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ABSTRACT

Scalings of physical variables, such as in the magnification of an image or in the
variation of the frequency of a moving wave source with respect to a stationary
observer, are facts of everyday life. In signal analysis, the Mellin transform is used to
analyze signals with respect to their scale content. Much like the fractional Fourier
transform is a generalization of the classical Fourier transform onto the time-
frequency plane, the fractional Mellin transform is defined as a generalization of the
ordinary Mellin transform onto the scaled time-frequency plane. In this thesis,
algorithms are developed to compute the fractional Mellin transform digitally using
the MATLAB numeric analysis software package. Performances of the various

algorithms are compared through different simulations.

Keywords : Mellin transform, fractional Mellin transform, fractional Fourier

transform, time—frequency analysis, time —scale analysis






OZET

Bir gériintiintin biiylitiilmesindeki veya hareketli bir dalga kaynaginin frekansimin
sabit bir gozlemciye gre degismesindeki gibi fiziksel degigkenlerin Sl¢eklenmeleri,
glinlik hayatta karsilasilabilecek olaylardandir. Sinyal analizinde kullamilan Mellin
doniisiimii, sinyalleri 6l¢ek iceriklerine gére incelemek igin kullamilabilir. Klasik
Fourier déniisimiintin zaman-frekans diizlemine genellemesi olarak kesirli Fourier
doniistimii tammlanabildigi gibi, dl¢eklenmis zaman-frekans diizlemi {izerinde de
klasik Mellin doniiglimiiniin genellemesi olarak kesirli Mellin doniiglimii
tamimlanabilir. Bu tezde, kesirli Mellin doniistimiiniin MATLAB niimerik analiz
yazilim pakedi {izerinde sayisal olarak hesaplanabilmesi igin algoritmalar gelistirildi.
Algoritmalarin farkli versiyonlarinin performanslart da simulasyonlar yoluyla

kargilagtiriimigtir.

Anahtar sozciikler : Mellin doniistimii, kesirli Mellin déniigtimii, kesirli Fourier

d6niistimii, zaman-frekans analizi, zaman-6lgek analizi
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CHAPTER ONE
INTRODUCTION

The concept of scale is common throughout everday life. A first example that
comes to mind is magnification, which can be thought of as a positive scaling of the
physical coordinate axes. The Doppler effect, where the frequency of a moving wave
source is perceived differently by stationary sources in front of and behind the wave
source, can be regarded as the scaling of the frequency variable of the vibration

source.

In spite of this ubiquity, we have a rather limited set of tools to analyze this
variable. The Mellin transform established by Robert Hjalmar Mellin (1854 - 1933)
was initially intended as a tool to analyze number theoretic functions such as the
gamma function, hypergeometric functions, and Riemann zeta function. Its use was
later extended to the solution of partial differential equations and the generation of

asymptotic expansions (WEB_1, 2004).

The use of the Mellin transform as a signal processing tool is fairly recent. In
(Casasent et. al., 1977), Psaltis and Casasent use the Mellin transform to achieve
scale invariant autocorrelation and cross-correlations for optical pattern recognition.
Altes used the Mellin transform to simulate mammalian hearing (Altes, 1978). In
another paper, Zwicke and Kiss used the Mellin transform to classify ships from their
radar profiles (Zwicke & Kiss, 1983).

In this thesis, we develop a discrete algorithm in oder to implement the fractional
Mellin transform (FrMT) which is a generalization of the Mellin transform into the

scaled time freqeuncy plane. The FrMT itself is motivated by the fractional Fourier



transform (FrFT) which can be thought of as a rotation of the signal in the time-
frequency plane. Being a mathematical generalization of the ordinary Fourier
transform, the FrFT gained attention as a signal processing tool thanks to Almeida’s
paper on the subject (Almeida, 1994). In that paper, properties of the FrFT are
derived and its relationships with time-frequency representations are established.
After the appearance of Almeida’s paper, Ozaktas and his collegues developed a fast
approximate discrete FrFT algorithm (Ozaktas et. al., 1996). Motivated by Baraniuk
and Jones’ work on unitary equivalence (Baraniuk & Jones, 1995), and Sayeed and
Jones’ papers on integral transforms covariant to unitary operators (Sayeed & Jones,
1996), Akay defined the FrFT and FrMT in terms of unitary fractional shift operators
(Akay & Boudreaux-Bartels, December 1998), (Akay & Boudreaux-Bartels, August
1998). In this thesis, Akay’s work is followed with the aim of developing an
algorithm for computation of the FrMT.

In Chapter 2, a theoretical study of operator methods is given. After providing a
brief introduction to the concept of scale as a signal variable, unitary and Hermitian
operators, their associations with physical variables, and their equivalence relations
are presented. Generalized Fourier transforms are defined as being the inner product
of the given signal and the eigenfunctions of the operators. Within this ﬁamework,
the FrFT and the FrMT are defined using the newly defined unitary fractional shift

and unitary fractional scale shift operators.

Chapter 3 introduces the logarithmic warping algorithms used in various stages of
the development. These algorithms are devised depending on the existance or the

absence of the knowledge of the complete time orientation of the analyzed signal.

In Chapter 4, the warping algorithms are used together with the discrete FrFT code
to realize the discrete FrMT. Simulations comparing various algorithms are

presented.



In Chapter 5, the FrMT algorithm was demonstrated on several examples, namely
the detection of a hyperbolic chirp, seperation of a logarithmically warped Gaussian
signal from a logarithmically warped chirp, and the comparison of the FrFT and
FrMT of a rectangular pulse through different angles.

Finally, our conclusions are given in Chapter 6.



CHAPTER TWO
INTRODUCTION TO FRACTIONAL

TRANSFORMATIONS

In this chapter, the tools and methods that form the background of this thesis are
briefly reviewed. In the first section, the écéle variable is introduced. In section two,
operator methods are studied within the subject of signal analysis. Then, in sections
three and four, the topics of time-frequency analysis and scale are combined to

introduce the fractional Fourier and fractional Mellin transforms.
2.1 Time and Scale Periodicity, Fourier and Scale Transforms

A function g(t) is periodic in time if

g)=g(+T,), VieR Eq. 2.1)

where T is the fundamental period. Fourier analysis began as an attempt to represent
such signals using sinusoids. For periodic functions, a discrete set of Fourier

coefficients can be calculated such that g(t) can be written as a sum of complex

sinusoids
. Ty/2 )
— Jkogt —— — jkant
g(®)= Z ae , 4=7 [ gedt Eq. (2.2)
k=—o0 0-7,/2

where w, =-2§-17£ is called the fundamental frequency. For aperiodic signals, the
0

coefficients ay are replaced by a continuous function G(w) given by

G(w) = o].g(t)e'j‘“'dt.
o Eq. (2.3)



Another class of signals are known as “scale periodic” if they satisfy the following
condition

O =), V>0 Eq. (2.4)
where T corresponds to the scale period. Note that ordinary periodic signals assume
the same value at time points that form an aritmethic sequence whereas scale periodic
signals assume scaled versions of the inital value at time points that form a geometric

(or exponential) sequence.

An example of such a scale periodic signal would be of the form €™ To check
t

if this signal satisfies the scale periodicity property above, we perform the following;

jClnt
e!

f@O=
Vt
g/Clm)  GJCI(T) | ey, jCIn(z) (ezcm(t)J /1

TOSE="FdF T EESTEY s

For the condition in Eq. (2.4) to hold, the term ¢’“™® should be equal to unity which

requires
ClIn(t) =2nk, keZ. Eq. (2.6)
For k& = 1, the fundamental scale, Cy, associated with the function f{#) is defined to be
Coln(t) =2n. Eq. (2.7)

jCint
Jt

scale periodic with period t. This can be thought as analogous to the fundamental

Within the set of functions { }, only those functions for which C = kC) are

frequency @y of a harmonic oscillation where only the exponentials with frequencies
kw, are periodic with period To. In @ manner similar to the Fourier series, one can
define the scale series as
e"°c°'“(‘) YN0
fO= Zb j fHE—— i bla=s Eq. (2.8)

k=-0



where integration from a to b corresponds to integration over one “scale period” t.
For functions which are not scale periodic, T is let to approach infinity, Cp
approaches zero, and the product kCp in the integral in Eq. (2.8) can be treated as a

continuous variable. One then defines the Scale transform (Sundaram et al., 1997) as
1 % g~ Jentt)

M(c) I Oj f(t)Tdt. Eq. (2.9)
This is analogous to the Fourier Transform generalizing the Fourier Series for
aperiodic functions. However, this progression from the scale periodic functions to
the scale transform is not the historical development of the scale transform. Scale
transform was previously developed in an operator theoretic manner by Cohen
(Cohen, 1993). It is in that paper that Cohen defines the scale operators along with

their eigenfunctions which form the kernel of the Scale transform.
2.2 Operator Methods
2.2.1 Unitary and Hermitian Operators

A function f{?) is a mapping from the real time domain to the real range space. In
finite dimensional spaces, a vector in a given n dimensional space R" has n
components and is typically expressed as X £(x,,x,,...,x,). The function f{), with
its infinitely many points, can be thought of as an infinite dimensional vector;
f 2 (fis f3>-+-» /) With the appropriate choice of norm, inncr and outer product
functions, vector analysis methods can be easily modified to serve the needs of signal
processing. In general, our aim is to use the notion of a linear transformation in signal
processing so that applying a transformation to a time domain signal maps it into
such a domain that extracting information on the nature of the signal in that domain

is much easier.

Operators are mathematical objects that can be used to denote either systems or

transformations. Historically, operator methods have been used extensively in



quantum theory, prior to their adoption in signal processing. Thus, much of the

jargon related to operator methods have roots in quantum theory.

There are two fundamental uses of operators. The first is to change the underlying
basis of a signal s(?) by transforming it into another domain (Sayeed & Jones, 1996).
We can express this type of usage of an operator U as

s Us. Eq. (2.10)
The other is to change the underlying basis of a given operator A. This can be
accomplished by applying a unitary operator U as (Baraniuk & Jones, 1995)

A UTAU. Eq. (2.11)

Two of the most commonly used operator types are wunmitary and Hermitian
operators. Unitary operators preserve inner products, leaving the angle between the
coordinate axes unchanged. That is, the inner product between two signals g(?) and

h(t) is the same as the inner product between their transformed versions Ag and Ah
(Ag,Ah)=(g,h). Eq. (2.12)

In Eq. (2.12), the notation (g,h) denotes the inner product of two signals g(#) and

h(1), which is defined by
(g:h)= ig(t)h (1)dt Eq. (2.13)

where ~ represents complex conjugation. On the other hand, Hermitian operators
satisfy the property; o )

(Ag,h)={g, Ah) Eq. (2.14)
for two signals g(#) and A(?). Note that in the above, we denote unitary operators with
bold capital letters such as A and U whereas Hermitian operators are denoted by

capital calligraphic letters like .4 and B.



2.2.2 Operator Associations

Traditionally, Hermitian operators have been associated with physical variables
such as time, frequency and scale because the averages of Hermitian opearators are
always real valued (Cohen, 1995). Measurement of the associated quantity can be
done by projecting the given signal onto the eigenfunctions of the Hermitian
operator. The Hermitian operators associated with time, frequency and dilation (log
modulation), as defined in the time domain, are given as (Baraniuk & Jones, 1995)

Time: (Tg)(r)=1g(?)

Frequency: (Fg)(t) = —l-—i gty . Eq. (2.15)
Jj2m dt
Log Modulation: (Hg)(t) = (If—;f—’f— g) ).

Similarly, we can define the unitary operators associated with the fundamental
variables of time, frequency and scale as (Baraniuk & Jones, 1995)
Time Shift: (T g)t)=g(t—1)
Frequency Shift: (F,g)(t)=e’*™g(t) Eq. (2.16)
Dilation: (D,g)()=¢"g(e™t).
The log modulation and dilation operators mentioned above are the operators

associated with the concept of scale.
2.2.3 Stone’s Theorem

Using Stone’s theorem from functional analysis, one can show that unitary and
Hermitian operators are equivalent; i.e. given a Hermitian operator 3 one can create

a unitary operator A, associated with the physical variable a, by exponentiating B
via (Baraniuk & Jones, 1995) (Sayeed & Jones, 1996)

A, =8 z(_JE"a'_B)_, Eq. (2.17)
n.

n=0



Conversely, B tan be obtianed from the unitary operator A, using the following

relation

B=—L fimAa=1 Egq. (2.18)
j2n a—0 a

As a result of Stone’s theorem, the equivalence of unitary and Hermitian time,
frequency and scale (dilation and log modulation) operators can be expressed as
follows (Baraniuk & Jones, 1995),

T, =™, F =7, D,=e", Eq. (2.19)

Why do we then need both unitary and Hermitian operators if they are equivalent?
The answer lies in the fact that cigenfunctions of unitary and Hermitian operators
define signal transformations with different properties as we will see in the next

section.
2.2.4 Generalized Fourier Transforms

Given a unitary operator A,, we define the A,-Fourier transform, F,, as the

expansion of the time domain signal s(?) onto the eigenfunctions u? (f) of Ay;

5(0) = (Fys)(@) = (s(t),ub (1) = [s(O)ul" (). Eq. (2.20)
The inverse A-Fourier transform is obtained by the expansion of the transformed

signal onto the conjugate of the eigenfunctions of A,,
s(t) = (Fy'$)(1) = (§(),ul’ () = [3(a)ul ()do. Eq. 2.21)
An A -Fourier transform, associated with the Hermitian operator A, is defined

similarly in terms of the eigenfunctions u?(f) of the A .

