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INDEPENDENT COMPONENT ANALYSIS IN BIOMEDICAL

APPLICATIONS AND ACCELEROMETER DATA LOGGING SYSTEM

ABSTRACT

In biomedical applications, the obtained biomedical data must be cleared from all

undesired artifacts such as environmental and sensor noises prior to signal

processing. If the frequency properties of artifacts are known, various appropriate

filtering techniques can be used to remove them. However, if the information about

artifact sources is limited or not exists, it is required to utilize various statistical

methods to remove the artifacts. Independent Component Analysis (ICA) as the most

known Blind Source Separation method can be used for filtering or detecting

sources.

In  this  thesis  study,  ICA,  ICA  methods  and  the  realization  problems  have  been

introduced and ICA has been applied to various biomedical applications. For ICA

applications, two different novel data logging systems have been developed:

simultaneous multi channel sound data logging system and simultaneous multi point

multi dimensional accelerometer data logging system. The sound data logging

system was used for general ICA applications and the ICA realization problems were

examined. The accelerometer data logging system was used to collect knee

vibroarthrographic (VAG) signals and for diagnosing knee problems. The obtained

results were presented.

Moreover, ICA was applied to identification of artifact sources and artifact

removing problems. Heart pulses and sweating artifacts in EEG recordings were

identified and removed by ICA. Furthermore, the accelerometer data logging system

has been used for filtering jaw motion artifacts from the EEG recordings.

Keywords: Blind Source Separation, Independent Component Analysis, EEG

artifact removal, Signal filtering, Vibroarthrographic signals, Microcontroller based

systems, Data Logging Systems, Accelerometer.
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BİYOMEDİKAL UYGULAMALARDA BAĞIMSIZ BİLEŞEN ANALİZİ

VE İVMEÖLÇER VERİ TOPLAMA SİSTEMİ

ÖZ

Biyomedikal uygulamalarda elde edilen biyomedikal veriler sinyal işleme

öncesinde çevresel ve algılayıcı gürültüsü gibi istenmeyen bozucu etkilerden

temizlenmelidir. Eğer bozucu etkilerin frekans özellikleri bilinirse, çeşitli uygun

filtreleme teknikleri onları çıkarmak için kullanılabilir. Bununla birlikte, bozucu

etkilerin kaynağı hakkında bilgimiz çok az veya hiç yoksa bozucu etkileri kaldırmak

için istatistiksel metotlardan faydalanmamız gerekecektir. Gözü kapalı Kaynak

Ayrıştırma yöntemleri arasında en bilineni olan Bağımsız Bileşen Analizi (BBA) bu

amaçla filtreleme ve kaynak bulma için kullanılabilir.

Bu tez çalışmasında, BBA, BBA yöntemleri ve gerçekleştirme problemleri

tanıtılmış ve BBA, çeşitli biyomedikal uygulama alanlarına uygulanmıştır. BBA

uygulamaları için, eşzamanlı çoklu kanallı ses veri toplama sistemi ve eşzamanlı çok

noktadan çok eksenli ivmeölçer veri toplama sistemi olmak üzere iki farklı özgün

veri toplama sistemi geliştirilmiştir. Ses veri toplama sistemi genel BBA

uygulamalarında kullanılmış ve BBA gerçekleştirme problemleri incelenmiştir.

İvmeölçer veri toplama sistemi ise eklem titreşim grafisi (ETG) sinyallerini toplamak

ve diz problemlerini tanılamakta kullanılmıştır. Elde edilen sonuçlar verilmiştir.

BBA ayrıca EEG bozunum kaynaklarının tanımlanması ve kaldırılması

problemlerinde de uygulanmıştır. EEG kayıtlarındaki kalp atış bozunumu ve terleme

bozunumu BBA kullanılarak tanımlanmış ve temizlenmiştir. Buna ek olarak,

ivmeölçer veri toplama sistemi EEG kayıtlarından çene hareketi bozunumunun

temizlenmesinde de kullanılmıştır.

Anahtar sözcükler: Kör Kaynak Ayırımı, Bağımsız Bileşen Analizi, EEG bozunum

çıkarma, Sinyal filtreleme, Eklem Titreşim Grafi Sinyalleri, Mikrodenetleyici

Tabanlı Sistemler, Veri Toplama Sistemleri, İvmeölçer.
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CHAPTER ONE

INTRODUCTION

Blind Source Separation (BSS) is a technique that finds the components of a

mixture of various signals without knowing any or less information about them. BSS

methods aim to find the components which are hidden in a real world mixture of

signals using underlying factors (Figure 1.1). The most popular blind source

separation method is Independent Component Analysis (ICA) and it is very popular

among researchers because of wide usage on the signal processing application areas.

In this study, ICA was applied on biomedical artifacts filtering such as heart pulses

and sweating artifacts in EEG and knee vibroarthrographic (VAG) signal analysis.

Figure 1.1 The Blind Source Separation procedure (left column) the source

signals are mixed into a medium (middle column) depicts the observed signals

and (left column) the reconstruction is achieved through the BSS algorithm.

Decomposing a signal into its independent components first used by Jutten and

Herault (1991) in a blind source separation study, then ICA term was expressed by

Comon (1994) in his paper which shows the theory of linear ICA. This research field

became popular with the paper on Infomax principle written by Bell and Sejnowski

(1995). Later Amari (1998) simplified Infomax learning rule with introducing natural

gradient concept which was discovered by Cardoso. The original infomax ICA
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algorithm with sigmoidal nonlinearities was only suitable for super-Gaussian

sources. An efficient extended infomax ICA algorithm for non-Gaussian signals was

developed by Lee, Girolami, & Sejnowski (1999a).

Most popular FastICA algorithm that uses negentropy and kurtosis contrast

functions was developed by Hyvärinen (1999a). After that many kind of ICA

algorithms proposed such as geometric ICA, batch cumulant-based ICA algorithms

JADE and SHIBBS, Efficient ICA and many others.  Different ICA approaches use

principles like maximum likelihood, Bussgang methods based on cumulants,

projection pursuit and negentropy methods. All of these methods are in the infomax

framework. A survey on ICA is a very useful study by Hyvärinen (1999b).

ICA can be used to find all the important components in a linearly mixed signal

sources. These components can be used to analyze the nature of the mixed signal

sources,  or  filtered  out  from  the  other  undesired  components.  ICA  performance

heavily depends on the statistical independency criterion between source signals.

ICA has many applications such as speech filtering, speech recognition, image

noise filtering, signal enhancements and preprocessing stage for neural networks. In

addition, ICA is also very popular in biomedical applications such as EEG signal

filtering and source localization problems. EEG – fMRI artifact filtering, EEG –

fMRI source localization, speech and face recognition, sound localization, kinematic

signals covering knee VAG signals filtering applications shows that ICA is getting

more popular and still needs to be improved by researchers.

Removal of noise and detection of some components in a signal are all related to

usage of ICA. Noise filtering is used in biomedical applications especially EEG

analysis.  Analysis  of  knee  related  problems  are  similar  to  the  EEG  signal  analysis

except  less  sensors  are  required.  EEG recording  systems are  available  and  they  are

complex devices, because multi channel EEG instrumentation amplifiers and data

capturing devices are needed. For VAG signal analysis, two or three channel

recordings are sufficient and there is no specific device available for recording multi
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channel signals. In this study, two kinds of data logging systems were built for this

purpose. Multi channel sound and multi channel acceleration data logging systems

were designed and built on USB interface. The developed systems would be also

suitable for various applications in addition to the thesis main subjects of sound

signal processing and knee signal diagnosis.

A low-cost multi-channel simultaneous sound capturing system was developed by

Akkan & Senol (2008a) for ICA (Figure 1.2). This system makes easy and cost-

effective data logging and thus real time ICA applications can be developed on

MATLAB environment. This system first especially thought to be used to log

vibration data from the human body skin. Especially knee related problems can be

detected with the microphone and stethoscope combinations inspired from some

medical doctors that still use auscultation method for pre-diagnosis. But, knee

researches on that topic show that accelerometers are more suitable than the

microphones.

Figure 1.2 The schematic representation of the Sound Data Logging

system developed in our thesis work.

Rapid development on the accelerometer technology makes possible to build

multi channel simultaneous acceleration data logging. Accelerometer data logging

system was built using PIC microcontroller and USB interface (Akkan & Şenol,

2008b).  Accelerometer data logging system is shown in Figure 1.3.

USB sound and  acceleration  data  logging  systems were  used  to  implement  ICA

algorithms in real life applications. Some sound separation applications are made
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using sound data logging system and problems of real life ICA applications and their

solutions were investigated on this platform.

Figure 1.3 The schematic representation of the Accelerometer Data

logging system developed in our thesis work. The accelerometers are

shown  with  their  three  degrees  of  freedom  for  each  unit  forming  9

channel axes information.

1.1 Objectives of the thesis

The objective of the study is introducing BSS and the most popular ICA method,

discussing the advantages and the disadvantages of ICA, exhibiting real world ICA

implementation problems and some solution to these problems, showing ICA

benefits on biomedical applications.

Biomedical applications such as EEG and VAG analysis need recording of multi

channel long time duration data. Some of these data are related to our aim of the

study; on the other hand, some of these data are redundant and noisy. Analysis like

ICA can be the answer to find these important data and filter out from the undesired

data. Here, the aim is to find suitable ICA algorithms and pre-processing and post

processing techniques to improve the signal processing performance.

In EEG application of ICA, our aim was to find deterministic components such as

heart pulse signals and sweating artifact, and then extract from spontaneous EEG

recordings by using various ICA methods. The reason to use spontaneous EEG

recordings is to provide continuity of data for implementing ICA method easily and
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efficiently. Then, evoked potential EEG recordings would also be analyzed by ICA.

In this study, electrocardiogram signal and sweating artifact were both identified

using kurtosis criteria from ten channel recordings by using Fast ICA, Efficient Fast

ICA and Maximum Likelihood ICA techniques (Akkan & Şenol, 2009).

EEG data are easily available from many related sources. But, multi channel VAG

signals must be collected using a specific data logging system. For this purpose, a

multi-point multi-dimensional accelerometer data logging system was designed and

built. Simultaneous data recording from multi points is needed to achieve

comparison of multi-points data with each other in the same time instances. For the

vibration data analysis, ICA will be used to remove noise and unwanted signal forms

from knee recordings to extract the desired signal source(s). Then, the obtained

desired signals can be used for diagnosing purposes. Our accelerometer data logging

hardware and software are suitable for ICA analysis which, preferably, needs to have

simultaneously recorded multi-point data.

The system uses popular Universal Serial Bus (USB 2.0) to provide fast data

collection, and the microcontroller triggers the specially selected digital

accelerometer via serial peripheral interface (SPI) to meet the requirements for the

synchronous data logging. VAG data were collected from twenty patients including

healthy ones and with the ones having knee problems. It has been observed that the

recorded VAG signals show different statistical behaviour for normal and abnormal

knees. There are numerous knee related problems and this requires creating a large

data base from different cases to obtain data features for developing a convenient

classification algorithm.

Another application area was filtering of jaw artefacts from EEG recordings using

simultaneously recorded vibration data from human jaw using acceleration data

logging system. These supporting data would help to filter jaw motion based

artefacts effectively from EEG recordings without losing the important information

on the EEG signals. This study is currently on the beginning phase.
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1.2 Thesis Outline

Thesis study consists of six chapters and two appendices. This introduction

chapter  explains  the  thesis  concept  and  the  objectives.  In  the  second  chapter,  ICA

methods are explained and some ICA methods are given. Third chapter discusses real

world ICA problems and investigates some solutions. In the fourth chapter, sound

and vibration data logging hardware are introduced. Fifth chapter gives biomedical

applications on ICA. The result of the thesis are concluded and discussed in Chapter

six. In Appendix A, some useful MATLAB codes developed for the thesis study are

given. In Appendix B, healthy and problematic knee signals are given graphically.
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CHAPTER TWO

INDEPENDENT COMPONENT ANALYSIS

Blind Source Separation (BSS) methods are very popular in especially extracting

a signal from signal mixture and in finding the underlying features or signals in a

signal mixture. Our inspiration is the success of the human brain to separate sounds

and images using two sensors (ears and eyes). This means brain is a very

sophisticated statistical engine. So, statistical methods are most popular methods in

that topic. Also these methods can be a preprocessing stage mostly to reduce input

dimension of the neural network circuits. The Cocktail Party Problem is a main

example of the separation of mixed signals. In this problem, many source signals are

mixed in a media with delays and reverberation effects. Media can be air, water, a

solid material, human brain, etc.

Some BSS methods are listed below:

a) Bayesian Approach: Forming a model that describes a particular source

separation problem. The result is a mixing matrix. The algorithm is known from

Independent Component Analysis (ICA).

b) TDSEP (Temporal Decorrelation source separation): Temporal structure of

signals is used in order to compute the time-delayed 2nd order correlation for the

source separation. The best results are achieved if the autocorrelations are as

different as possible. Algorithm makes a rotation in order to simultaneously

diagonalize the set of time-lagged correlation matrices. This algorithm sometimes

delivers better results than ICA, especially in Gaussian signals. Compared to ICA, it

is computation load is low.

c)  Blind  Separation  of  disjoint  orthogonal  signals:  It  uses  only  2  mixtures  of  N

sources,  but  the  sources  have  to  be  disjointly  orthogonal.  The  algorithms are  based

on the Short Time Fourier Transform.
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d) Principal component analysis (PCA): PCA transforms a number of correlated

variables into a smaller number of uncorrelated variables called principal

components (PC). The first principal component variability in the data is very much,

and the other components variability is less. Main use of PCA is to reduce the

dimensionality of the data set.

PCA use second-order methods in order to reconstruct the signal in the mean-

square error sense. The results are independent in the second order statistics. PCA

basis vectors are mutually orthogonal.

The uncorrelated principal components are estimated from the eigenvectors of the

covariance or correlation matrix of the original variables. PCA is mostly in use of

eigenvalue decomposition of covariance of a signal, or singular value decomposition

of a signal.

PCA was first introduced by Pearson (1901) and used mostly in data analysis.

Some application areas of PCA are noise reduction, data compression, visualization

of high dimensional data, dimension reduction, and filtering of undesired

components from a signal mixture etc.

e) Independent Component Analysis: Most popular blind source separation technique

is independent component analysis. ICA especially finds wide application areas in

biomedical such as source separation, artifact finding and filtering, source

localization.

In this chapter, firstly the background theory for independent component analysis

was given. Especially gaussianity criteria, gaussian signal types are given in that

manner. Then, the independent component analysis was introduced and explained.

Later  and  the  some  ICA  algorithms  were  given  and  the  useful  test  results  are

explained.
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2.1 Independent Component Analysis Background Theory

Before understanding independent component analysis, the theory behind the

analysis  must  be  known  well.  Theory  of  ICA  comes  mostly  from  statistics  and

information theory.

2.1.1 Probability Distribution Function

Probability  distribution  term  identifies  either  the  probability  of  each  value  of  an

unidentified random variable (when the variable is discrete), or the probability of the

value falling within a particular interval (when the variable is continuous) (Everitt,

2006).  Thus, a random variable can represent some possible values and the

probability of this random variable can be defined in this possible values range.

The cumulative distribution function (cdf) completely describes the probability

distribution of a random variable X that  has real  values.  The cumulative distribution

function xF  is defined as in Equation 2.1;

)()( 00 xxPxFx £=            (2.1)

where 0x take  values  -∞ to  ∞,  so  cdf  is  calculated  for  all  values  of  x.  Cdf  is  a

nonnegative function for continuous random variables and values of cdf are in the

range of .1)(0 ££ xFx  For example, if x has an uniform distribution on the interval

of [0,1], the cdf  is given by in Equation 2.2;

ï
î

ï
í

ì

<
££

<
=

x
xx

x
xF

1:1
10:

0:0
)(            (2.2)

The probability density function (pdf) is the derivative of its cdf.

0

)()( 0
xx

x dx
xdFxxp

=
=          (2.3)

http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Discrete_probability_distribution
http://en.wikipedia.org/wiki/Continuous_probability_distribution
http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Random_variable
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Assuming x is an n-dimensional random vector;

T
nxxxx ),...,,( 21=          (2.4)

where the components nxxx ,...,, 21 are continuous random variables.

Joint density ),(, yxp yx of x and y is defined as

( )
)(

),(,

yp
yxp

yxp
y

yx
yx =           (2.5)

where )( yp y is the marginal density.

2.1.2 Expectation and the moments

In data analysis and processing, expectation of a function of a random variable is

very important. The expectation of )(xg is denoted by { })(xgE  is defined as

{ } ò
+¥

¥-
= dxxpxgxgE x )()()(           (2.6)

where )(xg is a random variable either scalar or a vector or a matrix.

Usually the probability density of a random vector is unknown, but often a set of n

samples nxxx ,...,, 21 from x is available, as for example in the case of data measured

in real world applications. The expectation can then be estimated by averaging over

the samples using

{ } å
=

@
n

i
ixg

n
xgE

1
)(1)(           (2.7)

If g(x) is the form of nx , the nth moment is defined as

{ } ò
+¥

¥-
== dxxpxxE x

nn
n )(a          (2.8)
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But the central moments form nm  is more useful and they are computed around

the mean:

( 1a=xm  = 1st moment), { } ò
+¥

¥-
-=-= dxxpmxmxE x

n
x

n
xn )()()(m  (2.9)

From Equation 2.9, we found 10 =m  due to normalization and 01 =m due to the

removal of mean. The higher moments are valuable and called as higher order

statistics. Second, third and fourth moments are defined as;

2
2 ms =  Second moment (the variance of x)      (2.10)

3
3

s

m
g =  Third moment (the skewness of x)            (2.11)

34
4 -=

s
m

k  Fourth moment (the kurtosis of x)              (2.12)

The variance gives an estimate of distribution width, the skewness asymmetry of

the  distribution  and  the  kurtosis  an  estimate  of  the  deviation  from  a  Gaussian

distribution or in other words gaussianity. For example, the Gaussian distribution

kurtosis  is  zero,  and  the  skewness  is  also  zero.  In  one  dimension  pdf  of  Gaussian

function as;

2

2

2
2
1)( s
sp

x

x exp
-

=          (2.13)

Gaussian pdf can be written in another form as ;

ú
ú
û

ù

ê
ê
ë

é --

=
2

2

2
)(

2
1)( s

sp

Xx

x exp         (2.14)

A Gaussian distribution function can be shown in Figure 2.1. The graphic was

created in MATLAB. Variance is equal to 1. X denotes the mean value and

equals to 0.
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                      Figure 2.1 Gaussian distribution function. Variance is 1 and mean is 0.

