequent if sup(Y) > min sup.

Definition : (Frequent closed itemset). An itemset Y is a frequent closed itemset
if it is frequent and there exists no proper superset Y — Y’ such that sup(Y’) =
sup(Y). (Pasquier N. et al., 1999)

Discover all the association rules is not necessary. There exists a set of necessary
association rules which can be mined from the closed frequent itemsets and these

rules can be used to obtain all the association rules.

Mining frequent closed itemsets provides complete and necessary results for
frequent pattern analysis. Overall studies have proposed different strategies for
efficient frequent closed itemset mining. Some of them are, depth first search vs.
breadth first search, vertical formats vs. horizontal formats, tree- structure vs. other

data structures, top-down vs. bottom- up traversal.

Example: Transaction database, transaction DB2, shown in Table 3.5. (This
example is inspired from the J. Pei et al., 2000). Suppose min sup = 2, we can find
the items count and sort the list of frequent items in support descending order. The
sorted item list is called cfi_list. In this example,
cfi_list =<f4, ¢4, a3, b:3, m3, p:3>

The frequent items in each transaction are sorted according to cfi_list and shown
in the third column of Table 3.5.

Itemset (fc) is a frequent 2-itemset with support 3, but it is not closed, because it

has a superset (fcam) whose support is also 3. (facm) is a frequent closed itemset.

Table 3.5 the transaction database transaction_DB2

Transaction_id Items in Ordered frequent

transaction item set

1 A C,F,FMP F,C,A MP

2 A C.D FMP F,C,AMP

3 A B,CF,GM F,C,A,B,M

4 B,F,1 F,B

5 B,N,C,P C,B,P

6 K L -

Due to generating a very large number of itemsets and association rules, it is

difficult to mine complete set of itemsets.

Frequent closed itemsets provides the same analytical power as the finding all
frequent itemsets. At the same time closed frequent itemsets can be used to obtain all

the association rules. Thus, closed frequent itemset methods are more interesting and

effective than the former.

25

CHAPTER FOUR
ASSOCIATION ALGORITHMS

Concepts and fundamentals of Association Mining are explained in the previous
chapter. This chapter, briefly describe and systematize most common association rule
algorithms. Basic design concepts of these algorithms has been examineted in details.
Common principles and differences between the algorithms have been showed.
Furthermore, I thoroughly investigate pros and cons of the most common association

algorithms.

4.1 Introducticn

There are many new and efficient algorithms have been developed in association
mining. Additionally, new proposals offered for algorithms that improve run time for

generating association rules or frequent itemset.

These algorithm have used different itemset generation approach. Classical
algorithms have used frequent itemset generation technique. The new generation
algorithms have used closed frequent itemset generation and maximal frequent

itemset generation technique.

Having taken the dataset as input, Association algorithms, generates association
rules, consequently final output will be a list of all whose confidence and support are

above the minimum thresholds.

27

4.2 Organization of Itemsets

We have to count the transactions to find the frequent itemsets. Generally, tree
structure is used to organize the itemsets. Aim of the itemset tree is storing itemsets

efficiently and supporting the process of transaction.

Some of the association rule algorithms use different data structures which may be
used for the nodes of this tree, and the other use different pruning techniques for

generating the frequent-itemsets.

Figure 4.1 illustrates the complete itemset tree in our example database (see Table
3.1)

~ ‘ \ %ﬁ‘*\ ‘:
ad af he

ab ac
A AN 7
‘f ’9:\" y
;N> l f\
;3‘0(: abd abf acd acf adf bed bef hdf cdf
.’»"ﬁ“(‘\:\"-“ ' l l
ahcd sbef abdf acdf bedf
I
abedf

Figure 4.1 Full itemset tree, for our example database

This tree is unbalanced,because node nuc, is the same as nodes Ngpa, Npca, Neab,

Nbac, Nach a8 & result, we need one of these nodes to construct the itemset tree.

Association algorithms use different methods for generating the itemsets which
are, Hash_table, transaction reduction, partitioning, sampling and dynamic item set
counting. Aims of these methods are improving the performance of the algorithms

and eliminating repeated database scan.

28

4.3 Frequent Itemsets Algorithms

The problem of mining association rules was first proposed by Agrawal [Agrawal
et. al. 1993]. Agrawal has introduced one of the most popular association rule
algorithms called Apriori to find frequent itemsets. Apriori and all of the other
algorithms based on the principles of knowledge of frequent itemsets “all non-empty

subsets of a frequent itemset must also be frequent”.

There are many variations or extensions algorithms have been proposed with the
aim of improving performance and efficiency. They use different data structures or

methods which are hash-table, sampling, partioning, dynamic itemset counting etc.

For instance, DHP algorithm applies a hash-table technique to improve the
frequent itemsets generation performance. Another algorithm partition, partitions
transactions in the database and applies algorithm then verifies the frequency of the
itemset in the entire database. Another alternative algorithm DIC uses dynamic
itemset counting. FP-Growth, Eclat, Clique, Apriori Hybrid are the other proposed

algorithms for generating association rules.

4.3.1 Systematization of the Algorithms

Association algorithms differ concerning with itemset tree traversal. Most
approaches use a bottom-up search of the itemset tree to enumerate the frequent
itemsets. If the size of itemset is large, a top-down approach might be preferred.
Some of the others use hybrid search which combines top-down and bottom-up
approaches. We evaluated some algorithms and Figure 4.2 shows the algorithms and

their search methods.

29

Bottom-up Hyhbrid Top-dewn
- e ~ -~ e “ - - "
Apriori AprioriHybrid FP-Growth
Aprioni TID MaxClique Eclat

DIC MaxFEclat

Partition
Cligue
DHP

Figure 4.2 Systematization of the Algorithms.

4.3.2 Apriori Algorithm

Apriori, (Agrawal et al. 1993) and (Borgelt C., & Kruse R., 2002) the Apriori
algorithm is the most popular association rule algorithm. Apriori have used bottom-
up search. Using multiple database scan would have been significantly slower.

Appriori algorithm works as follows:

The first, Apriori algorithm counts occurences for the each item in the entire
database and generates the set C; of Candidate 1 — itemsets. Then, itemsets count and
minimum support value are compared to find the set L;. The second,algorithm use L;
to construct the set C, of Candidate 2 — itemsets. The process is finished when there
are no more candidates. In each phase, all the transaction in the data set are scanned.

Finally, all frequent itemsets are returned.

Apriori uses two step processes which are Join and Prune to create Ly from Ly,
k-itemsets (Ly) are used to explore (k+1)- itemsets and Candidate (Cy) is generated
by joining Ly with itself. Apriori algorithm scan entire dataset to generate single
itemsets with a support level equal to or greater than the specified minimum support.
After generating the itemsets C;, then, itemset will be joined to generate candidate

C; sets. If Cy greater than minimum support; Cy added in Ly else Cy pruned off.

30

The main idea of Apriori is outlined in the following:

Ly : Frequent itemset of size k
Cx : Candidate itemset of size k
L; = {frequent 1- items};

For (k = 1; L; '=J; k++) do begin
Cx+1 = candidates generated from ILg;
For each transaction t in database do
Increment the count of all candidates in Cis:
that are contained in t

Ly;; = candidates in Cys; with min support
End

Return Ui Ly ;

Example 4.1: Consider the following transaction DB3.

Table 4.1 transaction_DB3

Transaction_id Items in Ordered frequent

transaction item set

1 A B CF A B,C F

2 D,B,C B,C,D

3 B,C B, C

4 AF,D,G A D,F,G

5 AE C A C E

6 A B, D A B, D

7 A B A B

8 A D F A, D F

9 A B A B

10 A B, G A B G

Let user defined minimum support threshold be 3 (60 %). Appriori first generates
C, then, count the each candidate 1 — itemset and minimum support value are
compared to find the set Z;. The algorithm uses the join operation L co L; to generate
C, candidate 2- itemsets. Next all transactions are scanned to find itemsets count in
C,. The process is finished when there are no more candidate itemsets. Figure 4.3

illustrate of this process.