Eigenfunctions of unitary and Hermitian operators associated with the same
physical variable a are usually different. Thus, they lead to different generalized

Fourier transforms;

wzut = F,s5) @)= Fs)(o). Eq. (2.22)
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A, and A Fourier transforms behave differently when a unitary transformation A,
is applied to the signal before the generelized Fourier transform. The A, - Fourier

transform, F,, is invariant to A,, i.e. the effect of A, is not reflected in the
magnitude of the transform (but is included as a phase factor),

|, A, )(@)] =|(Fys)(@)] Eq. (2.23)
The A - Fourier transform, on the other hand, is covariant to A,; i.e. changes due to
A, are reflected by F, as a time shift

(F,A s)a) =(F,s)(a-a). Eq. (2.24)

This can also be interpreted as F, measuring the a - content of the signal s(?).

Table 2. 1 Eigenfunctions Associated with Operators

Operators Eigenfunctions
T.7 u; (2) =uj () =e&*™
KT u; (1) =u; (1) =6(t—k)
D,H uy () =u(t) =%, >0

Traditional time, frequency and scale operators and their associated eigenfunctions
are given in Table 2.1 above. We can write the generalized.qurier transforms

associated with these variables as follows;

Fourier Tr.: F, =F, =(s(),e”™) = [s(t)e > dt = S(k)

L4

Identity Tr.: F, =F, =(s(:),8(t-k)) = js(t)S(t —k)dt = s(k) Eq. (2.25)

© 1 .
Mellin Tr.: F s(), ’2""I°g’> s(f)—=e 72™08 gy,
= < ) I O
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The Fourier transform F, is invariant to time shifts and covariant to frequency

shifts. Thus, it measures the frequency content of the signal. The identity transform

F,, is invariant to frequency shifts and covariant to time shifts. Consequently, it

measures the time content of the signal. Finally, the Mellin transform is invariant to
scale changes (dilations), and it measures the “logarithmic modulation™ content of

the signal s(2).
2.2,5 Unitary Equivalence as a Coordinate Transformation

Two unitary operators Aand A are unitarily equivalent if they are related as
A=U"AU Eg. (2.26)
where U is another unitary operator. This relation corresponds to the operation of

change of basis in linear algebra. Thus, we represent the unitary operator A in terms

of a new set of eigenfunctions @/(¢) . While the operator A represents a single

physical quantity a, the operator U™AU can represent an infinite spectrum of
different physical quantities each corresponding to a particular unitary transformation

U (Baraniuk & Jones, 1995).

It can be easily shown that the unitary time shift operator T, and unitary frequency
shift operator F,are unitarily equivalent with the conventional Fourier transform
providing the unitary link;

F,=F'T,F Eq. (2.27)
where F represents the classical Fourier Transform. Thus, if a time shift is applied to

a Fourier transformed signal and then the inverse Fourier transform is calculated, the

net result is a shift in the frequency domain.

Using the principle we have just introduced, we can readily define two more
unitary operators T,and F, by
T, =U'T,U Eq. (2.28)
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F, =U"FRU. Eq. (2.29)
These new operators can be shown to be equivalent by using Eq. (2.27), Eq. (2.28)
and Eq. (2.29) via the relation ‘

F, = (U"FU)T, (U"'FU). Eg. (2.30)

Similar results can be derived for Hermitian time and frequency operators since

they are equivalent to their unitary counterparts via Stone’s theorem.

An important result of unitary equivalence relations is the generation of new
generelized Fourier transforms since the eigenfunctions of the transformed operators

are different as follows;

TeX = kel Eq. (2.31)
U'T,UeX = ke™ Eq. (2.32)
T,(Uel) = k(Uel). Eq. (2.33)
Ue'f" = ef" —> eZ“ =Ue}, Eq. (2.34)

If we want to find the F -covariant, T -invariant Fourier transform F;, we need
to take the inner product of the eigenfunctions of T and the signal s(2);
Fy =F, =(s(t), U6}t ) = (Us(e), UU"e} ) =(Us(®),e} ) =F,U=F,U=FU
' Eq.(2.35)
where F represents the classical Fourier transformation. Note that, in the above
equations, the eigenfunctions of the corresponding operators are denoted by e instead

of the usual u, to avoid confusion with the unitary operator U. Eq. (2.35) uses the fact

that applying a unitary transformation U preserves inner products. Thus, the new

transformation ]Ff- is ' -covariant and T -invariant.

In a similar fashion, T -covariant, F -invariant transform can be formulated as

F;=F=KU=IU=U Eq. (2.36)
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where I represents the identity transform. Thus, F. is T -covariant and F-

invariant.
It is seen that once the unitary link has been decided upon, it is straightforward to
calculate the associated generalized Fourier transforms in terms of the unitary link

and the original transforms.
2.2.,6 Logarithmic Time - Axis Warping

Until now we have mostly explored the time and frequency operators. We need to
define a unmitary warping operator in order to carry over time-frequency plane

concepts into scale space. This can be done using the unitary warping operator U,

defined as
(U, 8)0) =€'"%s(e"). Eq. (2.37)
This operator takes signals in I*(R,) and stretches them into signals in L*(R)

(Baraniuk & Jones, 1995). Note that the operator scales both the argument and the
signal itself. With this unitary link, we can define the unitary and Hermitian scaled

time and scaled frequency operators as given in Table 2.2 and Table 2.3.

Table 2. 2 Scaled Versions of Time and Frequency Operators

Unitary Hermitian
Dilation U™, LU, =D, U, 70, =D
(Scaled Time)
Log Modulation U, KU, =H, U FU, =H
(Scaled Frequency)

The operators Dand D are called unitary and Hermitian “dilation” operators,
respectively. By dilation, we mean scaling of the time variable. The operators H and
H are called unitary and Hermitian “log modulation™ operators. Scaling of frequency

in an exponantial manner can be termed as logarithmic modulation.
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Table 2. 3 Definitions of Scaled Time and Frequency Operators

Unitary Hermitian

Dilation i
(Scalod Time) M, g)t)=e""g(e™t) | (Dg)r)=(logt)g()

ca ime
Log Modulaflon | g1 axiymem () | (g = (—-—Tf +77 g)(t)
(Scaled Frequency) 2

The scale-invariant, log-modulation covariant transform is given by

F, =F, =F;U,,=FU,. Eq. (2.38)

Similarly, log-modulation invariant, scale-covariant transform (Baraniuk, 1993) is
given by
F,=F; =F, U, =IU

log = log = Ulog‘ Eq (2‘39)

2.3  Fractional Operators and the Fractional Fourier Transform

Switching from the time domain to the frequency domain via Fourier transform
reveals valuable information about the spectral content of the signal. However, the
spectra of real world signals usually change with time. Thus, the need arises to
represent signals in time and frequency domains simultaneously. Two most common
examples of time-frequency represantations (TFRs) are the Wigner distribution and
the short time Fourier transform. Many such representations were devised over the
years to satisfy different constraints arising from different application requirements
(Hlawatsch & Bartels, 1992). In the following sections, a generalization of the
Fourier transform into the time-frequency plane, the fractional Fourier transform
(FrFT), and its scaled time-frequency counterpart, the fractional Mellin transform
(FTMT), are introduced from an operator point of view. The FrFT, although not a
TFR by itself, can be shown to be implicitly related to many TFRs. As the main
subject of this thesis, the FrMT is an attempt to generalize the Mellin transform into a

scaled TF plane.
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Conventional time and frequency demains are considered to be orthogonal and the
Fourier transform can be thought of as a mapping from the time domain, ¢, to the

frequency domain, f, of the time-frequency plane as shown in Figure 2.1(a).

SAFE, S AR,
F Rk‘\\\ ]Ftb
\
\
{ i
4 /A SEEEEY
T, T,
(@) ()

Figure 2. 1 Time, Frequency and Frazctional domains and the operators

associated with them

Now, let us consider a new signal domain in between the orthogonal time and
frequency axes of the TF plane — the fractional domain, r, associated with the angle
¢. Mapping of a signal onto this fractional domain can be thought of as the
counterclockwise rotation of the signal by an angle ¢ from the positive time axis as in
Figure 2.1(b). A rotation of n/2 radians would clearly amount to computing the
classical Fourigr transform of the signal. Analpgously, ‘a rotation of ¢ radians

corresponds to calculating the fractional Fourier transform (FrFT) of the signal.

Just as the unitary time and frequency shift operators are unitarily equivalent via

the Fourier transform as in Eq. (2.27), the unitary fractional shift operator Rﬁ

associated with the fractional domain # is unitarily equivalent with the unitary time

shift operator T,, with the fractional Fourier transform F*providing the unitary link
(Akay, 2000)

R =F*TF. Eq. (2.40)
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The fractional shift operator corresponds to the operation of shifting the signal by
an amount p along the fractional axis » that is at angle ¢ with the positive time axis ¢
and is defined explicitly as (Akay & Boudreaux-Bartels, December 1998), (Akay,
2000)

(R%s)(8) =s(t - pcos )™ wsbsing+j2mpsing Eq. (2.41)

Recall from Table 2.1 and Eq. (2.25) that to find the .A - Fourier transform that
transforms the given signal into the ‘@’ domain associated with the Hermitian
operator A,one needs to know either the eigenfunctions of A itself or the
eigenfunctions of the equivalent unitary shift operator B,. Observing Eq. (2.19) and
Table 2.1 carefully, one readily realizes that physical variables represented by unitary
and Hermitian operators connected via Stone’s theorem are orthogonal. For example;
time and frequency are orthogonal quantities. Similarly dilation and log modulation
are also orthogonal variables. From Eq. (2.25) it can be seen that to find the Fourier

transform F, of a time domain signal one needs to know the eigenfunctions of the

unitary time shift operator Ty which are also the eigenfunctions of the Hermitian
operator F . In other words, to map a signal from a given domain into the orthogonal
domain 7/2 radians ahead, one either needs to know the eigenfunctions of the
" Hermitian operator associated with the target domain or equivalently the
eigenfunctions of the unitary shift operator associated with the original domain.
Therefore, to arrive at the fractional domain associated with the Hermitian fractional

operator R? via the fractional Fourier transform F?,one needs to know the

eigenfunctions of either R? or R%™* as illustrated in Figure 2.2.
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Figure 2. 2 Operators used in the calculation of the FrFT

The dual Hermitian fractional operator B¢ is computed directly by substituting
Eq. (2.40) in Eq. (2.18);

RN
(B"sxz):E!;g_%w

=—sin¢[ts(t)]+cos¢|:—;—£%s(t)} Eq. (2.42)
= —(sin #)7 +(cosg) F= R,

The calculation of B =R%™ is not so straightforward however and is beyond
the scope of this work (Akay, 2000). Using Bf,, the Hermitian fractional operator

R? can be computed as

: B’ -
(R¥s)(t) =ﬁ},iglg(—ﬂ;7)—s(2 Eq. (2.43)

= (cos@)7T +(sing)F.

-3
Once the eigenfunctions u? @,r) = uf“’ (¢,7) of R are calculated (Akay, 2000)

the calculation of the FrFT is straightforward as follows;
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Fs)(r) = <S(t), J1+ jcot ¢e-fz’=@wt¢ ejchsc¢>

r

o)y T WU
J1-jcotd e 7 Is(t)e’“ Tty b2 nmnel

={s() o =Qn)n
s(-r) d=2n+Dm.

Eq. (2.44)

L

The process of calculating the FrFT can be summarized via the block diagram
shown in Figure 2.3 The signal s(?) »s first multiplied with a linear chirp et
Then, the classical Fourier transform of s(f)e’™ “**is computed with the output
variable scaled as 4 .This provides the mapping into the fractional domain. For the

transformation to be completed, the result is multiplied first with another chirp in the

fractional domain followed by a final multiplication with the constant term
JJ1—jcotg. This constant term serves the purpose of making the FrFT an energy-

preserving signal transform.