The Gaussian distribution types according to the variances (σ2) are shown in

Figure 2.2. The graphic was created in MATLAB. Variance shows gaussianity here,

if it is small that means supergaussianity occurs.

Figure 2.2 Gaussian distribution types according to variances. As variance
increases, sub Gaussian distribution occurs. As variance decreases, super
Gaussian distribution occurs.

A Sub-Gaussian pdf is typically flatter than the Gaussian pdf.  Example: signals

mainly “on”, e.g. 50/60 Hz electrical mains supply, but also eye blinks. A Super-
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Gaussian  pdf  has  typically  a  longer  tail  and  a  sharper  peak  than  Gaussian  pdf.

Example: infrequent signals of short duration e.g. evoked brain signals. Also music

has Super-Gaussian pdf. Some examples are in Figure 2.3.

Figure 2.3 Histogram and observation basis examples of Gaussian distribution

types. Kurtosis (K) values differentiate the Gaussian distribution types. a) Uniform

distribution b) Normal distribution c) Laplacian distribution.

2.1.3 Correlation and independence

The correlation between ith and jth component of a random vector of x is;

{ } ò
+¥

¥-
ò
+¥

¥-
== ijxjxijijiij dxdxxjxipxxxxEr ),(,      (2.15)

If this correlation value is zero, the two variables are uncorrelated random

variables. The correlation matrix for random vector x can be calculated as in

Equation 2.16.

{ }T
x xxER =            (2.16)
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The covariance matrix is a kind of correlation matrix and calculated using the

mean removal from vector x.

{ }T
xxx mxmxEC ))(( --=         (2.17)

For two random vectors x and y, cross-correlation and cross-covariance matrices;

{ }T
xy xyER = , { }T

yxxy mymxEC ))(( --=      (2.18)

x and y are uncorrelated if 0=xyC . But independence requires also the joint

probability distribution must be;

)().(),(, ypxpyxp yxyx =          (2.19)

The independence is much stronger property than uncorrelatedness. If random

variables have Gaussian distributions and uncorrelated at the same time, this means

these variables are also independent. If a mixture includes more than one Gaussian

component, ICA fails.

2.2 Independent Component Analysis

Independent Component Analysis (ICA) is the identification & separation of

mixtures of sources with little or no prior information. ICA is sometimes known as

blind signal separation. ICA finds underlying factors or components from

multidimensional statistical data and searches for both statistically independent and

non-gaussian components.

ICA algorithm minimizes the mutual information between the statistically

independent components. In contrast to correlation-based transformations such as

Principal Component Analysis (PCA), ICA not only decorrelates the signals (2nd-

order statistics) but also reduces higher-order statistical dependencies and makes the
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signals more independent. ICA does not constrain the axes to be orthogonal as in

PCA and attempts  to  place  them in  the  directions  of  statistical  dependencies  in  the

data. In Figure 2.4, chirp and train sounds (8192 Hz sample frequency) were mixed

linearly. The scatter plot of mixtures, PCA and ICA result shows that ICA achieved

to recover sources successfully, but PCA couldn’t find the exact rotation angle to

recover the sources back. In Mixtures scatter plot, perpendicular PCA vectors doesn’t

match with the correct mixtures vectors which can be easily used by ICA.

Figure 2.4 PCA and ICA comparison. Original sources on the left mixed to form the
mixtures. PCA and ICA results are on the right.

There are three different signal types in ICA: signals have Non-Gaussian

distribution, signals that are non-stationary and have slowly changing power

spectrum, and signals have time correlation and have different power spectrums.

When a signal mixture is represented as a linear combination of the original

sources at very time instant, it is defined as an instantaneous mixing model. This

model is the simplest form for separation. Practically, when the signals are recorded

in an ideal environment, i.e., no reverberation, the mixture of the signals recorded by

the mixing system can be considered as an instantaneous mixture.

  ICA instantaneous mixing model can be expressed as

nAsx +=            (2.20)
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where
T

nxxxx ),...,,( 21= and
T

mssss ),...,,( 21=  are the vectors of observed

random variables and the independent components respectively. Here, n is the

additive noise and A  is an unknown mixing matrix.

Following conditions are listed for ICA types due to number of mixed signals (n)

and number of independent components (m) :

• Complete ICA (quadratic ICA) , (m=n) : This is the general case.

• Less-Complete  ICA (undercomplete  ICA),  (m>n):   Here,  our  aim is  to  find

more number of independent components using less mixtures.

• Over-Complete ICA, (n<m) : Here, it is desired to found few independent

components with more than enough sensors.

ICA estimates A so that we can recover the sources via WA =-1 . Recovered

sources are not the exact copy of original sources (Amari, Cichocki, & Yang, 1996;

Hyvärinen, Patrik, & Mika, 2001b). A general case of ICA model is shown in Figure

2.5.

Although instantaneous mixing models are very handy, it fails to model real life

situations, for instance recording in a real room. The microphones in this

environment  pick  up  not  only  the  signals  of  the  sources,  but  also  the  delayed  and

attenuated versions of the same signals due to reverberation. Hence, this can be

viewed as microphones receiving a filtered version of different signals, and can be

modeled as follows:

å
=

+-=
p

p
nnpnspAnx

0
)()().()(          (2.21)

where )( pA  is the multipath multi-channel filter.
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Figure 2.5 Instantaneous ICA Schematic Diagram. Sources are mixed and
observed with the sensors enters the ICA algorithm to get the recovered
sources.

The source mixtures are called convolved mixtures since acoustic signals recorded

simultaneously in a reverberant environment can be described as the sums of

differently convolved sources. Figure 2.6 shows convolutive mixing system model.

Figure 2.6 Convolutive ICA Schematic Diagram. Sources are mixed with delays
and reflections, and the observed signals enter to the ICA algorithm. Recovered
sources are obtained at the outputs of ICA.

As we know before, ICA tries to find the independent components with only

observing the mixture, and no need to have prior knowledge about the original

sources. But, in the convolutive mixing situation, knowing prior information about

sources helps the algorithm be successful.



18

This problem is known as “cocktail party” problem. It is not a big problem for

human beings to concentrate on listening to one voice in the room, even when there

are lots of other sound sources, such as other conversations, music, background

noise, etc. present in the room. The "cocktail party" problem can be described as the

ability to focus one's listening attention on a single talker among a mixture of

conversation and background noise; also known as "cocktail party effect". For a long

time, it has been recognized as an interesting and a challenging problem.

Experiments by Payne (1969) have shown that owls are sensitive to the sounds

and they must be able to accurately localize both the azimuth and the elevation of the

sound source. On the other hand, the human sound separation system starts with the

filter banks mechanism of the cochlea and ends with a neural network circuit, but it

is not fully understood that human separation system is still superior to the artificial

systems, but the human hearing system has the ratio of higher frequency to lower

frequency is at least 1000:1 and the strongest signal to lowest signal ratio is 32

trillion to 1 (Ludwig, 2009).

The "cocktail party problem" is also called the "multichannel blind

deconvolution” problem. It is aimed at separating a set of mixtures of convolved

signals,  detected  by  an  array  of  microphones.  This  is  performed extremely  well  by

the human brain, and over the years attempts have been made to capture this

functionality by using assemblies of abstracted neurons or adaptive processing units.

Some of the other interesting application areas of BSS include speech enhancement

in multiple microphones, cross talk removal in multi-channel communication,

Direction of Arrival (DOA) estimation in sensor arrays and improvement over

microphone directivity for audio and passive sonar.

Two important application of ICA are blind source separation and feature

extraction. Recently, blind source separation applications has received attention

because of its potential applications in signal processing such as in speech

recognition systems, telecommunications and medical signal processing.

General application areas are:
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– Blind source separation (Bell&Sejnowski, TeWon Lee, Girolami, Hyvarinen,etc.)

– Image denoising (Hyvarinen)

– Medical signal processing – fMRI, ECG, EEG (Mackeig)

– Modelling of the hippocampus and visual cortex (Lorincz, Hyvarinen)

– Feature extraction, face recognition (Bartlett)

– Compression, redundancy reduction

– Watermarking (D Lowe)

– Clustering (Girolami, Kolenda)

– Time series analysis (Back, Valpola)

– Topic extraction (Kolenda, Bingham, Kaban)

– Scientific Data Mining (Kaban, etc.)

– Vibration Data Analysis.

2.3 Algorithms of Independent Component Analysis

First step in ICA is whitening. Whitening is done usually applying Principal

Component Analysis. Then using the contrast function ICA seeks proper rotation. All

of the ICA algorithms differ with their rotation algorithms. After rotation has done,

the sources are recovered. There is one case when rotation doesn’t matter. This case

cannot be solved by basic ICA when sources have gaussian distributions. In Figure

2.7, ICA steps are shown graphically.

For problems that mixture signals more than sources (m>n), the problems can be

easily reduced to quadratic case by applying PCA. Because more number of linear

mixture combinations do not give any further information for separating the sources.

But if less mixture equations are available (n>m), this means we don’t have enough

knowledge to find the sources on a overcomplete basis. Overcomplete ICA methods

(first presented by Lewicki and Sejnowski, 1998) are needed to solve these ICA

problems. Later, blind source separation of more sources than mixtures using

overcomplete representations has been published (Lee, Lewicki, Girolami, &

Sejnowski, 1999).
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Figure 2.7 ICA steps.

Latest ICA algorithms can be found in Cardoso (2009). Another survey is helpful

by Hyvärinen & Oja (2000). The study by Azzerboni, Ipsale, Foresta, Mammone, &

Morabito (2006) is a good information source of ICA algorithms for biomedical

applications.

ICA methods have two categories for the properties: the statistical properties (e.g.,

consistency, asymptotic variance, robustness) of the ICA method depend on the

choice of the objective function, and the algorithmic properties (e.g., convergence

speed, memory requirements, and numerical stability) depend on the optimization

algorithm.

There are several approaches in determining independent components. The

approaches and some related algorithms will be briefly given in the following

subsections.

2.3.1 Maximization of non-gaussianity

According to the central limit theorem of statistical theory, the distribution of a

sum of independent random variables tends toward a gaussian distribution, under

certain conditions. Loosely speaking, a sum of two independent random variables

usually  has  a  distribution  that  is  closer  to  gaussian  than  any  of  the  two  original

random variables (Hyvärinen, Karhunen, & Oja, 2001a). Therefore, some algorithms

to maximize the non-gaussianity have been developed. These algorithms depend on

two main gaussianity measures. One of them is kurtosis which is defined in Eq. 2.12.

However, the kurtosis is very sensitive to outliers since it is related to fourth order
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moment, so it is not robust in noisy situations. Thus, the negentropy, an objective

function which is based on information theory, can be used for maximization of non-

gaussianity. The negentropy basically show the how far the entropy of the

distribution from the entropy of a gaussian variable.

Most known algorithm is FastICA algorithm because of computation cost is very

low and very faster (10 to 100 times) than the conventional gradient descent based

methods. The most important reason to be fast is fixed point iteration mechanism.

FastICA also can be used for applying projection pursuit which is a general purpose

data analysis method based on finding low-dimensional projections of multivariate

data that show highly nongaussian distributions. Projection pursuit (Friedman &

Tukey, 1974; Friedman, 1987; Huber, 1985; Jones & Sibson, 1987) finds meaningful

projections in a multidimensional data and this gives us visualization of data, density

estimation  and  regression  analysis.  Here,  the  most  gaussian  sources  are  not

interesting because these sources are barrier to find the other components. ICA, here

interests with least gaussian sources to deal and more popular than projection pursuit.

Fast ICA algorithm is in Figure 2.8. The algorithm is deflationary, so all the

independent components are estimated one by one, not all of them in one calculation.

   Figure 2.8 Fast ICA algorithm.
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Efficient ICA (EFICA) is an improved version of FastICA algorithm, and it is

asymptotically efficient (Koldovsky, Tichavsky, & Oja, 2006). Accuracy of the

algorithm is high because the residual error variance goes to Cramér-Rao lower

bound. EFICA is more complex than FastICA algorithm and it is very efficient to

separate linearly mixed speech signals.

2.3.2 Maximum likelihood estimation and ML ICA

Another way of determining the most independent directions is to use the

maximum likelihood estimation. It is used to estimate the distribution parameters.

The idea is to use estimates, which give the highest probability (“likelihood”) for the

observations. The expectation maximization (EM) algorithm is one of the most

common methods for determination. It has been showed that the fixed point

algorithm for maximum likelihood approach which is implemented in FastICA

package gives an almost identical optimization problem with maximization of

nangaussianity approach. Also, there is a close relationship with the infomax

principle of neural networks. This is based on maximizing the output entropy, or

information flow, of a neural network with nonlinear outputs. It is seen that the

output entropy is of the same form as the expectation of the likelihood. This means

that infomax is equivalent to maximum likelihood estimation.

Here there is assumption about parametric density )|( qxp for an observation

vector x. Thus, the likelihood function for the samples of )(),...,2(),1( Txxx is;

Õ
=

=
T

j
jxpTxxxp

1
)|)(()|)(),...,2(),1(( qq        (2.22)

The ML estimate for θ maximizes function in Eq. 2.22 and it is consistent

especially T goes to infinity and asymptotically efficient because asymptotically

estimation error is minimized down to the Cramer-Rao lower bound (Hyvärinen,

Karhunen,  &  Oja,  2001a).  The  practical  maximization  is  done  with  the  Natural

Gradient Algorithm. A gradient ascent algorithm (Figure 2.9) is easy to derive for

ML ICA.
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Figure 2.9 ML ICA algorithm.

2.3.3 Minimizing mutual information

The mutual information is a natural measure of the dependence between random

variables. It is always nonnegative, and zero if and only if the variables are

statistically independent. Mutual information takes into account the whole

dependence structure of the variables, and not just the covariance, like principal

component  analysis  (PCA)  and  related  methods.  Therefore,  it  can  be  used  as  a

criterion for finding the ICA representation. It is showed that ICA estimation by

minimization of mutual information is equivalent to maximizing the sum of

nongaussianities of the estimates of the independent components, when the estimates

are constrained to be uncorrelated. However, deflationary approach is not possible in

this method.

2.3.4 Tensorial methods

One approach for estimation of independent component analysis consists of using

higher-order cumulant tensor. Cumulant tensors are then generalizations of the

covariance matrix. The covariance matrix is the second-order cumulant tensor, and

the fourth order tensor is defined by the fourth-order cumulants. The whitening of the

data means that we transform the data so that second-order correlations are zero. As a

generalization of this principle, the fourth-order cumulant tensor can be used to make
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the fourth-order cumulants zero, or at least as small as possible. This kind of

(approximative) higher-order decorrelation gives one class of methods for

ICA estimation.

 Joint approximate diagonalization of eigenmatrices (JADE) firstly described by

Cardoso & Souloumiac (1993) and uses equal eigenvalues of cumulant tensors. A

method closely related to JADE is given by the eigenvalue decomposition of the

weighted correlation matrix. Also SHIBBS algorithm uses the same cumulant based

batch algorithm approach as in JADE. Both algorithms are described by Cardoso

(1999).  JADE requires no parameter tuning, but SHIBBS needs some tuning in

applications. SHIBBS needs less memory when it is compared to JADE algorithm.

Both algorithms use algebraic ideas to optimize a 4th-order measure of

independence.

2.3.5 Methods using time structure

In the approaches explained so far, the time structure has not been considered.

However, most of the mixed signals are time signals. If the ICs are time signals, they

may contain much more structure than simple random variables. For example, the

autocovariances of the ICs are good candidates for statistic properties. Additional

statistic  information  can  be  used  to  improve  the  estimation  of  the  model.  This

additional information can make the model has more performance in cases where the

basic ICA methods cannot be used for estimation. If the ICs are gaussian and

correlated in time, this is helpful.

For example, Algorithm for Multiple Unknown Source Extraction (AMUSE)

algorithm which is similar to PCA algorithm can be used. AMUSE applies two

cascade PCA algorithms:  first PCA is used for whitening and the second PCA is

applied to time delayed covariance matrix of the pre-whitened data. Here, PCA is a

good choice for separating the sources because there is no independency requirement

like in ICA, but the sources must have temporal structure. AMUSE was first

proposed by Tong, Soon, Huang, & Liu (1991).
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2.4 Tests on Independent Component Analysis

Now, ICA test has been done for following more complex signals as another

synthetic test using Fast ICA, ML ICA, Jade ICA, Shibbs ICA results and their

spectrograms. Four test signals are generated to see normal ICA algorithms

performance and other four signals set are generated to see how ICA algorithms fail.

Following sub sections show signals, spectrograms of the signals, mixtures, and the

results of FastICA algorithms and its spectrogram and the results of other algorithms.

2.4.1 ICA algorithms on a normal case

First test uses four different signals such as a signal with two different frequency

sinusoids added, a low frequency sinusoid, a square wave signal, and gaussian

random signal. The test signals and the MATLAB generation codes are given below:

  N=11025;

t=linspace(0,10.2*pi,N); k1=sin(t)'+sin(3*t+0*pi/18)'; % sin(t)+sin(3t)

t=linspace(0,45.1*pi,N); k2=sin(0.07*t+0*pi/18)'; %sin(0.07t)

t=linspace(0,65.3*pi,N); k3=0.9*square(1.8*t)'; %square_wave(1.8t)

t=linspace(0,77.5*pi,N); k4=randgauss(1,5,N)'; % gaussian random

Figure 2.10 shows the test signals and spectrograms of the test signals are shown

in Figure 2.11.

    Figure 2.10 Four test signals. y axes show the signal amplitudes and x axes show the samples.
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Figure 2.11 Spectogram of four test signals.

The test signals were mixture with each other. The mixture signals are shown in

Figure 2.12.

Figure 2.12 Four test signals mixtures. y axes show the signal amplitudes and x axes show

the samples

Fast ICA results were given in Figure 2.13. Note that Fast ICA recovers the

signals not in a correct order which has given first. Fast ICA is successful, but low

frequency  sinusoidal  signal  is  not  recovered  well.  Spectrograms  of  the  ICA  result

were given in Figure 2.14. Also spectrograms show that recovered signals are not

exactly the same with the original signals.

Figure 2.13 Fast ICA results. y axes show the signal amplitudes and x axes the samples.
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 Figure 2.14 Spectogram of Fast ICA results.

ML ICA results were given in Figure 2.15. ML ICA fails. Jade ICA results were

given in Figure 2.16.  Jade ICA results are better than Fast ICA.