31

G

o) L1 ftem - Sat #of ewss

Fam - Set # of ltems Jtern - Set #of ltems &4, Bf
{4 C}
{4, o

. A F

" (B C)

{8 D}
{8, 7}
{C, D}
{C, F}
{D, 7}

ol Ot
N N RNy

Qe
PRI NN 1

LEVRL KRN SV KO U I VO RN N L I N R]

La C3 La
Ei’tem-Set # of Ttews Jtem -~ Set ¥ of Ttems Ttem - Bt~ 4 of Bewms

{4, B} 5
o 3
MR 4
8C; 3

{0, F} 3

| {4 D F} 32 o {48 D}
: ; {4, B, F}
{4 D F}
{4, 8 C}

bk) bt i

Figure 4.3 Apriori Frequent itemsets generation process

in our example database transaction_DB3.

Using the frequent itemset {A, D, F} which have subsets ({A}, {D}, {F}, {A, D},

{A, F}, {D, F}), generated association rules are as shown below.

A&D = F confidence=3/3=100%
A&F = D confidence=3/4=75%
D&F = A confidence=3/3=100%
A = F&D confidence=3/8=375%
F > A&D confidence=3/4=75%
D => F&A confidence=3/4=75%

32

4.3.3 Partition Algorithm

Partition is a different approach from all the others. (Savasere A. et al. 1995) This
alogortihms use set intersection operation instead of counting. Supports of an
itemsets evaluated with its subsets. Partition algorithm combines the Apriori with set

operation (intersection).

Partition algorithm stores the complete database which includes the transaction
sets, into main memory. For huge databases, this could be imposible. Neverthless,
the partition algorithm partitions database into several chuncks to solve the problem
that, is the main memory limitations. (Leung K. S. 2002, p.43).

The main idea of Partition is outlined in the following:

Output: F(D, o)
Partition D in Di, . . . ,Dn
// Find all local frequent ltemsets
for 1 £ p £ n do
Compute Cp := F(Dp, [o rel - [Dpll)
end for
// Merge all local frequent itemsets
// Compute actual support of all itemsets
for 1 £ p £ n do
Generate cover of each item in Dp
for all I € Cgiobal dO

I.support := I.support + |[I[l]l.cover N - =+ - N
I[1I}].cover|
end for
end for
// Extract all global frequent itemsets
F := {I € Cgqioba1 | I.support 2 o }

Partitions algorithm executes in two steps.

In the first step;

- algorithm divides transactions into several partitions. Then, Apriori
algorithms applied to divided transactions in each partitions to find the
itemsets. This called “locally frequent”

33

In the second step;

- the locally frequent itesets become the candidates for globally frequent
itemsets. The algorithm evaluates the global support counts for locally
frequent itemsets and checks if they are globally frequent.

Generation of local itemsets and generation of final itemsets are important parts of
the algorithm. To generate the local itemset, initially frequent 1 — itemsets are found
then to generate candidate k — itemset join the two (k-1) —itemsets. For instance,
candidate itemset {1, 2, 3, 4} is generated by joining the itemsets {1, 2, 3} and {1, 2,
4}. To generate the final itemsets, all local itemsets from the all partitions are merged
to generate the global frequent itemsets.

Partition algorithms improve the performance with using an important principles
“any globally frequent itemset must appear as a locally frequent itemset in at least
one of the partitions of the database”. (M.J. Zaki., 1999).

The partition algorithm merges all local frequent itemsets of every part. If an item
is frequent in the entire database, it must be relatively frequent in one of the parts.
First, Every part is read into main memory using the vertical database layout next,
frequent itemsets are found into each partitions then, support of every itemsets are
computed. Finally, global itemset frequency are determined using the intersection

operation.

If the database heterogeneous, then its decrease the performance of the algorithm.
Because, there can be too many local frequent itemsets. On the other hand, if the
entire database fits into main memory, then divides the transactions into several

partitions not necessary.

34

4.3.4 DIC Algorithm

DIC (Dynamic ItemSet Counting) algorithm which uses fewer database scan,

presents a new approach for finding large itemsets.

DIC is an extension of Apriori algorithm. (Brin S, et al., 1997) Apriori algorithm
first, counts all the 1 — itemsets and finds frequent 1 — itemsets which exceed the
min_support threshold. Then, counts all 2- itemsets and determines the frequent 2 —
itemsets. Thgs process continuous until there are no more candidate itemsets. Thus,

Apriori fulfil as many passes over the data.

Aim of the DIC algorithm is improving the performance and eliminating repeated

database scan.

DIC algorithm divides the database into partitions (intervals M) and use a
dynamic counting strategy. DIC algorithm determines some stop points for itemset
counting. Any appropriate points, during the database scan, stopping counting, then
starts to count with another itemsets. For instance, our database contains 60000
transactions and M = 15000, algorithm starts to count all the 1- itemsets same with
Apriori. In addition to this, algorithm begin to counting 2 - itemsets after the first
15000 transactions have been scaned. Then, its begin to counting 3 — itemsets after
30000 transactions. Once the algorithms reaches the end of the data file, stop
counting the 1 — itemsets then go back to count the 2 and 3 — itemsets. After 15000
transactions, algorithm finishes the counting the 2- itemsets and after the 30000
transactions algorithm finish the count 3 — itemsets. Consequently, algorithm have
finished counting all the itemsets in 1.5 passes over database, while in Apriori

requires 3 passes. Figure 4.4 illustrate this process.

35

A A A .
ef’{ e'f | 1“(‘] (f T T
i § £
/ { { f 3
{ { i H 2 .
T | I T f! -
R : R i
A A é t e
N 1 2 3 N 1 ; m
S : X - s T s
A 1 i 1 A 1 &
c SRR c leiil *
T m m m T E m § ,-*/
I 2] a] I 8 3"
O & & e] £ i
N i t t N i
g g s g 3 s
$1 b
2
o
APRICORI (3 Passes) DIC (1,5 Passes)

Figure 4.4 Apriori and DIC

To implement this algorithm, four symbols to indicate the different states of

itemsets.

e Solid Box — indicates the itemsets that finished counting and that exceed the
support threshold;

e Solid Circle — indicates the itemsets that finished counting and that do not
exceed the support threshold;

e Dashed Box — indicates the itemsets that finished counting and that exceed
the support threshold;

e Dashed Circle — indicates the itemsets that not finished counting and that do
not exceed the support threshold.

36

The algorithm is described as follows:

1. First, the empty itemset is marked with a solid box and all the 1-itemsets into
dashed circle.

2. After reading one interval of M transactions from database, do the following
steps:

e Check each itemset, in dashed circle. If it exceeds the support threshold,
change it from dashed circle to a dashed box.

e Check each super set of dashed circle. If all the subsets of dashed circle are in
solid box or dashed box, then add it into dashed circle.

e Check each set in dashed circle and dashed box. If it has been counted over
all the transactions, change it into solid circle if it is in circle or change it into
solid box if it is in box.

3. End of transactions is reached then, go back to the beginning and repeat step 2,

until no itemset remains in dashed circle or dashed box.

DIC is effective in decreasing the number of database scans if data are
homogeneous. If data isn’t homogeneous, DIC algorithm scan database more than

apriori and generates false itemsets.)

4.3.5 Eclat Algorithm

Eclat is an extension of apriori algorithm and presents different design approach
for association rule mining. Eclat uses the vertical database layout and uses the

intersection based approach to compute the support of an itemset.

Eclat constructs candidate itemsets using the join step from apriori. Eclat differs
from the apriori algorithm in prune step. (Goethals B., 2003). All items in the
database are reordered in support ascending order at every recursion step of the

algorithm. Eclat counts the supports of all itemsets more efficiently than Apriori.

37

Eclat is better than the Partition algorithm for using the memory. Because of the item
sets reordering process.

The main idea of Eclat is outlined in the following:

Algorithm Eclat

F[I] := {}
for all 1 € I occurring in D do
F[I] := F[I] w {I w {i}}
// Create DI
D' := {}
for all j € I occurring in D such that j > i do
C := cover({{i}) N cover{{j})
if |C| 2 o then
D' :=D v {(j,C)}
end if
end for
// Depth-first recursion

Compute F[I v {i}]1(D', o)
F[I] := F[I]l v F[I v {i}]
end for

Apriori and Eclat algorithms are used the prefix tree structure (described in
section 4.2). The main differences between Apriori and Eclat are traversing to this

prefix tree and determining the support of an item set.