1-j cot
. Fou;ier
ransform
s(t) ————-.»®——> r —e ®—>®—’—"' (IFd)S) (r)
t sin ¢ .
jmte | jrricot
eJntwﬂb eJTC cot §

Figure 2. 3 Block diagram representation of the FrFT

2.4 Fractional Mellin transform

Using the unitary warping operator Uy given in Eq. (2.37) as the unitary link,
unitary scaled time shift (dilation) operator Dy and the unitary scaled frequency shift
(log modulation) operator Hy were defined in Section 2.2. Dy and Hy are unitarily

equivalent to Ty and Fy, respectively, via the unitary warping operator Ujog. Similarly,
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a unitary scaled fractional shift operator, M’ , can be defined as unitarly equivalent
to the unitary fractional shift operator Rg via the unitary link U, (Akay, 2000)

M! =U_ R!U Eq. (2.45)

log log*

The explicit definition can be written as (Akay, 2000)

(Mf,s)(t) = 712.s(elnt—pcos¢ )eh";/;m_sle—jupz cos¢sin¢ej27rlntpsin¢ )

The unitary warping operator U,og can be thought of as warping the whole time-
frequency plane into a scaled time-frequency plane as depicted in Figure 2.4. The
unitary scaled fractional shift operator Mﬁ corresponds to the operation of shifting

the signal by an amount p along the sczled fractional axis m that is at angle ¢ with the
positive scaled time (dilation) axis, d. Just as the FrFT, by finding the eigenfunctions
of M?,the Hermitian operator associated with the fractional scaled domain m, we

can define the fractional Mellin transform (FtMT) as a generalization of the Mellin

transform into the scaled TF plane.

hA H,

/¢

N M
\
\
i
i
D

k

Figure 2. 4 Time, Frequency and Fractional Mellin domains and the operators

associated with them

The Hermitian fractional scale operator, M?, is unitarily equivalent to the

Hermitian fractional operator R? via U,

M? =U;LR?U

log log*

Eq. (2.46)
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By substituting R? in Eq. (2.43) we obtain
M? = Ul'olgR¢U1°g = U,'O‘g ((cos $)T +(sing) F)U

= (S B)(Uil TV, )+ (sing)(Us FU,,.) Eq. (2.47)
= (cos @) D+(sing)H.

log

As a result of the unitary equivalence relation in Eq. (2.45), the FIMT can be
calculated, without resorting to any lengthy eigenfunction calculations (Akay, 2000).

This is simply done by first applying the unitary warping operator U‘og and then
computing the FIFT, F*, by virtue of the following relations
= - U =
F,e "]FMQ-% —IE‘R¢_,§U =F'U,, =M"°. | Eq. (2.48)

P P

log log

It can be easily seen that Eq. (2.48) is a straightforward application of Eq. (2.35)

where U, _ is the unitary link between the fractional shift operator Rﬁ and the scaled

log

fractional shift operator Mg .

Consequently, the explicit formula of the FrMT can be given as (Akay &
Boudreaux-Bartels, August 1998)

meimzcow Is(t) eiir(lnt)zcot¢—j27r(lnt)mcsc¢ gt_ , ¢ £ N
; Vt

(Ms)(m) =4 e?s(e™), ¢=02mr  Eq.(2.49)

m

e 2s(e™), ¢o=2n+)x

L

where we recognize the eigenfunctions as

+ i . (1nt)2+m’co )
u,,(t,m) =—We P gstatmesd g Eq. (2.50)
t

For ¢=0, the FIMT in Eq. (2.49) reduces to the scale-covariant transform in
Eq. (2.39), which can more explicitly be expressed as

(Ms)(m) = e s(e™). Eq. (2.51)
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This transform was termed as the scale covariant transform in (Baraniuk, 1993).

When ¢=n/2, the FtMT reduces to the ordinary Mellin transform of Eq. (2.38)
(M= s)(m) = Is(t)e'jz”““’)'” a Eq. (2.52)
; N

This transform was first defined by Cohen as the scale transform (Cohen, 1993)
(Cohen, 1995). Similar to the way the FrFT can be decomposed into separate blocks,
we can think of the FrMT as a series of operations on the original signal as shown in

Figure 2.5.

The signal s(?) is first multiplied by the scaled time chirp ™ **¢  Then, the

Mellin transform of the resulting signal is computed with the output variable scaled

m
sing

as . This operation provides the transition into the scaled time-frequency plane.

jrm? cotg

Lastly, the signal is multiplied by a scaled fractional domain chirp e and an

amplitude factor /1— jcotg .

= - - -

1-j cotd
S|
rans
-s(t) -———>®——> ¢ m ®——>®————> (m%)(m)

——

sin

. 2 to jnm2c0t¢
eJTIZ( Int)co &

Figure 2. 5 Block diagram representation of FrMT

The FrMT given by M’ =F Wi F*U,  constitutes the basis of our work. It will be

log
the norm against which we test the correctness of the discrete FTMT algorithm that

will be developed in the remainder of this thesis.

Fractional Mellin transform (FrMT) in Eq. (2.49) was proposed by Akay and
Boudreaux-Bartels in (Akay & Boudreaux-Bartels, August 1998), (Akay, 2000).
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However, to our knowledge, its discrete implementation has not been considered up
to this point. In the rest of this thesis, using MATLAB computing software, we
develop algorithms to implement the logarithmic warping, U,,, combined with a

log °
previously proposed (Ozaktas et. al.,, 1996) discrete FrFT algorithm for the purpose
of implementing the FrMT efficiently.
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CHAPTER THREE
DEVELOPMENT OF THE LOGARITHMIC

WARPING ALGORITHM

As we have seen in Section 2.4, the fractional Mellin transform (FrMT)
corresponds to first applying the unitery warping operator U10g to the input signal

and then computing the fractional Fourier transform,F?, of the logarithmically
warped input signal as

M’ =F,, =FU Eq. (3.1)

log*
It is therefore necessary to construct a discrete algorithm that performs the warping

U

log ON as large a set of input signals as possible. In this section, development of the

logarithmic warping algorithm is described.
3.1 Logaritmic Warping

The scale transform given in Eq. (2.9) is a special case of the more genefal

classical Mellin transform, which can be defined as (Cohen, 1993),
MILf@;s]=F(s)= [ f @) at Eq. (3.2)
0

where seC. It can be shown by a simple algebraic manipulation that the scale
transform corresponds to the Mellin transform with the complex parameter s taken to
be s =—jc+1/2 (Cohen 1993). This can be seen via

e~jc In(t) (eln(t) )—jc

\/; - tuz

=i, Eq. (3.3)
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To show the connection between the Mellin transform and the Fourier transform,

one must first perform the following change of variables
t=e* dt=-edx. Eq. (3.4)
Substituting in Eq. (3.2) we find

F(s)= [ f(e™)e™ Ve dx= [fe™e=dx=LlfEe™)]. Eq. (3.5)

Thus, the Mellin transform is equivalent to calculating the two-sided Laplace
transform of f(e™). Expressing the parameter s explicitly as s =o + jo helps us

see the Fourier transform connection;
F(s)= I f(e™)e gy = j[ fe e e dx=F[f (e’j‘ )e*].  Eq.(3.6)

In Eq. (3.6), it can be seen that the Mellin transform of f{?) is equivalent to the
Fourier transform of the function warped according to f(e*)e™”. Comparing with
- Eq. (2.37) we see that these two formulations agree to a great degree (except for the

negative signs of the exponents) if we assign o =1 .

Now that we see the warping requirement to be able to compute the fractional
Mellin transform, we first must devise a discrete algorithm to perform the warping
operation. In the following sections, development of the various versions of the

warping algorithm will be discussed.
3.2 Warping as a Signal Processing Tool

As a simple example of the usage of warping, we simulate the recovery of a
logarithmically modulated harmonic signal in a noisy environment. Let us first define
the signal

b
s(t) = (Uit h)(®) + n(t) =3+ Y S sin(2rkf, In(t)) + n(z) Eq. (3.7)

J=!

—_

where A(t) is a finite Fourier series representation of a periodic sawtooth wave with

fr=2 Hz. and n(?) is the additive white Gaussian noise component with an SNR of 10
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dB. Only five components of the Fourier series representation of the sawtooth wave
is used. The signals 2(?) and s(¥) are illustrated in Figures 3.1 and 3.2, respectively.
The finite Fourier series representation of the sawtooth wave A(?) is given as
S
K@) == L sin(27kf,2). Eq. (3.8)
k=1
Our purpose is to recover the inverse logarithmically warped sawtooh wave

(U,'o’gh)(t) by suppressing the noise as much as possible. Recovery of such a

harmonic signal requires the application of a set of narrowband filters. To obtain the
signal as accurately as possible, time-invariant filters would have to include the entire
modulation bandwidth which is quite large due to the logarithmic modulation. Using
larger passband selections would also allow passing of more noise components, thus

making the attempt futile.

An alternative solution, more suitable for such signals, would be to first warp the
time axis of the signal via the warping operation (U, s)(?) = e'’s(e'). After warping,
the signal s() is once again harmonic with respect to time axis (Figure 3.3). Thus, we
can now apply Fourier domain narrowband filtering efficiently (Figures 3.4 and 3.5).
For the sake of simplicity, a simple comb filter whose passband regions are centered
at the integer multiples the fundamental harmonic f; is applied by a simple masking
operation in the Fourier domain. After filtering, the time axis is once again warped

with the inverse logarithmic warping operator (U]";gs)(t) = %s(ln(t)) which takes the

signal back to its original time domain (Figures 3.6 and 3.7).

The advantage warping gained us in this example is the ease of filtering of an
otherwise wideband signal by mapping it to a domain where it is represented as a
band limited signal. Thus, the noise component of the signal could be filtered,

without resorting to complicated time-frequency methods.
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A5t ]

Figure 3. 1 Logarithmically modulated sawtooth wave via inverse logarithmic

5
warping, Ulog > logh)(t T:Z S 7 sin(27kf, In(2))
k=1

Figure 3. 2 Inverse logarithmically warped signal corrupted by noise,

5(t) = (Ugeh)(0) + n(t)
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Figure 3. 3 The noisy sawtooth signal obtained after applying U, to the
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Figure 3. 5 The spectrum obtained after multiplication of the spectrum in

Figure 3.4 with a comb filter mask.

il A\

Figure 3. 6 The recovered signal as obtained through an inverse logarithmic
warping operation of the Fourier domain masked signal having the spectrum in

Figure 3.5.
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Figure 3. 7 Comparison of the recovered warped sawtooth wave (dashed line)

with the original analyzed signal (U;}%)(¢) (solid line) in Figure 3.1.

log
3.3 Logarithmic Warping with A Priori Knowledge of Time

Logarithmic warping, as can be seen from the formulation,
= 2ot
(Ulogs)(t) - S(e ) Eq (39)

is a time dependent process. Hence, to warp a signal logarithmically, one must know
the time- 1nstances as well as the values the signal assumes at those instances. The
first version of the 10gar1thm1c warpmg script as given in Appendlx Al presumes
that the initial and final time instants are known. Using this script several test
functions were warped. To be able to verify our results, we must also know the

inverse warping operator, U, , which is given as

log °
(Ulogs)(t) = —1—s(]n f). Eq. (3.10)

7

We confirm the proper operation of the script by applying our warping algorithm

to the inverse warped signals to recover the unwarped original signals back. In our
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simulations, we used sinusoidal and linear FM (chirp) signals. The sinusoidal signal
s(¢) can be defined as

5(2) =sin(27 fit). Eq. (3.11)
If we apply the inverse logarithmic warping in Eq. (3.10), we obtain

- 1 .

(UrS)®) = jsm(Zﬂ f,(In2)). Eq. (3.12)
Similarly, the real-valued chirp signal and its inverse logarithmic warped versions are
given as

s(t) = sin(zwm,t’)

$)(E) = sin(zm, (nz)?).

i

- Eq. (3.13?

log

The script given in Appendix A.2 is used to test the logarithmic warping function
Ulog.m in Appendix A.l. The results are given in Figures 3.8 and 3.9 below. Figure
3.8 shows the inverse logarithmically warped sine given in Eq. (3.12) and its warped
version which corresponds to the sine function of frequency f;=0.5 Hz. Similarly,
Figure 3.9 shows the inverse logarithmically warped chirp signal given in Eq. (3.13)
and its warped version which is a real-valusd chirp signal with a chirp rate parameter
of my=2. In both figures it can be observed that the signals begin with rather high

frequencies and end with relatively lower frequencies. This is due to the fact that, via

the inverse warping U,’o'g, the independent variable ¢ is replaced with In(?). It is

illustrated in Figure 3.10 that the natural logarithm function starts with bigger rates of

change at t=0"and contiunues with slower rates of change towards ¢ — .
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Figure 3. 10 Graph illustrating In(2) vs. In’(1)

It is really straightforward to work with warping if one knows the correct timing
information of the signal. However, in some applications such information might not
exist and a way must be devised to be able to implement the warping algorithm

without the timing information.

3.4 Logarithmic Warping without A Priori Knowledge of Time

To overcome the time dependence problem of the logarithmic warping, we
suggest to use interpolation. Our idea of utilizing interpolation in the implementation
of the logarithmic warping was inspired by a paper by Canfield and Jones (Canfield
& Jones, 1993). A similar application was also found on (Zalubas & Williams, 1995)

and the simulation examples we perform closely follow the examples in their paper.

The full source code of the first version of this script, logwarp.m is given in
Appendix A.3. The test files used to test this script are also given in Appendices A.4
and A.S.
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Our simulation results can be seer in Figures 3.11 and 3.12. In Figure 3.11, a
single period of a sine wave is shown with the dashed line. The solid line shows the
theoretically warped version of the same sine wave. The bold solid line shows the
warping of the sine using the algorithm in Appendix A.3. The same experiment is

repeated for a single period of a square wave in Figure 3.12.