    Figure 2.15 ML ICA results. y axes show the signal amplitudes and x axes the samples.

    Figure 2.16 Jade ICA results. y axes show the signal amplitudes and x axes the samples.

Shibbs ICA results were given in Figure 2.17. Note that Shibbs ICA results are

similar to the Jader ICA results.
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       Figure 2.17 Shibbs ICA results. y axes show the signal amplitudes and x axes the samples.

2.4.2 ICA algorithms on an abnormal case

A complex problem is here. Following sinusoidal and square wave signals were

generated. The first sinusoid frequency was doubled in the second signal. Also the

same thing happened in the second square wave signal (Figure 2.18).

      Figure 2.18 Test Signals. y axes show the signal amplitudes and x axes the samples.

Spectrograms of the test signals are shown in Figure 2.19.

      Figure 2.19 Spectrogram of the test signals.

The test signals were mixture with each other. The mixture signals are shown in

Figure 2.20.
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Figure  2.20  Mixture  of  Test  Signals.  y  axes  show  the  signal  amplitudes  and  x  axes  the

samples.

Fast ICA results were given in Figure 2.21. Note that Fast ICA recovers only the

square waves. Spectrograms of the ICA result were given in Figure 2.22.

       Figure 2.21 Fast ICA results. y axes show the signal amplitudes and x axes the samples.

Figure 2.22 Spectrogram of Fast ICA results.

ML ICA results were given in Figure 2.23. Note that ML ICA results are not

successful.
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      Figure 2.23 ML ICA Results. y axes show the signal amplitudes and x axes the samples.

Jade ICA results were given in Figure 2.24. Note that Jade ICA results are not

successful. Shibbs ICA results were given in Figure 2.25. Note that Shibbs ICA

results are not successful.

 Figure 2.24 Jade ICA Results. y axes show the signal amplitudes and x axes the samples.

 Figure 2.25 Shibbs ICA Results. y axes show the signal amplitudes and x axes the samples.

Here, we see that separation is not possible. Because, square waves fundamental

frequencies  are  the  same with  the  related  sinusoidal  waves.  This  means  the  signals

are the same.
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CHAPTER THREE

ICA REALIZATION PROBLEMS

 Independent Component Analysis algorithms are usually very efficient on a

simulation environment. For example, if noise added to a sound signal on a

MATLAB environment, Fast ICA easily finds out the original sound component.

Although instantaneous mixing models are extensively studied, where many

algorithms are proposed with promising results for separation, it fails to model in real

life situations, for instance recording in a real room. In such a situation the

microphones in the environment picks up not only the signals of the sources, but also

the delayed and attenuated versions of the same signals due to reverberation. Hence,

this can be viewed as microphones receiving a filtered version of different signals,

and can be modeled as follows. Lee, Bell, and OrglMeister (1997a) have a study on

real world signals blind source separation.

3.1 Phase Delay Problems

Instantaneous ICA cannot be applied to real-world problems. Noise affects the

performance of blind source separation method. Also, sources are not mixed

simultaneously, because the propagation of the signals through the medium is not

instantaneous. There will be arrival time difference between the sources in the

mixtures. Instantaneous separation methods simply cannot cope with these delays.

Delay is a problem, because the probability distribution function (pdf) of the source

data does not change but the pdf of the mixtures changes. So the separation process

using ICA fails.

Also, another problem is the media that sound is emitted, if reverb effect occurs in

that media the mixtures become convolutive mixtures. Blind separation of

convolutive mixtures considers the combined blind de-convolution and instantaneous

blind source separation problem. In this problem, there are several source (input)

signals and several observed (output) signals just like in the instantaneous ICA

problem. However, the source signals have different time delays in each observed
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signal due to the finite propagation speed in the medium. Each observed signal may

also contain time-delayed versions of the same source due to multi-path propagations

caused typically by reverberations in an acoustic environment.

Lee, Ziehe, Orglmeister, & Sejnowski (1998) show phase delay effect on blind

source separation. For instant mixtures, separation is usually very good and

straightforward. However, in the case of audio signals in a room, mixing process is

will be more complex. Because of the delays of the recorded signals with respect to

each others, delayed mixtures are the cases we need to investigate. In that kind of

problems, information maximization approach can be used. Here entropy

maximization is applied in the separated signals.

On information maximization or maximizing the entropy, separation is achieved

by minimizing the mutual information of components of )(ugy = . g  is a nonlinear

function of cumulative density function of the independent signal s .

In a model of mixtures with delay, the signal components )(1 ts  and )(2 ts  in the

mixtures are delayed with respect to one another. This was illustrated in Figure 3.1.

The signals were created using MATLAB.

)()()( 122121111 dtsatsatx -+=         (3.1)

)()()( 212221212 dtsatsatx -+=         (3.2)

 Figure 3.1 Two sources mixed with weights and delays.

Separation neural network can be designed like that for the delayed mixtures in

Figure 3.2 (Torkkala, 1996).
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Figure 3.2 Block Scheme of the separation neural network

Network equations are shown in Equations 3.3 and 3.4:

))(()(),()()( 1112212111 nugnydnuwnxwnu =-+=   (3.3)

))(()(),()()( 2221121222 nugnydnuwnxwnu =-+=   (3.4)

The determinant for the Jacobian and the entropy of the network are:

1 2 1 2
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         (3.5)
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The adaptation rule for each parameter is derived by computing the gradient of

log(det(J)) with respect to the parameter. For 1w we obtain

1 2
1

1 1 1 2 1 1

log(det( )) 1 1 1y yJ Dw
w y w y w D w

a
¢ ¢¶ ¶¶ ¶

D = + +
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       (3.8)

Partial derivatives can be written as:

1 1 1 1
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which depends on the cdf used.

So, the adaptation rule for 1w  becomes:

1 1 1 2( 1/ )w y x waD +)            (3.11)

+w1x1

+w2x2
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w21

u2

u1
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Using similar calculations, other adaptation rules can be calculated as in equations

below:

2 2 2 1( 1/ )w y x waD +)            (3.12)

12 1 2 12( ( ))w y u n daD -) , 21 2 1 21( ( ))w y u n daD -)        (3.13)

12 1 12 2 12( ( ))d y w u n daD - -)
& , 21 2 21 1 21( ( ))d y w u n daD - -)

&     (3.14)

Now, how the delayed mixtures separated to independent components, above

method  can  be  used.  For  example  two  signal  mixed  with  A  and  d12 and  d21. Two

signals are created using mixing_delayed.m (Appendix A.6). First one is sinusoidal

signal and the other is sawtooth signal. First we have no delays. Original signals,

mixture with no delay between original signals and FastICA results are in Figure 3.3.

Figure 3.4 shows probability density & joint density functions of original signals,

mixtures and FastICA results.

Figure 3.3 a) original Signals b) mixtures without delays c) Fast ICA results

Figure 3.4 Pdfs and joint density graphics of a) original signals b) mixture signals

c) Fast ICA results.
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The second test was done with delays of d12=d21=10 in Figure 3.5. The third test

was  done  with  delays  of  d12=d21=30 in Figure 3.6. As seen below Figure 3.5b and

Figure 3.6b, ICA can’t recover the sources from delayed mixtures. We have to

discover a method for solving this problem.

    Figure 3.5 a) Ten Samples Delayed Mixtures b) Fast ICA results

   Figure 3.6 a) Thirty Samples Delayed Mixtures b) Fast ICA results

Now, another test can be done stating the problem in a different way. A Matlab

code generates two signals with or without delays and mix them to find normal or

delayed mixtures, then we find how Fast ICA performs? Here, test inputs are chirp

and train sound. Chirp signal sampling frequency is 8192 Hz and delayed 20 samples

that corresponds 20/8192=0.00244sec=2.44msec delay. Train signal sampling

frequency is 8192 Hz and delayed 30 samples (30/8192 =0.00366sec=3.66msec)

delay. Signals are emitted in air and accepting the sound speed in air is

approximately 300m/s. The delays show that receive sensors (microphones) are

placed 3e-3s*300m/s=0.9m from each others. Test results are displayed below

(Figure 3.7- 3.9).
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Figure 3.7 The Original signals.

 Figure 3.8 a) Instantaneous Mixtures b) Delayed Mixtures

Figure 3.9 a) Instantaneous ICs by FastICA  b) Delayed ICs by FastICA

FastICA performance is not so well with delays; even small delays can affect the

performance.  A  more  suitable  algorithm  can  be  found  on  the  studies  (Lee,  Bell  &

Lambert, 1997b; Smaragdis, 1997; Parra & Spence, 2000; Pedersen, Larsen, Kjems,

& Parra, 2007).
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Another idea may be shifting one mixture respect to the other mixture and we

search  the  maximum correlation  value  for  all  time band.  Block  scheme can  be  like

this as in Figure 3.10.

           Figure 3.10 Block scheme of delay correction

For  example,  we  have  three  source  signals  and  two  mixtures.  Here,  original

signals are a laughter sound, a chirp signal, and a white noise (Figure 3.11). These

original signals are mixed with a mixing matrix and zero delay matrix. We get only

two mixtures from the three source signals without delays (Figure 3.12)

   Figure 3.11 Original Signals
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    Figure 3.12 Mixtures without delays

These original signals are mixed with the same mixing matrix and delay matrix.

We get only two mixtures from the three source signals with delays about 5 samples

(Figure 3.13).

          Figure 3.13 Mixtures with delays

Now we find the shift value for correcting one of the mixture time shifts.

Correlation applied to these two mixtures and we found that delay is about 6 samples

(Figure 3.14). Delayed mixture is shifted 6 samples and we get corrected mixtures

(Figure 3.15). If we apply ICA to the non-delayed mixtures we get the following

results with the unmixing matrix is in Figure 3.16. If we apply ICA to the delayed

mixtures (non-corrected with the correlation algorithm) we get the following

independent components with the de-mixing matrix is in Figure 3.17.
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Figure 3.14 Finding delay correction value. Upper diagram denotes the maximum

correlation value. Vertical axes denotes amplitude, horizontal provides the sample

number. The lower chart provides a “zoom”ed version of the same chart. The shift delay

value has been found to be 6 (asterix).

     Figure 3.15 Corrected mixtures with shifting one mixture using delay correction.

 v=
    Figure 3.16 ICA results using mixtures without delays. (pdf=probability distrubion function)
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v=
    Figure 3.17 ICA results using mixtures with delays.

ICA results from corrected mixtures with the unmixing matrix are in Figure 3.18.

We get better performance from corrected mixtures as seen below.

 v=
         Figure 3.18 ICA results using mixtures after delay correction

3.2 Sound separation using less sensors

Normally, separation is not possible when number of mixtures is greater than

number of sensors using ICA (i.e. N mixtures for two sensors). But, if the mixtures

can be divided subspaces and one of the subspaces holds the information which we

want to intend to get, separation is more possible.
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One pre-processing method is enhancing desired source signal and suppressing

the  other  sources.  When  an  amplitude  dominant  signal  is  mixed  with  the  other

signals, ICA method tends to find and separate this signal which is close to the

receiving sensor. The enhancement of the desired source signal is done by using a

filter mask which is applied on spectrogram domain. Our aim is using this single

channel separation method to emphasize our desired signal in the mixture and ease

the work of ICA and increasing the performance of the ICA algorithms. Also, using

this method we can really separate the signals using fewer sensors.

Only using one sensor, still speaker separation is possible (Pedersen, Wang,

Larsen, & Kjems, 2005; Reddy & Raj, 2004). More generally, sound separation can

be made easier using the same concept. Extraction of a desired sound signal from a

sound mixture can be done also using masking algorithms. To do that, spectrogram

of the mixture signal is obtained and multiplied with a known mask spectrogram

which is derived from the desired signal. Then the result spectrogram is inversed to

time  domain.  If  the  mask  is  perfect,  only  we  get  the  desired  signal,  and  the  other

signals in the mixture are ignored. This is a filtering application in fact, but the

difference is not only noise filtering we can also filter other signals. Figure 3.19

shows flow scheme of masking.

  Figure 3.1 Flow of Time-Frequency Masking Method
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3.2.1 Time Frequency Transformations

Time-Frequency Transformations will be explained and reviewed. Advantages

and disadvantages are given for transformation types. The type of transformation will

be the most suitable for our research will be investigated. Booshash (2003) gives

details about time-frequency signal analysis.

In time domain, we can’t see some features about the signal. Figure 3.20 explains

this. Here, the independent variable is time. But as we consider the mixture signal,

three different sinusoidal signals with different frequencies are hidden. A transform

is needed for obtaining further information. This transform must give us this signal

frequency structure. The most popular transform is Fourier transform. The other

types are Hilbert Transform, Short-time Fourier Transform, Wigner Distributions,

the Radon Transform, the Wavelet Transform, and so on. So, a frequency analysis is

needed and it shows which frequencies exist in the signal.

Figure 3.20 A sinusoidal wave in time domain.

3.2.1.1. Fourier Transform

Fourier Transform (F.T.) is defined for the continuous or discrete signals as follows:

ò
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= dfefXtX ftjp2)()(     (3.15)
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The signals can be categorized into two classes: stationary and non-stationary

signals. Frequency content does not change in time and all frequency components

occur at all times in frequency domain for stationary signals. Frequency changes in

time and do not appear all time in frequency domain for non-stationary signals

(Figure 3.21).

    Figure 3.21 a) Stationary Signal and its F.T. b) Non-stationary Signal and its F.T.

As an example chirp signal is a sinusoidal waveform that its frequency changes

linearly. In the Figure 3.22 first chirp signal frequency sweep is from 2 Hz to 20 Hz

and the second one is from 20 Hz to 2 Hz. They are different signals in time domain,

but in frequency domain they are the same. That’s why Fourier Transform cannot

show the frequency component occurring times. So, the disadvantages of Fourier

Transforms are; FT only tells the frequency components existence in the signal and

the time and frequency information cannot be seen at the same time.
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            Figure 3.22 Fourier Transformation of Chirp Signal.

3.2.1.2 Short Time Fourier Transformation

Better solution is to use Short Time Fourier Transform (STFT) which is first used

by  Dennis  Gabor.  STFT  analyzes  only  a  small  section  of  the  signal  at  a  time  via

using a window segment which is assumed as stationary (Figure 3.23).

Figure 3.23 Short Time Fourier Transform Windowing

STFT is a function of time and frequency and formula is given below.

[ ] dtettwtxftSTFT ftj

t

w
x

p2*)( )'()(),'( -·-·= ò      (3.17)

where w(t) is the windowing function.

Some drawbacks of STFT are; window size is constant, narrow window selection

yields poor frequency resolution, and wide window selection means poor time

resolution (Polikar, 1996). Figure 3.24 shows this comparison. Also, there is no

knowledge about which time intervals have which frequency components

(Heisenberg uncertainty principle).
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   Figure 3.24 Narrow and wide window size comparison (Polikar, 1996).

3.2.1.3 Spectrogram

Spectrogram is the square of the STFT, a sort of running spectrum.

2),(),( wtSTFTwtSP =          (3.18)

For example, the spectrogram of a chirp signal with linear instantaneous

frequency deviation can be seen in Figure 3.25. Chirp signal sample frequency is 1

kHz, and starts from 0 Hz and crosses 100 Hz at 1 sec.

Figure 3.25 Example of spectrogram obtained using Matlab.

3.2.1.4. Gabor expansion

The Gabor expansion is defined as

åå W-=
m n

tjn
nm emTthcts )()( ,         (3.19)
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åå W-=
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tjn
nm emTthcts )()( ,        (3.21)

The Gabor expansion is actually a sampled STFT (Figure 3.26). If p2=Wn , critical

sampling is selected. If p2<Wn , this is called redundant sampling.

 Figure 3.26 Gabor expansion sampling.

Gabor coefficients can be found using Equation 3.22:

),()()( *
, W=-= W-ò nmTSTFTdtemTttsc tjn
nm g     (3.22)

So, the dual function *g  needs to be calculated.

3.2.1.5 Wavelet Transform

Solving the resolution problem of STFT is possible with wavelet transform. It is

possible to analyze the signal at different frequencies with different resolutions. Time

resolution is good and frequency resolution is poor at high frequencies, and the

reverse at low frequencies. Wavelet transform is more suitable for short duration of

higher frequency; and longer duration of lower frequency components. Wavelets
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have some advantages over STFT; window width changes for every spectral

component during transformation, and different resolutions occur.

Wavelet means the finite length window function. Wavelet transform separates

the signal into signal components which represented by different frequency bands

and which frequency bands exist at which time intervals can be seen. Continuous

Wavelet transform (CWT) is defined as;

dt
s

ttx
s

ssCWT xx ò ÷
ø
ö

ç
è
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ytt yy *)(1),(),(      (3.23)

where t  is translation and defines the location of the window, s is the scale

parameter. ÷
ø
ö

ç
è
æ -

s
t ty *  is the mother wavelet. Mother wavelet is a prototype for

generating the other window functions and all the used windows are its dilated or

compressed and shifted versions. Scale parameter dilates (s>1) or compresses (s<1)

the signal. If high scale is selected, entire signal is spanned but not in details. If low

scale is selected, there is a detailed view but in a short time of duration.

CWT algorithm steps are:

1) Wavelet window is at the position of the signal beginning.

2) Set the scale parameter equal to 1 ( s=1).

3) Integrate the multiplication of the signal with the wavelet function.

4) Shift the wavelet to t=t , and get the transform value there.

5) Go to step 3 till the end of the signal.

6) Increase s with a small value; repeat 3 to 5 for all s.

7) CWT is calculated.

Decomposing the signal into the sub bands is shown in Figure 3.27. Also, inverse

transform is needed for getting the signal back without loss of information. The
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wavelet coefficients are used for reconstruction. Wavelet analysis involves filtering

and downsampling, and reconstruction process consists of upsampling and filtering.

Figure 3.27 Decomposing of Non-Stationary Signal.

3.2.2 Comparison of Time Frequency Conversion Methods

Before making a comparison, Heisenberg uncertainty principle must be known.

The uncertainty relationship states that one cannot measure a frequency, and the time

at which the frequency occurs, simultaneously with infinite accuracy. The product of

time-resolution and bandwidth is a constant close to one, therefore a proper

consistency is required between them (Figure 3.28).

    Figure 3.28 Energy Bandwith Products must be the same
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Resolution of time and frequency is shown in Figure 3.29. Every box area is

equal. Resolution can be selected for different sizes. Note that, resolution in STFT is

selected at the beginning and constant. Here the horizontally large and vertically

narrow box means frequency resolution is good, but time resolution is poor. In

contrary, horizontally narrow and vertically large box means frequency resolution is

poor, but time resolution is good.