Apriori traverses the prefix tree in breadth first order, it first finds the frequent 1
itemsets, then frequent 2 itemsets and so on. (Borgelt C., 2003). Supports of the item
set are determined in two steps. Firstly, checking all transaction which contains the
item sets or traversing the prefix tree for each item set. Then, incrementing the
corresponding item set counters. Eclat traverses the prefix tree in depth first order, it
extends an item set prefix until it reaches the limit between frequent and infrequent
item sets and then go back to work on the next prefix. Supports of the item set are
determined by constructing the list of identifiers of transactions that contain the item
set. Lists of transaction identifiers of two item sets are intersecting which differ only

by one item and together form the item set currently processed.

38

4.3.6 FP — Growth Algorithm

Given a transaction database and a minimum support threshold, the problem of
finding the complete set of frequent patterns is called the frequent pattern mining

problem.

Fp — tree is a compact data structure. FP-Growth, is an algorithm for generating
frequent itemsets for association rules. This algorithm compresses a large database
into a compact, frequent—pattern— tree (FP tree) structure. Fp — tree structure stores

all necessary information about frequent itemsets in a database.

Definition (FP-tree): A frequent pattern tree (or FP-tree in short) is defined
below, (Pei J., 2002).

1. the root labeled with “null” and set of items as the children o the root. Frequent

item header table which contains items in their frequency descending order.

2. Each node contains of three fields: item-name (holds the frequent item), count
(number of tranactions that share that node), and node- link (next node in the FP-

tree).

3. Frequent-item header table contains two fields, item-name and head of node-

link (points to the first node in the FP-tree holding the item-name).

FP- Growth method only needs two database scans when mining all frequent
itemsets. In the first scan, all frequent items are found. Next scan, constructs the first

FP — tree which contains all frequency information of the given dataset.

Fp — tree use compact data structure based on the following properties, (Goethals
B. 2002).

39

- Frequent pattern generation mining perform one scan of Database to
determine the set of frequent items.

- Method needs to store each item in a compact structure, thus, more than two
database scan unnessary.

- Each frequent item located in the FP — tree and each node hold items and
count of the frequent item.

- Each item have to be sorted in their frequency descanding order. So, tree

comnstruction operation performs easily.

Algorithm

Procedure FP-growth (Tree, o)
{
if Tree contains a single path P
then for each combination (denoted as B)

of the nodes in the path P do

generate pattern B U o with
support =minimum support of nodes in B;

else for each a; in the header of Tree do
{

generate pattern B = a; U o with

support = ai.support;

construct B 's conditional pattern base and
then B ‘s conditional FP-tree Treeg;

if Treey =0 ;
then call FP-growth (Trees, B)

In following example we use the database transaction DB4 in table 4.2 and we
construct FP-tree in figure 4.5 using the construction steps.

Table 4.2 the transaction database transaction_DB4

40

T id | Itemsin Ordered Frequent
transaction items
1 A,B,C,D,H,G D, A, G B,C Min_support
2 A B DFG D, A G,B,F 50 %
3 A D, GF D.A G F
4 C,D,F,K, L D,F,C
5 B,C,L B,C
{
D4 \ B
s e T Y \"""3 B
&S ;Q&_&}\ { .
s 7 3 : Yoo
Header Table 7 %3) SR (1
y - L L .
liem | Support | Nodeink S e é ;’* i gi)
D] 4 < gt et Lo
- ,_m..;»ao i G{ ; :
B 3 AN |
B 3 cmemm . B2 Fl A S
C 3 f‘f m'*[\v,f""‘“ “a ls.,} ; . ‘_."
~-, S Ci / X ety .
F 3 4 Y ko, Lmmeme
G 3 " \‘E% M‘"*-vvi Emu‘;?;ﬁ?

Figure 4.5 FP tree for transaction_DB4,

Details of this example as follows:

First, frequent pattern generation mining perform one scan of Database to

determine the set of frequent items and itemset count and all infrequent items are

removed from the header table. Items are reordered according to count descending

order. Then, create the root of a tree labeled with “null”. Second, scan the all

transactions and construct the

FP - Tree. The first transaction form the first branch

41

of the tree {(D: 1), (A: 1), (G: 1), (B: 1), (C: 1)}. For the second transaction, (D, A,
G, B, F) ordered frequent item list shares a common prefix (D, A, G, B) with the
existing path (D, A, G, B, C), the count of each node which share the same item is
incremented by 1, and one new node (C:1) is created. Linked with node of (B:2). For
the third transaction (D, A, G, F) ordered frequent item list shares a common prefix
(D, A, G) with the existing path. The count of each node which share the same item
is incremented by 1, and one new node (F:1) is created. Linked with node of (G:3).
The fourth transaction (D, F, C) ordered frequent item list shares a common prefix
(D) with the existing path. The count of the node (D) which share the same item is
incremented by 1, and (F: 1) is created and linked as a child of (D:4) and (C: 1) is
created and linked as a child of (F:1). The last transaction (B, C) form to the
construction of the second branch of the tree. (B: 1) is created and linked as a child
of the root and (C: 1) is created and linked as a child of (B:1).

4.4 Frequent Closed Itemsets Algorithms

Frequent itemsets algorithms which are Apriori, Eclat, FP-Growth etc. generates
very large number of frequent itemsets and rules, these increase the data size, reduces

the efficiency and effectiveness of association mining to find useful rules.

Frequent closed itemsets algorithms are an alternative, proposed [by Pasquier et
al.]. These algorithms have used different itemset generation approach. Instead of
mining the complete set of frequent itemsets and their associations, association

mining only needs to find frequent closed itemsets and their corresponding rules.

Frequent closet itemsets can be divided into two step-process:

- Find all frequent closed itemsets which have the support greater than the
minimum predetermined mir_sup in the transaction database.
- Generate all association rules X=>Y on the frequent closed itemsets which

have confidence greater than predetermined min conf.

42

Frequent closed itemsets algorithms presents a new perspective in association
rule mining. Frequent closed itemsets has the same power as mining the complete set
of frequent items. In this section the most popular frequent closed itemsets
algortthms are described (Closet and Charm algorithms.)

4.4.1 Closet Algorithm

Closet is a well known algorithm in association mining to generate frequent
closed itemsets. Closet bases on the definition of “X and Y be two itemsets, and

sup(X) = sup(Y). Y is not a closed if Y X” (Pasquier N. et al., 1999).

Closet algorithm has the same power as frequent association mining algorithms.
Closet reduces redundant rules to be generated. The goals of the closet algorithms are

improve efficiency and also effectiveness of mining process (Pei J. et al., 2000).

Algorithm CLOSET

Input: Transaction database TDB and support threshold;
Output: The complete set of frequent closed itemsets;

Method:

Initialize.
Let FCI be the set of frequent closed itemset. Initialize FCI =
%]

Find frequent items.
Scan transaction database TDB, compute frequent item 1list
f list.

Mine frequent closed itemsets recursively.
Call CLOSET (<, TDB, f list, FCI).

Subroutine CLOSET (X, DB, f list, FCI)
Parameters:
X: is the frequent itemset.
DB: X-conditional database, which is a subset of transactions
in
TDB containing X.
f list: frequent item list of DB
FCI: The set of frequent closed itemsets already found

43

CLOSET (X, DB, £ list, FCI)
{

Extract a set (Y) of items appearing in every transaction of
DB, insert XuUY to FCI, if it is not a subset of some itemset in
FCI with the same support;

Build FP-tree for DB, items in Y are excluded.

Directly extract fregquent closed itemsets from FP-tree.

Vie rest of f list, form conditional database DBI; and compute
local fregquent item list £ list;

Vie rest of f list, call CLOSET(iX, DB|.;, £ _list;, FCI), if iX
is not a subset of any frequent closed itemset in FCI with the

same support.

}

In following example we use the database transaction DBS in table 4.3 and we
construct Mining Frequent Closed Itemsets in figure 4.6 using the construction steps.