In this version of the logarithmic warping algorithm, we assume that only the
initial time, to, and the sampling frequency, f;, of the signal are known. If not, their
default values are taken to be 0 seconds and 8192 Hz. Using these values, the final
time instant, t, is calculated and a time index vector t is formed. Then, another time
index vector t_os is constructed with 10 times the sampling rate of the original
signal. This is required to increase the resolution during interpolation. Interpolation
of the input vector x is accomplished over the elements of the oversampled time
index vector t_os to form the interpolated signal vector x_int. For each time instant
t(n) within vector t, the point that is nearest to exp(t(n)) is found in t_os and assigned
to t_nearest. The value in x_int that corresponds to t_nearest is x(exp(t(n))) and is
assigned to x_nearest. Finally, warping of the instant t(n) is concluded by multiplying
with the constant exp(t(n)/2).

The inherent difficulty in the implementation of any logarithmic warping
algorithm is the unavoidable loss of data. Even if we know all the time instances for
which the elements of a given input vector x is calculated, we cannot produce all the
elements of the warped signal, since we only know the original signal between the
time instances to and t;. However, for warping one needs the values of x at
exponentiated time instants exp(t(n)). Since we are working in a limited time
window, sooner or later exp(t(n)) will be exceeded. Thus, we can warp only until

Hn) _

Eq. (3.14
#(n) = In(z,). e (3.14)

This is the reason why the bold lines formed by the algorithm do not trace the
whole length of the theoretically warped signals in Figures 3.11 and 3.12, but go only
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as far as /n(2)=0.69 seconds. The number of samples N in the original signal is found

by

N=(@,~t)f, Eq. (3.15)
Substituting In(t) for ¢ in Eq. (3.15) gives us the number of samples obtained after
the logarithmic warping

N'=(In(t,)~1,) .. Eq. (3.16)

Using Eq. (3.15) and Eq. (3.16) we can calculate the percentage of samples that can
be retained after the logarithmic warping through the ratio

N'_(nG,)-1,)
N (,-t)

Eq. (3.17)
Substituting to=-2 and t=2 in Eq. (3.17) shows that for the simulations in Figures

3.11 and 3.12 only 67% of the samples could be retained. For a signal with

symmetric time support [-T/2 T/2] around the origin, Eq. (3.17) takes the form

N'_(n@)-(-1)_(D)+D Eq. (3.18)
N T T -

which approaches 0.5 as T is let to apprach infinity. In other words, as longer

duration signals are taken, only half of the samples will be retained after performing

the logarithmic warping with this algorithm.

It should be noted that the cancellation of the sampling frequency f; in the
numerator and the denominator of Eq. (3.17) does not make the expression
independent of f; since the very value of # is calculated from Eq. (3.15) as

N
£ =to+—f-. Eq. (3.19)

s
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Figure 3. 12 Logarithmic warping of a square wave of frequency 0.25 Hz using

logwarp.m
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3.5  Further Complications and Modifications on the Algorithm

The logarithmic warping algorithm in Appendix A.3 works well by itself.
However, at first try, it did not perform adequetly when used together with the
discrete fractional Fourier transform (FrFT) algorithm proposed by Ozaktas and his
colleagues (Ozaktas et al., 1996). Recall that since our final aim is to implement the
FrMT efficiently, we should be able to combine our warping algorithm with the
discrete FrFT algorithm. Thus, another version of the logarithmic warping algorithm,
named Jogwarp3.m, that interpolates over a symmetric portion of the middle of the
signal, had to be written. That new algorithm obeys certain constraints forced by the
FrFT algorithm. These constraints are discussed later in Section 4.2.2.

The results produced by the warping algorithm Jogwarp3 can be observed in
Figures 3.13 and 3.14. In both figures, the dashed lines correspond to the original
unwarped signals of the sine and the square wave. The solid lines represent the
theoretically warped signals found analytically. The heavy dots are the results 6f
computation using the algorithm logwarp3.

Contrasting with Figures 3.11 and 3.12, we can see that the output of logwarp3
produces far less number of samples than logwarp. While logwarp generated 270
samples from an input signal of size 400, logwarp3 produced only 14 samples from
an input of size 128. The percentage of samples retained after the third logarithmic
warping algorithm can be found by

N _4m’@)

N T

As wider signal supports are taken around the origin, the number of samples

Eq. (3.20)

produced by the logwarp3 algorithm is given by 8In*(T/2) (See Section 4.2.2 for

details). However, the ratio in Eq. (3.20) approaches 0 as T is let to approach infinity.
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It can be observed from Figures 3.13 and 3.14 that the generated samples follow
the theoretical values closely. By employing inputs of larger sizes, more samples of

the logarithmically warped signals can be calculated.

In the next chapter, we will combine our logarithmic warping algorithms with the
discrete FrFT code in order to calculate the FrMT digitally.
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Figure 3. 13 Logarithmic warping of sin(2z f,t) using logwarp3.m (£,=0.25 Hz)
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Figure 3. 14 Logarithmic warping of a squre wave of 0.25 Hz using logwarp3.m
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CHAPTER FOUR
DIGITAL COMPUTATION OF THE FRACTIONAL

MELLIN TRANSFORM

In this chapter, the logarithmic warping algorithms developed in the previous
chapter are combined with the discrete fractional Fourier transform code to compute
the fractional Mellin transform. The results of different warping schemes are

examined in the following sections.
4.1 The Fractional Mellin Transform with A Priori Knowledge of Time

The first warping algorithm used was Ulog.m given in Appendix A.l. Using this
algorithm together with the fractional Fourier transform code given in Appendix A.7
produced the results in Figures 4.1 through 4.20. The script file for obtaining these
figures is given in Appendix A.12.

Figures 4.1 through 4.5 give the results of the fractional Mellin transformation for
the inverse logarithmically warped complex exponential of freqeuncy f;=1.5 Hz. The
real part of the original exponential signal is plotted in Figure 4.1. The inverse
logarithmic warping of this signal is found as

1

(ejanot) =_1_ej2nﬁ,(1ogz) =_(e(logt))j27tf° = P2hy V2 2 fm0 Eq. (4.1)

U-—l

log

and is plotted in Figure 4.2. The FrFT at angle ¢=n/5 of the complex exponential can
be seen in Figure 4.3. Figure 4.4 shows the FrMT of U;} (¢/**) computed at ¢=n/5

log
and superimposed on the FrFT of the complex exponential. The data points indicated

by the circles are the result of the logarithmic warping with Ulog.m followed by the
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computation of the FrFT. The two results match by virtue of Eq. (2.46). That is, if we

apply the FrMT to the inverse logarithmic warped version of a signal (U,”o’gs)(t) , WE

obtain the FrFT of the original signal, s(#). This is how we check the correctness of
the discrete FrMT algorithm. This validation procedure can be represented by the

following expression
(M?5)(t) = (FU,,)(®) Eq. (4.2)

(M?UL,s)(1) = (F*U, g Upyp s)(t) = (F¥5)(0). Eq. (4.3)

Figure 4.5 shows the FrMT at angle ¢=n/5 of U;. (¢/**/*), superimposed on the

log

theoretical FrFT of ¢/ This time the results do not match perfectly, especially
near the ends. This situation can be explained by considering the theoretical FrFT of

the complex exponential signal given as (Akay, 2000)

F (e/2 ) = m g A L7y ang jdnifysecs Eq. (4.4)
This signal cannot be perfectly created by the FrFT algorithm of Appendix A.7. As
stated in (Ozaktas et.al, 1996), the FrFT algorithm is not an exact computation, but
an approximation of the continuous formulation of the FrFT. Therefore, we expect

the practical computations not to comply with the theoretical computations exactly.

Figures 4.6 through 4.10 contain the results of computing the FrMT of an inverse
logarithmically warped complex chirp signal. Figure 4.6 shows the real part of the
chirp signal with chirp rate mg=0.05. In Figure 4.7, the inverse logarithmic warping

of the chirp signal, given by,
UL )=, Eq.(45)

is illustrated. Figure 4.8 shows the FrFT at the “matching” angle,
(d=atan(mg)+n/2=1.6208 rad=92.86 degrees), of the chirp signal. In Figure 4.9, the
FrFT of the chirp ™ s superimposed with the FrMT at the matching angle of the

-1

warped chirp signal U, (e”’”‘“’z). The circles represent the data points produced by
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the FtMT. The theoretical FrFT at angle ¢ of a chirp signal is another chirp given by

ST
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Figure 4. 1 Real part of the complex exponential ¢/*"* with fy=1.5Hz
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Figure 4. 2 Real part of the inverse logarithmic warping of ¢/>"*#'
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o, N — it o=t .
Fé (/)= |[2FT1A0E T g Eq. (4.6)
14 m, tan ¢

When a chirp signal with a matching chirp rate parameter value of my=tan(¢—n/2)

is transformed with an FIFT at angle ¢, the chirp rate of the transformed signal given
in Eq. (4.6) approaches infinity. The FIFT code of Appendix A.7 (Ozaktas et.al.,
1996) implements the chirp multiplication and FT decomposition of the FrFT
(displayed in Figure 2.3) as follows

m . Jl—jcotd nteotp-csotyly A jrescs(PEY jm(eotp-csdXsF | n

S( )= e 24r e 247 o 28" 5(—).
2Ar 2Ar n—nN 2Ar
Eq. (4.7)

This formula is an approximation of the FiFT integral in Eq. (2.42). Note the
1/24r terms in the denominator of the coefficient term. When the matching chirp
pulls the chirp rate of Eq.(4.6) to infinity, the 1/24r terms in Eq.(4.7) pull the value
of the overall expression down as in

sin(%)

lim—&- - §(x) Eq. (4.8)

&0  x

and produce an impulse signal. This is expected if we think of the impulse function

as a special degenerate chirp function with infinite slope.

In Figures 4.11 through 4.15, the FIMT computed at angle ¢=n/5 of an inverse

logarithmically warped Gaussian signal of the form e is illustrated. Figures 4.11
and 4.12 depict the Gaussian signal and its inverse logarithmic warped versions,
respectively. Figures 4.13 and 4.14 show the FrFT at ¢=n/5 of the Gaussian signal
and the FrMT at ¢=n/5 of the inverse logaritmic warped Gaussian given by;

U-l

log

2 1 2
™) = e o008 Eq. (4.9)
™) NG 1
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This time the practical and theoretical results match perfectly because the Gaussian

signal is an eigenfunction of the FrFT operator F? defined in Eq. (2.44) (Akay,
2000).
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1 (c) and the theoretical FrFT of ¢

As a last example, Figures 4.16 through 4.20 show the fractional Mellin tranform

of-an inverse logarithmically warped constant signal of value c=5. It can be seen in

Figure 4.20 that the theoretical and practical calculations do not perfectly match, as
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opposed to the results of practical FrfFT and FtMT calculations in Figure 4.19 which
follow each other fairly closely. The inconsistency between the theoretical and
practical results is, again, due to the fact that the FrFT algorithm we use is not an

exact computation, but an approximation of the continuous transform.

4.2 The Fractional Mellin Transform without A Priori Knowledge of Time

4.2.1 FrMT with logwarp.m

One cannot practically know the initial instant of everyday signals, any instant can
be assigned to zero. Even if one knew perfectly the time localization of the signal, it
would not be possible to know the mathematical formula of the signal or the one-to-
one mapping between the signal and the time values just by looking at the data set.
However, the algorithm Ulog.m in Appendix A.1, requires complete time orientation
knowledge about the analyzed signal. Since that knowledge is not always practically
available, one must devise other means o perform time warping of a given arbitrary

discrete time signal.

An idea inspired by (Zalubas & Williams, 1995) and (Canfield & Jones, 1993) led
to the implementation of the logarithmic warping operation using interpolation.
Interpolation allows us to calculate the intermediate sample points of a signal from a
given data set. One of the most common interpolation methods is accomplished by
assuming that the given N points belong to a polynomial of order N-1 and calculating
the intermediate points by first finding the appropriate polynomial coefficients, and
then evaluating the polynomial at those given data points. A modified version, called
the cubic spline interpolation, was used in the logarithmic warping function in
Appendix A.3. In cubic spline interpolation, each two data points are supposed to be
connected with a cubic polynomial. In addition, the function, its derivative, and its
second derivative are assumed to be continuous at the data points and the polynomial

coefficients for each region between two data points are calculated accordingly.
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The results of computing the FrMT of aforementioned signals using logwarp.m
can be seen in Figures 4.21 through 4.28. Figures 4.21, 4.25 and 4.27 are the plots of
the FIFT at ¢=n/S of the complex exponential, Gaussian pulse, and the constant
signal, respectively. In Figures 4.22, 4.26, and 4.28, we plotted the FrMT at ¢=n/5 of
the inverse logarithmic warped versions of the same signals. In Figures 4.23 and
4.24, we see the FrFT of the chirp signal and the FIMT of the inverse logarithmic
warped version of the same chirp, calculated at the matching angle value of
¢=atan(mo)+n/2, respectively. The script used in obtaining these figures is given in
Appendix A.14.