      Figure 3.29 Time and Frequency resolution

ts  and ws  can be calculated for a function s(t) using equations 3.24.

( ) dttst tt
222 )(ò -= ms ( ) dwwsw ww

222 )(ò -= ms    (3.24)

since s  determines  the  spreading  of  the  energy,  we  want  a  small ts as  well  as  a

small ws . But, according to Heisenberg’s uncertainty principles we will always have

Equation 3.25 for any function:

2
1

³wtss             (3.25)

and only gaussian functions achieve equality.

The comparison of transformations is in Figure 3.30a and the performance of the

methods is shown in Figure 3.30b. Here, precision or accuracy means how details of

the signal in time converted into time-frequency domain successfully. Security
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means how successful inverse transforming into time domain again. Window size of

the wavelet is automatically adjusted; therefore it is a better method than STFT.

   Figure 3.30 a) Transformation comparison  b) Precision versus security graph

3.2.3 Time Frequency Masking

In another approach, time frequency masking gets two inputs, one of them is

directly from the output of short time Fourier transformation and the other is using

ICA after short time Fourier transformation and then basis vector clustering. The

method is based on a two-stage process where independent component analysis

(ICA) is first employed in each frequency bin and then time-frequency masking is

used to improve the performance further (Sawada, Araki, Mukai & Makina, 2006).

The flow of this method is in Figure 3.31.

Figure 3.31 Flow of another Time-Frequency Masking approach (Sawada, Araki, Mukai
& Makina, 2006).
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In spectrogram graphics (Figure 3.32), we can see that the desired source can be

recovered by certain success, but combination of ICA and T-F masking, some

frequency components can be clearly recovered (from 250 Hz to 450 Hz portion).

    Figure 3.32 ICA performance enhancement using TF-masks.

Binary like masks are sometimes called hard masks. The mask has only two

levels: “1” for accepting, “0” for removing. Some features of a signal are lost

because the decision is so strict:  pass or do not pass.  The solution is soft  mask that

has  more  levels.  One  method is  finding  a  ratio  mask  based  on  SNR ratio.  Another

method is finding a soft-mask based on an estimation of the weights for the

frequency sub-bands of mixture.

Masking can be used for signal separation and it is not like ICA unless the mask is

generated from the mixture signal without knowing about the desired signal. If we

derive the mask using the desired signal this can be only used for filtering.

For the first method (Srinivasan, Roman, & Wang, 2004), we want to find a signal

partly suppressed by other signals. There is no need to have the knowledge of

complete spectrum for signal recognizing and this is called as missing data approach.

But in our case, recovering the signal is important.
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There are two steps for missing data approach; Identifying reliable evidences and

recognizing the signal using this incomplete evidence.

For the first step, a mask is placed on the spectral data and is defined using local

SNR. A speech and a noisy speech spectrogram is an example. Speech mask is

obtained from the speech and the SNR Mask is calculated from the SNR ratio. Here,

Auditory  Scene  Analysis  (ASA)  and  SNR  estimation  can  be  done  together  to  find

better SNR mask (Figure 3.33). ASA is a pre-processing stage for robust automatic

speech recognition and requires no noise model. ASA separates out the speech

evidences from other sound sources, but fails getting all speech evidences especially

if speech spectro-temporal regions are contaminated with other sounds.

 Figure 3.33 Speech and SNR mask example (Srinivasan, Roman, & Wang, 2004).

For the second step, there are two approaches. One can either estimate the missing

values and then proceed as normal (missing data imputation) or use the distribution

of the remaining values alone (marginalization). Marginalization generally

outperforms imputation.  Both techniques can be improved by the additional use of

counter-evidence: even if we don't know the true speech value for some time-

frequency pixel we can put a bound on it: the speech energy cannot be greater than

the energy in the mixture. Thus speech sounds which require more energy than the

total available can be rejected.

For example, two re-scaled output signals, )(ˆ1 ny and )(ˆ2 ny , are transformed into

the frequency domain e.g. using the Short-Time Fourier Transform STFT so that two

spectrograms are obtained as in Equation 3.26:
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1ŷ → Y1(ω, t), 2ŷ → Y2(ω, t)          (3.26)

where ω denotes the frequency and t is the time frame index. The binary masks are

then determined for each time-frequency unit by comparing the amplitudes of the

two spectrograms as in Equation 3.27:

     BM1(ω, t) = τ |Y1(ω, t)| > |Y2(ω, t)|

 BM2(ω, t) = τ |Y2(ω, t)| > |Y1(ω, t)| (3.27)

where τ is a threshold. Next, each of the two binary masks is applied to the original

mixtures  in  the  T-F  domain,  and  by  this  non-linear  processing;  some of  the  speech

signals are removed by one  of  the  masks  while  other  speakers  are  removed by  the

other mask. After the masks have been applied to the signals, they are reconstructed

in the time domain by the inverse STFT. If there is only a single signal left in the

masked output, a selection criteria is needed (Bell, & Sejnowski, 1997; Abdallah, &

Plumbley, 2001). Figure 3.34 shows the block scheme of the system.

    Figure 3.34 Masking the noisy original source using inverse spectrogram

3.2.4 Time Frequency Enhanced ICA Method

A block diagram of the mixing process is in Figure 3.35.

  Figure 3.35 A block diagram of Mixing Sound Signals.
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In order to introduce time-dependency in the Fourier transform, a simple and

intuitive solution consists in pre-windowing the signal x(u) around a particular time t,

calculating its Fourier transform, and doing that for each time instant t. The resulting

transform is called the Short-Time Fourier Transform (STFT). A block diagram of

creating masks is in Figure 3.36.

    Figure 3.36 A block diagram of finding Masks

A block diagram of applying masks to the STFT images is in Figure 3.37.

Figure 3.37 A block diagram of applying masks.

A block diagram of getting recovered sound mixtures back from T-F domain into

time domain is in Figure 3.38.

      Figure 3.38 A block diagram of getting mixtures back.

Now, Independent Component Analysis can be applied to these enhanced

mixtures to get the original signals back more successfully (Figure 3.39).
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  Figure 3.39 A block diagram of Independent Component Analysis.

3.2.5 Application of Time-Frequency Enhanced ICA method

Considering sound mixtures, sound analysis in time domain cannot show the

details of the sound signal or it is not clear to understand the structure of sound

mixtures and additive noise. Independent Component Analysis can be used in the

time domain to separate the sound mixture into its components. But to increase the

performance of Independent Component Analysis, a pre-processing method can be

used. A pre-processing method can be, first transforming the sound mixture into the

time-frequency domain, second applying the image processing techniques in this

domain, third inverse transforming back to the time domain. After pre-processing

stage Independent Component Analysis can concentrate on a desired component of

sound mixture or can be more selective after pre-processing stage.

Time-frequency transforming methods have two important parameters: precision

and security. Precision or accuracy means how details of the signal in time converted

into time-frequency domain successfully. This is important to obtain all the signal

components in a sound mixture in detail in the resulting image for our research.

Security means how successful inverse transforming into time domain again. Here, in

our research image must be converted into sound signal with less loss.

For transforming sound into time-frequency domain STFT or spectrogram is used.

But, also Wavelet transformation is also used for comparison which is better choice.

STFT is a very secure method, but resolution is not so high. Wavelet resolution is

better than STFT, but security is not better.
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Detecting noisy segments on an image and creating a mask which removes those

segments from this image is a very popular image processing filtering application.  In

our research the same approach can be used either noise or unwanted signal

components in a signal mixture. Noise removal also can be used but the main aim is

to remove or weaken the weight of some sound components using proper masking. If

this masking can be possible in time-frequency domain, we get a new mixture to use

ICA method more effectively in time domain.

Here,  STFT and  Wavelet  Analysis  applications  were  searched  to  understand  the

filtering and ICA enhancement and the mechanism of sound processing using image

processing in MATLAB.

This example generates a sawtooth and sinusoidal test signal corrupted by a noise

source. First corrupted signals transformed into time-frequency domain individually

using Short Time Frequency Transform (STFT). Then a hard mask is calculated and

applied to the Time Frequency image to obtain noiseless image version of the

signals. At the last inverse STFT is applied to obtain original signals back without

noise. Matlab figures show these steps below. Figure 3.40 shows original signals,

noise signal and their Power Spectral Density Estimations.

Figure 3.40 Original signals, noise signal and their Power Spectral Density Estimations
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Figure 3.41 shows STFT image of corrupted saw tooth and sinusoidal signals on

the first two graphics. The following two graphics show calculated hard masks. The

last two graphics show the masked versions of STFT images. The Figure 3.42 shows

the original signals that contain noise and the recovered signals that have reduced

noise.

  Figure 3.41 Creation of masked STFT images

   Figure 3.42 Original noisy test signals and the recovered signals with noise reduction.

In  MATLAB,  a  ratio  mask  is  created  quantizing  a  signal  into  levels  using  their

energy thresholds. Here MATLAB quantizer command is used to create mask using

the original signal. Figure 3.43 shows the mask and the signal we get using inverse

spectrogram.
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Figure 3.43 Masking of the spectrogram and getting the original source using inverse

spectrogram

If  we  mix  the  original  sawtooth  signal  with  a  random  noise,  still  we  get  the

original using the filtering option of the masking. The filtered result is shown in

Figure 3.44.

   Figure 3.44 Masking the noisy original source using inverse spectrogram
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3.2.6 Applications of Wavelet Signal Denoising

Wavelet denoising applications were presented to understand wavelet filtering

(Figure 3.45 - 3.51). All the graphics were  created using the Wavelet tools of

MATLAB.

3.2.6.1 Wavelet sinusoidal signal denoising

(a)

(b)

(c)
Figure 3.45 a) Signal generation: Sinusoidal signal is corrupted by random noise. b) Denoising with
Wavelet Transform toolbox. c) Residual display
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3.2.6.2 Sinusoidal signal denoising with low noise level

Here denoising is more efficient compared to application 2.

(a)

(b)

(c)
Figure 3.46 a) Signal generation: Sinusoidal signal denoising with decreased noise level. b) Denoising
with Wavelet Transform toolbox. c) Residual display
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3.2.6.3. Denoising of noise corrupted chirp signal

(a)

(b)

(c)
Figure 3.47 a) Signal generation: Chirp signal corrupted with noise b) Denoising with Wavelet
Transform toolbox. c) Residual display
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3.2.6.4 De-noising of speech, sound and noise mixture application

(a)

(b)

(c)
Figure 3.48 a) Signal generation: Speech, bird sound and noise mixture b) Denoising with Wavelet
Transform toolbox. c) Residual display
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3.2.6.5 Signal decomposition of knee signal

Level 5 Haar Wavelet was used. Figure 3.46 and 3.47 show the decomposition steps.
Here knee signal was logged using sound data logging system with stethoscope
heads attached.

(a)

(b)

(c)
Figure 3.49 a) Knee Signal decomposition tree mode display b) Separate mode display.
Decomposition at level 5: s=a5+d5+d4+d3+d2+d1 c) Denoising with Wavelet Transform toolbox.
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(a)

(b)

(c)

(d)
Figure 3.50 a) Residual display of the signal after denoising. b) Signal and de-noised signal and
their coefficients. c) Using wavelet denoising, de-noised and residual version of knee signal.
d) Using wavelet denoising, de-noised and residual version of knee signal.
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3.2.6.6 Heart sound

Heart Sound data (sonkalpa.wav) recorded by sound data logging system.

(a)

(b)

(c)

(d)
     Figure 3.51 a) Heart Sound data. b) De-noising. c) Residual. d) ICA components (icayap.m)
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Sound Analysis in time domain cannot show the details of the sound signal or it is

not clear to understand the structure of sound mixtures and additive noise.

In future, ICA will be applied to a mixture without proposed pre-processing

method. Also, another ICA results will be obtained to a mixture after pre-processing

stage. These two results will be compared to show the success of proposed method.

Also  this  research  will  show the  comparison  of  the  time-frequency  methods.  Mask

estimation and missing components reconstruction will be also analyzed.
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CHAPTER FOUR

DATA LOGGING SYSTEMS

During the current thesis work, two data logging hardware have been designed

and developed for sound and biomedical applications especially designed to use

independent component analysis.  For sound applications a multi-channel USB sound

card has been designed and used, for kinematic signal processing such as knee and

jaw movement detection an accelerometer data logging system. The following

sections describe the hardware and the software of these systems.

4.1 Multi Channel USB Sound Data Logging System

The sound processing applications usually require powerful and easily controlled

hardware.  Generally  channel  switched  analog  –  digital  converters  are  used  on  that

hardware and they don’t achieve parallel data recordings. But, multi channel

simultaneous recording is needed for some sound processing applications. These

applications are sound separation into components, speech filtering from background

noise or music, speech enhancement, etc. Here, Independent Component Analysis

(ICA) method is a very important pre-processing stage for sound signal processing

applications.

A low cost software controlled multi channel sound capturing device was

designed and was operated with the aid of user-friendly PC software. It has universal

serial bus (USB) interface because of it’s widely use. Therefore it can be used in both

desktop and notebook computers. System consists of parallel USB sound cards for

every recording channel. For example, in our application four recording channels are

built and their inputs are gathered in a standard connector to connect microphones

from one cable. The hardware is not so complicated, but the software has to start and

stop sound cards synchronously, and record the sounds simultaneously which is

required ICA applications.

Here, the system was introduced and some ICA applications were done using the

developed sound data logging system.
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4.1.1 Sound Data Logging System Hardware

Initially, a three channel capture device was built using one microphone input of a

sound card with the aid of the analog switch mechanism. Channel selection was

made by using the serial port of the PC. The major drawback of this device is the

non-simultaneous recording. For this reason ICA analysis could not be applied

properly. Also, because of the need for the RS232 serial channel control, notebooks

PCs are not suitable. Notebook PCs don’t have serial ports.

For the new version of pre-developed hardware four channels simultaneous sound

capturing device was designed using most popular USB 2.0 interface. This system

and four channel microphone connection was shown in the Figure 4.1. Here, four

USB sound cards were connected in a parallel manner without a switching

mechanism over a multiplexer and time divison for one sound card. After USB

connection to a PC, every sound card gets the same sequentially following device id

everytime. Thus, the sound recording channels are exactly at the same position.

  Figure 4.1 Four Channels Sound Capture Device.

The block schematic of the sound data logging system is in Figure 4.2. The USB

expander is required many USB sound cards connection from one USB port to a PC

or mobile computer. Figure 4.3 shows the photos of the system. Figure 4.4, shows

photo of the microphone apparatus.
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      Figure 4.2 Sound data logging system block schematic.

Figure  4.3  Picture  of  the  Sound  Data  Logging  System  developed  for  the
current thesis work.

      Figure 4.4 Photo of Four Channel microphone apparatus.

A stethoscope head and microphone combination was used instead of capacitive

microphones only. The drum on the stethoscope head gets the vibration from the

knee cap or lateral positions. Vibration is converted to sound through the air channel

and at the end of the tube a microphone is placed to record a sound signal. Figure 4.5

shows one channel stethoscope apparatus.

   Figure 4.5 One channel stethoscope apparatus.
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4.1.2 Sound Recording Software

As seen before the hardware is very basic, but software especially has to run the

sound cards in parallel. For sound capturing, recording software was designed and

written in Borland C++ Builder. The main screen of the recording software is in

Figure 4.6. Four channel sounds are captured to the system RAM for guaranteeing

synchronizing speed. After capturing has finished, RAM buffers are transferred to

the  hard  disk.  Software  detects  every  sound  card  USB  identities  every  time  at  the

right order. Recording sound files first being saved in a sufficient RAM buffer area,

after the recording operation completed transferred from RAM buffers to the

harddisk automatically. The purpose of using RAM buffering is to guarantee the

speed of multiple channel synchronous recording. Any sound analysis like ICA is not

operated in this program. The analysis software is in MATLAB.

  Figure 4.6 The main screen of the recording software.

Recording software is in C and the analysis software in MATLAB, but they can

be operated in MATLAB software. Matlab Data Capture Library is used in Graphical

User Interface (GUI) code. Four analog objects simultaneous triggering function of

the library was used to achieve simultaneous data capturing.
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 The main screen of the recording software in MATLAB is shown in Figure 4.7.

Both C and MATLAB code successfully operates sound data logging hardware.

Here, the input of the sound cards also can be other signals instead of sounds to

record. For example, knee joint movement sounds can be recorded and analyzed with

the aid of stethescope apparatus. Also, the heart pulses and breathing can be recorded

using multi channel stethescope microphones.

   Figure 4.7 Main screen of MATLAB recording software

4.1.3 Sound Data Recording System Tests

A recording test with three microphones in a room with MATLAB software was

done with speaking beside microphone 1. All the microphones are in a line distant 1

cm each others. Channel four is empty. The system guarantees the simultaneous

recording criteria. Recording results for three channels are shown in Figure 4.8.

  Figure 4.8 Three channels simultaneous sound recording result. (1 cm distance)
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When the distance between microphones increased to 20 cm and spoken beside

the microphone 1, the three simultaneous recording results are in Figure 4.9.

Amplitude and noise difference between microphone 1 and 3 can be seen, and also

signal delay difference was existed. The delay difference was not sourced from the

sound data logging system; it was the result of the experiment.

     Figure 4.9 Three channels simultaneous sound recording result (20cm distance).

Placing four microphones separated with equal distances from each others on a

straight line causes phase differences in the recorded data at different recording

channels. Because of the distance differences of microphones to the sources, we have

phase delays on the recorded signals. Four test signals such as sinusoidal wave,

square wave, sawtooth wave, and chirp sound was created to test ICA performance.

In the Figure 4.10,  a sample microphone placement is shown.

  Figure 4.10 Microphone placement and the distances from the sound source.

Several tests have been realized using MATLAB software to understand how ICA

algorithms perform and which are the best algorithms for knee problem.
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4.1.3.1 Sound Data Recording System Test 1

Original signals (Fig. 4.11), mixtures (Fig 4.12), some ICA methods results (Fig 4.13

to Fig. 4.16) with no phase shift (using dortkanal.m).

    Figure 4.11 Original Sources

Figure 4.12 Mixed Signals

     Figure 4.13 Fast ICA Algorithm Results
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          Figure 4.14 ML ICA Algorithm Results

    Figure 4.15 Jade Algorithm Results

    Figure 4.16 Shibbs Algorithm Results

Here  as  a  result,  Fast  ICA,  Jader  and  Shibbs  algorithms perform better,  but  ML

ICA fails. Only the band-limited chirp sound separated successfully.
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4.1.3.2 Sound Data Recording System Test 2

To prove, there are phase delays between microphones, on a glass surface four

microphones recorded the test signal which is emitted from a speaker. (Figure 4.17)

Test signal here is a sinusoidal wave which has the frequency of 1 kHz.

