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DEEP LEARNING BASED VISUAL NAVIGATION IN INDOOR

ENVIRONMENTS

ABSTRACT

Deep learning methods are used various areas in recent years. Quite efficient results

are obtained in recent studies with combination of deep learning and reinforcement

learning. Deep learning based reinforcement learning especially gives powerful solu-

tions for complex robotic tasks like navigation. Mobile robots gains new skills with

Deep Reinforcement Learning (DRL).

In this thesis, we propose a deep reinforcement learning approach to complex

navigation tasks in indoor environments. We chose an unmanned ground vehicle as

an agent and performed visual navigation simulation with real-world camera images.

Proximal Policy Optimization (PPO) is policy update method which we used. We

investigated various kind of neural network models to find best function approxima-

tor such as Convolutional Neural Networks (CNN), Multi-layer Perceptron (MLP),

Extreme Learning Machines (ELM), Residual Neural Networks (ResNet) and Neural

Ordinary Differential Equations (ODEs). Up to the our knowledge, the use of ODEs

with DRL in navigation applications has not proposed in the literature. Results show

that ODE based DRL algorithm performs well and makes gain the capability of navi-

gation to the agent in indoor environment.

Keywords: Visual navigation, deep reinforcement learning, ordinary differential

equations
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KAPALI ORTAMLARDA DERİN ÖĞRENİM TABANLI GÖRSEL

NAVİGASYON

ÖZ

Derin öğrenme yöntemleri son yıllarda çeşitli alanlarda kullanılmaktadır.

Derin öğrenme ve pekiştirmeli öğrenme kombinasyonu ile yapılan son çalışmalarda

oldukça verimli sonuçlar elde edilmektedir. Derin öğrenmeye dayalı pekiştirmeli

öğrenme, özellikle navigasyon gibi karmaşık robotik görevler için güçlü çözümler

sunmaktadır. Mobil robotlar, Derin Pekiştirmeli Öğrenme (DPÖ) ile yeni beceriler

kazanmaktadır.

Bu tezde, kapalı ortamlardaki karmaşık navigasyon görevlerine derin bir

pekiştirmeli öğrenme yaklaşımı önerilmiştir. Ajan olarak insansız bir kara aracı

seçilmiş ve gerçek dünya kamera görüntüleri ile görsel navigasyon simülasyonu

gerçekleştirilmiştir. Proksimal Politika Optimizasyonu (PPO), kullandığımız politika

güncelleme yöntemidir. Evrişimli Sinir Ağları (ESA), Çok Katmanlı Sinir Ağları

(ÇKSA), Aşırı Öğrenme Makineleri (AÖM), Kalıntı Sinir Ağları (KSA) ve Nöral

Diferansiyel Denklem Ağları (NDDA) gibi en iyi işlev yaklaşımlayıcısını bulmak için

çeşitli sinir ağı modellerini araştırdık. Bilgimize kadar, DPÖ ile NDDA navigasyon

uygulamalarında birlikte kullanılması literatürde önerilmemiştir. Sonuçlar, NDDA

tabanlı DPÖ algoritmasının iyi performans gösterdiğini ve iç ortamdaki ajana navi-

gasyon yeteneği kazandırdığını göstermektedir.

Anahtar kelimeler: Görsel navigasyon, derin pekiştirmeli öğrenme, adi

diferansiyel denklemler
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CHAPTER ONE

INTRODUCTION

Machine Learning (ML) is one of the most popular topics of recent times. It is

widely used in different areas. Figure 1.1 shows that usage areas of three main branches

of ML. Supervised Learning, Unsupervised Learning and Reinforcement Learning

(RL) contains plenty of ML algorithms that are applied in different areas. Usage of

RL has been also spreading to plenty areas such as robotics, entertainment, industry,

education, military, economy etc. (Derrick Mwiti, 2020).

Figure 1.1 Machine learning usage areas (COGNUB Decision Solutions, 2019)

RL approach is inspired from behaviour of nature. It is based on trial and error

experiments (Neftci & Averbeck, 2019). In robotics, the robot which is called as agent

learns like a child or animal. The agent takes reward and penalty when it performs

good actions and bad actions respectively. First aim of the agent is obtaining maximum

reward during performing.
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RL algorithms take valuable roles especially in video games and robotics with com-

bining deep neural networks. Thanks to computation of deep neural network and sim-

ple RL algorithms, Deep Reinforcement Learning (DRL) methods provides more suc-

cessful and effective results on recent studies. DRL is the good option for solving

complex and decision-making tasks in lots of different areas such as video games and

robotics. One of the significant study on Atari games with superhuman level was been

published by (Mnih et al., 2015). They solved the complex decision-making problems

with Deep Q-Networks (DQN). Another important study is AlphaGo which defeats a

human world champion in Go (Silver et al., 2017). DRL techniques effect also robotic

applications. It makes possible that artificial intelligence agents can act autonomously

and accomplished difficult tasks (Arulkumaran et al., 2017). Agents are able to do

objectives and auxiliary tasks in 3D partially observable environments successfully

(Beeching et al., 2019). DRL approach makes possible to use high-dimensional input

images for navigation (Jaderberg et al., 2016; Mirowski et al., 2017). These methods

led to an another important study is published as asynchronous advantage actor-critic

(A3C) algorithm to improve performance of the agent (Mnih et al., 2016).

Deep Learning (DL) is state-of-art technique gives more accurate results than tradi-

tional neural network algorithms (Alom et al., 2019). The word Deep is based on the

number of hidden layers used in the network. DL contains nonlinear transformation

units in order to extract feature of input data. It is used various purpose like segmen-

tation, classification, recognition and prediction. Neural network structures have also

gained diversity with the development of deep learning algorithms such as Convolu-

tional Neural Networks (CNN) (LeCun et al., 2015), ResNet (He et al., 2016), Alexnet

(Krizhevsky et al., 2012), GoogleNet (Szegedy et al., 2015), Neural Ordinary Differ-

ential Equations (ODE) (Chen et al., 2018). Towards the end of our study, a recently

published article shows that ODE networks provide an efficient and accurate model for

dynamic modeling in continuous control (Alvarez et al., 2020).

We frequently encounter autonomous mobile robots in our daily lives. Mobile

robots make a great contribution in areas such as search and rescue, trade, industry,
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transportation and exploration. So that, navigation tasks are essential for these robots.

To navigate, the robot needs a perception of the environment and a plan based on that

perception. Depending on the quality of the plan, the robot creates a path on the map

and reaches its destination. This path can be decided with using traditional algorithms

such as simultaneous localization and mapping (SLAM) (Thrun, 2002) or path plan-

ning approach (Ge & Cui, 2000; Ge et al., 2005). In recent years, there are lots of

studies which use DRL approach complex tasks like autonomous driving, self-driving

cars, locomotion and navigation. DRL approach has recently presented a different per-

spective to the navigation problem. It is used for visual navigation and performed in

simulation environment with real-world images (Zhu et al., 2017). There are also real

world applications which are used RL based techniques Partially Observable Markov

Decision Process (POMDP) for visual navigation (López et al., 2003; Ocaña et al.,

2005). Recent studies stand out about end-to-end navigation strategies are published

for mobile robots (Chiang et al., 2019; Faust et al., 2018; Shi et al., 2020).

There are effective methods for improving performance of navigation such as pol-

icy based learning, reward shaping and Curriculum learning (CL). Although, mobile

robot has no information about map can occurs a policy which leads to target. Visual

navigation uses images coming from the camera placed on robots to create this policy.

Methods which are used in (Schulman et al., 2015a) and (Schulman et al., 2017) are

good approach to navigation problem. A good reward shaping is significant for RL

algorithms. As some researches show that reward shaping could make opportunity to

solve complex tasks with little arrangements (Grzes, 2017; Marom & Rosman, 2018;

Peng et al., 2018). Solving decision-making tasks may be tough in complex problems.

