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HYBRID NUMERICAL TECHNIQUES WITH NEW BEAM-TYPE GREEN'S 

FUNCTIONS FOR TWO-DIMENSIONAL ELECTROMAGNETIC 

SCATTERING 

 

ABSTRACT 

 

     In this study, an alternative approach is introduced to the numerical solution of two-

dimension (2D) electromagnetic (EM) scattering problems by two hybrid numerical 

techniques combining with the method of moments (MoM). Two new hybrid 

techniques based on beam pattern function have been proved to solve the electric field 

integral equation (EFIE) by combining them with MoM in both polarizations.  

 

     The first proposed technique is named MoM procedure with complex source point 

(CSP) type Green’s function. The conversion from an isotropic line source radiation 

to a directive beam radiation has been demonstrated with an expression of CSP type 

Green’s function by using the CSP technique. In this first method, the real source 

position vector is replaced by a complex quantity, then Green’s function generates a 

CSP beam. In this way, the interactions between far zone elements in the impedance 

matrix have become negligible, except the basis functions near to the edges of the 

scatterer. Consequently, the overall running time has been substantially reduced. 

 

     The second proposed method is named MoM Procedure with modified Green’s 

function by using a generalized pencil of beam function (GPOF) method. In the second 

method, the main matrix is strongly localized, like in the first method. However, as the 

beam width is much narrower compared to the first method, the radiation of this 

Green’s function produces the higher sparsity in the main matrix. In the circumstances, 

the memory storage and the overall running time become much smaller so that the 

larger sizes can be modeled with the shorter computational times.  

 

Keywords: Electromagnetic scattering, computational electromagnetics, hybrid 

methods, radar cross section, complex source point, a generalized pencil of beam 

function.  
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İKİ BOYUTLU ELEKTROMANYETİK SAÇILMA İÇİN YENİ IŞIN TİPİ 

GREEN FONKSİYONLARI İLE HİBRİT NUMERİK TEKNİKLER 

 

ÖZ 

 

     Bu çalışmada, momentler yöntemi (MoM) ile birleştirilen iki sayısal hibrit tekniği 

kullanılarak, iki boyutlu (2D) elektromanyetik saçılma problemlerinin sayısal 

çözümüne ilişkin alternatif bir yaklaşım sunulmuştur. Işın biçimli fonksiyon tabanlı 

iki yeni hibrit tekniğin MoM ile birleştirilerek, her iki polarizasyonda elektrik alan 

integral denklemini (EFIE) çözdüğü gösterilmiştir. 

 

     Önerilen ilk tekniğe, kompleks kaynak noktası (CSP) tipinde Green fonksiyonu ile 

MoM prosedürü denir. İzotropik bir çizgisel kaynak radyasyonundan CSP tipi Green 

fonksiyonu ifadesiyle yönlü bir ışına dönüşüm CSP tekniği kullanılarak gösterilmiştir. 

Bu ilk yöntemde, gerçel kaynaklı konum vektörü karmaşık kaynaklı bir değer ile 

değiştirilir, ardından Green fonksiyonu bir CSP ışını oluşturur. Bu şekilde, empedans 

matrisindeki uzak bölge elemanları arasındaki etkileşimler, saçıcının kenarlarına yakın 

temel fonksiyonlar hariç olmak üzere ihmal edilebilir hale gelmiştir. Sonuç olarak, 

toplam çalışma süresi önemli ölçüde azaltılmıştır. 

 

     Önerilen ikinci yönteme, genelleştirilmiş bir ışın demeti fonksiyonu (GPOF) 

yöntemi kullanılarak değiştirilmiş Green fonksiyonu ile MoM prosedürü adı verilir. 

İkinci yöntemde, ana matris, birinci yöntemde olduğu gibi güçlü bir şekilde 

lokalizedir. Bununla birlikte, ışın genişliği ilk yönteme kıyasla çok daha dar 

olduğundan, bu Green fonksiyonunun radyasyonu ana matriste daha yüksek bir 

seyreklik meydana getirir. Bu durumda bellek depolama alanı ve toplam çalışma süresi 

çok daha küçük hale gelir, böylece daha büyük boyutlar daha kısa hesaplama 

süreleriyle modellenebilir. 

 

Anahtar kelimeler: Elektromanyetik saçılım, hesaplamalı elektromanyetik, hibrit 

metotlar, radar kesit alanı, kompleks kaynak noktası, genelleştirilmiş bir ışın demeti 

fonksiyonu.  
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CHAPTER ONE 

INTRODUCTION 

 

1.1 General Information About Numerical Solutions of Electromagnetic 

Scattering Problems  

 

     Scattering is one of the most important problems of electromagnetics, and it is 

considered a free-space boundary value problem of the Helmholtz equation. Some 

numerical techniques have been applied for analyzing scattering in the EM problems, 

which depend on the geometry and frequency. The numerical modeling of the EM 

wave scattering is becoming increasingly more important research area due to further 

developments in communication systems. Historically, a numerical MoM was first 

developed and applied to scattering problems as a simple numerical tool (Harrington, 

1968). Afterward, various other numerical techniques were improved and 

implemented to the modeling of scattering objects.     

   

     Some of these techniques are Physical Optics (PO), Physical Theory of Diffraction 

(PTD), Geometrical Theory of Diffraction (GTD), or its uniform version UTD. These 

techniques can be utilized in high-frequency approximations and used for applications 

whose wavelength is much shorter than the object. As in the Moment Method, some 

numerical methods such as Finite Difference Time Domain Method (FDTD) and Finite 

Element Methods (FEM) are also limited by computer performance, especially when 

the scatterer size is large comparing to the wavelength. Depending on the geometry or 

frequency of the problems, these methods are sometimes not suitable for producing 

results of accurate enough. Moreover, applying these methods may trouble the solution 

part in terms of the computational cost (memory and CPU time), especially in the high-

frequency regime. Therefore the presentation of the hybrid techniques needs to be 

suggested for the problems that can not be solved by a single numerical method. 

 

     There are many studies for the hybrid formulations that combine the MoM 

technique with another approximation (Thiele & Mittra, 1992). MoM-GTD and MoM-

UTD are ray hybrid techniques with some advantages in a wide variety of practical 
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problems for which the appropriate diffraction coefficients are known (Thiele & 

Newhouse, 1975). These are referred to as field-based hybrid techniques since they 

utilize electric fields in their formulation. However, they are limited to the physics of 

the problem in which diffraction or reflection occurs. Another hybrid method, known 

as the MoM-PO hybrid technique, is a current-based formulation. It is an excellent 

procedure to handle the problem of electrically large objects (Jakobus & Landstorfer, 

1995; Jakobus & Meyer, 1996). MoM-PO hybrid technique and its improved version 

are more elegant for practical problems than MoM-GTD and MoM-UTD. They are 

applicable to 2D and 3D scattering bodies that the PO-current is a linear superposition 

of basis functions. It has also been developed as an iterative form and implemented to 

large-scale structures by avoiding calculating the PO contribution in matrix form (Liu 

& Wang, 2012). The PO contribution to the MoM impedance matrix was calculated 

by completing an iterative way to enhance the conventional MoM-PO method.     

  

1.2 Hybrid Methods For Fast Solution 

 

    MoM has been combined iteratively with a solver called the Fast Multi Pole (FMP) 

technique, and it is frequently applied to many complicated scattering objects 

(Coifman et al., 1993). A fast algorithm based on the grouping of the basis functions 

in a particular order has been utilized to compute the interactions of the far zone 

elements in this FMP-MoM technique. In (Belenguer et al., 2005), the remarkable 

result was achieved for the operation count and memory storage, such as O(N1.5), while 

it is O(N2) in the conventional MoM.  

 

     Different methods can be adapted together as hybrid techniques in the numerical 

solution of EM scattering. The impedance matrix localization (IML) technique has 

been introduced (Canning, 1990) for this purpose, which uses a directional basis and 

testing functions to localize them by producing a directivity. This modification 

transforms the original dense matrix into a sparse form by selecting individual basis 

and testing functions. In this way, some elements have limited interactions, and the 

other matrix elements may be approximated by zero. After this localization, the 

memory requirements and CPU computation times are reduced. However, it should be 
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careful when selecting basis and testing functions due to numerical stability such as 

condition number of the main matrix. Although sparse matrix form can be obtained  

using some functions, matrix condition number can be higher than the original form. 

Then, using these functions leads the system to the ill-conditioned situation and 

incorrect results. Briefly, selecting the testing and basis functions has a critical role in 

the solution part of this technique. The number of the total required elements in the 

main matrix is reduced to 100xN by the IML technique. Furthermore, using the IML 

technique with the FMP method has demonstrated a favorable advantage in the 

iterative solution of MoM equations (Han et al., 1998). However, IML transformation 

works only for 2D geometries, and it appears not to eligible for analyzing 3D scattering 

problems.  

 

     Since the special basis functions in (Canning, 1990) can not effectively express a 

rapid phase variation, the locality has been proposed by introducing different local-

domain basis functions in the high-frequency analysis (Shijo et al., 2005; Ando et al., 

2011). The 2D strip and corner reflector geometries illuminated by electric line current 

have been viewed using these new local-domain basis functions. Using novel local-

domain basis functions causes the reduction of mutual coupling between the elements 

in the impedance matrix. The off-diagonal elements become small and negligible by 

introducing the Fresnel zone number, and the impedance matrix reduces to the sparse 

band matrix. Consequently, they reduced the maximum number of the unknown 

from O(N2) to O(N) for these geometries. In this PO-MoM hybrid method, the Fresnel 

zone number is utilized for the switching criteria between the PO and the MoM. For 

specific positions of source and observer, it is defined as a relation with the mutual 

coupling between two elements. It states the degree of sparsity of the impedance 

matrix.  

 

     By using some expansions, the fields can be expanded to terms to take some 

advantages in the solution of EM radiation problems. Gaussian beams are one of the 

suitable solution examples for these expansions in which the fields can be considered 

as a sum of Gaussian functions. An expansion procedure for EM wave has been 

expressed in terms of Gaussian beams and studied to find out current radiation patterns 
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by adopting the Gabor series (Chabory & Bolioli, 2006; Melamed, 2009). However, 

Gaussian beams satisfy Maxwell's equations only in the paraxial region.  

 

     The Complex Source Point (CSP) concept has been presented as a new approach 

for generation Gaussian beams (Felsen, 1976). The CSP technique has provided 

simplicity into the modeling of the scattering problems. It can be easily combined with 

other methods, and CSP beams satisfy Maxwell's equations everywhere in space. Each 

CSP beam in the expansion can be thought of as a narrow beam, so its radiation is 

considered in this restricted region. Consequently, the fields are localized due to the 

CSP beams since they have some particular propagation directions. This approach 

seems very useful because only beams propagating through the observation directions 

contribute to the radiated field. However, it has some difficulties, such as the 

determination of coefficients in the expansion, and they need to be validated for some 

EM scattering conditions. In (Suedan & Jull, 1991) and (Oguzer et al., 1995), the CSP 

beam-like incident field has been employed in modeling a 2-D parabolic reflector 

antenna with a combination of the Physical Optics and Riemann-Hilbert Problem 

methods, respectively. A similar method has been used in the modeling of 2-D 

dielectric lenses (Boriskin & Nosich, 2002; Boriskin et al., 2009) and layered dielectric 

slab scattering (Tsitsas et al., 2014). In (Bulygin et al., 2013), the 3-D beam feeding a 

PEC paraboloid antenna has been taken as a Complex Huygens Source. 

 

     Combining the CSP approach with MoM has also been realized as a hybrid method 

of fictitious currents. The real and CSP dipoles are both located inside the object's 

boundary, and their fields on the surface of the object are tested (Erez & Leviatan, 

1994). Nevertheless, this creates a small matrix with a high condition number. 

Alternatively, it has been used as another expansion for fields on the scatterer 

boundary, which is a series of beams generated by complex multipoles (Boag & Mittra, 

1994a). They can be linked to simulate scattering, which also results in a small matrix, 

but in this case, it has a more stable form. The scattered field is described in terms of 

a series of beams by realizing an analytic continuation of the multipole fields to 

complex source coordinates. They utilized the Gabor series properties to develop the 

locations of multipole sources, and they exhibited that the method is valid for 
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analyzing 3D scattering problems with no edges (Boag & Mittra, 1994b). They have 

introduced the relation between these multipole source expansion and Gabor 

expansion. They also demonstrated that the condition number is acceptable, while the 

sparsity of the main matrix turns into a sparse banded form. This new method has 

proved the advantages of combining the IML and multiple multipole (MML) methods. 

It has been analyzed for 2D and 3D arbitrarily shaped large smooth bodies. In the 

presence of edges, the scattering from a 2D closed conducting body has been examined 

using a combination of the multipole beam method with the MoM procedure (Boag et 

al., 1994). The number of unknowns has been reduced, but the selection of multipole 

source points is crucial.   

 

     In a different hybrid method (Tap, 2007; Tap et al., 2011, 2014), the standard MoM 

has been combined with the CSP expansion technique to simulate scattering from the 

electrically large objects. The first stage in this method is that the radiation of the basis 

functions is expanded into a series of CSP beams defined on a sphere surrounding 

them. As shown in Figure 1.1, only a small portion of the beams radiating from the 

source must be taken into consideration for the determination of the scattered field at 

the observation point P. The rest of the beams do not contribute significantly, and they 

can be neglected in the computation. At the second stage, the basis functions are sort 

out for grouping with the appropriate group size; then, calculations are done according 

to group separations. The near field interactions in the same groups are computed with 

multiple integrals as in the standard MoM procedure. However, for any pair of well-

separated groups, the interactions can be performed using the analytical representation 

of the related beams. Therefore, the impedance matrix can be computed in this way; 

furthermore, after the treatment of a particular factorization procedure, the main 

operator matrix converts to a sparse form. Consequently, the matrix-vector 

multiplication in iterative MoM becomes more efficient, so the memory and the 

operation count can be reduced to O(N1.5) compared to O(N2) of conventional MoM 

methods. This conversion allows efficient modeling of 3D scattering from electrically 

large complicated objects, and it can also be applied to 2D geometry with the named 

memory and operation count. 
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Figure 1.1 Only a small portion of the beams remain significant at P (Tap, 2007) 

 

1.3 The Presentation of Two New Hybrid Techniques  

 

1.3.1 MoM Procedure with CSP Type Green’s Function 

 

     In this thesis, the first hybrid technique presented as a beam type localization is 

defined as the MoM Procedure with CSP Type Green’s Function. Instead of using the 

CSP expansion of a source field, a modified Green’s function, which exploits the CSP 

technique, is combined with MoM. By adding the imaginary part to the source 

coordinate, the radiation of the isotropic cylindrical wave from a conventional line 

current source can be turned into a unidirectional CSP beam field. In this technique, 

the source position of the Green’s function is converted to a complex number, which 

can be used to adjust the beam direction and beamwidth. Then, this CSP type Green’s 

function can be used in the radiation integral and the integral equation obtained from 

the boundary condition (BC). This conversion shapes the radiation of the basis 

function into a unidirectional beam-like form with the beam aperture on the surface 

of the scatterer, directed outward from the object. Under these circumstances, most 

interactions between the elements on the scatterer surface become negligible due to 

the nature of the beam; thus, they can be neglected. Only small regions near the edges 

should be left intact to save the edge effects appearing in line with the wave physics 

of the problem. 

 

     Then, the impedance matrix of MoM can be generated as a sparse form. This 

procedure is in agreement with all conditions of the EM uniqueness theorem. 
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Therefore, it is anticipated that the correct radiated field is produced in the near and 

far zones, even though the radiation integral and the surface current density seem to 

counter-intuitive. The proposed technique is an attractive alternative for 2D scattering 

problems, especially for electrically large geometries.  

 

     This procedure has been briefly described in (Kutluay & Oğuzer, 2017) for a single 

flat PEC strip in the E-polarisation case; afterward, a more detailed demonstration has 

been presented for electrically large PEC strip and 2D closed-contour PEC objects in 

both polarizations (Kutluay & Oğuzer, 2019). The square and triangle cylinder 

geometries with a large size have been introduced with an outstanding gain in solution 

time and very small REs such as less than %0.1 compared to the MoM. In this thesis, 

structures with a considerable large size for square and triangle cylinder geometries 

have been explored by using the first new hybrid technique. Since the memory and the 

operation count are reduced to about O(300xN) for polygonal cross-section cylinders 

compared to O(N2) in conventional MoM, exceptional time gains have been obtained 

for both polarizations such as over 30 times less compared to the MoM solution.     

 

     Additional to 2D closed-contour PEC objects, it has been performed for open body 

structure like a corner reflector geometry that is widely used in the scattering problems, 

and it has been developed over the years (Rudge & Adatia, 1978; Menzel et al., 2002; 

Rahmat-Samii & Haupt, 2015). In some particular reflector angles at which the 

unidirectional CSP beam fields of Green’s function do not affect each other, favorable 

results have been achieved. Nonetheless, in the opposite case, the interactions of CSP 

beam fields must be taken into account in the solution part. The analysis of this 

problem has been left for further study in the future with the field interactions by using 

some iterative techniques. 

 

     This approach of computing the main matrix of MoM can be applied to the 3D 

configurations in a simple form, like a square plate, cube, where the complex 

exponential nature of the 3D Green’s function provides a similar property. 3D Green’s 

function decays quickly to a very small number at a certain distance from CSP 

location. However, in the 3D case, the number of basis functions near the edges would 
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be larger than in the 2D case. It can be expected an increase in memory storage and 

overall computation time compared to the 2D case, but this requires further 

investigation.  

 

     Although the condition number of the main impedance matrix is at a high level 

around 106, outcomes in comparison with MoM are in excellent agreement with each 

other by using optimum iterative sparse solvers in MATLAB. Nevertheless, in this 

direction, the second hybrid technique is presented with a lower condition number. 

 

1.3.2 MoM Procedure with Modified Green’s Function by Using Generalized Pencil 

of Function Method 

 

     For a newly modified Green’s function, the GPOF method is combined with MoM 

as a second hybrid technique in this thesis. A surface field distribution with finite width 

is introduced to the new formulation, and it is used in the definition of a new Green’s 

function. For obtaining this field distribution, a pulse function is used in convolution 

operation that is convoluted with itself. At the end of the first convolution process, the 

triangular function obtained is convoluted with itself in the second process. Resultant 

of this stage, a smooth signal is achieved by utilizing the convolution property of 

Fourier Transform. This spectral domain function attained is expressed in a finite 

series of exponents by using the GPOF method. The coefficients in this series are 

found by employing the GPOF technique. Eventually, this function is associated with 

the Hankel function linked by Sommerfeld identity and obtained a new Green’s 

function. This modified Green’s function has a beam aperture on the surface, and its 

beam width can be reduced to a few basis function levels. This technique can also be 

considered a beam-type localization, and this kind of localized Green’s function can 

again be used in the procedure defined as in (Kutluay & Oğuzer, 2019). This more 

localized Green’s function is obtained by using the GPOF method and combined with 

MoM. Also, it satisfies all the uniqueness conditions, so it is an approximation of a 

unique field distribution. This modification of Green’s function yields more sparsity 

in the main matrix comparing with the previous method. The memory storage and the 

overall running times become smaller so that the larger sizes can be modeled with the 
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shorter computational times. This implementation has been performed for EM plane 

wave scattering from the electrically large PEC strip (Oğuzer & Kutluay, 2019). 