Figure 4.17 Phase Delay Test System.

Below, the Figure 4.18 shows the phase delays between the recordings in general,

and Figure 4.19 shows the same delays in detail.

              Figure 4.18 Phase Delays between channels (general view)

   Figure 4.19 Phase Delays between channels (detailed view)
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4.1.3.3 Sound Data Recording System Test 3

A real-time ICA test system created to separate three sounds on a glass surface

(Figure 4.20). The sinusoidal signal amplitude is 5V and frequency is 1 kHz. Gong

and Child Laughter sound waveforms are shown below in Figure 4.21.

    Figure 4.20 Real Time ICA Test System.

   Figure 4.21 Gong and Laughter Sound.

Mixtures recorded by the microphones are shown in Figure 4.22.

      Figure 4.22 Mixtures
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Fast ICA, ML ICA, Jader algorithm results are shown in the following figures

(Figure 4.23 to Figure 4.25).

  Figure 4.23 Fast ICA Results

   Figure 4.24 ML ICA Algorithm Results

  Figure 4.25 Jade Algorithm Results
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4.2 Multi Point Multi Dimensional Accelerometer Data Logging System

For knee and EEG related studies a Multi Point Multi Dimensional (MPMD)

Accelerometer Data Logging System (ADLS) has been built on a PIC

microcontroller.

4.2.1 Accelerometer Data Logging System hardware

The MPMD ADLS hardware consists of two main parts; i) accelerometers, and ii)

a controller board. Three accelerometers are placed on an elastic band to collect data

from knee cap and two lateral positions. The same elastic band fits also to the jaw

locations. The microprocessor based controller unit is located on a printed circuit

board and mounted on a plastic case. On the controller board there is an LCD display

and a LED to illustrate the currently collected data and working status of the

controller, respectively. USB cable from PC is connected to the USB port of the

system for data transfer and power supply. The designed system photo is given in

Figure 4.26.

Figure 4.26 Picture of Accelerometer Data Logging System developed for

the current thesis work.

The designed MPMD ADLS system block scheme is shown in Figure 4.27. The

heart  of  the  MPMD  ADLS  is  based  on  a  USB  PIC  microcontroller  (Microchip,

2009). Microcontroller is needed to collect three accelerometers data simultaneously
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and store or send them to a desktop or mobile personal computer. Also, the ADLS

system circuit board has 3.3V voltage regulator, 3.3V-5V level translators, current

buffers, real time clock circuit, and SD card interface circuit. A microcontroller

based real-time operated system has been developed to achieve high speed USB data

transfer to a mobile computer. This software has been developed in C programming

platform. USB 2.0 guarantees enough data bandwidth for real time operation and

mobile operability without using a RS232 serial port.

Figure 4.27 Accelerometer Data Logging System Schematic

Mobile computer software has been developed on MATLAB platform to achieve

robust data logging and analyzing on the same program code. MATLAB software

communicates with ADLS via USB and shows the collected data on the screen and

stores them to the RAM memory or hard disk at  real  time. Moreover,  data analysis

with the developed software can be processed at real time or any time after data

collection has finished.

In the developed hardware system, three axes accelerometer module

LIS3LV02DQ (ST Microelectronics, 2009) was used to collect accelerometer data.

This accelerometer simultaneously converts three axes acceleration data and it has a

user selectable full scale conversion of ±2g, ±6g. It has the capability of measuring

acceleration over a bandwidth of 640 Hz for all axes. The communication protocol
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can be I2C or SPI for the microcontroller interface. The possible applications are:

free fall detection, motion activated functions, inertial navigation, virtual reality input

devices and vibration monitoring and compensation. Accelerometer module and the

development prototype board is shown in Figure 4.28.

  Figure 4.28 Development prototype board and the accelerometer module

  The currently developed MPMD ADLS supports up to four accelerometers

simultaneously. However the number of supported sensors can be easily increased by

upgrading the buffer hardware. PIC microcontroller collects data from

accelerometers and transfers them to a mobile computer with USB 2.0 interface.

Three axes data from each three accelerometers means nine channels of data need to

be acquired. This size of data collection is better achieved by USB interface rather

than available RS-232. The LCD screen shows the accelerometer results, processing

steps, and time stamps. The collected accelerometer data were transferred to the PIC

microcontroller memory via serial peripheral interface (SPI) bus.

4.2.2 Mobile Computer and ADLS software

The  software  of  the  MPMD  ADLS  system  is  based  on  two  platforms;  mobile

computer and USB PIC microcontroller. The software schematic is shown in Figure

4.29.
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Figure 4.29 The software schematic of the complete MPMD ADLS system.

On the MPMD ADLS part, the microcontroller software collects three

accelerometer data simultaneously, forms a data packet in a defined protocol format

and sends them to a mobile computer using on-board USB interface. On-board USB

unit provides an advantage of speed and space over many currently available systems

with RS232-USB converters.

The most important specification of the software is to send a convert command to

all accelerometers at the same time and reading the accelerometer data

simultaneously. This is one of the main requirements for the success of ICA

technique. A data packet consists of 15 bytes of accelerometer data is transferred to a

mobile computer via USB interface without making any processing on them. Data

sending and receiving control are performed to guarantee synchronous data transfer

between microcontroller and the mobile computer.

The flow chart representation of the microcontroller software algorithm is shown

in Figure 4.30. START command from computer initiates data receive from data

logging system and STOP command from computer cancels data transfer and puts

data logging system into wait state.

MATLAB graphical user interface (GUI) was used to obtain data from data

logging system and store on computer disk. The developed GUI program provides

real time or offline data visualization and analyzing option. Figure 4.31 shows

MATLAB software main graphical user interface screen.

MPMD ADLSPC or Mobile Computer

USBAccelerometer
Data

Processing Software
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Real Time Accelerometer
Data

Capturing Software
(C language)
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        Figure 4.30 Algorithm of the microcontroller software

Figure 4.31 MATLAB software developed for the current thesis work.

On the main screen, there are many buttons, option or list selections, and displays

to provide a user-friendly interface. Start and Stop buttons initialize and finalize data

logging process. If data count is defined different from zero, then the number of
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samples is collected according to provided count number. The number of

accelerometers to be used can be selected from “How Many?” edit box and

physically connected number of accelerometers is shown on “Connected” edit box.

Previously collected data loading from memory and saving the currently collected or

edited data to memory is controlled from the file window. For the test purposes, all

accelerometers data can be visualized in two or three dimensional illustration.

Accelerometer time trends are shown in real-time on the main screen. Figure 4.32

shows nine channels of logged data clearly when the accelerometers moved in each

direction randomly.

Available MATLAB graphical components such as numeric displays or bar and

three dimensional graphics are slow processes and affect the overall real-time

software performance. However, graphical user interface is important for

visualization. ActiveX visual components were used here for speeding up the

graphical update instead of readily available MATLAB components.

        Figure 4.32 Nine channels of example logged data.

The  MATLAB  software  opens  two  USB  communication  tunnel  for  reading  and

writing data and examines whether USB data logging system connected or not. If the

system is connected, then the system USB identity is verified and the software runs

online, if not software enters simulation mode for testing or analyzing pre-recorded

data.
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CHAPTER FIVE

ICA BIOMEDICAL APPLICATIONS

Applying Blind Source Separation (BSS) techniques is very helpful for cleaning

and analyzing Electroencephalogram (EEG) data. Because of the improved

separation nature, ICA is a preferred method rather than formerly used PCA by EEG

researchers. The same EEG potential is recorded from more than one electrode, for

that reason these signals are supposed to be highly correlated. ICA is very successful

in order to get the most important information contained in EEG signals. That is

important both in diagnosis and research because the amount of data to be processed

is reduced.

Independent Component Analysis methods were analyzed and applied to a

problem to discover the advantages and performance of it. As application areas,

Artifact Cleaning on EEG Data and diagnosing the problems of human knee is

selected.

5.1 EEG Study

EEG measures potential distribution as a sum of large number of neurons

potentials by placing electrodes on scalp. EEG measures spontaneous activity

(continuous recording) and evoked potentials (triggered by a stimulus, e.g. auditory

or visual). EEG is a superior method to explore the brain activity because of its

milliseconds time resolution compared to seconds and minutes resolution of other

methods. EEG directly measures the electrical activity in the brain, but other

methods measure blood flow or other metabolisms. Newer research typically

combines EEG or MEG with MRI or PET to get high temporal and spatial resolution.

Contamination of EEG data can occur at many points during the recording

process. Externally generated artifacts, such as line noise, can be removed, but

biological  artifact  signals  must  be  removed  after  the  recording  process  using

enhanced methods such as filtering and ICA algorithms. Figure 5.1 shows

waveforms of some of the most common EEG artifacts.
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  Figure 5.1 EEG artifacts. a) Normal EEG b) Eye Blink c) Eye Movement
  d) 50 Hz Line Noise e) Muscle Activity f) Pulse.

Applying Blind Source Separation (BSS) techniques is very helpful for cleaning

and analyzing EEG data.  Because of improved separation nature, ICA is a preferred

method rather than formerly used PCA by EEG researchers. ICA Schematic Diagram

for EEG is in Figure 5.2 (Enghoff, 1999).

 Figure 5.2 ICA Schematic diagram for EEG.

Because the same EEG potential is recorded from more than one electrode, these

signals are supposed to be highly correlated. ICA is very successful in order to get
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the valuable information contained in EEG signals. That is important both in

diagnosis and research because the amount of data to be processed is reduced.

Functional relations between neocortical regions can be measured by covariance and

coherence of EEG data. Evoked or event-related potentials are the subject of the

study (Nunez et al., 1997, 1999). Also, there is a very popular software for ICA in

EEG is MATLAB based ICALAB software (Delorme & Makeig, 2004).

The EEG signal has typical amplitude of 2-100 microvolts and a frequency

spectrum from 0.1 to 60 Hz. Most activity occurs within the following frequency

bands; delta (0.5 - 4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-22 Hz) and

gamma (30-40 Hz). Here, delta waves occur in sleep stages three and four, theta

waves  are  seen  in  light  sleep  of  before  falling  sleep,  alpha  waves  occur  in  relaxed

condition and usually relates to consciousness, sensorimotor (SMR) waves are

related to physical activities, beta waves are seen in active concentration, and gamma

waves occur in higher brain activities such as calculation or thinking. The frequency

bands of one second EEG signal are shown in Figure 5.3. These frequency bands

activities are often related to particular cognitive states (Teplan, Krakovska, & Stolc,

2006). Brain Computer Interface (BCI) related studies such as Wolpaw (2007) states

that EEG signals can be used for computer interfaces. For example, detected alpha

band signal electrodes over the visual cortex show visual relaxation (University of

Oxford Robotic Research Group, 2009).

Figure 5.3 EEG frequency bands

http://www.labmeeting.com/papers/author/nunez-pl
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EEG signals have high temporal resolution, but resolution is lost due to non-

stationary nature. Advanced extraction techniques can cope with the non-stationarity

problem. At least 0.5 sec data length is required to apply these techniques.

Cleaning of artifacts and EEG source localization are two consecutive steps in this

study. Rejecting artifact contaminated EEG data is possible, but it causes information

loss. Regression can be applied for removing electrooculogram (EOG) artifact using

simultaneously recorded EOG signals, but also this removes valuable EEG portions.

Here, ICA is a superior method for removing any kinds of artifacts from recorded

EEG channels. PCA is also can be used for this purpose (Jung et al., 2000; Romero,

Mailanas, Clos, Gimenez, & Barbanoj, 2003; Xue, Li, J., Li, S., & Wan, 2006).

Determining which regions of the brain are active is very challenging problem.

The EEG data is first decomposed into signal and noise subspaces using PCA

decomposition. After discarding the noise subspace, signal subspace contain less

noisy and lower dimension data. Then ICA is applied to this signal space for

separating multi-channel EEG data into activation maps due to temporally

independent stationary sources. For each activation map, EEG source localization is

performed by looking only for a single dipole per map. Source localization is

completed by localizing multiple dipoles independently.

Here, heart pulses contaminated EEG data were analyzed using various ICA

algorithms and heart pulses extracted from EEG data successfully. Also, the sweating

artifact identified and cleaned using ICA. Our further levels in this paradigm will be

to design custom made experiments with certain artifacts. Thus we will have a clear

assesment of our methods in real life problems.

5.1.1 ICA on EEG Heart Pulses Artifact

The theoretical appeal of ICA applications makes it a powerful tool for EEG

analysis in real life. So in this study, first level approach of our group is shown on

this issue.

The  real  EEG signal  was  from a  healthy  subject  at  an  age  of  30,  provided  from

Dokuz Eylul University Biophysics Department. The EEG was truly contaminated
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with  heart  pulses.  Even  the  eye  observation  could  prove  the  presence  of

approximately 70 beat/s heart rate. The contamination was so strong that the peaks of

the heart pulses were in the most of the sweeps higher than the average EEG baseline

rhythm. Ten channels of spontaneous EEG data (Cz, O1, O2, F3, F4, P3, P4, T3, T4,

EOG) are shown in Figure 5.4.

   Figure 5.4 10 channel EEG data (obtained from DEU Biophysics Dept.).

2048 samples (4.096 seconds) of contaminated EEG data were processed by using

Fast  ICA,  Efficient  ICA  and  Maximum  Likelihood  (ML)  ICA  algorithms.  Ideal

approximation of an isolated contamination signal was found by ICA extraction. The

results are shown from Figure 5.5 to Figure 5.8.

Figure 5.5 Components found by Fast ICA.
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 Figure 5.6 Heart Pulses Found by FastICA

Figure 5.7 Heart Pulses found by EFICA.

   Figure 5.8 Heart Pulses found by MLICA.

Heart pulses were easily detected and extracted from EEG recordings using

different type of ICA algorithms. Fast ICA algorithm doesn’t converge well, but

using hyperbolic tangent nonlinearity a satisfactory result was obtained. On the other

hand, Efficient ICA (EFICA) and Maximum Likelihood ICA (MLICA) algorithms

worked  very  well.  Due  to  different  statistical  properties  of  artifacts,  different  ICA

methods have been used. For example, extended ICA converges fast and can be used

for both super and sub-gaussian signals.

EEG recordings from scalp are linear mixtures of temporally independent cerebral

and artifactual sources that occur from brain parts, scalp and body. Because of the

non-gaussian nature of EEG signals, ICA is very successful for extracting and

removing the artifacts.

5.1.2 ICA on EEG Sweating Artifact

The real EEG signal was taken from two healthy subjects with sweating problem

during EEG recording. The EEG signals were contaminated with sweating artifact as

a slowly changing sinusoidal baseline signal which has approximately 10 to 20

seconds periodic-like behavior. EEG data with sweating contamination are shown in

Figure 5.9. About 0.05 Hz sinusoidal artifact can be easily seen in all EEG channels.

Also,  at  the  right  end  of  every  channel  plot,  histogram of  this  channel  is  given  for
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every EEG channel. This histogram gives an idea about the gaussianity of the

signals.

          Figure 5.9 EEG channels and their histograms (obtained from DEU Biophysics Dept.)..

Sweating artifact is filtered using 0.05 Hz notch filter design. Filter Magnitude

and  phase  responses  are  given  in  Figure  5.10.  The  cleaned  EEG  channels  after

filtering are shown in Figure 5.11.

          Figure 5.10 Notch Filter Characteristics.
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Figure 5.11 Sweating artifact removed from EEG (obtained from DEU Biophysics Dept.)
channels.

Now  another  EEG  data  set  will  be  analyzed  for  muscle  contamination.  After

cleaning these muscle artifacts, a custom experiment will be designed for EEG data

recording. This experiment includes every artifact contamination scenarios.

EEG recordings contain desired brain activities data and undesired artifacts. These

artifacts that caused from muscles, line noise, sweating and electrode reference

problems must be removed using various filtering methods or statistical analysis.

Sweating artifact is caused by skin impedance change on the electrodes. Sodium

chloride and lactic acid from sweating reacting with metals of the electrodes may

produce slow baseline sways at high amplitude. Frontal electrodes generally contains

sweating artifact. Removing this artifact can be done with a high-pass filter.

Designing this very low frequency filter is not easy, but still practically applicable.
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A band-pass filter was designed to find the sweating artifact. Also moving

average can be used for this purpose. Possible slow oscillations due to sweating

artifact can be detected using autocorrelation function. Independent component

analysis (ICA) is also used to find this sweating artifact component In this study

spontaneous EEG recordings were obtained from subjects with sweating problems.

These kind of sweating signal frequencies are in the range of 0.05 Hz to 0.5 Hz. This

requires 2-20 seconds of recordings to analyze for one complete period (Siddiqui,

Osuna, Walters, & Chokroverty, 2006). Sweating artifact was identified and

extracted from ten channel recordings by using ICA techniques.

Figure 5.12 shows ten channels of spontaneous EEG data (Cz, O1, O2, F3, F4, P3,

P4, T3, T4, EOG) and their autocorrelation graphics. Possible periodic-like signal

channels can be detected by investigating periodicity of autocorrelation results.

A 0.05 Hz band-pass filter was designed to find this sweating artifact. Figure 5.13

shows possible sweat artifact oscillations after filtering.

Figure 5.12 Ten channels of sweating contaminated spontaneous EEG data (obtained from
DEU Biophysics Dept.).
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Figure 5.13 Band-pass filter results.

Contaminated EEG data were processed by using Fast ICA, Efficient ICA and

Maximum Likelihood (ML) ICA algorithms. Although they gave similar results, here

only Fast ICA results are presented in Figure 5.14. Approximate sweating signal is

on the last channel of ICA results that ordered by their kurtosis values.

    Figure 5.14 FAST ICA results and their kurtosis values.
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The result can be seen more clearly by applying moving average method in Figure

5.15. The default span for the moving average is 5. The same analysis results for

another subject are shown in Figure 5.16, 5.17 and 5.18.

   Figure 5.15 Moving average result of Last IC

   Figure 5.16 10 channel of EEG data and their autocorelation results.

   Figure 5.17 FAST ICA results and their kurtosis values.
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   Figure 5.18 Moving average result of Last IC.

Sweating  artifact  was  detected  on  the  last  channel  of  ICA results.  Results  using

Fast  ICA algorithm is  quite  satisfactory,  on  the  other  hand,  Efficient  ICA (EFICA)

and Maximum Likelihood ICA (MLICA) algorithms also give the similar results.