In the educational process, the student should start learning with simple tasks. As the

simple tasks are completed, the more difficult tasks train the student and this leads to

successful results. CL is inspired by human learning activities and applied to artificial

intelligence researches. Combination of CL and RL provides effective and accurate

results in training process (Hacohen & Weinshall, 2019).
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Simulation takes visible role in robotic researches. It has plenty of benefits like

saving time, opportunity of performing countless experiment and cost saving. So, sim-

to-real studies spread out in RL applications in recent years (Zhao et al., 2020). In this

thesis, we performed the navigation of the mobile robot in a virtual environment devel-

oped by Stanford University named Gibson Environment (Xia et al., 2018). This virtual

environment based on PyBullet which is real-time physics simulation (Couman, 2017).

Virtual environment includes real building indoor scenes and provides simulation with

these images. There are some different studies with various tasks on Gibson Environ-

ment in recent years such as navigation with using graph neural networks (Chen et al.,

2019), designing neural network for controlling motion policy in navigation (Meng

et al., 2019), scaling local control for navigation (Meng et al., 2020), visual model pre-

dictive control-policy learning for avoiding from obstacles during navigation (Hirose

et al., 2019).

In this thesis, we aimed to navigate a mobile robot in indoor building scenes with us-

ing deep reinforcement learning algorithm. We used a virtual environment for simula-

tion. The studies performed in this thesis can be grouped into two components namely,

”Visual Navigation” and ”Reinforcement Learning”. Figure 1.2 shows roadmap and

sub-components of these study.

Figure 1.2 Components of our DRL based visual navigation studies
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In first section, we applied RL algorithms to the agent model with different kind of

deep neural networks. Then, we performed visual navigation with learning principles

on virtual environment at second section. We applied various neural network archi-

tectures namely CNN, ResNet, Extreme Learning Machines (ELM) and ODE Neural

Networks for keeping agent’s policy to solve tasks. To control policy, we used Proxi-

mal Policy Optimization (PPO) in this study. Since reward shaping is important for a

reliable policy, we identified and managed the reward functions carefully for the policy

learning of the agent. Then, we defined navigation task in a real building and deter-

mined requirements for mobile robot to accomplished goals. A robot model is chosen

as Husky Unmanned Ground Vehicle (UGV). We prepared waypoints for point to point

navigation in the curriculum. We carried out all algorithm developments and improve-

ments for visual navigation through Gibson Environment and used important libraries

such as Tensorflow and OpenCV together with the Python programming language. As

importance of this study can be considered as comparison of different neural network

models for DRL and being decided to the best model for navigation task on virtual

environment. Results show that the best model between applied neural network mod-

els can be considered as ODEs neural network model for policy of agent purpose of

navigate on indoor scenes.
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CHAPTER TWO

REINFORCEMENT LEARNING

2.1 Reinforcement Learning

The first main component of diagram in Figure 1.2 is Reinforcement Learning (RL)

architecture. Reinforcement learning is an efficient algorithm for robot navigation

applications. Typically, reinforcement learning structure contains two main argument

as an agent and environment. The main approach is that the agent should create a

policy to reach goal point. Figure 2.1 illustrates main idea of reinforcement learning

and working principle with policy based.

Figure 2.1 General structure of RL (Ali Mousavi, 2020)

In the following we give some of the important terms definitions for the clarity and

completeness of the study:

• Action(A): All the possible moves that the agent can move in the environment.

• State(S): Current situation of the agent returned by the environment.

• Reward (R): A value which says that the last action of the agent is good or bad

returned by environment.

• Probability (P): It is the probability of action in state at time t.
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• Policy (π): The strategy that the agent believes the best action on the state which

is returned by environment.

• Discount Factor (γ): The discount factor allows to value short-term reward

more than long-term ones. It is used interval [0-1].

• Value (V): The expected of long-term returns. Vπ(s) is based on policy and gives

the expected long-term returns of current state.

• Q-value(Q): It is very similar to Vπ(s). In addition to it, there is a action that on

the current state based on policy as long-term expected returns. Qπ(s,a) contains

that state and action pair.

• Time step: It means a step of the agent on the environment. Time step is directly

related with simulation time of Pybullet in this study.

• Episode: The agent takes immediate reward when it interacted with environ-

ment. It observes st ∈ S and chooses an action a ∈ A. Then, current state passes

next state st+1 ∈ S. The agent reach target point or terminal state, process is

ended. This process defined as episode.

• Iteration: It represents updating parameters of the learning algorithm number

of times.

The model means that simulation which is the dynamics of environment. It contains

that probability of actions at current state and next state. In our study, we used model-

free reinforcement learning instead of model-based reinforcement learning. Model-

free algorithms has no transition matrix and it is based on trial and error experience

to update its knowledge. In difference from model-based structure, it does not need to

store state and action pairs.

We also decided to use off-policy methods for learning policy. Because, the agent

has no any prior information about the environment and it is not possible to create

target policy to use on policy method. In off-policy based methods, learning approach

focuses that the best policy using trajectories from environment. It is feeded from
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another policies. On the other hand, on-policy based methods usually uses a bias on

the current policy and updates its policy.

Other feature of the study is having online learning. There are two types of learn-

ing approach in learning process as online-learning and offline-learning. The offline-

learning has limited information about environment. Online learning is more general-

ized than offline one since there is no limited information contrast to offline one. In

online learning, the agent gains that experiences from environment while it is learn-

ing. The agent also comes with exploration/exploitation dilemma in the environment.

When it tried new experiences, it can store and reprocess later in next episodes. The

exploration-exploitation dilemma is a tough problem for the agent (Thrun, 1998). Ex-

ploration is trying to gain more rewards from environment for next states while ex-

ploitation is maximizing the expected return given the current states. So that, it must

make a trade-off between two options and assign a good strategy for it. We tried to

solve this dilemma with using reward shaping and tuning hyper parameters of the al-

gorithm.

2.1.1 Policy Based Learning

In the study, solution of the navigation problem is defined with policy based learn-

ing. The agent has no any prior knowledge about map and environment dynamics. Any

model does not exist for the states. The agent explores the states, obtains observations

from environment during the episode then it improves its policy according to the state

values. We have time-step limit for an episode and the agent tries to find best policy π

in order to solve navigation task.

The agent which we used in simulation, began with initial state s0. It picked up

an action and moved to next state st+1. Immediate reward was observed by the agent

and next state changed current state at time t. The agent repeated this process until

the episode is ended. Observations are called as trajectory the agent collects in one

episode with finite time steps. Length of trajectory (ζ ) is T as in Equation (2.1).

ζ = S0,A0,R1,S1,A1,R2, ... RT (2.1)
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The effect of discount factor γ plays a very important role for collecting maximum

rewards in the episode. Because, current states and near states are more valuable than

future states in generally. If we want to get the agent to its destination, we should

think the best action on states even if the state has low reward in near future. So that,

the agent can maximize rewards in long run. This is called as expected return Gt as

Equation (2.2).

Gt = Rt+1 + γRt+2 + γ
2Rt+3 + ...=

∞

∑
k=0

γ
kRt+k+1 (2.2)

To maximize future rewards in the environment, our agent considered its actions

good or bad for next states. This evaluation criteria can be called as value function.

Value function of the state under policy which is created by the agent determines the

value of that state. Definition of value function under policy π is given in Equation

(2.3).

Vπ(s) = Eπ [Gt |St = s] = Eπ [
∞

∑
k=0

Rt+k+1|St = s] (2.3)

Our trajectories contain set of expected returns in the episodes and optimal policy

is the best option for our agent. To solve the task, the agent found optimal policy with

every iteration. If a new policy is better than previous one, it takes new policy. Optimal

policy is defined by optimal state-value function which is given in Equation (2.4).

V∗(s) = max
π

Vπ(s) where ∀s ∈ S (2.4)

We can define value function with action pairs. Action-state value function keeps

action and expectation of return depends to it under the policy π in Equation (2.5).