Table 4.3 transaction_DBS

Transaction_id Items in Ordered frequent

transaction item set

1 A,C,D,EF C,EEF,AD

2 A B, E E, A

3 C,EF C,EF

4 A CDF C,F,A,D

5 C,EF C,EF

Steps of Algorithm CLOSET,

Find Frequent Items: Scan Transaction_DBS to find the set of frequent items and
construct a frequent item list, called f list. Minimum support =2. In our example
transaction database has f list =< C : 4, E: 4,F : 4, A: 3, D : 2 >, where the items

are sorted in support descending order.

Divide search space: Divide Transaction DB5 into non-overlap subsets

(conditional database) based on the F_[ist. Ones conditional database containing

44

item D, ones containing item A but no D, the ones containing item F but not A and D

and so on.
Tramsaction
b1
CEFAD
EA
CEF
CFAD

CEF

."’?‘h\

N
o N —
— / AN T
.—-“f ¥ \\ .“\».__
I "l — PO
D-Cond DB (D:2) A-Cond DB {A:3} F-Cond DB (F:4) E-Cond DE (E:4)
CEFA CEF CE C
CFA E c
CF] Cutput : E4
Qutput : EFAD:2 " Output : CF4, CEF:3
Cutput : 4:3

4

EA~Cond DB {EA:3)
<

Cuiput : EA:2
Figure 4.6 Mining Frequent Closed Itemsets

using transaction DBS.

Find subsets of frequent closed itemsets (F.C.I) from condition DBs. Details of

this example as follows:

Algorithm searches closed itemsets for each conditional DBs. Closet algorithm
found the conditional databases in figure 4.6 in our example database. The process of

finding frequent closed itemsets

First, {D}-conditional database is used which has contains all the transactions
having {D}; {CEFA, CFA} to find the closed frequent items. The support of {D} is
2. Every transaction containing {D} also contains {C}, {F} and {A}. Consequently,
{CFAD: 2} is a frequent closed itemset. {E} appears only once so, it’s infrequent.

45

Second, A-conditional database is used which has contains all the transactions
having {A} but no {D}; {CEF, E, CF} to find the closed frequent items. The support
of {A} is 3. There is no any item appearing in all transactions so, {A} is frequent
closed itemset. Project the conditional database {A} to find remaining frequent
closed itemsets. Algorithm finds items (FA, CA, and EA). {CA} is not frequent
closed itemset due to the {CA} is a subset of {CFAD} and sup (CA) = sup (CFAD).
{FA} is not frequent closed itemset due to the {FA} is a subset {CFAD} and sup
(FA) = sup (CFAD). Consequently, {EA: 2} is a frequent closed itemset.

Third, A-conditional database is used which has contains all the transactions
having {A} but no {D}; {CEF, E, CF} to find the closed frequent items. The support
of {A}is 3.

Next, F-conditional database is used which has contains all the transactions
having {F} but no {D} nor {A}; {CE, C} to find the closed frequent items. In this
process, frequent closed itemsets {CF} and {CEF} are found.

Finally, E-conditional database is used which has contains all the transactions
having {E} but no {F}, {D} nor {A}; {E} to find the closed frequent items. In this

process, frequent closed itemset{E} is found.

In summary, the set of frequent closed itemsets found,
{ACDF: 2, A: 3, AE: 2, CF: 4, CEF: 3, E: 4}.

4.4.2 Charm Algorithm

Charm is an another well known algorithm in association mining to generate
frequent closed itemsets. Charm algorithm has the same power as frequent
association mining algorithms. Charm uses a novel search method that skips many
levels to quickly find the closed frequent itemsets. Charm uses two-pronged pruning
strategy.

46

“It prunes candidates based not only on subset infrequency as do all association
mining methods, i.e, no extensions of an infrequent are tested. it also prunes
candidates based on non-closure property, i.e., any non-closed itemset is pruned.”
(Zaki M. J., Hsiao C.J., 2002).

Charm uses no internal data structures, it uses basic set operations which are
"union of two itemsets and intersection of two transactions lists. Nevertheless, It

makes too few database scans to find longest closed frequent set.

All previous association mining algorithms uses itemset space. But, charm uses
both the transactionset space and itemset space to find frequent closed itemsets. This
property allows charm to use a novel search methods that skips many levels to

quickly find itemsets.

Charm algorithm uses the following itemset and transaction sets properties. (M. J.
Zaki, 2000)

Property 1.
If t(Xi) = t(Xj),then t(XlkJXz): t(Xl)ﬂt(X2)=t(Xl)=t(X2). SO,

every occurrence of X, replaced with X;

Property 2.
If t(Xl) C t(Xz),then t(XluX2)= t(Xl)ﬂt(X2)=t(X1)¢ t(XZ). SO,

every occurrence of X; replaced with X; U X;. If X; occurs in any transaction, then

X, always occurs too.

Property 3.
If t(X:) D t(Xz),then t(Xy UXo)= t (X)) NtXz)=1t(X1)# t(Xz). So,
every occurrence of X, replaced with X, U X,. If X occurs in any transaction, then

X, always occurs t00.

47

Property 4.
If t(X:) # t(Xz),then t(X; UXz)= t(X1)Nt(Xz) #t(X1)# t(X2). So,

nothing can be eliminated.

T

a e, ‘f' T e -". t(‘{ﬂ) N
i’”}cl)\ b % ";““““'M&MN o
\ (7 gL O WA JEBR f\“‘“’ 1/

" . \.,. ..vf) o A‘: W""g“’
”\ j e £CE) = £0x) %Xg e
=3¢
Calz) = Calz) Ci(z) = Ca (Fp. %)

— TN PN et N
N Sw N T z
CORELE) KNS
v N |t) } ; e b % 1—4 m.“\'i t(@

‘\-_é_ ; ‘rﬁw’-h \“\ : ‘l. »:; ‘—*“"‘"'
Y Xe F T v il
S e e’ t Cxﬂi‘ t (333
t(E) o L(m) Calzp # Calz)

Ca (2 = Ca(mivm)
Figure 4.7 Properties of Itemset & Transaction Sets

Figure 4.7 illustrates the four basic properties. The main idea of Charm is outlined

in the following:

CHARM (8 ¢ Ix T, minsup):

Nodes = {I; x t{Ij) : I; € I A | t(I;)| 2minsup}
CHARM-EXTEND {Nodes, C)

CHARM-EXTEND (Nodes, C)
for each X; x t(X;) in Nodes

NewN = @ and X = X;

for each X; x t(Xy) in Nodes, with f£(j)>f (i)
X =X u Xj and Y = t(Xl)ﬂ t(Xj)
CHARM-PROPERTY (Nodes, NewN)

if NewN = ¢ then CHARM-EXTEND (NewN)

C=CuX //if X is not subsumed

48

CHARM-PROPERTY (Nodes, NewN)

if (|Y| 2 minsup) then
if t(Xi;) = t(Xy) then //Property 1
Remove X5 from Nodes
Replace all ¥X; with X

else if t(X;) ¢ t(X;) then //Property 2
Replace all X; with X

else if t(X;) D t(Xy) then //Property 3
Remove Xy from Nodes
Add X x Y to NewRN

else if t(X;) # t(Xy) then //Property
Add X x Y to NewN

Charm uses a vertical data format which has been used for association mining.
Vertical data format also used in Partition and Eclat algorithms. Charm scans
database once to find the frequent pairs of items. In this scan, charm algorithm
constructs the index array that stores the transaction set for each item. If index array

not available additional database scan performed.

4.5 Paraliel & Distributed Algorithms

The most popular parallel and distributed algorithms are based on the Apriori

algorithm. Communication cost and synchronization are the main problem for
parallel algorithms. (Zaki. M.J., 1999)

Distributed and shared memory are two popular approach. Properties of the
distributed and shared memory can be summarized as follows. Communication
optimization is the goal for distributed memory (DMM). Minimize the
synchronization is the goal for shared memory (SMP). Data decomposition is
important for distributed memory but not for shared memory. Parallel I/ O is free for
DMM'’s but shared encounter with some problems.

49

The main objectives for distributed memory are finding good data decomosition
among nodes and minimizing communication. The main objective for shared

memory is obtain good data locality.

Data mining parallelism aproach used two main paradigm which are task

parallelism and data parallelism.