 

     The proposed technique is another attractive solution for 2D scattering problems. 

In contrast to the previous method, this proposed localized Green’s function provides 

us with a reasonable condition number around 104 that makes the approach a little 

more attractive.  Since a narrower beam field is acquired comparing the previous 

technique, basis function levels have much less wideness. Hence, interactions in the 

far zone elements with these basis functions are decreased significantly. This decrease 

presents a chance to analyze larger geometries relatively comparing to the previous 

method. However, the proposed technique has been performed for 2D electrically large 

PEC objects with the same size in the previous method to comprehend the difference. 

The memory storage has been discovered about O(50N) for 2D PEC polygon cross-

section cylinder geometries in both polarizations. Therefore, extraordinary time gains 

have been obtained, such as over 200 times less compared to the MoM solution. 

Consequently, the second proposed technique is an effective alternative approach for 

2D objects.  

 

     Similar to the previous method, it can be applied to the simpler 3D configurations 

in the future study since the modification is implemented in Green’s Function and does 

not depend on spatial parameters.  

 

1.4 Materials and Methods 

 

     The software code and scrip files have been composed in MATLAB ver.2019(b), 

which our department supplied. The simulations have been computed using available 

laptop PC with the Intel i7 processor of the 7th generation and 32 GB RAM working 

on the Windows 10 platform. 

 

     In the first step, the standard MoM procedure with the Galerkin method has been 

employed for the problems. In MoM solutions, problems for all geometries have been 

solved by Galerkin MoM using pulse-type basis functions in E-pol, and triangular type 
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basis functions in H-pol. Then, the presented approaches have been applied for the 

problems to compare with the MoM. 
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CHAPTER TWO 

METHOD OF MOMENTS  

 

     MoM is a well-known and valid numerical solution method in EM scattering 

problems. R. F. Harrington was the first to use the method of moments in 

electromagnetics (Harrington, 1968). MoM is a discretization method and usually 

applied to integral equations in EM problems. EM radiation, scattering, and wave 

propagation problems can be analyzed with modest computing memory. It solves the 

integral form of Maxwell’s equations while FEM or FDTD method is used for their 

differential forms. Let us consider the inhomogeneous equation: 

              gfL                            (2.1) 

where L is a linear operator, and it may be in differential, integral, or integro-

differential form, g is known (source or excitation), and f  is the unknown function to 

be determined (fields or response). The deterministic term of the f  function means that 

the solution is unique, and there is only one f that is associated with a given g. The 

functional equation is reduced to a suitable matrix equation by using basic 

mathematical techniques. Then, the solution is found by matrix inversion, and the 

equation of physical problem is solved. 

 

     Three steps are the core of the method of moments. The first step is meshing the 

structure and choosing the intervals over the unknown function f. Second step is to 

expand the unknown function f into basis functions. The last step has involved the 

observation and described dot-multiplying both sides of the equation by a weighting 

function (or test function). A suitable inner product that is symmetric has to be required 

for the problem to identify the operator L, its domain, e.g., Ω; the functions f on which 

it operates, and its range; the functions g resulting from the operation. 

     


drgrggg
r

)()(, 2121
                         (2.2) 

2.1 Procedure of MoM 

 

     Consider a domain Ω:  bax ,  and a linear integral operator L, and an example of 

equation (2.1):    
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    )(),()( xgxdxxKxf

b

a

                          (2.3) 

     Unknown and known functions must be in the domain of the operator and are both 

defined on the domain Ω. At the first step, for meshing the structure, let us explain the 

maximum step number as N. At the second step, the unknown function  f  is expanded 

into a series with a summation of known functions multiplied by unknown constants. 

    )()(
1

xfxf n

N

n

n


                             (2.4) 

where αn are constants, the set of fn is called basis functions, or expansion functions, 

and they must be linearly independent. They should also be selected to satisfy the 

boundary and edge conditions of the problem to make convergence more relaxed. For 

an exact solution, it is obvious that the summation should be taken to infinite but has 

to be finite in practice. Since L is a linear operator and can be interchanged with the 

summation, equation (2.1) becomes 

      )()(
1

xgxfL n

N

n

n 


                (2.5) 

     At the last step, a set of weighting functions, or testing functions are defined in the 

range of L as  Nwww ,..., 21  . To find αn, Equation (2.5) for both sides are tested 

with the weighting functions. For only one step testing procedure, each inner product 

gives one equation in N unknowns: 

      gwfLw n

N

n

n ,, 1

1

1 


                (2.6) 

Thanks to symmetric inner product property, the summation of constants can be moved 

outside of the inner product.  

      gwfLw n

N

n

n ,, 11

1




               (2.7) 

N testing functions are used to fix the unknown number to the equation number, and 

it is obtained the final matrix equation with N equations in N unknowns: 
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         (2.8) 

Finally, a matrix equation is obtained, which approximates the given problem. The 

system can now be written in matrix form as: 

        mnmn gZ           m=1,2,….N             (2.9) 

Zmn is called the main impedance matrix or main matrix, and gm is called excitation 

vector relating to the source known. The indice m corresponds to an observation point, 

unprimed coordinates, while the indice n corresponds to a source point, primed 

coordinates. The physical meaning of indices is that the element (m,n) represents the 

effect of cell n on cell m, and the element (m,m) represents the self-term. If the matrix 

Zmn is not singular, the unknowns αn are simply given by: 

         mmnn gZ   
1

               (2.10) 

and the original function f can be reproduced with the known constants αn using the 

equation (2.4). 

 

     In MoM simulation of EM scattering problems, the unknowns of the problem are 

the currents or fields on the surface of a structure. Surface or volume currents of the 

scatterer are the unknown physical currents and must be discretized in terms of 

elementary currents. Such elementary currents are described as basis functions with 

initially unknown amplitudes. These amplitudes are the unknown constants αn, and the 

currents are unknown function f(x) in (2.4). Through the MoM solution, these 

unknown amplitudes are found and shaped the currents. Once the total currents are 

known, the fields can be calculated everywhere in the structure. 

 

     In the solution part, the matrix inversion methods are solved based on numerical 

techniques. Therefore, convergence problems need to be reviewed when selecting the 

basis and testing functions. In this stage, choosing the basis functions is more 

connected to the convergence of MoM than choosing the testing functions.  
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2.2 Choice of Basis Functions 

 

There are essentially two families of basis functions: 

 

2.2.1 Entire Domain Basis Functions  

 

     In this case, mesh operation is not performed on the geometry. Each of fn(x) is 

defined and non-zero over the entire domain. Fourier expansion or a modal expansion 

such as Maclaurin, Chebyshev, Legendre polynomials are used to define these types 

of functions. Although yielding a good convergence of the method, it is not practical 

to define modes if the geometry is not regular. When the problem domain is irregular, 

then the determination of these basis functions is not an easy way in practice. 

 

2.2.2 Sub-domain Basis Functions  

 

     In this case, mesh operation is performed on the geometry, and the problem domain 

is subdivided into smaller segments. Each of fn(x) is defined over the n-th subdomain 

and zero outside that domain. Mostly used sub-domain basis functions are pulse 

functions, triangular functions, sinusoidal functions, quadratic interpolation functions, 

trigonometric interpolation functions, etc. These functions are more flexible in 

adaption for arbitrary geometries. However, it needs to be aware of satisfying the edge 

condition (EC) by sub-domain bases. They also have an advantage in reducing the time 

for numerical implementation since the integration domains are smaller in sub-domain 

bases. 

 

2.3 Choice of Weighting Functions 

 

     The most method types in choosing the testing functions are point matching 

method, method of collocation by subdomains, Galerkin’s method, the method of least 

squares, and generalized weighting method.  
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2.3.1 Point Matching 

 

     In this choice, weighting functions are Dirac delta functions in the domain Ω; 

    )( mm xxw                           (2.11) 

This method is straightforward to implement and simplifies the computations, but it 

may not yield an optimal convergence. 

 

2.3.2 Method of Collocation by Subdomains 

 

     In this choice, weighting functions are selected as pulse functions.  

    






 


elsewhere

x
w

m

m
    ,0

    ,1
             (2.12) 

 

2.3.3 Galerkin’s Method 

 

     In this case, weighting functions are chosen as the same as the basis functions.  

    mm fw                 (2.13) 

 

2.3.4 Method of Least Squares 

 

     Weighting functions are a complex conjugate of the basis functions in the operator. 

     mm fLw                (2.14) 

 

2.3.5 Generalized Weighting Method 

 

     If weighting functions are different from the ones defined above, it is called the 

generalized weighting method. In most of the applications, the Point Matching Method 

and Galerkin’s Method are frequently used. 
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2.4 Developments in MoM Technique 

 

     Including iterative and non-iterative forms, there have been many studies for 

developing of application areas of MoM. The domain decomposition (DD) method is 

one of the most important procedures for this purpose. DD algorithms enable to split 

of the original problem into a number of smaller ones so that they can be analyzed 

independently. Then, they are reviewed together by applying integral BCs. By this 

means, the computational cost for a PC can be exceptionally reduced during the 

solution process. 

 

     A type of DD method has been revealed (Rao et al., 1982), and it relies on the 

substitution of special functions in a subdomain. These are called Rao–Wilton–Glisson 

basis functions, and a set of their linear combinations are implemented in that 

subdomain. Crucial to the formulation is the development of this set of unique 

subdomain basis functions. The procedure is applicable to both open and closed bodies 

in arbitrarily shaped objects and practiced to a flat square plate, a bent square plate, a 

circular disk, and a sphere.      

 

     As mentioned in the previous chapter, a fast algorithm has been developed as an 

FMP-MoM technique for surface-scattering problems (Coifman et al., 1993). Because 

the FMP accelerates the computation of the matrix-vector product, it reduces the 

computational complexity to O(N1.5) (Belenguer et al., 2005). Besides, in its improved 

version, the Multi-Level FMP has been used for solving electromagnetic wave 

scattering problems by using some iterative techniques (Rui et al., 2008). The 

computational complexity of the matrix-vector product operation was reduced to 

O(NlogN), instead of O(N3) obtained by using direct methods. 

 

     Conjugate gradient method (CGM) and fast Fourier transform (FFT) technique 

have been combined with MoM, and used for reducing storage and CPU time in the 

solution of EM scattering for three-dimensional (3D) dielectric bodies (Zhu et al., 

2000). Radar cross-section (RCS) results are verified for dielectric and lossy dielectric 

scatters by comparing analytical methods. MOM-CGM-FFT mixed technique has 
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proved rapid convergence and low run times on spheres with a range of permittivities 

and diameters up to 2λ.  

 

     Iterative solutions by using particular algorithms have been used to handle a dense 

main matrix based on the MoM. Forward-backward iterative algorithm has been 

presented for solving the 3D electric field integral equation (Brennan et al., 2004). 

Besides iterative forms, an iteration-free MoM approach has been presented for 

solving large multiscale EM scattering problems (Lucente et al., 2008). In this 

approach, special functions named characteristic basis functions are defined on macro 

domain blocks. Using these basis functions leads to a significant size reduction in the 

MoM matrix, and enables to handle the reduced matrix directly, without the need to 

iterate.  

 

     A higher-order DD method based on a hybridization of the FEM and MoM has 

been proposed for 3D modeling of scatterers (Ilic & Notaros, 2009). In the new FEM-

MoM-DD technique, multiple FEM domains have been employed based on the surface 

equivalence theorem. It has been acquired a strong reduction in memory requirements 

and computational time compared to higher-order MoM solutions. 

 

     The physical optics driven method of moments (PDM) is another iterative DD 

method and proposed in (Tasic & Kolundzija, 2011). In each iteration, new macro-

basis functions are created for each subdomain by the correctional PO currents based 

on the previous iteration. The weighting coefficients of all these functions are found 

from the PDM matrix equation. Hence, the original MoM equation is minimized, and 

the storage is proportional to O(N1.5). The PDM provides a good accuracy of the RCS 

results in a few iterations; however, it is only applicable to closed perfect electric 

conductor (PEC) objects.  

 

     MoM weighted DD method has been proved in the improvement of MoM technique 

(Tasic & Kolundzija, 2018). It offers a solution for time-harmonic scattering from 

large objects by utilizing surface integral equations. This novel approach emphasizes 
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fast convergence, and it provides to find the solution of electrically large scatterers 

simply and effectively.  
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CHAPTER THREE 

LOCALIZATION PROCEDURE BY USING BEAM TYPE GREEN’S 

FUNCTION IN THE ELECTROMAGNETIC SCATTERING 

 

3.1 Scattering Phenomena 

 

     Whenever an EM wave encounters an obstacle, EM interactions occur, such as 

reflection and various other diffraction mechanisms. If an incident wave illuminates 

an object, incident radiation interacts with this object, called the scatterer. In the 

absence of any scatterers, the incident field ( incE


, incH


) is represented by the free-space 

radiation of the sources. However, in the presence of scatterers, the total field must be 

represented as a sum of the incident field and the scattered field ( scE


, scH


) as following 

   scinctotal EEE


      (3.1a) 

   scinctotal HHH


      (3.1b) 

Physically the meaning of scattering is that molecules, atoms, electrons, photons, and 

other particles are re-radiated the energy due to particle-particle collisions between 

them after absorption of the energy. This radiation can appear in different directions 

with different intensity.  

 

     The BCs on the fields over the surface of the structure dictate that surface currents 

flow. These currents are responsible for the generation of re-radiation, a scattered EM 

wave from the perfectly electric conductor (PEC), as shown in Figure 3.1. 

 

 

Figure 3.1 Scattering for 2D arbitrary geometry 
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     The scattering of radio waves is particularly needful in radar systems. RCS usually 

represents EM scattering by a scatterer. It is an essential parameter in scattering and 

defined as a measure of power scattered from the incident wave. In practical terms, 

RCS is a property of the target's reflectivity, which means how detectable by radar. It 

depends on the size and geometric shape of the scattering body, frequency and 

polarization of the wave, and the observation angle. RCS (σ) of a target in 2D 

scattering is described as follows: 
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where r is the distance of observation point from the origin, the RCS formula for H-

field is in identical form. In the EM scattering problem, if the incident field is known, 

scattered and total fields can be found using various techniques, as mentioned in 

Chapter 1. Before the solution step, it must be determined that the corresponding fields 

are unique field distributions under the uniqueness theorem, which will be examined 

next part. 

 

3.2 Uniqueness of Solution for Electromagnetic Scattering Problems 

 

In the solution of the EM scattering problems, proving of some conditions is a 

necessity for a novel method to be valid. The idea of the uniqueness theorem is that 

the problem always has a unique solution that satisfies uniqueness conditions of 

scattering. First of these conditions of uniqueness is that the field satisfies of Helmholtz 

Equation. Additional conditions such as radiation condition, EC and BC must be 

verified for this new method to be confirmed (Hayashi, 1996).  

 

3.2.1 Helmholtz Equation 

 

We consider the solution of the wave equation in the absence of external charge or 

current. For the geometry of Figure 3.1, the wave equation for the field in 2D is derived 

from Maxwell’s Equations for a uniform isotropic linear and unbounded medium as 

follow: 
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where r

 is a position vector as shown in Figure 3.1, t is time variable, c is the speed of 

light in a medium with permeability μ and permittivity ε, and 2  is the Laplace 

operator. The wave equation for H-field is in the identical form 
zH


.  

 

If we are only interested in the form of EM waves at a particular frequency, the EM 

wave equation for E-field reduces to the Helmholtz Equation  

    0)()( 22  rEkrE zz


                                    (3.4) 

where k is the wavenumber and the same equation is in the identical form for H-field. 

 

     The Helmholtz Equation represents a time-independent form of the wave equation 

and derived from Maxwell’s Equations. If an EM wave satisfies Helmholtz Equation, 

it means that it also satisfies Maxwell’s Equation.  

 

3.2.2 Radiation Condition 

 

The radiation condition must be imposed on the behavior of the field by 

discriminating outgoing and incoming waves at infinity so that the solution of a field 

equation is unique. Sommerfeld’s radiation condition is introduced to verify the 

condition that no source exists at infinity. In this way, the scattered fields sE


and sH


 

must satisfy the following Sommerfeld radiation condition: 
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3.2.3 Boundary Condition 

 

BCs are derived from deviations of the fields from one medium to another across 

the discontinuous boundaries and relating them to the distributions of charge and 

current. If the boundary surface is a perfect electric conductor (PEC), the main BCs 

are 

  0tE


                                  (3.6a) 

https://www.wikiwand.com/en/Speed_of_light
https://www.wikiwand.com/en/Speed_of_light
https://www.wikiwand.com/en/Permeability_(electromagnetism)
https://www.wikiwand.com/en/Permittivity
https://www.wikiwand.com/en/Vector_Laplacian
https://www.wikiwand.com/en/Vector_Laplacian
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st JH


                                             (3.6b) 

where 
sJ


 is a surface electric current density, while the subscript t indicates tangential 

components. That means that the tangential components of magnetic fields are 

discontinuous with the surface current density, while the tangential components of 

electric fields are continuous on the boundary. These are to be implemented for EM 

scattering problems that have a PEC surface. 

 

3.2.4 Edge Condition 

      

     In a 2D case, if the boundary has sharp edges on the cross-section of the scatterer 

geometry, then the ECs are necessary to be satisfied. EC is an assumption for the 

uniqueness of a solution, depending on finite energy around an edge. In other words, 

EC states that the EM energy density must be integrable over any finite volume on 

edge. This domain can also contain singularities of the EM field. Mathematically, we 

can declare that this condition is equivalent to finite energy for equations as follows:

   dvE
v

u

2

   and  dvH
v

u

2

               (3.7) 

where u denotes any component of either field, and v is any finite volume around the 

edges. This condition means that the stored energy in any finite volume of space is 

finite.  

 

3.3 Integral Equation Method 

 

     The incident field that impinges on the surface S of the scatterer body induces an 

electric current density sJ


 on it. This current density causes a radiation that is referred 

to as the scattered field. If sJ


 is known, the scattered field can be found. Here, the 

scattered field is presented for the PEC structure in Figure 3.1 using the Integral 

Equation Method. In general, there are two forms of integral equations for EM 

scattering, which are the electric field integral equation (EFIE) and the magnetic field 

integral equation (MFIE). Each integral equations is a formulation based on the BC of 

tangential parts of the fields.  As declared in part 3.2.3, the BC on a PEC surface of 

the scattering object is that the total tangential electric field is to be zero. 
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where rs is the distance from the origin to any point on the surface of the scatterer 

body. The scattered field can be expressed in terms of the vector potential 
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where ω is the angular frequency of the wave. The vector potential is formed by using 

Hankel function 
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where )2(

0H  is the Hankel function of zero-order and second kind, Ct is the counter-

clockwise path of the cross-sectional contour in Figure 3.1 and d is the infinitesimal 

path length on the PEC cylinder. Then, the scattered field is written as below 
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where η is the intrinsic impedance. When the source is located at the arbitrary position 

𝑟′, and 2D Green’s function is denoted in terms of Hankel function as below:  
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Substituting Green’s function and using the BC equation (3.6a) into the scattered 

formula, then it forms:  
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where   and   are the gradients concerning the observation (unprimed) and source 

(primed) coordinates, respectively. Since the left-hand side is stated in terms of the 

known incident electric field, it is referred to as the EFIE. It can be used to find out the 

current density )(rJ s



 on the scatterer surface. Once 
sJ


 is determined, the scattered 

field is found.  