The other artifacts, if they exist, especially muscle artifacts could be seen on the

last channel of independent components which has the smallest kurtosis value. This

method needs to be improved to obtain pure sweating artifact, because only kurtosis

criteria does not enough to classify it. Instead of sweating artifact removing by high-

pass  filtering,  using  ICA  method  can  be  a  solution  for  not  losing  the  very  low

frequency EEG information.

5.2 Knee Study

Knee  pain  is  an  extremely  common  complaint,  and  there  are  many  common

causes. It is important to make an accurate diagnosis of the cause of your symptoms

so that appropriate treatment can be directed at the cause. Some causes are meniscus

tears, tendonities, deformity of the knee joint with the age, pilica syndrome, etc.

Usually to diagnose them, X-Rays, MRIs, or arthroscopy methods are used. Purpose

of this study is developing a non-invasive method that supports diagnosing. The first

studies about knee problems diagnosing were done by Tavatha, et.al (1992) and

Zhang, Rolston, Rangayyan, Frank, & Bell (1992).

After using stethescope, it is found that knee researches are using accelerometer

instead of microphones or stethescope-microphone combination. But this

stethescope-microphone combination can be also searched whatever can be used or

not for knee recording in future. For example a new research was about stethoscope

based knee diagnosis system by Kim, Seo, Kang, & Song (2009).
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An easy way to diagnose knee problems from the exterior of the knee using

microphones with stethescope heads attached to the kneecap, and lateral knee

positions. Using stethoscope head provides us much gain than the one in microphone

only, so the gain must be reduced. The most important problem is to get the clean

sounds  from  the  knee  bones,  cartilages,  ligaments.  Moreover,  friction  of  the

microphone surface on the skin of the knee will cause noise. Independent component

analysis is used to separate the sound sources in the knee and also remove the noise.

Microphones are replaced by accelerometers for better achievement.

Accelerometers are well suited for the signals that are vibrations like signals. Again

ICA is needed to extract the knee signal from the other signal sources. Here, also

friction of the sensor to the surface of skin is not problem as in the microphone type.

These signals recorded from knee are called as vibroartographic (VAG) signals.

Studies (Krishnan & Rangayyan, 1999, 2000a; Krishnan, Rangayyan, Bell, &

Frank, 2000b, 2001) show us the proper selection for knee recordings is using

accelerometers. For VAG analysis, also another study by Eskandari, et. al (2003) has

been done with analog accelerometer. Accelerometer is used for detecting vibrations

on the knee cap when leg is on the movement. Microphones are not capable to detect

the very low frequency vibrations, but accelerometers are. Therefore, new

accelerometer interface has been developed and beside all mentioned knee studies, a

digital accelerometer was chosen in this thesis study.

The main aim of the designed data logging system is to develop a non-invasive

diagnosing technique in order to identify knee related problems (especially the

degeneration of articular cartilage surfaces). The undesired signals caused by

movement of knee, sensor-skin surface interactions, and muscle contractions can be

removed from knee recordings and the desired VAG signals for diagnosing of knee

problems can be obtained by using Time-Frequency analysis. Especially VAG

signals are non-stationary. Therefore time-frequency analysis is very powerful on

that kind of analysis. Nevertheless, so far there have been no applications about using

ICA for the filtering and analysis of VAG signals. We assume that, with the
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proposed MPMD ADLS, it will be possible to utilize ICA, especially, to extract the

signal of interest from the accelerometer sensor array.

Diagnosing knee problems with the vibration analysis on the knee cap and lateral

locations would be possible with the data logging system. The experimental protocol

was approved by the Clinical and Laboratory Research Ethics Board of the Dokuz

Eylul University.

The positioning of the three accelerometers to a knee cap and to lateral positions

is given in Figure 5.19a. Here, while the patient is moving the leg from the ground to

a certain upward position, vibrations inside the knee and also the angle position of

the leg in respect to the initial resting position are collected and transferred to a

mobile computer for analysis. Figure 5.19b shows the position of the accelerometers

for the right leg and also illustrates the leg movement. The VAG signal analysis

cannot be performed by the currently designed MPMD ADLS. However, when a

useful algorithm is developed to identify normal and abnormal VAG signals, it

would be possible to use more powerful microprocessor or processors to realize on-

board real-time analysis by MPMD ADLS.

  Figure 5.19 (a) Photo of the three accelerometers connected to the knee.

  (b) The movement of the leg during recording

Analyzing the structure of the knee joint is important to define the source of

vibration signals. The frictionless system of knee contains the synovial fluid,

articular cartilage and supporting bones (Buckwalter, J.A, Einhorn, T.A, Simon SR
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(Eds): 2000). Synovial fluid is important for lubrication and it also provides a

medium for the propagation of vibration signals. As a result, vibration signals

obtained from normal knee will be exempt from the additive vibration signals caused

by abnormalities.  Figure 5.20 shows the schematic of the knee joint and the synovial

fluid.

Analysis of the knee joint movement is also very important to understand the

nature of the vibration signals. The main muscles responsible for the knee joint

movement are the quadriceps and hamstring muscles. The quadriceps is attached to

the patella, and the patellar tendon connects this muscle to the front of the tibia.

When the quadriceps muscles contract the knee extends. In contrast, when the

hamstring muscles contract, they pull the knee into flexion. It is clear that these

mentioned muscles contraction will take part within the VAG signal.

    Figure 5.20 (a) Schematic of the knee joint. (b) Synovial fluid and joint cavity. (Reprinted
         with permission from Buckwalter JA, Einhorn TA, Simon SR (eds): Orthopaedic Basic

    Science, 2nd edition. Rosemont, IL, American Academy of Orthopaedic Surgeons 2000)

The repetitive movement of the leg can be achieved in two steps:

a) The movement starts from a position of the foot resting on the ground, and

continues rising the foot upwards. The movement ends at an angle smaller

than 90° because of the limitation of the knee joint.

b) The reverse movement is achieved from top to the ground.
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Of course, the speed of the movement is important. More smooth movements can

be obtained at high speeds, but the resolution of the vibration recordings is reduced.

The resolution can be made higher, but more discontinued movements can be

obtained at slow speeds. Here, a mechanical system can be built for supporting the

knee movements in an adjustable knee movement angle without forcing the limits of

the knee and adjustable knee movement speed.

Two accelerometers can be used for knee recording; one for vibration recording

and one for y axis tilt angle reading. But for the ICA, it is more appropriate to use the

three accelerometers for vibration recording. Moreover, the angle information is

obtained from the accelerometer located on the knee cap.

Using the mentioned experimental setup, the three channel vibration data was

obtained with an MPMD ADLS for the duration of 8,000 sample counts (400

samples per second). Nine channels of logged raw data are obtained from knee

movements. Each consecutive three signals representing vibrations on the x, y, and z

axes directions belong to a related accelerometer. Thus, there are a total of nine

signals. The signal amplitudes show the g-force in the range of -2g to 2g for the

recorded time interval of 20 seconds. Each signal shows a periodic-like behavior

representing the knee movements, in the direction down to up and up to down. The

crest corresponds to the extended leg position, whereas the trough corresponds to the

flexion position.

To have a better understanding, a small part of the x axes data from each

accelerometer is illustrated in Figure 5.21a. The actual vibration data are

superimposed on the tilting data and the low frequency component shows the leg

movement upwards and downwards. This low frequency component can be found

using a running average algorithm. The tilting information was filtered out using a

running average algorithm to obtain the vibration data alone. The vibration

information is shown in Figure 5.21b. Other filtering techniques are also available to

obtain better results for getting the most appropriate knee vibration data.
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      Figure 5.21: (a) Three channels knee raw data. (b) Three channels knee vibration data.

5.2.1 Vibration Data Filtering Performance

For getting the vibration data, the method is to find the baseline signal which is tilt

data and subtracting from the original data. Two types of approach used in filtering

the baseline. Transform types are finite-duration impulse (FIR) filter, infinite-

duration impulse (IIR) filter, fast Fourier transform (FFT), and Wavelet Daubechies

Filter. Smoothing types are Running Average Filter and Hodrick-Prescott Filter.

Their filtering performances are evaluated in terms of their variances, skewness,

kurtosis, root mean square error (RMSE) parameters. Also, their histograms and

spectrograms are used to find the similarities and the differences between the

information signal and filtered signal.

The knee accelerometer data has maximum 2 Hz baseline. The synthetic signal

has assumed to be a 2Hz sinusoidal signal and the real vibration data added to a

certain time periods of the baseline signal as a Gaussian random signal.  The Figure

5.22 shows 1 Hz baseline, vibration info and the mixed signal.
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  Figure 5.22 Baseline, Vibration information, mixed signal, their histograms and

  spectrograms.

The results of the filter errors are shown in Figure 5.23, signals, their histograms

and spectrograms respectively. The first signal simulates the accelerometer data; the

second  one  is  the  information  signal  we  want  to  get  it  without  any  loss.  Also

variance, skewness, kurtosis values are printed following the name of the signals.

 Figure 5.23 Filter Errors
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If the performance parameters of the filters evaluated with the following graphics

in Figure 5.24, most appropriate filter is the Wavelet Filter and the second good filter

is FIR Filter. Also, accept kurtosis value is high; Running Average Filter is good

choice.

Figure 5.24 Filter Comparisons

5.2.2 Knee Data Analysis

Normal and abnormal knee VAG data are shown in Figure 5.25a and 5.25b

respectively. It is observed that a normal knee VAG data has added information at a

certain place of the rising part of the signal. This can also be felt physically as a

vibration when you place your hand on the knee cap while moving the leg from

ground upwards. However, there is no such information if the leg is bent downwards

to the ground direction. Also, some oscillatory signals with small amplitudes and

some spikes with small amplitudes appear other times.

As  can  be  seen,  an  abnormal  knee  VAG  signal  looks  similar  to  a  normal  VAG

signal form, but has many and significant impulsive amplitudes. At every cycle of

the abnormal knee signal, fluctuations do repeat themselves. Thereof, it is consistent

with the leg movement sequences. When the normal and abnormal VAG signals are

compared, the additional signal fluctuations on the abnormal signal can be

interpreted as the information occurring as a result of knee related problems.
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           Figure 5.25 (a) A normal knee VAG data. (b) An abnormal knee VAG data.

In total, left and right knee data from ten cases were recorded using MPMD

ADLS device and pre-analyzed to classify which cases are normal or abnormal.

Eight cases are verified with the X-ray and MR tools with the expert diagnosis, two

cases have no tools to be verified. Abnormal and normal cases were detected with the

pre-analysis of the accelerometer data, but they are not classified for their related

knee problems.

The analysis route map has some steps:

- Signals are recorded from healthy knees to define the signal features by the help of

medical experts.

- Signals are recorded from healthy and non-healthy persons using our four channel

capture system and a signal database will be created. The results of the diagnosing

methods such as MRIs, X-Rays, or arthroscopy for the same patient are used for the

performance analysis of the proposed system.

- After  creating  the  signal  database,  ICA  recovers  the  desired  signals  to  extract

features for determining the problem of the knee.

- A neural network system also are designed and tested to diagnose the problem of

the knee. Neural Network system outputs and the pre-recorded diagnosing method

outputs are compared to determine the success of the methods.
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Vibration data from left and right knee has been collected for three times. We

have eight cases with expert diagnosis shown in Table 5.1. Expert diagnosis method

is also described in the table. The most reliable technique in the diagnosis phase is

the arthroscopy which can see the inner view of the knee joint by a camera, but of

course this is a invasive method. Magnetic Resonance Imaging (MRI) is also reliable

technique and it is non-invasive method. XRAY is sometimes a fast, cheap and

descriptive method usually medical doctors use.

Table 5.1: Cases that we have expert diagnosis.

Case
Name

Diagnosis Method

AG Left early grade arthrosis. XRAY
ET Left medial meniscus rear horn degeneration.

Right medial meniscus rear horn degeneration.
MRI

HK Left high-grade arthrosis
Right high-grade arthrosis.

XRAY

AE NORMAL XRAY
FC Left high-grade arthrosis*

Right early-grade arthrosis
XRAY

MK Left early grade 1 arthrosis.
Right early grade 1 arthrosis.

XRAY

İM Left high-grade arthrosis
Right normal-grade arthrosis

XRAY

DA Left normal
Right normal

XRAY

(*arthrosis is a common condition of degeneration of the knee acromioclavicular joint),

There are two cases that have no expert review in Table 5.2.

Table 5.2 Cases that have no expert diagnosis.

Case
Name

Complaint (Case said his/her
problem)

Method Diagnosis

Aİ Right knee problem.
Left knee inner meniscus tear?

- -

SE Left and right knee pain - -

Analyses  were  done  with  the  MATLAB  software  ciz_vektor.m.  Here,  two

conditions are:  Normal knee data and abnormal knee data.

Data with no knee problem (da_normal.dat) is shown in Figure 5.26 and knee data

in detail is shown in Figure 5.27.
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   Figure 5.26 Normal knee data

    Figure 5.27 Normal knee data in details.

Normal knee data has added oscillatory amplitudes at a certain place of the rising

signal. This can be felt as a vibration by pressing your hands on the knee cap when

you moving your leg from floor to upwards. But you can’t feel the same when the

knee is moving upwards to the floor direction.

Data with knee problem (et_abnormal.dat) is shown in Figure 5.28 and knee data

in detail is shown in Figure 5.29.
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   Figure 5.28 Abnormal knee data

   Figure 5.29 Abnormal knee data in details.

Initial phase of rising and falling signals have noisy components. This means, the

examined knee has a problem and probably meniscus tear with using the diagnosis.

5.3. Filtering Jaw Related Artifacts from EEG Recordings

Various filtering and blind separation methods are used to clean EEG artifacts.

Some of these artifacts are muscle activity, eye movement, eye blink,

electrocardiogram, respiration, skin, EEG electrode, salt bridge, and power line 50

Hz (Jung, et.al, 2000; Selim & Diego, 2008). In order to clean such artifacts easily,

EEG signals are recorded together with some extra signals carrying information

related with the artifact occurrences. These extra signals are used to identify the

location  of  artifact  formations  on  the  recorded  EEG  signals.  For  this  purpose,  a

proper  sensor  must  be  used  for  each  specific  artifact  recording  in  addition  to  EEG

electrodes. For example, electro-oculogram recordings are used to remove eye-blink

artifact. Jaw movements are accepted as artifact, and therefore must be removed
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from EEG recordings. The accelerometer is a proper sensor selection to identify jaw

related EEG artifacts. Here, we propose MPMD ADLS to be used to record jaw

movements simultaneously with EEG recording electrodes. Figure 5.30 shows the

accelerometer placements on the subject’s face attached to the jaw and chin.

           Figure 5.30 Connection of three accelerometers to the jaw.

Using the above mentioned experimental setup, three channel vibration data was

obtained for the duration of 20 seconds. Nine channels of logged raw data from jaw

movements are obtained. Here, during recording the subject made various jaw

movements. Figure 5.28 shows the selected axes (x axis from accelerometer one, z

axis from accelerometer two, and x axis from accelerometer three) data from each

accelerometer for the 8,000 sample recordings. First and third accelerometers are

placed on the temporal areas of the jaw, and the second accelerometer is placed on

the chin. Here, 0-3,000 samples are recorded while the subject moved his/her head

up and down, between 3,000-5,000 samples the head turned left and right, and

between 5,000-8,000 samples the subject spoke out the number digits from one to

nine in English.

The last signal from Figure 5.31a was filtered with a running average algorithm to

obtain  head  movements.   The  up  and  down vertical  movements  of  the  head  can  be

seen more clearly between 0 to 3,000 samples. However, between 3,000 to 5,000

samples, the head moved only from left to right and vice versa. Therefore, a constant

signal level is expected at this interval. However, very small signal fluctuations are

seen in this interval probably as a result of moving the head slightly up and down
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simultaneously. After 5,000 samples, the number digits were spoken out without any

head movement.

For each x axis of each accelerometer a running average algorithm is run, and the

obtained head movement related data is extracted from the corresponding channel

and given in Figure 5.31b. This information is now related with jaw movements and

independent from head movements.

           Figure 5.31 (a): Three channels vibration raw data from jaw. (b) Jaw vibration data.

Data  from jaw using  three  accelerometers  simultaneously  recorded  with  EEG is

important to identify and cleaning jaw artifacts from EEG data. Figure 5.32 shows

accelerometer connection to the jaw and the EEG cap.

      Figure 5.32 Three accelerometers connection to the jaw



109

EEG cap electrodes placements are shown in Figure 5.33. The jaw movements are

expected to effect frontal and near ear areas, so FT7 and FT8 electrodes are selected

to show with corresponding three channels three axes accelerometer data in Figure

5.34.

           Figure 5.33 EEG electrodes placement on the scalp.

Figure 5.34 EEG FT7&FT8 channels and corresponding nine channels accelerometer data
(obtained from DEU Biophysics Dept.).
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CHAPTER SIX

CONCLUSIONS AND FUTURE WORKS

6.1 Conclusions

The current study has focused on Independent Component Analysis (ICA) with

applications on biomedical signal processing. The current ICA approach was not

only for finding components in a mixture of signals, but also used for signal filtering.

Additionally, the study has been resulted in development of data logging systems.

In this thesis, mainly two related subjects based on ICA were studied; i) custom

design of EEG artifact rejection, and ii) the design of sound  and accelerometer data

logging systems to diagnose knee related problems and jaw artifact rejection in EEG.

EEG artifact rejection studies were concentrated on specific artifact problems as

heart pulses and sweating artifacts filtering using ICA. Accelerometer data logging

system is a multi point multi dimensional vibration data capturing device.

For the EEG studies, heart pulses were successfully detected and extracted from

the EEG recordings using kurtosis ordering of ICA results.  Because of the non-

gaussian nature of EEG signals, ICA is very successful for extracting and removing

the artifacts.  Fast ICA algorithm doesn’t converge well, but using hyperbolic tangent

nonlinearity a satisfactory result was obtained. Also, Efficient ICA (EFICA) and

Maximum Likelihood ICA (ML ICA) algorithms run very well. Sweating artifact

was cleaned using kurtosis ordering of ICA results.