In data parallelism, dataset is partitioned among N processor. Each processor
works on its local partition of the dataset and they responsiple for computing local
support counts of the candidates. After local computation completed, all the
processor counting global support count of the candidates. The data parallelism is
illustrated in Figure 4.8 using the data in Table 4.3. The five transactions are
partioned. Three processor used for these transactions and local support counts are
computed on each processor. Transaction 1 computed on processor 1. Transaction 2

and 3 computed on processor 2. transaction 4 and 5 computed on processor 3.

Processor—1 Processor— 2 Processor —3
!,»’e'-""“"‘"‘”“'“-\ e, A
St i R S
DRl DB2 DR3
T1 ‘ T2&T3 T4&TS
"*"—m-,__,,:.—"'j N Nrnan, s s e
Temsin | Count || Bemsin | Count Femsin | Count
transaction transaction fransaction
A 1 A 1 A 1
C 1 B 1 C 2
D 1 C 1 D 1
E 1 E 2 E 1
F 1 F 1 F 2
e J e
GLOBAL

Figure 4.8 Data Parallelism

P

RemSet
Breadcast

Processor — 1

T
1
1
1]
1
13
]

¥

T
oo
DB1
T1
e s A

Processor — 2

50

el

Processor— 3

S —

e,
]

e _—

DE3
TA4&TS

s

Kemsin | Count
fransaction
A 3
C 4

In task parallelism, N processor fulfil different computations independently. Each
processor works on its local itemsets which are partition of the dataset. Candidate
sets are partitioned. Each processor takes a candidate set and computes its support
counts. Each processor is responsible for computing global support counts of only its
candidates. Database partitioning and itemset sharing are two main process for task
parallelism. The task parallelism is illustrated in Figure 4.9 using the data in Table
4.3. The five transactions are partioned. Three processor used for these transactions

and global support counts are computed on each processor using the relevant

candidate set.

hemsin | Count
fransaction
E 4
F 4

Figure 4.9 Task Parallelism

CHAPTER FIVE
IMPLEMENTATION and

EXPERIMENTATION RESULTS

This chapter describes the design and implementation of Association Rule Mining
algorithms. We implemented the most common association algorithms to mine
frequent itemsets which are, Apriori, Eclat, FP- Growth, Partition and DIC (Dynamin
Ttemset Counting), in Java platform. The experiments were performed on a Pentium
PC. Detailed explanation of the system and experimentation results are presented in
the following sections. Later on, algorithms are compared and explain the design and

details of our new approach.

5.1 Introduction

Most of association rule algorithms generate Association Rule in two steps.
v Find all frequent item sets;

v Use frequent item sets to generate strong rules having minimum confidence.

Much of the research effort in association rule algorithms has been related to
improving the efficiency of this first step. Therefore, we tested running time of the
algorithms for the first step. All of the algorithms generates frequently set and they
flushed to a flat file. For the second step, our algorithm works and generates the

association rules from the flat file which contains the frequently itemsets.

52

5.2 Implemantation Details

We implemented the most common association algorithms to mine frequent
itemsets which are, Apriori, Eclat, FP- Growth, Partition and DIC (Dynamin Itemset
Counting), in Java. Figure 5.1 and figure 5.2 shows our program interface. In figure
5.1, there is three inputs which are dataset, support factor and confidence factor.
Support factor is used for to find frequent itemsets and confidence factor is used for
to generate association rules. Figure 5.3 shows our program outputs for Apriori
algorithm. For instance;

4428 ==> 170 180 184 4434 4940 $92.62 means,

All transactions which contain item {4428} also contain itemsets {170, 180, 184,
4434, 4940} with confidence %92.62.

Figure 5.1 User Interface -1

Rasnkfarﬁpﬂaﬂ

11 75 3196 [4.7068] 12 [Ds]

123196 [9.644s] 38 [0.015]

=13 5610.019] 3196 [6.332¢] 55 [0.02s]
;514 41 [0.02s] 3196 [8.402s] 38 [0.02s]
1511 [0.018] 3193 [6.96s] 11 [0s]

#.146 1 [D.01s) 3002 [5.853s] 1 [Ds)

,ﬁpnon frequent ltemset mming rmplementatlon

+ * Run APRIORI

53

-{0.621 seconds

- lag==mB52____
Coe=—==gE___
CleB==>48__
CiBB==»20_
| jas=rsb___

total rules =1330
452 ==+ 48

%94.25
%838.83

7'

%90.068
%94.27
%99.5

%94. 49

Figure 5.2 User Interface -2

4428
180
180
180
180
180
180
180
180
180
180
180
180
180
180
180
180
49490
4940
4434
4434
4434
4434

==> 170 180 184 4434
4940 ==> 170 184 4428
4434 4940 ==> 170 184
4434 ==> 170 184 4428
184 4940 ==> 170 4428
184 4434 4840 ==> 170
184 4434 ==> 170 4428
184 4428 4940 ==> 170
184 4428 4434 4940 ==>
184 4428 4434 ==> 170
184 4428 ==> 170 4434
184 ==> 170 4428 4434
4428 4940 ==> 170 184
4428 4434 4940 ==> 170
4428 4434 ==> 170 184
4428 ==> 170 184 4434
==> 170 184 4428 4434

7062 ==> 180 184 4428

==> 180 184 4428 4434

4940 7062 ==> 180 184

43840 ==> 180 184 4428

7062 ==> 180 184 4428

==> 180 184 4428 43940

4940 %92.62
4434 %95.19
4428 %97.58
43840 %94.81
4434 %95.18
4428 %97.58
4940 %94.81
4434 %96.88
170 %99.29
4940 %96.48
4940 %94.15
4940 %92.5
4434 %96.88
i84 %99.29
4940 %96.48
4940 %%4.15
4940 %$92.5
4434 %94.38
7062 %$93.57
4428 %96.7
7062 %$95.89
4940 %93.9
7062 %93.12

Figure 5.3 Output from the Apriori

54

5.3 Data Sets

We choose real and synthetic datasets for testing the performance of the
algorithms. All datasets are taken from the source Web 2. Table 5.1 shows the
characteristics of the real and synthetic datasets used in our experiments. It shows the
number of items, average tranaction length, number of transactions and size for the

each datasets.

For all experiments, we used four datasets with different characteristics. Thus, the
advantages and disadvantages of the algorithms can be observed. We used three real
datasets which are Chess, Mushroom and Pumsb. We used one synthetic dataset
which is T10I4D100K.

Chess Mushroom Pumsb T10i4D100K
Items 76 120 7117 1000
Avg Record 37 23 74 20
Length
Records 3196 8124 49046 100000
DB Size 335 kb. 558 kb. 16289 kb. 3928 kb.

Table 5.1 DataSet Characteristics

Chess : Chess dataset is derived from the chess game. It contains real entries.
There are 3196 transactions in it, while each transaction has average 37 items. Chess
is very dense dataset. It produces many long frequent itemsets even for with high

values of support.

Mushroom : Mushroom dataset contains characteristics of various species of
mushrooms. It contains real entries. There are 8124 transactions in it, while each
transaction has average 23 items. It produces many long frequent itemsets even for

with high values of support.

Pumsh : Pumbs file which is Public Use Microdata Samples. Its contains actual

census entries which contains a five percent sample of the state the file repsesents.

55

There are 49046 transactions in it, while each transaction has 74 items. It is a dense

dataset with many long frequent itemsets.

T10I4D100K : T10I14D100K is a synthetic datasets, which have been used as
benchmarks for testing association mining algorithms. Dataset “T1014D100K”
contains an average 20 transaction size, an average size of the maximal potentially
frequent itemsets of 4. There are 100000 transactions in it. It produces many long

frequent itemsets even for with high values of support.

5.4 Generating Association Rules

Use frequent item sets to generate strong rules having minimum confidence is the
second step for association mining. In our application, we implemented a new

method for generating association rules.

This method used the flat files which contains frequent itemsets generated from
the algorithms. It read the frequent itemsets and constructed a hash tree for each line.
This means that, each itemsets located in the tree with using the our algorithm and all
of the rules computed for this part. tree. In hash tree, there are nodes for holding

frequent itemset and a vektor pointing the next node.

Generating rule Algorithm illustrated in figure 5.4. This algorithm works as

follows;

read Itemset from the file,
construct hash tree,
generate rules with using the recursion function,

read next itemset.