Qπ(s,a) = Eπ [Gt |St = s,At = a] (2.5)

If we expand value function with best action for current state, we define optimal

action-value as given in Equation (2.6).
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q∗(s,a) = max
π

qπ(s,a) where ∀s ∈ S and ∀a ∈ A (2.6)

q∗(s,a) = E[Rt+1 + γV∗(s′)|St = s,At = a]

This action-value function leads us to Belmann optimality equation which is defined

in Equation (2.7):

V∗(s) = max
a∈A(s)

qπ∗(s,a)

= max
a

E[Rt+1 + γv∗(s′)|St = s,At = a]

= max
a ∑

s′
Pa

s,s′[R
a
s,s′+ γv∗(s′)]

= max
a ∑

s′
Pa

s,s′[R
a
s,s′+ γ max

a′
qπ∗(s

′,a′)]

(2.7)

We have also advantage function Aπ(s,a) to measure better or worse action values

on the state. It is defined as the difference between action state value function and state

value function. If result of Equation (2.8), Aπ(s,a) is greater than zero, we can say that

the action is good in that state.

Aπ(s,a) = Qπ(s,a)−Vπ(s) (2.8)

In order to use returns for long period of time, advantage function can be expanded.

Advantage function which contains future reward values is called as Generalized Ad-

vantage Estimation (GAE) in Equation (2.9) (Schulman et al., 2015b).

Ât = δt +(γδt+1)+ · · ·+(γλ
T−t+1)δT−1 where δt = rt + γV (st+1)−V (st) (2.9)

In our study, the learning process is based on policy. We used Proximal Policy

Optimization (PPO) from policy gradient methods (Schulman et al., 2017). Policy

gradient methods have some advantages in infinite horizon and continuous space in-

stead of value-based methods. Smooth convergence is observed with policy gradient

update. It is also good at stochastic policies. So that, we focused on policy based
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methods. Classical policy gradient methods use Equation (2.10) and Equation (2.11)

as objective function where r(τ) is given trajectory.

J(θ) = Eπ [r(τ)]

∇θ J(θt) = Eπ [r(τ)∇ logπ(τ)]
(2.10)

θ
∗ = argmax

θ

J(θ) (2.11)

The policy update to solve the problem is defined gradient ascent or descent. Up-

dating rule of one step with learning rate α is given in Equation (2.12). The figure 2.2

shows that how policy and value converges optimal ones.

θt+1 = θt +α∇θ J(θt) (2.12)

Figure 2.2 Illustration of policy and value iteration (Sutton & Barto, 2018)

PPO is extended version of TRPO (Schulman et al., 2015a). It is effective ap-

proach in order to keep under control policy during iterations. It converges quickly

and has good performance. ’Importance sampling’ and ’KL penalty’ are main features

of TRPO. In addition to these, PPO uses ’Clipped Surrogate Objective’. Instead of dis-

carding old trajectory data, it is reused for estimating expected values on new policy.

Surrogate objective function can be defined as given in Equation (2.13) where rt(θ) is

the ratio between old and new policies.
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L(θ) = E[rt(θ)Âθπ
(st ,at)]

rt(θ) =
πθ (st ,at)

πθold(st ,at)

(2.13)

Kullback-Leibler divergence (KL) is also important for keeping under control the

policy updates. In classical calculations, KL divergence represents dissimilarity be-

tween two different probability distributions. So, KL divergence measures the dif-

ference between two policies in Equation (2.14). Equation (2.14) is substituted into

the Equation (2.13) for punishment in case of the big policy update. β parameter is

constant for control evaluation. The ’KL Penalty’ is defined in Equation (2.15).

DKL(πθ ||πθold)[s] = ∑
a∈A

πθ (a|s) log
πθ (a|s)

πθold(a|s)
(2.14)

LKLPEN(θ) = E[
πθ (st ,at)

πθold(st ,at)
Aθπ

(st ,at)]−βDKL(πθ ||πθold)[st ] (2.15)

In PPO algorithm, we used simpler idea as clipped surrogate function to control

policy update instead of KL penalty. Ratio of policies which we mentioned in Equation

(2.13) bounded by ε parameter in range of [1−ε,1+ε]. So, the final objective function

is obtained as Equation (2.16).

LCLIP(θ) = E[clip(
πθ (st ,at)

πθold(st ,at)
,1− ε,1+ ε)Âθπ

(st ,at)] (2.16)

Figure 2.3 Clip surrogate function (Schulman et al., 2017)
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Thanks to this boundaries we can control that the policy goes unstable. As it seen in

Figure 2.3, According to the sign of advantage value, the objective value is limited by

clip parameter. Equation (2.16) was defined as policy surrogate function in our study.

In order to increase exploration diversity, entropy is used in policy based RL. Using

entropy loss encourages that increase variance of the agent’s actions in probability

distribution. We can define the entropy function like in Equation (2.17).

H(x) =−
n

∑
i=1

P(xi) loge P(xi) (2.17)

Entropy function can be applied to the long term total rewards to find the optimal

policy like as given Equation (2.18). H(x) is defined under policy π and α is used as

entropy coefficient to regularize exploration of the agent.

π
∗ = argmax

π
Eπ [

∞

∑
t=0

γ
t(rt +αHπ

t )] (2.18)

As it seen, objective function uses only policy. It is necessary to minimize error

between actual and estimated value of states with using its values. So that, Equation

(2.19) can be defined as objective function for values with using mean squared error.

LV F(θ) = (Vθ −V Target)2 (2.19)

We investigated that four parameter to understand behavior of the agent. These

parameters were total reward, entropy loss, value function loss and policy surrogate

function. We can wrap up all losses in Equation (2.20).

L(θ) = LCLIP(θ)+LV F(θ)+αHπ
t (2.20)
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2.1.2 Reward Shaping

Reward function is one of the most important part in RL training. We tried to shap-

ing reward function in order to maximize reward calculation which collected in every

time step. We used combination of continuous and sparse rewards for complex navi-

gation. Continuous rewards or punishments effected smoothly to cumulative reward.

These rewards were defined as continuous rewards such as angle, progress or obstacle

distance. On the other hand, we observed that there was a critical balance between re-

ward parameters. If one of them dominated to others, the policy occurred unstable. We

defined various parameters as reward and penalty. The parameters used in this study

are given in the following:

• (rA
t ): It was called as living reward. It was a sparse reward as 1 or 0. The agent

took ’1’ in case of driving without tipping.

• (rP
t ): This parameter was calculated depend on target distance between two con-

secutive frames. In case of the agent moved away from target, it took penalty.

On the other hand, the agent took reward when it did getting closer to goal point.

It encouraged as time cost in episode.

• (rO
t ): It was defined as obstacle penalty. This penalty needed camera images

to calculate obstacle distance. Images which taken from render was used for

calculation of distance value to obstacle. Distance was converted to penalty

value was in interval [0,−1.350].

• (rac
t ): It was defined as angle cost. The purpose of this penalty was that the agent

move tend to target point. It was found by calculating between head of agent and

target point according to the Euler distance.

• (rcc
t ): It was another punishment which was called collision cost for the agent to

escape obstacles. when the agent came into contact with obstacles, the number

of joints contacted was punished by a penalty coefficient of 0.3.

• (rsc
t ): Steering cost was defined as the punishment in case of the agent tries to
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turn left or right. This parameter encouraged the agent to proceed as straight as

possible. Cost coefficient was 0.1

• (rT
t ): It was target reward when the agent reached to goal point. It was defined

as sparse reward as 0.5 or 0. The threshold was used also for distance.

Used reward and penalties of environment dynamics are summed to get total reward

function as shown in Equation (2.21).

Rt = rA
t + rP

t + rO
t + rac

t + rcc
t + rsc

t + rT
t (2.21)

Reward shaping had significant effect on navigation progress. It is necessary op-

eration without any model for the environment. In model-free learning, rewards or

penalties should be defined appropriately depends on environment dynamics.