Custom experiments for different conditions with various artifact contaminations

can be designed and related data can be collected from subjects. These conditions

can be related to different sweating, body movements, eye blinking and etc. These

kinds of scenarios would give us a chance to understand the nature of artifacts. Thus,

ICA algorithms can be tested and enhanced, and this may have a clear assesment of

mentioned filtering or ICA methods in real life problems.
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In this thesis work, the multi point multi dimensional accelerometer data logging

system (MPMD ADLS) with its complete hardware and software units has been

successfully realized for mainly biomedical applications. Originally, the designed

system was developed for the needs of an expert system which supports medical

diagnosis of knee joint problems non-invasively. However, the system can also be

used  for  other  human  body  joints  in  addition  to  the  knee  application.  We  also

proposed a technique for recording of the jaw movements during the EEG recording

to eliminate the jaw artifact more effectively. This part of study is still in progress

and therefore preliminary EEG and jaw data were logged synchronously using EEG

recording and MPMD ADLS systems. Moreover, the designed MPMD ADLS

system is available for industrial applications where vibration is existent as part of

movements.

For flexibility and mobility, the system was designed as a standalone modular

system which has reduced chip count, low energy consumption, and high speed

computer connection. The communication between MPMD ADLS and computer is

performed either in real-time or offline by using the USB 2.0 connection standard.

This provides high speed data transfer, system power supply and allows the

realization of real-time operation. The designed data logging system has a flash SD

card memory to store data up to 1GB capacity and performs data logging operations

independently from the connected computer. This size of memory is large enough to

hold up to one million persons’ vibration data. Thus, MPMD ADLS device can hold

data with their recording date and time stamps and anytime recorded vibration data

can be transferred to a computer offline via USB connection.

When an analysis and classification algorithm for identifying normal and

abnormal  VAG  signals  is  developed  for  the  MPMD  ADLS,  the  system  becomes  a

standalone diagnosing system. However, this requires using more powerful

microprocessor unit or units. The MPMD ADLS system has been successfully

applied to the human knee to identify knee related problems. It has been observed

that  the  recorded  VAG  signals  show  different  statistical  behavior  for  normal  and

abnormal knees. There are numerous knee related problems and this requires creating
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a large data base from different cases to obtain data features for developing a

convenient classification algorithm.

In addition to thesis study, also accelerometer vibration signal extraction from tilt

data as a kinematic signal detrending application was examined by using the above

given filtering techniques and their performances compared to each other. The most

appropriate filtering technique was found as running average.

6.2 Limitations

The current device and the study design lack a broad clinical database (knee data

etc.). Furthermore, it is only applied to a limited number of EEG recording cases.

During the thesis work, it has been observed that the analytical tools have their own

limitations upon the different data application needs. This can be problematic for

instance in selecting ICA algorithm, filter etc. Therefore we have tried to provide

comparative analyses of different filter effects (Section 5.2.1). However, every new

case might need a new set of algorithms with different parameters. Accordingly we

suggest a careful approach to the specific designs.

 6.3 Future Works

 This thesis study can be the inspiration of extended future works and related

master or doctorate thesis. Some of the possible future works are listed below.

- The designed MPMD ADLS device can be more compact, power efficient, and

standalone. Using surface mount chips and double layered printed circuit board

makes the device size smaller. When the device becomes standalone, the data

recording can be performed without an additional mobile computer and power. The

use of more powerful microcontrollers and may be FPGA’s can help to realize

onboard classification and therefore diagnosing.
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-  According  to  medical  experts  a  total  of  at  least  hundred  VAG  signals  from

normal  and  abnormal  cases  are  to  be  collected  to  make  a  successful  expert

diagnosing system. To make further classification between abnormal cases, there is a

need to specify various abnormal cases depending on corresponding knee problem.

This may require additional VAG signals collection.

- For a reliable classification, each collected VAG signal must be labeled by a

medical specialist by using X-ray, MRI, and arthroscopy results. ICA can be used for

filtering undesired signal components and may be used to recover important signal

sources.  For  an  expert  classification  system  based  on  various  classification

algorithms based on neural networks and fuzzy can be used.

- To clean jaw related artifacts from EEG recordings, MPMD ADLS and EEG

recording devices must be synchronized. The system performance can be enhanced

by increasing the number of synchronized recordings from various cases.

- In this thesis study, only sweating and heart artifacts were removed from EEG

recordings by using ICA. However, there are some other cases including excessive

body movements, twitching, blinking etc.

- In addition to biomedical applications, some industrial applications where

vibration and movements are available can be good candidates for the designed

MPMD ADLS system. Therefore, the designed device can help to develop new

research studies in various disciplines.
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APPENDIX

Appendix A  Important MATLAB Codes

A.1 pcaicademo4.m (Figure 2.4)

% Fig 2.1. PCA ICA comparison
clear all; close all; cizkal=2;boy=4000; kacbin=110; nbin=kacbin; fontsayz=11; bas=-1; son=1;
hbas=-1; hson=1; hara=0.05;
%--------------------------------------------- SIGNAL LOAD
load chirp; a=y'; a=a(1:boy)*1;  x(1,:)=a*1; load train; a=y'; a=a(1:boy)*1;  x(2,:)=a*1.5;

gau=random('Normal',bas,son,2,boy);
subgau=random('unif',bas,son,2,boy);
mu=0; sigma=1; m=2; n=boy; %[m, n]  : the dimension of y.
u = rand(m, n)-0.5; b = sigma / sqrt(2);
supgau= mu - b * sign(u).* log(1- 2* abs(u)); % Generate Laplacian random  mu:mean, sigma:std dev
%x(1,:)=supgau(1,:); %x(2,:)=gau(1,:);

mix(1,:)=x(1,:)*0.80+x(2,:)*0.2; mix(2,:) =x(1,:)*0.4+x(2,:)*0.6;

h=figure(2)
subplot(2,8,1:2); plot(x(1,:),x(2,:),'.'); title('Original sources');
[pc,score,latent,tsquare] = princomp(x');
aci1=atan2(pc(2,1),pc(1,1))*180/pi; aci2=atan2(pc(2,2),pc(1,2))*180/pi;
xmin=min(x(1,:)); xmax=max(x(1,:)); ymin=min(x(2,:)); ymax=max(x(2,:));  hold on;
  plot([xmin xmax]*pc(1,1),[ymin ymax]*pc(2,1),'r-','LineWidth',cizkal);
  plot([xmin xmax]*pc(1,2),[ymin ymax]*pc(2,2),'g-','LineWidth',cizkal);
  xlabel(['\theta1=' num2str(aci1,'%3.2f') ' \theta2=' num2str(aci2,'%3.2f')]);  hold off
%-------------------------------------
h2=subplot(2,8,3:4); plot(mix(1,:),mix(2,:),'.'); title('Mixtures');
 [pc,score,latent,tsquare] = princomp(mix');
aci1=atan2(pc(2,1),pc(1,1))*180/pi; aci2=atan2(pc(2,2),pc(1,2))*180/pi;
xmin=min(mix(1,:)); xmax=max(mix(1,:)); ymin=min(mix(2,:)); ymax=max(mix(2,:));
xlabel(['\theta1=' num2str(aci1,'%3.2f') ' \theta2=' num2str(aci2,'%3.2f')]);     ylim ([-1 1.1]);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%PCA ALGOS
 [pc,score,latent,tsquare] = princomp(mix');z = (x'*pc)'; % Rotate the data to the PC's

subplot(2,8,5:6); plot(z(1,:),z(2,:),'.'); title('PCA result');
[pc,score,latent,tsquare] = princomp(z');
aci1=atan2(pc(2,1),pc(1,1))*180/pi; aci2=atan2(pc(2,2),pc(1,2))*180/pi;
xmin=min(z(1,:))*0.7; xmax=max(z(1,:))*0.7; ymin=min(z(2,:))*0.7; ymax=max(z(2,:))*0.7;
hold on;  plot([xmin xmax]*pc(1,1),[ymin ymax]*pc(2,1),'r-','LineWidth',cizkal);
  plot([xmin xmax]*pc(1,2),[ymin ymax]*pc(2,2),'g-','LineWidth',cizkal);
  xlabel(['\theta1=' num2str(aci1,'%3.2f') ' \theta2=' num2str(aci2,'%3.2f')]);hold off; xlim ([-1.4 1.4]);
 [ICs,W1] = icaMLson(mix,2);
subplot(2,8,7:8); plot(ICs(2,:),ICs(1,:),'.');

  [pc,score,latent,tsquare] = princomp(ICs');
aci1=atan2(pc(2,1),pc(1,1))*180/pi;aci2=atan2(pc(2,2),pc(1,2))*180/pi;
xmin=min(ICs(1,:))*1; xmax=max(ICs(1,:))*1;ymin=min(ICs(2,:))*0.7; ymax=max(ICs(2,:))*0.7;
  hold on;  plot([xmin xmax]*pc(1,1),[ymin ymax]*pc(2,1),'r-','LineWidth',cizkal);
  plot([xmin xmax]*pc(1,2),[ymin ymax]*pc(2,2),'g-','LineWidth',cizkal);
  xlabel(['\theta1=' num2str(aci1,'%3.2f') ' \theta2=' num2str(aci2,'%3.2f')]); hold off; xlim ([-5.2 5.2]);
title('ICA result');xlabel(['\theta1=' num2str(aci1,'%3.2f') ' \theta2=' num2str(aci2,'%3.2f')])
fno=['-f' num2str(h)];dizin='D:\taner kisisel\makaleler\tezim 2008\tezsekil\'; %fig write folder
fname=[dizin 'tfli.tiff']; print('-dtiffn',fno,'-r300',fname); crop( [dizin 'tfli.tiff']);
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A.2 showgauss.m (Figure 2.3)

    boy=1000;kacbin=110;bas=-1;son=1;x=bas:2/boy:(son-2/boy);
gau=random('Normal',bas,son,boy,2);  subgau=random('unif',bas,son,boy,2);
% Generate Laplacian random values mu:mean, sigma: std dev.
mu=0; sigma=1; m=boy; n=2; %[m, n]  : the dimension of y.
u = rand(m, n)-0.5; b = sigma / sqrt(2);supgau= mu - b * sign(u).* log(1- 2* abs(u));

hh=figure(1), ss=subgau(:,1); subplot(2,3,1); [a1,b1]=hist(ss,kacbin); a1=[0 0 a1 0 0];
b1=[-2 -1 b1 1 2]; plot(b1,a1/sum(a1),'r');  S='Uniform';  h=title(S);  set(h,'fontsize',12) ;
subplot(2,3,4); plot(subgau(:,1),subgau(:,2),'.'); h=xlabel(' (a) SUB-GAUSSIAN'); set(h,'fontsize',12)

ss=gau(:,1);subplot(2,3,2); [a1,b1]=hist(ss,kacbin);  plot(b1,a1/sum(a1),'r');
S='Normal';  h=title(S);  set(h,'fontsize',12)
subplot(2,3,5); plot(gau(:,2),gau(:,1),'.'); h=xlabel(' (b) GAUSSIAN'); set(h,'fontsize',12)

ss=supgau(:,1); subplot(2,3,3); [a1,b1]=hist(supgau(:,1),kacbin);  plot(b1,a1/sum(a1),'r');
S='Laplacian';  h=title(S);  set(h,'fontsize',12) ;subplot(2,3,6); plot(supgau(:,1),supgau(:,2),'.');
h=xlabel(' (c) SUPER-GAUSSIAN'); set(h,'fontsize',12)
       fno=['-f' num2str(hh)]; dizin='D:\taner kisisel\makaleler\tezim 2008\tezsekil\'; %fig yazma dizini
       fname=[dizin 'fig2_6.tiff']; print('-dtiffn',fno,'-r300',fname); crop( [dizin 'fig2_6.tiff']);

A.3 FAST ICA code.

% only for two sources recovering    16-3-2005
function[y,W,V,iteration]=FICA(x,whpr); type=1; %pow3 ile
%%%%%%%%%%%%%%%%%%%%%%%% WHITENING increases the correlatedness.
if whpr==1, white_x=x'; expect_x=mean(white_x); % making mean zero
white_x(:,1)=white_x(:,1)-expect_x(1,1); white_x(:,2)=white_x(:,2)-expect_x(1,2);
size(white_x); Cx = cov(white_x,1); % whitening
[E,D]=eig(Cx); % eigenvalue decomposition of covariance matrix, finding eigenvectors of Cx
                          % here E=matrix of eigenvectors, D=diagonal matrix of eigenvectors
D(1,1)=D(1,1)^(-0.5); D(2,2)=D(2,2)^(-0.5); % Finding D^(-0.5)
V=E*D*E' ; z=white_x*V; % forming V and whitening data
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if whpr==2, z=x'; V=y; end % No whitening

z=z';   eps=0.0001; m=2;p=1 %epsilon,  the number of ICS to recover, set counter =1 , p<=m

   W=zeros(2,2); temp=zeros(2,1);
    for p=1:m,     W(:,p)=rand(2,1); % Wp randomly initalized
      W(:,p)=W(:,p) / norm(W(:,p)); exit=0;  count=0;  iter=1; fprintf('Recovering number %i IC \n',p);

while exit==0,    count=count+1; temp=W(:,p);
switch (type) % 1:pow , 2:tanh, 3:gauss

case 1  W(1,p)=mean(z(1,:).*(((temp)'*z).^3)) - 3*temp(1,1);
                        W(2,p)=mean(z(2,:).*(((temp)'*z).^3)) - 3*temp(2,1);

case 2  W(1,p)=mean(z(1,:).*(tanh((temp)'*z)))-(mean(1-(tanh((temp))'*z).^2)).*temp(1,1);
                        W(2,p)=mean(z(2,:).*(tanh((temp)'*z)))-(mean(1-(tanh((temp))'*z).^2)).*temp(2,1);

case 3 %gauss
otherwise  disp('Invalid nonlinearity');

end
iteration(p)=iter;  sum=zeros(2,1);
for counter=1:p-1, sum=sum+(W(:,p)'*W(:,counter))*W(:,counter); end;
   W(:,p)=W(:,p)-sum;  W(:,p)=W(:,p)/norm(W(:,p));
if(abs((dot(W(:,p),temp))) < 1+eps) & (abs((dot(W(:,p),temp))) > 1-eps),   exit=1; end;

iter=iter+1;end; end;  W=W'; y=W*z; % the recoverd signal is y
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A.4 dortkanal.m

% generate separate left channel and right channel sound data
clear all; type=0; boy=16384; clear y31; clear y32; clear y33;clear y34; clear y4; clear y5;

if (type==0), j1=-0.9; j2=-0.6; j3=-0.3; j4=0; f=11025; % f = out freq.

for i=1:boy, y31(i)=sin(2*(i+0)*pi/180);  y32(i)=sin(2*(i+30)*pi/180);
                    y33(i)=sin(2*(i+60)*pi/180); y34(i)=sin(2*(i+90)*pi/180);

if (j1<=0) t1=0.9; end;    if (j1>0) t1=-0.9; end ;  if (j2<=0) t2=0.9; end;    if (j2>0) t2=-0.9; end

if (j3<=0) t3=0.9; end;    if (j3>0) t3=-0.9; end;  if (j4<=0) t4=0.9; end;    if (j4>0) t4=-0.9; end
y51(i)=t1; y52(i)=t2; y53(i)=t3; y54(i)=t4;

if (j1>=0.9), j1=-0.9; end  if (j2>=0.9), j2=-0.9; end;

if (j3>=0.9), j3=-0.9; end  if (j4>=0.9), j4=-0.9; end

j1=j1+0.0025; j2=j2+0.0025; j3=j3+0.0025; j4=j4+0.0025;  y41(i)=j1; y42(i)=j2; y43(i)=j3; y44(i)=j4;
end; end

load gong; y1=y(1:boy,:);
if (type==1), load chirp;    y1=y;  load gong; y2=y;

a=max(size(y1)); b=max(size(y2)); c=min(a,b); y3=y1(1:c,:); y4=y2(1:c,:); end

z1=[y31;y41]';
figure(1); subplot(4,1,1); plot(y31,'r'); subplot(4,1,2); plot(y32,'r');
                subplot(4,1,3); plot(y33,'r'); subplot(4,1,4); plot(y34,'r');

figure(2); z=y31(1:1000);subplot(4,1,1);plot(z,'r'); z=y32(1:1000);subplot(4,1,2);plot(z,'r');
                z=y33(1:1000);subplot(4,1,3);plot(z,'r'); z=y34(1:1000);subplot(4,1,4);plot(z,'r');

figure(3); subplot(4,1,1); plot(y41,'r'); subplot(4,1,2); plot(y42,'r');
                subplot(4,1,3); plot(y43,'r'); subplot(4,1,4); plot(y44,'r');

figure(4); z=y41(1:1000);subplot(4,1,1);plot(z,'r'); z=y42(1:1000);subplot(4,1,2);plot(z,'r');
                 z=y43(1:1000);subplot(4,1,3);plot(z,'r'); z=y44(1:1000);subplot(4,1,4);plot(z,'r');

figure(5);  subplot(4,1,1); plot(y51,'r'); subplot(4,1,2); plot(y52,'r');
                 subplot(4,1,3); plot(y53,'r'); subplot(4,1,4); plot(y54,'r');

figure(6); z=y51(1:1000);subplot(4,1,1);plot(z,'r'); z=y52(1:1000);subplot(4,1,2);plot(z,'r');
                z=y53(1:1000);subplot(4,1,3);plot(z,'r'); z=y54(1:1000);subplot(4,1,4);plot(z,'r');

figure(7); subplot(1,1,1); plot(y1,'b');

wavwrite(z1,f,16,'dene1.wav'); wavwrite(y31,f,16,'sin1.wav'); wavwrite(y32,f,16,'sin2.wav');

wavwrite(y33,f,16,'sin3.wav'); wavwrite(y34,f,16,'sin4.wav'); wavwrite(y41,f,16,'tri1.wav');

wavwrite(y42,f,16,'tri2.wav'); wavwrite(y43,f,16,'tri3.wav'); wavwrite(y44,f,16,'tri4.wav');

wavwrite(y51,f,16,'squ1.wav'); wavwrite(y52,f,16,'squ2.wav'); wavwrite(y53,f,16,'squ3.wav');

wavwrite(y54,f,16,'squ4.wav'); wavwrite(y1,f,16,'chi1.wav');wavwrite(y2,f,16,'gon1.wav');
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A.5 mixingfour.m
% dort farklı fazda sinus , kare ve üçgeni karıştırarak ica elde eden program
close all;  set=1; faz=1; sinusler=1;
autogen=0; % 1 = generate signals here % 0 = use signals generated using dortkanal.m