 

    Alternatively, the magnetic field integral equation MFIE can be derived for the 

solution of the problem by using the tangential components of the magnetic field. As 

stated in part 3.2.3, one of the BCs on the PEC surface of the scattering object relates 

to the total electric current density induced on the surface. However, with some 
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variations for Green’s function in this thesis, electric current density function obtained 

by using hybrid techniques is not a realistic function, and it is non-physical. Thus, 

MFIE can not be employed in the solution for hybrid techniques presented in this 

thesis. Also, in the solution of the MFIE by the MoM, singularities arise and should be 

handled by some techniques (Hodges & Rahmat-Samii, 1997; Gürel & Ergül, 2005). 

It should be noted that the MFIE is valid only for closed surfaces, while EFIE can be 

used for both closed and open bodies. By taking the combination of these two Integral 

Equations, Combined Field Integral Equation (CFIE) can also be obtained. Closed 

structures should be modeled with CFIE due to its problem of the resonant frequency. 

In this thesis, EFIE was formulated for all structures and utilized without considering 

the resonant frequency that is only active in a very narrow frequency region. 

 

3.4 The New Localization by Using Beam Type Green’s Function 

 

     We intend to propose a new hybrid method that is integrated with MoM. As 

explained in Chapter 2, the scatterer surface is discretized through the MoM solution, 

and some coordinate points are constituted on the surface at the end of the meshing 

process. Since the surface current is a combination of the basis functions after the 

discretization, these points are referred to as source points for the surface current. The 

radiation of these source points is found by using free-space Green’s function, and it 

has an omnidirectional field property, as shown in Figure 3.2. Therefore, the radiation 

obtained from one of these sources almost covers all testing functions in the geometry. 

In Chapter 2, if the main impedance matrix Zmn is elaborated, a source point indicated 

n interacts with all testing points indicated m in the testing procedure of MoM, and it 

operates for all n and m indices. These interactions end up with many non-zero 

elements in the impedance matrix and put it into a dense form. It would be required a 

countless number of unknowns to find out the current density, especially in large 

geometries. That means excessive memory storage and CPU time in the solution. 

Hence, the MoM is a valid method with a modest CPU solution time. For the larger 

dimensions than a particular size of the scatterer, the MoM would not be a possible 

solution due to the insufficient number of memory storage.  
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     However, instead of an omnidirectional wave, the radiation of a source point can 

be found mathematically as a directed wave, like a beam pattern radiating through a 

narrow region, as shown in Figure 3.2. If the source point is converted to a beam type 

model by using an analytical way, its radiation can be restricted to interact with the 

fewer testing points. As shown in Figure 3.2, by implementing beam-type Green’s 

function, the radiation of the source points in the non-near edge region becomes a beam 

nature with the beam aperture on the scatterer surface. Thus, there would be a 

limitation in the interaction between testing functions and the radiation field of the 

basis functions, which is the effect of cell n on cell m in the main matrix. Therefore, 

only the near-field interactions are possible. Decreasing these interactions leads the 

main impedance matrix to a sparse form and reduces memory requirement, as 

explained in the next part. It can be seen that limited interactions are related to the size 

of the beamwidth, which is γ in Figure 3.2. This procedure can be named localization 

of the source since the radiation of the source is only responsible for a restricted region. 

The meaning of the localization is that the number of observation points affected by a 

source point becomes confined. Then, the radiation of the source point is almost 

localized on the scatterer surface, and it is performed by the new Green’s function after 

the localization procedure. A particular localized Green’s function can be used to 

generate a field only if it satisfies all uniqueness conditions expressed in the previous 

section. After the numerical solution part, instead of the real surface current, a pseudo-

current function is obtained by utilizing the non-realistic modified Green’s function.  

 

 

Figure 3.2 Sources and radiations for N-sided a convex polygon cross-sectional cylinder 
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     After verifying the Helmholtz Equation and Radiation Condition for the new 

Green’s function, the third definement BC should be applied. Equation (3.13) is a valid 

statement performed by the BC for the PEC structure. If the localized Green’s function 

is used in (3.13) instead of free-space Green’s function, only one condition remains 

needed to be satisfied, which is the EC. Therefore, a few basis functions near the edges 

are set free, and they radiate by the free-space Green’s function. Thus, it should be 

considered that they make their interactions with all other testing functions, and these 

interactions can be computed by using the standard MoM procedure. Consequently, 

the localization procedure can be employed for the source points in the region of the 

structure, which is not near the edges.  

 

     In conclusion, the localized Green’s function, which satisfies Helmholtz Equation 

and Radiation Condition, can be utilized for PEC structure by implementing the EC 

and BC. It should be noted that the beamwidth of the localized Green’s Function must 

be bounded. It must be smaller than the width of the near edge regions. Otherwise, the 

radiation of the beams can affect the edge points, which causes the EC to be a failure. 

In addition to this, the beam size of the localized Green’s function can be narrow as 

less as possible.   

 

     Figure 3.3 indicates the source points in the near edge regions with red zones, which 

are used in the standard MoM procedure. On the one hand, free-space Green’s 

Function is employed with a regular basis and testing functions based on MoM for 

these source point radiations. On the other hand, localized Green’s Function based on 

beam pattern is utilized for the source point radiations at the blue zones indicating the 

non-near edge regions. The far element interactions for the basis and testing functions 

can be neglected due to the nature of the beams locating at the non-near edge regions. 

Therefore, the main impedance matrix turns to be a sparse form. This type of 

impedance matrix localization provides to analyze larger geometries by using highly 

efficient sparse matrix solution methods. Hence, very large geometries in 2D can be 

modeled by this procedure. 
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On an electrically large scatterer, there may be a vast region on its surface that is 

not near the edges. In filling the impedance matrix for the sources in that region, only 

the near field interactions can be considered that they are on the same edge with the 

source. Consequently, any source radiation of the localized Green’s function does not 

interact with the testing points on the other faces. So there is no need for a special 

algorithm like in FMP or in the CSP expansion-based MoM. Then all interactions 

should be considered only for a few basis functions near to the edges. Also, one can 

say that the number of testing functions for these interactions is limited by N. 

Consequently, for 2D problems, the memory storage and the operation count are 

almost proportional to N, i.e., O(N).  

 

 
 

Figure 3.3 N-sided a convex polygon cross-sectional cylinder 

 

Figure 3.3 can be taken into consideration for a strip geometry by designating a 

single facet in the contour. Moreover, the configuration is also related to open body 

structures and can be adapted to make a localization for these structures. 

 

It should again be noted that the field obtained from the localized Green’s function 

must be satisfied with all uniqueness conditions of the scattering problems. Under the 

circumstances, this procedure has two main advantages. Firstly, solution time can be 

lowered significantly versus standard MoM in large geometries. Secondly, it offers to 

analyze the problems of very large geometries that can not be solved with standard 

MoM or any technique due to the memory requirements. In this thesis, the beam type 
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radiation is implemented by presenting the two new hybrid techniques, as mentioned 

in part 1.3. The definitions of the beam type Green’s function are also detailed in 

Chapter 4 and Chapter 5. 

 

3.5 Reducing Memory Requirement and Sparsity of the Main Matrix  

 

Two parameters could affect the memory requirement in the procedure. One is the 

length of the near edge regions, which is indicated α, as shown in Figure 3.2 and Figure 

3.3. This length identifies the unknown numbers concerning the edge points. The total 

number of discretization N is equal to follow:  

     


 LN              (3.14) 

where L is the total length of the cross-sectional area and Δ is the step interval on the 

cross-sectional contour. The parameters α, L, and Δ are in terms of λ.  

 

In the standard MoM, as Green’s Function is a type of an omnidirectional wave, a 

source point would interact all testing points within discretization in the region. Hence, 

a source point in the near edge region has a great number of interactions with the 

testing points as many as N. Consequently, the total number of interactions from a near 

edge region is 

     N)/(              (3.15) 

 

The other one is the width of the localized Green’s function, and it indicates the 

unknown numbers relating to the non-near edge points. After the formulation process, 

a beam pattern is utilized in the non-near edge regions; the radiation is qualified to a 

specific area for a source point in this region during the testing procedure. If the 

localized Green’s function has a beam waist γ, as shown in Figure 3.2, for a single 

source point in the non-near edge region, the interaction points on the testings would 

be 2γ/Δ. It should be noted that the beam type radiation of this source point interacts 

with the testing points only on the same facet because the beam radiates outward from 

the facet. Thereby, the memory storage elements for a PC or the total interaction 

number of the main matrix elements are calculated as follows: 
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where Ne is the number of near-edge parts on the cross-sectional contour, for example, 

it is equal to two, for the strip geometry. In the left-hand part of the equation above, 

the first term denotes the number of elements from the near-edge regions, and the 

second term denotes the number of elements from the non-near edge regions. Although 

the memory requirement in the usual MoM is O(N2), there is a reduction substantially 

in the proposed method.   

 

     Let us consider a strip with a length of 10λ, length of the near edge regions α = 1λ, 

and the localized Green’s function has a beam waist γ = 1λ. If the interval Δ is set to 

λ/10, then the total number of discretization becomes N = 100 from (3.14). The 

memory storage elements for a PC is found: 
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while it is 100N for the MoM. If we evaluate the situation for a square cross-section 

cylinder with the same parameters, the number of near-edge parts on the cross-

sectional contour will be Ne = 8, and the result is: 
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while it is 400N for the MoM. Although it seems like there was no significant 

difference, the substantial advantage would arise in the number of memory storage 

elements for larger geometries because the total number of discretization N reaches a 

very high level, as the structure size is getting larger. 
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CHAPTER FOUR 

MAIN MATRIX LOCALIZATION FOR 2D SCATTERING BY USING CSP 

TYPE GREEN’S FUNCTION 

 

4.1 CSP Vector Expression and Beam Generation 

 

     The first step in the derivation of the localized Green’s Function is to obtain a 

directional CSP beam. For the localization of source radiation in the non-near edge 

region, omnidirectional radiation is converted to a directive beam by using the CSP 

method. The real position vector 𝑟′ at the source coordinate is replaced by a complex 

quantity to express a CSP vector (Felsen, 1976): 

    bjrrr csp


             (4.1a) 

     bbb ˆ    


                                  (4.1b) 

where j is an imaginary unit, b is defined as the beam aperture and a positive real 

number, while the unit vector 𝑏̂ defines the direction of the beam. Figure 4.1 gives the 

line source geometry and CSP model in the same figure. The 𝑟′ gives the location of 

the source in real space. It is considering a beam that radiates from the real point 𝑟′ in 

any direction with the angle csp . If 𝑟′ is converted to cspr

  and used in the Green’s 

function; then, the omnidirectional cylindrical wave becomes a directional beam field. 

                 

  (a)     (b) 

Figure 4.1 (a) Line source geometry (b) Complex source point model geometry 

 

     In the presence of a line source at (𝑟′,𝜃′), its z-directed field is isotropic at any 

observation points (𝑟,𝜃). The scalar 2D free-space Green’s function is defined by the 

wave equation 

      ),(),( )( 22 rrrrGk 


                (4.2) 
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where δ is a Dirac-delta function, and its solution is well-known, as shown below:         

       )(
4

),( 
)2(

0 kRH
j

rrG 


            (4.3) 

where R is the distance from the source to the observation point: 

          )cos(222   rrrrR         (4.4) 

In the far field (𝑟 ≫ 𝑟΄), )cos(   rrR  is applied in the phase term and rR   

in the amplitude term. Then, the large asymptotic argument of Hankel function is 

utilized as below:   
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   0 < 𝜃′ < 𝜋 (4.6) 

where C is a complex constant. In the light of equation (4.1), we define vectors in polar 

coordinates:  

    ),(  rr
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              (4.7a)

    ),( cspcspcsp rr 


             (4.7b)

    ),( cspbb 


              (4.7c) 

where 𝑟′ is a real source position, cspr

  is a complex source position and 𝑏⃗⃗ is a complex 

beam vector. All angles are measured from the x-axis. The values of 
cspr

  and csp  are:  
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where b > 0 and 0 ≤ 𝜃𝑐𝑠𝑝 ≤ 2π. In equation (4.6) of Green’s Function, replacing real 

source position ),(  rr


 by complex source position ),( cspcspcsp rr 


, gives CSP 

type Green’s Function as: 
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  𝑟 ≫ |𝑟′𝑐𝑠𝑝|          (4.10)  

From Figure 4.1b:  

   )cos()cos()cos( cspcspcsp jbrr                        (4.11a) 

   )sin()sin()sin( cspcspcsp jbrr                        (4.11b) 

 

Using these equations to solve the equality (4.12a) and we obtain (4.12b) :  
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  )sin()sin()cos()cos()cos( cspcspcspcspcspcsp rrr           (4.12a) 

)cos()cos()cos( cspcspcsp jbrr             (4.12b) 

Substituting 4.12(b) into the CSP type Green’s Function with complex source position
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          (4.13) 

It is found that equation (4.13) represents an omnidirectional cylindrical wave, which 

is the free-space Green’s function, modulated by a beam pattern 
)(cos( cspkb

e
 

. This 

pattern has its maximum in the direction 
csp   and minimum in the direction 

  csp
. The radiation field of a complex line source locating at the complex 

position  cspr

 with amplitude C is given by: 
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                       (4.14) 

where 𝑅𝑐𝑠𝑝 is the distance between the observation point and the CSP. Consequently, 

to obtain the radiation field of a source point locating at the complex position, we 

replaced   csprr

 in the free-space Green’s function.  

 

     Consider a strip lying on the x-z plane, to review the CSP beam pattern function 

used in this thesis, it is assigned the beam parameter o

csp 90  normal to the strip 

surface to specify the beam direction. If a real source point is considered on the x-

plane, then the real source position 𝑟′, the observation point vector 𝑟, and the CSP 

vector 𝑏⃗⃗ are defined as below:  

                                xxr ˆ


                 (4.15) 

        yyxxr ˆˆ 


                (4.16) 

    ybb ˆ


                        (4.17) 

The real source point vector 𝑟′ is converted to CSP vector by using bjrrcsp


  and it 

yields: 

              yjbxxrcsp
ˆˆ 


     (4.18) 

Then the distance vector of the observation point from the CSP is given as below: 

  22 )()( jbyxxrrR cspcsp 


   (4.19) 

and CSP type Green’s Function is written as: 
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      ))()((),( 22)2(

0 jbyxxkCHrrG cspcsp 


                                 (4.20) 

Then, we need to find out the behavior of CSP type Green’s function in the regions far 

from the CSP. This characteristic is an essential criterion since it states the effectivity 

of the localization process for CSP type Green’s function. By selecting different b 

values, and the source point on the x-plane )0,0(  yx , then the normalized intensity 

of CSP type Green’s function )  ,( cspcsp rrG

 versus 𝑥/𝜆 is plotted in Figure 4.2. Here, 

the complex line beam field  cspG is normalized to the maximum value of radiation.  

 

     It is clearly seen that the normalized beam field suddenly drops to minimal values 

if x b , as shown in Figure 4.2. These minimal values can be approximated by zero 

for CSP type Green’s function. Therefore, there would be almost no field value in the 

region )0,1(  yxGcsp   and )0,1(  yxGcsp  , when b = 1λ. In other words, if the basis 

function is on the (x=0, y=0) point, it will be interacting with testing functions only 

for a particular distance, which is ±b away from the x=0 point. This limitation of the 

interactions provides a strong localization of the main matrix so that many of its 

elements are very close to zero and can safely be neglected. This localization converts 

the main matrix into a sparse one, which is an attractive achievement since there are 

specific algorithms to solve the sparse matrices more efficiently compared to the full 

matrices. As known, typically in MoM, the total unknowns are large quantity numbers 

that restrict its application to the analysis of electrically large geometries. It should be 

noted that there is a singularity based on the Hankel function at the points of ±1λ when 

b = 1λ, and ±2λ when b = 2λ in Figure 4.2. These singularities should be taken into 

account and extracted from the process during the solution part. 

 

Figure 4.2 Normalized beam field Gcsp versus x/λ 
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Isotropic cylindrical waves due to the line source and CSP beam fields are illustrated 

in Figure 4.3. The differences in the radiation are visible clearly. 

 

  

  (a)      (b) 

Figure 4.3 Normalized beam field radiation at x=0, y=0, versus x/λ and y/λ (a) Omnidirectional 

cylindrical wave radiation (b) CSP type beam wave radiation for b = 1λ 

 

     The necessary examination of the CSP beam field is that it satisfies all uniqueness 

conditions pointed out in section 3.2: 

 

1- Helmholtz equation: Modified Green’s function with the CSP method satisfies the 

Helmholtz equation. Since it is described in terms of the free-space Green’s function 

with a complex source location, the field of a CSP is an exact solution of the wave 

equation everywhere in space except in its singularities. 

2- Radiation condition: Modified Green’s function satisfies radiation condition 

because it is modulated wave by a beam pattern 
)(cos( cspkb

e
 

, which does not include 

spatial parameter r.  

3- Boundary condition: These conditions are imposed during the solution procedure 

to obtain the scattering fields. 

4- Edge condition: A region at near edges must be set free depending on beam 

parameter b to satisfy this condition. At near edges, free-space Green’s function is used 

so that the energy must be finite. If the beam field is examined in Figure 4.3b, it can 

be seen that the beam radiation tends to extend to infinity at just the point in the middle 

of it. Therefore, b is taken as zero, and modified Green’s function can not be used for 

the near-edge regions.  
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     Hence, an arbitrary EM field that arises from a real source point can be converted 

to a CSP beam pattern function, which serves as a useful tool to find the radiation of 

the basis function. In the next part, CSP type beam field radiation will be implemented 

as a hybrid method, and it is combined with MoM. Firstly, finite width PEC strip 

geometry illuminating by a plane wave will be examined to verify the presented 

method for both polarizations. Strip geometry is a practical case and considerable for 

many applications. Beam parameters, like beam aperture and direction of the beam, 

will be investigated in detail. In light of this information, the more complex structure, 

that is, closed PEC cylindrical geometry, will be studied for the presented method for 

both polarizations.  