56

e mm e T *"'-—'-.,_‘\
iy [P | 2 I
P * S F ~ ‘
94 o T R § L} (\ M
’ - ¢ 5 & 3 ‘
5 o fv‘f K ‘,' ¥, e
] q k ; 5.3 ; ~
é « -
L — -K:f . J— S =S, DR
™ g * e, e s,

N 3y T 4yl T8y
> o “"‘-a.\._'? ! g.;‘“"w__a.a] «;& "j i s :2;‘:-»-—-.-»“ j \"";r —
B - H ’ ¢ §
Sl 'SR, ¥ %
s s) v
i i ' F b i mi | bl wall mall
B PO L A A (S ;
Y i 1 4 " N ¥ .
K ~ B N N i VoW e
1, ra Y & £ i’ ;) i-4' , ‘_,." '} "'# Ay i{ "'\
KA L/

Figure 5.4 Hash Tree for Rules Generation

5.5 Experiments

In this section, we report our performance study of the five algorithms for mining
frequent itemsets: Apriori, Eclat, Fp-Tree, DIC and Partition.

All the experiments are performed on a 1400Mhz. Pentium PC with 256 Mb.
RAM, running on Microsoft Windows 2003 Server. We tested the five algorithms on

various datasets which are described in section 5.3.

The performance meausure was the execution time of the algorithms and their

memory requirements on the datasets with the different minimum support values.

The x — axis of the result figures shows the support factor and y — axis shows the

process time in seconds.

The detailed values of these results are listed in Tables A.1 through A4 in
Appendix A.

57

SUPPORT

Figure 5.5 Running Time of the Algorithms for generating
frequent itemsets for “T1014D100K”

Figure 5.5 shows the results we obtained from experimentation for the dataset
“T1014D100K”.

Apriori emerged 2001 frequent items set and 4194 association rules with

minimum support 400.

Graphic says that, Apriori gave very good performance over the others. When the
minimum support is large, all algorithms finish their process at the same time. When
the minimum support has small value, FP-Tree and Eclat algorithms gave bad
performance.

DIC, Partition and Apriori algorithms have the same performance. Process time of
this algorithms are same for this kind of data.

¥ Apriori > DIC > Partition > Eclat > Fp — Tree

58

50000 47500 46250 45000 43750 42500 41250
AR SUPPORT . d

Figure 5.6 Running Time of the Algorithms for generating

frequent itemsets for “Pumsb”

Figure 5.6 shows the results we obtained from experimentation for the dataset
“Pumsb”.

Eclat emerged 10531 frequent items set and 544998 association rules with

minimum support value 42500.

Graphic says that, FP — Tree and Eclat gave very good performance over the
others. Eclat is a little good over FP — Tree. When the minimum support is large, all
algorithms finish their process with similar time. When the minimum support has
small value, FP-Tree and Eclat algorithms gave very good performance. Because the
density of the data. DIC gave the worst performance for both high and low

minimum support.

v Eclat > FP — Tree > Apriori > DIC

59

4500 4000 3500 3000 2500 2000 1800 1500 1000
e ~ 'SUPPORT '

Figure 5.7 Running Time of the Algorithms for generating

frequent itemsets for “Mushroom”

Figure 5.7 shows the results we obtained from experimentation for the dataset

“Mushroom”.

At this level 123277 frequent items sets are produced and above 10 million rules

are generated from the frequent items sets.

Graphic says that, FP — Tree and Eclat gave very good performance over the
others. Eclat is a little good over FP — Tree. When the minimum support has small
value, FP-Tree and Eclat algorithms gave very good performance. An interesting
point that FP has almost the same performance with Eclat until 1000 min support.
After this point Fp-tree process time is begining to grown up. DIC is slower than the

others.

v Eclat > FP — Tree > Apriori > DIC

60

—o— APRIORI
| —=—FP

ECLAT

. 4500 4000 2500 3000 2500 2000 1800 1500

SUPPORT

Figure 5.8 Running Time of the Algorithms for generating

frequent itemsets for “Chess”

Figure 5.8 shows the results we obtained from experimentation for the dataset
“Chess”.

At this level 2076329 frequent items sets are produced and above 10 million rules

are generated from the frequent items sets.

Graphic says that, Eclat gave very good performance over the others. FP — Tree
gave the same results until support value 2000. After this point Fp-tree process time
is begining to grown up rapidly. When the minimum support is large, FP-Tree and
Eclat algorithms gave very good performance. DIC algorithm gave the worst
performance. The reason could be that the density of the data and frequent itemsets

are very large.

v Eclat > FP — Tree > Apriori > DIC

61

Frequent itemsets algorithms generate very large number of itemsets and
association rules. Figures 5.5 through 5.8 show performance curves for the five
algorithms that generate frequent itemsets. For all of the real — datasets, the results
show that Eclat works better than the others. FP — Tree and Eclat obtains same
characteristic results for the real — datasets. DIC (Dynamic Itemset Counting) is
much slower than every other algorithm for the real — dataset. On the only dataset on
which is T10I4D100K, Apriori is faster than the others. Partition and DIC performs

same results for the synthetic — dataset.

The results show that Apriori cannot be run very effective than the Eclat and
FP — Tree. The performance differences of Eclat and FP-growth are negligible. In
small size of datasets both run too fast. Apriori on the other hand runs too slow
because each transaction contains density data. Another remarkable result is that

Apriori performs better than the others for synthetic — dataset.

In the result of experiment for data T10I14D100K, Eclat needs 10000 KB memory
while FP needs 36000 KB. And both of them take over 1000 (seconds) to accomplish
the process. Apriori and DIC takes 132 s and 1750 KB for the same purpose.

In the result of experiment for data Mushroom, Apriori and DIC pass under 1000
minumum support, it began to suffering. They needs at least 11000 KB memory and
more than 1000 seconds to accomplish the test. Eclat is the best algorithm for the this
data. At rninufnum support 1000, FP wasted 4000 KB and 82 seconds for the
process. Eclat wasted 2000 KB memory reqirement and 41 s process time. At this
level 123277 frequent items sets are produced and above 10 million rules are

generated from the frequent items sets.

In the result of experiment for data Chess, Apriori and DIC are not an effective
algorithms for chess. Apriori and DIC could not go under 1800 minimum support.
Their memory requirement reached to 50000 KB and it took 5421 seconds to
complete. Eclat and FP gave acceptable outcomes with this data. Fp took 455 s and
4000 KB while Eclat took 65 s and 1500 KB in this test. At this level 2076329

62

frequent items sets are produced and above 10 million rules are generated from the

frequent items sets.

In the result of experiment for data Pumsb, Apriroi and DIC are inefficient.
Because they took 5410 seconds with 42500 support factor. Eclat reached 20000 KB
memory at 45000 support factor. But FP got over this process with 1500 KB. Total
10531 frequent items set and 544998 association rules with minimum support value
42500.

5.6 A New Algorithm for Association Rule

In this section, we describe our new algorithm to mine association rules. Our
algorithm is a combination of Apriori, which is the most popular mining algorithm,
and set operations. Principles of set operations which are intersection and union are
used. These principles are related to lattice tree. In lattice tree, there are nodes

holding frequent itemsets and transactions containing related itemsets.

In order to construct (nt+1)-itemsets, frequently n-itemsets are used. Hence,

intersection operation is employed between the transaction sets.

For example;

Frequent 1-itemset {A} is in the transactions which have transaction id 1, 3
and 5.

Frequent 1-itemset {B} is in the transactions which have transaction_id 2, 3 and 5.
= {A} U {B} =t (135) Nt (235)
= {AB} =t (35)

If the result is greater than minimum support, it will be joined to lattice tree. If the

result is lower than minimum support, it will be pruned off.