The results are far from satisfactory. Although similarities can be observed, the
differences are not negligibly small. Similarity is the most in the case of the constant
function, because the value of the constant function is independent of the time

orientation information which reduces the interpolation errors.
4.2.2 FrMT with logwarp3.m

The results of Section 4.2.1 necessitate the fine tuning of the warping algorithm.
Upon a reinspection of the process, it was realized that the function fracfm given in
Appendix A.7 is very sensitive to the sampling of its input signal. It requires that the
input signal is a time-bandwidth product limited signal. It operates on an input vector
x which is assumed to be the samples of a signal f, obtained at a rate 24, where the
Wigner distribution support region of the signal f'is confined to a circle of diameter
4, around the origin of the time-freqﬁency plane (Ozaktas et. al, 1996). Thus (Ax)’
becomes the time-bandwidth product of the signal f. For a signal of duration 4;,

starting at -4,/2 and ending at 4,/2, the total number of samples are calculated as

T=A,

fi =24,

T = 22 Eq. (4.10)
T

N===2A%

s
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It is more conveninent to express the above quantities of signal duration T,
sampling rate f;, and the sampling period T in terms of the number of samples N.
Thus, we have

T

N==—=2A2
I
a=JN
2
T=A = -]2! Egq. (4.11)
fs=2Ax=2\/—]2z=«/2N

1 1

T ==,
' 24, 2N

If the input signal does not satisfy these conditions, results produced by the fractional

Fourier transform algorithm might be erroneous.

The input signal of the FrFT algorithm must be a vector positioned around the
origin of the time-frequency plane. Accordingly, the output of the logarithmic
warping algorithm has to be reshaped so as to correspond to the logarithmic warped
values of a signal concentrated around the origin. Since the farthest we can proceed
and warp is In(ty as shown in Eq. (3.14), which corresponds to /n(7/2) in our case,
the smallest time instance value»thaf can be taken to have a symmetric time support

around the origin is ~-In(T7/2).

The script logwarp3.m in Appendix A.9, uses the helper function nearast.m in
Appendix A.10 to find the greatest number of samples N2, less than the number of
samples N of the input signal x, that would have a duration of 2/n(7/2) and satisfy the
rules given in Eq. (4.11). This number N2 is used with the script fracfsamples.m
given in Appendix A.11 to form a time vector t2, spanning [-In(T/2) In(T/2)] and

satisfying the sampling condition f, =+/2N . This new time vector t2, now forms the

basis of the interpolation instead of t_os that was introduced in Section 3.4.
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exponential ¢/*** with the FrMT of U;}
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Figure 4. 30 Comparison of the theoretical FrFT at ¢=n/5 of the complex

exponential ¢/> with the FrMT of U;! (¢/***') computed using logwarp3.m
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Figure 4. 31 Comparison of the practical FrFT of the chirp ™" at the

matching angle ¢=atan(mg)+n/2 with the FrMT of U} (ej”"""z) at the same
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angle computed using logwarp3.m
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Figure 4. 32 Comparison of the theoretical FrFT of the chirp o/ at the
matching angle ¢=atan(mg)+n/2 with the FrMT of U;.

log

calculated using logwarp3.m
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Figure 4. 33 Comparison of the practical FrFT at ¢=n/5 of the Gaussian signal

¢™ with the FEMT of U} (¢ ) computed using logwarp3.m
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Figure 4. 34 Comparison of the theoretical FrFT at ¢=n/5 of the Gaussian signal

¢™ with the ErMT of U (™) calculated using logwarp3.m
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Figure 4. 35 Comparison of the practical FrFT at ¢=n/5 of the constant signal

c=5 with the FrMT of U[:g (c) computed using logwarp3.m
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Figure 4. 36 Comparison of the theoretical FrFT at ¢=n/5 of the constant signal
c=5 with the FrMT of U;,’z (c) calculated using logwarp3.m
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Figures 4.29 through 4.36 show the results of computing the FrMT using the
logwarp3.m algorithm. The signals that are used are the complex exponential,
Gaussian and constant signals, respectively. Figures 4.29, 4.33 and 4.35 compare the
FrFTs at ¢=n/5 of the original signals with the FrMTs at the same angle of the
inverse logarithmically warped versions of the signals. In those figures, the circles
represent the data points calculated with the FrMT. Figures 4.30, 4.34 and 4.36
compare the theoretical FrFTs for ¢=n/5 of the above mentioned signals with the
FrMTs of the inverse logarithmically warped signals. In Figures 4.31 and 4.32, the
FrFT of the chirp signal is compared with the FrMT of the inverse logarithmically
warped chirp signal at the matching transform angle of ¢ = atan(mg)+n/2. The script

used for these simulations is given in Appendix A.15.

This time, the practical computations match perfectly. Theoretical computations
can not be reproduced exactly because of the approximate nature of the FrFT
algorithm (Ozaktas et. al., 1996). Theoretical and practical results match perfectly in
case of the Gaussian signal, fit less for the complex exponential, chirp and the

constant signal examples.
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CHAPTER FIVE
APPLICATIONS OF THE FRACTIONAL MELLIN

TRANSFORM

5.1 FrMT of the Hypbolic Chirp Signal

As a first application, the detection of the hyperbolic chirp signal

-j 2 =
l Jjz(cotg)logt) +j27tsin¢logt

54(2) =7_t-e Eq. (5.1)

defined in (Akay 2000) was experimented with the FrMT algorithm. This signal,
when logarithmically warped, reduces to a regular chirp as

—jn(cotg)+j2r—2t

§,()=e ¥ Eq. (5.2)
Here, 1o is called the initial frequency parameter. Notice that the chirp rate parameter

is given as mp=-cot(¢). We know that, when computed at the matching angle of
¢+n/2, the FrFT of Eq. (5.2) should produce an impulse.

The hyperbolic chirp is plotted in Figure 5.1. It begins with a high frequendy
oscillation whose frequency diminishes logarithmically as time progresses. Aliasing
towards the origin is inevitable since the logéﬁthm function tends to minus infinity as
its argument tends to zero. The Jogwarp3.m and the FrFT algorithms assume that the
support of the signal is a symmetric region around the origin. When ¢ is taken to be
#/(2.1) and 1y is chosen as 1, the theoretical FrMT calculated at the matching angle
¢=m/(2.1) of the hyperbolic chirp signal should concentrate as an impulse at around

m=1.
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Figure 5. 1 The real part of the hyperbolic chirp of Eq. (5.1) for g=7/(2.1) and

ro=1

The theoretical FtMT of Eq. (5.1) is illustrated in Figure 5.2 where the impulse is
located at m=1. When Eq. (5.1) is first logarithmically warped using the logwarp3.m
algorithm followed by an FrFT at an angle ¢=7/2.1), the result is not exactly an
impulse, but rather a broader peak correctly localized at r=1 (see Figure 5.3). Figures
5.4 and 5.5 show the results of the same experiment for transform angles ¢=n/3. This
time the two figures obtained bear less resemblence. It should be noted that
logarithmic warping by logwarp3.m produces much less number of interpolated

samples, which may affect the correctness of the results.

In Figure 5.6 the hyperbolic chirp and its warped versions are illustrated together.
The top figure window shows the hyperbolic chirp. In the middle figure window, its
theoretically warped version which corresponds to Eq. (5.2) is plotted. The bottom
figure window shows the logarithmic warping carried out by the warping algorithm
logwarp3.m. The theoretically and practically warped versions are similar but not

exactly equal.
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In the above simulation, a hyperbolic chirp signal having the chirp rate angle value
of ¢=n/(2.1), which corresponds to a very low chirp rate parameter of approximately
0.0749, was used. We observed that experimenting with signals having higher chirp
rate angles causes aliasing and prevents proper interpolation of the signal when
implementing logwarp3.m. Due to the insufficient representative nature of aliased
data, sample points corresponding to aliased values are incorrectly interpolated as
lower frequency components. This distortion of the signal leads to an erroneous
FrMT result. Figure 5.7 illustrates this situation with an hyperbolic chirp signal
having a chirp rate angle ¢=2/5 which corresponds to a chirp rate parameter value of
approximately 1.3764. It can be seen that the high frequency components that are
aliased in the middle figure window can only be represented by lower frequency
exponentials in the bottom figure window. This is a drawback of interpolation when
working with chirp signals. Unless we are employing some form of variable bit rate
sampling, it seems to be extremely hard to achieve perfect frequency resolution for a
chirp signal. Thus, from the time when the signal starts to become aliased, the
interpolated values are no longer correct. The interpolation algorithm performs
independent of the frequency content of the analyzed signal and it tries to create the

smoothest possible curve with the given data points.
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Figure 5. 2 Absolute value of the FrFT of the theoretically logarithmic warped
hyperbolic chirp computed at the matching angle ¢=n/2.1
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Figure 5. 3 Absolute value of the FrMT of the hyperbolic chirp calculated at the
matching angle ¢=n/2.1 using logwarp3.m
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Figure S. 4 Absolute value of the FrFT of the theoretically logarithmic warped
hyperbolic chirp calculated at the mismatched angle ¢=n/3
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Figure 5. 5 Absolute value of the FrMT of the hyperbolic chirp computed at the
mismatched angle ¢=n/3 using logwarp3.m



Figure 5. 6 The hyperbolic chirp of chirp rate cot(n/(2.1)) (top), theoretical
logarithmic warping of the hyperbolic chirp (middle) and the practical
logarithmic warping of the hyperbolic chirp using logwarp3.m (bottom)
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Figure 5. 7 The hyperbolic chirp (top) of chirp rate cot(n/S), theoretical
logarithmic warping of the hyperbolic chirp (middle) and the practical
logarithmic warping of the hyperbolic chirp using logwarp3.m (bottom)
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5.2 A Simple Application — Filtering in the Fractional Scale Domain

In this application, we use the following signal

- 2 2
s(t) = :}7 e )" 71‘;_ eV (n() +27 fy In(1)] Eq. (5.3)

which is just the inverse logarithmically warped version of a Gaussian plus a chirp

signal. Thus, it can alternatively be expressed using the operator U,'o'g as

s@t) = (U7

)€ )+ (Ui (e w2, Eq. (5.4)
Observing Figures 5.8, 5.9 and 5.10, we can see that the warped Gaussian signal is
dominated by the warped chirp in s(#). To seperate the two signals which are known
to be logarithmically warped, we will use the fractional Mellin transform (FrMT). In
the simulations, we use the parameter values mg=-1and f;=6. To be able to represent
the warped chirp signal with parameter my as an impulse, we have to compute the
FrMT at the matching angle of ¢=atan(mg)+n/2. Thus, for the value of my=-1, the
matching angle is found to be /4. When we calculate the FrMT at the matching

angle of n/4 radians, the warped chirp signal becomes concentrated as an impulse at

/s =£- ~4.24 as depicted in Figure 5.11. By applying a simple ideal fractional

sing 2

scale lowpass filter with cut off scale of m=1, we isolate the Gaussian signal as

shown in Figure 5.12.

To transform the signal back to the time domain, we need to compute the inverse
FrMT, given by
(M#)! = (]F¢Ulog Y'=ULF, Eg. (5.5)

log
Notice that, as opposed to the inverse FrFT, the inverse FIMT at angle ¢ is not
equal to the FrMT of the signal at the negative angle —¢. According to Eq. (5.5), the
first operation that must be performed is the calculation of the inverse FrFT of the

filtered signal at angle —¢ which is illustrated in Figure 5.13.
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Figure 5. 8 Graph of (U;L)(e™)

Figure 5. 9 Graph of (U,’o'g)(ej[’"”"‘z"z”f‘"]), fo=6,m,=-1
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Figure 5. 11 FrMT of s(f) = (U1 )(e™ )+ (Un (e’ Lemo* 422761 computed at the

log

matching angle ¢=atan(mg)+7/2
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Figure 5. 12 The isolated Gaussian in the fractional scale domain obtained after

a simple masking of the FrMT signal in Figure 5.11
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Figure 5. 13 Inverse fractional Fourier transform at the matching angle ¢ of the

filtered signal in Figure 5.12
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As the final step, the inverse logarithmic warping defined by

(U s)®)=s(int) Eq. (3.6)
should be applied. The third warping algorithm logwarp3.m, developed in Chapter 3,
was modified to implement the inverse logarithmic warping operation in Eq. (5.6).
Applying this inverse logarithmic warping algorithm to the signal in Figure 5.13, we
recover back the warped Gaussian signal as seen in Figure 5.14. When compared
with the original warped Gaussian as in Figure 5.15, it can be seen that both original
and recoverd signals match closely, the only disagreement being towards the origin
of the time a:gis. In our opinion, this discrepancy is inevitable due to the effect of the
logarithmic modulation which introduces high frequency oscillations near the time

origin.

1.4 T T T - T T T =T L

12+ 1
1+ 4
08} i
\
06} \ i
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02t \v\ .
% WUE T 15 2 21.'5 3 35 4 a5 &

Figure 5. 14 The recovered warped Gaussian signal obtained after inverse

logarithmic warping of the signal in Figure 5.13
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Figure 5. 15 Comparison of the recovered warped Gaussian (solid line) with the

original starting signal (U, )™ ) (dashed line).

5.3 An Example of FrFT versus FrMT

As a final demonstration, we compute the FrFT and FrMT of a square pulse of
width 2, centered at t=4 as seen in Figure 5.16. We compute the fractional transforms

at six different angles between 0 to n/2 inclusive.
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Figure 5. 16 The rectangular pulse (dashed) and its logarithmically warped

(via Uyeg) version (solid)

Figure 5.16 displays the analyzed rectangular pulse signal as plotted using dashed
line. Its logarithmically warped version is also plotted using solid line on the same
figure. The magnitude plots of the FrFT and FIMT of the rectangular pulse at varying
angles from 0 to n/2 are shown in Figure 5.17. It is interesting to note that although
both transformations start out quite differently, at /2 they both assume the familiar

sinc function appearance.