 

4.2 2D Scattering From A Large PEC Strip 

 

4.2.1 MoM Procedure with CSP Type Green’s Function  

 

4.2.1.1 E-polarization 

 

The problem geometry is a flat PEC strip, as shown in Figure 4.4, with a strip length 

L, and it is illuminated by an EM plane wave. For the E-polarization case in MoM, we 

assumed the pulse type basis and testing functions. The current density has only z 

components because of the polarization of the incident plane wave. Moreover, due to 

the geometry, there is no variation in the current density along the z-axis, and it can be 

thought as a combination of the line sources. For a strip geometry lying on the xz-

plane, the second term vanishes in (3.13), and it becomes as below:  

xdxxGxJjkE

L

z

inc

z
 

0

)()(


                          (4.21) 

)( xxG

  is the 2D free-space Green’s function for the geometry of Figure 4.4 and 

is defined in parallel to the equation (3.12). 
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Figure 4.4 Cross-section geometry of the finite width flat PEC strip illuminated by a plane wave 

 

     For the non-near edge region, the beam-type radiation is needed to be derived, and 

its idea was explained before. A beam is launching from the x-axis to the upward y-

direction, as in Figure 4.4. To obtain a directional CSP beam for the strip geometry, 

we again use the same method in parallel to the equation (4.1a): 

    bjxxx csp


              (4.22) 

If x

  is converted to cspx


, then the omnidirectional wave becomes a beam field. To 

realize this conversion in the equation (4.21), the coordinate of the real line source is 

replaced with the complex position in the Green’s function of EFIE: 

xdxbxxGxJjkE

L

csp

csp

z

inc

z


 

0

))(,()(                  (4.23) 

Here )(xJ
csp

z


  is the unknown current density function different from the physical 

current on the strip and  cspG is the CSP type Green’s function in parallel to (4.20), and 

it is given as: 

  ))()((
4

))(,( 22)2(

0 xbxxkH
j

xbxxGcsp






           (4.24) 

Here, b(x) is the beam parameter, which depends on the source position: 

   











edgesnearnon

edgesnear

b
xb

 

 

,

,0
)(              (4.25) 



37 

 

It was observed that the beam type radiation of the complex line source, that is             

 cspG , becomes very small if bx   as shown in Figure 4.2. Therefore, there will be 

almost no interaction between the source and observation elements on the strip if they 

are far enough from each other. This provides a strong localization of the main matrix 

so that many of its elements are approximated to zero. The CSP beam-like field is 

visible in Figure 4.3b. 

      

     As a first step, the geometry is discretized for MoM procedure, as described in 

Chapter 2. The discretization points, as shown in Figure 4.4, are described as below: 

     )1(nn   n = 0,1,2,…..N         (4.26) 

At the second step, the unknown current density is expanded into a series with basis 

functions multiplied by unknown constants as MoM procedure:   

    )()(
1

xpaxJ n

N

n

n

csp

z
 



                        (4.27) 

where an’s are the unknown coefficients to be determined, pn(xꞌ) is a pulse function 

represented as basis functions and defined as: 

    






 




elsewhere

x
xp

nn

n

 1

,0

,1
)(                      (4.28) 

These chosen basis functions are defined only in a particular domain, so they allow to 

reduce the integral limits over the strip length L.  Substituting the current density 

expansion into (4.23), it becomes:       

    







N

n

csp

x

x

nn
in
z dxxdxbxxGxpajkE

n

n
1

2/

2/

))(,()(


           (4.29) 

where Δ is the discretization length of the strip surface, and it is selected by following 

the rule-of-the-thumb discretization criteria as λ/10. However, it can be further 

increased for better solutions. The definitions of xn’s are the middle points of the basis 

and testing functions. The incident field is assumed as the electrically polarized EM 

plane wave )sincos( inin yxjkin

z eE   . However, the equation (4.29) presents N unknowns 

for one observation point, and it is not a solution for the coefficients an’s. As stated in 

Chapter 2, it needs to be tested with testing functions. So it is multiplied for both sides 

by a set of functions pm(x) to obtain N equations for N unknowns:  
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 



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






N

n
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x

x

n

x

x

mn

in

z

x

x

m dxxdbxxGxpxpajkdxxExp
n

n

m

m

m
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1

2/

2/

2/

2/

2/

2/

),()()()()(              (4.30)

         m=1,2,….N      

This procedure is defined as the Galerkin procedure, and pm(x) is a pulse function. 

Here, bn is the complex beam parameter depending on the source indices, i.e., the 

location of the basis function. It takes zero in the near edge regions, bn  = 0, and a real 

constant value in the non-near edge region bn = b, on the strip.  

 

     Equation (4.30) is an algebraic matrix equation for the given problem in parallel to 

(2.9), and the coefficients an’s are found by applying the matrix inversion methods. In 

this form, the main matrix and excitation vector can be written as follows: 

  dxxdbxxkHxpxp
k

Z n

x

x

n

x

x

mmn

n

n

m

m

 








22)2(

0

2/

2/

2/

2/

)(()()(
4


          (4.31)

  dxexpg
in

m

m

jkx

x

x

mm

cos

2/

2/

)(




                       (4.32)

         m=1,2,….N      

Equations (4.31) and (4.32) are matrices for the MoM Procedure with CSP Type 

Green’s Function solution of the 2D strip geometry to determine the current density 

over the coefficients an. After the determination of the coefficients, by using them, one 

can define far zone fields as well as the near fields in the proposed method. It should 

be noted that they are MoM solution of the 2D strip geometry if bn = 0 for all n values. 

Therefore, they are also used for near-edge regions in the proposed method by 

assigning bn = 0. For reducing computational time, by the change of variable x-xꞌ=u, 

the main matrix is now obtained as follows: 

duxduxpxpbukH
k

Z mnnmn 







 









)()()(
4

22)2(

0


          (4.33) 

The integral within the bracket is a convolution integral, and the convolution of two 

pulse functions is a triangle function with 2Δ width. Consequently, the double integral 

in the main matrix can be reduced to a single integral form for computational cost as 

below: 
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
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v
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nmn
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nmn

mn
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mn

mn

)()()()(
4

22)2(

0

22)2(

0

  

                              (4.34) 

where vmn= xm-xn. The first integral indicates the lower triangle function, and the 

second one indicates the upper triangle function.  

 

     In the MoM solution procedure, the Toeplitz type matrix structure appears in this 

type of flat geometry. Toeplitz matrix has a hierarchy of shift-invariant, and a 

particular symmetrical case is produced for interactions of the elements in the main 

matrix. In other words, the radiation is the same for different indexes with the same 

distance between the source location and the testing location.  For example, if n=1 and 

m=10 in the main matrix Zmn, the interaction is the same as in the case of n=2 and 

m=11. Thus, one row in the main matrix is only needed to be calculated, then Zmn is 

created from this row utilizing Toeplitz property. However, the Toeplitz symmetry is 

disappeared and can not be utilized in the proposed method. Despite this deficiency 

compared to the MoM, there has been huge time gain in the solution for very large flat 

strip geometry in the proposed method.  

 

In Green’s functions, the Hankel function, which consists of two Bessel functions, 

has a singularity when it goes zero. Therefore, low arguments of Bessel functions are 

required to extract the singularity, and the Hankel function becomes as follows with 

asymptotic methods: 

    









 2

 
ln

2
1)(

0

)2(

0

uj
ukH

u




            (4.35) 

where ξ is the Euler’s constant and equals to 1.781. The singularity extraction 

procedure was also performed at the branch points of the complex line source located 

at x = x+b and x = x-b in Figure 4.4, where b is a selectable beamwidth parameter. 

This extraction is implemented to MoM and the proposed method when the Hankel 

function tends to zero. Also, the extraction has a factor for the accuracy of the obtained 

solution. 
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4.2.1.2 H-polarization 

 

In Figure 4.4, the incident field for the H-polarization is assumed as a plane wave

)sincos( inin yxjkin

z eH   , instead of in

zE . Triangle functions are chosen as basis functions 

because the BCs must be satisfied on the edges; that is, the current needs to be zero on 

the edges. They are defined as: 
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           (4.36) 

In this case, the total number of discretization is chosen N-1 to ensure the current is 

zero on the edges. The current density function is again expanded with the unknown 

coefficients, an’s, n = 1,2…N-1. 

 

     Because of the polarization of the incident plane wave, the electric field consists of 

x and y components obviously, and the current density has only x components on the 

strip. Therefore, the second term does not vanish in (3.13). For the non-near edge 

region, the same procedure as in the E-pol case, the conversion is implemented to the 

real source coordinate to obtain a directional CSP beam. Then, CSP type Green’s 

function is derived and implemented in the EFIE so that it becomes a beam-type 

radiation. The next step is to apply the Galerkin method with triangular basis functions 

tm(x) to generate the following matrix equation: 
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         m=1,2,….N     

where 
injkxinin

x eE  cossin clearly. Integration by parts was used to obtain the second 

term of RHS in (4.37). A similar process in the E-pol case, double integrals are reduced 

to single forms by the change of variables x-xꞌ=u for computational cost and (4.37) 

becomes as follows: 
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where z(u) is a convolution function of two triangular functions, which is defined as  

)()()( ututuz nm  , and it is described as below: 







































































































2812
6

6/1

04
63

6/1

04
63

6/1

2812
6

6/1

)(

2

2

3

2

2

3

2

2

3

2

2

3

uu
uu

u
uu

u
uu

uu
uu

uz
           (4.39) 

Finally, the main matrix is obtained as follows: 
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In (4.38), LHS denotes the excitation vector, and it has an integrable solution. 

Performing this integration yields: 
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Equation (4.40) and (4.41) are matrices for the MoM Procedure with CSP Type 

Green’s Function solution of the 2D strip geometry to find the current density for the 

H-pol case. Like in the E-pol case, they are used for the non-near edge region. Again, 

it should be noted that they are MoM solution of the 2D strip geometry if bn = 0 for all 

n values. Therefore, they are also used for near-edge regions in the proposed method 

by selecting bn = 0.  

 

4.2.2 Determination of the Radiation Characteristics 

 

     After the numerical solution of the coefficients an’s, the current density function 

can be found by using these coefficients. Then the scattering field can be achieved both 

at the far-field and near-field regions.  
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4.2.2.1 Far-Field Radiation 

 

     The large argument form of Hankel function is needed to obtain the scattered field 

in the far zone. The far-field approximations for the strip, which are rrrR ˆ


 in 

phase term and rR   in amplitude term, are used to determine of the far-field 

radiation. It is used the Hankel function with the large argument in (4.5): 
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where ϕ is the angle between the observation point and x-axis. The scattered field in 

the far zone for E-pol case is written by using this large argument of Hankel function:
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where ψ1(ϕ) is the scattering pattern for the MoM solution in E-pol case.  

 

After the numerical solution of the matrix equation (4.30), the current density is 

obtained, which is not the real current density of the original problem. However, the 

convolution of this current with Gcsp can then produce the actual scattered pattern. 

Radiation from the localized Green’s function with that pseudo-current function offers 

a true scattered field under the uniqueness theorem. The far-field approximations for 

the proposed method are rrrR cspcsp
ˆ


 in phase term and rRcsp   in amplitude term. 

They are substituted in the large argument of the Hankel function using (4.18):  
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Then,  the far zone electric field scattered from the strip can be written as:  
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where ψ2(ϕ) is the scattering pattern for the MoM procedure with CSP type Green’s 

function solution in E-pol case. The bistatic RCS can be given as:  
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where u=1,2 indicating scattering pattern for the MoM and proposed method in E-pol. 

 

For H-pol case, the scattered field can be represented as vector potential, using 

(3.10), it forms as below: 
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As mentioned before, the current density has only x components on the strip in the H-

pol case. Using the vector identity below, curl operation is reduced to the equation as 

follows: 
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here the second term in the equation goes zero because the current density has only 

source notation. After the curl operation with the vector identity, the derivation of y 

component only remains in the equation: 
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The derivation of the Hankel function in the large argument form can be written as: 
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The first term for far-field observation is too small comparing the second one, so it is 

not considered into the calculation and ignored. Then, the scattering field in the far 

zone for H-pol case is written as follows: 
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where ψ3(ϕ) is the scattering pattern for the MoM solution in H-pol case.  
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     Similarly, after the numerical solution of the H-polarization matrix equation for the 

proposed method and by using the large argument of the Hankel function (equation 

(4.44)), the far zone scattered magnetic field can be written as: 
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where ψ4(ϕ) is the scattering pattern for the MoM procedure with CSP type Green’s 

function solution in H-pol case. In the last two equations, the integral has an analytical 

solution, and reduces the computational cost for PC, it is found to be: 
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The bistatic RCS is given by:  
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where p=3,4 indicating scattering pattern for MoM and proposed method in H-pol. 

  

4.2.2.2 Near-Field Radiation 

 

     Because the observation point is near the strip surface, the large argument form of 

the Hankel function is not needed to find the scattered field in the near zone. The 

following equation is used to compute the near-field scattering for E-pol case: 
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where cosrx  and sinry   in order to define the near field distance.  

 

     For the proposed method, simply interchanging 
cspRR  in the Hankel function 

and near-field scattering is derived for E-pol case as below: 
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For H-pol case, to find the derivation of y component in (4.49), the derivation of the 

Hankel function is needed to use: 
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Then, it is derived for y component by using the chain rule of derivation:   

      )()()()(
)2(

1

)2(

0

)2(

0 kRHyy
R

k

y

R
kRH

R
kRH

y

















                       (4.58) 

Since y=0 on the strip, equation (4.49) is described for near-field radiation by 

substituting the derivation of the Hankel function as follows:     
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For the proposed method, similarly in E-pol case, cspRR  is substituted in the Hankel 

function and the derivation is now obtained: 
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Then, near-field scattering is found for H-pol case as below:    
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4.2.3 Main Concept of the Method and Determination of the Parameters ′b′ and ′α′ 

 

     This key point of the hybrid method presented has been elaborated, as explained in 

(Kutluay & Oğuzer, 2019): 

 

     The CSP field is a beam in free space, and it is the exact solution of the Helmholtz 

Equation, additionally satisfying the radiation condition. The BC on the PEC strip was 

used in the formulation of the problem. In the vicinity of the edge, the free-space 

Green’s function was adjusted by setting the parameter b as zero to keep the EC intact. 

The distance parameter α is as large as possible to prevent the radiation of the surface 

current on the edges.  

 

     The rough view of the main matrix filled with numbers is a pattern in Figure 4.5a 

and Figure 4.5b for L = 10λ. The standard MoM in the E-pol case produces a dense 



46 

 

matrix (see Figure 4.5a), but as shown in Figure 4.5b, with our technique, the main 

impedance matrix is converted to a sparse form indicated by white parts in the mapping 

as almost zero magnitudes. 

 

     In the H-pol case, two integrals of the main matrix were studied standing in the 

right-hand part of equation (4.37). The main impedance matrix is converted to a sparse 

form just like in E-pol, and the patterns of the main matrix elements are shown in 

Figure 4.5c and Figure 4.5d. Due to these remarkable features, the proposed hybrid 

technique provides an important advantage in computer storage and calculation time. 

 

     CSP Green’s function (Gcsp) tends to zero in the region of |x| ≥ 1, as shown in Figure 

4.2. The function has a numerical value only in the region of |x| < 1; however, it is 

almost zero if |x| ≥ 1. Therefore, it should be selected b ≥ 1, and it is expected that “α” 

should be equal or greater than “b” so that the near edge region is not illuminated by 

complex source radiation of the basis functions on the strip surface. Due to this 

selection, the edges do not enter the beam apertures on the scatterer surface, and the 

EC is unaltered and preserved. 

 

Figure 4.5 The magnitude level of the impedance matrix elements for L = 10λ, Δ = 0.1λ (a) standard 

MoM and (b) the proposed method for E-pol with α = 2λ and b = 1λ, (c) standard MoM, and (d) the 

proposed method for H-pol with α = 2λ and b = 1.3λ (Green dashed lines marked for explanation) 
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     Then, the main matrix elements are used to find the radiated electric field as an 

explanation of the interactions. For n = 1, the matrix column Zm1 is linked to the 

interval between “m” and “1”. This interval does not depend on the location of the 

basis function because the Toeplitz matrix has a hierarchy of shift-invariant. Here, 

what is important is the difference between “m” and “1”, which describes the distance 

between the source location and the testing location. This column matrix indicating 

the radiated electric field, presents a reduction with the distance away from the source. 

Therefore, the basis function (as indicated, n = 1) can be selected for any source 

location in the non-near edge region where b ≠ 0. The goal is to observe the behavior 

of the complex source beam radiation in the non-near edge region. Hence, called Zms, 

where “s” is a static index (basis function index only for CSP in the non-near-edge 

region) indicating the CSP location, and “m” is a non-static index number (testing 

function index) that indicates the location of testing function; it varies from 1 to N in 

E-pol and N-1 in H-pol. For any CSP in the non-near edge region, it means whatever 

“s” is assigned, the behavior of the CSP beam radiation is identical for any specific 

“b”. Accordingly, the index “s” is assigned to any CSP location, and the matrix Zms 

degraded to Q|m-s| in order to observe just one CSP. In brief, Q|m-s| is the testing vector 

of any CSP in the non-near edge region, that is, it is a column matrix of Zms 

corresponding to any number of “s”. For instance, in Figure 4.5b and Figure 4.5d, since             

α = 2λ, “s” index varies from 20 to 80 for the case of the total number of unknown                 

N = 100 and Δ = 0.1λ. In this case, the main matrix is not a good sparse matrix; the 

parameters α, b, L have been specified so that the figure is easily visible, and the band 

structure shows non-zero matrix elements. Q|m-s| column matrices shape the band 

structure in that region, for example, in Figure 4.5b, if the “s” or “n” index is 50, since 

b = 1λ, the “m” index takes any value from 40 to 60, and these values indicate two 

identical column vectors. Each side is symmetrical and has a pattern like Gcsp in terms 

of magnitude (see Figure 4.2). In this column matrix, the maximum value for each side 

is at m = 50, and minimum values are at m = 40 and m = 60 for this example. For the 

sake of simplicity, we viewed one side Q|m-s| as shown in Figure 4.6. As stated above, 

Q|m-s| column matrices are identical for any index number of “s” in the band structure, 

so Q|m-s| was investigated independently from the “s” index.  
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           (a)                                   (b) 

Figure 4.6 Normalised function Q|m-s| versus x/λΔ at x = 0 (a) E-polarisation, (b) H-polarisation 

 

     We implemented the approximation Zms = 0 for the regions where “|m-s|” distance 

is greater than “b” as shown in Figure 4.5b and Figure 4.5d. Therefore, analyzing the 

normalized function Q|m-s| versus the “|m-s|” index difference is a worthy intention. 

The parts where “|m-s|” distance is greater than “b” provide an insight into the 

approximation. These concepts depending on Zmn can be applied to the other 2D 

geometries such as PEC cylinders in section 4.3 for the determination of α and b.  

 

     Resulting Q|m-s| varies depending on the polarisation, as shown for E-pol and H-

pol in Figure 4.6a and Figure 4.6b. A descending pattern of Q|m-s| in H-pol was 

observed more widely compared to the E-pol. Also, the decrease of Q|m-s| is smaller 

in H-pol than in E-pol for any value of “b”. Thus, selecting larger “b” in H-pol is a 

necessity so that the approximated parts are closer to zero.  

 

     Typically, b = 1λ can be assigned for both polarisations whose relative errors are 

less than one percent, as shown in the numerical results. However, for more accurate 

results, b > 1λ can be assigned. There is a little trade-off, because the selection of “b” 

affects the computing and filling the main matrix, hence the computational time. 

Taking a larger value of “b” means decreasing the sparsity of the main matrix. 