if (sinusler==1), N=11025; Fs=11025;
t=linspace(0,10.2*pi,N); k1=sin(t)'+sin(3*t+0*pi/18)'+0*randgauss(1,5,N)'; % sin1
t=linspace(0,45.1*pi,N); k2=sin(0.07*t+0*pi/18)'+0*randgauss(1,5,N)'; % sin2
t=linspace(0,65.3*pi,N); k3=0.9*square(1.8*t)'; % sin3
t=linspace(0,77.5*pi,N); k4=0*sin(t+0*pi/6)'+randgauss(1,5,N)'; % sin4

subplot(4,1,1); specgram(k1,512,Fs,kaiser(500,5),475);
subplot(4,1,2); specgram(k2,512,Fs,kaiser(500,5),475);
subplot(4,1,3); specgram(k3,512,Fs,kaiser(500,5),475);
subplot(4,1,4); specgram(k4,512,Fs,kaiser(500,5),475); k11=k1; k21=k2; k31=k3; k41=k4;
end

if (autogen==1) ,  delay=pi/90;  td=0.000001; % sin, saw,square delay (phase) &chirp time delay
t=linspace(0,10,10000); amp=[8 8 8 8;  8 8 8 8;   8 8 8 8;  8 8 8 8];
freq  =[3 3 3 3;  5 5 5 5;   8 8 8 8; 11 11 11 11];

k11=amp(1,1)*sin(2*pi*freq(1,1)*(t+td*0)); k12=amp(1,2)*sin(2*pi*freq(1,2)*(t+td*1));
k13=amp(1,3)*sin(2*pi*freq(1,3)*(t+td*2)); k14=amp(1,4)*sin(2*pi*freq(1,4)*(t+td*3));
k21=amp(2,1)*sawtooth(2*pi*freq(2,1)*(t+td*0)); k22=amp(2,2)*sawtooth(2*pi*freq(2,2)*(t+td*1));
k23=amp(2,3)*sawtooth(2*pi*freq(2,3)*(t+td*2)); k24=amp(2,4)*sawtooth(2*pi*freq(2,4)*(t+td*3));
k31=amp(3,1)*square(2*pi*freq(3,1)*(t+td*0));  k32=amp(3,2)*square(2*pi*freq(3,2)*(t+td*1));
k33=amp(3,3)*square(2*pi*freq(3,3)*(t+td*2));  k34=amp(3,4)*square(2*pi*freq(3,4)*(t+td*3));

fo=25;f1=100;     tip='convex'; % Start at 25Hz, go up to 100Hz
k41=amp(4,1)*chirp(t+(td*0),fo,1,f1,'q',[],tip); k42=amp(4,2)*chirp(t+(td*1),fo,1,f1,'q',[], tip);
k43=amp(4,3)*chirp(t+(td*2),fo,1,f1,'q',[], tip); k44=amp(4,4)*chirp(t+(td*3),fo,1,f1,'q',[], tip);
end

if (autogen==0)
if (set==0),  boy=32768; % data size
file1='ch1.wav'; file2='ch2.wav'; file3='ch3.wav'; file4='ch4.wav'; % microphones signals
Filesize_k1=wavread(file1,'size'); Filesize_k2=wavread(file2,'size');
Filesize_k3=wavread(file3,'size');  Filesize_k4=wavread(file4,'size');
[k1,Fsk1,bitsk11]=wavread(file1,boy); [k2,Fsk2,bitsk12]=wavread(file2,boy);
[k3,Fsk3,bitsk13]=wavread(file3,boy); [k4,Fsk4,bitsk14]=wavread(file4,boy);
end

if (set==1),  boy=16384; % sinus,square,saw,chirp sounds
[k11,Fsk11,bitsk11]=wavread('sin1.wav',boy); [k12,Fsk12,bitsk12]=wavread('sin2.wav',boy);
[k13,Fsk13,bitsk13]=wavread('sin3.wav',boy); [k14,Fsk14,bitsk14]=wavread('sin4.wav',boy);
[k21,Fsk21,bitsk21]=wavread('tri1.wav',boy); [k22,Fsk22,bitsk22]=wavread('tri2.wav',boy);
[k23,Fsk23,bitsk23]=wavread('tri3.wav',boy); [k24,Fsk24,bitsk24]=wavread('tri4.wav',boy);
[k31,Fsk31,bitsk31]=wavread('squ1.wav',boy); [k32,Fsk32,bitsk32]=wavread('squ2.wav',boy);
[k33,Fsk33,bitsk33]=wavread('squ3.wav',boy); [k34,Fsk34,bitsk34]=wavread('squ4.wav',boy);
[k41,Fsk41,bitsk41]=wavread('chi1.wav',boy); k42=k41; k43=k41; k44=k41;
end
end

a = figure('Name', 'ORIGINAL SIGNALS');
subplot(4,1,1); plot(k11); subplot(4,1,2); plot(k21);subplot(4,1,3); plot(k31); subplot(4,1,4); plot(k41);

if (set==0), z1=0.5*k1+0.3*k2+0.1*k3+0.1*k4; z2=0.1*k1+0.9*k2-0.3*k3+0.2*k4;
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z3=0.2*k1+0.1*k2-0.8*k3-0.5*k4; z4=0.8*k1+0.5*k2+0.2*k3-0.4*k4; end
if (set==1),
if(faz==0),z1=0.5*k11+0.3*k21+0.6*k31+0.1*k41;z2=0.5*k11+0.9*k21+0.3*k31+0.2*k41;
z3=0.2*k11+0.3*k21+0.8*k31+0.5*k41; z4=0.8*k11+0.7*k21+0.2*k31+0.4*k41;end
if(faz==1),z1=0.5*k11+0.3*k21+0.6*k31+0.1*k41;z2=0.5*k12+0.9*k22+0.3*k32+0.2*k41;
z3=0.2*k13+0.3*k23+0.8*k33+0.5*k41; z4=0.8*k14+0.7*k24+0.2*k34+0.4*k41;end
end % autogen burada bitiyor.

if (set==1 & faz==1),
 a = figure('Name', 'k11 k12 k13 k14 delayed');  subplot(4,1,1); plot(k11);  subplot(4,1,2); plot(k12);
 subplot(4,1,3); plot(k13);  subplot(4,1,4); plot(k14);
 a = figure('Name', 'k21 k22 k23 k24 delayed'); subplot(4,1,1); plot(k21);  subplot(4,1,2); plot(k22);
       subplot(4,1,3); plot(k23);  subplot(4,1,4); plot(k24);
a = figure('Name', 'k31 k32 k33 k34 delayed');  subplot(4,1,1); plot(k31);  subplot(4,1,2); plot(k32);
      subplot(4,1,3); plot(k33);  subplot(4,1,4); plot(k34);
a = figure('Name', 'k41 k42 k43 k44 delayed'); subplot(4,1,1); plot(k41);  subplot(4,1,2); plot(k42);
      subplot(4,1,3); plot(k43);  subplot(4,1,4); plot(k44);
end
a = figure('Name', 'MIXED SIGNALS'); zz1=z1; zz2=z2; zz3=z3; zz4=z4;
subplot(4,1,1); plot(zz1); subplot(4,1,2); plot(zz2); subplot(4,1,3); plot(zz3);subplot(4,1,4); plot(zz4);

if (autogen==0), if (set==0),
fprintf('ch1 data sampling  rate = %i \n',Fsk1); fprintf('sampling rate of ch2 data = %i \n',Fsk2);
fprintf('sampling rate of ch3 data = %i \n',Fsk3); fprintf('sampling rate of ch4 data = %i \n',Fsk4);end
if (set==1),fprintf('sampling rate of ch1 data = %i \n',Fsk11);
fprintf('sampling rate of ch2 data = %i \n',Fsk21); fprintf('sampling rate of ch3 data = %i \n',Fsk31);
fprintf('sampling rate of ch4 data = %i \n',Fsk41);end
end

if (autogen==0), [mixed]= [z1';z2';z3';z4']; end;   if (autogen==1), [mixed]= [z1;z2;z3;z4]; end
nICA=4; % number of  ICA components
[rec1]=myFastICA(mixed,nICA);[rec2,A]=icaMLson(mixed,nICA,2);
B=MatlabjadeR(mixed); rec4=B*mixed; B=MatlabshibbsR(mixed); rec5=B*mixed;
a = figure('Name', 'FASTICA (TANER)'); for p=1:nICA, subplot(nICA,1,p); plot(rec1(p,:),'g'); end
a = figure('Name', 'ICA ML SON'); for p=1:nICA, subplot(nICA,1,p); plot(rec2(p,:),'g'); end
a = figure('Name', 'MATLABJADER'); for p=1:nICA, subplot(nICA,1,p); plot(rec4(p,:),'g'); end
a = figure('Name', 'MATLABSHIBBSR'); for p=1:nICA, subplot(nICA,1,p); plot(rec5(p,:),'g'); end

for p=1:nICA, ica_filename=strcat('ICA',int2str(p),'.wav');
wavwrite(recovered1(p,:),Fsk11,16,ica_filename);end

A.6 mixing_delayed.m

clear all; close all;
set=1;

   if (set==1),t=linspace(1,100,1000);k1=10*sin(0.1*pi*t);k2=10*sawtooth(t);fsize=size(k1);
fsize=fsize(2); end
    if (set==2),file1='sin1.wav';file2='squ1.wav';boy=16384;
Filesize_k1=wavread(file1,'size');Filesize_k2=wavread(file2,'size');
fsize=Filesize_k1(1)/32; [k1,Fsk1,bitsk1]=wavread(file1,boy);[k2,Fsk2,bitsk2]=wavread(file2,boy);
fprintf('sampling rate of ch1 data = %i \n',Fsk1); fprintf('sampling rate of ch2 data = %i \n',Fsk2);
end

Num_ICA=2; A=[1 0.4;   0.8 1]; d12=50;  d21=50; % A matrix, sample delays
tot_delay=d12+d21;dif_delay=abs(d21-d12);
z1=A(1,1)*k1(d12:fsize-dif_delay)+A(1,2)*k2(1:fsize-d12-dif_delay+1);
z2=A(2,2)*k2(d21:fsize)+A(2,1)*k1(1:fsize-d12-dif_delay+1);
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mixed= [z1 ; z2]; [recovered]=MyFastICA(mixed,2);

a=figure('Name', 'ORIGINAL SIGNALS');subplot(2,1,1); plot(k1); subplot(2,1,2); plot(k2);
a=figure('Name', 'MIXED SIGS - NO DELAY’);subplot(2,1,1); plot(z1); subplot(2,1,2); plot(z2);
a=figure('Name', 'ORIGINAL SIG PDFS&JOINT DENSITY');
alt=-10; ust=10;ara=.25; [a1,b1]=hist(k1,alt:ara:ust);[a2,b2]=hist(k2,alt:ara:ust);
subplot(3,1,1); plot(b1,a1/.1/sum(a1)); ylabel('1.pdf');
subplot(3,1,2); plot(b2,a2/.1/sum(a2)); ylabel('2.pdf');
subplot(3,1,3); plotmatrix(k1',k2'); ylabel('joint density')
a=figure('Name', 'MIXTURE SIG PDFS & JOINT DENSITY');
alt=-10; ust=10;ara=.25;[a1,b1]=hist(z1,alt:ara:ust);[a2,b2]=hist(z2,alt:ara:ust);
subplot(3,1,1); plot(b1,a1/.1/sum(a1)); ylabel('1.pdf');
subplot(3,1,2); plot(b2,a2/.1/sum(a2)); ylabel('2.pdf')
subplot(3,1,3); plotmatrix(z1',z2'); ylabel('joint density')
a = figure('Name', 'FAST ICA (TANER)');
for p=1:Num_ICA, subplot(Num_ICA,1,p); plot(recovered(p,:),'g'); end

clear z1; clear z2; clear mixed;a=figure('Name', 'FAST ICA SIG PDFS&JOINT DENSITY');
rc1=recovered(1,:)';rc2=recovered(2,:)';
alt=-10; ust=10;ara=.25; [a1,b1]=hist(rc1,alt:ara:ust);[a2,b2]=hist(rc2,alt:ara:ust);
subplot(3,1,1); plot(b1,a1/.1/sum(a1)); ylabel('1.pdf');
subplot(3,1,2); plot(b2,a2/.1/sum(a2)); ylabel('2.pdf');
subplot(3,1,3); plotmatrix(rc1,rc2); ylabel('joint density')

A.7 delayexample.m
s1  = [0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0]; s1  = s1  *  1; % delay example
s1d = [0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0]; s1d = s1d *  1;
 s2  = [0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0]; s2  = s2  * -1;
s2d = [0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0]; s2d = s2d * -1; miny=-1.1; maxy=1.1;
figure(1), title('delay example');subplot(2,8,1:2); plot(s1,'r');
axis([0 length(s1)  miny  maxy]); xlabel('s1(t)');
subplot(2,8,9:10); plot(s2,'b');axis([0 length(s1)  miny  maxy]);xlabel('s2(t)');
a=[ 1   0.5; %a11=1 original signal 1 passes
    0.5 1]; %a22=1 original signal 2 passes

subplot(2,8,4:5); plot(a(1,1)*s1,'r'); hold; plot(a(1,2)*s2d,'b');
axis([0 length(s1)  miny  maxy]); xlabel('s1(t-0), s2(t-d12)');
 subplot(2,8,12:13); plot(a(2,1)*s1d,'r'); hold; plot(a(2,2)*s2,'b');
axis([0 length(s1)  miny  maxy]); xlabel('s1(t-d21), s2(t-0)');

x1=a(1,1)*s1+a(1,2)*s2d;x2=a(2,1)*s1d+a(2,2)*s2;
subplot(2,8,7:8); plot(x1,'k'); axis([0 length(s1)  miny  maxy]); xlabel('x1=a11*s1(t)+a12*s2(t-d12)');
subplot(2,8,15:16); plot(x2,'k');axis([0 length(s1)  miny  maxy]);
xlabel('x2=a21*s1(t-d21)+a22*s2(t)');

A.8 delaymix.m

clear all;  secim=0; boy=10000;

if(secim==0), load chirp; s1=y; Fs_s1=Fs;load train; s2=y; Fs_s2=Fs; end
if (secim==1), [s1,Fsk1,bitsk1]=wavread(file1,boy); rate=Fsk1;

[s2,Fsk2,bitsk2]=wavread(file2,boy);end

figure(1), subplot(2,1,1); plot(s1(1:boy));title('chirp signal');
subplot(2,1,2); plot(s2(1:boy)); title('train signal');
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 a=[1 0.4;   1 0.8]; %mixing matrix
d=[0 20;     30 0]; % delay matrice

d12_time=d(1,2)/Fs_s1; sprintf('chirp delay time= %0.5f',d12_time)
d21_time=d(2,1)/Fs_s2; sprintf('train delay time= %0.5f',d21_time)

x1n(1:boy)=a(1,1)*s1(1:boy)+a(1,2)*s2(1:boy);
x2n(1:boy)=a(2,1)*s2(1:boy)+a(2,2)*s1(1:boy);
mixed_n=[x1n' x2n']'; Num_ICA_n=2;

x1d(d(1,2)+1:boy)=a(1,1)*s1(d(1,2)+1:boy)+a(1,2)*s2(1:boy-d(1,2));
x2d(d(2,1)+1:boy)=a(2,1)*s2(d(2,1)+1:boy)+a(2,2)*s1(1:boy-d(2,1));
mixed_d=[x1d' x2d']';Num_ICA_d=2;

figure(2),subplot(2,1,1); plot(x1n(1:boy));title('instanous mix 1');
subplot(2,1,2); plot(x2n(1:boy));title('instanous mix 2');

figure(3) subplot(2,1,1); plot(x1d(1:boy)); title('delayed mix 1');
subplot(2,1,2); plot(x2d(1:boy)); title('delayed mix 2');

[recovered_n,Wt_n]=myFastICA(mixed_n,Num_ICA_n);
[recovered_d,Wt_d]=myFastICA(mixed_d,Num_ICA_d);
 figure(4), subplot(2,1,1); plot(recovered_n(1,1:boy));
title('instantenous IC 1');  subplot(2,1,2); plot(recovered_n(2,1:boy));title('instantenous IC 2');
figure(5),subplot(2,1,1); plot(recovered_d(1,1:boy));title('delayed IC 1');
subplot(2,1,2); plot(recovered_d(2,1:boy));title('delayed IC 2');
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Appendix B

KNEE SIGNALS

In this appendix some knee data were given to understand the nature of VAG

signals. Because of the getting tilt and vibration information together from

accelerometers, the running average filtering was used to separate the vibration

information from the tilt data.

Running Average filtering is not always the best solution for getting the vibration

information, also some other  filtering methods like Finite Impulse Response (FIR),

Infinite  Impulse  Response  (IIR),  Fast  Fourier  Transform  (FFT),  Wavelet,  Hodrick-

Prescott, etc. Their filtering performances are evaluated in terms of their variances,

skewness, kurtosis, root mean square error (RMSE) parameters. But here, the

running average filtering was ran long time to find the baseline tilt information

correctly despite time time cost was too high.

The aim is to show histograms for accelerometer data, vibration data, ICA result

of accelerometer data, and ICA result of vibration data respectively in following

figures for different cases. Here not only the histograms can show the data

differences, also variance, skewness, and kurtosis parameters are important. Thus,

below histogram graphics, variance, skewness, and kurtosis values are given. The

value at the right of graphic titles are variance parameter, two values below the

graphics are skewness and kurtosis parameters respectively.
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B.1  Normal knee data 1

AHG right knee data. The trends show this data belongs to a normal case.

AHG left knee data. The trends show this data belongs to a normal case, but there is

a little problematic case here; the knee problem was in a very beginning phase of the

arthrosis.
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B.2 Normal knee data 2

AE right knee data. The trends show this data belongs to a normal case.

AE left knee data. The trends show this data belongs to a normal case.
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B.3 Abnormal knee data 1

ET right knee data.  The trends show this data belongs to an abnormal case.  Medial

meniscus rear horn degeneration.

ET  left  knee  data.  The  trends  show  this  data  belongs  to  an  abnormal  case.  Medial

meniscus rear horn degeneration.
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B.4 Abnormal knee data 2

IM  right  knee  data.  The  trends  show  this  data  belongs  to  an  abnormal  case.  Right

normal-grade arthrosis.

IM left knee data. The trends show this data belongs to an abnormal case. Left high-

grade arthrosis.



135

B.5 Abnormal knee data 3

HK right  knee  data.  The  trends  show this  data  belongs  to  an  abnormal  case.  Right

high-grade arthrosis.

HK left knee data. The trends show this data belongs to an abnormal case. Left high-

grade arthrosis.
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