2.1.3 Neural Network Architecture

In this study, we have implemented some different kind of neural network archi-

tectures to find best neural network model to solve complex navigation tasks. Models

were implemented under the reinforcement learning algorithms and the results were

observed. It can be said deep neural networks with reinforcement learning perform

better policy updating and effective results to navigation problem since computation

power.

2.1.3.1 Convolutional Neural Networks

Convolutional Neural Networks are important for neural network architecture. It

has crucial role in image recognition, image classification, detection object etc. Input

is generally an image. Image contains pixels and the machine processes the image

as arrays of pixels. Image occurs from three sizes which are height, width, dimen-

sion. If the image is RGB, dimension is 3. Convolution term lies down mathematical

expression of convolution which is given in Equation (2.22).

[ f ∗g](t) =
∫

∞

−∞

f (τ)g(t− τ)d(τ) (2.22)

15



Main idea of convolution in neural networks is the same with mathematical expres-

sion. A window which is called ’kernel’ is swept over on the input image and obtained

output image after operation. This output image gives us the feature map of the input

one.

Figure 2.4 CNN operation extracting feature from image (Lanham, 2018)

We explain some important parameters for CNN in the followings for the clarity of

the text.

• Filters: Dimension of output depends on filter size. Input dimension is (h∗w∗d)

and filter size is ( fh ∗ fw ∗d). Feature size is also given in Equation (2.23):

(h− fh +1)∗ (w− fw +1)∗1 (2.23)

• Strides: Stride operation can be called shifting operation. Stride defines that

how many pixels should be shifted. If stride is unity, the kernel moves only one

pixel.

• Padding: Padding is significant technique for increasing accuracy in neural net-

works. Convolution process is completed with all pixels are convoluted by ker-

nel. But, kernel filter performs convolution operation more on middle pixels than

edge pixels. This situation causes that the output image contains much informa-

tion of middle pixels than edge pixels. To reduce this effect, extra pixels are

added to image borders. So, the filter moves on edge of image and keep more

information which belongs to it. Thanks to padding operation the accuracy of

prediction depends on features can be increased.
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• Activation Functions: Activation functions is used for determining a neuron’s

output whether true or false. Activation functions can be divided as linear and

non-linear functions. Linear activation functions are simple and it can be used

on non-complex tasks. On the other hand, non-linear functions are used com-

monly. It provides on decides of complex problems and output on various data.

Sigmoid, hyperbolic tangent, ReLU(Rectified Linear Unit) and Leaky ReLU are

most common activation functions. We used the ReLU function in this study.

• Pooling Layer: Pooling operation is most common used in neural networks. It

reduces size of image and reduce computation of parameters in neural networks.

It also can be used to control overfitting. Pooling operation can be called as also

downsampling or subsampling. Two function can be defined as most common

used pooling operations. These are average pooling and maximum pooling.

• Fully Connected Layer: After processes from previous layers, input image is

applied to fully connected layer as the flattened matrix. Fully connected layer has

same principle with multi-layer perceptron networks. All neurons in previous

layers are connected to neurons of the next layer. This connection type may

increase accuracy and the computation of parameters. After all layer processes

are completed, the network puts the related prediction.
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2.1.3.2 Multilayer Perceptron Layers

Multi-layer perceptron (MLP) was used as one of the neural network types which

was used in this study. Generally, MLP networks are base of the deep learning appli-

cations. It has at least three layer; namely, input, hidden and output layers. In figure

2.5, an example MLP structure is given. According to the complexity of task, numbers

of hidden layers can be increased.

Figure 2.5 Multilayer Perceptron network model (Nielsen, 2015)

Each layer in the networks is represented by Equation (2.24) where y is output, W

is weight matrix, x is input and b is bias. In fully connected layers, connections can be

set as fully connected. Each neuron is independent and computation of parameter is

unique for neuron. As the amount of neurons increases, the training process can slow

down.

y =Wx+b (2.24)

2.1.3.3 Extreme Learning Machines

Combining RL methods and Extreme Learning Machines (ELM) was another im-

portant approach for our study (Huang et al., 2006). The visible characteristics of this

network are good generalization and fast learning speed. It is a simple idea and has

good effects on training process. In Figure 2.6, the neural network architecture of ELM

is shown. The steps to implement ELM are given in the following:
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• Set random weights: The first step is setting random weights matrix and bias

value to input layer. These parameters are set also non-upgradable. All input

neurons are fully connected to the hidden neurons.

• Computation of hidden layer: H is the hidden layer output matrix where K

is number units of hidden layer, N number of input samples, g(.) is activation

function, x is input vector and b is bias. H output matrix can be calculated in

Equation (2.25):h(x1)
. . .

h(xN)

=

g(w1,b1,x1) . . . g(wK,bK,x1)

. . .
. . . . . .

g(w1,b1,xN) . . . g(wK,bK,xN)


N×K

(2.25)

• Activation function: It is possible to use different activation functions. Non-

linear activation functions such as sigmoid or tanh can be used in complex prob-

lems.

• Moore-Penrose inverse: Thanks to this method (Harville, 1997), pseudo inverse

matrix of H can be calculated. It also provides generalization of an inverse

matrix. In Equation (2.26) pseudo inverse matrix of H is defined:

H+ = (HT ∗H)−1HT (2.26)

• β weight matrix: β is a special matrix which consists pseudo inverse matrix. Y

is target output matrix which has M output neurons. To calculate β the following

equation is defined:

β =

β T
1
...

β T
K


K×M

Y =

yT
1
...

yT
N


N×M

(2.27)

β̂ = H+Y

• Output prediction: In order to predict to output, the algorithm which is given

below can be used:
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Algorithm 1 Making prediction for output
1: Assigning random weights wi and bias bi
2: Calculating hidden layer output H
3: Calculating output weight matrix using β̂ = H+Y
4: Using β̂ in order to obtain prediction of output where Ŷ = Hβ̂

Figure 2.6 Neural network with single hidden layer (Ding et al., 2016)

2.1.3.4 Residual Neural Networks

Residual Neural Networks a novel neural network structure (He et al., 2016). This

structure gives more accurate results from traditional convolution neural networks.

Their key success is that the proposed neural network architecture gives good results

in deeper layers. General problem of CNN architectures is vanishing or exploding gra-

dients. As the neural network deepens, this problem arises. In order to get rid of this

problem, ’Skip Connection’ is developed in residual block. The identity connection

which is given in figure 2.7 provides moving the input to last layer. So that, the input

is combined with output and transferred to the next layer.

Equation (2.28) defines that the residual block where x is input and y is output. F

function also presents residual mapping for learning.
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Figure 2.7 The residual block (He et al., 2016)

y = F(x,{Wi})+ x. (2.28)

In case of x and F dimensions are not equal, the projection is required. Equation

(2.29) can be used when input and output dimensions are not same where Ws is a square

matrix.

y = F(x,{Wi})+Wsx. (2.29)

ResNet and its method which is used such as skip connection or identity block has

some advantages.

• In deeper neural networks, it can be reduced the effect of vanishing gradient

problem by adding input to output.

• It can increase the speed of learning in deep neural networks.

• Observing high accuracy on training. Image classification is the significant im-

plementation for ResNet.

2.1.3.5 Neural Ordinary Differential Equations

Neural Ordinary Differential Equations are new approach which try to solve the

time series data problem (Chen et al., 2018). Their contributions provide new structure

to the neural networks. Neural ODEs build a bridge between physic simulation and

real world. It can define continuous system successfully such as real world tasks. In

nature, it can be difficult to model data and information. A process is used to model
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the data. This process explains the function which tries to find prediction of the data.

Machine learning approach helps to describe this function. A standard function can be

defined like in Equation (2.30):

f : x−→ y (2.30)

Using ordinary differential equation with combining machine learning helps to define

interpret data and time series accurately. It is also good solution for dynamic physical

problems. Differential equations are suitable to describe time series. Derivative of

function shows that the change to approach the desired function. ODEs can be solved

by well-known and simple Euler’s method. Equation (2.31) defines the Euler’s method.