Experiments show that Q|m-s| at “|m-s|” should be less than 10-3, corresponding to           

b = 1.5λ and b = 2λ for E-pol and H-pol, respectively.  
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     It is not important to select “α” in the scale of larger values than “b”, and α ≥ b can 

be assigned. Nonetheless, larger “α” values ensure the correction in the minor lobes, 

especially in the angles close to 0o and 180o in RCS. These corrections are not 

significant compared to the main lobe since they are negative in the dB scale of RCS.  

In the light of the findings described above, at the normal incidence, b = 1.5λ and           

α = 2.5λ were assigned in E-pol, b = 2λ and α = 3λ in H-pol, to properly represent the 

method. At the inclined incidence, since the edges are less effected by the radiation of 

CSP and the edges are more critical, the near edge regions must be wider. Namely, “α” 

is assigned larger values, for example, b = 1.5λ and α = 4λ were assigned for E-pol,        

b = 2λ, and α = 4λ for H-pol at the inclined incidence, ϕin = 30o. Taking a larger value 

of α extends the near edge regions so that the method is more dominant at the grazing 

incidence illumination.  

 

4.2.4 Numerical Results 

 

It has been computed some numerical data to verify the working performance of 

the presented approach for PEC strip geometry in both polarisations. The proposed 

procedure has been followed, as introduced in Section 4.2.1, to achieve numerical 

results.  

 

The current density functions have been obtained by using optimum iterative sparse 

solvers in MATLAB. In Figure 7, the real surface current density and the current 

density function obtained from the proposed procedure (b=1λ) are shown on the same 

plot for both polarisations. As expected, the edge effects look similar to the free-space 

Green’s function case because we set it free in the regions near the edges. In other 

words, it is implemented the free-space Green’s function for the radiation from the 

basis functions near the edges. The near edge behavior of the surface current 

distribution is similar to the original solution of the problem. Also, in the middle 

region, the radiation of the basis functions with the modified Green’s function does 

not affect the edge points, and so EC is not effected. 
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Figure 4.7 The blue line is the real current density obtained from the standard MoM, the red line is the 

pseudo-current function from the proposed method for the PEC 2-D strip of width L = 10λ and                 

ϕin = 90o, and b=1λ (a) E-pol and (b) H-pol 

 

We also computed the relative error (RE) of RCS computations, defined as: 
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Here, emom is the solution obtained using the standard MoM, and ecsp is the solution 

obtained by the proposed method. In the above equation, the total discretization 

number is changed to N-1 for H-pol cases.  

 

     In Figure 4.8, the bistatic RCS is demonstrated for both polarisations and L = 50λ 

strip width. Although the strip width is large, the RCS obtained is very similar to the 

standard MoM, with a RE of 0.18% for E-pol case and 0.09% for H-pol. Even though 

the condition number of the main sparse matrix for L = 50λ is approximately 106, the 

RE is low. This low error tolerance is obtained by using the iterative algorithms for 
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sparse matrix equation solvers in MATLAB. A slight deviation occurs in the directions 

parallel to the strip, but these regions are trivial compared to the scale of dB 

magnitudes. 

 

Figure 4.8 RCS pattern comparison between standard MoM and the proposed method for L = 50λ and 

ϕin = 90o, (a) E-pol: b = 1.5λ, α = 2.5λ and RE = 0.18% and (b) H-pol: b = 2λ, α = 3λ and RE = 0.09% 

 

After verification for the normal incidence, the scattering was examined near the 

grazing incidence angle ϕin = 30o, which produced good results as shown in Figure 4.9. 

Here, larger values of α have been chosen for the near grazing incidence for more 

accurate results at the observation angles close to 0o and 180o in the RCS analysis.  
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Figure 4.9 RCS pattern comparison for the inclined incidence between the standard MoM and the 

proposed method for L = 50λ (a) E-pol: ϕin = 30o, b = 1.5λ, α = 4λ and RE = 0.08% and (b) H-pol:          

ϕin = 30o, b = 2λ, α = 4λ and RE = 0.15% 

 

The RCS data was also computed for the near-zone region of flat strip by putting 

(4.55), (4.56) into (3.2) for E-pol, and (4.59), (4.61) into the its identical form for H-

pol. Comparing the standard MoM procedure with CSP type Green’s function method 

for L = 20λ and ϕin = 90o is shown in Figure 4.10. By taking r = 15λ to get closer to the 

boundaries, the RCS function near the strip is plotted and compared with the standard 

MoM. As expected, the results are in agreement with the standard MoM. It is 
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considered all conditions of the EM formulation; as a result, the computed field values 

are correct, even when close to the strip.   

 

Figure 4.10 Near-field RCS pattern comparison between the standard MoM and the proposed method 

for L = 20λ and ϕin = 90o (a) E-pol: r = 15λ, RE = 0.2%, b = 1.5λ and α = 2.5λ and (b) H-pol: r = 15λ, 

RE = 0.39%, b =2λ and α=3λ 

 

Finally, the RE plots are demonstrated in Figure 4.11 for the strip geometry to 

analyze the choice of the parameters α and b. The strip width has been fixed as                  

L = 50λ for both polarisations, and the REs in RCS for the incidence angles 90o and 

30o have been investigated. If the EC is fulfilled by setting the parameter α, in other 

words, α ≥ b, the RE reduces. The RE plots support the choice of α and b, as explained 

in section 4.2.3.   
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Figure 4.11 RE plots for the strip geometry L = 50λ (a) E-pol ϕin = 90o, (b) E-pol ϕin = 30o, (c) H-pol   

ϕin = 90o and (d) H-pol ϕin = 30o 

 

It is also pointed out the memory storage requirements for all strip sizes in           

Table 4.1 and Table 4.2 if the λ/10 discretization criterion follows it. It should be noted 

that there has not been a noticeable difference in accuracy for the results if the 

discretization criteria are set to smaller ones. In Table 4.1, it is chosen b = 1.5λ,                

α = 2.5λ for all strip lengths for E-pol, and b = 2λ, α = 3λ for H-pol in Table 4.2. 

Memory storage is an important parameter to verify the efficiency of the proposed 

method. Required memory storage of the computer is defined by the number of 

elements of the main impedance matrix. The number of the main matrix elements has 

been calculated using (3.16), in which the beam waist γ of the localized Green’s 

Function is substituted by the coefficient b for the proposed method.  

 

Another main criterion is related to the overall running times. Table 4.1 and Table 

4.2 also show the overall CPU time during the analysis to obtain the current density 
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functions for the MoM and for proposed method. RCS evaluation time is excluded 

from the overall CPU time. As mentioned before, the Toeplitz type matrix structure 

appears in the 2D strip problems and reduces filling elements of the main matrix. 

Therefore, for the MoM and presented method, the Toeplitz property improves the 

overall running times in the strip geometry solution. REs have been computed 0.18% 

in the E-pol and 0.89% in the H-pol for all the strip size up to 3000λ. Although the 

memory usage for the available desktop computer is limited to solve the problem by 

the standard MoM for 3000λ strip size, the presented method is eligible to analyze for 

the strip size of 50000λ with remarkable solution time. 

 

Figure 4.12 shows the overall running CPU times of the computation with the MoM 

and presented method according to the total number of unknown N. Due to the sparse 

form of the main matrix, the overall CPU time reduces drastically, especially for large 

strip widths. If the strip size is L = 500λ, N becomes 5000 if we follow the λ/10 

discretization criterion. Then in the standard MoM, the main impedance matrix size 

becomes 5000 x 5000. Alternatively, the main matrix size obtained in the proposed 

method is approximately 80 x 5000 for α = 2.5λ and b = 1.5λ in E-pol and the normal 

incidence angle. The matrix size in H-pol for the normal incidence angle is 100 x 5000 

for α = 3λ and b = 2λ. Briefly, it has been a substantial gain in memory storage and 

operation count for both polarizations. The memory requirement in the usual MoM is 

O(N2), while it is about O(80 x N) for E-pol and O(100 x N) for H-pol in the proposed 

method for the single PEC strip geometry. If the size of the problem increases, then 

the required memory storage sharply increases when using the MoM. Significant 

improvements can be obtained in the light of this, especially for very large problem 

dimensions. Figure 4.12 shows the time difference between polarizations for the 

presented method in consequence of the different parameters “α” and “b”. 
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Table 4.1 CPU time and memory storage comparison for PEC strip geometry (E-Pol) 

 

 

 

 

 

 

 

 

 

 

Table 4.2 CPU time and memory storage comparison for PEC strip geometry (H-Pol) 

 

 

 

 

 

 

 

 

 

 

 

                     (a)                                     (b) 

Figure 4.12 The overall running CPU times of the computation versus the total number of the unknown 

for strip geometry (a) E-pol and (b) H-pol  

Strip 

Length (λ) 

Incident 

angle 

(degree) 

Solution Time 

For E-pol 

(seconds) 

Memory Storage 
Relative 

Error 

 (%) 
MoM 

Presented 

method 

MoM 

(N x N) 

Presented 

method 

(80N) 

L=500 90 4 1 25ˑ106 0.4ˑ106 0.18 

L=1000 90 25 2 100ˑ106 0.8ˑ106 0.18 

L=2000 90 182 3 400ˑ106 1.6ˑ106 0.18 

L=3000 90 661 5 900ˑ106 2.4ˑ106 0.18 

L=5000 90 - 9 2.5ˑ109 4ˑ106 - 

L=10000 90 - 18 1ˑ1010 8ˑ106 - 

L=50000 90 - 92 2.5ˑ1011 40ˑ106 - 

Strip 

Length (λ) 

Incident 

angle 

(degree) 

Solution Time 

For H-pol 

(seconds) 

Memory Storage 
Relative 

Error 

(%) 
MoM 

Presented 

method 

MoM 

(N x N) 

Presented 

method 

(100N) 

L=500 90 4 1 25ˑ106 0.5ˑ106 0.89 

L=1000 90 24 2 100ˑ106 1ˑ106 0.89 

L=2000 90 181 4 400ˑ106 2ˑ106 0.89 

L=3000 90 638 6 900ˑ106 3ˑ106 0.89 

L=5000 90 - 10 2.5ˑ109 5ˑ106 - 

L=10000 90 - 21 1ˑ1010 10ˑ106 - 

L=50000 90 - 113 2.5ˑ1011 50ˑ106 - 
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The difference in the CPU time becomes more attractive if the strip width gets 

larger. Beyond the total number of the unknown of 30000 (L = 3000λ), our desktop 

PC does not give any results as its capacity is not enough to solve the problem with 

MoM, whereas the presented method can be used. 

 

For larger strip sizes than 3000λ, the proposed method has been compared with the 

UTD solution to put forward an acceptable result. Figure 4.13 proves the comparison 

in both polarizations between the proposed method and the UTD solution for                    

L = 5000λ. Results are in good harmony with the RE 0.03% for E-pol and RE 0.97% 

for H-pol.  

 

(a) E-pol case, b = 2.5λ, α = 5λ and RE = 0.03% 

 

(b) H-pol case, b = 2.5λ, α = 5λ and RE = 0.97% 

Figure 4.13 RCS pattern comparison between UTD solution and the proposed method for L = 5000λ, 

ϕin = 90o 
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4.3 2D Scattering from A Large PEC Polygon Cylinder with N-Sided Convex 

Cross-Section 

  

     After analyzing the strip geometry, more complex geometry is considered in this 

section to examine the proposed method.  

 

4.3.1 MoM Procedure with CSP Type Green’s Function 

 

     The geometry is a PEC polygonal cylinder with N-sided convex cross-section, as 

shown in Figure 4.14, illuminated by an EM plane wave of one of two polarizations.  

 

Figure 4.14 Four-sided polygon cross-sectional 2D PEC cylinder geometry 

 

4.3.1.1 E-polarization 

 

The same procedure in the strip geometry is followed with equation (4.1a), and the 

complex beam vector is defined as below: 

         )cos(ˆ)sin(ˆ  bybxb 


                  (4.63) 

where   is the angle between the edge and the x-axis, and beam vector b


is directed 

outward from the structure for all facets. As explained in the strip section, the second 

term vanishes in (3.13) due to the geometry, then, the EFIE can be presented as:  

  
Ct

csp

csp

z

inc

z drbrrGrJjkE 


))(,()(                                         (4.64) 

In order to find CSP type Green’s function in parallel to (4.14),   cspr

 is derived as 

below with the complex beam vector defined in (4.63): 
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))cos((ˆ))sin((ˆ   jbyyjbxxbjrrr csp


             (4.65) 

Using (4.65), CSP type Green’s function is formed as below: 

     22)2(

0 ))cos()(())sin()(((
4

))(,(   rjbyyrjbxxkH
j

rbrrGcsp


       (4.66) 

Here, )(rb

 is the beam parameter in parallel to (4.25): 












edgesnearnon

edgesnear

b
rb

 

 

,

,0
)(                      (4.67) 

If considering only for the non-near edge regions, expressions in the Hankel function 

are written as follows: 

      )sin(2)sin())sin((
222   jbxxjbxxjbxx            (4.68a) 

          )cos(2)cos())cos((
222   jbyyjbyyjbyy           (4.68b) 

Summation of the last two terms in 4.68(a) and 4.68(b) yields: 

        
   

0

)cos()tan(2)sin(2

)cos(2)sin(2











jbjb

jbyyjbxx

                   (4.69) 

based on )tan()/()(  xxyy  because the source point and testing point are in the 

same facet. In the case of b ≠ 0, it should be noted that the beam type radiation of the 

basis functions interacts with the testing points only on the same facet because the 

beam radiates outward from the facet. Then, the CSP type Green’s function for this 

geometry is found as: 

 222)2(

0 )()()((
4

))(,( rbyyxxkH
j

rbrrGcsp


           (4.70) 

Afterward, applying Galerkin’s procedure with pulse basis functions, the following 

matrix equation can be found for the E-pol case: 

  





N

n

nnmnmcspnmn
in
zm ddbyyxxGppajkdEp

nmm

1 000

),~~,~~()()()()(       (4.71)

         m=1,2,….N      

where )sin~cos~()(
inin yxjkin

z eE    and the rectangular coordinate parameters are defined as 

below: 

                     
))sin(),cos(()~,~( mmsmmsmm yxyx                                       (4.72a) 

        
))sin(),cos(()~,~( nnsnnsnn yxyx   

         
            (4.72b) 

This is a coordinate transformation from (x,y) to ),(  , xms and yms are the initial 

coordinates of the m’th pulse testing function,   is the distance measured along the 
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path in the used coordinates as visible in Figure 4.15a. Then, the integral limits are 

adjusted according to these coordinates along the contour. For the basis functions, the 

format is the same for the initial coordinates with n’th pulse basis function. Similar to 

the strip scattering, bn is the complex beam parameter, it is selected bn = 0 in the near 

edge regions and a real constant value in the non-near edge region, bn = b. In matrix 

form, the main matrix and excitation vector can now be written as follows:  

  





N

n

nnmnmnmn ddbyyxxkHa
k

Z
nm

1 0

222)2(

0

0

)~~()~~((
4




         (4.73)

  deg
m

in
m

in
m yxjk

m 





0

)sin~cos~(                        (4.74) 

It should be reminded that equation (4.73) can be reduced to the main matrix definition 

for the MoM solution by assigning bn = 0 for all n values.  

 
            

Figure 4.15 Testing functions (a) pulse function for E-pol and (b) triangular function for H-pol 

 

4.3.1.2 H-polarization 

 

     In H-pol, assuming a magnetic field with in

zH


 is illuminated the cylinder instead of 

in

zE


 in Figure 4.14, and it is applied with the triangular basis functions as depicted in 

Figure 4.15b. The triangular basis functions are defined as:  
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In order to define the CSP type Green’s function, a similar coordinate transformation 
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is again described below: 

))sin(),cos((),( 11







  mmmmmm yxyx                     (4.76a) 

          ))sin(),cos((),(


 mmmmmm yxyx             (4.76b) 

where equation (4.76a) is for the left segment of the triangular testing function and 

equation (4.76b) for the right segment of the triangular testing function. Also, 1mx , 

1my , mx , my  are some related coordinates shown in Figure 4.15b, 


m  and 


m  are 

the angles between the edge and the x-axis for the left segment and the right segment 

of the related testing function on a facet. Note that 


m and 


m are different, if and 

only if, the testing function is on the corner of the structure. In this case, the delta 

distance is also different in each segment. Hence, 


m  and 


m  are defined as delta 

distance for the left segment and the right segment of the triangular testing function, 

respectively. For the source basis functions, the format is the same for all 

representations above.  

 

     The complex beam vector in (4.63) is also utilized for the H-pol case. The 

derivation of the CSP type Green’s function is obtained through equations from (4.65) 

to (4.70). When obtaining equation (4.69), equality )tan()/()(  xxyy  is not 

correct for the basis or testing triangular functions at the corner of the structure. If the 

source point is at the corner of the structure, it is in the near-edge region and applied 

MoM procedure, which is b = 0, and equation (4.69) is verified straightforward. If the 

source point is in the non-near edge region, since α should be equal or greater than b, 

as explained in section 4.2.3, complex source radiation does not interact with the 

testing function on the corner of the structure. In other saying, the equality

)tan()/()(  xxyy  remains valid for the source points in the non-near edge 

region, and equation (4.70) is obtained for the H-pol case.  

 

     As explained in the strip section for H-pol, the second term does not vanish in 

(3.13). For the implementation of BC and utilizing the tangential electric field, scalar 

multiplication with ̂  is applied to the equation, and it yields as below for H-pol case:  



62 

 

   


































drbrrGrJ
k

j

drbrrGrJjkE

Ct

csp

csp

Ct

csp

cspin

))(,()(               

))(,()()ˆˆ()(ˆ





           (4.77) 

where )sincos()cosˆsinˆ()(
inin yxjkininin eyxE  




. The next step is to apply the Galerkin 

method with triangular basis functions )(mt , and the EFIE is obtained by using 

integration by parts as follows: 
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         m=1,2,….N     

Here )sin(ˆ)cos(ˆˆ
mmm yx    and )sin(ˆ)cos(ˆˆ

nnn yx   . In (4.78), since the 

definitions for parametric equations vary in the interval of the integrals, it must be 

described in the split form. The excitation matrix is given by: 
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Furthermore, the main matrix is decomposed of two parts: 
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The first part of the main matrix can be written as:   
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where )sin(ˆ)cos(ˆˆ 
 mmm yx   and )sin(ˆ)cos(ˆˆ 


nnn yx  .  
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As the derivative of the triangular function is a pulse function, then the second part of 

the main matrix is found as below: 
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It should be reminded that equation (4.80) can be reduced to the main matrix definition 

for the MoM solution, by assigning bn = 0 for all n values through the equations from 

(4.82a) to (4.82d). 