It is also interesting to observe the amplitude changes of the FrFT and FIMT
signals. In addition, as the angle value of the transforms change towards w/2, the
support regions move towards the origin. Finally at ¢=mn/2, both transforms are

centered at the origin.
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Figure 5. 17 The FrFT (top) and the FrMT (bottom) of a rectangular pulse at
different angles between 0 to 7/2 radians increasing in steps of 7/10 (all figures

show the magnitude plots of the transforms)
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CHAPTER SIX
CONCLUSIONS

Our aim in this thesis was to realize the digital computation of the fractional
Mellin transform. We adopted a two stage approach instead of building the algorithm
from scratch. We used the fact that computing the FrMT of a signal is equivalent to
first logarithmically warping the given signal and then computing the FrFT (Akay,
2000). There already was a discrete FrFT algorithm developed by Ozaktas and his
colleagues (Ozaktas et. al., 1996). There remained only to implement the logarithmic

warping in a discrete fashion, before combining it with the discrete FrFT algorithm. -

Three types of warping algorithms were developed and compared in this thesis.
The first algorithm required complete knowledge about the signal, that is, the
mathematical formulation and the complete time orientation. Then, the logarithmic
warping formula

(U,g8)(®) = €"s(e")
was applied by direct substitution of ¢’ in place of the independent time variable ¢
followed by a multiplication by the factor ¢”?. The second warping algorithm
required only the initial time instant and the sampling rate. Logarithmic warping was
then accomplished by first constructing the base time vector from the given initial
time and the sampling rate values. The warped values s(e’™) corresponding to each
time instant #(n) in the base time vector was computed by interpolation. The third
algorithm operated directly on the input signal complying with the constraints of time
localization and sampling rate imposed by the discrete FrFT algorithm. Warping was

again done by interpolation.
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The best results were obtained by the first warping algorithm. However, the
amount of a priori information required makes it unsuitable for practical use. The
second warping algorithm was designed to be less dependent on a priori signal
information. This time however, limitations of the discrete FrFT algorithm were
encountered. The discrete FrFT algorithm assumes that the Wigner distribution of the
analyzed signal is confined to a circle of diameter Ax around the origin of the time-
frequency plane. Thus, allowing arbitrary signal localization on the time axis
becomes impossible. Moreover, the sampling rate of the analyzed signal must also be
taken as 2Ax. If the analyzed signal is not already discretized satisfying these
constraints, the results produced by the discrete FrFT algorithm are prone to errors.
Our second warping algorithm did not comply with these constraints and the results

produced were quite different than those produced by the first warping algorithm.

To minimize the errors, the third logarithmic warping algorithm was developed so
as to comply with the limitations of the discrete FrFT algorithm. The input signal was
assumed to be centered around =0 and the interpolation points were spaced so as to
satisfy the sampling frequency of 2Ax. This time the results agreed with their
theoretical counterparts more closely. The difficulty encountered, however, was the
loss of data due to warping. For a signal having the time support from —-772 to 772,
only that portion of the signal from —7/2 to In(7/2) can be warped since no values

WD) =T /2 are available.

corresponding to time instants greater than e

In light of the above discussion, a complete, stand-alone discrete implementation
of the FrMT requires two main components; a logarithmic warping algorithm that
can process all of the input data and produce the corresponding output and a discrete
FrFT implementation that can work completely on discrete data without taking the
sampling frequency into account. Otherwise, the discrete FtMT requires quite large
and carefully conditioned data sets, which are not always available in signal

processing.
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APPENDIX A
SOURCE CODE FOR THE ALGORITHMS USED IN

THIS THESIS

Al The Function Ulog(),
This function performs logarithmic warping defined by Eq. (2.36). It assumes
previous knowledge of the mathematical representation of the signal, initial, final

instances of the signal and the number of samples taken.

function [WarpedTimeSignall =
Ulog (InputFunction, Ti, Tf, N) '

oPe

The function that calculates the logarithmically

o\°

warped version of the function given by the

oe

string 'InputFunction'. The string 'InputFunction'

o®

should obey the rules of operation dictated

by matlab programming conventions, i.e. a '*!

e

oe

means a vector - or matrix multiplication. To

e

define a multiplication similar to the continuous

oe

sin(t)*cos(t) one must use the '.*' .The initial

o°

and final times Ti and Tf are necessary to

o\

determine at which points the function and the

o

resulting warped version are evaluated. N is

oe

assumed to be the sufficient number of samples

o°

including fun{(Ti) and fun(Tf)

fun = inline (InputFunction);

t = linspace(Ti, TE, N);

WarpedTimeSignal = exp(t/2) .* feval(fun, exp(t));.
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A.2  Testulog.m
This is the script that tests Ulog.m script in A.1

t = linspace(0.01, 2, 10001);

yinvw = 1 ./ sqgrt(t) .* gin( 2 * pi * 0.5 * log(t));

yw = ulog('l./sqgrt(t).* sin( 2 * pi * 0.5 * log(t))'...

, 0, 2, 10001);

figure (1)

subplot(2,1,1), plot(t, yinvw),

title(['\bfU {log}*{-1}\rmein(2*pi*f*t) ", ...
' = 1/sqrt(t)*sin(2*pi*f*1n(t))'])

grid on

gsubplot (2,1,2), plot(t, yw),

title (['\bfU {log}\rm(1l/sqrt (t)*sin(2*pi*f*in(t))=",...
'sin(2*pi*fxt) '])

grid on

yvinvw = 1 ./ sqgrt(t) .* sin(pi * 2 * log(t).”2);

yw = ulog(['l ./ sgrt(t) .* sin( pi * 2 * ',...
'log(t).*2)'1, 0, 2, 10001);

figure(2)

subplot(2,1,1), plot(t, yinvw),

title(['\bfU_{log}”{-1}\rmsin (pi*m*t*2) =',..
' 1/sqrt (t)*sin(pi*m* (1n(t))*2)'1)

grid on

subplot(2,1,2), plot(t, yw),

title(['\bfU _{log}\rm(1/sqrt (t)*sin(pi*m* (ln(t))*2)", ..

'=gin(pi*m*t*2) '])
grid on
figure (3)
plot(t, log(t), 'r-.', t, log(t).”2),
legend ('ln(t) ', 'In™2(t)")

grid on
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A3  Logwarp.m - First version

function y = logwarp ( x, t0, fs )

[

logarithmic warp of the input vector x

4

t0 : beginning instant, default 0

o

fs : sampling rate, default 8192

if nargin == 2
fs = 8192;

elseif nargin ==1
fs = 8192;
t0 = 0;

end

[m, n] = size ( x );

if m*n ~= length (x)
error ('Please enter a vector');

end

N = length ( x );

[

(tcf - t0 ) * £s + 1 = N

tf = (N -1) / fs + t0 ;

if exp(t0) > tf

error ('Not enough temporal information to warp.')

end

t = linspace ( t0, tf, N );
t warped = exp ( t ) ; % warped t

% 1in order to interpolate correctly we need to

oversample
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% choose fs = 10 * fs
N os = (tf -~ £0) * (10 * £s5 ) + 1 ;
% no of samples in the oversampled version
t_os = linspace ( t0, tf, N_os ); % oversampled t
if (find(isnan(x))==1)
x(1)=x(2);
elseif (find(isnan(x))==length(x))
x(end} = x(end-1);
else

X(isnan(x)) = (x(find(isnan(x))+1) + x(find(isnan(x))-

1)) ./2;

)

end

X _int = spline (t, x, t_os) ;

[*)

% interpolated x using the spline method

% we will use this to find the intermediate values
corresponding to exp(ti) s

% for any ti find the element in t os that is closest
to exp(ti)

t_max = log(tf);

t max_in t = t(abs(t - t_max )==min( abs( t - t max ) )
N max = find(t == t_max in_t);
for n = 1 : N _max

t_nearest = t_os(abs(t_os - exp( t(n) ) )==min( abs(

t_os -exp (t(n) ) ) ) );

X nearest = x_int ( t_os == t_nearest ) ;
yi{n) =exp (t(n) / 2) * x nearest ;

end

A4  Logwarptest3.m — used to test logwarp.m

=]

% logwarp test file
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[

yw : warped single sine

yuw : unwarped single sine

o\

o

as in Zalubas' paper

ti = -2;

tf = 2;

t = sample( ti,tf, 100);

et = exp(t);

f = 1/4;

yw = exp(t/2) .* sin ( 2% pi * £ * exp(t));
yvaw = gin ( 2% pi * £ * t);

yuwz = [yuw];

plot (t,yw)

hold on

plot (t,yuwz, ': ')

t2 = sample(ti,log(tf),100);

ywlz = logwarp (yuwz,ti,100); plot(t2,ywlz,'.")
hold off

xlabel('t"')

A.5 Logwarptest4.m — used to test logwarp.m

o

logwarp test file

o

yw : warped single sine
% yuw : unwarped single sine
%

as in Zalubas' paper

ti = -2;

tf = 2;

t = sample( ti,tf, 100);

et = exp(t);

f = 1/4;

yw = exp(t/2) .* square ( 2* pi * £ * exp(t));
yuw = square ( 2% pi * £ * t);
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yuwz = [yuw];

plot (t,yw)

hold on

plot (t,yuwz, ': ")

t2 = sample(ti,log(tf),100);

ywlz = logwarp(yuwz,ti,100); plot(t2,ywlz,'."')
hold off

xlabel ('t")

A.6 Sample.m — used in logwarptest3 and logwarptest4
function t = sample ( t0, tf, fs )

e

function t = sample ( t0, tf, £fs )

% creates a time vector t from t0 to tf with

o

sampling rate fs

t = linspace(tO0, tf, (tf - t0) * fs + 1 );

A.7 Fracfm — The Script Used for Taking the Fractional Fourier

Transform

function [res] = fracF(fc,a)

% This function operates on the vector fc which is
assumed to

% be the samples of a function, obtained at a rate 2
deltax

% where the Wigner distribution of the function £ is
confined

% to a circle of diameter of deltax around origin.
deltax is merely

% the time-bandwidth product of the function f£. Also fc

oe

is assumed to have even number of elements.

ae

This function maps the fc to its fractional Fourier
transform vector

% whose elements are the samples of the fractional



Fourier transform

[+

vectors are same

oe

oe

Operating interval:

ov

flag = 0;

if (a>»0) & (a<0.5)
flag = 1;
a = a-1;
end
if {(a>-0.5) & (a<0)
flag = 2;
a= a+l;

end

if (a>1.5) & (a<2)
flag = 3;
a = a-1;

end

if (a>-2) & (a<-1.5)
flag ;~4;

a = a+l;
end
if (a==0)
res = fc;
else

if (a==2) | (a==-2)

res = fliplr(£fc);
else
res = corefr(fc,a);
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% of the function f. Lengths of the input and ouput

if the input vector has even number of elements.

-2 <= a <= 2

It uses the core function corefr.m



end

end

if (flag==1) | (flag==3)
res = corefr (res,l);

end

if (flag==2) | (flag==4)
res = corefr(res,-1);

end

A8 Corefrm— Helper function to Fracf.m

function [res] = corefr(fc,a)

% Core funtion for computing fractional Fourier
transform.