The solution is approximated function in discrete time as given in Equation (2.32).

dy
dt

= f (t,y) y(t0) = y0 (2.31)

yn+1 = yn + f (tn,yn).(tn+1− tn) (2.32)

Neural ODEs can be used instead of Residual Networks. ODEs solution in time

series is familiar to ResNet identity block. The chain of residual blocks is a solution

of ODEs. ResNet has also initial state like ODEs. h(0) is a hidden state at t = 0.

Differential function is defined as transformation in layers of networks. Just like time

series, series of layer transformation can be solved with ODEs. Residual neural net-

work equation is given in Equation (2.33). It appears like the modelling pattern of an

ODEs.

ht = ht−1 + f (θt ,ht−1) (2.33)

Figure 2.8 shows that comparison of Residual Network and ODE Network. As it is

seen, transformation of hidden state is smooth on ODE Network. Although, ODE can

define continuous time series, neural networks are defined only at natural t. So that,

black points which are in the figure are evaluation points at specific time.
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Figure 2.8 Comparison of ResNet and ODE NN (Chen et al., 2018)

The adjoint sensitivity method which is used in study (Chen et al., 2018), provides to

reach loss any points in time. It gets with low memory cost and controllable numerical

error. Loss function can be defined as given in Equation (2.34):

L(z(t1)) = L
(

z(t0)+
∫ t1

t0
f (z(t), t,θ)dt

)
= L(ODESolve(z(t0), f , t0, t1,θ)) (2.34)

To optimize L function, it is necessary to calculate gradients with respect to θ .

Firstly, it needs to be find gradient of loss at z(t) instant. It can be defined as adjoint

a(t) = ∂L
∂ z(t) . Thanks to this adjoint, the chain rule can be applied to the equation with

investigating earlier time values and solved loss which depends on θ like in Equation

(2.35). The Figure 2.9 shows that calculating states backwards in time.

dL
dθ

=
∫ t0

t1
a(t)T ∂ (z(t), t,θ

∂θ
dt (2.35)

There are some advantages of using ODE in neural networks as mentioned in (Ricky

T. Q. Chen, Neural Differential Equations, 2018):

1. Memory Efficiency: The forward pass computations contain only constant mem-

ory cost in depth instead of keeping all parameters while computing gradients

with backpropagating.
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Figure 2.9 Reverse-mode differentiation of an ODE solution (Chen et al., 2018)

2. Adaptive computation: Although, it uses very simple and old method which

is Euler’s method, it can compute error and loss. So, function approximation is

found successfully.

3. Scalable and invertible normalizing flows: It is side-benefit of Neural ODEs.

It is easy to compute and avoids from bottleneck in normalizing flows.

4. Continuous time-series models: The quite important advantage is usable for

continuous time series. ODEs can reduce effect of interpret data and it is well

defined for realistic and dynamic models.

2.1.4 Input & Output Characteristics of the Neural Networks

Quality of navigation depends on quality of input dataset. In our study, we exper-

imented that plenty variation of input dataset. We observed that it was not effective

solution using only camera images from environment for neural networks. It was seen

clearly proprioseptive sensor data on the agent was efficient on training. Combination

of sensor data and camera images gave the best predictions of actions for the task.

As we mentioned in previous sections, we used RGB and depth camera images to

navigate without any collision. Also, proprioseptive sensor data supported to these task

efficiently. Example of some RGB and depth camera images are given in Figures 2.10

and 2.11. We chose resolution 128 due to limits of hardware on which we performed
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training. So, RGB images had 128x128x3 and depth images 128x128x1 dimensions.

These images were used as state observations which were taken from environment.

(a) RGB frame:165 (b) RGB frame:312 (c) RGB frame:335 (d) RGB frame:350

Figure 2.10 RGB frame samples

(a) Depth frame:165 (b) Depth frame:312 (c) Depth frame:335 (d) Depth frame:350

Figure 2.11 Depth frame samples

We also used proprioseptive sensor data as input of neural network. Proprioceptive

sensor data on the agent were respectively height difference, vertical and horizontal

angle of the agent to the target, linear velocities for each axis in the x-y-z coordinate

system, roll and pitch angles of the body, angular velocities on the x-y-z joints, contact

values of robot wheels consisting of 8 different joint values that affect the motion

on the robot with the ground. The proprioseptive sensor data is represented by 23x1

dimension vector.

We trained sensor data on neural networks as MLP and ELM. The architecture of

MLP and ELM are given in Figure 2.12a and 2.12b respectively. For both of MLP and

ELM architectures, There were two inputs (camera and sensor). In case of non-visual

training, first input was be discarded. MLP had 4 hidden layers and 128 neurons in

each hidden layer in our study. Neurons at neural networks were fully connected to

each layer. ELM network is a special form of MLP neural networks. We also built this

architecture in our study. It had only one hidden layer and 128 neurons in that layer.
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(a) Multi-layer Perceptron Network (b) Extreme Learning Ma-
chines Network

Figure 2.12 Neural networks for sensor data

Outputs of MLP and ELM were defined as actions. The action space was defined as

discrete. Each output neuron presented one of the actions in discrete action space. Ac-

tion space was defined in five 5D vector [Forward, Backward, Turn Left, Turn Right,

Stop]. Neural networks predicted action values according to the state values and ob-

servations. Quality of actions was getting better while the policy was improved.

Observations which are in image form as RGB or depth need convolution operation

for DRL. It is important method for extracting feature and merging state values. We

implemented it also in our study as a sequential convolution operations with auxiliary

deep learning elements. The Figure 2.13 illustrates operation layers. Same parameters

were used for both of RGB and depth images. In the first convolution layer, kernel filter

size was 8x8. After input images was operated by first kernel filter, a 4x4 sized kernel

filter operated output image of first layer in second convolution layer. In last convolu-

tion layer, 3x3 kernel filter was used. ReLu activation function was implemented after

each convolution operation. As a final step, output image of last convolution layer was

flattened and created as a vector in dense layer.

It was experimented that using only camera images didn’t gave good results. So

that, we combined camera images and sensor data for neural networks input. We

defined this operation as fusion of data. This approach was implemented as input to
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MLP and ELM neural network models. Figure 2.13a and 2.13b represent convolution

layers of MLP and ELM respectively.

(a) Convolution layers for RGB image (b) Convolution layers for depth image

Figure 2.13 Convolution layers for camera images

Another neural network types which we used were ResNet and ODE neural net-

works. Following Figures 2.14a and 2.14b illustrates building of neural networks.
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(a) Building of ResNet

(b) Building of ODE NN

Figure 2.14 Convolution layers and blocks on ResNet and ODE NN
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CHAPTER THREE

VISUAL NAVIGATION

Visual navigation is important component for autonomous agents which perform

navigation task. In this chapter, we will explain model of the chosen agent, performed

navigation type and importance of the curriculum learning approach for the agent.

There are various objectives of the agent in the environment to perform. We can explain

the kind of tasks from (Anderson et al., 2018) as followings:

• Goal Point: The agent tries to reach the target point which is given in coordinate

system. It determines own beginning location and calculates distance between

target point and its location. Thanks to sensory inputs, the agent avoids from

obstacles and moves towards to target point.

• Object Goal: Objective of the agent can be defined such as ’find key’, ’find

television’ or ’take a cup’ etc. To perform these tasks, the agent must have

knowledge about object. Supervised learning can be used for categorizing and

deciding to the object after process of navigation with reinforcement learning

algorithms.

• Area Goal: In this kind of the task, target points can be defined with specific

local area names. For instance, the agent tries to navigate namely ’kitchen’ or

’living room’ from ’bathroom’. But in order to reach target point, the agent

needs knowledge about these areas.