 

4.3.2 Determination of the Radiation Characteristics 

 

     After finding the current density function in the proposed method, the far zone 

scattered electric field from the cylinder can be found in E-pol. The complex source 

position vector   cspr

 obtained in (4.65) is replaced with a real source vector for this 

geometry,   csprr

 in the Hankel function. Then, the far-field approximations for the 

proposed method, which are rrrR cspcsp
ˆ


  in phase term and rRcsp   in amplitude 

term, are applied to the large argument form of the Hankel function. The vector scalar 

multiplication in CSP vector: 
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 Applying (4.84) to the Hankel function: 
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The scattered field at the far zone is written by substituting this large argument form 

of the Hankel function: 
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where ψ5(ϕ) is the scattering pattern for the MoM procedure with CSP type Green’s 

function solution in the E-pol case. The bistatic RCS is given as:  
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In (4.86), the integral function is integrable, and it is found for computational cost: 
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Nevertheless, the term )( n   can be 
o90 ; therefore, it can now be written as below: 
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     In H-pol, the scattered electric field has only ̂  component in cylindrical 

coordinates since the EM wave travels in the direction r̂ , and the magnetic field is in 

the ẑ  direction. In the far-field region, the electric field is expressed by vector potential 

as  AjE
sc


 . The far zone scattered magnetic field from the cylinder can be written 

through the electric field linked to the vector potential, we have: 

  
   































Ct

csp

csp

Ct

csp

csp

s

scsc

z

dkRHrJ
k

dkRHrJ
jj

ErH









 )()()ˆˆ(
4

                                          

)()(
4

ˆˆ
1

)2(

0

)2(

0










           (4.90) 



65 

 

Considering BC, ˆ  is multiplied with the current density function in the equation. 

Using (4.85) for the complex source vector, and the far zone scattered magnetic field 

from the cylinder is:  
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where ψ6(ϕ) is the scattering pattern for the MoM procedure with CSP type Green’s 

function solution in H-pol case. The bistatic RCS is given by: 
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     The integral in the far zone scattered magnetic field is algebraical and has a solution 

for reducing RCS computations considerably in MATLAB. The solution is found as 

below: 
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Two parts of the integral are found separately, depending on cosine )(

 n . For the 

case of 0)cos(  n , outcomes are as below: 
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Moreover, for the case of 0)cos(  n , results are as follows: 
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It should be reminded that the scattering patterns ψ5(ϕ) and ψ6(ϕ) are reduced to the 

definitions for MoM solution by assigning bn = 0. Then, the bistatic RCS is found using 

(4.87) and (4.92) for the E-pol and H-pol case, respectively. 

 

4.3.3 Numerical Results 

      

     In order to verify the performance of the presented method, square and triangular 

cross-sectional PEC cylinders have been examined in both polarisations. The proposed 

procedure has been applied to the cylinder geometries, as introduced in Section 4.3.1. 

Then, after obtaining the scattered fields presented in section 4.3.2, RCS results are 

shown in the following sections. In the case of cylinder geometry, Toeplitz matrix 

symmetries disappear. Nonetheless, a block-Toeplitz matrix can be used for this 

geometry; however, it was not implemented in the solution of this geometry. 

 

4.3.3.1 Convergence Investigation of MoM Solutions for PEC Cylinder Geometries 

 

     Although MoM solution is a valid numerical technique for 2D scattering problems 

with λ/10 step interval, higher discretization levels have been investigated to ensure 

the results are in convergent nature. First, the PEC square cylinder geometry has been 

searched for a side of square L = 25λ and the incidence angle ϕ in = 45o, as shown in 

Figure 4.16 for both polarizations. Results are depicted by using MoM for the three 

different step interval, which are Δ = λ/10, Δ = λ/20, and Δ = λ/30. In Figure 4.16a for 

the E-pol case, it has been observed that there is not any difference between the 

outcomes obtained from the different step intervals. In Figure 4.16b for the H-pol case, 

it can be seen that the result obtained from the step interval λ/10 is slightly different 

from the other higher segment levels in step interval for some angles.  

 

     Second, the PEC triangle cylinder geometry has been examined for L = 25λ and the 

incidence angle ϕ in = 90o in both polarizations as shown in Figure 4.17. Similar results 
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to the square cross-section geometry have been achieved for both polarizations.  

 

     The major lobes in the RCS figures have matched each other perfectly for all step 

intervals. Slight deviations occur in the angles of minor lobes only for the H-pol case. 

However, these regions are insignificant in the dB magnitudes scale when compared 

to the major lobes in the scattering pattern. Thus, these deviations do not affect RE 

comparisons. Consequently, MoM solutions for these geometries have converged to 

the realistic solutions using the step interval Δ = λ/10. Hence, all results analyzed in 

the next sections have been obtained using the step interval Δ = λ/10 for the MoM and 

proposed methods.    
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(a) E-pol case

 

(b) H-pol case 

Figure 4.16 RCS pattern comparison between the step intervals in the standard MoM for square cross-

section PEC cylinder, L = 25λ, ϕin = 45o 
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(a) E-pol case

 

(b) H-pol case 

Figure 4.17 RCS pattern comparison between the step intervals in the standard MoM for triangle cross-

section PEC cylinder, L = 25λ, ϕin = 90o 
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4.3.3.2 Square Cross-Sectional PEC Cylinder Geometry 

 

     Here, the square shape of a PEC cylinder cross-section is considered with a side 

width of 25λ. The incidence angle is assumed as ϕ in = 45o for both polarisations. In 

Figure 4.18a, the obtained bistatic RCS from equation (4.87) has been plotted for the 

E-polarization case, and in Figure 4.18b for the H-polarization case using (4.92). The 

outcomes are excellent agreement with the MoM, and REs are minimal values such as 

0.01% for E-pol case and 0.18% for H-pol case. 

 

     Figure 4.19 depicts the RE plots for the PEC square cylinder geometry. In all cases 

for α ≥ b, the RE values are approximately one percent or less. As highlighted earlier, 

the selection of the parameters b and α is satisfied with our main statements and 

convenient with the related section.  

 

     Figure 4.20 represents the obtained bistatic RCS for the incidence angle ϕin = 90o 

and L = 25λ with less than one percent REs for both polarisations. Due to the incident 

angle, two edges of the PEC square cylinder are illuminated by the wave with grazing 

incidence. So the problem can be considered similar to the inclined incidence at the 

PEC strip, as presented in section 4.2.4. Therefore, the CSP Green’s function 

parameter values were assigned b = 2.5λ and α = 4λ for both polarisations, like in the 

inclined incidence case for the strip geometry. 

 

     To realize the problem with very large size in this geometry, the method has been 

tested with a facet of square L = 250λ and incidence angle ϕin = 45o for both 

polarizations.  In this size, since the edge effects are less important as the geometry 

becomes larger, it is chosen α = b. In Figure 4.21, by assigning α = b = 3λ, remarkable 

results have been observed in RCS plots with REs 0.002% and 0.05% for E-pol and 

H-pol, respectively. The step number in RCS computation of this large structure was 

reduced to smaller ones for clearly recognizing the comparisons. 
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(a) E-pol case, b = 2.5λ, α = 3.1λ and RE = 0.01% 

 

(b) H-pol case, b = 2.5λ, α = 3.3λ and RE = 0.18%. 

Figure 4.18 RCS pattern comparison between the standard MoM and the proposed method for L = 25λ,  

ϕin = 45o 
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           (a)           (b) 

Figure 4.19 RE plots for square geometry L = 25λ, ϕin = 45o (a) E-pol and (b) H-pol 

 

     Beyond the facet length L = 250λ, the computer encounters an error message in 

MATLAB with insufficient memory for the MoM solution. For this reason, the 

comparison is restricted with this size, while the proposed method runs properly 

without any error. The number of memory storage is demonstrated in Table 4.3 and 

Table 4.4 for PEC square cylinder geometry for both polarizations. The memory 

restriction in MoM solution for H-pol case is from the facet length L = 200λ, thereby 

comparing the standard MoM and the proposed method is limited to this length for the 

H-pol case.  

 

     The overall CPU time for obtaining the current density function is also presented 

in Table 4.3 and Table 4.4 for the MoM and the proposed method. Significant time 

gains have been achieved in the largest sizes for both polarizations, such as over 30 

times less compared to the MoM solution. Furthermore, REs values are less than 0.1%, 

although the geometrical size of the problem is extended notably. 
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(a) E-pol case, b = 2.5λ, α = 4λ and RE = 0.09% 

 

 

(b) H-pol case, b = 2.5λ, α = 4λ and RE = 0.34% 

 

Figure 4.20 RCS pattern comparison between the standard MoM and the proposed method for L = 25λ,  

ϕin = 90o  
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(a) E-pol case, L = 250λ b = 3λ, α = 3λ and RE = 0.002% 

 

 

(b) H-pol case, L = 200λ, b = 3λ, α = 3λ and RE = 0.05% 

 

Figure 4.21 RCS pattern comparison between the standard MoM and the proposed method for                  

ϕin = 45o  
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In order to check the convergence of the solution, according to section 4.3.3.1, 

different step sizes in discretization have been considered for PEC square cylinder 

geometry with the incidence angle ϕ in = 45o and L = 25λ. RE values between the MoM 

and presented method have been found 0.01%, 0.005%, 0.005% in E-pol and 0.14%, 

0.06%, 0.10% in H-pol for Δ = λ/10, Δ = λ/20, and Δ = λ/30, respectively. They are 

very close to each other and around one per thousand. As expected, solutions have 

converged for the discretization levels λ/10 or less. 

 

Figure 4.22 shows the running CPU solution times for the MoM and the presented 

method according to the total number of unknown N for all sizes of PEC square 

cylinder geometry. From those figures, the advantage of the proposed method is clearly 

seen, and the timelines deviate from each other when the size is more extensive. 

Nevertheless, the more important part is the declination that belongs to the proposed 

method. It assures that the total number of the unknown for the proposed method will 

be low enough to solve the problem even if the problem size is extremely large. 

  

Table 4.3 CPU time and memory storage comparison for PEC square cylinder geometry (E-Pol) 

 

 

Table 4.4 CPU time and memory storage comparison for PEC square cylinder geometry (H-Pol) 

Cross-

sectional 

area 

Length 

of the 

facet (λ) 

Incident 

angle 

(degree) 

b 

(λ) 

α  

(λ) 

Solution Time For 

E-pol (seconds) 
Memory Storage 

Relative 

error 

(%) MoM 
Presented 

method 

Number of 

the 

unknown, N   

MoM 
Presented 

method 

Square L=25 45 2.5 3.1 1572 368 1000 1000ˑN 298ˑN 0.01 

Square L=25 90 2.5 4 1526 482 1000 1000ˑN 370ˑN 0.09 

Square L=100 45 3 3 24874 1634 4000 4000ˑN 300ˑN 0.008 

Square L=250 45 3 3 153671 4173 10000 10000ˑN 300ˑN 0.002 

Cross-

sectional 

area 

Length 

of the 

facet (λ) 

Incident 

angle 

(degree) 

b 

(λ) 

α  

(λ) 

Solution Time For 

H-pol (seconds) 
Memory Storage 

Relative 

error  

(%) MoM 
Presented 

method 

Number of 

the 

unknown, N   

MoM 
Presented 

method 

Square L=25 45 2.5 3.3 8397 1956 1000 1000ˑN 314ˑN 0.14 

Square L=25 90 2.5 4 8411 2218 1000 1000ˑN 370ˑN 0.34 

Square L=100 45 3 3 109135 8055 4000 4000ˑN 300ˑN 0.12 

Square L=200 45 3 3 473588 13869 8000 8000ˑN 300ˑN 0.05 
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                     (a)                                   (b) 

Figure 4.22 The running CPU solution times of the computation current density function versus the total 

number of unknown for PEC cylinder geometry (a) E-pol and (b) H-pol  

    

4.3.3.3 Triangle Cross-Sectional PEC Cylinder Geometry 

 

     Here, a different cross-sectional geometrical shape of the cylinder has been 

examined to present the method availability. In Figure 4.23, the triangle shape of a 

PEC cylinder cross-section is considered with a side width of 25λ. The incidence angle 

is assumed as ϕ in = 90o for both polarisations. Quite satisfying results have also been 

obtained for this geometry with very small REs, which are less than 0.1%, as seen in 

Figure 4.24.  

 

     The incidence angle ϕin = 45o can be considered as an inclined angle for this 

geometry because the incident wave impinges on only one surface of the cylinder. 

Therefore, as in the previous geometries, edge effects are effective, and it has been 

achieved good results by setting α values a bit larger. In Figure 4.25, RCS pattern 

comparisons are presented for L = 25λ and ϕ in = 45o for both polarizations.  

 

     The method has also been shown with a very large size for the problem in both 

polarizations and incidence angle ϕin = 90o. As mentioned before in square geometry 

for this size, favorable RCS outcomes have been obtained by setting α = b = 3λ. In 

Figure 4.26, RCS plots are illustrated for E-pol case with a facet of triangle L = 250λ 

and H-pol case with a facet of triangle L = 200λ. Considerable REs have also been 

reached in this structure with 0.81% and 0.05% for E-pol and H-pol, respectively.  
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(a) E-pol case, b = 2.5λ, α = 3.5λ and RE = 0.01% 

 

 

(b) H-pol case, b = 2.5λ, α = 3λ and RE = 0.16% 

 

Figure 4.23 RCS pattern comparison between the standard MoM and the proposed method for L = 25λ,  

ϕin = 90o  
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                (a)                   (b) 

Figure 4.24 RE plots for triangle geometry L = 25λ, ϕin = 90o (a) E-pol and (b) H-pol 

 

     The overall CPU time and memory storage comparisons are listed in Table 4.5 and 

Table 4.6 for the MoM and the proposed method in this geometry. Respectable time 

gains have also been achieved in the largest sizes for both polarizations such as over 

20 times in E-pol and 30 times in H-pol, compared to the MoM solution. Moreover, 

RE values indicate that analyzing very large sizes is possible. 

      

Like in the square cross-sectional case, different discretization levels have been 

examined for PEC triangle cylinder geometry to explore the convergence of solution 

with the incidence angle ϕ in = 90o and L = 25λ. RE values between the MoM and 

presented method have been obtained 0.01%, 0.03%, 0.02% in E-pol and 0.16%, 

0.04%, 0.59% in H-pol for Δ = λ/10, Δ = λ/20, and Δ = λ/30, respectively.  
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(a) E-pol case, b = 2.5λ, α = 3.8λ and RE = 0.04% 

 

 

(b) H-pol case, b = 2.5λ, α = 4λ and RE = 0.61% 

 

Figure 4.25 RCS pattern comparison between the standard MoM and the proposed method for L = 25λ,  

ϕin = 45o  
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(a) E-pol case, L = 250λ b = 3λ, α = 3λ and RE = 0.81% 

 

 

(b) H-pol case, L = 200λ, b = 3λ, α = 3λ and RE = 0.05% 

 

Figure 4.26 RCS pattern comparison between the standard MoM and the proposed method for                  

ϕin = 90o  
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Table 4.5 CPU time and memory storage comparison for PEC triangle cylinder geometry (E-Pol) 

 

 

Table 4.6 CPU time and memory storage comparison for PEC triangle cylinder geometry (H-Pol) 

 

      

4.3.3.4 A Large PEC Open Body Structure 

 

     Unlike the previous examples, the third geometry has been investigated in this 

section for the proposed method. Open body structure, like a corner reflector geometry, 

as shown in Figure 4.27, has been investigated for both polarizations.  

 

     The procedure is the same as the polygonal cylinder geometry in the previous parts. 

Hence, the same formulation is used with the complex beam vector, as described in 

(4.63). The angle   between the edge and the x-axis is determined by following the 

counter-clockwise path direction on edge. However, the beam radiation must be 

tracked from the observation angle during the RCS computations. To ensure the 

implementation of this requirement, the opposite direction of the beam vector should 

be taken for some degrees. For instance, in strip geometry, the CSP beam was 

launching from the x-axis to the upward y-direction, as in Figure 4.4. Therefore, the 

beam direction was reversed for the observation angles 180o ≤ ϕ ≤ 360o in the strip  

Cross-

sectional 

area 

Length 

of the 

facet (λ) 

Incident 

angle 

(degree) 

b 

(λ) 

α  

(λ) 

Solution Time For 

E-pol (seconds) 
Memory Storage 

Relative 

error  

(%) MoM 
Presented 

method 

Number of 

the 

unknown, N   

MoM 
Presented 

method 

Triangle L=25 45 2.5 3.8 982 304 750 750ˑN 278ˑN 0.04 

Triangle L=25 90 2.5 3.5 967 284 750 750ˑN 260ˑN 0.01 

Triangle L=100 90 3 3 14863 907 3000 3000ˑN 240ˑN 0.09 

Triangle L=250 90 3 3 83054 2574 7500 7500ˑN 240ˑN 0.81 

Cross-

sectional 

area 

Length 

of the 

facet (λ) 

Incident 

angle 

(degree) 

b 

(λ) 

α  

(λ) 

Solution Time For 

H-pol (seconds) 
Memory Storage 

Relative 

error  

(%) MoM 
Presented 

method 

Number of 

the 

unknown, N   

MoM 
Presented 

method 

Triangle L=25 45 2.5 4 3556 1057 750 750ˑN 290ˑN 0.61 

Triangle L=25 90 2.5 3 3497 1038 750 750ˑN 230ˑN 0.16 

Triangle L=100 90 3 3 59109 3648 3000 3000ˑN 240ˑN 0.26 

Triangle L=200 90 3 3 231284 7682 6000 7500ˑN 240ˑN 0.05 
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Figure 4.27 2D PEC corner reflector geometry (a) Left incident case ϕin = 180o and (b) Right incident 

case ϕin = 0o 

geometry. If the corner reflector with the angle o120
~
  is at the origin on the x-y 

plane, beam direction is reversed for the observation angles -60o ≤ ϕ ≤ +60o. This 

action does not make any difference in the main matrix elements when the current 

density function is found. Because the last terms in equation (4.68a) and (4.68b) would 

cancel each other again, it is obtained the same CSP type Green’s function 

mathematically. However, the beam vector in (4.84) changes the sign in the term 

))sin(  kbe  for the scattered field. Briefly, beam radiations interact with each other for 

the observation angles -60o ≤ ϕ ≤ +60o, and the scattered fields should be regarded as 

an incident field for the next iteration. This research, based on the iterations, will be 

left as another study in the future.  

 

     Since the interactions between beam radiations can affect the solution for angles 

o 90
~
 , so the structures with angle o120

~
  are examined in this section. Figure 

4.28 presents the RCS pattern comparison between the standard MoM and the 

proposed method for the left incident case in E-pol. As expected, the RCS plots are in 

harmony with each other for L = 25λ, L = 250λ, and ϕ in = 0o with REs around 1%.  

 

    For the right incident case, which is more often used in corner reflector geometry, 

the outcomes are more compatible, as shown in Figure 4.29. The results are remarkable 

for E-pol with RE 0.63% and 0.61% for L = 25λ, L = 250λ, respectively. RCS plots 

are shown in Figure 4.30 for H-pol and the right incident case, for L = 25λ, L = 250λ. 