63

The main idea of Qur Algorithm is outlined as follows;

Ly : Freguent itemset of size k

Cy : Candidate itemset of size k

L; = frequent 1- items;

Generate frequent 2- itemsets using lattice Tree

k=2;

For each frequent k- itemset nodes in lattice

Cx+1 = new node; // Generated from Iy

For each X; in Nodes
For each X; in Nodes //where j>i
Cx+: =T (Xi) N T(Xy)

If Cyxs; > min support then {// Add Ci:; in lattice
(Node.item = X; U Xy)
(Node.transaction =T(X;) N T(Xy)) }

k++;

End

This algorithms work as follows;

v" Scan database and find frequent 1-itemsets, at the same time obtain transaction

sets which includes the itemsets.

v Construct Lattice tree, in order to generate all frequent 2-itemsets.

v During the second step, prune off the nodes whose node count is lower than
minimum support.

v Find frequent itemsets by using lattice tree. Consequently, for each frequent
3, 4 ..., n-itemset, scan the database to approve the consistence of the
itemsets.

v" Finally, itemsets are used to generate strong rules having minimum confidence

in the lattice tree.

Table 5.2 transaction_DB6 (Min_support 5¢ %)

T id Items in Frequent items
Tmmmamn
1 A B,C,D D, A, B,C
2 A, B, D F C D,A,B,C
3 ACD D,AC
4 C,D,F, K. L D, C
5 B,C,L B,.C

64

Figure 5.9 Full Lattice Tree for transaction_DB6

Figure 5.9 shows how this algorithm works in sample database in table 5.2
(transaction DB3). If the intersection result of the frequent nodes exceeds the
support thresholds, mark the node with a square. Otherwise, mark node with a dotted
circle. In this example, firstly, find frequent 1-itemsets. Next, use intersection

operation to find frequently 2-itemset.

(A} int (123)

}» = {A} U{C} =t(A) N (C) = {AC} = 123 N 12345 =123
(C} int (12345)

Intersection principles are used to find frequent itemsets, then, for each frequent

3,4 ..., n—itemset, we scan the database to approve the consistence of the itemsets.

5.7 Summary of Algorithms

65

Table 5.3 presents the summary of algorithms comparisons. We compared the

algorithms in terms of data structures, search methods and database scan evaluation.

Table 5.3 Summary of Algorithms Comparisons

Algorithm Data Structure Search Method Number of
Database Scan
Apriori Hash Bottom — Up N
AprioriTID Hash Bottom — Up N
DIC Prefix Tree Bottom — Up <N
Partition Hash + Partition Bottom — Up 2
Clique None Bottom — Up >3
DHP Hash Bottom — Up N
AprioriHybrid Hash Hybrid N
MaxCligue None Hybrid >3
MaxEclat None Hybrid >3
Eclat None Top — Down >3
FP-Growth FP— Tree Top — Down 2
NEW Hash -+ Lattice tree Bottom - Up <N

66

CHAPTER SIX
CONCLUSION

Association rule mining explores for interesting relationships among items in a
given data set. An objective of association rule mining is to develop a systematic
method using the given data set and finds relationships between the different
items.Goal of association rule is finding associations among items from a set of

transactions which contain a set of items.

There are many new and efficient algorithms have been developed in association
mining. Additionally, new proposals offered for algorithms that improve run time for
generating association rules or frequent itemset. The efficiency of a mining algorithm

is a very important point for data mining.

Our work, the work described in this thesis, has focused on explaining the
fundamentals of association mining and analyzes implementations of the well known
association rule algorithms. Study focus on algorithms Apriori, Eclat, FP-Growth,
Partition and Dynamic Itemset Counting. Most common association rule algorithms
described and systematized in this study. Common principles and differences
between the algorithms have been shown. Pros and cons of these algorithms are
thoroughly investigated. At the same time, we described a new approach for
association rule mining. This approach is based on lattice tree and principles of set

operations.

Association Rule algorithms have used different itemset generation approach.
Classical algorithms have used frequent itemset generation technique. The new

generation algorithms have used closed frequent itemset generation and maximal

67

frequent itemset generation technique. To better understand the performance
characteristics of association rule algorithms, we benchmarked five well-known
association rule algorithms (Apriori, Eclat, FP-growth, Partition and DIC) using the
four datasets with different characteristics. Thus, the advantages and disadvantages
of the algorithms can be observed, the performance meausure was the execution time
of the algorithms and their memory requirements on the datasets with the different

minimum support values.

The results show that Apriori cannot be run very effective than the Eclat and FP -
Tree. The performance differences of Eclat and FP-growth are negligible. In small
size of datasets both run too fast. Apriori on the other hand runs too slow because
each transaction contains density data. Partition and DIC performs same results. DIC
(Dynamic Itemset Counting) is much slower than every other algorithm for the real -

dataset.

68

REFERENCES

Agrawal R. & Srikant R., (1994), Fast algorithms for mining association rules.
VLDB, 487-499.

Agrawal R., Imielinski T., & Swami A. (1993) Mining association rules between sets
of items in large databases. SIGMOD, 207-216.

Berkhin P. & Sofiware A., (2002), Survey Of Clustering Data Mining Techniques.

Borgelt C., & Kruse R, (2002), Induction of Association Rules:Apriori

Implementation. 15th Conference on Computational Statistics.

Borgelt C., (2003), Efficient Implementations of Apriori and Eclat, Workshop of
Frequent Item Set Mining Implementations (FIMI).

Brin S., Motwani R., & Uliman J. D., Tsur S.,(1997), Dynamic itemset counting and
implication rules for market basket analysis. SIGMOD, 255-264

Dong J., Perrizo W., Ding Q., Zhou J. (2000), The Application of Association Rule
Mining to Remotely Sensed Data. SAC-1,p. 340-345

Frawley W.J., Piatetsky-Shapiro G., & Matheus C.J. (1991). Knowlegde Discovery

in Databases : An Overview, in Knowledge Discovery in Databases, MIT Press.

Goethals B. (2002) Efficient Frequent Pattern Mining, Department of Computer
Science University of Helsinki.

69

Goethals B. (2003), Frequent Pattern Mining (survey), Department of Computer

Science University of Helsinki

Han J., Kamber M. (2000), Data Mining: Concepts and Techniques. Morgan
Kaufmann Pub. Morgan-Kaufmann Publishers.

Han J., Pei J, Yin Y., (2000), Mining Frequent Patterns without Candidate
Generation, ACM SIGMOD Int. Conf. on Management of Data.

Hand D., Mannila H., Smyth P. (2001). Principles of Data Mining. Cambridge, MA:
MIT Press.

Herwestphal C. & Blaxton T. (1998) Data Mining Solutions Methods and Tools for
SolvingReal-World Problems, Wiley Computer Publishing

Hipp J., Guntzer U., Nakhaeizadeh G., (2000), Algorithms for Association Rule
Mining - A General Survey and Comparison. SIGKDD Explorations 2 (1), 58-64.

Hofer J., & Brezany P., (2004), Distributed Decision Tree Induction within the Grid
Data Mining Framework GridMiner-Core, Institute for Software Science

University of Vienna.

Kumar P., (2001), DataMining of Association Rules, Computer Science and
Engineering Indian Institute of Technology

Leung K. S. (2002), Efficient and Effective Exploratory Mining of Constrained
Frequent Sets.

Lin D. & Kedem M. (1997) Pincer-Search: A New Algorithm for Discovering the

Maximum Frequent Set, New York University.

70

Lin W, Ruiz C, Alvarez S., (2000), A New Adaptive-Support Algorithm for
Association Rule Mining Report WPI-CS-TR-00-13, Department of Computer
Science, Worcester Polytechnic Institute.

Pasquier N., Bastide Y., Taouil R, & Lakhal L. (1999). Discovering frequent closed
itemsets for association rules. In Proc. ICDT 99, pages 398-416.

Pei J., Han J,, & Mao R,, (2000), CLOSET: An Efficient Algorithm for Mining
Frequent Closed Itemsets.

Pei J., (2002), Pattern-Growth Methods For Frequent Pattern Mining, Simon Fraser

University.

Rud, P. O. (2001). Data Mining Cookbook. NY: John Wiley & Sons, Inc.

Savasere A., Omiecinski E., & Navathe S. (1995), An efficient algorithm for mining
association rules in large databases. VLDB,p. 432-444.

Shoemaker C., Ruiz C., (2003), Association rule mining algorithms for set-valued
data. Lecture Notes in Computer Science Vol. 2690. Springer-Verlag., p. 669-676.

Wang J. & Karypis G.,(2004), BAMBOO: Accelerating Closed Itemset Mining by
Deeply Pushing the Length-Decreasing Support Constraint. SDM 79-90.