In this study, we aimed point-to-point navigation type via husky robot in virtual

environment. The agent planned to navigate starting point to goal point. These points

must be different in training phase to generalize the navigation. The agent has a camera

and different sensors for sensing environment observations, so that the agent can able

to detect objects and avoid from obstacles in navigation process.
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We studied on Gibson Environment as virtual environment which contains visual

space perceptions (Gibson, 2013). Gibson is based on virtualizing real spaces, rather

than using artificially designed ones, and currently includes over 1400 floor spaces

from 572 full buildings (Xia et al., 2018). Each virtual environment space is configured

with yaml files inside of the framework file system.

Local planning and obstacle avoidance are available objectives in order to solve

navigation problem. These objectives was performed by the agent in the virtual envi-

ronment. The agent can able to catch RGB and depth images from environment thanks

to its virtual camera. Some screenshots from environment are given in Figure 3.1.

(a) Screenshot 1

(b) Screenshot 2

Figure 3.1 Screenshots of Gibson Environment

Configuration file was created for selected environment in yaml format. We defined

environment specifications, robot specifications, training parameters, learning meth-

ods, user interface parameters and mode parameters in this configuration file.
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3.1 Agent Model

This section introduces model of robot which we used in virtual environment for

navigation. Gibson Environment contains different agents with Unified Robotic De-

scription Formats (URDF) which based on PyBullet. Specifications of model are im-

portant for modelling like physical joints, degree of freedom and controller. Some

agents which can be used in Gibson Environment are shown in Table 3.1.

Table 3.1 Agents list of the environment

Agent Name Degree of Freedom Controller

Mujoco Ant 8 Torque
Mujoco Humanoid 17 Torque

Husky Robot 4 Torque, Velocity, Position
Minitaur Robot 8 Sine Controller

TurtleBot 2 Torque, Velocity, Position
Quadrator 6 Position

JackRabbot 2 Torque, Velocity, Position

We used Husky UGV as an agent in this study. The agent model can move on

virtual space and has capability of the navigation with reinforcement learning in robotic

applications. It has large payload capacity and enchancable platform. Some sensor

packages can be integrated for different applications such as lidar, manipulator, 3D

camera etc. Gibson Environment consists Pybullet based physics simulation motor.

The husky is modelled with sensors, RGB and depth cameras to perform navigation

tasks in this study. A picture of the agent with camera is given in Figure 3.2.

To simulate the model, the kinematic model of the husky was created using the

Cartesian coordinate system. Joints of the robot like wheels, body, contact points were

also modelled and tested in Physic simulation.

The husky has four wheels like common ground vehicles. It is driven by skid

steer motion. To reach the target, the agent needed to calculate angle difference and
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Figure 3.2 The agent with RGB camera

Euclidean distance. The Euclidean distance between posture of vehicle (p) and target

point (q) is calculated in 3D space as given in Equation (3.1).

d(p,q) =
√

(q− p)2 (3.1)

The tending angle for target is defined as the angle between target point and agent

head. This angle is used to teach how the agent should be directed to the target point.

The schematic diagram of the agent is given in Figure 3.3.

Figure 3.3 The agent Cartesian coordinate according to the target point (Al-Mayyahi et al.,
2017)

The husky robot is modelled with five action in discrete action space as forward,

backward, turning right, turning left and stop respectively. Actions can be applied with

using torque and constant velocity. We didn’t prefer continuous action space due to
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tasks are getting more complex and have large parameters to compute, although con-

tinuous action space is closer to the real-world than discrete action space. Simulation

of model is easy to implement in discrete action space and calculations of parameters

are less than continuous action space. The implemented discrete action matrix is given

in Equation (3.2). Two different variables were implemented to wheels of the agent

for movements as torque and velocity in the study. Experiments have shown that the

torque variable applied to the wheels has the ability to accelerate faster than the con-

stant velocity variable on the wheels. To move the agent, we applied necessary torques

(T) to wheels for given five actions.



Forward

Backward

Turnright

Turnle f t

Stop


5×4

=



[T T T T ]

[−T −T −T −T ]

[T −T T −T ]

[−T T −T T ]

[0 0 0 0]


5×4

(3.2)

3.2 Point-to-Point Navigation

The main goal of the agent was to reach the target point from the starting point

without hitting obstacles in our study. We used waypoints which is available on the

building scenes for navigation. The dataset of waypoints consist from data type (test

or train), model-id of building, (x,y,z) coordinates for start point, yaw angle on scene,

(x,y,z) coordinates for goal point, Euclidean distance, Geodesic distance and complex-

ity of navigation respectively. These parameters were used by the agent with purpose

of computation of the navigation specifications.

Euclidean distance gives that the straight line distance between two different points.

On the other hand, Geodesic distance gives shortest available path distance which mo-

bile robot can move. It s possible to calculate navigation complexity thanks to these

calculations. Navigation complexity (A) is defined the ratio of Shortest Path (SP) to

Straight line Distance (SD) as given in Equation (3.3). We applied randomness to each

starting points and goal points in every episodes to encourage the agent faces with

different scenes in the environment by increasing exploration.
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A =
SP
SD

(3.3)

In this study, we chose episodic learning for training, so we used each row in the

waypoints dataset as an one episode. In realistic applications, it is impossible to col-

lect all samples at the same time. The agent had time steps limit for exploring and

collecting observations from environment. This feature leads to episodic learning.

Specifications of the episodic learning which was used in this study can be explained

as followings:

• There was no any model for environment. Model-free learning was applied.

• The agent collected observations during each episode. After the episode ended,

policy was updated.

• PPO is an on-policy learning method and effective for episodic problems. We

recorded samples from episode in trajectory and policy was updated according

to the trajectory.

According to the definition of a navigation task, evaluation method which is called

Success Path Length (SPL) was created to measure navigation success of the agent.

When the agent crosses the threshold distance to the target point, a signal was gener-

ated. This signal contains information about success of episode. Equation (3.4) defines

success path length where N is number of episode, li shortest path length comes from

Euclidean distance, pi is the total distance which the agent moves and Si is the binary

constant that changes according to the success of the episode. These dataset

SPL =
1
N

N

∑
i=1

Si
li

max(pi, li)
(3.4)

Initial points and target points take crucial role in point-to-point navigation. As we

mentioned in the beginning of the section, complexity of navigation varies according

to the these points in the environment. We observed that it was hard to navigate from a

room to another one at first iterations of the training. To handle this problem, the agent
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learned to read goal points which had low complexity. The agent explored different

initial points and goal points in each episodes. The agent improved its policy with dif-

ferent navigation plans consisting of waypoints. The main navigation plan was created

from these points partially. In finally, behavior of the agent was made better at states

thanks to waypoints after every iteration and the agent gained experience to reach goal

points. Some visualization examples of the navigation plan in environment are given

in Figure 3.4. Red points in the figure occurs from goal points or starting points in the

waypoints dataset.

(a) Navigation Plan 1 (b) Navigation Plan 2 (c) Navigation Plan 3 (d) Navigation Plan 4

Figure 3.4 Example of navigation plans

3.3 Curriculum Learning

Curriculum learning is quite important tool for a neural network learning process

(Elman, 1993). This learning strategy is a very simple algorithm that starts with easy

tasks and continues with difficult tasks. A 3-years child can not able to read a novel

or solve an integration problem. A learning process of child should be cumulative and

trace to education life systematically. Training of neural networks can be considered

as growing a child. For a successful training, easy tasks should form the basis to next

complex tasks. For instance, learning algebra is the first step before calculus.