% valid only when 0.5 <= abs(a) <= 1.5

% Decomposition: chirp mutiplication - chirp
convolution - chirp mutiplication

% See Digital Computation of frac. Four. transform

paper.
deltax = sqrt(length(fc)/2);

phi= a*pi/2;

N = fix(length(fc)/2);
deltaxl = 2*deltax;
alpha = 1/tan(phi);
beta = 1/sin(phi);

x = [-N:N-1]/deltaxl;

fe = fc(:);

fo = fc(1:2*N);

f1 = exp(-i*pi*tan(phi/2)*x.*x); %$multiplication

chirp!
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by



f1 = f1(:);

fc = fc.*f1;
x = x(:);

clear x;

t =[-2*N+1:2*N-1]/deltaxl;
hlptc =exp(i*pi*beta*t.*t);
clear t;

hlptc = hlptc(:);
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N2 = length(hlptc);
N3 = 2% (ceil (log (N2+2*N-1)/log(2))) ;
hlptcz = [hlptc;zeros(N3-N2,1)];

fcz= [fc;zeros(N3-2*N,1)];

Hefft = ifft (££t (£cz) .*£ft (hlptcz)) ;

% convolution with chirp

clear hlptcz;

clear fcz;

Hc = Hcfft (2*N:4*N-1);
clear Hcfft;

clear hlptc;

Aphi = exp(-i*(pi*sign(sin(phi))/4-

phi/2)) /sqrt (abs(sin(phi)));
XX [-N:N-1] /deltaxl;
f1 = £1(:);
res= (Aphi*fl.*Hc)/deltaxl;

clear f1

clear Hc

[
°

multiplication by chirp!
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A.9 Logwarp3.m — Logarithmic Warping Compliant with the Fractional

Fourier Algorithm

function [y, t, t2] = logwarp3 ( x )
% logarithmic warp of the input vector x
% X is assumed to be situated around the
% origin over the interval -T/2 T/2 with

Q

% sampling rate fs=sqgrt (2*N)

[m, n] = size ( x );
if m*n ~= length (x)
error ('Pleagse enter a vector!');

end

ifm~=1
X = X.' ;

end

N = length ( x );

T = sqgrt(N/2);

fs = 2 * T;

t = fracfsamples (N);
ti = t(1);

tf = t(end);

if (exp(ti) > tf)
error ('Not enough temporal information to warp. ')

end

N2
t2

nearest (N) ;

fracfsamples (N2) ;
% t2 is the largest warpable vector around 0 for which
the

% required data values exist in x(t)
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t_warped = exp ( t2 ) ; % warped t

% in order to interpolate correctly we need to
oversample

% choose fs = 10 * f=s

N os = (tf - ti) * (10 * £s8 ) + 1 ;

% no of samplesg in the oversampled version

t_os = linspace ( ti, tf, N_os ); % oversampled t

x_int = spline (t, x, t_os) ;
% interpolated x using the spline method

% we will use this to find the intermediate values

corresponding to exp(ti) a3

% for any ti find the element in t_os that is closest

to exp(ti)

for n =1 : N2

t_nearest = t_os(abs(t_os - exp( t2(n) ) )==min(
abs( t_os - exp ( t2(n) ) ) ) );
x_nearest = X int ( t_os == t_nearest ) ;

y{(n) =exp (t2(n) / 2) * x nearest ;

end

A.10 Nearest.m — helper function used in Logwarp3.m

function [N2med, N2] = nearest (N)

% for a vector of length N which is assumed to be
sampled at

% fs=sqgrt (2*N) and spanning the interval -T/2 T/2
around the

% origin where T = sqrt(N/2), this function finds the.
next ‘

% largest vector of length N2 < N that spans 2*%(T/2 -
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l) or
% smaller that can comply with the sampling rate
rule

% £82 = sqgrt (2*N2)

fs = sgrt( 2 * N );
T = sqgrt (N / 2 );
To2 =T / 2;

% T over 2, half the duration

T202 = log(To2);

T2 = T202 * 2;

N2 = 2 * (T2)"2;

N2mod = 2 * fix(N2 / 2);

T2mod = sgrt ( N2mod / 2 );

g8 = ['N = ', num2str(N),' T = ',num2str(T),' --> '];

8 = [8, 'N2 = !',num2str{(N2),' T2 = ',num2str(T2),' -->
'1;

8 = [s, N2mod = ',num2str (N2mod) , ! T2mod =

', num2str (T2mod) ] ;

disp(s)

A.11 Fracfsamples.m — Helper function used by logwarp3.m

function [t, fs, Ts] = fracfsamples(no_of_ samples)
% Usage
% [t, fs, Ts] = fracfsamples(no_of samples)

o

o

a function to provide the correct number of samples

and duration

o0

for reliable operation of the FracF algorithm
sampling period Ts and number of samples N satisfy

Ts = 1 / sgrt(2 * N)

P oP

o

no of samples : must be an even number
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% t time vector spanning -1 / 4Ts, 1 / 4Ts
% fs : resulting sampling frequency
% Ts resulting sampling period

if mod(no of samples,2) ~= 0
error('You should supply an even number of
samples') ;

end

N = no_of samples;
Ts = 1 / sqgrt(2 * N);
fs = 1 / Ts;

1/ (2 * Ts);
linspace(-T /2, T / 2, N + 1 );
t(1 : end - 1);

A.12 Tstfrmulog.m - Test file for obtaining the fractional Mellin

Transform with Ulog.m

n=8;
N = 2*n
N2 = nearest (N);

t = fracfsamples(N) ;

ti = £ (1);
tf = t(end);
fs = sgrt (2*N);

T = sqrt (N/2); % duration of the signal with N samples
and sampling rate f£s = sqgrt (2*N)

f =1.5;
sl = exp(j * 2 * pi * £ * t);
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figure(4), plot(t, real(sl)), title('\ite*{j2\pift}'),
xlabel('t")

U inv_log sl =t .* (j * 2 * pi * £ - 1/2);

figure(5), pltcplx(t, (U_inv_log sl)},

figure(5),title ('\bfU"{-1} {log} \rm \ite*{j2\pift}'),

% take FracFT at an arbitrary angle pi/5
phi = pi / 10;

a =phi* 2 / pi;

% FracFT of sl

FracFT_sl = fracf(sl,a);
figure(1l), plot(t,real (FracFT_sl))
title('FracFT of \ite”{j2\pift}")

$FracMT of U _inv_log_sl

FracMT U_inv sl = fracf(ulog('t .* (j * 2 * pi * 1.5 -
1/2)',ti,tf,N),a);

figure(2), plot(t, real (FracMT U_inv_sl))

hold on, plot(t, real (FracFT sl),'ro'), hold off

title ('FracMT of \bfU*{-1} {log} \rm \ite*{j2\pift}"')

FracFT_sl_th = sqgrt(l1 + j * tan(phi)) .* exp(-j * pi *
((£)."2 + £%2) * tan(phi)) .* exp(j * 2 * pi * t * f *
sec(phi)) ;

figure(3), plot(t, real(FracFT_sl_th));

title('Theoretical FracFT of
\ite*{j2\pift}') ;xlabel ('t"')

hold on, plot(t, FracMT U_inv _sl,'ro'),hold off

FracFT sl th = sqgrt(l + j * tan(phi)) .* exp(-j * pi *
((t)."2 + £%2) * tan(phi)) .* exp(j * 2 * pi * £t * £ *
sec (phi)) ;

figure(6), plot(t, real (FracFT sl _th));
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title('Theoretical FracFT of
\ite*{j2\pift}"') ;xlabel ('t")
hold on, plot(t, FracMT_U_inv_sl, 'ro'),hhold off

pause

alpha = 0.05;

83 = exp(j * pi * alpha * (t).”"2);

figure(4), plot(t, real(s3)),
title('\ite*{j\pi\alphat®2}?')

U_ inv_log 83 = 1 ./ sgrt(t) .* exp(j * pi * alpha *
(log(t))."2);

figure(5), pltcplx(t, (U_inv_log s3)),

title(' \bfu*{-1} {log} \rm \ite*{j\pilalphat”2}')

phi = pi /5;
p = 10;
a =1+ (alpha) * 2 / pi;

phi = atan(alpha) ;

% FracFT of s2

FracFT_s3 = fracf(s3,a);

figure (1), plot(t, real (FracFT_s3))

title ('FracFT of \ite*{j\pilalphat*2}')

$FracMT of U _inv_log_s3 .

FracMT U inv_s3 = fracf(ulog('l ./ sgrt(t) .* exp(j *
pi * 0.05 * (log(t)).”2)',ti,tf,N),a);

figure(2), plot(t, real (FracMT U_inv_s3))

hold on, plot(t, real(FracFT_sB),‘ro'), hold off

title ('FracMT of \bfu*{-1} {log} \rm of
\ite*{j\pilalphat”*2}")

FracFT g3 th = sqgrt((1 + j* tan(phi))/(1 + alpha *
tan(phi) )) .* exp(j * pi * ((t)."2) * ((alpha -
tan(phi)) /(1 + alpha * tan(phi) )));
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figure(3), plot(t, real (FracFT_ s3 _th));

title('Theoretical FracFT of
\ite®{j\pilalphat®2}') ;xlabel ('t')

hold on, plot(t, real (FracMT U _inv_s3), 'ro') ,hold off

FracFT_s3_th = sgrt((1 + j* tan(phi))/(1 + alpha *
tan(phi) )) .* exp(j * pi * ((t).”2) * ((alpha -
tan(phi))/ (1 + alpha * tan(phi) )));

figure(6), plot(t, real(FracFT s3_th));

title('Theoretical FracFT of
\ite*{j\pi\alphat™®2}') ;xlabel ('t')

hold on, plot(t, FracMT U inv_s3, 'ro'),hold off

pause

s4 = exp(-pi * (t)."2);
figure(4), plot(t, (s4)), title(' \ite®{-\pit*2}")

U inv_log s4 = 1 ./ sqgrt(t) .* exp(-pi * (log(t)).”2);

figure(5), plteplx(t, (U _inv_log_s4)), title('\bfUu”{-
1}_{log} \ite®{-\pit“2}")

phi = pi /5;
a =phi * 2 / pi;

% FracFT of s4

FracFT_s4 = fracf(s4,a);

figure(l), plot(t, real (FracFT_s4))

title('FracFT of \ite*{-\pit”*2}"')

$FracMT of U inv_log_s4

FracMT U_inv_s4 = fracf(ulog('l ./ sqgrt(t) .* exp(-pi *
(log(t))."2)',ti,tf,N),a);

figure(2), plot(t,real (FracMT U_inv_s4))



99

hold on, plot(t, real (FracFT_s4),'ro'), hold off

title ('FracMT of \bfUu*{-1} {log} \rm of \ite”{-
\pit*2}") .

FracFT s4_th = exp(-pi * (t).”"2);

figure(3), plot(t,abs(FracFT _s4_th));

title ('Theoretical FracFT of ite”{-
\pit®2} ') ;xlabel ('t")

hold on, plot(t, FracMT_U_inv_s4, 'ro'),hold off

FracFT_s4_th = exp(-pi * (t)."2);

figure(6), plot(t,abs(FracFT _s4_th));

title ('Theoretical FracFT of ite”{-
\pit*2}');xlabel ('t")

hold on, plot(t, abs(FracMT U _inv_s4), 'ro') ,hold off

pause
%2 - - CEEEEEEES - JEEEES - constant term ------------w----
c =5;

82 = ¢ * ones(size(t));

figure (4), plot(t, real(s2)), title('constant c')

U_inv_log_s2 = ¢ ./ sgrt(t);

figure(5), pltcplx(t, (U _inv_log_s2)), title('\bfu”{-
1} {log} \rm \itc')

phi = pi /5;
a =phi * 2 / pi;

% FracFT of s2

FracFT s2 = fracf(s2,a);

figure (1), plot(t,real (FracFT_s2))

title ('FracFT of \itc')

$FracMT of U_inv_log_s2

FracMT U_inv_s2 = fracf(ulog('5 ./
sgrt(t) ', ti,tf,N),a);
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figure(2), plot(t,real (FracMT U_inv_s2))

hold on, plot(t, real (FracFT s2),'ro'), hold off

title('FracMT of \bfu*{-1} {log} \rm of \itc')

FracFT s2 th = ¢ .* sgrt(l + j * cot(phi)) .* exp(-j *
pi * ((t)."2) * tan(phi));

figure(3), plot(t, real (FracFT s2 th));xlabel('t')

title('Theoretical FracFT of \itc');

hold on, plot(t, FracMT U_inv_s2,'ro'),hold off

FracFT_s2 th = ¢ .* sgrt(l + j * cot(phi)) .* exp(-j *
pi * ((t).”%2) * tan(phi));

figure(6), plot(t, real (FracFT_s2_th));

title('Theoretical FracFT of \itc');xlabel('t')

held on, plot(t, FracMT_U_inv_s2, 'ro'),hold off

pause

A.13 Pltcplx.m ~ helper function to tstfrmulog.m

function [] = pltcplx(t,z)
% A function to quickly plot real, imaginary and
abgolute

% values of complex valued vectors.