WEB_1 (1997) Karuna Pande Joshi’s web site.
http://userpages.umbc.edu/~kjoshil/data-mine/proj_rpt.htm, 10/6/2004.

WEB_2 (2003) http://fimi.cs.helsinki.fi/data/ 18/2/2004

Zaki M.J.,, Parthasarathy S., Ogihara M., Li W., (1997), New algorithms for fast
discovery of association rules. Technical Report 651, Computer Science

Department, University of Rochester.

71

Zaki M. J., (1999), Parallel and Distributed Association Mining: A Survey. Sixth
ACM SIGKDD international conference on Knowledge discovery and data mining
309-425.

Zaki M.], (2000), Generating Non-Redundant Association Rules.

Zaki M. J., Hsiao C.J, (2002) CHARM: An Efficient Algorithm for Closed
Association Rule Mining. The 2nd SIAM International Conference on Data Mining

Zheng Z., Kohavi R., Mason L., (2001), Real World Performance of Association
Rule Algorithms. Seventh ACM SIGKDD international conference on Knowledge
discovery and data mining, p. 401 — 406,

72

APPENDIX A
RUNNING TIME FOR CREATING
ASSOCIATION RULES

All tables contain the time in seconds spent creating frequent itemsets. All tables
also contain number of finding frequent itemsets, support values, memory usage
(some of them are not observed) and total number of rules which confidence % 75.
Partition algorithms tested only with dataset T10I4D100K.

#frequent t4|:utal
itemset | time |support | memory | rule
17 52 45001 <1500
25 54 AD0D) <1500 0
40 58 3500 <1500 0
B0 52 3000] <1500 0
107 75 28001 <1500 g
155 84 2000 <1500 o
37 132 1500] <1500 o
365 265 1000] 1750 3
pass 2
8110
: pass 1
494 368 goo| 1770 20
pass 2
10600
pass 1
Fid 04 e0dy 1940 242
pass 2

2001 755 400] 15700 | 4184

73

FP -Tres . ECLAT
#frequent total iternset | time |support | memory | rule
itemset | time [support| memory | rule 17 43 4500 0
17 B0 45001 1250 a 25 56 40001 3500 0
26 79 4000] 2100 0 40 85 3500} 5000 0
40 141 3500 4300 0 B0 137 3000y 6300 0
g0 333 3000) 13500 1] 107 323 2500] 8500 0
107 1450 2500| 38000 0 1585 566 2000 0
155 3362 | 2000 0 237 10B3| 1500 0
237 1500 1] 385 2147 | 1000] 8500 3
3|5 [Z378-| 1000 - 3 - 800 20
- - 800 - 20
D PARTITION
#frequent total # frequent total
iternset | time |{support | memory | rule iternset | time |support | memory | rule
17 45 4500] <1500 a 17 42 4500]
26 52 4000) <1500 | 0 ® 44 2000 0
40 B7 3500} <1500 g 40 54 | 3800 O
B0 78 3000¢ <1500 0 =1 &0 3000 0
165 147 20000 <1500 0 155 134 2000 0
0 _JAEE L LT AR 27 | 19| 1500 0
365 305 1000 1760 3 5 412 100 3
434 452 | BOO} 5500 20
772 B&7 B00| 7000 342
2001 1500 ADD] 12500 | 4194

Table A.1 Results of Experiments for DataSet
“T1014D100K*

74

BPRIOR] B Tise
frequent total #frequent tatal
itemset | time | support | rule iternset | time | support | rule
0 ¥ 50000 1] i} 139 | 50000 3]
5 |31 | om0 | 148 43 |76] 47500 | 148
282 | 599 | 4m2s0 | 2618 22 1168 | 46250 | 2618

1163 | 210 | 45000 | 21394
36684 | 211 | 43750 | 119012
105631 | 243 | 42500 | 544593
29384 | 306 | 41250

163 [1216] 45000 | 21394
JeB4 |2373| 43750 | 118012
10531 | 5410 42500 | 544988

ECLAT o

frequent total
iternset | time | support rule

0 98 | 50000 0
43 115 [47500 148
282 131 | 46250 2618

frequent total
itemnset | time | support rule

0 79 | 50000 0
43 322 | 47500 148

1163 | 162 | 45000 | 21394 262 | 645 | 48250 | 2618

384 | 176 | 43750 | 119012 1163 | 1375| 45000 | 21384
10531 | 224 | 42500 | 544998 3664 |4780| 43750 | 119012
29384 | 318 | 41280 10531 |8152| 42500 | 544998

Table A.2 Results of Experiments for DataSet
“Pumsb*

75

] LPRIOR P - Tres
frequent total
itemsat |time |supporfmemory | rule # frequent total
itemset {time [support{ memory| rle
97 | 27 | 4500 | <1000 | 417 o7 a | 25m0 | 10m | 417
167 | 37 | 4000 | 1000 | 749 1657 | 12 | ao00 | 10m0 | 749
w9 |55 |3s00| 1000 | 2113 369 | 12 | 3500 | <too0 | 2113
931 | 76 | 3000 | 1000 | 7290 931 | 14 | 3000 | 1000 | 7290
2365 | 16 | 2500 | 1000 | 37839
235 |125| 2500 | 1000 | 37839 BeZ3 | 21 | 2000 | 1000 | 180848
14183 | 31 | 1800 | 2000 | B0S993
B623 |243| 2000 | 2000 | 180848 56693 | 63 | 1500 | 2500 |14517026
14189 | 410 1800 | 2000 | 809993 123277 | 191 1000 | 4000

S6RI3 |1256] 1500 | ROOD 14517028
123277 |2308| 1000 | 11000

ECLAT] e

#i:;?g:z? t time |support mema tr?Jtlzl #*fraquent total
ER i itemset |{time |support mamaor rule

97 | 7 | 4500 | <1000 | 417 97 |76 | 4500 | 1000 417 £ %7

167 | 10 | 4000 | 2000 | 749 167|119 4000 | 1000 | 749
369 | 14 | 3500 | 1000 | 2113 39 |210| 3500 | 1200 | 2113
931 |17 {3000 | 20m | 7290 931 |15 | 3000 | 1200 | 7980
2365 | 21 | 2500 | 2000 | 37839 2365 |1080| 2500 | 1700 | 37639
6623 | 33 | 2000 | 1000 | 180848 P p— 1B0B4S
14189 | 42 | 1800 | 1000 | 809393 14189 | < | 1800 | 3100 | 809993

A6EY93 | 54 | 1500 | 1500 114517026
123277 | 965 | 1000 | 2000

Table A.3 Results of Experiments for DataSet

“Mushreom*

76

[APRIOR FF - Tree
frequent rtl total #frequent total
itemset | time [supporfimemary] rule itemset | time |supporimemory] rule
1] 2 | 4500 | <1000 0 i} 5 | 45800 | 1000 0
0 | 2 |4000 <000 0 0 |5 |4000f{mo0| 0
1] 2 {3500 | <1000 1] 0 = | 3500 | 1000 Q
155 21 | 3000 | <2000 | 1330 155 = | 3000 | 1000 1930
11493 | 342 | 2600 | <2500 | 931674
72000 11493 | 14 | 2500 | 2000 | 931674
pass 166580 | 257 | 2000 | 3000 |10895753
1BESE0 | 4144 | 2000 | 6->12 | TOB35759 464670 | 1046 | 1800 | 4000 |10 mill
464670 |12458| 1800 | 48000 P10 million P milor
] - 5000 + 1500 | 5500 (=10 millior
| ECLAT Qi
frequent total #frequent total
iternset | time |supporjmemory] rule itemset | fime |supportimemaory; rule
0 2 | 4500 | 1500 0 1] 3 | 4500 | 1000 1
{ 2 | 4000 ¢ 1100 a 0 3 | 4000 | 1000 1]
] 2 | 3500 | 1250 0 0 3 {3500 | 1000 0
0 4 | 3000 | 1300 1330 1585 43 | 3000 1330
11493 12 | 2500 | 1400 | 931674 11493 | 2386 | 2500 | 8000 | 931674
166580 &2 | 2000 | 1500 |10895753 1BESE0 2000 10805753
2076329 | A68 | 1500 | 1500 =10 millior |

Table A.4 Results of Experiments for DataSet

“Chess*