In reinforcement learning, the agent can be considered as a child. In this thesis,

the task of the agent is navigation. Navigation complexity is directly proportional to

the ease or difficulty of the task. We defined that navigation complexity as given in

Equation (3.3). Agent starts learning point-to-point navigation with waypoints which

have navigation complexity that is equal to one. In the next episodes, these complexity

increases step by step. Example of waypoints is shown in Table 3.2.
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Table 3.2 Waypoints order for CL

split sceneId startX startY startZ startAngle goalX goalY goalZ dist pathDist complexity

train Euharlee -1.968 3.558 0 3.097 -2.483 -3.391 0 6.968 6.968 1
train Euharlee -1.968 3.558 0 3.097 -2.573 -2.53 0 6.118 6.118 1
train Euharlee 2.087 3.13 0 1.184 -1.918 1.2 0 4.445 4.445 1
train Euharlee -1.918 1.2 0 5.229 -2.473 -5.562 0 6.785 6.797 1.002
train Euharlee -0.052 3.565 0 2.496 -2.573 -2.53 0 6.596 6.784 1.029
train Euharlee 2.087 3.13 0 1.184 -2.573 -2.53 0 7.331 7.843 1.07
train Euharlee 2.087 3.13 0 1.184 -2.57 -4.226 0 8.706 9.539 1.096

...
...

...
...

...
...

...
...

...
...

...
...

As it seen from the table, the agent tries to learn easy point-to-point navigation in

early steps. There are some points which have same complexity. Though there are

some waypoints that have same complexities their scenes are different. So that, the

agent can able to face with various scenes with same or different complexity.
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CHAPTER FOUR

APPLICATION & RESULTS

We performed the visual navigation with RL in Gibson Environment. In this chapter,

the process about training and parameters were explained. During training and test

processes, neural network models which contains RGB images used GTX780 as GPU,

64GB RAM and 12 thread 3.60GHz Intel i7-4960X as CPU. On the other hand, models

which used depth images or sensor values, used GTX1050 as GPU, 16GB RAM and 8

thread Intel i7-7700HQ as CPU.

4.1 Building Environment

Gibson Environment dataset includes 512 spaces. We took care selecting building

which has good rendered scenes. Because, some of the dataset of building had huge

holes or blank rendering. We selected two different buildings named ’Euharlee’ and

’Aloha’. Good rendering, low scene loading time and reachable areas are the main

specifications for learning process. These advantages made up the purpose in selecting

these buildings. We used Husky unmanned ground vehicle as an agent and tested the

model in simulation environments. The environments have real-world image dataset.

Some example panoramic photos from the ’Euharlee’ building are given in Figure 4.1:

(a) Environment Photo 1 (b) Environment Photo 2

(c) Environment Photo 3 (d) Environment Photo 4

Figure 4.1 Example the panoramic photos of the ’Euharlee’ building (Standford Vision Lab,
2018)
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4.1.1 Navigation Scenarios

Our navigation scenarios which we used in training and test experiments in ’Eu-

harlee’ and ’Aloha’ maps were given in Figure 4.2.

(a) Train set of waypoints in ’Euharlee’ (b) Test set of waypoints in ’Euharlee’

(c) Train set of waypoints in ’Aloha’ (d) Test set of waypoints in ’Aloha’

Figure 4.2 Waypoints for point-to-point navigation

In experiments, 50 different navigation plans for training and 30 different navigation

plans for test were used. Although some waypoints has same initial points, they had

various navigation complexity due to different goal points.
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4.1.2 Reward Function

Reward function is important for the agent in understanding the environment dy-

namics. We consider several rewards and penalties for the reward function. Then, a

balance was established between reward function arguments with testing. Our reward

function was given in Equation (2.21). Proprioceptive sensor data dominated to total

reward due to arguments in reward function. We tested each reward parameters with

300 timesteps, 100 episodes and 100 iteration. We used MLP network for policy up-

date in following experiment. Table 4.1 shows the effect of combination the arguments

of different reward and penalty.

Table 4.1 Results of reward function arguments

Arguments in reward function Total reward at the end of 100th iteration

rac
t -5

rac
t + rP

t 70
rac
t + rP

t + rT
t 80

rac
t + rP

t + rT
t + rcc

t 65
rac
t + rP

t + rT
t + rcc

t + rsc
t 50

rac
t + rP

t + rT
t + rcc

t + rsc
t + rA

t 100

Positive rewards encouraged to the agent for action which took reward. Also, we

observed that the agent stucked in episode without any movements due to high positive

reward. The agent behavior was balanced with appropriate rewards and penalties to

solve navigation problem in the experiment. Some samples from episodes were given

in Figure 4.3.

4.1.3 Experiments with Neural Network Models

4.1.3.1 Comparison of Neural Network Models for Sensor Data

We analyzed the effect of ELM and MLP networks in this study. The experiment

contained only sensor data and fusion of sensor with depth images for both models.

We performed this experiment in ’Aloha’ building. Hidden layer size of 128 neurons

were used for both hidden layers of ELM and MLP. Training process was observed

during 6 iteration and results tabulated in Table 4.2. As it seen from the table, ELM
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(a) For Episode=3400

(b) For Episode=3401

Figure 4.3 Reward analysis of the agent

network provided the time advantage in training process almost as much %3.3 as than

MLP network. The time advantage was increased to %9.6 when sensor data only was

used. When the fusion input which means combination of sensor and depth image data

was used, time saving decreased compared to only the sensor input. The reason of this

can be explained as the convolutional neural network structure used for depth images

shows a more dominant characteristic on the layer that receives the sensor information.

Table 4.2 Training time for ELM and MLP networks with different inputs

Neural Network Model Inputs Time
ELM Sensor+Depth 10 m 32.51 s
ELM Sensor 6 m 43.57 s
MLP Sensor+Depth 10 m 54.06 s
MLP Sensor 7 m 26.41 s

40



Total cumulative reward with 85 iterations and standard deviations of it at last 10

iterations were given in Figure 4.4a and 4.4b. In this experiment, sensor data only was

used to observe the effect of ELM network clearly.

(a) Total Reward of ELM and MLP

(b) Standard Deviations for ELM and MLP in last 10 iteration

Figure 4.4 Results for ELM and MLP networks

It can be said that ELM network has quicker training time compared to MLP net-

work with success results in navigation problem. The agent obtained converged reward

value at approximately 58. iteration for MLP network. On the other hand, converged

reward value was seen at 16. iteration for ELM network. In Figure 4.5, successful

point-to-point navigation was shown in different episodes with ELM neural network

model. These results were presented as paper in (Agin & Demir, 2020).
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Another experiment to compare ELM and MLP models was performed in ’Eu-

harlee’ building map. The experiment had 500 timesteps, 50 episode and 150 itera-

tions with 3.75M total frame. According to the observed results MLP network was

more successful than ELM network with given environment dynamics. On the other

hand, ELM network completed to training process faster than MLP network again.

The training times were recorded as TELM = 4 hour 35 minutes and TMLP = 5 hour 18

minutes on GTX 1050 graphic card.

Figure 4.5 Navigation scenarios with ELM network

4.1.3.2 Comparison of Neural Network Models for Fusion Data

We experimented different kind of neural network models in order to improve

navigation performance as we had mentioned before. In Figure 4.6, four parame-

ters (cumulative reward, entropy loss, value function loss, policy surrogate function)

were investigated to analyse training process of different models. The labels in the

figures are named so that the first argument represents input type, the second argu-

ment represents the type of neural network model. For example, (RGB+DEPT H +

SENSOR) (ODE+MLP) represents inputs are RGB, depth and sensor data with com-

bination ODE and MLP model.
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The experiment was performed with 500 timesteps, 50 episode and 150 iterations.

Hyper-parameters was set experimentally. Because, performance of training process

could change according to the environment dynamics. There were lots of possible

combination inputs and configurations of neural network models. In this experiment,

clip-coefficient was set to 0.2 and entropy coefficient was set to 0.03. This parameters

effected to training performance directly.

Figure 4.6 Training results of neural network models with depth images
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We observed results of sensor data on MLP and ELM as it seen Table 4.2. So,

we decided to use MLP model for sensor data in this environment. Combination of

camera images and sensor data can be defined as fusion of data and neural network

models. Results in Figure 4.6 shows that training without sensor data could not gain

high cumulative rewards. As it seen, fusion data had good capability of navigation.

Depth images only used in that experiment. According to the training analysis, ODE

neural network model gave the best training performance with fusion data between

neural network models which had been tested. Figure 4.7 indicates success rates of

models during training process. ODE neural network model had also the highest rank

in this benchmark.