The comparisons are matched and satisfied in RCS computations with very small RE 

values such as 0.37% for L = 25λ and 0.03% for L = 250λ.  
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(a) L = 25λ, b = 1.5λ, α = 2.7λ and RE = 1.58% 

 

 

(b) L = 250λ b = 2.5λ, α = 2.5λ and RE = 1.4% 

 

Figure 4.28 RCS pattern comparison between the standard MoM and the proposed method for E-pol 

case, o120
~
  and ϕin  = 0o  
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(a) L = 25λ, b = 1.5λ, α = 2λ and RE = 0.63% 

 

 

(b) L = 250λ b = 2.5λ, α = 2.5λ and RE = 0.61% 

 

Figure 4.29 RCS pattern comparison between the standard MoM and the proposed method for E-pol 

case, o120
~
  and ϕin  = 180o  
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(a) L = 25λ, b = 2.5λ, α = 2.5λ and RE = 0.37% 

 

 

(b) L = 250λ b = 2.5λ, α = 2.5λ and RE = 0.03% 

 

Figure 4.30 RCS pattern comparison between the standard MoM and the proposed method for H-pol 

case, o120
~
  and ϕin  = 180o 
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     The CPU time and memory storage comparisons for the PEC corner reflector 

geometry are denoted in Table 4.7. As the previous results, substantial time gain have 

also been observed in this geometry. For L = 250λ, solution time gains are over 40 

times less than the MoM solution in both polarizations. 

 

Table 4.7 CPU time and memory storage comparison for PEC corner reflector geometry 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Polarization 

of incident 

Length 

of the 

facet (λ) 

Incident 

angle 

(degree) 

b 

(λ) 

α  

(λ) 

Solution Time 

(seconds) 
Memory Storage 

Relative 

error  

(%) MoM 
Presented 

method 

Number of 

the 

unknown, N   

MoM 
Presented 

method 

E-pol L=25 0 1.5 2.7 512 81 500 500ˑN 138ˑN 1.58 

E-pol L=250 0 2.5 2.5 48523 1056 5000 5000ˑN 150ˑN 1.4 

E-pol L=25 180 1.5 2 493 68 500 500ˑN 110ˑN 0.63 

E-pol L=250 180 2.5 2.5 46143 1021 5000 5000ˑN 150ˑN 0.61 

H-pol L=25 180 2.5 2.5 1806 362 500 500ˑN 150ˑN 0.37 

H-pol L=250 180 2.5 2.5 145698 3348 5000 5000ˑN 150ˑN 0.03 
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CHAPTER FIVE 

MORE LOCALIZATION WITH MODIFIED GREEN’S FUNCTION BY 

USING GENERALIZED PENCIL OF FUNCTION METHOD 

 

5.1 Generating a Beam-Pattern Function Using the Generalized Pencil of 

Function Method 

 

     As a second hybrid technique, the GPOF method combined with MoM will be 

presented in this chapter. The late-time EM field, scattered from a finite-sized 

conducting body, is represented as a sum of damped sinusoids (Lee & Kim, 1999):

    
tw

M

s

s
secty 




1

)(                (5.1) 

where cs and ws are the complex residues and complex natural frequencies, 

respectively. The GPOF method (Hua & Sarkar, 1989; Mohammadi-Ghazi & 

Büyüköztürk, 2016) is proposed to obtain these natural frequencies from the transient 

response of a target. The GPOF method is also used in approximating the spectral 

domain Green's functions (Dural & Aksun, 1995). In light of this information, spectral-

domain functions can be defined by finding the coefficients from the GPOF method, 

which are obtained in the time domain.   

 

Modeling of the EM scattering from the PEC strip has been formalized with CSP 

Type Green’s Function in section 4.2.1. To obtain a new modified Green’s function, a 

pulse function is convoluted with itself as a first step. Assuming a rectangular pulse 

function p(x) in a spatial domain with the pulse width of 2W and located on the origin 

symmetrically, as shown in Figure 5.1.  

 
Figure 5.1 Pulse function whose amplitude is ‘1’ and width is 2W. 
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Let us assume the Fourier transform of this pulse function )(~
xkp , it is found as below: 

 )(sinc2
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Wdxedxexpkp x

x
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xjkxjk

x
xx  







,            (5.2) 

Then the convolution of these two pulse functions in spectral-domain is given by: 

    22
)(sinc2)(~)(~)(

~
WkWkpkpkt xxxx               (5.3) 

where )(
~

xkt  is the Fourier transform of t(x). The first convolution is taken with two 

pulse function, and it produces a triangular function t(x) having 4W width. The second 

one is taken with these triangular functions and yields a new function q(x) in space as 

given )()()( xtxtxq  . This is a smooth signal having the pulse width of 8W, and the 

Fourier transform of q(x) can easily be derived mathematically as follows:  

    44
)(sinc2)(

~
)(

~
)(~ WkWktktkq xxxx               (5.4) 

The original function q(x) can be generated by using the following inverse Fourier 

transform integral: 

      0 ( )1
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2
xy jk x
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q x e dk
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                       (5.5) 

where 
yxy kkqkP )(~)(0   is the spectral domain function and 22

xy kkk  . The purpose 

is to relate the function q(x) with the Hankel function to constitute a new Green’s 

function. Note that the Hankel function of the second kind used in 2D scattering 

formulation can be represented by Sommerfeld’s identity as follows: 
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                (5.6) 

where 22 yx  . Then )(0 ykP  can be expanded into a finite series of exponents by 

using the GPOF technique. It can be approximated by the complex exponentials as the 

following serial form: 

   ysk
M

s

sy edkP





1

0 )(                   (5.7)    

where M is the total number of exponentials used in the approximation, ds is the 

complex residues, and βs is the complex poles. To determine the coefficients ds and βs 

from the GPOF method, )(0 ykP  is sampled at any interval of 0<t<T0, where T0 is the 
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maximum sampling interval. The coefficients are found in compliance with                     

ky = k0 [- jt + (1 - t/T)] on a deformed path called Sommerfeld Integration Path (SIP) 

(Chow et al., 1991). Matching equations (5.1) and (5.7), the coefficients are derived 

for the spectral domain function:  

   0ksecd ss
               (5.8a) 

 
)1(k 0 jT

Tws
s


                        (5.8b) 

The coefficients cs and ws obtained from GPOF method, are then substituted in the 

definition of q(x): 

   

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x
xjk

y

kM
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1
)(

1

             (5.9) 

Matching equations (5.6) and (5.9) by assuming βs = j|y|, q(x) becomes the new 

Green’s function in terms of a serial form of Hankel functions:   

    22)2(

0

1

(
2

1
)( s

M

s

s xkHdxq  


                  (5.10) 

This serial form of the Hankel function is the radiated field representation of various 

line current sources with different complex source coordinates. It also satisfies all the 

conditions of the uniqueness theorem so that a unique field distribution is valid. 

Equation (5.10) is a very close approximation of the q(x) function on the y = 0 plane. 

The spatial width of the q(x) can be assigned smaller than a beam width in CSP type 

Green’s function (Kutluay & Oğuzer, 2019). It can be narrowed down the pulse width 

covering two basis function levels and still provides the correct scattered patterns 

under these conditions. 

 

     The new modified Green’s function defined in (5.10) is also expressed as the 

convolution of two triangular functions expressed at the very beginning in this chapter, 

and it is defined as: 
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     For the computational cost in PC, this convolution z(x) should be used to obtain the 

solution of the current density function. However, since the far zone approximations 

are used in the determination of the radiation characteristics, the Hankel function 

definition of q(x) should be used in the derivation of the scattering pattern, which is 

equation (5.10). The new modified Green’s function Ggpof  is defined as follows:    
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where C
~

 is a real constant to fix the two definitions of q(x) and z(x), equation (5.10) 

and (5.11). It is used in solutions both current density function and RCS results to 

match the amplitude levels of the functions q(x) and z(x).  

 

     It is assigned the parameters W = 0.025, M = 12, T = 17, time interval δt = 0.0122, 

so t = 0:0.0122:T. As a result, it is achieved cs and ws from the GPOF method, then 

substitute them for obtaining ds and βs, as explained above. The function q(x) with 

these parameters or the new modified Green’s function Ggpof  for the non-near edge 

regions and convolution function z(x) are plotted in the same figure as shown below: 

 

Figure 5.2 The beam-pattern function q(x) obtained from GPOF method 
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     The modified Green’s function has a beam nature, and it is the exact solution of the 

Helmholtz Equation; additionally, it satisfies the radiation condition. In the solution to 

the problem, BC on the structure must also be applied. The only remaining term is EC, 

and it is coming from the edge regions. For avoiding the EC violation, the free-space 

Green’s function is implemented in the near edge region. Note that the distance 

parameter α should be equal or greater than the beam aperture width, which is the pulse 

width of the Ggpof  function. So it must be equal to 8W or greater. 

 

     This beam-pattern function will be used as a new Green’s function for more 

localization than the CSP type Green’s function. When it is used in the non-near edge 

regions, modified Green’s function enables a decline severely in the interaction of the 

main matrix elements since the width of the function is narrower form.  

 

5.2 2D Scattering from a Large PEC Strip 

 

5.2.1 MoM Procedure with Modified Green’s Function by Using GPOF Method 

 

     The exception of which Green’s function is employed, the procedure is the same 

performed in section 4.2.1 for 2D PEC strip for both polarizations. The modified 

Green’s function by using the GPOF method is utilized instead of the CSP type 

Green’s function. EM scattering from PEC strip, as shown in Figure 5.3 can be written 

with a modified Green’s function by using GPOF method, and EFIE is as follows: 

  xdxxGxJjkE

L

gpof

gpof

z

inc

z


 

0

)()(              (5.13) 

Here )(xJ
gpof

z


  is the unknown current density function different from the physical 

current on the strip. Similar to the previous sections, the unknown function is expanded 

by the pulse basis functions p(x) with unknown coefficients an, n = 1, 2…N as MoM 

procedure. The incident field is assumed as the same E-polarized EM plane wave as

)sincos( inin yxjkin
z eE   . Then, the Galerkin technique is applied with pulse function pm(x) 

to obtain the following algebraic matrix equation: 
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Equation (5.14) is a matrix equation for the given problem, so the main matrix and 

excitation vector can be written as: 
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                         (5.16) 

Equation (5.15) and (5.16) are matrices for the MoM Procedure with Modified Green’s 

Function solution by using the GPOF method.  

 

Figure 5.3 Geometry of the finite width 2D PEC strip with E-polarized incident field 

 

     For the H-polarization case, the incident field is assumed as a plane wave as

)sincos( inin yxjkin

z eH   . Applying the Galerkin method with triangular basis functions 

t(x), the current density is again expanded with the unknown coefficients; an’s,                

n = 1,2…N-1 to generate the following matrix equation: 
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     The half-pulse width of Ggpof  is 4W, and so it may be as small as 0.1λ. This width 

means that there would be very limited interactions between the source and 

observation points far from each other as 0.2λ. In this way, most of the interactions 

between the elements in the impedance matrix turn to zero, and it produces a strongly 

localized sparse matrix. This is the key point of the presented hybrid method. More 

localization is proposed with this technique because the beamwidth of 0.2λ is much 

narrower than the parameter “b” in CSP type localization.  

 

     The magnitude level mapping of the main matrix is like a form, as shown in Figure 

5.4 for L = 10λ, the discretization criterion Δ = 0.1λ and α = 0.5λ.  The conventional 

MoM in the E-pol case has a dense matrix (See Figure 5.4a), but as shown in Figure 

5.4b, the main impedance matrix is in the sparse form indicated by white parts in the 

mapping as zero magnitudes. In the H-pol case, the conversion in the main matrix has 

the same features, just like in E-pol, and the magnitudes of the main matrix elements 

are shown in Figure 5.4c and Figure 5.4d. The higher localization between the hybrid 

methods is noticeable and seen when compared to Figure 5.4 with Figure 4.5.  

 

5.2.2 Determination of the Radiation Characteristics under the Modified Green’s 

Function 

 

     After the numerical solution of the matrix equation (5.14), a non-real current 

density function is obtained. To plot the far-field RCS scattering for the given problem, 

the large asymptotic argument of the Hankel function is employed in the modified 

Green’s function Ggpof. In the derivation of the modified Green’s function, it was 

required βs = j|y|, which is needed to use in the large asymptotic argument of the 

Hankel function for radiation characteristics. Then, a physical representation for the 

complex source vector can be written by using the fact βs = j|y|: 
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Figure 5.4 The magnitude level of the impedance matrix elements for L = 10λ, Δ = 0.1λ and α = 0.5λ  

(a) standard MoM and (b) the proposed method for E-pol. (c) standard MoM, and (d) the proposed 

method for H-pol 
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     The far-field approximations for the proposed method are rrrR gpofgpof
ˆ


 in 

phase term and rRgpof   in amplitude term. If equation (5.18) is substituted in the 

large argument of the Hankel function, we get:  
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Then,  the far zone electric field scattered from the strip can be written as:  
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Furthermore, ψ7(ϕ) is the scattering pattern for the MoM Procedure with Modified 

Green’s Function solution by using the GPOF method in the E-pol case. The bistatic 

RCS can be given as:  
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     Similarly, for the H-pol case, a non-real current density function is obtained from 

equation (5.17). The far zone magnetic field scattered from the strip was derived in 

section 4.2.2.1 for the MoM and the first hybrid technique. In parallel to the derivations 

from (4.47) to (4.51), and using the large argument of the Hankel function (5.19), the 

far zone scattered magnetic field can be written as:  
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where ψ8(ϕ) is the scattering pattern for the MoM Procedure with Modified Green’s 

Function solution by using the GPOF method in the H-pol case. Then, the bistatic RCS 

is given by: 
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     It should be noticed that if 1n  at the near edge regions, the scattering patterns 

ψ7(ϕ) and ψ8(ϕ) for the proposed method is equal to the scattering patterns for MoM 

solution, ψ7(ϕ)= ψ1(ϕ) in (4.43) and ψ8(ϕ)= ψ3(ϕ) in (4.51).  

                               

5.2.3 Numerical Results 

 

     The proposed method has been applied with the modified Green’s function Ggpof. 

The parameter α is assigned 0.5λ to define the size of the near edge regions while the 

total length of the strip is L = 10λ and L = 50λ for perpendicular incidence angle. Here, 

the sparsity of the resultant matrix is exceptionally high because near edge regions are 

very limited to a few basis functions. To compare the presented method with the 

standard MoM, the RE is defined as below: 



96 

 

 

1

1

2

1

2
mod~

















 

N

n

mom
N

n

mom eee            (5.25) 

where emom is the solution for the conventional MoM, and emod is the solution for the 

MoM procedure with modified Green’s function by using the GPOF method. 

      

     In Figure 5.5, the true surface current density and the pseudo-current density 

function obtained from the proposed procedure are shown on the same plot for both 

polarizations. The blue line is the real current density obtained from the standard 

MoM, and the red line is the pseudo-current function from the proposed method for 

the strip width L = 10λ and ϕin = 90o. As expected, the edge effects present similarly 

on the edge regions like in the first method. However, since α is assigned smaller than 

in the first method, current density functions tend to be similar in the narrower region, 

such as 0.5λ for both polarizations.  

 

Figure 5.5 Current density examination for L = 10λ and ϕin = 90o, (a) E-pol and (b) H-pol 
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     In Figure 5.6, the normalized RCS is demonstrated for two strip widths for E-pol 

case. It is obtained similar to the standard MoM with RE 0.31% and 0.67% for                 

L = 10λ and L = 50λ, respectively. In Figure 5.7, the normalized RCS is shown for the 

H-pol case and the same sizes of the strip. In parallel to the E-pol case, remarkable 

outcomes are found for the H-pol case with RE 0.11% and 0.43%. 

 

Figure 5.6 Normalized RCS pattern comparison between standard MoM and proposed method for E-

pol, ϕin = 90o and α = 0.5λ, 4W = 0.1λ (a) L = 10λ (b) L = 50λ 
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Figure 5.7 Normalized RCS pattern comparison between standard MoM and proposed method for H-

pol, ϕin = 90o, and α = 0.5λ, 4W = 0.1λ (a) L = 10λ (b) L = 50λ 

 

     After the successful presentation of numerical results for the perpendicular 

incidence, it is next tested for the incidence angle of 30o. Some significant results are 

found for both polarizations, for ϕin = 30o and L = 20λ, as illustrated in Figure 5.8. The 

REs are 1% for E-polarization and 4.5% for H-polarization. It can be said that the RCS 

values become larger for the near grazing incidence illuminations for the H-pol case 

in this method. 
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Figure 5.8 Normalized RCS pattern comparison between standard MoM and proposed method for both 

polarizations, ϕin=30o, L = 20λ and α = 0.5λ, 4W = 0.1λ (a) E-pol (b) H-pol 

 

     In the numerical simulations of (Kutluay & Oğuzer, 2017), the condition number 

of the main matrix is around 106. In contrast to that one, here, the proposed modified 

Green’s function provides us with a reasonable condition number around 104 that 

makes the approach more attractive. This decrease is even valid for the larger strip 

size, and so there can be a possibility to apply it to more complicated 2D geometries.  

 

     Besides, another main criterion is related to the overall running times. Table 5.1 

and Table 5.2 introduce the time gain of the solution only for founding the current 

density function. Since the main impedance matrices have higher localization than the 

CSP type Green’s function (Kutluay & Oğuzer, 2017), the memory storages and the 
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CPU times reduce notably. Therefore, the larger sizes can be modeled by smaller 

storages of memory.  In this direction, it has been analyzed PEC strips for both 

polarizations and perpendicular incidence angle. Table 5.1 and Table 5.2 show the time 

gain in the solution with REs. 

 

     For the MoM and the presented method, the Toeplitz property develops the overall 

running times for the solution of the strip geometry. REs have been computed 0.65% 

in E-pol and 0.41% in H-pol for all strip size up to 3000λ. This size is the limit for our 

computer for the standard MoM due to the memory requirement. 

 

     It has also been pointed out the memory storage requirements for all strip sizes in 

Table 5.1, following the λ/10 discretization criterion. Although the memory usage is 

limited to solve in the standard MoM for larger than 3000λ strip size, the presented 

method is suitable for analyzing with the strip size of 50000λ with perfect solution 

time. 

 

     The memory storage and the operation count are reduced significantly by applying 

this localized radiation of Green’s function. Therefore, it offers an opportunity to 

analyze larger geometries with shorter running times because the total number of 

unknowns does not increase excessively with the size of the strip.   

 

Table 5.1 CPU Time and memory storage comparison (E-pol) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Strip 

Length 

(λ) 

Incident 

angle 

(degree) 

Solution Time 

For E-pol 

(seconds) 

Memory Storage 
Relative 

Error 

 (%) 
MoM 

Presented 

method 

MoM 

(N x N) 

Presented 

method 

(14N) 

L=500 90 4 1 25ˑ106 0.07ˑ106 0.65 

L=1000 90 25 1 100ˑ106 0.14ˑ106 0.65 

L=2000 90 182 2 400ˑ106 0.28ˑ106 0.65 

L=3000 90 661 3 900ˑ106 0.42ˑ106 0.65 

L=5000 90 - 5 2.5ˑ109 0.7ˑ106 - 

L=10000 90 - 9 1ˑ1010 1.4ˑ106 - 

L=50000 90 - 51 2.5ˑ1011 7ˑ106 - 
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Table 5.2 CPU Time and memory storage comparison (H-pol) 

 

 

 

 

 

 

 

 

 

 

    

        

   

 

 

 

 

5.3 2D Scattering from A Large PEC Polygon Cylinder with N-Sided Convex 

Cross-Section 

 

5.3.1 MoM Procedure with Modified Green’s Function by Using GPOF Method 

 

     The geometry is the same with the PEC polygonal cylinder with N-sided convex 

cross-section, as shown in Figure 4.14, illuminated by an EM plane wave of one of 

two polarizations. The parameter α equals to the same definition, which is the near 

edge region’s width.   