% Usage : pltcplx(t,z)

figure(gcft) ;

zs = inputname (2);

subplot (3, 1, 1), plot(t,real(z)), xlabel (['Real
part']);

subplot (3, 1, 2), plot(t,imag(z)), xlabel(['Imaginary
part'l);

subplot (3, 1, 3), plot(t,abs(z)), =xlabel(['Absolute

value']) ;
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subplot (3, 1, 1)

A.14 Tstfrmlw.m — — Test file for obtaining the fractional Mellin Transform
with logwarp.m

o°

test fractional mellin using the logwarp that does not use

% the time function of the signal

o°

Bl —-mmmmmm e complex exponential ---------------------
£s=30;

t = sample(-2,2,fs);t=t(l:end-1);
t2=gsample(-2,log(t(end)),fs);t2=t2(1l:end-1);

Ti=t(1);

£f = 1;
8l = exp(j * 2 * pi * £ * t);
U inv log sl =t .* (§ * 2 * pi * £ - 1/2);

% take FracFT at an arbitrary angle pi/5
phi = pi / 10;
a =phi * 2 / pi;

% FracFT of sl

FracFT sl = fracf(sl,a);

figure(1l), plot(t,real (FracFT_sl)),xlabel('t')
title ('FracFT of \ite*{jz\pift};)

$FracMT of U_inv_log_sl

FracMT_U_inv_sl = fracf(logwarp(U_inv_log_sl1,Ti,fs),a);
figure(2), plot(t2,real (FracMT U _inv_sl)),xlabel('t"')
title('FracMT of \bfU*{-1} {log} \rm \ite*{j2\pift}')
FracFT sl th = sgrt(l + j * tan(phi)) .* exp(-j * pi * (t.”2
£*2) * tan(phi)) .* exp(j * 2 * pi * t * £ * sec(phi));
figure(3), plot(real(FracFT_sl_th));,xlabel('t")
title('Theoretical FracFT of \ite*{j2\pift}');

pause
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alpha = 0.1;

s3 = exp(j * pi * alpha * t.%2);

U inv_log_s3 = 1 ./ sqgrt(t) .* exp(j * pi * alpha *
(Log(t)).*2); '

phi = pi /5;

a = 1+ (alpha) * 2 / pi;

% FracFT of s2

FracFT_s3 = fracf (s3,a);

figure(1l), plot (t,real (FracFT_s3)) ,xlabel ('t"')

title ('FracFT of \ite”{j\pi\alphat®2}')

$FracMT of U_inv_log_s3

FracMT U _inv_s3 = fracf (logwarp (U_inv_log_s3,Ti,fs),a);

figure(2), plot(tz,real(FracMT_U_inv_s3)),xlabel('t')

title ('FracMT of \bfu*{-1}_{log} \rm of
\ite*{j\pilalphat®2}"')

FracFT s3_th = sqgrt((1 + J* tan(phi))/(1 + alpha * tan(phi)
)) .* exp(j * pi * (£.”2) * ((alpha - tan(phi))/(1 + alpha *
tan(phi) )));

figure(3), plot(real(FracFT_s3_th)),xlabel('t')

title ('Theoretical FracFT of \ite*{j\pi\alphat®2}');

pause

$4 --—-----mm-m----omm—m== Gaussian signal -------------------
s4 = exp(-pi * (t)."2);

U inv_log_s4 = 1 ./ sqrt(t) .* exp(-pi * (log(t))."2);

phi = pi /5,’
a =phi * 2 / pi;
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% FracFT of s4

FracFT_s4 = fracf(s4,a);

figure (1), plot(t,real(FracFT_s4)),xlabel('t')

title ('FracFT of \ite"{-\pit“2}")

$FracMT of U_inv_ldg_s4

FracMT _U_inv_s4 = fracf (logwarp (U_inv_log_s4,Ti,fs),a);
figure(2), plot(t2,rea1(FracMT_U_inv_s4)),xlabel('t')
title ('FracMT of \bfu*{-1}_{log} \rm of \ite*{-\pit*2}")
FracFT s4_th = exp(-pi * t."2);

figure(3), plot(real(FracFT_s4_th)),xlabel('t')
title('Theoretical FracFT of ite”{-\pit®2}');

pause

F2 mm—mmmmmm— o —mmmme constant term ----------------------
Ti = t(1);

c =5;

82 = ¢ * ones(size(t));

U_inv_log_s2 = ¢ ./ sgrt(t);

phi = pi /5;
a =phi* 2/ pi;
% FracFT of s2
FracFT_s2 = fracf (s82,a);
figure (1), plot(t,real(FracFT_sz)),xlabel('t')
title ('FracFT of \itc')
$FracMT of U_inv_log_s2
FracMT_U_inv_s2 = fracf (logwarp (U_inv_log_s2,Ti,fs),a);
figure(2), plot(t2,real(FracMT_U_inv_sz)),xlabel('t')
title ('FracMT of \bfu*{-1}_{log} \rm of \itc')
FracFT_s2_th = c .* sqrt (1 + j * cot(phi)) .* exp(-j * pi *
(£.%2) * tan{(phi));
figure(3), plot (real (FracFT_s2_th)),xlabel ('t')
title('Theoretical FracFT of \itc');
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pause

A.15 Tstfrmlw3.m — Used for Testing the Script Logwarp3.m
N = 2*10

N2 = nearest (N);

t = fracfsamples(N) ;

tli = £(1);

tf = t(end);

fs = sqgrt (2*N);

t2

fracfsamples (N2) ;
T = sqgrt(N/2); % duration of the signal with N samples and
sampling rate fs = sqgrt(2*N)

T2=sqrt (N2 / 2);

% 1. complex exponential

f = 1.5;

sl = exp(j * 2 * pi * £ * t2);

figure(4), plot(t2, real(sl)). title('sl')

U inv log s1 =t .* (j * 2 * pi * £ - 1/2);

figure(5), pltcplx(t, (U_inv_log si)),
figure(5) ,title ('\bfU™{-1} {log} \rm \ite*{j2\pift}'),

% take FracFT at an arbitrary angle pi/5
a = phi * 2 / pi;

% FracFT of sl

FracFT_sl = fracf(sl,a);

figure (1), plot(t2,real (FracFT_sl))
title('FracPFT of \ite®{j2\pift}")

$FracMT of U_inv_log_sl
FracMT _U_inv_sl = fracf(logwarp3(U_inv_log sl),a);
figure(2), plot(t2, real (FracMT_U_inv_sl))
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hold on, plot(t2, real (FracFT_sl),'ro'), hold off

title ('FracMT of \bfu*{-1} {log} \rm \ite*{j2\pift}"')

FracFT sl_th = sqgrt(l + j * tan(phi)) .* exp(-j * pi *
((£2) .%2 + £*2) * tan(phi)) .* exp(j * 2 * pi * t2 * £ *
sec(phi));

figure(3), plot(t2, real (FracFT_sl_th));

title ('Theoretical FracFT of \ite*{j2\pift}');xlabel('t2")

hold on, plot(t2, FracMT_U_inV_sl,'ro'),hold off

FracFT sl th = sqgrt(l + J * tan(phi)) .* exp(-j * pi *
((£).*2 + £*2) * tan(phi)) .* exp(j * 2 * pi * t * £ *
sec(phi));

figure(6), plot(t, real(FracFT_sl_th));

title ('Theoretical FracFT of \ite*{j2\pift}');xlabel('t')

hold on, plot(t2, FracMT_U;inv_sl,'ro'),hold off

pause

alpha = 0.05;
s3 = exp(j * pi * alpha * (t2).72);
figure(4), plot(t2, real(s3)), title('s3'")
U inv_log_s3 = 1 ./ sgrt(t) .* exp(j * pi * alpha *
(log(t))."2);
figure(5), pltcplx(t, (U_inv_log_s3)),
title(' \bfU*{-1} {log} \rm \ite"{j\pilalphat®2}')

phi = pi /5;
p = 10;

a =1+ (alpha) * 2 / pi;

]

phi = atan(alpha);
% FracFT of s2

FracFT_s3 = fracf(s3,a);

figure (1), plot(t2, real (FracFT_s3))
title('FracFT of \ite”{j\pilalphat®2}')
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$FracMT of U_inv_log s3

FracMT_U_inv_83 = fracf(logwarp3 (U_inv_log s3),a);

figure(2), plot(t2, real (FracMT_U_inv_s3))

hold on, plot(t2, real(FracFT_s3),'ro'), hold off

title('FracMT of \bfu*{-1} {log} \xrm of
\ite*{j\pilalphat”®2}"')

FracFT_s3_th = sqgrt((1 + j* tan(phi))/(1 + alpha * tan(phi)
)) ¥ exp(j * pi * ((t2).72) * ((alpha - tan(phi))/(1 + alpha
* tan(phi) )));

figure(3), plot(t2, real (FracFT_s3_th));

title('Theoretical FracFT of
\ite*{j\pilalphat”®2}') ;xlabel('t2")

hold on, plot(t2, FracMT_U;iﬁv_s3,'ro'),hold off

FracFT_s3_th = sqgrt((1 + j* tan(phi))/(1 + alpha * tan(phi)
)) .* exp(j * pi * ((t).*2) * ((alpha - tan(phi))/(1 + alpha *
tan(phi) )));

figure(6), plot(t, real(FracFT_s3_th));

title('Theoretical FracFT of
\ite*{j\pilalphat”®2}') ;xlabel('t"')

hold on, plot(t2, FracMT_U_inv_s3,'ro') ,hold off

pause

s4 = exp(-pi * (t2).%2);
figure(4), plot(t2, (s4)), title('s4')
U_ inv_log s4 = 1 ./ sgrt(t) .* exp(-pi * (log(t)).”2);

figure(5), plteplx(t, (U_inv_log_s4)), title('\bfu*{-1}_{log}
\ite*{-\pit*2}")

phi = pi /5;
a=phi * 2 / pi;

[

% FracFT of s4
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FracFT_s4 = fracf(s4,a);

figure(l), plot(t2, abs(FracFT_s4))

title ('FracFT of \ite™{-\pit*2}")

$FracMT of U_inv_log s4

FracMT_U_inv_s4 = fracf(logwarp3 (U_inv_log_s4),a);
figure(2), plot(t2,abs(FracMT U_inv_s4))

hold on, plot(t2, real (FracFT_s4),'ro'), hold off
title('FracMT of \bfUu*{-1}_{log} \rm of \ite"{-\pit*2}')
FracFT_s4_th = exp(-pi * (t2).%2);

figure(3), plot(t2,abs(FracFT_s4_th));
title('Theoretical FracFT of ite”{-\pit®2}');xlabel('t2')
hold on, plot(t2, FracMT _U_inv_s4,'ro') ,hold off

FracFT _s4_th = exp(-pi * (t)."2);

figure(6), plot(t,abs(FractFT s4_th));
title('Theoretical FracFT of ite”{-\pit”®2}');xlabel('t')
hold on, plot(t2, abs(FracMT_U_inv_s4), 'ro'),hold off

pause
L PEREE N cocooogiloncnog constant term -~----------~-----w---
c =5;

82 = ¢ * ones(size(t2)); _

figure(4), plot{t2, real(s2)), title('s2')

U_inv_log s2 = ¢ ./ sqrt(t);

figure(5), pltcplx(t, (U_inv_log_s2)), title('\bfu*{-1}_{log}
\rm \itc')

phi = pi /5;

a = phi * 2 / pi;
% FracFT of s2

FracFT_s2 = fracf(s2,a);

figure (1), plot(t2,real (FracFT_s2))

title('FracFT of \itc')

¥FracMT of U_inv_log_s2

FracMT_U_inv_s2 = fracf(logwarp3 (U_inv_log s2),a);
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figure(2), plot(t2,real (FracMT_U_inv_s2))

hold on, plot(t2, real (FracFT_s2),'ro'), hold off

title('FracMT of \bfU"{-1} {log} \rm of \itec')

FracFT_s2 th = ¢ .* sqrt(1l + j * cot(phi)) .* exp(-j * pi *
((£2) .*2) * tan(phi));

figure(3), plot(t2, real (FracFT_s2_th));xlabel('t2')

title('Theoretical FracFT of \itc');

hold on, plot(t2, FracMT U_inv_s2,'ro'),hold off

FracFT_s2 th = ¢ .* sqrt(l + j * cot(phi)) .* exp(-j * pi *
((t).*2) * tan(phi)); '

figure(6), plot(t, real(FracFT_s2_ th));

title('Theoretical FracFT of \itc');xlabel('t')

hold on, plot(t2, FracMT U _inv_s2, 'ro'),hold off

A.16 Hypchirptest.m — Used for Finding the FrMT of the Hyperbolic Chirp
using Logwarp3.m

N = 2*12;
$ n2 = nearest(N) = 2*(log(N/8))"2 %

phi = pi / 2.1;

% phi = acot (0.05);

r = 1;

t = fracfsamples(N) + le-1;

¥t = £t - t(1l) + le-1;

t2 = fracfsamples(nearest (N)) + le-1;
%t2 = t2 - t2(1l) + le-1;

% t=sample(0,1,512);

nzi = N/2+1 : N; %nonzero index

mt = -pi * cot(phi) * (log(t)).”*2;
b=2%pi*r / sin(phi) * log(t);
sphi = 1./sgrt(t) .* exp(j*mt + j * b);
lw3sphi = logwarp3 (sphi);
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ow

figure(l), plot(t(nzi) ,real (sphi{nzi))),
title{'real (sphi) )

figure(2), plot(t2,abs(fracf (lw3sphi,phi*2/pi))), %
title(['fracf logwarp sphi, \phi'... =\pi/5']);
ulog_sphi th = exp (-j*pi*cot (phi) .* (t2) .”*2 +

j*2*pi*r/gin(phi)*t2);

figure(5), plot (t2,abs (fracf (ulog_sphi_th,phi*2/pi)));
title(['fracf ulog\_sphi\_th \phi={\pi}/{5}'1)

figure(6), ©plot(t2,abs(fracf(ulog_sphi th,pi/3*2/pi)));
title(['fracf ulog\_sphi\_th \phi={\pi}/{3}'1])

o

oL

figure(10), plot(t2,abs (fracf (lw3sphi,pi/3*2/pi))), %
title(['fracf logwarp sphi, \phi'... ,t=\pi/3'1);
$figure (7}, plot(t,abs(fracf (sphi,phi*2/pi))); %

title(['fracf sphi \phi={\pi}/{5}'])
$figure(8), plot(t,abs(fracf(sphi,1l))); % title(['fracf sphi

\phi={\pi}/{2}'])

figure(9)

subplot (3,1,1), plot(t(nzi),real(sphi(nzi)))

subplot (3,1,2), plot (t2, real (ulog_sphi_th)), xlim([t2(1)
t2(end)])

subplot (3,1,3), plot(t2, real (lw3sphi)), xlim([t2(1)

t2(end)])