Figure 4.7 Success rates of models during training

In besides of using depth images on neural network models, RGB images were also

tested with models. Figure 4.8 shows that training results. We observed that results of

RGB images during traning process. ODE neural network models gave the best result

in this experiment as it was at experiment with depth images. In CNN network model,

RGB images couldn’t be matched with correct states without sensor data. This means

that, the agent faces with bad states and it has no navigation capability in order to avoid

obstacles.
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Figure 4.8 Training results of neural network Models with RGB images

Another experiment was applied with CL to understand importance of learning

easy tasks to harder ones. In that experiment, As input was used fusion data with

depth images and trained on combination of CNN and MLP neural network models.

Figure 4.9 shows that comparison of CL and without CL success rate of method during

training process. We implemented CL to all navigation experiments since we observed

CL approach gave the agent the ability to navigate to target points successfully.
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Figure 4.9 Success rates of the training with CL

Results of experiments which are given in Figure 4.6 and Figure 4.8 showed that

Neural ODEs network had higher results than other network models with different

input types for navigation task. Table 4.3 consists that values of average score for last

10 iteration.

Table 4.3 Numerical training results of neural network models with inputs

Inputs Neural Network Model Average Score of Last 10 Iteration
DEPTH CNN −75.384

RGB+DEPTH CNN 36.827
DEPTH+SENSOR CNN+MLP 110.096
DEPTH+SENSOR ResNet+MLP 41.042
DEPTH+SENSOR ODE+MLP 128.329

RGB+DEPTH+SENSOR CNN+MLP 88.969
RGB+DEPTH+SENSOR ODE+MLP 112.292
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CHAPTER FIVE

CONCLUSION

DRL methods are the state-of-art algorithms that can be usable for complex navi-

gation tasks. In this thesis, we also proposed a new approach to DRL for visual nav-

igation in indoor environments. Using ODE neural network model in classical RL

algorithm such as PPO provided effective results for navigation task in indoor envi-

ronment. Visual navigation requires any sensing data to environment such as camera

images. So that, we performed experiments in Gibson Environment simulation habitat

which based on Pybullet physics simulator.

We chose Husky-UGV as an agent. The model of agent was integrated to simula-

tion environment with related and applicable parameters. Especially, action space and

speed control of motors were significant to reach target point in navigation. Although

the continuous action space reflects the agent dynamics in real-world applications in-

volving complex tasks, we selected the discrete action space in this study because it

has less computation time and easy modeling structure.

As a next stage, we performed experiments of point-to-point navigation with us-

ing agent’s proprioseptive sensor data and camera images on virtual environment. The

learning algorithm was applied as policy based. To reach target, the agent improved its

policy with collecting rewards from environment. One of the important points of the

thesis was reward shaping. We managed that rewards as positive or negative depends

on the complexity of tasks. Balance between rewards showed that the quality of navi-

gation. Another important point was managing hyper-parameters of RL algorithm and

neural network models. A good implementation of CNN model could provide more

accurate results.

Early experiments showed using only one point-to-point navigation task is not

enough for navigation. Because, the agent should faces various situations in same
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area. If the agent has been trained in many different situations, it can gain the gener-

alization skill. For good navigation, the agent should collects millions sample without

forgetting learned states in experimental environment. We applied curriculum learning

method with lots of point-to-point navigation tasks. Results indicates that curriculum

learning method reduced training time to reach high success rates for navigation.

In the last stage of thesis, we applied ODE neural network model instead of tra-

ditional neural network architectures and compared different kind of neural network

models. ODE solver was success to reach hidden states on the networks. We also

observed a trade-off between accuracy and computation time. One of the important

dedications during experiments was ELM could gave good navigation performance

and reduced training time with using only sensor data. However, ELM performance

can change depend on environment dynamics. The best navigation performance was

obtained from ODE neural network model. It had high accuracy action selection for the

states thanks to computational power of differential equations. Complex DRL prob-

lems can be solved with this model.

As future future works some improvements can be applied in order to increase suc-

cess rate of navigation of agent. Training time should be increased and the agent may

face with different frames amount of millions. As an another suggestion, managing

reward function with different coefficients and appropriate balance of rewards in en-

vironment dynamics. Reward shaping can be implemented with using another deep

learning technique such as supervised learning. Another interesting point is tuning

hyper parameters of neural networks. To reduce losses of optimization different coeffi-

cients or terms can be applied in equations. Experiments with different neural network

models can be performed in different virtual environments. So, ODE neural network

model can be justified with different indoor scenes.
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APPENDICES

Appendix 1: Gibson Environment codes and configuration file parameters

Table A.1 Environment Configuration Parameters in YAML File

Argument name Parameter value

envname HuskyNavigateEnv
model id Euharlee
target orn [0, 0, 0]
target pos [-1,2,0.3]
initial orn [0, 0, 1.57]
initial pos [-2,-6,0.3]
robot scale 0.5

power 2.5
control torque
n step 500

n episode 50
n iter 137

waypoint active true
curriculum true
elm active false

test set false
fov 1.57

use filler true
display ui false

show diagnostics false
ui num 2

ui components [RGB FILLED, DEPTH]
output [nonviz sensor, rgb filled, depth]

resolution 128
speed : timestep 0.01

speed : frameskip 3
mode headless

verbose false
enable ui recording false

fast lq render false

It can be reached codes of thesis framework from:

https://github.com/Berk035/Gibson_Exercise
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Appendix 2: CNN architecture which had been used in training

Figure A.2 CNN Architecture which had been used in training
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Appendix 3: Comparison of ELM model and MLP model in ’Euharlee’ map

(a) ELM training (b) MLP training

(c) Success rate of ELM in training (d) Success rate of MLP in training

Figure A.3 Comparison of ELM and MLP model in ’Euharlee’ map
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Appendix 4: Episode samples of neural network models with sensor data

(a) Episode 5000 (b) Episode 5001

(c) Episode 5002 (d) Episode 5003

Figure A.4-1 Episode samples with SENSOR data and ELM model

(a) Episode 5000 (b) Episode 5001

(c) Episode 5002 (d) Episode 5003

Figure A.4-2 Episode samples with SENSOR data and MLP model
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Appendix 5: Episode samples of neural network models with fusion data

(a) Episode 5000 (b) Episode 5001

(c) Episode 5002 (d) Episode 5003

Figure A.5-1 Episode samples with DEPTH and CNN model

(a) Episode 5000 (b) Episode 5001

(c) Episode 5002 (d) Episode 5003

Figure A.5-2 Episode samples with DEPTH+SENSOR data and CNN+MLP model
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(a) Episode 5000 (b) Episode 5001

(c) Episode 5002 (d) Episode 5003

Figure A.5-3 Episode samples with DEPTH+SENSOR data and ResNet+MLP model

(a) Episode 5000 (b) Episode 5001

(c) Episode 5002 (d) Episode 5003

Figure A.5-4 Episode samples with DEPTH+SENSOR data and ODE+MLP model
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(a) Episode 5000 (b) Episode 5001

(c) Episode 5002 (d) Episode 5003

Figure A.5-5 Episode samples with RGB+DEPTH+SENSOR data and CNN model

(a) Episode 5000 (b) Episode 5001

(c) Episode 5002 (d) Episode 5003

Figure A.5-6 Episode samples with RGB+DEPTH+SENSOR data and CNN+MLP model
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(a) Episode 5000 (b) Episode 5001

(c) Episode 5002 (d) Episode 5003

Figure A.5-7 Episode samples with RGB+DEPTH+SENSOR data and ODE+MLP model
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Appendix 6: Success rates of neural network models with test dataset

(a) (DEPTH) (CNN)

(b) (DEPTH+SENSOR) (CNN+MLP)

(c) (DEPTH+SENSOR) (RESNET+MLP)

(d) (DEPTH+SENSOR) (ODE+MLP)

Figure A.6 Success rates of neural network models with test dataset
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