      

5.3.1.1 E-polarization 

 

     In parallel to the previous sections, the EFIE can be depicted for this geometry with 

modified Green’s function as below: 

              
Ct

gpof

gpof

z

inc

z drrGrJjkE 


)()(             (5.26) 

It can be seen that there is an analogy between the first and the second hybrid method. 

The definitions of complex source vectors, cspr

  and gpofr


  are identical except their 

complex quantities. Amplitude derivations in the Hankel function of Green’s function 

for each method are found by making the same operations. Therefore, the modified 

Green’s function depends on the source position is described as follows: 

Strip 

Length 

(λ) 

Incident 

angle 

(degree) 

Solution Time 

For H-pol 

(seconds) 

Memory Storage 
Relative 

Error 

 (%) 
MoM 

Presented 

method 

MoM 

(N x N) 

Presented 

method 

(14N) 

L=500 90 4 1 25ˑ106 0.07ˑ106 0.41 

L=1000 90 24 1 100ˑ106 0.14ˑ106 0.41 

L=2000 90 181 2 400ˑ106 0.28ˑ106 0.41 

L=3000 90 638 3 900ˑ106 0.42ˑ106 0.41 

L=5000 90 - 5 2.5ˑ109 0.7ˑ106 - 

L=10000 90 - 10 1ˑ1010 1.4ˑ106 - 

L=50000 90 - 57 2.5ˑ1011 7ˑ106 - 
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This is the same coordinate transformation from (x,y) to ),(   defined in the previous 

chapter for E-pol case. Applying Galerkin’s procedure with the pulse basis functions, 

the following matrix equation can be written for E-pol: 

 ddyyxxGppajkdEp
nmm

nmnmgpofnm

N

n

n

in

zm 







0010

)~~,~~()()()()(            (5.28) 

         m=1,2,….N     

Then the unknown current density function in (5.26) is found from the matrix form of 

the above equation. 

 

5.3.1.2 H-polarization 

       

     In H-pol, Galerkin’s procedure is applied with the triangular basis functions. In 

parallel to (4.77) for this geometry, the EFIE is obtained as follows: 
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         m=1,2,….N              

     Here, it is the same coordinate transformation from (x,y) to ),(  , as defined in the 

previous chapter for the H-pol case. 

 

5.3.2 Determination of the Radiation Characteristics 

 

     Owing to the analogy between the proposed methods mentioned earlier, derivations 

for scattering patterns are similar to each other. Therefore, after finding the current 

density function of the method, in E-pol, the far zone scattered electric field from the 

cylinder can be written as:  
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where ψ3(ϕ) is the scattering pattern. The bistatic RCS is given by:  
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In H-pol, the far zone scattered magnetic field from the cylinder is as follows: 
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The bistatic RCS is given by: 
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where  
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5.3.3 Numerical Results 

 

     Square and triangle cross-sectional PEC cylinders have been reviewed in both 

polarisations, and RCS results are presented in the following parts. 

 

5.3.3.1 Square Cross-Sectional PEC Cylinder Geometry 

 

     Here, the square shape of a PEC cylinder cross-section is researched with a side 

width of 25λ. The incidence angle is assumed as ϕ in = 45o for both polarisations. In 

Figure 5.9, the obtained bistatic RCS results have been plotted for both polarisation 

cases. The outcomes are remarkable agreement with the MoM, and REs are minimal 

values such as 0.13% for E-pol case and 0.68% for H-pol case.  

 

     The pulse width of the Ggpof  function is designated as 0.4λ by taking 4W = 0.2λ for 

the H-pol case as in parallel of the explanation for the selection of beamwidth 



104 

 

parameter b in part 4.2.3. Also, as explained in section 4.2.3, the designation of near-

edge regions width can only affect the minor lobes in the RCS result. As in the first 

hybrid technique, it is not crucial what the distance parameter α is chosen unless it is 

less than the beam aperture width. Therefore, it can be assigned equal or greater of 

0.4λ when 4W = 0.2λ. Different designations in the distance parameter α only aim to 

present accurately minor lobes in RCS results.  

 

     Figure 5.10 represents the obtained bistatic RCS for the incidence angle ϕin = 90o 

and L = 25λ for both polarisations. As explained in the previous chapter, RE has been 

found a little higher than the incidence angle case ϕin = 45o for E-pol case due to the 

incident angle.  

      

     Like in the previous chapter, the method has been investigated with a facet of square 

L = 250λ and incidence angle ϕin = 45o for both polarizations. As indicated in the 

previous chapter, since the edge effects are less critical, it is chosen α = 0.5λ when the 

geometry becomes larger. In Figure 5.11, remarkable RCS results have been obtained 

with REs 0.03% for E-pol and 0.14% H-pol.  
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  (a) E-pol case, α = 2λ, 4W = 0.1λ, and RE = 0.13% 

 

 

(b) H-pol case, α = 2λ, 4W = 0.2λ, and RE = 0.68% 

 

Figure 5.9 RCS pattern comparison between the standard MoM and the proposed method for L = 25λ, 

ϕin = 45o 
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(a) E-pol case, α = 2.5λ, 4W = 0.1λ, and RE = 2.21% 

 

 

(b) H-pol case, α = 2.5λ, 4W = 0.2λ, and RE = 0.44% 

 

Figure 5.10 RCS pattern comparison between the standard MoM and the proposed method for L = 25λ, 

ϕin = 90o 
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(a) E-pol case, L = 250λ, α = 0.5λ, 4W = 0.1λ, and RE = 0.03% 

 

 

(b) H-pol case, L = 200λ, α = 0.5λ, 4W = 0.2λ, and RE = 0.14% 

 

Figure 5.11 RCS pattern comparison between the standard MoM and the proposed method for ϕin = 45o 
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Table 5.3 CPU time and memory storage comparison for PEC square cylinder geometry (E-Pol) 

 

 

Table 5.4 CPU time and memory storage comparison for PEC square cylinder geometry (H-Pol) 

 

 

The number of memory storage is exhibited in Table 5.3 and Table 5.4 for the MoM 

and the proposed method in both polarizations. It can be seen that memory storage is 

reduced considerably comparing to the first hybrid method. In parallel with this 

reduction, the overall CPU time to obtain the current density function also decreased 

for the second hybrid technique. Extraordinary time gains have been realized in the 

largest sizes for both polarizations, such as over 200 times less than the MoM solution. 

Moreover, REs values are less than 0.1%, although the geometrical size of the problem 

is enlarged to 1000λ. Also, the smaller condition number compared to the first method 

is obtained, and it provides to analyze larger geometries as more steady with excellent 

solution time. By using this technique, the condition number has been reduced from 

106 to 104.  

 

5.3.3.2 Triangle Cross-Sectional PEC Cylinder Geometry 

 

     In Figure 5.12, the triangle shape of a PEC cylinder cross-section is analyzed with 

a side width of 25λ. The incidence angle is assumed as ϕ in = 90o for both polarisations. 

Cross-

sectional 

area 

Length 

of the 

facet (λ) 

Incident 

angle 

(degree) 

4W 

(λ) 

α  

(λ) 

Solution Time 

(seconds) 
Memory Storage 

Relative 

error  

(%) MoM 
Presented 

method 

Number of 

the 

unknown, N   

MoM 
Presented 

method 

Square L=25 45 0.1 2 1572 235 1000 1000ˑN 164ˑN 0.13 

Square L=25 90 0.1 2.5 1526 246 1000 1000ˑN 204ˑN 2.21 

Square L=250 45 0.1 0.5 153671 1040 10000 10000ˑN 44ˑN 0.03 

Cross-

sectional 

area 

Length 

of the 

facet (λ) 

Incident 

angle 

(degree) 

4W 

(λ) 

α  

(λ) 

Solution Time 

(seconds) 
Memory Storage 

Relative 

error 

 (%) MoM 
Presented 

method 

Number of 

the 

unknown, N   

MoM 
Presented 

method 

Square L=25 45 0.2 2 8397 1137 1000 1000ˑN 168ˑN 0.68 

Square L=25 90 0.2 2.5 8411 1511 1000 1000ˑN 208ˑN 0.44 

Square L=200 45 0.2 0.5 473588 2187 8000 8000ˑN 48ˑN 0.14 
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Considerably suitable results have also been obtained with very small REs, which are 

less than 0.1%.  

 

     In Figure 5.13, RCS pattern comparisons are shown for L = 25λ and ϕ in = 45o for 

both polarizations. Like in the square cross-sectional PEC cylinder geometry, it is seen 

that the second hybrid technique is undeveloped compared to the first hybrid technique 

when the incidence angle is inclined case. RE values are at higher levels, and minor 

lobes are less accurate comparing to the first hybrid technique. 

 

     The method has also been tested for the problem with very large facets of the 

triangle. The incidence angle is ϕin = 90o for both polarizations. In Figure 5.14, RCS 

plots have been demonstrated for E-pol case with a facet of triangle L = 250λ and H-

pol case with a facet of triangle L = 200λ. Noteworthy, REs have been obtained in this 

structure with 1.59% and 0.08% for E-pol and H-pol, respectively.  
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(a) E-pol case, α = 0.7λ, 4W = 0.1λ, and RE = 0.57% 

 

 

(b) H-pol case, α = 1.5λ, 4W = 0.2λ, and RE = 0.47% 

 

Figure 5.12 RCS pattern comparison between the standard MoM and the proposed method for L = 25λ, 

ϕin = 90o 



111 

 

 

(a) E-pol case, α = 2.5λ, 4W = 0.1λ, and RE = 0.94% 

 

 

(b) H-pol case, α = 2.5λ, 4W = 0.2λ, and RE = 1.81% 

 

Figure 5.13 RCS pattern comparison between the standard MoM and the proposed method for L = 25λ, 

ϕin = 45o 
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(a) E-pol case, L = 250λ, α = 0.5λ, 4W = 0.1λ, and RE = 1.59% 

 

 

(b) H-pol case, L = 200λ, α = 1λ, 4W = 0.2λ, and RE = 0.08% 

 

Figure 5.14 RCS pattern comparison between the standard MoM and the proposed method for ϕin = 90o 



113 

 

     The overall CPU time and memory storage comparisons are listed in Table 5.5 and 

Table 5.6 for the MoM and the proposed method in this geometry. Respectable time 

gains have been achieved in the largest sizes for both polarizations. Comparing to the 

MoM solution, the time gains are over 250 times in E-pol and 200 times in H-pol.  

 

Table 5.5 CPU time and memory storage comparison for PEC triangle cylinder geometry (E-Pol) 

 

 

Table 5.6 CPU time and memory storage comparison for PEC triangle cylinder geometry (H-Pol) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cross-

sectional 

area 

Length 

of the 

facet (λ) 

Incident 

angle 

(degree) 

4W 

(λ) 

α  

(λ) 

Solution Time 

(seconds) 
Memory Storage 

Relative 

error  

(%) MoM 
Presented 

method 

Number of 

the 

unknown, N   

MoM 
Presented 

method 

Triangle L=25 90 0.1 0.7 1572 58 1000 1000ˑN 46ˑN 0.57 

Triangle L=25 45 0.1 2.5 1526 227 1000 1000ˑN 154ˑN 0.94 

Triangle L=250 90 0.1 0.5 153671 571 10000 10000ˑN 34ˑN 1.59 

Cross-

sectional 

area 

Length 

of the 

facet (λ) 

Incident 

angle 

(degree) 

4W 

(λ) 

α  

(λ) 

Solution Time 

(seconds) 
Memory Storage 

Relative 

error  

(%) MoM 
Presented 

method 

Number of 

the 

unknown, N   

MoM 
Presented 

method 

Triangle L=25 90 0.2 1.5 8397 504 1000 1000ˑN 98ˑN 0.47 

Triangle L=25 45 0.2 2.5 8411 856 1000 1000ˑN 158ˑN 1.81 

Triangle L=200 90 0.2 1 473588 2277 8000 8000ˑN 68ˑN 0.08 
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CHAPTER SIX  

CONCLUSION AND FUTURE PLANS 

     

     In this thesis, it has been presented an alternative approach to the numerical solution 

of 2D EM scattering problems by two hybrid numerical techniques based on beam 

pattern functions combining with the MoM. In the first proposed technique, which is 

named as the MoM procedure with CSP type Green’s function, the real source position 

vector has been replaced using a complex quantity to generate a complex line source 

type Green’s function. Then the proposed method has been applied to 2D plane wave 

scattering problems for PEC strip geometry and the more complex structures, PEC 

cylindrical objects with closed polygonal cross-sections and PEC corner reflector 

geometry. The main impedance matrix is strongly localized for the problems, and the 

full-dense matrix is reduced to a sparse form. Since the far zone interactions are limited 

only to radiation from the small regions near the edges of the structure, the memory 

storage is reduced drastically. Accordingly, the non-zero elements of the main 

impedance matrix have been decreased, providing a solution for larger geometries.  

 

     The conditions of EM uniqueness theorem have been considered to verify the 

method. Comparison of the far-field RCS patterns (also near field for the strip 

geometry) between the proposed method and the standard MoM has been introduced. 

Numerical results are presented in both polarisations for a PEC strip and 2D PEC 

objects with closed polygonal cross-sections such as square and triangle shape. When 

compared the proposed method to the MoM, significant time gain has been realized, 

such as over 100 times less compared to the MoM solution for the strip size 3000λ. 

While maximum strip size is limited to 3000λ to solve the problem by the standard 

MoM, the proposed method can solve in about 100 seconds for the strip size 50000λ. 

Also, the proposed method has been checked with the UTD solution for the strip size 

5000λ. Good results in the RCS pattern have been presented with RE 0.03% for E-pol 

and RE 0.97% for H-pol. 

 

     For PEC objects with closed polygonal cross-sections, the RCS patterns have also 

been demonstrated, and the RE plots have been discussed by comparing them with the 



115 

 

standard MoM solutions. Comparisons have been made for square or triangle facet, 

such as 250λ in E-pol and 200λ in H-pol, and RE values are less than 0.1%. 

Remarkable time gains have been succeeded for both polarizations, such as over 30 

times less compared to the MoM solution. The proposed method is in agreement with 

the MoM, with very small REs of less than one percent in both normal and inclined 

incidence.  

 

     Also, 2D PEC open body structure like a corner reflector geometry has been 

investigated for different reflector’s angles. It has been observed that the outcomes go 

to inaccuracy when the angle is smaller than 90o.  This conclusion has been discussed 

regarding the beam nature and explained in the interactions of beams with each other. 

Therefore, RCS results have been plotted for large structures with 120o reflector’s 

angles and different incident angles in both polarisations. 

      

     As the size of the geometry becomes larger, the computational time increases 

severely for the standard MoM, but it is feasible with the proposed method. It needs to 

be pointed out the condition number of the main matrix, and it is around 106 for all 

geometries. Nevertheless, results have been remained steady when the geometrical size 

of scatterers is extended to significant cases such as 1000λ. Although the condition 

number is relatively large, accurate results have been acquired by using iterative 

preconditional sparse solvers to perform optimal options in MATLAB. Consequently, 

we succeeded in achieving a considerable time gain in the solution for very large flat 

strip geometry and a remarkable gain for corner reflector and polygon cylinder 

geometries. Furthermore, the presented method is an efficient solution, especially in 

the case of large configurations. Owing to the IML, memory storage is linearly 

proportional to the number of unknown N, for 2D PEC polygon cross-section cylinder 

geometries and PEC corner reflector geometry. In the largest configurations, it is about 

O(150xN) in corner reflector and O(300xN) in cylinder geometries for both 

polarizations that enable us to study for larger scatterers, which is not possible to solve 

by using the MoM.  
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     The second proposed technique, the MoM Procedure with Modified Green’s 

Function by using GPOF Method, it has been introduced a new Green’s function by 

using the GPOF method for 2D EM scattering. It has been proved that the localization 

is not related only to the variation in the Hankel function, and demonstrated that it 

could be different localization types as a beam-pattern function. As a difference from 

the first method, this new Green’s function has a beam aperture that allows more 

localization on the surface. Its beam width is a narrower form, so it interacts only for 

a few basis function levels. In the same manner, the main matrix is localized even 

more, and this localization of the modified Green’s function gives rise to the higher 

level sparsity in the main matrix compared to the first method. It has again been 

considered the EM scattering conditions of the uniqueness theorem if the proposed 

method is valid.  

 

     Then, the proposed method has been applied to 2D plane wave scattering problems 

for PEC strip geometry and PEC polygon cross-section cylinder geometries. The far-

field RCS patterns have been compared between standard MoM and the proposed 

method for the same structures and incident angles in the first hybrid technique. It has 

been observed that they were in harmony with each other with very small REs, and the 

majority of them were less than one percent. However, REs are a little higher in grazing 

incidence angles relating to structure shape when it is compared to the first method. 

Due to the more localization procedure, the proposed hybrid technique provides an 

essential advantage in computer storage and calculation time, even when compared to 

the first hybrid technique. As the size of the geometry becomes more extensive, the 

computational time remains excellent with the proposed method. Extraordinary time 

gains have been realized in the largest sizes of 2D PEC polygon cross-section cylinder 

geometries for both polarizations, such as over 200 times less compared to the MoM 

solution.  

 

     Moreover, the condition number of the main matrix is reasonable levels, such as 

104 for all geometries. So the proposed method has the potential for implementation to 

be applied to more complex large structures. Memory storage is linearly proportional 

to the number of unknown N, for 2D PEC polygon cross-section cylinder geometries. 
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In the largest contours, it is about O(50xN) in cylinder geometries for both 

polarizations that enable us to analyze for very large scatterers with extremely short 

solution times. In the RCS results, it is evident that the harmony compared to the MoM 

solution for minor lobs is behind the first hybrid technique. Minor lobes in RCS results 

are more accurate in the first hybrid technique. However, the second method has an 

advantage against the first method in terms of the time gain and memory storage.  

 

     Consequently, a substantial time gain and memory storage have been performed in 

the solution of the two hybrid methods for 2D EM scattering problems. These two 

hybrid techniques also offer to analyze larger geometries and to be applied to 3D 

geometries. Since the implementation is applied to the Hankel function apart from the 

geometry, the CSP type Green’s function and the modified Green’s function have the 

potential to realize 3D EM scattering problems. Since EM modeling is the research of 

the interaction of EM fields with physical objects and the environment, these methods 

can be employed for analyzing scattering objects to find out EM simulations. In the 

further step, their extension models for 3D objects can be used to detect EM 

compatibility.  

 

     Although these methods are utilized when the scatterer size is very large comparing 

to the wavelength of the incident wave, they are not well-suited for sub-wavelength 

structures due to the edge dominant nature of their scattering. 

 

     For the future plans, 2D scattering for open structures can be studied further with 

the field interactions by using some iterative techniques. Considering the scattering 

fields from the structure as a source field for the next iteration, by applying these 

hybrid techniques, more accurate results can be obtained after a few iterations.  

 

     By using these two new hybrid techniques, the inner frequency trouble encountered 

in the problems of closed body structures can be handled easily. Besides that, these 

two hybrid methods can be combined with other ones and improved to a more 

convenient form for analyzing of various structures. 
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